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Chapter I

INTRODUCTION

Switching-mode dc-dc regulators are coming into increasing

use as power supplies because of the significant reduction

of weight,size and increase in equipment efficiency that can

be attained. The dissipative regulators used earlier had

the advantage of design simplicity, but suffer from low ef-

ficiency and higher weight due to the large transformer and

filter needed to achieve the required voltage/current regu-

lation.

Since the late sixties, the rapid expansion of the com-

puter and communication industries and increasing complexity

and sophistication of various systems necessitated the de-

velopment of higher performance switched mode power sup-

plies. The incentive for performance improvement prompted

the initial development of multiple loop control schemes,

such as the standardized control module (SCM) for dc-dc con-

verters [2,7,8] and the current-injected control scheme [9].

The ever continuing search for performance improvement forms

the underlying theme of this dissertation.

The work presented in this dissertation is mainly con-

cerned with developing a control scheme to alleviate the



problem brought about due to the use of an input filter in

switching regulators. The switching regulator input current

has a substantial ripple component at the switching frequen-

cy and this necessitates the use of an input filter to

smooth the pulsating current drawn from the supply. Furth-

ermore the input filter also serves to attenuate noise pre-

sent in. the supply voltage.from being propagated through the

regulator to the payload. downstream. The presence of the

input filter, however, often results in various performance

difficulties such as loop instability, degradation of tran-

sient response, audiosusceptibility (closed loop input-to-

output gain) and output impedance characteristics

13,4,5,6,101. These problems are caused, mainly by the inter-

action between the resonant peaking of the output impedance

of the input filter and the regulator control loop. Conven-

tional single-stage and two-stage input filters can be de-

signed such that the peaking effect is minimized, however

such a design is often accompanied with a penalty of weight

and loss in the input filter [3,4,5,6,10]. This disserta-

tion presents a different approach via a feedforward control

scheme to mitigate the undesirable interaction between the

input filter and the regulator control loop.

The concept of pole-zero cancellation is used, in this

dissertation, to develop a novel feedforward control loop



that senses the input filter state variables and processes

this information in a manner designed to cancel the detri-

mental effect of peaking of the output impedance of the in-

put filter. The feedforward loop working in conjunction

with the feedback loops developed earlier [2,7,8] constitute

a total state control scheme that eliminates the interaction

between the input filter and the regulator control loop. Em-

ploying the novel feedforward compensation scheme presented

in this dissertation, a high performance converter together

with an effective input filter design (minimum weight and

loss) can be accomplished concurrently. A buck regulator

employing a feedforward control loop working in conjunction

/" with the feedback loops was used to obtain measurements that

showed significant improvement in the following performance

categories:

1. Loop stability (open loop gain and phase margins);

2. Audiosusceptibility;

3. Output impedance; and

4. Transient response.

In this dissertation the problem caused by input filter

interaction and conventional input filter design techniques

are discussed in Chapter 2 followed in Chapter 3 by the con-

cept of pole-zero cancellation developed earlier [2,7,8].

Chapters 4 and 5 present the modeling of the power stage



with input filter and the implementation of the feedforward

for a buck regulator respectively. Measurements of open loop

gain and phase that confirm the analytical prediction of

performance improvement using the feedforward scheme devel-

oped, are discussed in Chapter 6 along with other measure-

ments of audiosusceptibility, output impedance and transient

response. Chapter 7 presents experimental and analytical re-

sults pertaining to transient response while Chapter 8 dis-

cusses the use of the feedforward loop in stabilizing a re-

gulator system made unstable due to input filter

interaction. Chapter 9 is concerned with extending the con-

cept of feedforward compensation to other types of control

and to other types of regulators i.e. the buck-boost regula-

tors. Finally, Chapter 10 presents the conclusions and sug-

gestions for future work.



Chapter II

INPUT FILTER RELATED PROBLEMS AND CONVENTIONAL
DESIGN TECHNIQUES

2.1 INPUT FILTER RELATED PROBLEMS

An input filter is often required between a switching regu-

lator and its power source. A buck type switching regulator

with a single-stage input filter is shown in Figure 1 . The

regulator input current has a substantial pulsating current

component at the switching frequency as a result of the

,- opening and closing of the switch and this component should

be prevented from being reflected back into the source ; an

input filter is required to provide high attenuation at

switching frequency and thus smooth .the current drawn from

the source. The input filter also serves to isolate source

voltage disturbances from being propagated to the switching

regulator payload downstream.

A presumably well-designed input filter, satisfying the

above mentioned requirements, when used with a switching re-

gulator can often cause significant performance degradations

[3,4,5,6,10]. This is due primarily to the complex interac-

tion between the switching regulator control loop, the input

filter and the regulator output filter [3,4,5,6,10].
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The interaction between the control Loop and the input

filter is illustrated in Figure 2 . The switching regulator

has been shown to have a nonlinear negative resistance, as

illustrated in the figure,[3]. The input current ir to the

switching regulator is related nonlinearly to the input vol-
dir {

tage e- and the input resistance --- = -$ . Under certain
der

 r.
conditions the input filter-switching regulator combination

can become a negative resistance oscillator, producing large

amplitude voltage excursions across capacitor C. When this

happens serious degradation of regulator performance could

occur, [3], including loss of stability.

The.effect of the input filter is more clearly seen us-

ing a small signal model.

The averaging technique [1] is used to relate the low

frequency modulation component of the source voltage and

control signal to the corresponding frequency components of

the converter output voltage. Using the continuous inductor

current buck regulator with input filter of Figure 1 , as an

example, a small signal model using the dual-input describ-

ing function can be developed, as shown in Figure 3 , [6].

In this model the effect of the input filter is character-

ized by the following two parameters: the forward transfer

characteristic of the input filter H(s) and the output impe-

dance of the input filter Z(s).



3

c =r
t

1 "r
• SWITCHING REGULATOR

Figure 2: Negative resistance oscillation.
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Figure 3: Small-signal model using the dual-input
describing function.
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In Figure 1 the output filter is made up of R^, L, RC and C,

RL is the load resistance, D is the steady state duty cycle

ratio D - Ton/T, Vj and 1I are the steady state regulator

input voltage and current respectively, and the lower case

letters with a caret above them denote modulation signals.

The small signal model of Figure 3 is used to illus-

trate briefly the complex interaction between the input fil-

ter, output filter and the control loop and the problems

caused by the interaction. For detailed analysis please re-

fer to [6].

2.1.1 Input Filter Interaction — Loop Stability and
Transient Response

The stability of a switching regulator can be examined by

the open loop gain GT(s):

GT(s) = Fc(s)Fp(s)FE(s)FM(s) (2-1)

where Fc(s)Fp(s) is the duty cycle-to-output describing

function vQ/d , and FB(S), FM(s) are the transfer functions

of the error processor and the pulse modulator respectively.

The peaking of the output impedance of the input filter Z(s)

has the. following effects:'

(1) The duty-cycle power stage gain FC(S) includes the

output impedance Z(s) —

F(a) = Vj-ZfaJI or (2-2)
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FC(S)
V
7^ - Z(S)

(2-3)

The first term in the brackets -j— is the negative input

impedance of the regulator. At the input filter resonant

frequency/ Z(s) reaches a peak value and if this value is

large enough the result could be a reduction in loop gain or

even worse a negative duty cycle power stage gain FC(S). Re-

duction in loop gain could lead to loop instability, whereas

a negative FC(S) together with the negative feedback loop

will result in a positive feedback unstable system.

(2) The power stage transfer function Fp(s) includes the

output impedance Z(s) —

F (s) = —± where (2-4)
p D^Z(s) + Z.(s)

Zĵ s) = R^ + sL + [Rc + l/sC]//RL (2-5)

= input impedance of the regulator.

Excessive Z(s) at the input filter resonant frequency can

significantly reduce Fp(s), and thus the loop gain.

Figures 4 [6], illustrate the effect of peaking of Z(s)

on the duty cycle-to-output transfer function Fc(s)Fp(s) if

an improperly designed input filter is employed.
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(parameter values are as shown in Fig.l)



13

At the input filter resonant frequency the peaking of the

output impedance Z(s) causes a sharp change in the gain and

phase of the duty cycle-to-output transfer function. This

could result in loop instability and degradation of tran-

sient response from a presumably well damped system to an

oscillatory one; control of the peaking effect of the output

impedance Z(s) is necessary to avoid these problems.

2.1.2 Input Filter Interaction—Audiosusceptibility and
Output Impedance

The audiosusceptibility refers to the switching regula-

tor's ability to attenuate small signal sinusoidal distur-

bances present at the input so as not to affect the regulat-

ed output voltage. The audiosusceptibility performance is of

considerable importance, as the regulator generally shares

the input bus with other on-line equipment. The operation of

this equipment .generates noise voltages on the input line

which must be attenuated by the closed-loop regulator so

that operation of the various payloads at the regulator out-

put will not be adversely affected. The audiosusceptibility

is expressed in terms of the closed loop input-to-output

transfer function G (s):
.A

V«) . Fl(s)Fp(s) Fl(s)Fp(s) (2-6)
vI(s) l+Fc(s)F (s)FE.(s)FM(s) 1 + GT(s)
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where Fj(s) = DH(s) = input voltage gain of the power stage.

G (s) and thus the audio susceptibility are affected by the
£L

resonant peaking of the output impedance Z(s) and of the

forward transfer function of the input filter with the regu-

lator disconnected H(s), because Fj(s) is a function of H(s)

whereas FC(S) and F_(s) are functions of Z(s). The reduc-

tion of loop gain at the resonant frequency can thus severe-

ly degrade the audiosusceptibility. Figure 5 , [6], illus-

trates the audiosusceptibility of the buck regulator with

and without an input filter.

The output impedance of the regulator should be small

so that the regulator behaves like an ideal voltage source,

however the output impedance is increased by the peaking of
/ •

the output impedance of the input filter.

Z (s)

Vs' • i +p <2-7'

where Zp(s) is the output impedance of the power stage with

the control loop open.

At the resonant frequency the output impedance of the regu-

lator Z (s) is increased. This is a consequence of the loss'

of loop gain G (s) as a result of. peaking.
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The peaking of H(s) and Z(s) of the input filter thus

results in a reduction in the loop gain, this in turn af-

fects stability, transient response, audiosusceptibility and

the output impedance of the regulator.

A buck type switching regulator with a two stage input

filter is shown in Figure 6 . Figure 7 , [6], shows the mea-

sured values of open loop gain and phase as a function of

the frequency. ( The input filter damping resistance RD is

not employed to purposely illustrate the effect of input

filter interaction with the regulator control loop.) Signi-

ficant changes in the open loop gain and phase characteris-

tics at the resonant frequencies of both the first stage and

the second stage of the input filter are observed, [6]. Thus

it is seen that the peaking of the output impedance at reso-

nant frequency of the two stage input filter can also cause

serious performance degradation.

2.2 INPUT FILTER DESIGN CONSIDERATIONS

The design of the input filter is made more complicated by

the necessity of satisfying the following constraints, which

result from the interaction between the input filter and the

regulator control loop discussed in section 2.1 :

1. The amount of regulator switching current reflected

back into the source should be limited (conducted in-

terference requirement).
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DUTY CYCLE
3KMUL rf(t)

c

Figure 6: Buck type switching regulator with a two stage
input filter.

VT =40v V0=20v
 RL=7 ohm R£=0.05 ohm

L=l mH C=455microF Rc=0.068ohm Tp=50microsecs
L,=l.l mH R^O.05 mohm 1̂ =0.27 mH

1
,
2.R=0.02 ohm (=225 microF C=20 microF
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2. The peaking of the output impedance of the input fil-

ter Z(s) should be limited to a safe value to avoid

significant loop gain reduction.

3. The peaking' of the transfer function of the input

filter H(s) should be limited to achieve a satisfac-

tory rejection rate of audio signals propagating from

input to output.

4. The input filter weight and energy loss should be

limited to low values.

5. The Nyquist stability criterion has to be satisfied;

thus the closed loop poles should be in the left half

plane for stable operation -

|1 * Fc(s)Fp(s)FE(s)FM(s)| > 0

6. The closed-loop input-to-output transfer characteris-

tic (audiosusceptibility) and transient response due

to a sudden line/load change should not be degraded

by a noticeable amount.

An input filter design that satisfies one constraint

may often result in violating some other constraint. For ex-

ample, an input filter design that limits performance degra-

dation (degradation of stability, transient response and au-

diosusceptibility) often results in higher weight and

increased losses in the input filter. A satisactory input

filter design trades off one or more of the performance deg-
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radations for size, weight and loss. A near-to- optimal de-

sign thus requires many trial and error design attempts.

Some of the conventional input filter design techniques are

presented next.

2.2.1 Conventional Input Filter Design Techniques

A single stage input filter as shown in Figure 8(a) can be

designed to avoid performance degradation — but this would

result in larger filter Lj and C1 thus resulting in weight

and size increase. The filter is simple and commonly used

but it cannot often satisfy the stringent requirement on au-

diosusceptibility without size/weight penalty. Resonant

peaking of the filter of Figure S(b), [3], is lowered by ad-

ding resistance R, but this lowers efficiency because the

pulse current flowing through C1 increases losses. Another

design uses a resistance R in parallel across C, , [4], but

this results in a large Cj.

The optimal design of a single stage input filter thus

is rather difficult without tradeoff between performance

degradations and .the weight and loss limitations.

The degradation of the power stage transfer function

Fp(s) due to peaking of Z(s) can be avoided if there is suf-

ficient separation of the input filter resonance frequency

and the output filter resonant frequency
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cJ0 = -iL= / [4,5,10]. Figure 9 , [4,5,10], shows three pos-
I/LC

sible -combinations of u>0 and <U1 . Fp(s) is related to both

S(s) and the input impedance of the regulator Z£(s) thus

[Rr +
P (S) = —^ - (2-8)
p D Z(s) -I-

where Zĵ s) = R^ + sL + [RC + l/sC]//RL

= input impedance of the regulator.

2(s) and Zj(s) peak at the frequencies cjo and cjj respective-

ly. If the two resonance frequencies are the same as in Fig-

ure 9 then both 2(s) and Z^s) peak at the same frequency

and thus at that frequency the transfer function Fp(s) would

be affected, i.e. reduced, to the maximum possible extent.

Shifting the two frequencies CJQ and cjj apart as shown in

Figure 9 will result in reducing the effect of peaking on

Fp(s). Reducing 6^ would result in increasing the size and

weight of the input filter. A high value of cOj is desirable

from the point of view of weight and size reduction but this

can result in severe ..perf o_Knanc_e_degradation_--.r. ..from- -Fi.gure-

4 it is clear that the gain of the duty cycle- to -output

transfer function Fc(s)Fp(s) decreases with increasing fre-

quency and thus the effect of peaking of Z(s) on the gain of

F_(s)F (s) would be more pronounced if Z(s) peaks at a high-

er CO.
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(C)

Figure 9: Interaction between output impedance Z(s) of
input filter and input impedance Z (s) of
regulator.



The reduction of the loop gain at higher input filter

resonant frequency GJ. often results in poor audio suscepti-

bility, oscillatory transient response or even an unstable

system. The choice of Wj thus involves a trade off between

meeting performance specifications and size/weight.

2.2.2 An Optimal Configuration

A two-stage input filter configuration has been described,

[3,6] and is shown in Figure 10 . The first stage consisting

of L1'/€1/R3 and Rj controls the resonant peaking of the fil-

ter. The second stage consisting of L2, C2 supplies most of

the pulse current required by the regulator. As shown in the

literature, [6], the two-stage input filter is capable of

reducing H(s) and Z(s) at resonant frequency without signi-

ficantly increasing weight and loss, unlike the single-stage

input filter. Computer optimization techniques have .been

utilized to optimally design the two-stage filter[6]. It has

been shown that the two-stage filter is much lighter than

its single-stage counterpart under identical design const-

Also it has been shown that for the same filter

weight the single stage filter has a significantly higher

peaking of H(s) and 2(s). Figure 11 shows the gain and phase

of the duty cycle-to-output describing function of a power

stage with a two stage input filter, [6].
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Figure 10: Two-stage input filter.
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lowing two-stage input filter parameters --
L,=232 microH R1=0:0276 ohm La=77 microH
Rj. =0.0119 ohm C, =100 microF R,=1.73 ohm
Cz=30 microF
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Figure 4 shows the gain and phase of the duty

cycle-to-output describing function of a power stage with a

single-stage input filter, and the two-stage filter of Fig-

ure 11 was designed to have the same weight as the single-

stage input filter of Figure 4 . Comparing the two figures

the improvement in performance regarding the duty cycle-to-

output transfer function is dramatic.

It can therefore be concluded that the two-stage filter

provides the best compromise among the conflicting require-

ments of an input filter.

2.2.3 Input Filter Compensation Via a_ Feedforward Loop

Limiting interaction between the input filter and the regu-

lator control loop is possible with the addition of a feed-

forward control loop. At this point it is important to em-

phasize that such a scheme is designed to eliminate the

effect of peaking of the output impedance of the input fil-

ter Z(s), since the peaking of Z(s) interacts with the con-

trol loop. The forward transfer function H(s) does not in-

teract with the regulator control loop, as is evident from

Figure 3 and therefore the peaking of H(s) cannot be cont-

rolled in any way by adding a feedforward loop. The peaking

of H(s) can only be controlled by proper filter design. In

this dissertation a feedforward loop is implemented for a
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switching buck regulator employing multiple control loops.

The feedforward loop will be designed to cancel the detri-

mental effect of input filter interaction and thus improve

the regulator performance and stability. The use of the

feedforward control loop thus removes some of the conflict-

ing design constraints mentioned above and makes an optimal

input filter design more easily attainable.

2.2.4 Objectives of Feedforward Loop Design

The proposed feedforward loop will be designed such that :

1. It will eliminate input filter interaction with the

regulator loop. This will result in improvement in

stability margins, audiosusceptibility, output impe-

dance and transient response of the regulator.

2. It will allow the input filter to be optimized. Some

of the design constraints that make an optimal filter

design difficult to attain are removed with the addi-

tion of feedforward.

3. It will eliminate equipment interaction. Figure 12

shows a switching regulator and its P̂ ejregulator

which may be a rectifier and a filter. The dynamic

output impedance of the preregulator will interact

with the switching regulator and may cause problems

like loop instability, degradation of audiosuscepti-
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bility, output impedance and transient response. The

addition of a feedforward loop will eliminate such

interaction, thus isolating the switching regulator

from equipment upstream.

C
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Ereregulator
Switching

Regulator

Figure 12: Interaction between the switching
regulator and' its preregulator.



Chapter III

CONCEPT OF POLE-ZERO CANCELLATION USED IN TOTAL
STATE CONTROL

3.1 CONCEPT OF POLS-ZERO CANCELLATION.

The concept of pole-zero cancellation that was developed

earlier [2,7,8] was implemented by feedback loops that sense

the regulator output filter state variables and process this

information to achieve better performance, and a control

adaptive to filter parameter and load changes.

Figure 13 [2], shows a two-loop controlled switching

buck regulator. The dc loop senses the converter output vol-

tage and compares it with the referance voltage to generate

a dc error signal for voltage regulation. The ac loop senses

the ac voltage across the output filter inductor to generate

an ac signal. Both ac and dc signals are processed through

an operational amplifier summing junction to provide a total

error signal at the output of the operational amplifier

integrator. It is apparent that the error signal at the out-

put of the integrator contains information regarding the

output filter state variables — the inductor current and

the capacitor voltage.

31
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SI (ON.OFF.OFF) L R^ VQ

Figure 13: Two loop controlled switching buck regulator.
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It was shown, [2], that the feedback control loops when

properly designed can provide complex zeros to cancel com-

pletely the complex poles presented by the low-pass output

filter of the power stage: It was also shown that the feed-

back control loop has the ability to sense filter parameter

changes and automatically provide pole-zero cancellation. To

examine the adaptive nature of the control loops the open

loop regulator transfer function Ĝ .{s) is used

r /=.^ - KZ ( JQJGT(S) = i
where K is a constant determined by the power stage and con-

trol loop parameters and

C 2 2
Z(jw) = 1 + J2c1 w/«nl -

 M A> ni
 (3~2)

P(j») = 1 + J2z;2 «/wn2 - w
2/u2n2

 (3~3)

P(jw) has complex poles corresponding to the output filter

and Z(jco) has complex zeros produced by the two loop feed-

back control.

a, - - (3-5)
/LC

T2 Tz

(3-7)
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(3-8)

RS)C2 +
 L

(R
R

-i (R. +

J 1
R

L, C, R^ and RC form the output filter as in Figure 13 . The

control parameters can be chosen such that

Mnl = Wn2 • (3"11}

C1 = C2 (3-12)

thus resulting in

P(ju>) = Z(jw-) (3-13)

and

GT(S) = I (3-14)

The open loop transfer function is of first order and is

completely independent of output filter parameters. The

adaptive nature of the control loop is apparent from the

fact that the complex zeros imitate the change in the com-

plex poles due to component tolerance, aging or temperature

variations, thus preserving the pole-zero cancellation.



35

3.2 TOTAL STATE CONTROL

The concept of pole-zero cancellation of the output filter

characteristics led. to the idea of using similar means to

control the effect of peaking of the output impedance of the

input filter. The objective of the work reported in this

dissertation is thus to develop a feedforward loop that

senses the input filter state variables and uses the infor-

mation contained therein to eliminate the interaction bet-

ween the input filter and the regulator control loop. Such a

feedforward loop working in conjunction with existing feed-

back loops forms a total state control scheme, which is il-

lustrated in Figure 14 . The f eedf orward . loop senses the in-

f~ . put filter state variables and feeds this information to the

error processor.

The other inputs to the error processor are the ac vol-

tage across the output filter inductor and the output vol-

tage - as shown in section 3-. 1 these contain information

regarding the output filter state variables.

The pulse modulator thus has as its input information re-

garding the state variables of the output filter and also

the input filter. The .duty cycle signal d(t), which controls

the switch in the power stage, is thus also affected by the

input filter state variables. It is shown later in this dis-

sertation, in Chapters 4 and 5, that the feedforward loop



36

Input

Filter

Input
Filter
State

Variables
X

Power

Stage
•*—O

Duty cycle
signal d(t)

Output
Filter
State

Variables

Pulse

Modulator

Error

Processor

Feedforward

Loop Gain

Figure 14: Total State Control



37
r

can be designed such that interaction between the input fil-

ter and the regulator is eliminated.

C



Chapter IV

MODELING OF THE POWER STAGE WITH INPUT FILTER

The first step in the design and analysis of the feed-

forward loop is to develop the small signal model of the

power stage with input filter for the buck-boost, buck and

boost type of switching regulators, using the averaging

technique, [1]. The modeling is carried out in the continu-

ous conduction operating mode,in which the inductor current
•

is always nonzero. This mode is the prevalent operating mode

for most dc-dc converters. The discontinuous conduction op-

erating mode in which the inductor current is zero for some

time during the cycle occurs at light loads and is seldom

used as the intended design at full load.

The modeling is carried out in the following steps —

1. State space equation formulation during TON and TQFF.

2. State space averaging and perturbation.

3. Linearization and derivation of the small signal

equations_and_the n̂all_signal_e.quiv:al_ent̂  circuit

state space model.

38
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4.1 BUCK-BOOST CONVERTER SMALL SIGNAL MODEL DERIVATION

The buck-boost converter is shown in Figure 15 . In the

buck-boost converter shown the input filter is composed of

R.. , LI, R_. and Cl. The load is represented by RT while VT
u 1 w 1 Jj A

and Vo are the input and output voltages respectively. Dur-

ing TON, tke switch S is on and the circuit as shown in Fig-

ure 16 (a).

The equations .describing the circuit are

Np
*„ " T— $ <f> - flux in core (4-1)

*̂O

V.̂ .̂ **̂  *̂P "* û

(4-3)

±S1.\1 i, (4-4)
dt Cl ' * ^ }

dt CCl^+R )

hRL
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Figure 15: Buck-boost converter power stage.
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Li

ci

C

(a)

Figure 16: Buck-boost converter power stage model: (a)
during TON and (b) during TOFF.
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During TQPF the switch S is off and the circuit is as shown

in Figure 16 (b).

The equations describing the. circuit are

N

(4-7)

fii.ii, » - x vci . vi
dt LI ^"RL1 " RCl' ~ LI * LI

*• ( U U J» 13 T? ^L D O ^ <JL 13 ••.ji — VR-A- T K.-JV. f K-A-jlp »TV/^
u<(l 5 C 5 L C L L C

dvci H.I-
Cl * Cl

dVC NSRL* VC
dt CLgd^+R^) C(RC + R_)

R.V RC\NS*
ir -. ^ C L C ^ S ,

(4-8)

(4-9)

(4-10)

(4-11)

/ A 1 ** \

The following vectors are defined

'Cl

u

resulting in the following state space equations

(4-13)
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ON OFF

Z • ci 5

where

(4-14)

C

Ll

!ciNP

<RLl*RCl'
Ll

• i - < £
B2 =

~

° a

*S*L -10 „ ,,S?, . 0 X

(4-15)

(4-16)

(4-17)

(4-18)

0 0 (4-19)
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0 Ws
V'c+V

0
RL-

RC+RL
(4-20)

(4-21)

The state space averaged model over the entire period T is

x - [dA- + d'Aj x + [dB. + d'B-] ,u

X - [dC1-f-d'C2] x

where d = duty cycle ratio = TON/ ( TON+TQF£

(4-22)

d' = 1-d

T » T
^

(4-23)

The state space averaged model is perturbed thus -

d - D + d

d1 = D' - d

u « U + u

y « Y + y

x = X * x

(4-24)

Assuming that the perturbation is small
^ /•»
d x
— « 1, — « 1 etc. leads to the following small
D X

signal linearized model



VQ - [DC-L + D'C2] X

•

+ D'A2J x + [DBj^ + D'B 2J ^ (4-25)

X -I- (Bx - B2 Vj] d

v = [C.. - C9] X d + [DC, 4- D.'Cj x
U L i . — 1 i —

Defining

A = DA1 4- D'A2

B - DBX -I- D'B2 (4-26)

C - DC^ + D'C2

results in

3£ =» A X 4- B V_

4- [Ax - A2) X + (B-L - B2) Vz] d - (4-27)

V0 " [C1 " C2^ X d + C x

Using Laplace transforms results in

x(s) •- [SI - A]~T v^(s)

4- [SI - A]~1[(A1 - A2) X + (B1 - B2) Vx] d(s) (4-28)

VQ(S) = [C^ - C2J X d(s) 4- C x(s)
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The state space model is derived from the two equations

above, and is shown in Figure 17 .

To derive the small signal equivalent circuit, it is

first necessary to use the equation for v0 to substitute for

VG in terms of v , in the. small signal equations described

above. Simplifying, the four equations are obtained

(4-29)

dv ^ DN . N

C~3F "~+ " IT" U* d (4-3D

R , I N
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r

Figure 17: Buck-boost converter power stage small signal
state space model



R »

'BCJIL1NS RC1ILS - D t ) , VC1NS , _
(RC + V NP

Figure 18: Buck-boost converter power stage small signal
equivalent circuit
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Using a fictitious current i described by

Lgi = Ng* (4-33)

an equivalent circuit can be made up that is described by

the four equations given above. This circuit will use the

current i flowing through L_ and it is thus the small signal
9

equivalent circuit for the buck-boost converter, as shown in

Figure 18.

4.2 BUCK CONVERTER SMALL SIGNAL MODEL DERIVATION

The procedure used in deriving the small signal model for

the buck converter is exactly similar to that used for the

buck-boost converter. The buck converter is shown in Figure

C
During TQN the switch S is on and the circuit is as

shown in Figure 20 (a) .

The equations describing the circuit are

di_- -(R-M + Rr-i) Rri v -. v_Ll 1.1 CI . ci Ci. I (4-34)
dt LI T.1 U T. " LI LI

d̂  R,,, R, v.. jci t :i. vci
dt = L TL1 ~ L h, L

dvci

dv
i

dt
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RC B L * R C
(4-38)

During TOPF/ the switch S is off, and the circuit is shown

in Figure 20 (b ) . The equations describing the circuit are

dt LI

VC1 VIi_ — + —=•
T.1 • LI LI

dt

dv,Cl
dt Cl

RC0

(4-39)

(4-40)

(4-41)

"dt Rc) Rc)
(4-42)

(4-43)

(4-44)

(4-45)

The following vectors are defined

[VQ]
C1

(4-46)
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c RLi Li RjZ. L

X

Figure 19: Buck converter power stage.
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(a)

RL L

(b)

Figure 20: Buck converter power stage model during: (a) T
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resulting in the following state space equation

x + BJ.U x + B2u (4-47)

where

C

LI

1
Cl

R'Cl
LI

-1
Cl

R

-=• 0LI

L

0

CCR^ + R,

(4-48)

LI

1
Cl

LI

L

0

"L

0

0

0

-1

(4-49)



(4-SO)

B2'B1

*L

(4-51)

(4-52)

(4-53)

The state space averaged model over the entire period T is

(4-54)

where d = duty cycle ratio = TON/(TON+To-,_)

d1 - 1 - d

T ' TON * TOPF

(4-55)

The state space averaged model is perturbed and linearized

in exactly the same way as for the buck-boost converter. The

resulting small signal linearized model is

+ D'A2]X + [DBĵ  -I-

+ D'A2]x + [DB1 +

(4-56)

VQ = [DCĵ  4- D'C2]X

V0 = [C1 " C2]-̂  + [DC1 + D>C2]i
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Defining

A = DA ' +• D'A2

B SB DBj + D'B 2 (4-57)

C = DCj + D 'C a

results in

i - Ax + Bv,

- B )V ]d (4-58)

Using Laplace transforms gives

,- 4- [SI - A] [(Ax - A2)X + (B-L - B2)VI]d(s) (4-59)

vrt(s) - [C, - C0]X d(s) 4- C
0 1 i — —

The state space model is derived from the above two equa-

tions and is shown in Figure 21 .

The procedure for deriving the small signal equivalent

circuit is exactly similar to the one used for the buck-

boost converter. The four equations that result are

- DRci s, . + L1

(DRci + Vh. - ^ci^i + vo

vci)d
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(4-62)

dvc - vo~

The small signal equivalent circuit is described by the four

equations above, as in the buck-boost converter, and is

shown in Figure 22 .

4.3 BOOST CONVERTER SMALL SIGNAL MODEL DERIVATION

The procedure used in deriving the small signal model for

the boost converter is exactly similar to that used for the

buck-boost converter. The boost converter is shown in Figure

23 . '

During TQN/ the switch S is on, and the resulting cir-

cuit is shown in Figure 24 (a).

The equations describing the circuit are

/i-i — ("TJ 4. TJ ^ OQIT i ^KT i ^ pi' ciIrfX uX V^X . . \**L
•f

dt LI T.1 LI

'Cl *L1 4

^-TT + LT ^-64>

dvc
^dT JLJ^L .-.el ^4^^

RC1 (RC1 + RJ.) VC1
-df-T1^!- L *L*-T ^4-66)
dvc -v

c
"dT " C(RC -H j^) (4-67)

v
v^ =
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During TQFF the switch S is off and the resulting circuit is

shown in Figure 24 (b).

The equations describing the circuit are

d±Ll ~(RL1 + RC1) RC1 VC1 VTL>i =• ^ 1 L -si 4 ,V*A L •*•
dt LI T.1 LI T, ~ LI LI

dt * ~CT " Cl

Q^ B J TJ 13

a .= i ^Tl J - T T J . ^ " "\
dt L T.1 L UtCl ' Ui ' R_ -)- R. ;

C L

Vc . vci
T (ft -t R \ TUV.K.,, T K_ ) i>

Vrf u -^

(4-69)

(4-70)

(4-71)

/d.-77^
dt C(RC + Rĵ ) C(RC

t
0 R,

C L C L

The following vectors are defined

U

(4-73)

(4-74)

resulting in the following state space equations.

ON

c +

OFF

x = A-x + B-u
— r— 2.— (4-75)

'1-
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r-ANw—TOm-, WA onrn.
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Figure 23: Boost converter power stage
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Figure 24: Boost converter power stage models during : (a)
TQN and (b) TQFF.
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LI

!si
L

_1_
Cl

LI

fa
L

_1_
Cl

"Cl
LI

R'Cl
LI

1C\

Li °

LI

L L(RC+RL )

B, - TT 1

J

(4-76)

(4-77)

(4-78)

(4-79)
i

(4-80)

(4-81)



63

0 Vc

*****
0 "L

c

"
L

(4-82)

The state space averaged model over the entire period T is

(4-83)
2 -

where d = duty cycle ratio = TON/(TON+TOFP)

d' - l - d

T H- T
ON iOFF

(4-84)

The state space averaged model is perturbed and linearized

in exactly the same way as for the buck-boost converter. The

resulting small signal linearized model is

0 - A X + B V,

x - A x + B v.
(4-85)

X+ (B1-B2)VI]d

vo- c*

VQ = t^-Cj] X d + C X

(4-86)

(4-87)

where

4- D'B (4-88)

Using Laplace transforms gives
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x(s) - [SI -A]'1 B

A^X* (B1-B2)VI]d(s) (4-89)

VQ(S) - [Cj^-CjlX d(a) + Cx(s)

The state space model is derived from the above two equa-

tions and is shown in Figure 25 .

The procedure for deriving the small signal equivalent

circuit is exactly similar to the one used for the buck-

boost converter. The four equations that result are —

d±U
L1-dl ---- (kLl+RCl)-1Ll + ̂ l1! ' VC1 + VI (4-90)

- (RC1

RR-LdCD-D')

dvci -
"dT"1!!-1! (4-92)

dv - v

The small signal equivalent circuit is described by the four

equations, above as in the buck-boost converter, and is shown

in Figure 26 .
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The power stage small signal models developed include

the input filter state variables, whereas earlier models

[3,4,5,6] had treated the input filter only in terms of its

output impedance and transfer function. The models developed

in this chapter are used to analyze and design a feedforward

loop that includes the input filter state variables.
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Chapter V

IMPLEMENTATION OF THE FEEDFORWARD LOOP FOR A
BUCK REGULATOR

This chapter first presents an analysis that leads to a de-

sign of the feedforward loops for a buck regulator. A small

signal model that includes a general form of the feedforward

loops is developed first. Analysis of the small signal model

leads to a design of the feedforward loop. Implementation of

the design is next discussed and two feedforward circuits

are presented. The buck regulator alone is treated. in this

chapter, however the analysis and design procedure would be

similar for the boost and the buck-boost regulators.

5.1 STATE SPACE MODEL OF BUCK REGULATOR

The state space model of the buck regulator is shown in Fig-

ure 27 . In the figure the feedforward loop has as its in-
A A

put the input filter state variables iL1 and VGI (the input

filter inductor current and capacitor voltage respectively).

These two inputs are multiplied by the transfer functions

c2(s) and c3(s) whose properties are yet to be determined.

The feedback loop has as its inputs the output voltage and

the output filter inductor current. The feedback control in

this case is the two loop control (the standardized control

68



69

module or SCM) developed earlier [2,7,8] and discussed in

Chapter 3. The error processor in Figure 27 is thus com-

posed of the blocks labelled cg, c3 and the feedback, and

has as its input information regarding the output filter and

input filter state variables. The pulse modulator is repre-

sented by its transfer function FM [2,8]. The rest of Figure

27 is the state space model of the buck power stage devel-

oped in Chapter 4.

The feedforward and feedback signals are added and fed

to the pulse modulator. In physical terms this means sens-

ing the small signal variations in input filter inductor

current and capacitor voltage, processing these variations

(as represented by the blocks c2(s) and c3(s) in Figure 27)

and adding the processed variations to the feedback signal.

The total state feedforward/feedback error signal is then

used to modulate the duty cycle of the switch for loop gain
/

correction.

The transfer function VQ (s)/vz(s), Figure 27, is used

to design the feedforward because it expresses clearly what

the feedforward does; also the resulting design is indepen-

dent of the feedback loop parameters. The generalized small

signal model for the buck regulator is developed next and

used to write the transfer function v (s)/vx(s).
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Figure 27: State space model of the buck regulator
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5.2 GENERALIZED SMALL SIGNAL MODEL OF BUCK REGULATOR

The generalized small signal model of the buck regulator is

shown in Figure 28 . The regulator is modelled according to

the three basic functional blocks: power stage, error pro-

cessor and duty cycle pulse modulator. The power stage model

consists of two inputs: disturbances from the line v and
A

the duty cycle control d, and four outputs: the output vol-
A -A

tage vo , the output filter inductor current IL/ the input

filter capacitor voltage vci and the input filter inductor
A

current iL1 . The error processor has as its input informa-

tion regarding the output filter and the input filter state

variables. The transfer functions F , FA£ and FDC constitute

the two loop standardized control module (SCM) developed

earlier [2,7,8], whereas the feedforward loop gains c2 and

c3 are as yet unknown. The error processor processes infor-

mation regarding the state variables of the input and output

filters and feeds a total error signal to the pulse modula-

tor, whose transfer function FM was developed earlier

[2,7,8].

The power stage transfer functions F,. etc. are written

using the following equations:

T31VI

T41VI
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POWER STAGE

MODULATOR '
ERROR PROCESSOR

Figure 28: Generalized Small Signal Model
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f".

Thus it can be seen that

T =11 " zv d = 0

and

H F
m _ X-L

(5-2)

11 A
(5~3)

"12 A

5.2.1 Development of Power Stage Transfer Functions

As can be seen from equations (5-1) Tj. , T , T31 and T4i
A A

{ , can be evaluated with d = 0 and the other four.with Vj = 0.

The starting point for the evaluation of the transfer func-

tions is the small signal equivalent circuit model for the

buck regulator power stage developed in Chapter 4, Figure 22

5.2.1.1 Evaluation of TU , T2l, T3l and T4i
A

These transfer functions are evaluated with d = 0 in Figure

22 . The resulting circuit is shown in Figure 29 . In Fig-

ure 29 the input filter has been replaced by its forward

transfer function H(s) and its output impedance Z(s).

1 +• sClR
H(s) = -2 Ci (5_4)

s LI Cl + sCl(R_.. + R ) + 1
lj-L C.L
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2
S L1C1R_, + SCIR̂ R.... 4- sLl + R

Z(S) = §± £î ± ii (5-5)
S L1C1 + SC1(RL1 + RCI) + 1

From the equivalent circuit of Figure 29 the following can

be derived:

T111

Vo _ DRL(1 + SCR
C
)P

H
_ I. ' ij_'21 ~ v ~ A

1 ' (5-6)

31 " V, " A

41 - (R + sLl) A
VT LX

where

A = a, + D2Z (1 + SCR..)
1 v (5-7)

D = duty cycle = ~-t V = supply voltage
I
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RL

Using equations (5-3) and (5-6) the following are derived:

Fll = DRL(1 + SCR
C

)

F21 = D(l + sCRjJ-

F31 = al (5-8)

A/H - a
F41 ~ R + SL1

In the derivation of equations (5-6) the resistance RC1 has

been assumed negligibly small. This is not an unrealistic

assumption since the ESR of the input filter capacitor (RC1)

can be assumed negligibly small compared with the other re-

sistances; also in the derivation of T41 the following is

used:

vi - vci ..
= ifi (5-9)
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A

Hv,
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DD'RCI R

Cl

1 : D

Figure 29: Small signal equivalent circuit with d = 0
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5.2.1.2 . Evaluation of T12, T2i/ T3J> and T42> .

These transfer functions are evaluated with Vj = 0 in Figure

22 . The resulting circuit is shown in Figure 30 .

From the equivalent circuit of Figure 30 the following

are derived:

_ yo ^ VQ(RL - D
2Z)(1 + sCRc)

T
"12 * DA

T : = ±L =
 Vo(RL " p 2 z ) ( 1 + SCV

22 d DRLA (5-10)

' _ v^ _ -ZV0[a1 + RL(1 + s C R L ) ]

c
 32 " a v

_ 2V0[a1 + RL(1 + SCRL) ]
T42 * (R + s L l ) R T A

a jjX jj

Using equations (5-1) and (5-10) the following are der-

ived:

V (RT - D 2Z)
F12 D

- D 2 Z) (1 +
F22 DRTjj

-ZV [a, + RT (1 + s C R T ) ] (5-11)
o J- ij J-i

F 3 2 = R ^



78

RL1 SL1

Figure 30: Small signal equivalent circuit with Vj = 0
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ZVo[al + RL(1 + SCRL)]
F42 =

where ^ and at are as defined in equation (5-7) and

Vvi ••-£

RC1

(5-12)

5.2.2 Feedback Transfer Functionsrv- Transfer functions F0, FAO/ F,, and Fnr, constitute the feed-
O - **.Vy JV1 •••' ̂

back. A two loop standardized control module (SCM) cont-

rolled [2,7,8] buck regulator was used to obtain experimen-

tal results that are discussed later in this dissertation.

The buck regulator used is shown in Figure 31 , and with re-

ference to that figure the following are defined [2,7,8] :

F3 = snL

F = l

AC sC-[R4

Rx = R11//R12

= R,JC "13 sC2
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2R4C1FM = ~~nM— (Pulse Modulator Transfer Function)

M = Constant depending on the type of control used.

5.3 DESIGN OF THE FEEDFORWARD LOOP.

The transfer function v /vx is used to design the feedfor-
A

ward. With v. = 0 the following equations are derived from

Figure 28 :

[vx + C2vci + VLI^M ' * (5-14)

and

dr
V ~ = — — (5-15)
Cl A

A A A
Substituting for v01 , i_ .and d from (5-15) in (5-14) re-

Cl Ll

suits in

!» = ''"M ,5-16,
vx 1-C2(!32)P1|-03(_42)FM
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In the absence of feedforward i.e. with c0 = c0 = 0 it can« <i

be seen that:

v V (R_ - D2Z)(1 + SCR )FM
o _ o L c M (5-17)

v a- + D2Z(1 +

The effect of peaking of the output impedance of the input
2

filter Z is to cause a reduction in the term (R, -D Z) and

also an increase in the denominator, thus resulting in a

substantial loss of loop gain.

With feedforward the detrimental effect of peaking of Z

could be avoided by a proper choice of the feedforward looprv— gains c2 and cg. Choosing

°2 = VFM (5-18)

C = 0

leads to

V F (R -
v o M L

o DA

__ T"\~" | « V | _ a . - l 1 . ' L % T \ - i " ' V-I\T j
V" -1 + ^- F. J ° X ^ L

VoFM M I ' RL^
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which can be simplified to

_2Z) (1 + SCR ) R_ A

V DAa, (IL. - D Z)
X _L i_i

Cancellation of the two -terms leads to

^o VM(I + SCRC)RL
v Dal
X

(5-21)

Thus a proper choice of the feedforward loop gains has re-

sulted in the transfer function VQ/VX being completely inde-

pendent of the input filter output impedance 2. It is also

noted from equations (5-11) and (5-16) that at frequencies

other than the resonant frequencies at which Z peaks, the

gain of F32 is fairly small since Z would be small at those

frequencies. Thus the addition of feedforward would not af-

fect, in any noticable manner, the open loop gain and phase

margin at any frequency other than those at which Z peaks.

The following points regarding the feedforward loop de-

sign can be made:

1. It has been shown analytically that a proper choice

of feedforward loop gains results in eliminating com-

pletely the effect of peaking of Z on the loop gain.
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2. The gain c3 = 0, thus the inductor current informa-

tion is not needed, only the input filter capacitor

voltage information is used.

3. The feedforward loop gains are independent of the in-

put filter parameter values, and are free of any fre-

quency dependent term.

4. The feedforward loop gains are independent of the

type of feedback control used. The pulse modulator

transfer function FM is, however, an integral part of

the design and thus the compensation depends on the

type of duty cycle control used. The feedforward loop

design process is independent of the particular type

f~\ of control used and thus the same design can be used

for other types of control, for example for single

loop control, current injected control and others.

5.4 IMPLEMENTATION OF FEEDFORWARD

The buck regulator used to obtain experimental results that

are discussed later is shown in Figure 31 . The feedforward

circuit processes the small signal variation across the in-

put filter capacitor and adds this processed information to

the feedback signal.

Two circuit implementations of the feedforward design

were used in making measurements and they are discussed

next.
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Figure 31: Buck regulator with feedforward used to obtain
exprimental results
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5.4.1 Nonadaptive Feedforward Circuit

It was shown earlier that the feedforward loop gain is

ca(s) = -D
2/V0FM , equation (5-18)

The nonadaptive feedforward circuit was developed for the

buck regulator of Figure 31 . The key parameters of the re-

gulator are as follows -

Input-Output Parameters

Vj = 25-40 volts VQ = 20 volts PQ = 40 watts

Power Stage Parameters

L = 230 micro H C = 300 micro F R^ = 0.2 ohm

RC = 0.067 ohm (nominal) RL = 20 ohm (load)

Pulse Modulator Parameters

M = V j T O N = 0.88 * 103 V-sec

Control Circuit Parameters

ER = 6.7 volts Rlt '= 33.3 Kohm R12 = 16.7 Kohm

R13 = 2 Kohm R14 = 47 Kohm R4 = 40.7 Kohm

n = 0.65 C* = 5600 picoF C0 =.0.01 microF• i •&

The buck regulator was operated in a predetermined duty cy-

cle control mode (constant V, T_ control), [2,7,8]. Substi-

tuting for F , [2,8] and for D leads to
M
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-V nM
c (s) = —^ (5-22)

2VI R4Ci

where M = Vj TQN is constant.

For the nonadaptive design the input voltage was kept cons-

tant at Vj = 30 volts. Substituting in equation (5-22) it

is calculated that c«(s) = -0.03. The nonadaptive feedfor-

ward circuit implementation is shown in Figure 32 . The in-

put to the circuit is the input filter capacitor voltage and

a series capacitor (27 microF) blocks out the dc component.

•The input is then multiplied by the gain of 0.03 implemented

by the 5.1 Kohm and 164 ohm resistances. The feedforward

signal available at the potential devider network is then

subtracted from the feedback signal available at the output

of the integrator in the feedback loop. The result is then

fed to the pulse modulator. The capacitor voltage fed into

the operational amplifier subtracting circuit consists of

two components - a small signal variation and a component

corresponding to the switching frequency. The feedback sig-

nal is also at the switching frequency, but the amplitude of

the feedback signal is large compared to the switching fre-

quency information in the capacitor voltage, and thus the

second component has negligible effect. It is to be noted
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that the circuit of Figure 32 constitutes the feedforward

circuit and also the summing junction shown in Figure 31 .

The noriadaptive circuit has the advantage of being ex-

tremely simple and easy to implement. The gain of the poten-

tial devider in the feedforward circuit is, however, a func-

tion of supply voltage and thus the circuit of Figure 32

cannot be used at any other value of supply voltage. Mea-

surements made using this circuit are discussed in the next

chapter.

5.4.2 Adaptive Feedforward Circuit

The adaptive feedforward circuit is shown in Figure 33 .

ô From equation (5-22) it is clear that changes in supply vol-

tage V. will change the gain c^ of the feedforward loop/the

circuit of Figure 33 implements the feedforward of equation

(5-22) and adjusts the gain automatically as V changes.

The input voltage in Figure 33 is allowed to vary bet-

ween 25v and 40v. It is fed to a voltage devider and then

squared. The input filter'capacitor voltage consists of a

large dc component and this is blocked out by the 27 microF

capacitor in series with the feedforward path. The small

signal variation and the small magnitude component at

switching frequency are then devided by the squared input

voltage. A pair of resistances provides the final gain; the
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feedforward signal now available is then added to the feed-

back signal at the output of the integrator. As for the no-

nadaptive circuit the switching frequency component in the

input filter capacitor voltage is small compared to the cor-

responding component in the feedback signal and thus its ef-

fect on the duty cycle implementation is negligible.

The gain of the feedforward circuit is thus a function

of input voltage Vj and is made adaptive to changes in Vj.

The feedforward is thus capable of tracking any variations

in supply voltage.



Chapter VI

ANALYTICAL AND EXPERIMENTAL VERIFICATION OF THE
FEEDFORWARD DESIGN

This chapter presents extensive measurement data that

was made to verify experimentally the feedforward design

outlined earlier. The feedforward control was designed for a

buck regulator and the same regulator is used in obtaining

measurements.

Measurement data pertaining to the open loop gain and

phase margin are presented first; data made using the adap-

tive feedforward circuit designed earlier confirm the adap-

^- tive nature of the circuit. The audiosusceptibility and out-

put impedance measurements presented next show that the

feedforward significantly improves performance in both cate-

gories. Lastly, measurements "of transient response are in-

cluded that show that the feedforward improves the transient

response.

91
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6.1 MEASUREMENTS OF THE NONADAPTIVE FEEDFORWARD CONTROL

The buck regulator with feedforward used to obtain experi-

mental results is shown in Figure 34 , and is the same as

that presented earlier in Chapter V. The parameters of the

regulator are the same as given earlier in Chapter V with

the single-stage input filter parameters specified as:

RL1 = 0.2 ohm LI = 116 micro-H Cl = 20 micro-F

The feedforward circuit used was the nonadaptive feedforward

circuit for a fixed input voltage discussed in Chapter V,

with Vj = 30 V. The small signal open loop transfer function

of the multiloop controlled buck regulator of Figure 34

without feedforward can be expressed as [2,7,8]

In equation (6-1) Fj^ and F^a are t*16 power stage transfer

functions, FDC/ EL̂ , F« and FAC are the feedback control loop

transfer functions, as discussed in Chapter 5 (section 5.2).

The peaking of the output impedance of the input filter,

Z(s), affects the transfer functions Fjj. and F.j. as is seen

below:

V0(RT - D*Z) (1 + sCRc)
F = i , (6-2)
iL D( D4Z( 1 + sCRL) + al]

V (RL - D
iZ)( 1 + sCR,)

" - -= (6-3)
DRL[ D Z( 1 + sCRL)
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experimental results
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The peaking of Z(s) reduces the gain of both F^ an<* ̂ zi

thus reduces the open loop gain at the resonant frequency of

the input filter.

The addition of the feedforward loop modifies the open

loop transfer function as shown below --

i ^T(s) =

SCRL)
D ai

/

The addition of feedforward modifies the transfer functions

F12_ and f̂ .2
 and ^hua it can be seen from equation (6-4) that

the open loop gain with feedforward is not affected by the

peaking of the input filter output impedance Z(s). G'T(s) is

now independent of Z(s) and is a function only of the feed-

back loop parameters and the power stage parameters, unlike

GT(s) of equation (6-1) which is affected by the peaking of

Z(s). Equation (6-4) is also the open loop gain of the buck

regulator without input filter, as can be seen from equa-

tions (6-1), (6-2) and (6-3) by setting Z(s) = 0, and it can

thus be concluded that the addition of the feedforward loop

should eliminate completely the peaking effect of the input

filter output impedance and that the open loop gain with
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feedforward should be identical with the open loop gain

without the input filter [10,11].

SINGLE STAGE INPUT FILTER

Measurements of the open loop gain and phase margin of

the buck regulator of Figure 34 were made with and without

feedforward, and are presented in Figure 35 (a) and (b). The

input filter resonates at around 3 KHz and results in dis-

turbances in the open loop gain and phase margin at that

frequency. The feedforward eliminates all these undesirable

disturbances as is evident in the figures, thus providing

close agreement with theory. It can also be seen from Figure

35 that the characteristics with feedforward are almost

identical to the gain and phase margin plots of the buck re-

gulator without input filter, thus providing close agreement

with the analytical prediction made earlier.

TWO-STAGE INPUT FILTER

The experiment was further extended to the buck regula-

tor with a two-stage input filter. The two-stage filter of

Figure 36 was used with the following parameter values:

Rt= 0.2 ohm L1= 325 micro H CL= 200 micro F

RZ= 0.02 ohm L2= 116 micro H C2= 20 micro F

R3= 0.075 ohm (ESR of CL)
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The feedforward circuit used was the same nonadaptive feed-

forward circuit used to obtain the measurements of Figure 35

.with the feedforward input being the voltage at capacitor C2.

The other parameters of the circuit are the same as used to

obtain Figure 35 . Measurements of the open loop gain and

phase margin were made with and without feedforward and the

results are shown in Figure 37 (a) and (b). The open loop

gain and phase are affected at the resonant frequencies of

the two stages of the input filter because the output impe-

dance of the input filter Z(s) peaks at both resonant fre-

quencies. The use of the feedforward circuit eliminates the

detrimental effect's of the input filter, as is evident from

Figure 37 .

REMARKS

The following points regarding the above measurements

are noteworthy:

(1) Measurements of the open loop gain and phase margin

show that the input filter output impedance causes distur-

bances in the gain and phase margin at the filter resonant

frequencies and the addition of feedforward eliminates these

disturbances, providing close agreement with theory.

(2) The feedforward compensation circuit is independent

of the input filter parameter values.
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(3) The feedforward compensation scheme is independent of

the input filter configuration. It was demonstrated above

that the same feedforward compensation network is equally

applicable to a single stage input filter and a two-stage

input filter. These observations lead to a stronger conclu-

sion that the feedforward can provide effective compensation

,for an unknown source impedance. For example, a preregula-

tor which often has an unknown, dynamic output impedance can

interact with a DC-DC converter downstream and result in

system instability. The feedforward compensation scheme out-

lined can be used to isolate the switching converter from

the source thus preventing interaction between the switching

converter and equipment upstream.

6.2 ADAPTIVE FEEDFORWARD MEASUREMENTS.

The buck regulator with feedforward used to obtain experi-

mental results is shown in Figure 34 and the parameters of

the circuit are as specified in section 6.1. The adaptive

feedforward circuit for variable input voltage presented in

Chapter 5 was used in obtaining measurements .The two-stage

input filter of Figure 36 was used with the same parameter

values as in section 6.1 with the feedforward input being

the voltage at capacitor C2 - The value of R3 was changed

to-

Rg= 0.2 ohm (ESR of C2 plus external damping resistance)
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Measurements were obtained at four values of supply voltage

using the same adaptive feedforward circuit in all cases -

this was done to confirm the adaptive nature of the feedfor-

ward circuit.

A computer program was written to calculate the gain

and phase margin of the open loop transfer function with and

without two-stage input filter, at various input voltages.

Equation (6-1) was used to calculate the gain and phase mar-

gin; setting Z(s) =0 in the equation gives the. gain and

phase margin without input filter. The following expression

for the two-stage input filter was used:

Z, + R2 + sLa
Z(s) = i (6-5)

1 * sC2( Z: + R2) +s LaCz

where

Zj(s) = (Rj + aLi) // (R3 + l/sCi) (6-6)

Figures 38 - 41 show the computed values of open loop gain

and phase margin with and without the two-stage input filter

for input voltages Vj = 2Sv, 30v, 35v and 40v. It can be

seen that the two-stage input filter 'resonates at two fre-

quencies and at each frequency the output impedance Z(s)

peaks, thus causing sharp fluctuations in the open loop gain

and phase margin. Measurements of the open loop gain and
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phase margin at each of the above values of supply voltage

were obtained with and without feedforward and are also

plotted on the figures. It can be seen clearly that the ad-

dition of feedforward removes the sharp fluctuations in open

loop gain and phase margin caused by the input filter, pro-

viding close agreement with theoretical prediction made ear-

lier. The analytical prediction that the open loop gain and

phase margin with feedforward are identical to the charac-

teristics without input filter is also confirmed, as exami-

nation Figures 38 - 41 show.

The two stage input filter was modified so that

Rj = 0.075 ohm (ESR of C^) and measurements of the open loop

gain and phase margin with and without feedforward were

made. Figure 42 shows the calculated values of open loop

gain and phase margin together with the measured values at

V = 25v. With the external damping resistance set to zero

the effect of the input filter is seen to be more pro-

nounced. Measurements without feedforward shown plotted on

the figure also show the pronounced effect of the input fil-

ter. The. addition of feedforward effectively eliminates the

sharp fluctuations in gain and phase margin caused by the

undamped input filter.
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Figure 38: (a) Open loop gain at Vj=25v: Calculated
values and measured values (A) without
feedforward
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Figure 38: (b) Open loop phase margin at
Vj=25v: Calculated values and measured values
(A) without feedforward
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Figure 38: (c) Open loop gain at Vj=25v: Calculated
values and measured values (A) with feedforward
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Figure 38: (d) Open loop phase margin at
Vj=25v. Calculated values and measured values(A)
with feedforward
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Figure 39: (a) Open loop gain at Vj=30v: Calculated
values and measured values (.A) without
feedforward
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Figure 39: (b) Open loop phase margin at
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Figure 39: (c) Open loop gain at Vz=30v: Calculated
values and measured values (A) with feedforward



110

8
8.

8

1 I 9

calculated values without
input filter

calculated values with input
filter, without feedforward

(A) measured values with input
filter and with feedforward

l.E+2 l.E+3 l.E+4

FREQ(HZ)

Figure 39: (d) Open loop phase margin at
Vj=30v: Calculated values and measured values
(A) with feedforward
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Figure 40: (a) Open loop gain at Vj=35v. Calculated
values and measured values (A) without
feedforward
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Figure 40: (b) Open loop phase margin at
Vj=35v: Calculated values and measured values
(A) without feedforward
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Figure 40: (c) Open loop gain at Vj=35v: Calculated
values and measured values (A) with feedforward
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Figure 40: (d) Open loop phase margin at
Vj=35v: Calculated values and measured values
(A) with feedforward
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Figure 41: (a) Open loop gain at Vj=40v: Calculated
values and measured values (A.) without
feedforward
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Figure 41: (b) Open loop phase margin at
Vj=40v: Calculated values and measured values
(A) without feedforward
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Figure 41: (c) Open loop gain at Vj=40v: Calculated
values and measured values (A) with feedforward
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The following observations regarding the measurements

are made:

(1) The peaking of the output impedance of the first

stage is more pronounced and has a greater effect on the re-

gulator than the peaking of the second stage. •

(2) Both analysis and measurement results indicate that

the open loop gain is higher at lower values of duty cycle

D. This is further manifested by examining eqation (6-4). It

shows that a lower value of D results in a higher gain.

(3) The effect of input filter peaking varies with the

input voltage. This is explained by noting that both Fj^ and

FZ2./ equations (6-2) and (6-3) depend on the duty cycle D.

c\. The effect of peaking of Z(s) is to cause a reduction in the

term (RL -D Z) and the amount of reductio'n would be greater

if D is larger. Consequently it is expected that at small

values of Vj , when D is larger, the effect of peaking would

be more pronounced. This is confirmed by examination of Fig-

ures 38 - 41 .

(4) The addition of the'feedforward loop effectively eli-

minates the perturbation in open loop gain and phase caused

by the input filter. The feedforward works effectively at

all four values of supply voltage Vj . Since the same feed-

forward circuit was used in making all the measurements of

Figures 38 - 42 the adaptive nature of the feedforward cir-

cuit is confirmed.
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Figure 42: (a) Open loop gain at Vj=25v: Calculated
values and measured values (A) without
feedforward
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Figure 42: (b) Open loop phase margin at
Vj=25v: Calculated values and measured values
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Figure 42: (c) Open loop gain at Vj=25v: Calculated
values and measured values (A) with feedforward
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Figure 42: (d) Open loop phase margin at
Vj=25v: Calculated values and measured values

with feedforward
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(5) From the results presented in section 6.1 and from

measurements presented in this section it is logical to con-

clude that the adaptive feedforward circuit can provide ef-

fective compensation for an arbitrary, unknown source impe-

dance for a variable supply voltage. The adaptive

feedforward -circuit has been shown to be able to track the

supply voltage and adjust the gain in accordance with supply

voltage changes. The adaptive feedforward circuit can effec-

tively isolate the switching regulator from its source impe-

dance , thus preventing any interaction between the switching

converter and equipment upstream.

6.3 MEASUREMENTS OF CLOSED LOOP INPUT-TO-OUTPUT TRANSFER
FUNCTION (AUDIOSUSCEPTIBILITY).

The closed loop input-to-output transfer function (audiosus-

ceptibility) of a switching regulator is an important char-

acteristic. It refers to the regulator's ability in attenu-

ating small signal sinusoidal disturbances propagating from

the regulator input to its output. The gain of the closed

loop input-to-output transfer function should be as small as

possible; thus the regulator will effectively attenuate

noise at the input so as not to affect operation of the re-

gulator payloads. Unfortunately, as pointed out in Chapter

2, the peaking of the output impedance of the input filter
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and the peaking of the forward transfer function of the in-

put filter increase the audiosusceptibility. Measurements

of audiosusceptibility with and without feedforward were

made using the two-stage input filter of Figure 36 with a

damping resistor so that R^ = 0.2 ohm. Measurements were

made by injecting a small sinusoidal signal at the input to

the converter and then using a HP network analyser to mea-

sure the audiosusceptibility [8]. The feedforward circuit

used was the adaptive feedforward circuit of Figure 33 and

the buck regulator used is shown in Figure 34 , with its

parameters as specified in section 6.1.

Figures 43 - 46 show the measured values of audiosus-
rv- ceptibility with and without feedforward at four values of

supply voltage Vj = 25v, 30v, 35v and 40v using the same

feedforward circuit in all cases. The top trace in each fig-

ure is the plot without feedforward and it can be seen

clearly that the audiosusceptibility is degraded

at the two resonant frequencies where the outp-

ut impedance 2(s) and the 'transfer function H(s) of the in-

put filter peak , with the first stage resonating around

600 Hz and the second stage around 3 KHz. It is also evident

from the figures that the audiosusceptibility is dependent

on duty cycle D or the supply voltage. At higher values of

supply voltage when the duty cycle is low the audiosuscepti-

bility is lower, specially at the lower frequencies.
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Figure 43: Measurement of audiosusceptibility [VQ(S)/VX(S)
with and without feedforward at V.=25v
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Figure 44: Audiosusceptibility with and without feedforward
at Vj=30v (measurements)
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Figure 45: Audiosusceptibility with and without feedforward
at Vj=35v (measurements)
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Figure 46: Audiosusceptibility with and without feedforward
at Vj=40v (measurements)
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The addition, of feedforward substantially improves the

audiosusceptibility, specially at the lower frequencies, as

is evident upon examination of Figures 43 - 46 . The peaking

effect of audiosusceptibility with feedforward loop is how-

ever, more pronounced at the two resonant frequencies of the

two-stage input filter; this is explained by noting that in

equation (2-6), Chapter 2, the audiosusceptibility is shown

to be affected both by the peaking of Z(s) and by the peak-

ing of the forward transfer function H(s) of the input fil-

ter. The peaking of H(s) cannot be controlled in any fashion

by the addition of a feedforward loop since the control loop

is not affected by H(s); thus the feedforward loop is effec-

tive in cancelling 2(s) while the peaking effect of H(s) is

manifested in audiosusceptibility. Figures 47 and 48 show

the transfer functions H(s) and Z(s) of the two-stage input

filter used. The peaking of H(s) at the two resonant fre-

quencies is clearly seen.

The two-stage input filter was modified by removing the

damping resistor so that R, = 0.075 ohm. Measurement data of

the audiosusceptibility with and without feedforward are

shown in Figures 49-52 . The top trace in all these fig-

ures is the closed loop input-to-output transfer function

without feedforward and it can be seen that the gain is

higher than in the earlier case (with damping resistance).
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Figures 53 and 54 show the forward transfer function H(s)

and the output impedance Z(s) of the input filter used. Com-

paring Figures 47 and 48 with Figures 53 and 54 it can be

seen clearly that both Z(s) and H(s) peak at significantly

higher values when the external damping resistance is re-

moved .

The addition of feedforward substantially improves the

audiosusceptibility as is evident from Figures 49-52 . The

audiosusceptibility with feedforward peaks at the two reso-

nant frequencies of the two-stage input filter as before,

but in this case the peaks are higher. This is explained by

noting that H(s) of the two-stage input filter without damp-

ing resistance peaks at a significantly higher value, as

shown in Figures 53 and 54 , than that with a damping resis-

tance as shown in Figures 47 and 43 ; thus the effect of

H(s) on the closed loop gain would be expected to be greater

in the former case.

It can therefore be concluded that the addition of

feedforward significantly improves the audiosusceptibility,

specially at the lower frequencies. The audiosusceptibility

with feedforward is affected by the peaking of H(s) since

the effect of peaking cannot be eliminated via any control

means. The same adaptive feedforward circuit was used in

making all the closed loop gain measurements mentioned
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Figure 47: H(s) of two stage input filter, with R3=0.2 ohm
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Figure 48: Z of two stage input filter, with R3=0.2 ohm
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Figure 49: Audiosusceptibility with and without feedforward
at Vj=25v (measurements)
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Figure 50: Audiosusceptibility with and without feedforward
at Vj=30v (measurements)
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Figure 51: Audiosusceptibility with and without feedforward
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Figure 52: Audiosusceptibility with and without feedforward
at Vj=40v (measurements)
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Figure 53: H(s) of two stage input filter, R3=0.075 ohm
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Figure 54: Z of two stage input filter, 1*3=0.075 ohm

x
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above, this confirms anew the adaptive nature of the feed-

forward circuit.

6.4 MEASUREMENTS OF OUTPUT IMPEDANCE.

The closed-loop output impedance of a switching regulator

should be as low as possible in order that the regulator be-

have as much as an ideal voltage source as possible. Howev-

er/ as pointed out in Chapter 2, the peaking of the output

impedance of the input filter increases the closed-loop out-

put impedance of the regulator.

Measurements of the regulator output impedance with and

without feedforward were made, using the two-stage input

filter of Figure 36 with Rg = 0.075 ohm (ESR of C2). Mea-

surements were made by injecting a small signal sinusoidal

disturbance at the output in parallel with the load of the

regulator, and then using a HP network analyser to measure

the corresponding voltage and current [8,9]. The feedforward

circuit used was the adaptive feedforward circuit of Figure

33 .. Figures 55 - 58 show the measured values of output

impedance with and without feedforward at four values of

supply voltage V. - 25v, 30v, 35v and 40v using the same

feedforward circuit in all cases.

It can be seen clearly from the figures that the output

impedance is increased at the two resonant frequencies of



141

o

x without feedforward

<> with feedforward

l .E+2 l.E+3 l.E+4

FREQ(HZ)

Figure 55: Output impedance with and without feedforward
(X) at Vj=25v
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Figure 56: Output impedance with and without feedforward
(X) at Vj=30v
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Figure 57: Output impedance with and without feedforward
(X) at Vj=35v
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Figure 58: Output impedance with and without feedforward
(X) at V =40v
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the two-stage input filter. This is a consequence of the

disturbances in the loop gain produced at those frequencies

by the peaking of the input filter output impedance Z(s). As

was seen earlier in sections 6.1 and 6.2 the effect of Z(s)

on the open loop gain depends on the duty cycle D, at higher

values of D i.e. lower supply voltages, the effect of Z(s)

on the open loop gain is higher. Thus the effect of Z(s) on

the output impedance would be greater at lower supply vol-

tages, and this is experimentally confirmed as can be seen

from Figures 55 - 58 .

The addition of feedforward almost totally eliminates

the undesirable perturbations in the output impedance char-

acteristic at all supply voltages.

6.5 MEASUREMENT OF TRANSIENT RESPONSE AND STARTING OF THE
REGULATOR.

In this section measurements of output voltage and other

parameters for a step change in input voltage or load are

presented with and without feedforward.

6.5.1 Small Amplitude Transient Response Measurements.

Photographs of the output voltage ripple and other parame-

ters are presented with and without feedforward for two cas-

es:

(1) Step change in supply voltage.
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(2) Step change in load.

The step changes mentioned above are small enough so that

the output voltage remains in regulation throughout the

transient response period.

6.5.1.1 Step Change in Input Voltage.

The buck regulator used is shown in Figure 34 with the par-

ameters as specified in section 6.1. The input filter used

was a single-stage input filter with the following parame-

ters:

RL1 =0.2 ohm LI = 325 micro H Cl = 220 micro F

The adaptive feedforward circuit of Figure 33 was us'ed in

making the measurements.

The input voltage was abruptly switched from V- = 30v

to 40v and photographs of output voltage ac ripple, input

filter capacitor voltage, output filter inductor current and

control voltage without using a feedforward loop were taken

as shown in Figures 59 (a) and (b) , 60 (a) and (b), respec-

tively. The control voltage is the input to the pulse modu-

lator; without feedforward it is the output at the integra-

tor in the feedback loop while with feedforward it is the

sum of the above signal and the feedforward signal. Figures

61 (a) and (b) , 62 (a) and (b) show the photographs of the

same variables with feedforward control. Comparing, for ex-
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ample, the photographs of the output voltage ripple with and

without feedforward, Figures 59 (a) and 61 (a), it can be

clearly seen that the transient response is improved with

the addition of feedforward. The amount of overshoot is

less with feedforward. The magnitude of the oscillations in

the output voltage caused by the interaction between the in-

put filter and the regulator control are also lessened with

the addition of feedforward.

Comparison of the photographs of input filter capacitor

voltage, output filter inductor current and control voltage

do not reveal much difference between the two cases (with

and without feedforward). This may be explained by noting

that the gain of the feedforward loop is fairly small ( 0.03

for Vj. — 30v ) and thus the feedforward signal would be

fairly small in amplitude. The addition of such a small am-

plitude signal to the fairly large amplitude waveforms re-

corded on the photographs will not show very clearly. The

output voltage ripple, however, is small in magnitude and

the effect of adding feedforward shows clearly. A computer

program was written to simulate the step change in voltage;

results from the program are presented in the next chapter

and show close agreement with the measurements.

Thus it is concluded that feedforward improves tran-

sient response for the case where the supply voltage is sub-

jected to a step change.
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(a)

Figure 59:

Cb)

Output voltage ripple (a) and input filter
capacitor voltage (b) without feedforward

(a) Y—O.lv/div

(b) Y— 5v/div

X—1 msec/div

X—1 msec/div



149

^

___

—

'>.

— .--

•̂̂ ^^ 1 1

1 . 11 ' ' ' 1 ' • ' ' I ' ' ' '.

i i :
, — i — i —

• ! ! :

'
'

•-r- ! -4—
1 1

I i I 1 ' r 1 ! I I C1 1 1 , 1 . 1 1
1 1
1 '

— -i ;—
i i -.i • i

o

Figure 60:

(b)

Output filter inductor current (a) and control
voltage (b) without feedforward

(a) Y— 0.5 A/div

(b) Y—0.5v/div

X^—1 msec/div

X—1 msec/div
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Figure 6.1:

00
Output voltage ripple (a) and input filter
capacitor voltage (b) with feedforward

(a) Y—O.lv/div

(b) Y—5v/div

X—1 msec/div

X—1 msec/div
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o

Figure 62: Output filter inductor current (a) and control
voltage (b) with feedforward

(a) Y—0.5 A/div

(b) Y—0.5v/div

^X—^1 msec/div

X—1 msec/div
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6.5.1.2 Step Change in Load.

The buck regulator used is shown in Figure 34 , with the

parameters as specified in section 6.1 with the following

changes:

Vj = 25v R14 =3.69 Kilo ohm

A single stage input filter was used with the following par-

ameters:

RLI = 0.2 ohm Ll = 325 micro H Cl = 100 micro F

The adaptive feedforward circuit of Figure 33 was used in

making the measurements.

The load was switched repetitively between RL =10 ohms

and RL = 20 ohms using a transistor switch. Figures 63 (a)

and (b) show the photographs of the output voltage ripple

without and with feedforward, respectively, as the load is

switched. The output voltage ripple without feedforward,

Figure 63 , shows distinct oscillations caused by the inter-

action between the input filter and the regulator control

loop. The oscillation frequency coincides with the input

filter resonant frequency. These oscillations are eliminated

with the addition of feedforward, as is evident from Figure

63 (b).
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Figure 63: Output voltage without feedforward (a) and with
feedforward (b)
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6.5.2 Large Amplitude Transient Response Measurements.

Photographs of the output voltage ripple and other parame-

ters are presented with and without feedforward for two cas-

es: '

(1) Large step change in supply voltage.

(2) Starting of the converter.

The cases mentioned above are large signal changes so that

the voltage regulation is momentarily lost for part of the

transient response period.

6.5.2.1 Large Step Change in Supply Voltage.

The buck regulator used is shown in Figure 34 with the par-

ameters as specified in section 6.1. The input filter used

was the single-stage input filter of section 6.5.1.1. The

adaptive feedforward circuit of Figure 33 was used in making

the measurements with feedforward.

The input voltage was abruptly switched from Vj = 40v

to 25v and photographs of the output voltage were made with

and without feedforward; Figures 64 (a) and (b) show the

photographs.

The step change in supply voltage .is large enough to

cause the regulator to lose regulation -- the output voltage

drops by about l.Sv before the regulator recovers. This may

be explained by noting that for such a large change in sup-
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ply voltage the input filter capacitor voltage drops down

close to 20v, and since this value is lower than the design

range of 25v — 40v for the regulator supply, the regulator

loses regulation. Further details are given in the next

chapter which presents results from a computer program writ-

ten to simulate this large step change. The results show

close agreement with the measurements presented here.

Figures 64 (a) and (b) show that the behavior of the

regulator is similar with and without feedforward for such a

large step change in supply voltage. This is expected since

the regulator control loop momentarily loses its control

function during this transient period. Since the feedforward

is designed to compensate for the effects of input filter

interaction via a duty cycle modulation scheme it is expect-

ed that the feedforward does not contribute anything under

these conditions. Computer based simulation results present-

ed in the next chapter confirm the measurement results. It

is also to be noted that the feedforward does not have any

detrimental effect on the transient response.

6.5.2.2 Measurements of the Start Up Behavior of the
Regulator

This section investigates the start-up behavior of the

switching regulator. The regulator used is shown in Figure
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Figure 64:

Cb)
Output voltage without feedforward (a) and with
feedforward (b)

(a) Y—O.Sv/div

(b) Y—O.Sv/div

X—0.5 msec/div

X—0.5 msec/div
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34 with the parameters as specified in section 6.1. The sin-

gle stage input filter of section 6.5.1.1 was used with the

supply voltage set at 30v. The adaptive feedforward circuit

of Figure 33 was used in making the measurements with feed-

forward.

Prior to starting, the output voltage and the output

filter inductor current were both zero. Photographs of the

output voltage and output filter inductor current were made

with and without feedforward and are shown in Figures 65 (a)

and (b) 66 (a) and (b). The output voltage without feedfor-

ward builds up from zero to 20v (regulated output) in about

3 msec. The inductor current rises sharply at starting but

is limited to about 6.0A by the peak current protection cir-

cuit built in with the regulator. It settles down to its

steady state value in about 4 msec.

The photographs with feedforward show similar behavior

- thus the feedforward does not contribute significantly to

this transient period nor does it present any detrimental

effects.
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Figure 65:

00
Output voltage (a) and output filter inductor
current (b) without feedforward

(a) Y-—5v/div

(b) Y—1 A/div

X—0.5 rasec/div

X—0.5 msec/div
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Figure 66:

(b)

Output voltage (a) and output filter inductor
current (b) with feedforward

(a) Y—5v/div

(b) Y—1 A/div

X—0.5 msec/div

X—0.5 msec/div
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6.6 CONCLUSIONS

Extensive measurements made to verify experimentally the

feedforward design are presented in this chapter. Measure-

ments of the open loop gain and phase margin, closed loop

gain, output impedance and transient response confirm the

effectiveness of the feedforward in improving performance,

as predicted in the analysis. The following points are. note-

worthy :

1. The feedforward eliminates the detrimental effect on

open loop gain and phase margin of the output impe-

dance of the input filter.

2. The feedforward circuit is shown to be independent of

input filter parameters and also independent of input

filter configuration.

3. The feedforward effectively eliminates the interac-

tion between an unknown dynamic source impedance and

the regulator control loop.

4. The closed loop input-to-output transfer function

(audiosusceptibility) and output impedance are both

improved significantly by the addition of feedfor-

ward.

5. The addition of feedforward improves transient res-

ponse in those cases where the interaction between

the input filter and the control loop degrades the
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response. Examples of the above are small step chang-

es in supply voltage and load, and results for these

cases are included. For large signal transient behav-

ior the feedforward does not in any way degrade the

performance — examples of these are a large step

change in supply voltage and the start up behavior of

the regulator.

6. No detrimental effects have been observed due to the

use of the proposed feedforward compensation scheme

through the course of study and through extensive ex-

periments when the system was subjected to different
i

forms of small and large signal disturbances.

O '



Chapter VII

DIGITAL SIMULATION OF BUCK REGULATOR FOR
TRANSIENT ANALYSIS

This chapter deals with a program developed to simulate

the real time behaviour of the regulator with and without

feedforward control under both steady state and transient

conditions. Results for a step change in supply voltage are

included that are in close agreement with the measurements

presented in the last chapter.

7.1 DESCRIPTION OF THE METHOD

The starting point is the definition of the buck regu-

lator in terms of state equations [12,13,14]. The switching

regulator used was the one used in Chapter 5 and 6 and is

shown in Figure 34 The buck regulator without feedforward is

described by a set of state equations. The six state varia-

bles used are:

x(l) - iL1 (current ininput filter inductor)

x(2) « vc. (input filter capacitor voltage)

x(3) = ec (control voltage, input to pulse modulator)

x(4) * iL (output filter inductor current)

x(5) * v (output filter capacitor voltage)c

x(6) - e (compensation loop capacitor voltage)
A

162
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The control voltage is the output of the integrator in the

feedback control loop if no feedforward is used and it is

the sum of the integrator output and the feedforward signal

if feedforward is used. The state variable, e is the voltage

at the capacitor C1^ in the compensation loop. The pulse mo-

dulator has as its input the control voltage e and it con-c
verts the voltage to a duty cycle signal d(t). The transfer

function of the pulse modulator is a constant if the supply

voltage is a constant, [8], for the constant volt-sec.

(V_TOJ!-) control mode that was used. Thus it can be seen that

the six state variables defined above completely describe

the buck regulator system of Figure 34 .

The state equations for the complete system without

feedforward are developed [12,13,14] for the two time per-

iods TON and Topp.

During TQ ' the transistor switch SI is on while diode

S2 is off and the system is characterized by the following

state equations:

x Fl x- + Gl u (7-1)

where
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K2 = ^- -
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u

•v.

(7-6)

In equation (7-6) V is the supply voltage, ER is the refer-

ence voltage, EQ is the saturation voltage drop of the power

transistor and ED is the conduction voltage drop across the

diode.

During TQpF the transistor SI is off while diode S2 is

conducting and the equations are:

(7-7)

where

F2 x + G2 u

F2 a Fl

F2 (2,4) '

F2 (3,2)

F2 (4,2)

except for

0

0

0

(7-8)

and

G2 = 0 except for

G2(l,l) = l/Ll

G2(3,2) = —
Cl R14

G2(3'4) = c^VCl R4

(7-9)
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G2(4,4) 1
-L

Since u is not a function of time the solution to the state

equations (7-1) and (7-8) can be written as:

During TQpp x(t + T)

During TQN x(t + T)

^ x(t) + D * u

x(t) + DN , u

(7-10)

(7-11)

where ĴJ'̂ TP are the state transition matrices defined for

a small fixed step size T [12] and

-F2--Sds G2

(7-12)

DN * Gl

Equations (7-11) and (7-12) are used to simulate the behav-

ior of the regulator without feedforward. 'Starting, at the

beginning of the ON time period equation (7-12) is used to

propagate the state. The step size T is defined as half the

ON and OFF times and this determies the matrices , D ,
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and DF. Substitution into equation (7-11) along with

the initial values at the beginning of the ON period propa-

gates the state through time T. Similar substitution propa-

gates the state through the ON period [12,13,14]. For the

type of duty cycle contol used, constant VjTQN control, the

ON time is fixed whenever Vj is fixed.

At the end of the ON period, equation (7-10) is used to

propagate the state during the OFF period, with the initial

condition being the state at the end of the ON interval. The

end of the OFF interval is determined as the point when the

control voltage ec equals the comparator yoltage ET which

was 7.0v in this case. Newton's iteration is performed to

find the exact point in time when ec equals ET [12,13,14],

The equations describing the system with feedforward

are very similar to those without feedforward. The nonadap-

tive feedforward circuit of Chapter 5 was used in the simu-

lation program and it is shown in Figure 67 . The output of

the capacitor C is included as a state variable. The state

variables are thus defined as:

x(2) = vci

x(3) = v (output of Cf )

x(4) = e c . . . . . . . (7-13)

x(5)= i
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x(6)«

The equations during TQN and TOpJ,are the same as equations

(7-1) and (7-8) with the following definitions:

Fl

1
cT

cT

-K3
Cl

0

0

0
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P

0

cpaT

1
L

0

0

0

Cl(R f l+R f2)

_(C f+Cl)

Cf.CKRfl+Rf?)

tf^ . /f* i/*1 \KJ • (C *+v»Xsr
Cf-CKRfl-i-Rf2)

0

0

0

0

0

0

0

0

0

0

0 0

a
a
K3 VK1 *l'*2

-1, ~*l,

*l -1

p aRc ^

0

0

0

1

1

0 !
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L

(7-14)

Gl

Li

0

0

0 .

0

0

0

0

0

0

:|.1R14

0

0

0

0

0

0

n

L

0

0

0

0
0

0

0

0

0

(7-15)
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Rf2 (7-16)
K3 = —

Rfl + Rf2

In equation (7-15) kl, k2 and u are as defined earlier.

F2= Fl except for

F2(2,5)= 0

F2(3,5)= 0

F2(4,2)= 0

F2(4,S)= -Rc-kl/ Cj (7-17)

F2(S,2)= 0

and

G2= 0 except for

G2(l,l)= 1/L1

G2(4,2)= l/Ci.R14 (7-18)

G2(4,4)= n/c;.R4

G2(5,4)= -1/L

The solutions of the state equations and the procedure

for propagation of the state from cycle to ccle is identical

to the procedure for the case without feedforward.

The discrete simulation technique outlined [12,13,14]

lends itself easily to simulation of transient response for
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Ilkfl
— •/— •

e-H | —
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FILTER
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5-1 kfl

I64fl

Rfa
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, (V T0
^ ' * mil «fp

< Ilkfl

6 FROM INTEGRATOR
IN FEEDBACK LOOP

Figure 67: Nonadaptive feedforward circuit
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a step change in supply voltage. The change in supply vol-

tage is made to occurr at the start of a new ON period; thus

all that is necessary to do is to change the value of TQN

before the start of a new cycle.

7.2 DESCRIPTION OF THE PROGRAM

A flowchart of the program [12,13,14] is shown in Figure 68

while a listing of the programs is included in the Appendix.

The flowchart is for the simulation without feedforward, the

simulation with feedforward proceeds in an identical fash-

ion.

A minimum off time duty cycle control is implemented in

^ tha program.The regulator also has peak current protection

and this capability is also programmed. During the ON period

the current in the switch may rise above the set value of

the peak current. Newton's iteration [12,13,14] is performed

to find the exact point in time where this occurrs and the

program will automatically terminate the ON time calculation

when the current exceeds the set value..
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c BEGIN

Preset data
Kl,

, calculate
K2.

Initialize all matrices ,
vector

\

to zero.

f

Set up matrices Fl,
F2, Gl, G2.

TOFF " TON(VI-E0)/E0

T = FHAC

Compute

\

* T

r

V DF

f
T = FRAC * TQN

\
Compute

\

f

V DN

f

Initialize x, output VQ
and u. IT = 0

Figure Flow chart for discrete
simulation
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'OFF MIN

Calculate $,D

x(t+T) x(t)

-i- DpT * u(t)

t = t+T

State vector
propagation during
off time.

T = FRAC*TOFF; IT = o

x(t+T) - *F*X.(t)

+ D_*u(t)
t = t+T

State vector
propagation during
off time.

Figure 68: continued
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IT = IT+1

SLOPE =IF2(3,I) * x(I)
+ G2(3,J) * u(J)

I = 1,6 J = 1,2

T - (ET-x(3))/SLOPE

Calculate *FT/DFT

* x(t)
* u(t')

•t: = t-HT

Iteration to find
when

Figure 68: continued
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Vj = VISWIT(NSWIT)

POFF - TON(VE0)/E0

D - Vz

Calculate $_,D.,

*H' °N

Change the sxipply
voltage, TQN and

OFF
switching instant.

M = IT = 0

T = FRAC * TON

x(t)

t = t-f̂ T

State vector
propagation
during ON time.

Figure 68: continued
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SLOPE2 =£F2(4,I) *X(I)

I = 1,6

T» (IQMAX-X(4))/SLOPE2

100

Iteration to
find when
X(4) = IQMAX

Calculate ( f r , D

x(t+T) =

FT

* x(fc)
* u(t)

t+T

Figure 68: continued
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C

Write: 'Maximum
iteration at
time = t1

®

Figure 68: continued
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7.3 SIMULATION RESULTS

The simulation program was used to simulate the behavior of

the system with and without feedforward for a small step

change in supply voltage from 30v to 40v and also for a

large step change from 40v to 25v. Simulation results pre-

sented are in close agreement with the experimental results

presented in Chapter 6.

7.3.1 Simulation of steady state operation

The computer program discussed can be used to simulate the

steady state operation of the regulator system [12,13,14].

An accurate picture of the behavior of the system is ob-

tained since the simulation method used is an exact method.

The buck regulator of Figure 34 with feedforward was
t

simulated with the following single-stage input filter par-

ameters:

RH= 0.2 ohm LI = 325 microH Cl =220 microF

The supply voltage Vj was set equal to 30v and the other-

parameters were as presented in section 6.1. Figures 69 (a)

- (g) show the plots of the output voltage, input filter in-

ductor current, input filter capacitor voltage, output fil-

ter inductor current, the feedforward voltage vf , the con-

trol voltage and the voltage er. It is noticed that the

switching period is around 50 microsecs and that the output
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voltage ripple is around 60 miiivolts. The input filter in-

ductor current has a small magnitude ripple component at the

switching frequency, as does the input filter capacitor vol-

tage. The voltage fed forward vf consists of the switching

frequency component, however its magnitude is around 50 mi-

iivolts. The switching frequency component of the control

voltage is seen to be around 800 miiivolts and thus the ef-

fect of adding the switching frequency component from the

input filter capacitor voltage to the control voltage would

be negligible as discussed in Chapter 5 ; since the magni-

tude added would be around 1.5 miiivolts (vf multiplied by

the feedforward gain).

7.3.2 Simulation for a small step change in supply voltage

The same buck regulator was used with its parameters as spe-

cified in section 7.3.1. A value of 0.6 ohm for RT . was
X> 1

used. The supply voltage Vj was abruptly switched from Vj =

30V to 40V. Experimental results for this step change are

given in Chapter 6 where a value of 0.2 ohm was specified

for RT ,. A value of 0.6 ohm was used in the simulation asLil .

this represents the combined winding resistance and source

impedance. The values of the other parameters used are:

TOFF(minimum) = 5 microseconds

I-(maximura) - 6 amps, (set value of peak current)

EQ = 0.2 volt ED = 0.7 volt (7-19)



180

.00 0.01 0.02 0.03 „ 0.04
TIME(SECS) *10'2

0.05

Figure 69: (a) Output voltage during steady state
operation.
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8

Oto'

to
CD

OD
Q.

"b.OO 0.04 0.09 0.13
TIME(SECS) *

0.18 0.22

Figure 69: (b) Input filter inductor current during
steady state operation

V.,



182

ft-

Ocn.
>CM
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ft
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CD. 4-

0.04 0.09 0.13 . 0.18
TIMECSECS) JK1Q-3
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Figure 69: (c) Input filter capacitor voltage during
steady state operation
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0.04 0.09 0.13 0.18 0.22
TIME(SECS) x

Figure-69: (d) .Output filter inductor current during
steady state operation
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Figure 69: (e) Feedforward voltage during steady state
operation
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0.04 0.09
TI ME(SECS)

0.13 0.18
*10'3

0.22

Figure 69: (f) Control voltage during steady state
operation
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Figure 69: (g) Voltage eR during steady state operation
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Figures 70 (a) - (d) are plots of the computed values

of output voltage, input filter capacitor voltage, output

filter inductor current and the control voltage, all without

feedforward.

The nonadaptive feedforward design of Figure 67 was

used in the simulation of transient response with feedfor-

ward. The feedforward circuit parameters used at Vj = 30V

were:

Cj = 27 microF Rfl =5.1 Kohm Rfi = 164 ohm

when the supply voltage is switched to 40V the value of Rf2

in the program is changed to 90.97 ohm at the switching ins-

tant thus changing the feedforward circuit gain in accor-

dance with the feedforward design.

Figures 71 (a)-(d) are plots of the computed values of

the same variables with feedforward. Experimental measure-

ments for the same step change in supply voltage were pre-

sented in Chapter 6 and are repeated here for convenience;

Figures 72 (a)-(d) are the measurement waveforms without

feedforward loop while Figures 73 (a)-(d) are for the case

with feedforward loop.

Comparing the plots of the computed values with and

without feedforward it is clearly seen that the analytical
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Figure 70: (a) Output voltage simulation without
feedforward



189

8
10

8
o

'̂

U
>8

.00 0.02 0.05 0.07
TIME(SECS)

0.10 0.12

Figure 70: (b) Input filter capacitor voltage simulation
without feedforward
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.oo 0.02 O.OS
TIME(SECS)

0.07 0.10*icrl 0.12

Figure 70: (c) Output filter inductor current simulation
without feedforward
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TIME(SECS)
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Figure 70: (d) Control voltage simulation without
feedforward
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Figure 71: (a) Output voltage simulation with feedforward
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Figure 71: (b) Input filter capacitor voltage simulation
. with feedforward
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0.02 0.05 0.07 , 0.10
TIME(SECS) *icr! 0.12

Figure 71: (c) Output filter inductor current simulation
with feedforward
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Figure 71: (d) Control voltage simulation with
feedforward
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(a)

Figure 72:

(b)

Measurement without feedforward: output voltage
(a) and input filter capacitor voltage (b)
(a) Y—O.lv/div

(b) Y—5v/div

X—1 msec/div

X—1 msec/div
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(c)

Figure 72:

(d)

Measurement without feedforward: output filter
inductor current (c) and control voltage (d)

(a) Y—0.5 A/div

(b) Y—0.5v/div

X—1 ntsec/div

X—1 msec/div
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(a)

Figure 73:

(b)

Measurement with feedforward: output voltage (a)
and input filter capacitor voltage (b)
(a) Y—O.lv/div X—1 msec/div

(b) Y—5v/div X—1 msec/div
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Figure 73:

(d)

Measurement with feedforward: output filter
inductor current (c) and control voltage (d)

(a) Y:—0.5 A/div X—1 msec/div

(b) Y—0.5v/div X—1 msec/div
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results agree fairly closely with the experimental data. The

analytical results show that the feedforward is effective in

reducing the output voltage oscillations — the amplitude of

the oscillation is reduced (Figures 70 (a) and 71 (a)); this

is confirmed by the experimental results (Figures 72 (a) and

73 (a)). The plots of the input filter capacitor voltage,

output filter inductor current and the control voltage are

also in excellent agreement with the experimental data. Also

in excellent agreement with the measured data is the obser-

vation that the plots of filter capacitor voltage, inductor

current and control voltage do not show any noticable dif-

ference between the two cases (with and without feedfor-

ward) . An explanation for this observation was provided in

Chapter 6.

It can thus be concluded that the addition of feedfor-

ward improves the transient response for the step change in

V_ , as demonstrated both from the analytical result as well

as experimental data.

7.3.3 Simulation for a Large Step Change in Supply Voltage

The regulator used was the one used in Section 7.3.1 with

the same parameters. The single stage input filter parame-

ters used were:

RLI = 1 ohm LI = 325 microH Cl = 220 microF
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The supply voltage was abruptly switched from Vj = 40V to

25V. Experimental results for this step change are given in

Chapter 6 where a value of 0.2 ohm was specified for RLJ- A

value of 1 ohm was used in the simulation as this represents

the combined winding resistance and source impedance. The

other parameters are as specified in Section 7.3.1.

Figures 74 (a-d) are plots of the computed values of

output voltage, input filter capacitor voltage, output fil-

ter inductor current and the control voltage, all without

feedforward.

The nonadaptive feedforward design of Figure 67 was

used also in the simulation of transient response. When the

voltage is switched from 40V to 25V the value of Rf2
 is

changed from 90.97 ohm to 230.27 ohm in order to change the

gain of the feedforward circuit in accordance with the feed-

forward design. Figures 75 (a-d) are plots of the computed

values of the same variables jwith feedforward. Experimental

measurements for the same step change in supply voltage were

presented in Chapter 6 and are repeated here for conveni-

ence; Figure 76 shows the measured output voltage ripple

without and with feedforward..

Comparing the plots of the output voltage ripple with

the measured data it is clearly seen that the analytical re-

sults agree closely with the experimental data. It can be
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Figure 74: (a) Output voltage simulation without
feedforward
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Figure 74: (b) Input filter capacitor voltage simulation
without feedforward
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Figure 74: (c) Output filter inductor current simulation
without feedforward
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feedforward



206

00

0.00 0.02 0.05
T I M E ( S E C S )

0.07 0.10 0.12

Figure 75: (a) Output voltage simulation with feedforward
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Figure 75: (b) Input filter capacitor voltage simulation
with feedforward
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Figure 75: (c) Output filter inductor current simulation
with feedforward
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Figure 75: (d) Control voltage simulation with
feedforward
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Figure 76:

(b)

Measured output voltage ripple without (a) and
with (b) feedforward

(a) Y—0.5v/div X—0.5 msec/div

(b) Y—0.5v/div X—0.5 msec/div
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seen that the regulator loses regulation momentarily and the

output voltage drops down to around 18.3V before regulation

is regained. It should be noted when comparing the analytic

cal plots without feedforward (Figures 74) with those with

feedforward (Figures 75), the transient waveforms are almost

identical. This is expected, since during this large signal

transient the regulator has momentarily lost its voltage re-

gulation. Therefore the ability of feedforward compensation

via duty cycle modulation is also lost momentarily. The re-

gulator is operating in an open loop fashion (under minimum

off time control). This can be verified by observing the

voltage waveform input to the regulator.

The input filter capacitor voltage in Figures 73 (b)

and 75 (b), which is also the input voltage to the regulator

goes down close to 20V in both cases. For such a low input

voltage to the regulator the duty cycle would have to be

close to unity to maintain regulation, which is only possi-

ble if the off time is decreased sharply. However a minimum

TQPP time of 5 microseconds is implemented for various mag-

netic reset purposes and thus the regulator loses regulation

till the input filter capacitor voltage rises.

The analytical plots of the control voltage without and

with feedforward both show the large disturbance in control

voltage as a result of the loss of regulation. The plot with
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feedforward does show a somewhat smaller peak value of the

overshoot than the one without feedforward but this differ-

ence is about 9%. Negligible difference is noticed between

the analytical plots of the inductor current without and

with feedforward. The large drop in current as a result of

loss of regulation is noticed in both plots, as is the over-

shoot when regulation is regained.

The analytical results thus strongly support the exper-

imental data and show that the regulator momentarily loses

its control function. It is also confirmed through simula-

tion and testing that the feedforward does not have any de-

trimental effect under large transient conditions.



Chapter VIII

DISCRETE TIME DOMAIN STABILITY ANALYSIS OF BUCK
REGULATOR

An important concern is the .interaction of an input filter

with a switching regulator which often results in system

instability. As described in detail in Chapter 2, the input

filter interaction with the regulator control loop causes a

reduction in the loop gain which may result in system inst-

ability. When a switching regulator is acquired as a 'black

box' for use in a system and an input filter is put in ex-

ternally, the improper choice of filter parameters can cause

the system, to be unstable [4,5]. Work presented earlier

[4,5] showed that the input filter design should be incorpo-

rated in the regulator design itself in order to avoid loop

instability and other input filter related problems.

In. this Chapter the stability of a buck regulator is

examined by varying the input filter parameter values. Sys-

tem instability is predicted analytically, and backed up

with experimental data. It is then shown that the addition

of the feedforward control enables one to stabilize the sys-

tem. This is verified both analytically and experimentally.

One can conclude that the addition of feedforward , in fact,

isolates the regulator from the input filter; any input fil-

213
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ter can be used with the buck regulator without causing loop

instability.

8.1 ANALYTICAL INVESTIGATION OF STABILITY

An exact time domain analysis is performed to calculate the

eigenvalues of the system with a single stage input filter;

it was used to study how the eigenvalues move with a change

in the input filter parameter (inductance). To correlate the

'exact1 discrete time domain analysis results with the 'ap-

proximate' continuous time average analysis presented in

Chapters 2 through 5, a computer program which calculates

the closed loop poles of the continuous system was also

written. The closed loop poles as calculated using the pro-

gram track closely the eigenvalues derived from the exact

time domain analysis. System instability occurs for some va-

lues of filter inductance but the addition of feedforward

eliminates the problem.

8.1.1 Calculation of Eigenvalues.

The method used in calculating the eigenvalues has been de-

scribed earlier [15,16,17]. The state equations of the sys-

tem are written for the buck regulator of Figure 34 . The

state variables describing the system without feedforward

are:

x(l) = iL1 (input filter inductor current)
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x(2) = v__ (input filter capacitor voltage)c i

x(3) = IL (output filter inductor current)

x(4) = VG (output filter capacitor voltage)

x(5) = eR

x(6) = ec

As discussed in Chapter 7 eR is the voltage at the capacitor

G£ in the feedback loop while ec is the control voltage (in-

put to pulse modulator). Except for the order in which they

appear, these are the same state variables as used in Chap-

ter 7, where it is noted that the system is completely de-

scribed by the above six state variables.

The state equations without feedforward are written as

in Chapter 7:

During T0 (SI on S2 off)
(8-1)

x = Fl«x + Gl»u

During T___ (SI off S2 on)
°FF (8-2)

x = F2-X + G2-u

The matrices Fl and F2 are identical to the ones in Chapter

7 except for the following reordering; the third rows of

equations (7-2) and (7-8) are moved to the sixth place with

the other rows being moved up one place to get Fl, F2 of

equations (8-1) and (8-2), while the third columns of equa-
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tions (7-2) and (7=8) are moved into sixth place with the

other columns being moved up one place in a manner similar

to the rows. Matrices Gl and G2 of equations (8-1) and (&-2)

are identical to the ones in Chapter 7 except that the third

row of Chapter 7 is moved into sixth place with the other

rows being moved up one place. The vector u of equations

(8-1) and (8-2) is defined exactly as in Chapter 7.

Figure 77 serves to establish notation regarding time

instance t_ etc. and the solutions to the state equations
XL

are written as in Chapter 7:

During TQFF

T) = <J>F • x(tK) + DF - u

During TQN (8-3)

*(tK + TOFF + T) " *N ' *(tK + TOFF*

+ DN ' a
The matrices jzL/ tf- / Dp and DN are defined, as is time step

T, exactly as in Chapter 7.

From (8-3) the following is derived [15,16,17] :

= • • + * • D F (8.4)

For the constant volt-sec. (ViTON) duty-cycle control mode

used in the stability investigation, the TON is fixed if Vj
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K
is fixed and TOF_ is determined by the point at which e_ in-

tersects the threshold voltage ET :

6 4
E™ = I 4>P(6,I) • x(I) + I D_(6,J) - u(J) (8-5)
T 1=1 * J=l • '

K
is thus a function of 2i(̂ K ) ano- (®~^) is a nonlinear

equation [15,16,17]. Equations (8-1) - (8-5) thus represent

exactly the nonlinear buck regulator system without feedfor-

ward.

For the purpose .of stability analysis the steady state

or equilibrium state is necessary [15,16] and this is der-

ived as

x(tR+1) = x(tR) = x*

(8-6)
DN)u

The nonlinear system is linearized for a small perturbation,

around the steady state operating point [15,16,17]:

5x(tR) = x(tR) - x* (8-7)

and

" » • & [+F • siV + °F ' H]} «S(V <e-8>
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d(t) " II
K-

OFF

^

ON
^K-H
• OF F *

time

Figure 77: Notation regarding time t.
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Equation (8-8) is derived assuming that the small perturba-
tr

tion in the state does not change the value of TO__ [15,16].

The expression in the curly brackets of equation (8-8) is

used to investigate stability:

* / Sx(tK) , (8-9)

Equation (8-9) thus describes a linear system which will be

stable if and only if all the eigenvalues of T^r are abso-

lutely less than unity —

Ui(Tj,)| <1 i = 1,2,3,... (8=10)

or in other words if all the eigenvalues X. lie inside the

unit circle [15,16],

The buck regulator system with feedforward is described

by a set of seven state variables as in Chapter 7. The nona-

daptive feedforward circuit of Figure 67 was used in the

analysis and the state variables then are:

x(2) = vcl

x(3) = vf (voltage at capacitor C. )

x(4) = iL (8-11)

x(5) = vc

x(6) = e
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x(7) = ec

The state equations during TQN and TQ are written as:

During TQN

i = Fl.s + Gl.u. (8-12)

During TQpp

x = F2.x + G2.u (8-13)

Matrices Fl, F2, Gl and G2 of equations (8-12) and (8-13)

are similar to the ones in Chapter 7 and are defined exactly

as the ones in equations (8-1) and (8-2). The solution of

the state equations, the definition of the equilibrium state

and the matrix iff are identical to the case without feedfor-

ward.

A computer program was written to calculate the matrix

and its eigenvalues both without and with feedforward. It

can be easily seen that by changing the single stage input

filter parameters a set of eigenvalues can be calculated

from which inferences regarding system stability can be

drawn.

8.1.2 Description of the Program Used in Calculating
Eigenvalues

A flow chart for the program is given in Figure 78 and a

computer listing of both programs is included in the appen-

dix.
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There are essentially three steps involved in the

calculation of eigenvalues.

First the approximate steady state values are computed

[15,16,17], using an approximate value of the off time TQFp:

TOFF = TON ' (VI - Eo)/E0 <8-14)

Equation (8-6) is used to calculate the approximate steady

state values x, with ISML routine LEQT2F being used to solve

the system of linear equations. It is to be noted that equa-

tion (8-6) is not valid for the last state variable e_ sincec

both &j(6,6) and 0(6,6) equal unity, and equation (8-5) is

used to calculate e .
C

The approximate steady state calculated is used to find

the exact sceady state values [15,16]. The best way of det-

ermining the exact steady state is to determine the exact

off time by iterative linearization ( Newton's method) on

the cycle-to-cycle matching condition for ec [15,16,17]. The

vector 2T is defined :

5! - *<*!< + TOFF>

(8-15)
ZT = *F - x(tR) + Dp - u

with ZT(6) = ET

The cycle-to-cycle matching condition is expressed as:
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6,1) « ZT(I) + E
(8-16)

4
I DN(6,J) • u(J)

J-l

The value of SMAT is calculated using the available value of

TOF_; if SMAT is smaller than a certain error tolerance then

the value of T_ used is accurate. If SMAT exceeds the to-

lerance then Newton's method is applied to calculate a bet-

ter estimate of TQPJ!.. The steps involved in the calculation

are:

1. Calculate ZT and SMAT.

2. If SMAT is not less than specified tolerance, then

perturb TQFp by the amount DTQpp.

3. Calculate values of state variables corresponding to

the perturbed value of off time, using equations

(8-5) and (8-6).

4. Calculate SMATN.

5. Calculate a better estimate of TQ using Newton's

iteration [15,16,17].

6. Calculate a better estimate of the state variables.

7. Calculate SMAT and go to step 2.

The last step is to calculate the matix 1^ and its ei-

genvalues using the exact steady state values computed
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c BEGIN

Read in data, define
all vectors and
matrices

Compute approximate
steady state values

Compute exact steady
state values

Compute matrix ty and
its eigenvalues

(END)

Figure 78: Flowchart for stability analysis.
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above; Figure 79 is a flowchart for the calculation. The

following are defined:

FUNKx* + Dx(I)) « Up '• x + Dp • ul. (8-17)
*- Jx* + Dx(I)

FUN2(x* - Dx(I)) = UF . x + Dp • uj (8-18)
' — .J v * — n v ( T \

RFUNI - FUN:
TEMP.2 = = „ ...

|_ 2 • Dx(l)

X* - Dx(I)

- FUN2) (FUN1 - FUN2~

2 « Dx(6) 6X6
(8-19)

PSI. = $N • TEMP2 (8-20)

TEMP2 is thus the matrix of partial differentials used in

equation (8-8).

The matrix TEMP2 is evaluated one column at a time. For

the I'th column a perturbation DX(I) is made in X(I). Two

new sets of steady state values XA and XB are defined, as is

shown in the flowchart. For the new set of values XA it is

necessary to calculate an exact value of off time TFFC1 in

order to obtain ^ , Dp. The error function ZETA is defined:

6 4
ZETA = I <frp(6,I) • XA(I) + I D_(6>J) u(J) - E_ (8-21)

1=1 F J=l F T
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c BEGIN

1=0
IRICH=0

2000

1=1+1

2010

s

IRICH=IRICH+1

XA = XB = X
DXCD=CON(RICH) 'X(I)
XA(I)=X(I) + DX(I)
XB(I)=X(I) - DX(I)
TFFC1=T,•QFFB

IT=0

Calculate $p, Dp

01101

Calculate ZETA

1003

Figure 79: Flowchart for calculating matrix
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iioi

Perturb TFFC1 by DT
Calculate
and ZETAN.

___
OFF

/ DpT

Iteration to
find TFFC1
for new set of
steady state
values XA

SLOPE=(ZETAN-ZETA)/DT
TFFC1 = TFFC1 -

(ZETA/SLOPE)

OFF

Calculate $„, D,,s a
IT-IT+1

91102

Calculate FUN1

TFFC2 = T

IT - 0
OFFB

Calculate $p, Dp

1103

Calculate ZETA

1104

o1003

Figure 79: continued
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1103 W—

Perturb TFFC2 by DT-__
OFF

Calculate <frFT/ DFT
and ZETAN

> i

SLOPE = ( ZETAN- ZETA)

•TFFC2 = TFFC2 -
(ZETA/SLOPE)

> 1

/

Calculate <(>_, D_r r
IT=IT+1

2010

91104

Calculate FUN2
and RVAL(IRICH)

Yes

Perform Richardson's
Extrapolation on RVAL

Iteration to find
TFFC2 for new
set of steady
state values XB

•nc

Figure 79: continued
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91003

Writes "Convergence not
obtained for X(l)
I = "

590S

Calculate, ty and
its eigenvalues

905

Figure 79: continued
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The value of ZETA is calculated using the available value of

TFFC1, if it is within the specified tolerance then the va-

lue of TFFC1 is the value needed. If ZETA is not within to-

lerance then Newton's iteration [15,16] is used to obtain a

better estimate of TFFC1, as is .evident from the flowchart.

The values of d , DF are obtained and then the vector FUN1

i:s evaluated.

A similar procedure is used to obtain the exact off

time TFFC2 for the other set of values XB. After calculation

of FUN2 an estimate for the I'th column of TEMP2 is ob-

tained.

In the calculation of the partial derivatives it was

observed that a better estimate of the derivatives can be

obtained using the Richardson's extrapolation method [18].

The derivative f' (a) is sometimes approximated as:

_ f (a -H h) - f (a - h) (8-22)

where h is the step size.

A better estimate may be obtained by evaluating A(h) and

A(rh):

f (a + rh) - f (a - rh) (8-23)
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where r is usually 0.5 [18].

Combining A(h) and A(rh) thus:

B(h) = A(rh) ~ fA(h) (8-24)
1 - r2

gives a better estimate, B(h), of the derivative f'(a) [18].

Thus by combining the value of A(h) obtained from equation

(8-22) with two values for the step size h, it is possible

to get a more accurate estimate of the derivative-.

In the program four values of step size were used. The

perturbation DX(I) is assigned four values and for each va-

lue the vectors FUN1 and FUN2 are calculated. This results

in four estimates for the derivatives in the I'th column of

TEMF2. Combining these four estimates as in the program

[18] gives an accurate estimate of the I'th column.

The whole procedure is then repeated for the next co-

lumn, thus an accurate set of values for the derivatives is

obtained. Multiplying TEMP2 by j N̂ results in the matrix "

[15,16,17], Finally the eigenvalues X of the matrix T/f are

obtained using the IMSL routine EIGRF.

The eigenvalues with feedforward are calculated in an

identical fashion, the only real difference being the change

in the order of the system from six state variables to sev-

en.
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8.1.3 Calculation of the Closed Loop Poles of the System

The closed loop poles of the system of Figure 34 can be cal-
A A

culated. The expression for the closed loop gain v0/v can

be easily written using Figure 33 for the case without feed-

forward:

1° "'"ll7* (8-25)

with FJJ , ̂. etc. as defined in Chapter 5.

Equation (8-25) can also be used to calculate the closed

loop poles of the system without input filter; all that is

necessary to do is to set H = 1 and Z = 0, as discussed ear-

lier .

Expressions for F._ , A etc. are substituted into equa-12*

tion (8-28) for the case without input filter. The resulting

expression in the denominator is then a polynomial of the

fourth degree:

S4(K7KgLC)

K?C£LC

S2(K-C,'KQ + K-K, + K.K7CRr + K-K.7 1 8 7 o j ^ c 5 1 (8-26)

+ K5nL C

K3K1

nL
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The constants k_, ka etc. are defined as functions of the
• O

regulator parameters like inductance L etc. The appendix

contains a listing of the program used and the constants are

defined there. An IMSL routine ZPOLR is used to calculate

the roots of P. which are the closed loop poles of the sys-

tem without input filter.

For the case with input filter the same equation,

(8-25), is used and substitution leads to a sixth degree po-

lynomial in the denominator:

P2(S) =

S5(K7C'Yg

S4 (K?C ' Y9

Kj-nLY,. + KeK.Y.)
O b 5 4 7

+ K5nLY? + K5K4Y4) +

S(C1K7Y12 + K3K1Y3 + K3K2Y4

+ K3K1Y4

( a—
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The constants Yj etc. used in equation (8-27) are again de-

fined in the program. The same routine ZPOLR is used to ob-

tain the six closed loop poles.

8.1.4 Location of Eigenvalues and Poles as a Function of
Input Filter Parameters.

The computer programs written were used to locate closed

loop poles and eigenvalues as a function of input filter in-

ductance. The buck regulator of Figure 34 was used and the

parameters of the regulator were as defined in section 6.1

except for the following changes:

VT = 25 v R13 = 200 Kohms

C^ = 100 pf RL = 10 ohm

The values of R,_ and C £ were changed so that the compensa-

tion loop is largely ineffective, [7,8]. This was done in

order to facilitate making the measurements discussed in

section 8.2. It was found difficult to achieve instability

in the high loop gain system used in making the measure-

ments. Making the compensation loop largely ineffective re-

duced the loop gain so that with a large input filter the

system was made unstable.

A single stage input filter with the following parame-

ters was used:

R_ . = 0.2 ohm LI variable Cl = 220 microFLI i

v.
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First the eigenvalues and closed loop poles without input

filter and feedforward were calculated using the eigenvalue

and the closed loop programs. Figures 30 and 81 are the

plots of the eigenvalues and closed loop poles respectively.

It is noticed that there are four poles and four eigenvalues

since without input filter the system is of the fourth ord-

er.

The eigenvalues and poles are:

2X = 0.844 * 10"
7
 Sl = -55,000 + JO

Z2 =0.12 Si = -50,000 + JO

Z3 = 0.98 + JO. 103 S3 = -346 + J2240

2 = 0.98 - J0.103 84. = -346 - J2240

The eigenvalues and the closed loop poles are related

[15]:

z = esT (8-28)

S = CJ + JU1

Thus

|*| - eaT (8-29)

/ z = u)T
w

Knowing the location of the closed loop poles it is thus

possible to locate the eigenvalues if a value of T is known.

In this case T is the switching period and its value was
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found to be 41.85 microsec.; thus equations (8-28) and

(8-29) could be used to crosscheck the results from the ei-

genvalue program once the closed loop poles are known. Equa-

tion (8-29) was used to calculate the eigenvalues and the

calculated values were found to be very close to the values

from the eigenvalue program. The two poles on the real axis

correspond to the two eigenvalues close to the origin while

the two complex poles result in the two complex eigenvalues.

Next the single stage input filter was put in and the

eigenvalues and closed loop poles calculated using the res-

pective programs. Figures 82 and 83 are the plots of the ei-

genvalues and the closed loop poles respectively. The values

of the filter inductance LI used were --

50, 150, 325, 450, 650, 800, 1000, 1425 and 1800 microH

Table 1 lists the eigenvalues and closed loop poles, for

different values of LI. Starting at 50 microH it is seen

that the complex eigenvalues move to the right, closer to

the unit circle as inductance is increased. The two eigen-

values on the real axis zx and z^, which correspond to zl

and zz on Figure 80 , do not move with change in inductance.

The complex eigenvalues with a real part of 0.98 zs and z9,

which correspond to z3 and z. on Figure 80 , are pushed out

of the unit circle for a value of LI = 800 microH. For va-

lues above 800 microH the eigenvalues do not move much; the
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real part stays at around 1.003 for the ones outside the

unit circle and around 0.97 for the ones inside. This may

be used to explain the bunching up of the eigenvalues for

large values of inductance. Thus the eigenvalue plot of Fig-

ure 82 predicts that the system will be unstable for values

of filter inductance above 800 microH.

The plot of the closed loop poles, Figure 83 , shows

similar behavior. The two poles on the real axis SL and s 2,

are not changed as inductance increases, however two complex

poles ss and s8 move into the right half plane, indicating

instability. The poles move across the origin at 300 microH

which checks well with the eigenvalue plot. Equation (8-29)

was used to calculate the eigenvalues from the closed loop

poles and the calculated eigenvalues agreed closely with the

results from the eigenvalue program for all the values of LI

that were used, thus providing a crosscheck.

The other pair of complex poles s3 and s^ in Figure 83 ini-

tially move closer to the right half plane, then move away

from it for values of L1 greater than 450 microH. This be-

havior should be reflected in the eigenvalue plot for eigen-

values z. and z±, however it is noticed than in equation.

(8-29) the value of T is so small that for a change in the

real part from -300 to -500 the change in the eigenvalues

will be about 1%, which is too small a change to show up in
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TABLE 1

Eigenvalues and Closed Loop Poles for various values of LI.

c

LI = SOyUH

LI =150yUH

LI =325yUH

Eigenvalues

-0.00274 + JO

0.1234 + JO

0.851 ±

j 0.348

0.9806 ±

j 0.1025

-0.0028 + JO

0.1233 + JO

0.9457 *

j 0.2194

0.9819 ±

j 0.1026

-0.003 + JO

0.1233 + JO

0.9706 ±

j 0.1539

0.9851 ±

j 0.103

Closed Loop Poles

-55,045 + JO

-50,005 + JO

-1978 ±

j 9314

-339 ±

j 2227

-55,045 + JO

-50,005 + jO

-662 ±

j 5462

-319 *

j 2227

-55,045 + jO

-50,005 + jO

-351 ±

j 3725

-271 ±

j 2232
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TABLE 1

continued

L = 450 MH

L = 650/^H

L = 800 u, H

Eigenvalues

-0.003 * jO

0.1233 + JO

0.971 ±

j 0.132

0.9897 *

j 0.1026

-0.003 + JO .

0.1233 + jO

0.97 ±

j 0.1162

0.9975 ±

j 0.0954

-0.003 + JO

0.1232 •»• jO

0.97 ±

j 0.111

0.9996 ±

j 0.089

Closed Loop Poles

-55,045 + jO

-50,005 1- jO

-323 *

j 3165

-214 *

j 2237

-55,045 1- jO

-50,005 * jO

-419 *

j 2684

-49.8 ±

j 2189

-55,045 + jO

-50,005 + jO

-483 ±

j 2546

43.6 *

j 2069
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TABLE 1

continued

LI = 1000/u.H

LI = 1425 uH

LI = 1800yu.H

Eigenvalues

-0.003 + jO

0.1233 + jO

0.971 ±

j 0.1078

1.0002 ±

j 0.082

-0.003 + jO

0.1233 + JO

0.972 ±

j 0.1052

1.003 ±

j 0.071

-0.003 + jO

0.1233 + jO

0.972 ±

j 0.1055

1.004 ±

j 0.063

Closed Loop Poles

-55,046 + jO

-50,005 + jO

-513 ±

j 2455

98.3 ±

j 1909

-55,046 + jO

-50,005 + jO

-517 ±

j 2371

133 ±

j 1650

-55,046 + jO

-50,005 + jO

-511 ±

j 2339

141 ±

j 1487
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the eigenvalue plot. The bunching up of the closed loop

poles for higher values of LI is also noticed; this provides

another crosscheck with the eigenvalue plot.

Thus it is seen that the eigenvalues and the closed

loop poles match both qualitatively, as examination of Fig-

ures 82 and 83 show, and quantitatively through the use of

equation (8-29) to crosscheck the eigenvalues. It is also

noticed that system instability is predicted for values of

LI above 800 microH.

Lastly the eigenvalues were calculated for the case

with feedforward using the program. The nonadaptive feedfor-

ward circuit of Figure 67 was used with the following param-

eters:

Cj, = 27 microF Rfl = 5100 ohms

R. variable from 210 ohm to 300 ohm.

Figure 84 shows the plot of the eigenvalues with feedforward

for the following values of R_2, with the value of LI kept

fixed at 1425 microH:

Rf2 =210, 220, 230, 235, 240, 260, 270 and 300 ohms

The value of Rfa was changed to see the effect of feedfor-

ward on the eigenvalues. Table 2 lists the eigenvalues for

different values of Rf a • It is noticed from Figure 84 that

there are seven eigenvalues and that the three on the real

axis zx, z2 and z3 do not change as Rf2> changes in value.
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As Rf2 is increased one pair of complex eigenvalues z^ and

zg move outside the unit circle while the other pair z& and

z7 move inside. For the value of LI used the closed loop

poles and eigenvalues without feedforward clearly predict

instability, whereas with feedforward it is seen that the

system will be stable for some values of Rf^ - For the regu-

lator under consideration the value of Rfj, is calculated to

be 220 ohm from the feedforward design as obtained in Chap-

ter 5. A value less than the design value causes the eigen-

values z6 and z-p. to be outside the unit circle while it is

noticed that a value higher than the design value also caus-

es instability in the system. For the design value of 220

v ohms all the eigenvalues are inside the unit circle thus

clearly indicating that the addition of feedforward stabi-

lizes a system that was unstable due to the interaction bet-

ween the input filter and the regulator control loop.

As R. is increased further the real parts' of the com-

plex eigenvalues do not change much but eigenvalues z, and

z5 do move outside the unit circle. For Rf between 220 and

260 ohm all the eigenvalues are inside the unit circle, with

the optimum value being around 230 ohm.

In order to see clearly the effect of changing the

feedforward loop gain the open loop gain and phase margin

were calculated for various values of Rf2. The parameters of
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the buck converter used in the calculation were the same as

used in the eigenvalue calculation, with LI = 1425 microH.

Figure 85 (a) - (f) shows the plots of the open loop gain

and phase margin for three values of Rf2 • The solid lines

on the figures are the plots without feedforward and with

feedforward (Rja = 220 ohms), whereas the triangles repre-

sent values with Rf2 either lower than or higher than the

design value of 220 ohm. Exact compensation of the input

filter interaction is achieved with Rf2 = 220 ohm, with any

value other than 220 ohm the compensation is not complete.

Decreasing the feedforward loop gain (210 ohm) results in a

loss of open loop gain at the filter resonant frequency. In-

creasing the feedforward loop gain results in a loss of

phase margin at the resonant frequency. For a value of 240

ohm the open loop gain obtained is close to the' gain with

220 ohm but the phase margin is decreased. Increasing the

feedforward gain further (300 ohm) makes the situation worse

as Figure 85 (f) shows. The open loop gain in Figure 85 (e)

is decreased to around 8 db at a frequency of about 300 Hz

while at that frequency the phase margin is almost zero, in-

dicating that the system is close to instability. This is

confirmed on examination of Figure 84 which shows that the

system is unstable for R. = 300 ohm. it should be noted

that the open loop gain with an input filter and Rj.2=220 ohm

is identical to that without input filter.
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It is thus concluded that exact compensation is ob-

tained at the design value of the feedforward loop gain. In-

creasing or decreasing the feedforward gain from the design

value results in incomplete compensation. There may be no

compensation achieved at all if the feedforward gain is far

different from the design value.

It is noticed in Figure 84 as in the other eigenvalue

plot that the eigenvalues do not seem to move very much, for

example in Figure 84 the real part of the pair z^ and zs

changes from about 0.9885 to 0.9975 while from Figure 82 it

changes from about 0.98 to 1.004. It is noted however that

from Figure 83 the above change in real part corresponds to

a change in the real part of the poles from about -323 to

+140. This may be explained by noting as before that T in

equation (8-29) is fairly small so this change in real part

will correspond to a very small change in the real and imag-

inary parts of the eigenvalues.

From the results presented in this section it is seen

that the eigenvalue program is a powerful tool for the ana-

lysis of stability. . It is also seen that for the regulator

used, a high value of input filter inductance will cause

instability, but the addition of feedforward restores sta-

bility. Experimental data that strongly support this analyt-

ical prediction are presented next.
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o

= 220 Ohm

^without feed
forward

l.E+2 l.E+3 l.E+4

FREQ(HZ)

Figure 85: (a) Open loop gain: calculated values without
feedforward, with R̂ j, =220 ohm and Rp,=210 ohm
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l.E+2

without feed-forward

l.E+3 l.E+4

FREQ(HZ)

Figure 85: (b) Open loop phase margin: calculated values
without feedforward, with Rf£=220 ohm and
Rfz=210 ohm



251

without feed
forward

l .E+2 1.E+3 l .E+4
FREQ(HZ)

Figure 85: (c) Open loop gain: calculated values without
feedforward, with Rf2=220 ohm and Rf2>=240 ohm



252

8

without feed-forward

1..E+2 l.E+3 l.E+4

FREQ(HZ)

Figure 85: (d) Open loop phase margin: calculated values
without feedforward, with Rf2=220 ohm and
Rf2=240 ohm
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O

l.E+2

i 1 r i i

without feed
forward

= 22°

j—'—'—' ' J j
l.E+3 l.E+4

FREQ(HZ)

Figure 85: (e) Open loop gain: calculated values without
Figure ^eidforward/ with Rfi=220 ohm and Rf2 =300 ohm
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8

without feed-forward

Rf2 = 220 Ohm

l.E+2 l.E+3 1 .E+4

FREQ(HZ)

Figure 85: (f) Open loop phase margin: calculated values
without feedforward, with Rf, =220 ohm and
Rf2=300 ohm
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TABLE 2

.Eigenvalues for different values of R
f2*

Rf2 = 210 ohm

= 220 ohm

= 230 ohm

Eigenvalues

0.00116 + JO

0.1282 + JO

0.9998 -i- JO

0.9974 ± j 0.0738

0.9883 i j 0.101

0.00017 + jO

0.1282 + JO

0.9998 + JO

0.9963 A j 0.0742

0.9907 ± j 0.1006

0.00122 + JO

0.1282 + JO

0.9998 -i- jO

0.9955 ± j 0.0743

0.9922 ± j 0.10121
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TABLE 2

continued

Eigenvalues

= 235 ohm

-0.00025 + JO

0.1282 + JO

0.9998 + JO

0.9952 ± j 0.0742

0.9931 ± j 0.1006

onm

-0.00011 + JO

0.1282 + JO

0.9998 + jO

0.9948 ± j 0.0743

0.9936 ± j 0.10049

Rfi = 260 ohm

0.00039 + JO

0.1283 + jO

0,9998 + jO

0.9946 ± j 0.0744

0.9941 + j 0.1011
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TABLE 2

continued

Eigenvalues

0.00023 + JO

0.1283 + JO

0.9998 + JO

0.9933 ± j 0.0742

0.9964 + j 0.1008

0.00029 + JO

0.1285 + jO

0.9998 + jO

0.98952 i j 0.0724

1.0054 ± j 0.1036

Rf2L = 270 ohm

c
= 300 ohm
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8.2 EXPERIMENTAL VERIFICATION OF STABILITY ANALYSIS.

In this section experimental data pertaining to the stabili-

ty of the system are presented. The buck regulator of Figure

34 was used with the parameters as defined in section 8.1.4

with the exception that the input filter inductance LI had a

constant value of 1.425 mH. The adaptive feedforward circuit

of Chapter 5 was used, however it is noted that if the input

voltage is kept constant, as it was in the following mea-

surements, the nonadaptive and the adaptive feedforward cir-

cuits provide the same gain.

The regulator was set up with the HP network analyser

to measure open loop gain exactly like in Chapter 6 [7,8].

The open loop gain and phase margin were measured without

input filter, with and without feedforward. Figure 86 shows

the measured values of the open loop gain and phase margin.

It can be seen that without the input filter the gain dips

down around 320 Hz — this may be explained by noting that

the values of R-3 and C2 are such that the compensation loop

[7,8] is largely ineffective. Thus the open loop gain and

phase margin correspond to a value of <<" = 0.355 a^ shown in

the literature [7,8].

The. addition of the input filter causes the gain to

fall below 0 db and when the gain is close to 0 db the phase

margin is only about 10 degrees at a frequency of about 250
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Figure 86: (a) Open loop gain: measured values without
input filter, with (•) and without feedforward
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,4-
PHASE

IOO LK 5K

(Hz)

Figure 86: (b) Open loop phase margin: measured values
without input filter, with («) and without
feedforward
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Hz. The system is thus marginally stable and a small signal

250 Hz sinusoidal disturbance is injected into the loop to

induce unstable operation and it was observed that the out-

put voltage has oscillations. Figure 87 shows the output

voltage ripple -- it is clearly seen that the oscillations

are around 1.2 v in magnitude. It is concluded that the sys-

tem is clearly unstable. Analysis presented earlier showed

that the syatem would be unstable for LI = 1425 microH while

experimental results show a marginally stable system, thus

lending support to the analysis.

Feedforward was added to the circuit and measurements

of the open loop gain and phase margin were made. It is seen

clearly from Figure 85 that the addition of feedforward re-

moves the instability -- this is confirmed by recording the

output voltage ripple. Figure 88 shows the output voltage

ripple and it can clearly be seen that the oscillations that

were present earlier without feedforward have been eliminat-

ed, making the system stable. The 250 Hz oscillation in Fig-

ure 88 is the injected disturbance. The analytical predic-

tion that feedforward eliminates instability caused by input

filter interaction is thus strongly supported by experimen-

tal data.
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* - • : • II II,
I Uv-iJIt. Ill
1 MAIM t 1 1 1

(a)

Figure 87: Output voltage ripple without feedforward: (a)
Y:0.2v/div X:5 msec/div. (b) Y:Q.2v/div X:10
msec/div.



263

Figure 88: Output voltage ripple with feedforward: (a)
Y:0.2v/div X:5 msec/div. (b) Y:0.2v/div X:10
msec/div.
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8.3 CONCLUSIONS

It is seen that the eigenvalue analysis program is a power-

ful tool for the analysis of stability. Using a buck regula-

tor system a stability analysis was performed for various

values of input filter inductance and it was observed that

system instability was predicted for large values of induc-

tance. A valuable crosscheck was provided by a program that

calculated the closed loop poles and it was observed that

the closed loop poles and the eigenvalues track very closely

for all the values of inductance used, including those va-

lues for which system instability is predicted.

The addition of feedforward removes the instability at

large values of inductance as the eigenvalue analysis pre-

sented shows. It is noticed that complete compensation of

the input filter interaction is obtained for the design va-

lue of feedforward gain; any other value of feedforward gain

results in incomplete compensation. It was demonstrated both

from the eigenvalue analysis and the open loop gain and

phase margin plots that a too large or too small value of

feedforward gain would not be able to remove the instability

caused by the input filter interaction.

Experimental measurements were made to confirm the ana-

lytical results presented. It was noticed that without feed-

forward the output voltage has large magnitude oscillations
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indicating system instability. These oscillations occur at a

value of input filter inductance for which the eigenvalue

analysis also predicts instability thus tying in the analy-

sis with experimental measurements. The addition of feedfor-

ward (with the gain set to its design value) completely re-

moves these oscillations as measurement data show. Since the

eigenvalue analysis also predicted stability with the addi-

tion of feedforward, it is thus concluded that the addition

of feedforward does result in removing the system instabili-

ty caused by input filter interaction with the regulator

control loop.



Chapter IX

EXTENSIONS OF THE CONCEPT OF INPUT FILTER
COMPENSATION TO OTHER CONVERTER TYPES

The concept of feedforward loop compensation to mitigate

converter—input filter interaction is extended to several

other cases, three of which are discussed in this chapter.

9.1 EXTENSION TO OTHER TYPES OF REGULATOR CONTROL

The concept of feedforward compensation for the input filter

has been developed with reference to a buck regulator. Ex-

tensive experimental data, together with analysis, confirm

the validity of the concept. This was. done exclusively on a

buck converter with multiple-loop control and constant

volt-sec duty cycle modulation. Use of other types of con-

trol are discussed in this section.

9.1.1 Feedforward compensation for multiple-loop control
using other typeg of duty-cycle control

The feedforward design was presented in Chapter 5 where it

was noted that the gain of the feedforward loop depends on

the transfer function of the pulse modulator ,FM . The

transfer function FM is dependent on the type of duty-cycle

control used [2,8]. In this dissertation the constant volt-

sec, type of duty-cycle control was used. However, it is

266
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easy to see that for other types of duty-cycle control, for

example for constant frequency control or constant off time

control, the feedforward design procedure outlined in Chap-

ter 5 is still valid. The feedforward design process pre-

sented earlier is general since it treated the pulse modula-

tor in terms of its transfer gain only. Thus other types of

duty-cycle control can be easily incorporated in the feed-

forward compensation after the transfer gain of the duty-cy-

cle control is identified.

As an example for multi-loop constant frequency control

the following pulse modulator gain is identified [8]:

O r
M nM

where (9-1)

M = VI(1-2D)T

In equation (9-1) T_ is the constant switching period. Sub-

stitution into the feedforward loop gain expression from

Chapter 5 results in:

=2 o 41

For a constant supply voltage D and M would be constants and

thus the feedforward gain would be a constant. An adaptive
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feedforward circuit that tracks the supply voltage can be

realized using equation (9-2).

For multi-loop constant off time control F,* is identi-^ m

fied as [8]:

, - 2R«ci
(9-3,

M - VITOPP

where TOppis the constant off time. Sustitution into the

feedforward loop gain expression results in:

-D2nVTT___

=2 • VR4C? <9-<>

For a constant supply voltage D would be a constant and thus

the gain would be a constant. An adaptive feedforward cir-

cuit that tracks the supply voltage variations can be real-

ized from equation (9-4).

9.1.2 Feedforward compensation for single-loop control

A multi-loop feedback controlled buck regulator was used in

the feedforward design discussed in Chapter 5. However, it

is noted that in the design procedure the feedback loop

transfer functions played no part in the feedforward design.

This is evident since the feedforward gain is independent of

the feedback loop transfer functions.
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For single loop feedback control the regulator can be

represented by a generalized block diagram as shown in Fig-

ure 89 . The feedback loop has as its input the output vol-

tage ripple and it can be represented as FB/ as shown in

Figure 89. Expressions for FB and FM. are given in the litera-

ture [8], and it is noted that the transfer function FB es-

sentially processes the small signal variation in the output

voltage and feeds it to the pulse modulator exactly like FDC

of Figure 28 . A feedforward loop that will sense the input

filter state variables, process this information and feed it

to the pulse modulator can thus be designed in a manner ex-

actly as presented in Chapter 5. The transfer function F

Q would be a constant [6] and would be a part of the feedfor-

ward gain, exactly as it is in the design presented.

As an example the following is identified for single

loop constant frequency control [6]:

FM *

where A , Tp are constants.

The error processor consists of an amplifier and a lead-lag

compensation network and its transfer function FB is availa-

ble in the literature [6]. Since FM is a constant the de-

sign of feedforward loop is relatively simpler as substitu-
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PULSE
MODULATOR

ERROR PROCESSOR

Figure 89: Generalized small signal model for single loop
control
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tion into the feedforward gain expression of Chapter 5

shows:

c

VI

For constant supply voltage the gain c^ is a constant. An

adaptive feedforward circuit that tracks the supply voltage

variations could be developed exactly as shown in Chapter 5.

It is thus seen that an extension of the feedforward

concept to single loop control is easily affected.

9.2 FEEDFORWARD COMPENSATION FOR THE BUCK-BOOST AND BOOST
REGULATORS

Extension of the feedforward cor-ept to the two other types

of regulators— boost and buck-boost can be obtained follow-

ing the outline presented in Chapter 5. A feedforward design

for the buck-boost regulator is presented.

The state space model of the buck-boost regulator is

shown in Figure 90. In the figure the feedforward loop has as

its input the input filter state variables (inductor current

and capacitor voltage). These two are multiplied by the

transfer functions c. and c3 whose properties have yet to be

determined. This state space model is based on the model

for the buck-boost power stage developed in Chapter 4. The
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feedback loops form the standardized control module (SCM)

developed earlier [2,7,8] and discussed in Chapter 5. The

pulse modulator has as its transfer function F,. [8] and has
M

as its input information regarding the state variables of

both the input filter and the output filter. The total

state feedforward/feedback error signal is thus used to mo-

dulate the duty cycle of the switch for loop gain correc-

tion.

The generalized small signal model for the buck-boost

regulator is developed next and used to write the transfer
A /*

function v /v_.
o *

9.2.1 Generalized small signal model for the buck-boost
regulator

The generalized small signal model is shown in Figure 91.The

regulator is modeled according to the three basic functional

blocks : power stage, error processor and duty cycle pulse

modulator, as in Chapter 5. It is noticed that in this case

the flux is a state variable, because it is continuous un-

like the inductor current. The transfer functions Fg,F. and

FDC play no part in the feedforward design process, as ear-

lier in Chapter 5.

The power stage transfer functions F etc. .are written

. as in Chapter 5, using the following equations:

T11V~I + T12* = vo
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G

Figure 90: State space model of the buck-boost regulator
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T31VI + T32d - VC1

±L1
Thus it is seen that

^2, d - 0 (9-8)
v.

and

. (9-9)
T .112.T12 —

The transfer functions 1̂ ,1̂ ,1̂  and T^ are developed

with d=0 and the others with vx = 0. The starting point for

the derivation is again the small signal equivalent circuit

model for the buck-boost regulator developed in Chapter 4.

y\
Evaluation of transfer functions with d = 0.

^
The equivalent circuit model with d = 0 is shown in Figure

92 In Figure 92 the input filter has been replaced by its

forward transfer function H(s) and its output impedance

Z(s), the expressions for H and Z being the same as in Chap-

ter 5. From the equivalent circuit of Figure 92 the follow-

ing are derived, assuming that RCI = 0 :

+ sCRc)

11 . A
H-L -D,(1 + SCR.) (9-10)

= s 1 Ji_
21 N

S
A
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POWER STAGE

PULSE
MODULATOR

ERROR PROCESSOR

Figure 91: Generalized small signal model
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T31 = ~F~
A - a,H

T, ~41 (R + SLIM

where

a, = s LCR.. + SCR, (R^ + D'R
J. S li Li S i

+ RSDD'RC + D'
2Hr

o

A = ax + D1
2Z(1 + aCÎ ) (9-11)

DN
Dl = N— ' where D is the dutY cycle.

P

\ + RC *-*l

Using the above equations the following can be derived:

Fn = Di DtRL^ "*" SCRC
}

LeD, (1 + SCR_)F = s j. ii

(9-12)
F31 S al

A/H - a.
F41 -

The ESR of the capacitor RCI has been neglected in the deri-

vation for the same reasons as outlined in Chapter 5,while

equation (5-9) is used in the derivation of T., .
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r
A

y.

Figure 92: Small signal equivalent circuit with d=0
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Evaluation of the transfer functions with v =0.

The small signal equivalent circuit with Vj =0 is shown

in Figure 93 The following are derived from the equivalent

circuit:

V (1 + sCR )(-D 2Z + D'̂ R- - DsLel
V — ° C ( X Li S ]
X12 ~ DD'A

f 2 7
^l^^1 + 8CRT)(-D

ID1 Z -«• D'^R- - DSLJ
T ^ _ S | 0 X . . 1 X s
">") 2101 V

vQ(i + SCI^JD^ZCDR + DsLg - D'^I^J+V^CDR - D1
2z)

32 'DD^'^A

T42 = "T32/(RL1 + SL1)42 32 XI (g_13)

where A and a are as defined earlier and

(9-14)
V

'1 ' T

Using the above equations the following are derived:

12 ~ DD1

s QLs{vQ(l + aCl̂ ) (•D'D1
2Z +
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R9 DD'RC La

r-AM/L-̂ YH r-r ¥
• /\
TO

A
Id

• wl D :

Figure 93: Small signal equivalent circuit with v = 0
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p =
 V
Q(1 .+ SCRL)D1Z(DR + DsLg -

' '

F42 * -F32/(RL1 * SL1)

(9-15)

where R = R +DD1 R_ (9-16)
a C

The feedback transfer functions F^ , FAC and FDC consti-

tute the two loop SCM feedback control scheme reported ear-

lier [2,8]'. The transfer functions are defined in the liter-

ature [2,7,8], and it is noted that they do not play any part

in the design process, as in Chapter 5. The pulse modulator

transfer function FM depends on the type of duty cycle con-

trol used [7,8] and it will be seen that the feedforward

loop gain depends on E, as earlier .in Chapter 5.

9.2.2 Design of the Feedforward Loo

With v. « 0 the following equations are derived from

Figure 91 :

and after substitution

E
v

" M - - (9-18)
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In the absence of feedforward i.e. with c 2 = 0 = c3 it can

be seen that

(-D
I 1

v° - v1 * *CRc'i-°i2z * °'\ - ., - ,,.19)
V DD1 A
X

O
the design:

The effect of peaking of 2 is to cause a reduction in the

gain of the transfer function and thus also in the open loop

gain. It is also noticed that equation (9-18) shows the po-

sitive zero term in the transfer function.

With the addition of feedforward the effect of peaking

of 2 could be avoided by a proper choice of feedforward loop

gains c and c. Two approximations are made to facilitate

1. The effect of the positive zero is assumed to be neg-

ligible at the frequency at which 2 peaks. Thus it is

assumed that:

- DsLs = D'!̂  0-20)

This is not an unrealistic assumption since 2 peaks

at a much lower frequency.

2. It is also assumed that

DR - DZ = -D2Z (9-21)
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at the frequency at which Z peaks. Again this is not

an unrealistic assumption given the low value of R.

Using the above assumptions, the following choice is made:

o -0

Substitution into equation (9-18) leads to:

VQ Vo(H-sCRL)|-D1
2Z+D|2RLJFM DD^R^A

which leads to

3CBL)D'VM (9-24)
Da.,

It is seen from equation (.9-24) that the transfer function

is now independent of the peaking effect of Z. It is also

noted that equation (9-24) is valid only at low frequencies

where the two assumptions made earlier hold. The feedforward

loop gains are very similar to the gains developed for the

buck regulator, and are identical if Ng = Np. It is also

noted from equations (9-15) and (9-18) that the gain of F-
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would be fairly small at frequencies other than the resonant

frequencies at which 2 peaks. Thus the addition of feedfor-

ward would not affect, in any noticable manner, the open

loop gain and phase margin at any frequency other than those

at which 2 peaks. Thus the feedforward compensation is ef-

fective for most input filter designs because the filter re-

sonant frequencies are relatively low in comparison to the

positive zero.

9.2.3 Analytical and Experimental Verification

The buck-bpost regulator shown in Figure 94 was used to ob-

tain verification of the feedforward design. A multi-loop

(.. standardized control module (SCM) type feedback control was

used [2,7,8]. The parameters of the converter are as fol-

lows:

Power Stage Parameters;

= 20 v V0 = 28 v D = 0.5833 PQ = 28 watts

= 220 microH C = 300 microF

RC = 0.05 ohm RL = 28 ohm (load)

Ns = Np = 33 Rg = 0.087 ohm

Pulse Modulator Parameters;

M = VT 0.5*10 v-sec.
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Control Circuit Parameters;

ER= 7v

R3 = 47.5 Rohm

n 9 0.667

Ru =43.2 Kohm

Rq, = 40 Kohm

C = 5600 pf

Input Filter Parameters

Rj =0.2 ohm Lj = 325 microH

R7 = 0.02 ohm L9 = 116 microH4t &a

R3 = 0.075 ohm ( ESR of Ca )

= 15 Kohm

R5 =1.1 Kohm

C*2 = 32000 pf

Cl = 200 microF

C2 =20 microF

The regulator was operated in a predetermined duty cycle

control mode (constant VjTQN control) [2,7,8].

The open loop gain can be written from Figure 91 as

GT(s)

F22 \
< - ) / (9-25)

It is noted that in deriving the above equation c, is set

equal to zero since that is the design value. Equation

(9-25) was used to plot the open loop gain and phase margin

without input filter, with and without feedforward. The

transfer functions F / F3 , FAC and FM constitute the feed-

back and are defined in the literature [2,7,8], while F /

and F .« were defined earlier in this chapter. Equation

(9-25) is also valid for the case without input filter, all
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that is necessary to do is to set Z = 0, while for the case

without feedforward ca is set equal to zero. Figure 95 shows

the calculated values of open loop gain and phase margin. It

is important to note at this point that equation (9-25) is

an exact equation and that the assumptions made earlier in
/

the feedforward design process are not made in deriving this

equation.

It is seen from Figure 95 (a) and (b) that the two

stage input filter causes disturbances in the open loop gain

and phase at the two resonant frequencies, but the addition

of feedforward removes these disturbances. The feedforward

loop is seen to be effective at both the resonant frequen-

cies though at the higher frequency there is a drop in phase

margin. The two assumptions made in the feedforward design

process have not been used in calculating the open loop gain

with 'feedforward, and thus it is seen that Figure 95 indi-

cates that the feedforward is effective in eliminating input

filter interaction with the regulator control loop.

The same regulator circuit was used to obtain experi-

mental results using a single stage input filter:

R_ =0.2 ohm L =116 microH Cl = 20 microFiji
The regulator was set up to measure the open loop gain and

phase margin [8]. The nonadaptive feedforward circuit of

Figure 67 was used in making the measurements. The feedfor-
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ward gain was calculated from equation (9-22) as -0.009 and

this led to the following choice of feedforward circuit par-

ameters :

C{ = 27 microF R.. = 5.6 Kohm R = 50 ohm

The input of the feedforward circuit is the input filter ca-

pacitor voltage, and the output is subtracted from the out-

put at the integrater in the feedback loop, as was done ear-

lier.

Figure 96 shows some preliminary measurements obtained.

It is noticed that the input filter causes a disturbance in

open loop gain and phase margin at the resonant frequency

but the feedforward compensates for the input filter inter-

action to some extent. The approximation of equation (9-20)

is valid at low frequencies, thus if the input filter reso-

nates at high frequencies the feedforward as designed may

not be effective in completely compensating for input filter

interaction. Measurements of Figure 96 were obtained using

an input filter with a somewhat high resonant frequency

which can be used to explain the fact that the feedforward

is effective to a somewhat lesser degree in conpensating for

the input filter interaction. Due to lack of time extensive

experimental verification of the feedforward design was not

possible; more measurement data is necessary to check the

effect of feedforward on open loop gain and phase, and other

performance specifications.
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The feedforward design process for the boost regulator

would be. identical to the one presented above; similar as-

sumptions may be necessary to accomodate the positive zero

in the boost regulator transfer function.

9.3 REMARKS

The following observations are made:

1. The feedforward design process presented in Chapter 5

is general; it can be used for any type of duty cycle

control and for single loop or multi-loop feedback

control schemes.

2. The problem of input filter interaction with the re-

gulator control loop is present in the buck-boost re-

gulator also and the concept of feedforward compensa-

tion can be extended to design a feedforward loop

that eliminates the interaction.



Chapter X

CONCLUSIONS AND FUTURE WORK

10.1 CONCLUSIONS

A novel scheme for input filter compensation is presented in

this dissertation. The input filter, while a necessary com-

ponent of a switching regulator,interacts with the regulator

control loop and this interaction can cause serious perfor-

mance degradation such as loop instability, degradation of

transient response, audiosusceptibility and the output impe-

dance characteristics [3,4,5,6,10]. These problems are

-^ . caused mainly by the peaking of the output impedance of the

input filter and its interaction with the control loop.

Conventional input filter design techniques for single

stage and two stage input filters [3,5,6] minimize the peak-

ing effect but this often results in a penalty of weight or

loss increase in the input filter. A novel feedforward com-

pensation scheme is developed for buck regulators that eli-

minates the undesirable interaction between the input filter

and the regulator control loop. The compensation scheme is

implemented by a feedforward loop that senses the input fil-

ter state variables. Extensive analytical and experimental

data confirm that the regulator is made immune to the peak-

ing of the input filter output impedance.

293
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The following points regarding the feedforward

compensation scheme presented are noteworthy:

1. The feedforward design process is straightforward and

it is seen that the feedforward loop gain is indepen-

dent of the type of feedback control used and of the

feedback loop transfer functions.

2. An important characteristic of the feedforward con-

trol scheme presented is its ease in implementation.

3. Extensive experimental data supported by analytical

results show that significant improvement in perfor-

mance is_achieved with the use of feedforward in the

following categories—

(a) open loop gain and phase margin;

(b) audiosusceptibility;

(c) output impedance; and

(d) transient response.

The data shows clearly that the peaking effect of the

input filter output impedance-is eliminated with the

use of feedforward.

4. It is shown that the feedforward loop is independent

of the input filter parameters and also independent

of the input filter configuration.

5. Examination of the extensive experimental data con-

firm that the use of the feedforward compensation
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scheme does not have any detrimental effect on regu-

lator performance.

6. If a switching regulator is acquired as a 'black box'

for use in a system, providing an inadequate input

filter could lead to system instability [4,5]. This

is shown analytically using a program that calculates

the eigenvalues of the system, and confirmed experi-

mentally. It is then shown that the use of the feed-

forward compensation scheme can stabilize a system

that was made unstable due to input filter interac-

tion with the regulator control loop. Experimental

verification of the stabilizing action of the feed-

forward loop is presented and this shows that an ar-

bitrary input filter may be used with the feedfor-

ward- loop controlled regulator.

7. From the results presented it is logical to conclude

that the feedforward loop can provide effective com-

pensation for an unknown source impedance. For exam-

ple, a preregulator which often has an unknown, dy-

namic output impedance can interact with a switching

regulator downstream and result in system . instabili-

ty. The feedforward circuit effectively isolates the

switching regulator from its source thus preventing

interaction between the switching converter and

equipment upstream.
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8. The use of the feedforward compensation scheme re-

moves some of the input filter design constraints

thus making the input filter design process simpler

and allows the input filter to be optimized. A high

performance regulator system with an optimum input

filter can thus be realized with the use of the feed-

forward compensation scheme.

9. The feedforward design concept presented can be easi-

ly extended to types of control other than those used

in this dissertation.

10. Extension of. the concept of feedforward compensation

to other types of switching regulators is possible.

Such a scheme for a buck-boost regulator is presented

and preliminary results indicate the validity of the

compensation scheme.

10.2 SUGGESTIONS FOR FUTURE WORK

The following suggestions for future work are made:

1. The concept of feedforward compensation for buck-

boost switching regulators needs to be verified ex-

perimentally. Data indicating the effect of using

the feedforward scheme on performance categories like

audiosusceptibility, output impedance, transient res-

ponse and stability is also needed.
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2. An investigation into the use of the feedforward com-

pensation scheme for the boost converter should be

made.

3. The use of the feedforward loop is shown to isolate

the regulator from its source, and this could be used

to advantage in situations where regulators are put

in series/parallel for load sharing.

4. Current injected control is an important mode of con-

trol and an investigation of the feasibility of using

feedforward compensation for this type of control

could be made.

5. Single loop control using the constant frequency duty

cycle type control is very widely used and test re-

sults using feedforward compensation for this type of

control are needed.

6. It may be possible to simplify the adaptive feedfor-

ward circuit by using the dc component of the input

filter capacitor voltage instead of the supply vol-

tage. This may have an effect on the transient res-

ponse for a step change in supply voltage since then

the duty cycle would change in accordance with chang-

es in input filter capacitor voltage.
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c
C * DISCRETE TIME SIMULATION OF A BUCK CONVERTER. *

C
C THIS PROGRAM SIMULATES THE STEADY-STATE BEHAVIOR AS WELL AS
C THE TRANSIENT PERFORMANCE FOR A BUCK REGULATOR
C WITH INPUT FILTER, WITHOUT FEEDFORWARD.
C

DIMENSION X(6,9000),F1(6,6),F2(6,6).G1(6,l4),G2(6,l|),TIME(9000),
1U(l4),PHIF(6,6),PHIN(6,6),DF(6,4),DN(6,i4),TVEC1(6),TSWIT(2),
2VI SWI T( 2 ), V0( 9000 ), PH I FT( 6, 6 ), DFT( 6, <4), TVEC2( 9000)
DIMENSION F3(6,6),G3(6,l4),TVEC3(6),PHIFT3(6,6),DFT3(6,l4),
1PHIF3(6,6),DF3(6,<4)

C
REAL L1,L,K1,K2,IQMAX

C
DATA RL1,L1,C1,L,RO,RN,RC,C/1.0,325.E-6,20.E-5,230.E-6,0.2.0.65>
20.067.300.E-6/
DATA RL,R11,R12,R13,R1l4,C2,Rl4,CP1/20.0,33.3E3,16.7E3,2.E3,
1I47.E3.0.01E-6,1*0. 7E3, 5600. E-12/
DATA ER.ET.VI .EO/6. 7,7.0,«40.,20./
DATA TON,TOFMIN,TSWIT,VISWIT,VITON/2.20E-5,5.E-6,0.003,10.,
125.0,50..0.88E-3/
DATA NIT,FRAC,EPS,TF/10,0.5,5.E-6,0.012/
DATA IQMAX,EQ,ED/8.0,0.2,0.77
CL1S=0.5291665
VC1S=39.U8866
ECS=7.0
CLS=0.092912»43
VCS=20.05715
ERS=20.05712
VOS=19.99638

C
TON=VITON/VI
K1=(R12/(R1U*(R11+R12)))+(1./R13)-(RN/RU)
K1 = K1-(RN*RO*(RL+RC) )/( RI»*RL*RC)
K2=(RN/Rt»)-(1./R13)-(R12/(R1lt*(R11+R12)))
DO 1 1=1,6
DO 80 J = 1,«4
G1( I,J)=0.
G2(I,J)=0.
DF( I,J)=0.
DN( I,J)=0.



80 DFT(I,J)=0.
DO 1 J=1,6
F1( I,J)=0.

1 F2(I,J)=0.
C

DO 2 1=1,6
DO 2 J=1,6
PHIFT( I,J)=0.
PHIF( I,J)=0.

2 PHIN(I,J)=0.
C

F1(2,4)=-1./C1
F1(3,2) = (-1.*RN)/(CP1*R«»)
F1(3,U)=(-1.*RL*RC*K1 )/(CP1*(RL+RC))
F1(3,5)=(RL*K2)/(CP1*(RL+RC))
F1(3,6)=1./(CP1*R13)
F1C*,2) = 1./L
Fl(4,/4) = (-1.*RO)/L-H(-1.*RC*RL)/(L*(RC+RL))
F1C4,5) = (-1.*RL)/(L*(RC+RL))
F1(5,U)=RL/(C*(RL+RC))
F1(5,5)=-1./(C*(RL+RC))
F1 ( 6, 4 ) = ( RL*RC )/ ( C2*R1 3*( RL+RC ) )
F1(6,5)=RL/(C2*R13*(RL+RC))
F1(6,6)=-1./(C2*R13)

G1(3,2)=1./(CP1*R1U)

G1(U,3)=-1./L
DO 3 1=1,6
DO 3 J=1,6
F2(I,J)=F1( I,J)
F2(2,U)=0.
F2(3,2)=0.
F2(4,2)=0.
G2(1,1)=G1(1,1)
.G2(3,2)=G1(3,2)
G2(3,U)=RN/(CP1*Ri»)

DO 530 1=1,6
DO 531J=1,6
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531 F3( I,J)=F2( I,J)
DO 532 J=1,U

532 G3( I,J)=G2( I,J)
530 CONTINUE

DO 535 1=1,6
F3(l», l)=0..0

535 F3(I,U)=0.0
DO 536 \=1,U

536 G3(U,I)=0.0
C

NSWIT=0
ITEMP=NSWIT+1
TXX=TSWIT( I TEMP)
NT=0. 1+1 ./FRAC
TOFF=TON*(VI-EO)/EO
TIME(1)=0.0
ND=1
M=0
IT=0
T=FRAC*TOFF

C
CALL STRAN(T, PH I F, OF, F2,G2,6,U,6,U, 1 ,0, EPS, Dl FMAX, ITER, I FLAG)

C
T=FRAC*TON
CALL STRAN(T,PHIN,DN,F1,G1,6,U,6,l4,1,0,EPS,DIFMAX, ITER, I FLAG)

YOU FORMAT(//,' VALUES OF X ON THE NEXT PAGE1)
C

X( 1,1 )=CL1S
X(2, 1)=VC1S
X(3,1)=ECS
X(t»,1)=CLS
X(5,1)=VCS
X(6,1)=ERS
VO(1)=VOS
U(1)=VI
U(2)=ER
U(3)=EQ
U(4)=ED

C
C

IF(X(3,ND).GE.ET) GO TO 60
TEMPA=ABS(X(3,ND)-ET)



I F( TEMPA.LT.EPS) GO TO 40
20 CONTINUE

IF(X(3,ND).LT.ET) GO TO 28
C
C #**#***#*#####****##*####*##*#******#*#
C MINIMUM OFF TIME CALCULATION *
Q *****»**»**»***»***#»»»**»**#********»*

C

T=TOFMIN
CALL STRAN(T,PHIFT,DFT,F2,G2,6,t,6,U,1,0,EPS,DIFMAX, ITER, I FLAG)
DO 6 1=1,6

6 TVEC1( I )=X( I.ND)
CALL FUTURE(TVEC1,U,PHIFT,DFT,6,6,6,4,6,6,6,4,1 )
TEMP=TIME(ND)
ND=ND+1
TIME(ND)=TEMP+T
DO 7 1=1,6

7 X{ I,ND)=TVEC1( I )
VO(ND)=(RL*RC)*X(4,ND)/(RL+RC)+RL*X(5,ND)/(RL+RC)
IF(X(U,ND).GT.O.O) GO TO 570
ITI=0

571 IF(ABS(X(U,ND) J.LT.EPS) GO TO 579

IF(NIT.GE.NIT) GO TO 100

T3=-X(«4,ND)/SLOPE3
CALL STRAN(T3,PHIFT3,DFT3,F2,G2,6,l»,6,l4,1,0,EPS,DIFMAX, ITER, I FLAG)
DO 572 1=1,6

572 TVEC3( I )=X( I.ND)
CALL FUTURE(TVEC3,U,PHIFT3,DFT3,6,6,6,U,6,6,6,'4,1)
TIME(ND)=TIME(ND)+T3
DO 573 1=1,6

573 X( I,ND)=TVEC3( I )
V0( ND)=RL*RC*X( H, ND)+RL*X( 5, ND)
VO(ND)=VO(ND)/(RL+RC)
GO TO 571

579 CONTINUE
CALL STRANfTS.PHIFS.DFS.FS.GS^.U.e.U.I.O.EPS.DIFMAX, ITER, I FLAG)
DO 57U 1=1,6

574 TVEC3( I)=X( I.ND)
X(4,ND)=0.0
CALL FUTURE(TVEC3,U,PHIF3,DF3, 6, 6, 6, 1,6,6,6,4,1 )
TEMP=TIME(ND)
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575

570

C
C
C
C
C

28

ND=ND-t-1
TIME(ND)=TEMP+T3
DO 575 1=1,6
X(I,ND)=TVEC3(I)
V0(ND) = (RL*X(5,ND))/(RL+RC)
CONTINUE
GO TO l»0

#****#****###»***#***»*#*#*****»*#**#**

OFF TIME CALCULATION *
*»****#**»***#***********»******»**»*##

T=FRAC*TOFF
IT=0

25 CONTINUE
DO 8 1=1,6

8 TVEC1(I)=X(I.ND)
IF(ND.LT.300) GO TO 5000
WRITE(6,706)

706 FORMAT(//,' STATE VECTOR IN OFF TIME')
WRITE(6,900l»)(TVEC1( I), 1 = 1,6)

900U FORMAT(6F15.11)
WRITE(6,») VO(ND)

5000 CONTINUE
IF(X(U,ND).LE.O) GO TO 502

CALL FUTURE(TVEC1,U,PHIF,DF,6,6,6,14,6,6,6,4,1 )

TEMP=TIME(ND)
ND=ND-H
TIME(ND)=TEMP+T
DO 9 1=1,6

9 X( I ,ND)=TVEC1{ I )
VO(ND)=RL*RC*X(H,ND)+RL*X(5,ND)
VO(ND)=VO(ND) / (RL+RC)
GO TO 520

502 CONTINUE
C
C
C
C
C

**#***#***#***#****#***#**#***#****#
* CALCULATION TO FIND WHEN X(U)=0 *
****#*#***#**#*****#******•»**#******

IT 1=0



503 IF(ABS(X(4,ND)).LT.EPS) GO TO 509

IF( ITI.GE.NIT) GO TO 100
SLOPE3=F2(4,4)*X(4,ND)+F2(4,5)*X(5,ND)+G2(4,4)*U(4)
T3=-X(4,ND)/SLOPE3
CALL STRAN(T3,PHIFT3,DFT3,F2,G2,6,4,6,4,1,0,EPS,DIFMAX, ITER, I FLAG)
DO 504 1=1,6

504 TVEC3( I )=X( I, NO)
CALL FUTURE(TVEC3,U,PHIFT3,DFT3,6,6,6,4,6,6,6,4,1)
TIME(ND)=TIME(ND)+T3
00 505 1=1,6

505 X( I,ND) = TVEC3( I )
V0( ND)=RL*RC*X( 4, ND)+RL*X( 5, ND)
VO(ND)=VO(ND)/(RL+RC)
GO TO 503

509 CONTINUE
CALL STRAN(T,PHIF3,DF3,F3,G3,6,4,6,4,1,0,EPS,DIFMAX, ITER, I FLAG)
DO 5401=1,6

540 TVEC3( I )=X( I,ND)
X(4,ND)=0.0
CALL FUTURE(TVEC3,U,PHIF3,DF3,6,6,6,4,6,6,6,4,1)
TEMP=TIME(ND)
ND=ND-H
TIME(ND)=TEMP+T
DO 511 1=1,6

511 X( I,ND)=TVEC3( I )
VO(ND)=(RL*X(5,ND))/(RL+RC)

520 CONTINUE
IF(X(3,ND).GE.ET) GO TO 30
GO TO 25

C
C *-M-********#*tt-H-*4f ************#»»***»***«

C CALCULATION TO HIT THRESHOLD WHEN *
C X(3)=ET.

C
30 IF(ABS(X(3,ND)-ET).LT.EPS) GO TO 40

IT=IT+1
IF( IT.GE.NIT) GO TO 100
SLOPE=F2(3,4)*X(4,ND)+F2(3,5)*X(5,ND)+F2(3,6)*X(6,ND)
SLOPE=SLOPE+G2(3,2)*U(2)
T=(ET-X(3,ND))/SLOPE



CALL STRAN(T,PHIFT,DFT,F2,G2,6,4,6,U,1,0,EPS,DIFMAX, ITER, I FLAG)
C

DO 10 1=1,6
10 TVEC1( I )=X( I,ND)

CALL FUTURE( TVEC1, U, PH I FT, DFT, 6,6,6,4,6, 6,6,4,1)
TIME(ND)=TIME(ND)+T
DO 11 1=1,6

11 X( I,ND)=TVEC1( I )
V0( ND)=RL*RC*X( 4, ND)+RL*X( 5, ND)
VO(ND)=VO(ND)/(RL+RC)
GO TO 30

40 CONTINUE
IF(ND.LT.SOO) GO TO 5001
WRITE(6,440) TIME(ND)

440 FORMAT (/, 'SWITCH ON T IME= ' , F15. 1 1 )
5001 CONTINUE

IF(TIME(ND).GE.TF) GO TO 120
C

C CHANGE VI, TON, TOFF AT THE SWITCHING *
C INSTANT. ALSO CHANGE PHIF,DF, IF *
C NECESSARY. *
Q ******************#********************

C

IF(TIME(ND).LT.TXX) GO TO 60
NSWIT=NSWIT-H
ITEMP=NSWIT+1
TXX=TSWIT( ITEMP)
VI=VISWIT(NSWIT)
TON=VITON/VI
TOFF=TON*(VI-EO)/EO
U(1)=VI
T=FRAC*TOFF

C
CALL STRAN(T, PH I F, DF, F2, 02,6,4, 6, U, 1 , 0, EPS, Dl FMAX, ITER, I FLAG)

C
T=FRAC*TON

C
CALL STRANJT.PHIN.DN.FI.GI.e.U.e.U.I.O.EPS.DIFMAX, ITER, IFLAG)

C
60 CONTINUE

M=0
T=FRAC*TON



c #####*#*##**»*#**#*#**#***#***#*#**»***
C ON TIME CALCULATION *
C #*##*****#######*##*###*•«•#»**##*#*##*##
C
65 CONTINUE

DO 12 1=1,6
12 TVEC1(I)=X(I.ND)

IF(ND.LT.300) GO TO 5002
WRITE(6,709)

709 FORMAT(//,' STATE VECTOR IN ON TIME 1)
WRITE(6,9005)(TVEC1(I),1=1,6)

9005 FORMAT(6F15.11)
WRITE(6,») VO(ND)

5002 CONTINUE
C

CALL FUTURE(TVEC1,U,PHIN,DN,6,6,6,l(,6,6,6,t,1)
C

TEMP=TIME(ND)
ND=ND+1
TIME(ND)=TEMP+T
DO 13 1=1,6

13 X(I,ND)=TVEC1(I)
VO(ND)=RL*RC*X(U,ND)+RL*X(5,ND)
VO(ND)=VO(ND)/(RL+RC)
M=M+1
IF(X(«4,ND).GE. IQMAX) GO TO 70
IF(M.LT.NT) GO TO 65

C
GO TO 999

C
C ***********»##*#*#**********#**#*#*****
C CALCULATION TO FIND WHEN INDUCTOR *
C CURRENT HITS THE THRESHOLD VALUE. *
Q HIHHHHHHHHHHHUHUHUHHHHHHHHUHHHHHUHHHHHHt

C
70 CONTINUE

IT=0
71 IF(ABS(X(U,ND)-IQMAX).LE.EPS) GO TO 999

IT=IT-M
IF(IT.GE.NIT) GO TO 100
SLOPE2=X(2,ND)*F1(U,2)+X(«4,ND)*F1(U,U)+X(5,ND)*F1(«4,5)
T=( IQMAX-X(1»,ND) )/SLOPE2
CALL STRAN(T,PHIFT,DFT,F1,G1,6,4,6,*»,1,0,EPS,DIFMAX, ITER, IFLAG)
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DO 15 1=1,6
15 TVEC1(I)=X(I,ND)

CALL FUTURE(TVEC1,U,PHIFT,DFT,6,6,6,4,6,6,6,4,1)
TIME(ND)=TIME(ND)+T
DO 16 1=1,6

16 X(I,ND)=TVEC1( I)
V0(ND) = RL*RC*X(4,ND)+RL*X(5, ND)
VO(ND)=VO(ND)/(RL-t-RC)
GO TO 71

999 CONTINUE
C

IF(ND.LT.300) GO TO 5003
WR I TE( 6,4142) TIME(ND)

442 FORMAT(/,'SWITCH OFF TIME=',F15.11 )
5003 CONTINUE

IF(TIME(ND).LT.TF) GO TO 20
GO TO 120

100 CONTINUE
WRITE(6,204) TIME(ND)

204 FORMAT(/,'MAXIMUM ITERATION AT TIME=',F15.11)
120 CONTINUE

DO 104 I=1,ND
WRITE(8,103) TIME(I),X(3,I)

103 FORMATf2E20.10)
104 CONTINUE

DO 105 I=1,ND
WRITE(8,103) TIME( I ),X(4, I)

105 CONTINUE
DO 106 1=1,ND
WRITE(8,103) TIME(I).VO(I)

106 CONTINUE
DO 107 I=I.ND
WRITE(8,103) TIME(I),X(2,I)

107 CONTINUE
DO 14 1 = 1,ND

14 TVEC2(I)=VO(I)
CALL A8PLOT(ND,TIME,TVEC2)
STOP
END

C
C

1 SUBROUTINE STRAN(TAU,PHI,THETA,A,B,NA,NB,MA,MB,MODE,NTERMS,
1 TOL,DIFMAX, ITER, I FLAG)



REAL PH I ( NA, NA } , THETA( NA, NB ) , A( NA, NA ) , B( NA, NB ) ,
1 WORK! ( 10, 10),WORK2( 10, 10), DUMMY( 1 , 1 ) , FAC1 ,CON1 , FAC2.CON2
C1 = 1
TS=TAU
DO U 1=1, MA
DO 2 J=1,MA
WORK1( I,J)=0
WORK2{ I,J)=0
PHI{ I,J)=0

2 CONTINUE
WORK1( I, I )=1
WORK2( I, I )=TAU
PHI( I, I ) = 1

U CONTINUE
DO 6 1=1, MA
DO 6 J=1,MB

6 THETA( I,J)=0
DIFMAX=1.E8
NDO=50
IF(NTERMS.GT.O) NDO=NTERMS

I FLAG=0
DO 1000 1=1, NDO
CALL MXMUL(DUMMY,WORK1,A,TS, 1,1,10, 10, NA, NA, MA, MA, MA, MA, 1 )
FAC1=FAC1*I
CON1=1 ./FAC1
IF(NTERMS.EQ.O.AND. I.GE.U) CALL SERROR( PH I , WORK1 ,CON1 , NA, NA,

1 10, 10,MA,MA,DIFMAX)
CALL MXADD( DUMMY, PH I , WORK! , C1 , CON1 , 1 , 1 , NA, NA, 10, 10, MA, MA, 1 )
IF(MODE.EQ.2) GO TO 500
FAC2=FAC1*( 1+1)
CON2=TAU/FAC2
CALL MXADD( DUMMY, WORK2, WORK1 ,C1 ,CON2, 1 , 1 , 10, 10, 10, 10, MA, MA, 1 )

500 CONTINUE
ITER=I
IF(NTERMS.GT.O.OR. I.LT.1) GO TO 1000
IF(DIFMAX.LE.TOL) GO TO 1100

1000 CONTINUE
1100 CONTINUE

IF(MODE.EQ.I) CALL MXMUL( THETA, WORK2, B, C1 , NA, NB, 10, 10, NA, NB,
1 MA, MA, MA, MB. 2)
IF( ITER.EQ.NDO.AND.NTERMS.EQ.O) IFLAG=1
RETURN



o

c
c

50
100

C
C

C
C

END

SUBROUTINE SERROR(AMX,BMX,CCC, IA.JA,IB,JB, I DO,JDO,DlFMAX)
DIMENSION AMX(IA,JA),BMX(IB,JB)

DIFMAX=1.E-30
DO 100 1 = 1, I DO.
DO 50 J=1,JDO
IF(AMX(I,J).EQ.O.O ) GO TO 50
CHANGE= ABS(BMX( I,J )*CCC/AMX( I,J))
IF(CHANGE.GT.DIFMAX) DIFMAX=CHANGE
CONTINUE
CONTINUE
RETURN
END

1 SUBROUTINE FUTURE(X.V,PHI,THETA,LP,MP,LT,MT,IP,JP,IT.JT.MODE)
DIMENSION X(MP),V(MT),PHI(LP,MP),THETA(LT,MT),TEMP(20)

DO 20 1=1,IP
SUM=0
DO 10 J=1,JP

10 SUM=SUM+PHI(I,J)*X(J)
20 TEMP( I ) = SUM

DO 30 1=1,IP
30 X( I ) = TEMP( I) !

IF(MODE.EQ.2) RETURN
DO 60 1=1,IT
SUM=0
DO 50 J=1,JT

50 SUM=SUM+THETA(I,J)*V(J)
X( I )=X( I )+SUM

60 CONTINUE
RETURN
END

1 SUBROUTINE MXADD(RMX,AMX,BMX,ACC,BCC, IR.JR, IA.JA, IB.JB, (DO,JDO,
1 MODE)

DIMENSION AMX( IA,JA),BMX( IB,JB),RMX( IR,JR)
IF(IA.LT.IDO.OR.JA.LT.JDO) GO TO 999
IF(IB.LT.IDO.OR.JB.LT.JDO) GO TO 999
GO TO (10,100),MODE



10 CONTINUE
DO 50 1 = 1, I DO
DO 50 J=1,JOO

50 AMX(I,J)=AMX(I,J)*ACC+BMX(I,J)*BCC
GO TO 300

100 CONTINUE
IF(IR.LT.IDO.OR.JR.LT.JDO) GO TO 999
DO 200 1 = 1,I DO
DO 200 J=1,JDO

200 RMX(I,J)=AMX(I ,J )*ACC+BMX(I,J)*BCC
300 RETURN
999 CONTINUE

RETURN
END

C
C

1 SUBROUTINE MXMUL(RMX,AMX,BMX,CCC,IR.JR,IA.JA,IB.JB,IDA.JDA,IDB.JDB
1,MODE)

DIMENSION AMX( IA,JA),BMX( IB,JB),RMX( IR,JR),TEMP(20 )
IF(IDA*IDB*JDA*JOB.GT.IA*IB*JA*JB) GO TO 999
IF(JDB.GT.JDA) GO TO 999
GO TO (10,210),MODE

10 DO 100 1=1,IDA
DO 20 L=1,JDA

20 TEMPIL)=AMX(I,L)
DO 80 J=1,JDB
SUM=0
DO 40 K=1,JDA

40 SUM=SUM+TEMP(K)*BMX(K,J)
AMX(I,J)=SUM*CCC

80 CONTINUE
100 CONTINUE

GO TO 600
210 CONTINUE

IF(IR.LT.IDA.OR.JR.LT.JOB) GO TO 999
DO 400 1=1,IDA
DO 380 J=1,JDB
SUM=0
DO 340 K=1,JDA

340 SUM=SUM+AMX(I,K)*BMX(K,J)
RMX(I,J)=SUM*CCC

380 CONTINUE
400 CONTINUE



n

600 RETURN
999 CONTINUE

RETURN
END



c
C DISCRETE TIME SIMULATION OF A BUCK CONVERTER *

C THIS PROGRAM SIMULATES THE STEADY-STATE BEHAVIOR AS WELL AS
C THE TRANSIENT PERFORMANCE FOR A BUCK REGULATOR
C WITH INPUT FILTER AND WITH FEEDFORWARD.
C

DIMENSION X(7,9000),F1(7,7),F2(7,7),G1(7,'t),G2(7,l4),TIME(9000),
1U(»4),PHIF(7,7),PHIN(7,7),DF(7,'4),DN(7,'4),TVEC1(7),TSWIT(2),
2VISWIT(2),V0(9000),PHIFT(7,7),DFT(7,H),TVEC2(9000)
DIMENSION F3(7,7),G3(7,l»),TVEC3(7),PHIFT3(7,7),DFT3(7,4),
1PHIF3(7,7),DF3(7,7)

C
REAL L1,L,K1,K2,IQMAX,K3

C
DATA RL1,L1,C1,L,RO,RN,RC,C/1.0,325.E-6,22.E-5,230.E-6,0.2,0.65,
20.067.300.E-6/
DATA RL,R11,R12,R13,R14,C2,RU,CP1/20.0,33.3E3,16.7E3,2.E3,
1U7.E3,0.01E-6,U0.7E3,5600.E-12/
'DATA ER.ET.VI , EO/6. 7, 7.0,t40. , 20. /
DATA TON,TOFMIN,TSWIT,VISWIT,VITON/2.20E-5,5.E-6,0.003,10.0,
125.,50.,0.88E-3/
DATA NIT,FRAC,EPS,TF/10,0.1,10.E-6,0.0120/
DATA IQMAX.EQ,ED/6.0,0.2,0.7/
DATA RF1,RF2,CF,VFS/5.1E3,90.970,27.E-6,0.0507E-1/
CL1S=0.69552390
VC1S=39.87245
ECS=7.0
CLS=O.U0158130
VCS=20.06H41
ERS=20.061l|3
VOS=20.02125
VFS=+0. 389<48170

C
TON=VITON/VI
K1=(R12/(R1U*(R11+R12)))+(1./R13)-(RN/R4)
K1 = K1-(RN*RO*(RL+RC) )/(RI»*RL*RC)
K2=(RN/RU)-(1./R13)-(R12/(R1U*(Rm-R12)))
K3=RF2/(RF1+RF2)
DO 1 1=1,7
DO 80 J=1,1
G1(-I ,J)=0.
G2( I,J)=0.



o

DF{ I,J)=0.
DN(I,J)=0.

80 DFT(I,J)=0.
DO 1 J=1,7
Fl( I,J)=0.

1 F2(I,J)=0.
C

DO 2 1=1,7
DO 2 J=1,7 .
PHIFT(I,J)=0.
PHIF( I,J)=0.

2 PHIN(I,J)=0.
C

F1(1,1 ) = (-1.*RL1
F1(1,2)=-1./L1
F1(2,1)=1./C1
F1(2,3)=-1./(C1*(RF1+RF2))
F1(2,5)=-1./C1
F1(3,1)=1./C1
F1(3,3)=(-1.*(CF+C1))/(CF*C1*(RF1+RF2))
F1(3,3)=0
F1(3,5)=-1./C1
F1(<*,1) = (-1.*K3)/C1
.F1(l*,2) = (-1.*RN)/(CP1*Rl|)
F1(U,3)=(K3*(CF+C1))/(CF*C1*(RF1+RF2))
F1(l»,5) = (K3/C1 )-((RL*RC*K1 )/( CP1*( RL+RC) ) )
F1(l»,6) = (RL*K2)/(CP1*(RL+RC))
F1(t»,7) = 1./(CP1*R13)
F1(5,2)=1./L
F1(5,5)=((-1.*RO)/L)-H(-1.*RC*RL)/(L*(RC+RL)))
F1(5,6)=(-1.*RL)/(L*(RC+RL))
F1(6,5)=RL/(C*(RL+RC))
F1(6,6)=-1./(C»(RL+RC))
F1(7,5)=(RL*RC)/(C2*R13*(RL+RC))
F1(7,6)=RL/(C2*R13*(RL+RC))
F1(7,7)=-1./(C2*R13)

G1(«l|2) = l!/(CP1*R1l4)
G1(/4,3) = RN/(CP1*RU)
G1(5,3)=-1./L
DO 3 1=1,7
DO 3 J=1,7

3 F2(I,J)=F1(I,J)



V )

F2(2,5)=0.
F2(3,5)=0.
F2(3,3)=0
F2(i*,2)=0.
F2(4,5)=(-1 .*RL*RC*K1 )/( CP1*( RL+RC)
F2(5,2)=0.
G2(1,1)=G1(1,1)
G2(U,2)=G1(4,2)

G2(5,U)=-1./L
DO 530 1=1,7
DO 531 J=1,7

531 F3(I,J)=F2( I,J)
DO 532 J=1,U

532 G3( I,J)=G2( I,J)
530 CONTINUE

DO 535 1=1,7
F3(5,l)=0.0

535 F3(l,5)=0.0
DO 536 1=1,1

536 G3(5,l)=0.0
C

NSWIT=0
TEMP=NSWIT-H
TXX=TSWIT(TEMP)
NT=0. 1+1 ./FRAC
TOFF=TON*(VI-EO)/EO
TIME(1)=0.0
ND=1
M=0
IT=0
T=FRAC*TOFF

C
CALL STRAN(T,PHIF,DF,F2,G2,7,l»,7,l4,1,0,EPS,DIFMAX, ITER, IFLAG)

C
T=FRAC*TON
CALL STRAN(T,PHIN,DN, FI.GI^.iJ^.U.I.O.EPS.DI FMAX, ITER, IFLAG)
WRITE(6,70U)

70U FORMAT(//,' VALUES OF X ON THE NEXT PAGE')
C

X(1,1)=CL1S
X(2,1)=VC1S
X(3,1)=VFS



o

X(U, 1 ) = ECS
X(5,1)=CLS
X(6,1)=VCS
X(7,1)=ERS
VO(1)=VOS
U(1)=VI
U(2)=ER
U(3)=EQ
U(l*) = ED

C
C

IF(X(ti,ND).GE.ET) GO TO 60
TEMPA=ABS(X(U,ND)-ET)
IF(TEMPA.LT.EPS) GO TO 40

20 CONTINUE
C

IF(X(l4,ND).LT.ET) GO TO 28
C
C #*#####»#*###*»##*#*#####*»#*##*»####**
C MINIMUM OFF TIME CALCULATION *
C #*#*#»**#***#****#***#*##*##*»*********
G

T=TOFMIN
CALL STRAN(T,PHIFT,DFT,F2,G2,7,U,7,'4,1,0,EPS,plFMAX, ITER,I FLAG)
DO 6 1=1,7

6 TVEC1(I)=X(I,ND)
CALL FUTURE( TVEC1,U, PHI FT, DFT, 7, 7, 7,4,7,7,7,14,1)
TEMP=TIME(ND)
ND=ND-H
TIME(ND)=TEMP+T
DO 7 1=1,7

7 X(I,ND)=TVEC1(I)
VO(ND)=(RL*RC)*X(5,ND)/(RL+RC)+RL*X(6,ND)/(RL+RC)
IF(X(5,ND).GT.O.O) GO TO 570
ITI=0

571 IF(ABS(X(5,ND)).LT.EPS) GO TO 579
ITI=ITI+1
IF(ITI.GE.NIT) GO TO 579
SLOPE3=F2(5,5)*X(5,ND) + F2(5,6)*X(6,ND)+G2(5,'»)*U(U)
T3=-X(5,ND)/SLOPE3
CALL STRAN(T3,PHIFT3,DFT3,F2,G2,7,U,7,U,1,0,EPS,DIFMAX,ITER,(FLAG)
DO 572 1=1,7

572 TVEC3(I)=X(I,ND)



V J

CALL FUTURE(TVEC3,U,PHIFT3,DFT3,7,7,7,4,7,7,7,4,1)
TIME(ND)=TIME(ND)-t-T3
DO 573 1=1,7

573 X( I,ND)=TVEC3( I )
V0( ND )=RL*RC*X( 5, ND )+RL*X( 6, NO )
VO(ND)=VO(ND)/(RL+RC)
GO TO 571

579 CONTINUE
CALL STRAN(T3,PHIF3,DF3,F3,G3,7,4,7,4,1,0,EPS,DIFMAX, ITER, IFLAG)
DO 574 1=1,7

574 TVEC3( i )=*( I.ND)
X(5,ND)=0.0
CALL FUTURE(TVEC3,U,PHIF3,DF3,7,7,7,4,7,7,7,4,1 )
TEMP=TIME(ND)
ND=ND+1
TIME(ND)=TEMP+T3
DO 575 1=1,7

575 X( I,ND)=TVEC3( I)
VO(ND)=(RL*X(6,ND) )/(RL+RC)

570 CONTINUE
GO TO 40

C

C OFF TIME CALCULATION *
C **##******»******#*****###*#»*»**»****»
C
28 T=FRAC*TOFF

IT=0
25 CONTINUE

DO 8 1=1,7
8 TVEC1( I )=X( I,ND)

IF(ND.LT.300) GO TO 5000
WRITE(6,706)

706 FORMAT(//,' STATE VECTOR IN OFF TIME 1)
WRITE(6,9004)(TVEC1( I ), 1 = 1,7)

9004 FORMAT! 7F15. 11 )
WRITE(6,*) VO(ND)

5000 CONTINUE
I F(X(5,ND).LE.O.O) GO TO 502

C
CALL FUTURE(TVEC1,U,PHIF,DF,7,7,7,4,7,7,7,4,1)

C
TEMP=TIME(ND)



o "V

ND=WH1
TIME(ND)=TEMP+T
DO 9 1=1,7

9 X( I,ND)=TVEC1( I )
V0( NO )=RL*RC*X( 5, ND )+RL*X{ 6, ND )
VO(ND)=VO(ND) / (RL+RC)
GO TO 520

502 CONTINUE
C

C * CALCULATION TO FIND WHEN X(5)=0 *
C ##»#*#******#**#*******»*»**#**»#*#*
C

ITI=0
503 IF(ABS(X(5, NDM.LT.EPS) GO TO 509

ITI = ITI-H
IF( ITI.GE.NIT) GO TO 100
SLOPE3=F2(5,5)*X(5,ND)+F2(5,6)*X(6,ND)+G2(5,U)*U(i4)
T3=-X(5,ND)/SLOPE3
CALL STRAN(T3,PHIFT3,DFT3,F2,G2,7,U,7,U,1,0,EPS,DIFMAX, ITER, IFLAG)
DO 50t 1=1,7

504 TVEC3( I )=X( I.ND)
CALL FUTURE(TVEC3,U,PHIFT3,DFT3,7,7,7,l4,7,7,7,1,1)
TIME(ND)=TIME(ND)+T3
DO 505 1=1,7

505 X( I,ND)=TVEC3( I )
VO(ND)=RL*RC*X(5,ND)+RL*X(6,ND)
VO(ND)=VO(ND)/(RL+RC)

' GO TO 503
509 CONTINUE

CALL STRAN(T,PHIF3,DF3,F3,G3,7,l»,7,U,1,0,EPS,DIFMAX, ITER, IFLAG)
DO 510 1=1,7

5UO TVEC3( I )=X( I,ND)
X(5,ND)=0.0
CALL FUTURE(TVEC3,UtPHIF3,DF3,7,7,7,U,7,7,7,'»,1 )
TEMP=TIME(ND)
ND=ND+1
TIME(ND) = TEMP-i-T
DO 511 1=1,7

511 X( I,ND)=TVEC3( I )
VO(ND)=(RL*X(6,ND) )/(RL+RC)

520 CONTINUE
IF (X (U ,ND) .GE.ET) GO TO 30



GO TO 25
C
Q *******»********#********»**»*******»**

C CALCULATION TO HIT THRESHOLD WHEN *
C X(3)=ET. *
C #*****###**#***#***#*#***#*##**»*##*#*#
C
30 IF(ABS(X(4,ND)-ET).LT.EPS) GO TO 40

IT=IT+1
IF(IT.GE.NIT) GO TO 100
SLOPE=F2(U,1 )*X(1,ND) + F2(U,3)*X(3,ND) + F2(l
1F2(l»,6)*X(6,ND) + F2(i»,7)*X(7.ND)
SLOPE=SLOPE+G2(l4,2)*U(2)+G2(U,U)*U(l»)
T=(ET-X(U,ND))/SLOPE

C
CALL STRAN(T,PHIFT,DFT,F2,G2,7,U,7,U,1,0,EPS,DIFMAX, ITER, I FLAG)

C
DO 10 1=1,7

10 TVEC1( I )=X( I,NO)
CALL FUTURE(TVEC1,U,PHIFT,DFT,7,7,7,'t,7,7,7,'*,1)
TIME(ND)=TIME(ND)+T
DO 11 1=1,7

11 X(I,ND)=TV£C1(I)
VO(ND)=RL*RC*X(5,ND)+RL*X(6,ND)
VO(ND)=VO(ND)/(RL+RC)
GO TO 30

»40 CONTINUE
IF(ND.LT.1000) GO TO 5001
WRITE(6,U«40) TIME(ND)

UUO FORMAT(/,'SWITCH ON TIME=',F15.11 )
5001 CONTINUE

IF(TIME(ND).GE.TF) GO TO 120
C
C ##**##********#*»**##*#*#*#*##*#**##»**
C CHANGE VI,TON,TOFF AT THE SWITCHING *
C INSTANT. ALSO CHANGE PHIF.DF IF *
C NECESSARY. *
Q ***************************************

C
IF(TIME(ND).LT.TXX) GO TO 60
NSWIT=NSWIT-H
TEMP=NSWIT+1
TXX=TSWIT(TEMP)



o

VI=VISWIT(NSWIT)
TON=VITON/VI
TOFF=TON*(VI-EO)/EO
U(1)=VI
RF2=230.27
K3 = RF2/(RFH-RF2)
F1(2,3)=-1./(C1*(RF1+RF2)J
F1(3,3)=(-1.*(CF+C1))/(CF*C1*(RF1+RF2))
F1(U,1)=(-1.*K3)/C1
F1(l4,3) = (K3*(CF+C1 ))/(CF*C1*(RF1+RF2))
F1(4,5)=(K3/C1)-((RL*RC*K1)/(CP1*(RL+RC)))
F2(2,3)=F1(2,3)
F2(3,3)=F1(3,3)

T=FRAC*TOFF
C

CALL STRAN(T,PHIF,DF,F2,G2,7,U,7,U,1,0,EPS,DIFMAX, ITER, I FLAG)
C

T=FRAC*TON
C

CALL STRAN(T,PHIN,DN,F1,G1,7,4,7,U,1,0,EPS,DIFMAX, ITER, I FLAG)
C
60 CONTINUE

M=0
T=FRAC*TON

C
Q #****»***#*#**#**»*•**********»***#***»*

C ON TIME CALCULATION *
C ###*#**»##*#*#*#******###**»#*#**##***#
C
65 CONTINUE

DO 12 1=1,7
12 TVEC1(I)=X(I,ND)

IF(ND.LT.IOOO) GO TO 5002
WRITE{6,709)

709 FORMAT(//,' STATE VECTOR IN ON TIME 1)
WRITE(6,9005)(TVEC1(I), 1 = 1,7)

9005 FORMAT(7F15.11)
WRITE(6,*) VO(ND)

5002 CONTINUE
C

CALL FUTURE(TVEC1,U,PHIN,DN,7,7,7,U,7,7,7,U,1)
C



TEMP=TIME(ND)
ND=ND+1
TIME(ND)=TEMP+T
DO 13 1=1,7

13 X(l,NO)=rVEC1(fJ
V0(ND)=RL*RC*X(5.NO)+RL*X(6,NO)
VO(ND)=VO(ND)/(RL+RC)
M=M+1
IF(X(5,ND).GE.IQMAX) GO TO 70
IF(M.LT.NT) GO TO 65

C
GO TO 999

C
C **#*##*#**##*****#*#*»*»#»*»»*#*****«*«
C CALCULATION TO FIND WHEN INDUCTOR *
C CURRENT HITS THE THRESHOLD VALUE. *
C «******«*«**»******«*#**«********«**«**
C
70 CONTINUE

IT=0
71 IF(ABS(X(5,ND)-IQMAX).LE.EPS) GO TO 999

IT=IT+1 to
IF(IT.GE.NIT) GO TO 100 £
SLOPE2=F1(5,2)*X(2,ND)+F1(5,5)*X(5,ND)+F1(5,6)*X(6,ND)+ °
1G1(5,3)*U(3)
T=(IQMAX-X(5,ND))/SLOPE2
CALL STRANtT.PHIFT.DFT.FI.GI^.I^.U.I.O.EPS.DIFMAX, ITER, IFLAG)
DO 15 1=1,7

15 TVEC1(I)=X(I.ND)
CALL FUTURE(TVEC1.U,PHIFT,DFT,7,7,7,'l,7,7,7,l»,1)
TIME(ND)=TIME(ND)+T
DO 161=1,7

16 X(I,ND)=TVEC1(I)
V0(ND)=RL*RC*X(5,ND)+RL*X(6,ND)
VO(ND)=VO(ND)/(RL+RC)
GO TO 71

999 CONTINUE
C

IF(ND.LT.IOOO) GO TO 5003
WRITE(6,U42) TIME(ND)

»»t|2 FORMAT(/,'SWITCH OFF TIME=', F15. 11 )
5003 CONTINUE

IF(TIME(ND).LT.TF) GO TO 20



o

GO TO 120
100 CONTINUE

WRITE(6,20'4) TIME(ND)
20«4 FORMAT!/,'MAXIMUM ITERATION AT T IME=', F15. 11 )
120 CONTINUE
111 DO 105 1=1,ND

WRITE(8,103) TIME(I),X(1,I)
105 CONTINUE

DO 106 1=1,ND
WRITE(8,103) TIME(I),X(2,I)

106 CONTINUE
112 DO 10U 1=1,ND

WRITE(8,103) TIME(I),X(3,I)
103 FORMAT(2E20.10)
104 CONTINUE

DO 107 I=1,ND
WRITE(8,103) TIME(I),X(U,I)

107 CONTINUE
DO 122 1=1,ND
WRITE(8,103) TIME(I),X(5,I)

122 CONTINUE
DO 123 1=1,ND
WRITE(8,103) TIME(I),VO(I)

123 CONTINUE
' DO 12*1 I = 1,ND
WRITE(8,103) TIME(I),X(7,I)
CONTINUE

109 CONTINUE
DO 1U 1=1,ND

1U TVEC2(I)=VO(I)
STOP
END

C
C

SUBROUTINE STRAN(TAU,PHI,THETA,A,B,NA,NB,MA,MB,MODE,NTERMS,
. 1 TOL,DIFMAX,ITER, I FLAG)

REAL PHI(NA,NA),THETA(NA,NB),A(NA,NA),B(NA,NB),
1 WORK1(10,10),WORK2(10,10),DUMMY(1,1),FAC1,CON1,FAC2,CON2
C1 = 1
TS=TAU
DO U 1=1,MA
DO 2 J=1,MA
WORK1(I,J)=0



WORK2(I,J)=0
PHI( I,J)=0

2 CONTINUE
WORK1(I,I)=1
WORK2(I,I)=TAU
PHI( I, I ) = 1

«4 CONTINUE
DO 6 1=1,MA
DO 6 J=1,MB

6 THETA(I,J)=0
DIFMAX=1.E8
NDO=50
IF(NTERMS.GT.O) NDO=NTERMS
FAC1=1
IFLAG=0
DO 1000 1=1,NDO
CALL MXMUL( DUMMY, WORK1,A,TS,1,1,10,10,NA,NA,MA,MA,MA,MA,1 )
FAC1=FAC1*I
CON1=i:/FAC1
IF(NTERMS.EQ.O.AND.I.GE.H) CALL SERROR(PHI,WORK!,CON1,NA,NA,

1 10,10,MA,MA,DIFMAX)
CALL MXADD(DUMMY,PHI,WORK1,C1,CON1,1,1,NA,NA,10,10,MA,MA,1)
IF(MODE.EQ.2) GO TO 500
FAC2=FAC1*(1+1)
CON2=TAU/FAC2
CALL MXADD(DUMMY,WORK2,WORK1,C1,CON2,1,1,10,10,10,10,MA,MA,1)

500 CONTINUE
ITER=I
IF(NTERMS.GT.O.OR.I.LT.4) GO TO 1000
IF(DIFMAX.LE.TOL) GO TO 1100

1000 CONTINUE
1100 CONTINUE

IF(MODE.EQ.1) CALL MXMUL(THETA,WORK2,B,C1,NA,NB,10,10,NA,NB,
1 MA,MA,MA,MB,2)
IF(ITER.EQ.NDO.AND.NTERMS.EQ.O) IFLAG=1
RETURN
END

C
C

SUBROUTINE SERROR(AMX,BMX,CCC, IA.JA, IB,JB,I DO,JDO,DlFMAX)
DIMENSION AMX(IA,JA),BMX(IB.JB)

DIFMAX=1.E-30
DO 100 1=1,IDO



o

DO 50 J=1,JDO
IF(AMX(I.JJ.EQ.O.O ) GO TO 50
CHANGE= ABS(BMX( I,J )*CCC/AMX( I,J))
IF(CHANGE.GT.DIFMAX) DlFMAX=CHANGE

50 CONTINUE
100 CONTINUE

RETURN
END

C
C

SUBROUTINE FUTURE(X,V,PHI,THETA,LP,MP,LT,MT,IP,JP,IT,JT,MODE)
DIMENSION X(MP),V(MT),PHI(LP.MP),THETA(LT,MT),TEMP(20)

DO 20 1=1,IP
SUM=0
DO 10 J=1,JP

10 SUM=SUM+PHI(I,J)*X(J)
20 TEMP(I)=SUM

DO 30 1=1,IP
30 X(I)=TEMP(I)

IF(MODE.EQ.2) RETURN
DO 60 1=1,IT
SUM=0
DO 50 J=1,JT

50 SUM=SUM+THETA(I,J)*V(J)
X(I)=X(I1+SUM

60 CONTINUE
RETURN
END

C
C

SUBROUTINE MXADD(RMX,AMX,BMX,ACC,BCC,IR.JR,IA.JA,IB.JB,IDO,JDO,
1 MODE)

DIMENSION AMX(IA,JA),BMX(IB,JB),RMX(IR,JR)
IF(IA.LT.IDO.OR.JA.LT.JDO) GO TO 999
IF(IB.LT.IDO.OR.JB.LT.JDO) GO TO 999
GO TO (10,100),MODE

10 CONTINUE
DO 50 1 = 1, I DO
DO 50 J=1,JDO

50 AMX(I,J)=AMX(I,J)*ACC+BMX(I,J)*BCC
GO TO 300

100 CONTINUE
IF(IR.LT.IDO.OR.JR.LT.JDO) GO TO 999



DO 200 1 = 1, I DO
DO 200 J=1,JDO

200 RMX( I,J)=AMX( I,J)*ACC+BMX( I,J)*BCC
300 RETURN
999 CONTINUE

RETURN
END

C
C

SUBROUTINE MXMUL(RMX,AMX,BMX,CCC,IR.JR,IA,JA,IB.JB,IDA.JDA,IDB.JDB
1.MODE)

DIMENSION AMX(IA,JA),BMX(IB,JB),RMX{IR,JR),TEMP(20)
IF(IDA*IDB*JDA*JDB.GT.IA*IB*JA*JB) GO TO 999
IF(JDB.GT.JDA) GO TO 999
GO TO (10,210),MODE

10 DO 100 1=1,IDA
DO 20 L=1,JDA

20 TEMP(L)=AMX(1,L)
DO 80 J=1,JDB
SUM=0
DO HO K=1,JDA

»40 SUM=SUM+TEMP(K)*BMX(K,J)
AMX(I,J)=SUM*CCC

80 CONTINUE
100 CONTINUE

GO TO 600
210 CONTINUE

IF(IR.LT.IDA.OR.JR.LT.JOB) GO TO 999
DO UOO 1=1,IDA
DO 380 J=1,JDB
SUM=0
DO 3UO K=1,JDA

3UO SUM=SUM+AMX(I,K)*BMX(K,J)
RMX( I,J) = SUM*CCC

380 CONTINUE
UOO CONTINUE
600 RETURN
999 CONTINUE

RETURN
END
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c
c
C * THIS PROGRAM COMPUTES THE CLOSED-LOOP POLES OF A BUCK CONVERTER *
C * WITH A SINGLE-STAGE INPUT FILTER, AS A FUNCTION OF THE INPUT *
C * FILTER PARAMETERS. *
\J

C
D I MENS ION A( 7 ) , B( 6 ) , CC1 ( 7 ) , CC2 ( 5 )
REAL NXEG, IXR, M, K1 , K2, K3, Ki», K5, K6, K7, L, LI , K8
INTEGER NDEG, I ER
COMPLEX Z(6),Z1(5),Z2(6),Z3(4)
DATA V I, L,RO,RC,C,RL.VO/25. 0,230. OE-6, 0.2, 0.067, 300. OE-6, 10. 0,20.0
V
DATA RN,R11,R12,R13,R1U,R14,C2,CP1,M/0.65,33.3E3,16.7E3,2.0E5,
1U7.0E3,t»0.7E3,1.0E-10,5600.0E-12,0.88E-3/

C
DO 2000 1=1,1000
READ(5,*) RL1.L1.C1
IF(RL1.LT.O. ) GO TO 2001
0=0.8388579

C
Y1=RL*L1*C1*C*RC
Y2=RL*L1*C1+C*RC*(C1*RL1*RL-(D**2)*L1 )
Y3=C1 *RL1 *RL- ( D**2 )*L1 +C*RC*( RL- ( D**2 )*RL1 )
Yt=RL-(D**2)*RL1
Y5=RL*L1*C1*C*RL
Y6=RL*L1*CH-C*RL*(C1*RL1*RL-(D**2)*L1 )
Y7=C1*RL1*RL-(D**2)*L1+C*RL*(RL-(D**2)*RL1 )
Y8=L*C*RL*L1*C1
Y9=(L*C*RL*C1*RL1 )+( C*RL*L1*C1*( RO+RC+( L/(C*RL) ) ) )
Y1 0=L*C*RL+C*RL*C1 *RL1 *( RO+RC+ ( L/ ( C*RL ) ) ) +L1 *C1 *RL+ ( D**2 ) *C*RL*L1
Y11=C*RL*(RO+RC-t-(L/(C*RL)))+C1*RL1*RL+(D**2)*(L1+C*RL*RL1 )
Y12=RL+(D**2)*RL1
RX=(R11*R12)/(R11+R12)
G=RX/R11
K1=G/(R1*4+RX)
K2=C2*(1.0+K1*R13)

K3=VO*RL*R»4*FM
KI»=RN*L*C2*R13
K5=VO*FM
K6=CP1*C2*R13
K7=D*RL*RU



o

K8=C*(RO+RC+(L/(C*RL)

C * THIS CALCULATION IS FOR THE CLOSED LOOP POLES WITH *
C * INPUT FILTER. *

C
A(1)=K7*K6*Y8
A(2)=K7*CP1*Y8+K7*K6*Y9+K5*M4*Y5
A(3)=K7*CP1*Y9+K7*K6*Y10+K3*K2*YH-K5*RN*L*Y5+K5*KU*Y6

)=K7*CP1*Y10+K7*K6*Y11+K3*K2*Y2+K3*K1*Y1+K5*RN*L*Y6+K5*M4*Y7
) = K7*CP1*Y11+K7*K6*Y12-i-K3*K1*Y2+K3*K2*Y3 + K5*RN*L*Y7+K5*KU*Ylt

A(6)=CP1*K7*Y12+K3*K1*Y3+K3*K2*YJ4+RN*L*K5*YU
A(7)=K3*K1*YU
NDEG=6
CALL ZPOLR(A,NDEG,Z,IER)

C
WRITE(6,101) RL1.L1.C1

101 FORMAT!/,10X,' RL1 = ',F15.10, ' L1=',F15.10,' C1=',F15.10)
WRITE(6,103)

103 FORMAT(/,20X,' THE CLOSED LOOP POLES WITH I.FILTER ARE-')
WRITE(6,102)(Z(IX),IX=1,6)

102 FORMAT!/,20X.2E15.8)
C

B(1 ) = K5*KU*Y5
B(2)=K5*RN*L*Y5+K5*KU*Y6+K3*K2*Y1
B(3)=K5*RN*L*Y6+K5*KU*Y7+K3*K2*Y2+K3*K1*Y1
B(tt)=K5*RN*L*Y7+K5*KU*Y4+K3*K1*Y2+K3*K2*Y3
B(5 ) = RN*L*K5*Y4+K3*K1*Y3 + K3*K2*Y4
B(6)=K3*K1*Y4
NDEG=5
CALL ZPOLR(B,NDEG,Z1,IER)
WRITE(6,10U)

10U FORMAT!/,20X,' THE OPEN LOOP ZEROES ARE ')
WRITE(6,102)(Z1( IX), IX=1,5)

C
CC1(1)=K7*K6*Y8
CC1(2 ) = K7*CP1*Y8+K7*K6*Y9
CC1(3)=K7*CP1*Y9+K7*K6*Y10
CC1(4)=K7*CP1*Y10+K7*K6*Y11
CC1(5)=K7*CP1*Y11+K7*K6*Y12
CC1(6)=CP1*K7*Y12
CC1(7)=0.0



CALL ZPOLR(CC1,6,Z2,IER)
WRITE(6,105)

105 FORMAT(/,20X,' THE OPEN LOOP POLES ARE ')
WR!TE(6,102HZ2( IX), )X=1,6)

C
C
C * THIS CALCULATION IS FOR THE CLOSED LOOP POLES WITHOUT INPUT *
C * FILTER. *

»**#***#-tnnt#w*#»#«

CC2(1)=K7*K6*L*C
CC2(2) = K7*K6*K8+K7*CP1*L*C+K5*Kl4*C*RL
CC2( 3 ) = K7*CP1*K8+K7*K6+K3*K2*C*RC+K5*KU-«-K5*RN*L*C*RL
CC2C4) = K7*CPH-K3*K2+K3*K1*C*RC+RN*L*K5
CC2(5)=K3*K1
CALL ZPOLR(CC2,U,Z3, IER)
WRITE(6 ,785)

785 FORMAT(/,20X,' THE CLOSED LOOP POLES W/0 (.FILTER ARE-1)
WRITE(6,102)(Z3(IX),IX=1,4)

2000 CONTINUE
2001 CONTINUE

STOP
END



n

c
C STABILITY ANALYSIS OF A BUCK CONVERTER WITH INPUT FILTER *
C
C
C THIS PROGRAM COMPUTES THE EIGENVALUES OF A BUCK REGULATOR
C SYSTEM WITH INPUT FILTER.
C

DIMENSION F1(6,6),F2(6,6),G1(6,U),G2(6,'4),U(U),PHIF(6,6),
1PHIN(6,6),DF(6,'4),DN(6,lO,X(6),ZT(6),AA(6,6),BB(6),TEMP1(6,i4),
2PHIFT(6,6),DFT(6,tO,XA(6),ZN1(6),XB(6)
DIMENSI ON PS I(6,6),XN1(6),FUN1(6),FUN2(6),CON(4),RVAL(6,9)
DIMENSION TEMP2(6,6),DX(6)
DIMENSION WKAREA(70),WK(70)
REAL L1,L,K1,K2
COMPLEX W(6),Z(6,6),ZN
DATA RL1,L1,C1,L,RO,RN,RC,C/0.2000,50.0E-6,220.E-6,230.E-6,0.2EO
1,0.65EO,0.067EO,300.E-6/
DATA RL,R11,R12,R13,R1»*,C2,RU,CP1/10.0EO,33.3E3,16.7E3,2.E5,
1/47.E3,0.01E-8,U0.7E3,5600.E-12/
DATA ER,ET,VI,EO/6.7EO,7.EO,25.EO,20.EO/
DATA VITON,EQ,ED/0.88E-3,0.2EO,0.7EO/
DATA NIT,EPS/90,10.E-6/
DATA EPS1,ERROR/2.E-6.0.5E-6/
DATA CON/0.1E-1,0.05E-1,0.025E-1,0.0125E-1/
DATA TOLL/0.01/

C
K1=(R12/(R1U*(R11+R12)))+(1./R13)-(RN/RU)
K1 = K1-(RN*RO*(RL+RC) )/(R'4*RL*RC)
K2=(RN/RU)-( 1 ./R13)-(R12/(R1t»*(R11+R12) ) )
TON=VITON/VI
TOFFB=TON*((VI-EO)/EO)
DO 1 1=1,6
DO 2 J=1,U
G1(I,J)=0.
G2(I,J)=0.
'DF(I,J)=0.
DN(I,J)=0.

2 CONTINUE
DO 3 K=1,6
F1(I,K)=0.
F2(I,K)=0.
AA(I,K)=0.
PHIF(I,K)=0.



PHIN(I,K)=0.
3 CONTINUE
1 CONTINUE .

DO 5 1=1,6
ZT(I)=0.
BB(I)=0.
FUN1(I)=0.
FUN2( I )=0.
XA(I)=0.
XB( I )=0.
XN1(I)=0.
ZN1(I)=0.

5 CONTINUE
F1(1,1)=(-!.*RL1)/L1
F1(1,2)=-1.00/L1
F1(2,1)=1.00/C1
F1(2,3)=-1.00/C1
F1(3,2)=1.00/L
F1(3,3)=(-1.00*RO)/L+(-1.00*RC*RL)/(L*(RL+RC))
F1(3,U ) = -1 .00*RL/(L*(RL+RC))
F1(U,3)=RL/(C*(RC+RL))
F1(i4,U) = -1.00/(C*(RC+RL))
F1(5,3)=(RL*RC)/(C2*R13*(RC+RL))

,U)=RL/(C2*R13*(RC+RL))
,5)=-V.OO/(C2*R13)

F1{5,
FK5,
F1(6,
FK6,
Fl(6,
F1(6,

=(-1.00*RN)/(CP1*RU)
=(-1.00*RL*RC*K1)/(CP1*(RC+RL)
=(RL*K2)/(CP1*(RL+RC))

5 =T.OO/(CP1*R13)
1 =1.00/L1

G1(3,3 =-1.00/L
01(6,2 =1.00/(CP1*R1U)
G1(6,3)=RN/(CP1*RU)
U(1)=VI
U(2)=ER
U(3)=EQ
U(U)=ED
DO
DO i*
F2( I
F2(2,

1 = 1
J = 1
J) =
3)=0.00

,J)

F2(3,2)=0.00
F2(6,2)=0.00



o

G2(6,2)=G1(6,2)
G2(3,4)=-1.00/L
G2(6,U)=RN/(CP1*R4)

T=TON
CALL STRAN(T,PHIN,DN,F1,G1,6,l4,6,U,1,0,ERROR,DIFMAX, ITER, I FLAG)
T=TOFFB
CALL STRAN(T,PHIF,DF,F2,G2,6,i»,6,«4,1,0,ERROR,DIFMAX, ITER, I FLAG)

C CALCULATION OF THE APPROXIMATE STEADY STATE *

C
DO 5000 1=1,6
DO 5000 J=1,6
AA(I,J)=0.
DO 5001 K=1,6

5001 AA{ I,J)=AA( I,J)+PHIN( I , K)*PH I F( K, J )
AA( I ,J )=-1 .*AA( I,J )

5000 CONTINUE
DO 5002 1=1,6

5002 AA( I, I )=1.+AA( I, I )
DO 5003 1=1,6
DO 5003 J=1,1 •
TEMP1( I,J)=0.
DO 5004 K=1,6

5004 TEMP1( I,J)=TEMP1( I,J)+PHIN( I,K)*DF(K,J)
5003 TEMPI ( I,J)=TEMP1( I,J)+DN( I,J)

DO 5005 1=1,6
BB( I )=0.
DO 5006 J=1,4

5006 BB( I )=BB( I )+TEMP1( I ,J)*U(J )
5005 CONTINUE

MM=1
NN=5
IAA=6
I DGT=0
CALL LEQT2F(AA,MM,NN, IAA,BB, IDGT.WKAREA, IER)
DO 5007 1=1,5

5007 X( I )=BB( I )
X(6)=ET-PHIF(6,1 )*X(1 )-PHIF(6,2)*X(2)-PHIF(6,3)*X(3)-PHIF(6,t)*X(
1t)-PHIF(6,5)*X(5)-DF(6,1)*U(1)-DF(6,2)*U(2)-DF(6,3)*U(3)-DF(6,U)*



2U(/4)
WRITE(6,5008)

5008 FORMAT(1H1.37X,' APPROXIMATE
WRITE(6,5009)(X( I), 1 = 1,6)

5009 FORMAT(1H ,6F15.10)
WRITE(6,5010) TOFFB

5010 FORMAT(1HO,37X,' APPROXIMATE
C
C
C
C
C

STEADY STATE VALUES,X= ')

VALUE OF OFF TIME= ',F15.10)

56

29

31

#»********»****»***************#***»*************
CALCULATION OF YhE EXACT STEADY STATE VALUES *

900

27

28
26

IT1=0
DO 26 1=1,5
ZT( I )=0.00
DO 27 K=1,6
ZT( I )=ZT( I )+PHIF( I,K)*X(K)
DO 28 J=1,U
ZT( I )=ZT( I )+DF( I,J)*U(J)
CONTINUE

SMAT=X(6)-PHIN(6.1)*ZT(1)-PHIN(6,2)*ZT(2)-PHIN(6,3)*ZT(3)-PHIN(6,4
1)*ZT(U)-PHIN(6,5)*ZT(5)-PHIN(6,6)*ET-DN(6,1)*U(1)-DN(6,2)*U(2 )-
2DN(6,3)*U(3)-DN(6,U)*U(4)
IF(ABS(SMAT).LE.EPS1) GO TO 70
IF(IT1.GT.60) GO TO 70
DTOFF=0.01*TOFFB
T=TOFFB+DTOFF
CALL STRAN(T,PHIFT,DFT,
DO 29 1=1,6
DO 29 J=1,6
AA( I,J)=0.00
DO 56 K=1,6
AA(I,J)=AA(I,J)+PHIN(I,
AA( I ,J ) = -1.00*AA( I,J)
CONTINUE

,6
.00+AA(I,I)
.6
,4

F2,G2,6,I*,6,'4,1,0,ERROR,DIFMAX, ITER, IFLAG)

K)*PHIFT(K,J)

DO 31 1=1
AA( I, I )=1
DO 32 1=1
DO 32 J=1
TEMP1( I,J)=0.00
DO 3*4 K=1,6
TEMPI { I,J)=TEMP1( I,J)+PHIN( I K)*DFT( K, J )



o

32 TEMP1{I,J)=TEMP1(I,J)+DN(I,J)
00 35 1=1,6
BB( I )=0.00
DO 36 J=1,4

36 BB( I ) = BB( I)+TEMP1( I,J)*U(J)
35 CONTINUE

MM=1
NN=5
IAA=6
IDGT=0
CALL LEQT2F(AA,MM,NN,IAA.BB,IDGT.WKAREA,IER)
DO 37 1 = 1,5'

37 XN1(I)=BB(I)
XN1(6) = ET-PHIFT(6,1 )*XN1(1)-PH I FT( 6, 2)*XN1(2)-PHIFT(6,3)*XN1(3 )-
1PHIFT(6,4)*XN1(4)-PHIFT(6,5)*XN1(5)-DFT(6,1)*U( 1 )-DFT(6,2)*U(2 )-
2DFT(6,3)*U(3)-DFT(6,4)*U(4)
DO 38 1=1,5
ZN1(I)=0.00
DO 39 K=1,6

39 ZN1( I )=ZN1(I )+PHIFT(I,K)*XN1(K)
DO HO J=1,4

40 ZN1( I )=ZN1( I )+DFT( I,J)*U(J)
38 CONTINUE

SMATN=XN1(6)-PHIN(6,1)*ZN1(1)-PHIN(6,2)*ZN1(2)-PHIN(6,3)*ZN1(3)-
1PHIN(6,U)*ZN1C4)-PHIN(6,5)*ZN1(5)-PHIN(6,6)*ET-DN(6,1)*U(1)-DN(6,2
2)*U(2)-DN(6,3)*U(3)-DN(6,4)*U(U)
DSMAT=SMATN-SMAT
TOFFB=TOFFB+((-1.00*SMAT)/(DSMAT/DTOFF))
T=TOFFB
CALL STRAN(T,PHIF,DF,F2,G2,6,U,6,t»,1,0,ERROR,D|FMAX, ITER, IFLAG)
DO U2 1=1,6
DO 1)2 J=1,6
AA(I,J)=0.00
DO 43 K=1,6

43 AA(I,J)=AA(I,J) + PHIN(I,K)*PHIF( K, J)
AA(I,J)=-1.00*AA(I,J)

42 CONTINUE
DO 55 1=1,6

55 AA( I,I)=AA(I,I)+1.
DO 44 1=1,6
DO 44 J=1,4
TEMP1(I,J)=0.00
DO 46 K=1,6



46 TEMPI(I,J)=TEMP1(I,J)+PHIN(I,K)*DF(K,J)
44 TEMP1(I,J)=TEMP1(I,J)+DN(I,J)

DO 47 1=1,6
BB(I)=0.00
DO U8 J=1,4

48 BB(I)=BB(I)+TEMP1(I,J)*U(J)
47 CONTINUE

MM=1
NN=5
IAA=6
IDGT=0
CALL LEQT2F(AA,MM,NN, IAA,BB, IDGT.WKAREA, IER)
DO 49 1=1,5

49 X(I)=BB(I)
X(6)=ET-PHIF(6,1)*X(1)-PHIF(6,2)*X(2)-PHIF(6,3)*X(3)-PHIF( 6,4)*
1X(4)-PHIF(6,5)*X(5)-DF(6,1)*U(1)-DF(6,2)*U(2)-DF(6,3)*U(3)-
2DF(6,4)*U(4)
GO TO 900

70 CONTINUE
WRITE(6,50)

50 FORMATf1HO,37X,' EXACT STEADY STATE VALUES,X= ')
WRITE(6,199)(X(I),1=1,6)

199 FORMAT(1H .6F15.10)
WRITE(6,198) TOFFB

198 FORMAT!1H0.37X,' EXACT OFF TIME= '.F15.10)
DVAL=TON/(TON+TOFFB)
WRITE(6,624) DVAL

624 FORMAT(1HO,37X,' VALUE OF D=',F15.10)
WRITE(6,51) IT1

51 FORMAT)1 HO,37X,' NO. OF ITERATIONS REQD.= ',14)

#****#*****#*#****#**#*#*»****#*##»***********#*********
* CALCULATION OF THE MATRIX PS I AND ITS EIGENVALUES *
####*#*##*##*####**######*###*###*##*#########*#####**##

DO 2000 1=1,6
DO 2010 IRICH=1,4
DO 61 IZ=1,6
XA(IZ)=X(12)

61 XB(IZ)=X(IZ)
DX(I)=CON(IRICH)*ABS(X(I))
IF(ABS(X(I)).LE.TOLL) DX(I)=0.01
XA(I)=X(I)+DX(I)



n

XB( I)=X( I )-DX( I)
TFFC1=TOFFB
IT=0
T8=TOFFB
CALL STRAN(T8,PHIF,DF,F2,G2,6,1,6,1,1,0,ERROR,DIFMAX,ITER,I FLAG)

1101 ZETA=PHIF(6,3)*XA(3)+PHIF(6,1)*
1XA(1)+PHIF(6,5)*XA(5)+1.0*XA(6)+DF(6,1)*U(1)+DF(6,2)*U(2)+
2DF(6,3)*U(3)+DF(6,1)*U(1)-ET
IF(ABS(ZETA).LE.EPS) GO TO 1102
IF(IT.GE.NIT) GO TO 1003
DTOFF=CON(IRICH)*TFFC1
T=TFFC1+DTOFF
CALL STRAN(T,PHIFT,DFT,F2,G2,6,t»,6,t,1,0,ERROR,DIFMAX, ITER, I FLAG)
ZETAN=PHIFT(6,3)*XA(3) + PHIFT(6,'4
1)*XA(t») + PHIFT(6,5)*XA(5)-t-1.0*XA(6)+DFT(6,1)*U(1)+DFT(6,2)*
2U(2)+DFT(6,3)*U(3)+DFT(6,'4)*U(U)-ET
DZETA=ZETAN-ZETA
SLOPE=DZETA/DTOFF
TFFC1=TFFC1-(ZETA/SLOPE)
T=TFFC1
CALL STRAN(T,PHIF,DF,F2,G2,6,U,6,I*,1,0,ERROR,DIFMAX, ITER, I FLAG)
IT=IT+1
GO TO 1101

1102 DO 13 J=1,6
TEMP=0.00
DO 11 K=1,6
DO 81 MENT=1,5

81 PHIF(MENT,6)=0.0
PHIF(6,6)=1.0

1U TEMP=TEMP+PHIF(J,K)*XA(K)
DO 15 K=1,1

15 TEMP=TEMP+DF(J,K)*U(K)
FUN1(J)=TEMP

13 CONTINUE
TFFC2=TOFFB
IT=0
T=TOFFB
CALL STRAN(T,PHIF,DF,F2.G2,6,1,6,1,1,0,ERROR,DIFMAX, ITER, I FLAG)

1103 ZETA=PHIF(6,3)*XB(3) + PHIF(6,l4)*
1XB(4)+PHIF(6,5)*XB(5)-H.O*XB(6)+DF(6,1)*U(1)+DF(6,2)*U(
2DF(6,3)*U(3)+DF(6,1)*U(l4)-ET
IF(ABS(ZETA).LE.EPS) GO TO 1101
IF(IT.GE.NIT) GO TO 1003



17 CONTINUE
WRITE(6,92)

92 FORMAT(1HO,37X,' MATRIX PSI— ')
DO 30 1=1,6

30 WRITE(6,93)(PSI(I,J),J=1,6)
93 FORMAT(6F15.10)

GO TO 100U
1003 WRITE(6,100) I
100 FORMAT)//,' CONVERGENCE NOT OBTAINED FOR X(l),l= ',14)
1004 CONTINUE

CALL EIGRF(PSI,6,6,2,W,Z,6,WK,IER)
WRITE(6,9U)

91 FORMAT(1HO,37X,' THE EIGENVALUES ARE-- ')
WRITE(6,103)(W(I),1=1,6)

103 FORMAT(1H ,6F15.10)
WRITE(6,104) WK{1),IER

104 FORMAT)1 HO,37X,' CONVERGENCE TOLERANCE=',F15.10,' IER=',H»)
905 CONTINUE

STOP
END

C
C

SUBROUTINE STRAN(TAU,PHI,THETA,A,B,NA,NB,MA,MB,MODE,NTERMS,
1 TOL,DIFMAX,ITER,I FLAG)

REAL PHI{NA,NA),THETA(NA,NB),A(NA,NA),B(NA,NB),
1 WORK1(10,10),WORK2(10,10),DUMMY(1,1),FAC1,CON1,FAC2,CON2
C1 = 1
TS=TAU
DO 4 1 = 1, MA
DO 2 J=1,MA
WORK1(I,J)=0
WORK2( I,J)=0
PHI( I,J)=0

2 CONTINUE
WORK1(I,I)=1
WORK2JI,I)=TAU
PHI(I,I)=1

b CONTINUE
DO 6 I=1,MA
DO 6 J=1,MB

6 THETA(I,J)=0
DIFMAX=1.E8
NDO=50



o

IF(NTERMS.GT.O) NDO=NTERMS
FAC1=1
IFLAG=0
DO 1000 1=1,NDO
CALL MXMUL( DUMMY, WORK1, A,TS, 1,1,10,10,NA,NA,MA,MA,MA,MA,1)
FAC1=FAC1*I
CON1=1./FAC1
IF(NTERMS.EQ.O.AND.I.GE.U) CALL SERROR(PHI,WORK1,CON1,NA,NA,

1 10,10,MA,MA,DlFMAX)
CALL MXADD(DUMMY,PHI,WORK1,C1, CON1, 1, 1,NA,NA, 10, 10,MA,MA, 1)
IF(MODE.EQ.2) GO TO 500
FAC2=FAC1*(1+1)
CON2=TAU/FAC2
CALL MXADD( DUMMY,WORK2,WORM,C1.CON2, 1, 1, 10, 10, 10, 10,MA,MA, 1 )

500 CONTINUE
ITER=I
IF(NTERMS.GT.O.OR.I.LT.U) GO TO 1000
IF(DIFMAX.LE.TOL) GO TO 1100

1000 CONTINUE
1100 CONTINUE

IF(MODE.EQ.I) CALL MXMUL(THETA,WORK2,B,C1,NA,NB,10,10,NA,NB,
1 MA,MA,MA,MB,2)
IF( ITER.EQ.NDO.AND.NTERMS.EQ.O) IFLAG=1
RETURN
END

C
C

SUBROUTINE SERROR{AMX,BMX,CCC, IA.JA, IB,JB, I DO,JDO,DlFMAX)
DIMENSION AMX(IA,JA),BMX(IB.JB)

DIFMAX=1.E-30
DO 100 I = 1, I DO-
DO 50 J=1,JDO
IF(AMX(I,J).EQ.O.O ) GO TO 50
CHANGE= ABS(BMX( I , J )*CCC/AMX( I,J ) )
IF(CHANGE.GT.DIFMAX) DlFMAX=CHANGE

50 CONTINUE
100 CONTINUE

RETURN
END

C
C

SUBROUTINE MXADD(RMX,AMX,BMX,ACC,BCC,IR.JR,IA,JA,IB.JB,IDO,JDO,
1 MODE)



DIMENSION AMX( IA,JA),BMX( IB,JB),RMX( IR,JR)
IF(IA.LT.IDO.OR.JA.LT.JDO) GO TO 999
IF(IB.LT.IDO.OR.JB.LT.JDO) GO TO 999
GO TO (10,100),MODE

10 CONTINUE
DO 50 I = 1,I DO
DO 50 J=1,JDO

50 AMX(I,J)=AMX(I,J)*ACC+BMX(I,J)*BCC
GO TO 300

100 CONTINUE
I F( IR.LT. IDO.OR.JR.LT.JDO) GO TO 999
DO 200 1 = 1, I DO
DO 200 J=1,JDO

200 RMX(I,J)=AMX(I,J)*ACC+BMX(I,J)*BCC
300 RETURN
999 CONTINUE

RETURN
END

C
C

SUBROUTINE MXMUL(RMX,AMX,BMX.CCC,IR.JR,IA.JA,IB.JB,IDA,JDA,IDB,JDB
1,MODE)

DIMENSION AMX(IA,JA),BMX(IB,JB),RMX(IR,JR),TEMP(20)
IF(IDA*IDB*JDA*JDB.GT.IA*IB*JA*JB) GO TO 999
IF(JDB.GT.JDA) GO TO 999
GO TO (10,210),MODE

10 DO 100 1=1,IDA
DO 20 L=1,JDA

20 TEMP(L)=AMX( I,L)
DO 80 J=1,JDB
SUM=0
DO 40 K=1,JDA

40 SUM=SUM+TEMP(K)*BMX(K,J)
AMX(I,J)=SUM*CCC

80 CONTINUE
100 CONTINUE

GO TO 600
210 CONTINUE

IF(IR.LT.IDA.OR.JR.LT.JOB) GO TO 999
DO 400 1=1,IDA
DO 380 J=1,JDB
SUM=0
DO 340 K=1,JDA



340 SUM=SUM+AMX(I,K)*BMX(K,J)
RMX(I,J)=SUM*CCC

380 CONTINUE
UOO CONTINUE
600 RETURN
999 CONTINUE

RETURN
END



c
c
C * STABILITY ANALYSIS OF A BUCK CONVERTER *
C ###***#*#**#####***#*###**#*#*##*####****#**#####**
C
C THIS PROGRAM COMPUTES THE EIGENVALUES OF A BUCK
C REGULATOR SYSTEM WITH INPUT FILTER AND
C FEEDFORWARD.
C

DIMENSION F1(7,7),F2(7,7),G1(7,U),G2(7,4),U(4),PHIF(7,7),
1PHIN(7,7),DF(7,«t),DN(7,i(),X(7),ZT(7),AA(7,7),BB(7),TEMP1(7,U),
2PHIFT(7,7),DFT(7,4),XN1(7),ZN1{7)
DIMENSI ON PS I ( 7, 7), XA( 7), FUN1 ( 7), FUN2( 7), XB(7),CON(H),RVAL(7,9)
DIMENSION TEMP2(7,7),DX(7)
DIMENSION WKAREA(90),WK(90)
REAL L1,L,K1,K2,K3
COMPLEX W(7),Z(7,7),ZN
DATA RL1,L1,C1,L,RO,RN,RC,C/0.20EO,1.U25E-3,220.E-6,230.E-6,0.2EO,
10.65EO,0.067EO,300.E-6/
DATA RL,R11,R12,R13,R1U,C2,RH,CP1/10.0EO,33.3E3,16.7E3,2.E5,
T47.E3,0.01E-8,«40.7E3,5600.E-12/
DATA ER,ET,VI,EO/6.7EO,7.EO,25.EO,20.EO/
DATA VITON,EQ,ED/0.88E-3,0.7EO,0.2EO/
DATA NIT,EPS/150,5.E-6/
DATA EPS1/0.5E-6/
DATA ERROR/0.5E-6/
DATA CON/0.2E-1,0.1E-1,0.05E-1,0.025E-1/
DATA CF,RF1,RF2,TOLL/2.7E-5,5.1E3,220.OEO.0.11/

C
K1=(R12/(R1H*(R11+R12)))+(1./R13)-(RN/RU)
K1=K1-(RN*RO*(RL+RC))/(R4*RL*RC)
K2=(RN/RU)-(1./R13)-(R12/(Rm*(R11+R12)))
K3=RF2/(RF1+RF2)
TON=VITON/VI
TOFFB=TON*((VI-EO)/EO)
DO 1 1=1,7
DO 2 J=1,4
G1( I,J)=0.
G2(I,J)=0.
DF( I,J)=0.
DN( I,JJ=0.

2 CONTINUE
DO 3 K=1,7



o

F1(I,K)=0.
F2( I,K)=0.
AA(I,K)=0.
PHIF(I,K)=0.
PHIN( I,K)=0.

3 CONTINUE
1 CONTINUE

DO 5 1=1,7
2T(I)=0.
BB( I )=0.
FUN1( I )=0.
FUN2( I )=0.
XA( I )=0.
XB( I )=0.
XN1( I )=0.
ZN1( I )=0.

5 CONTINUE

F1(1,2)=-1.00/L1
F1(2,1 ) = 1.00/C1
F1(2,3)=-1./(C1*(RF1+RF2))

() = -1.00/C1

F1(3,3)=-1.*(C1+CF)/(C1*CF*(RF1+RF2))
F1(3,t») = -1./C1
F1(t4,2) = 1 .00/L
F1(t»,4) = (-1.00*RO)/L+(-1.00*RC*RL)/(L*(RL+RC))

-1.00*RL/(L*(RL+RC))
RL/(C*(RC+RL))
-1.00/(C*(RC+RL))
( RL*RC)/( C2*R1 3*( RC+RL) )
RL/(C2*R13*(RC+RL))
-1.00/(C2*R13)
-1.*K3/C1
(-1.00*RN)/(CP1*RU)
K3*(C1+CF)/(C1*CF*(RF1+RF2))
(K3/C1 )-((RL*RC*K1)/(CP1*(RL+RC)))
(RL*K2)/(CP1*(RL+RC))
1.00/(CP1*R13)
1.00/L1
-1.00/L
1.00/(CP1*R1U)
RN/(CP1*RU)

F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
F1
G1
G1
G1
G1

4,
5,
5,
6,
6,
6,
7,
7,
7,
7,
7,
7,
1,
14,

7,
7,

5)
1)
5)
1)
5)
6)
1)
2)
3)
4)
5)
6)
D
3 )
2)
3)



U(1)=VI
U(2)=ER
U(3)=EQ
U(U)=ED
DO 4 1=1,7
DO 4 J=1,7

b F2(I,J)=F1(I.J)
F2(2,«4)=0.
F2(3,4)=0.
F2(4,2)=0.
F2(7,2)=0.
F2(7,t») = (-1 .*RL*RC*K1 )/•( CP1*( RL+RC) )
G2(1,1)=G1(1,1)
G2(7,2)=G1(7,2)
G2(4,J») = -1.00/L
G2(7,l») = RN/(CP1*Rt»)

C
T=TON
CALL STRANfT.PHIN.DN.FI.GI^.t^.U.I.O.ERROR.DIFMAX, ITER, I FLAG)
T=TOFFB
CALL STRAN(T,PHIF,DF,F2,G2,7,U,7,t,1,0,ERROR,DIFMAX,ITER,I FLAG)

C
C #**#******»**#***#*»***##»#**###**#»»*##**#*»*#*»#*
C * CALCULATION OF THE APPROXIMATE STEADY STATE *

C
DO 5000 1=1,7
DO 5000 J=1,7
AA(I,J)=0.
DO 5001 K=1,7

5001 AA(I,J)=AA(I,J)+PHIN(I,K)*PHIF(K,J)
AA(I.J)=-1.*AA(I.J)

5000 CONTINUE
DO 5002 1=1,7

5002 AA(I,I)=1.+AA(I.I)
DO 5003 1=1,7
DO 5003 J=1,4
TEMP1(I,J)=0.
DO 500U K=1,7

5004 TEMP1(I,J)=TEMP1(I,J)+PHIN(I,K)*DF(K.J)
5003 TEMPI!I,J)=TEMP1(I,J)+DN(I.J)

DO 5005 1=1,7
BB(I)=0.



o

DO 5006 J=1,U
5006 BB(I )=BB(I)+TEMP1(I,J)*U(J)
5005 CONTINUE

MM=1
NN=6
I AA=7
IDGT=0
CALL LEQT2F(AA,MM,NN, IAA.BB, IDGT.WKAREA, IER)
DO 5007 1=1,6

5007 X(I)=BB(I)
X(7)=ET-PHIF(7,1)*X(1)-PHIF(7,2)*X(2)-PHIF(7,3)*X(3)-PHIF(7,U)*X(
U»)-PHIF(7,5)*X(5)-DF(7,1)*U(1)-DF(7,2)*U(2)-DF(7,3)*U(3)-DF(7,U)*
2U(4)-PHIF(7,6)*X(6)
WRITE(6,5008)

5008 FORMAT!1 HI,37X,' APPROXIMATE STEADY STATE VALUES,X= ')
WRITE(6,5009)(X( I ),1 = 1,7)

5009 FORMAT(1H ,7F15.10)
WRITE(6,5010)TOFFB

5010 FORMAT(1HO,37X,' APPROXIMATE VALUE OF OFF TIME='
C
c
C
c
c

F15.10)

* CALCULATION OF THE EXACT STEADY STATE VALUES *
***#*#*###*##»*****##*###*#*##***##*###*###***#####

m=o
900 DO 26 1=1,6

ZT(l)=0.00
DO 27 K=1,7

27 ZT( I )=ZT( I) + PHIF( I,K)*X(K)
DO 28 J=1,l\

28 ZT( I )=ZT( I)+DF( I,J)*U(J)
26 CONTINUE

IT1=IT1+1
SMAT=X(7)-PHIN(7,1)*ZT(1)-PHIN(7,2)*ZT(2)-PHIN(7,3)*ZT(3)-PHIN(7,1

1 )*ZT(i»)-PHIN(7,5)*ZT(5)-PHIN(7,7)*ET-DN(7,1)*U(1)-DN(7,2)*U(2)-
2DN(7,3)*U(3)-DN(7,U)*U(U)-PHIN(7,6)*ZT(6)
IF(ABS(SMAT).LE.EPS1) GO TO 70
IF(IT1.GT.60) GO TO 70
DTOFF=0.01*TOFFB
T=TOFFB+DTOFF
CALL STRAN(T,PHIFT,DFT,F2,G2,7,U,7,U,1,0,ERROR,DIFMAX, ITER, IFLAG)
DO 29 1=1,7
DO 29 J=1,7



AA( I,J)=0.00
DO 56 K=1,7

56 AA(I,J)=AA(I,J)+PHIN(I,K)*PHIFT(K,J)
AA(I,J)=-1.00*AA(I,J)

29 CONTINUE
DO 31 1=1,7

31 AA(I,I)=1.00+AA(1,1)
DO 32 1=1,7
DO 32 J = 1,l»
TEMPI(I,J)=0.00
DO 34 K=1,7

34 TEMPI(I,J)=TEMP1(I,J)+PHIN(I,K)*DFT(K,J)
32 TEMP1JI,J)=TEMP1(I,J)+DN(I,J)

DO 35 1=1,7
BB( I )=0.00
DO 36 J=1,«4

36 BB( I) = BB( I )+TEMP1( I,J)*U(J)
35 CONTINUE

MM=1
NN=6
IAA=7
IDGT=0
CALL LEQT2F(AA,MM,NN,IAA.BB,IDGT.WKAREA,IER)
DO 37 1=1,6

37 XN1(I)=BB(I)
XN1(7)=ET-PHIFT(7,1)*XN1(1)-PHIFT(7,2)*XN1(2J-PHIFT(7,3)*XN1(3)-
1PHIFT(7,U)*XN1(4)-PHIFT(7,5)*XN1(5)-DFT(7,1)*U(1)-DFT(7,2)*U(2)-
2DFT(7,3)*U(3)-DFT(7,U)*U(4)-PHIFT(7,6)*XN1(6)
DO 38 1=1,6
ZN1( I )=0.00
DO 39 K=1,7

39 ZN1(I)=ZN1(I)+PHIFT(I,K)*XN1(K)
DO 40 J=1,U

HO 2N1( I )=ZN1( I)+DFT( I,J)*U(J)
38 CONTINUE

SMATN=XN1(7)-PHIN(7,1)*ZN1(1)-PHIN(7,2)*ZN1(2)-PHIN(7,3)*ZN1(3)-
1PHIN(7,4)*ZN1(iO-PHIN(7,5)*ZN1(5)-PHIN(7,7)*ET-DN(7,1)*U(1)-DN(7,2
2)*U(2)-DN(7,3)*U(3)-^DN(7,U)*U(U)-PHIN(7,6)*ZN1(6)
DSMAT=SMATN-SMAT
TOFFB=TOFFB+((-1.00*SMAT)/(DSMAT/DTOFF))

^

T=TOFFB
CALL STRAN(T,PHIF,DF,F2,G2,7,4,7,t»,1,0,ERROR,DIFMAX, ITER, I FLAG)
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DO 42 1=1,7
DO 42 J=1,7
AA(I,J)=0.00
DO 43 K=1,7

43 AA(I,J)=AA(I,J)+PHIN(I,K)*PHIF(K,J)
AA(I,J)=-1.00*AA(I,J)

42 CONTINUE
DO 55 1=1,7

55 AA(I,I)=AA(I,I)+1.
DO 44 1=1,7
DO 44 J=1,4
TEMP1(I,J)=0.00
DO 46 K=1,7

46 TEMP1(I,J)=TEMP1(I,J)+PHIN(I,K)*DF(K,J)
44 TEMP1(I,J)=TEMP1(I,J)+DN(I,J)

DO 47 1=1,7
BB(I)=0.00
DO 48 J=1,4

48 BB(I)=BB(I)+TEMP1(I,J)*U(J)
47 CONTINUE

MM=1
NN=6
IAA=7
IDGT=0
CALL LEQT2F(AA,MM,NN,IAA.BB,IDGT.WKAREA,IER)
DO 49 1=1,6

49 X(I)=BB(I)
X(7)=ET-PHIF(7,1)*X(1)-PHIF(7,2)*X(2)-PHIF(7,3)*X(3)-PHIF(7,4)*
1X(4)-PHIF(7,5)*X(5)-DF(7,1)*U(1)-DF(7,2)*U(2)-DF(7,3)*U(3)-
2DF(7,4)*U(4)-PHIF(7,6)*X(6)
GO TO 900

70 CONTINUE
WRITE(6,50)

50 FORMAT(1HO,37X,' EXACT STEADY STATE VALUES,X=')
,WRITE(6,199)(X( I ),1 = 1,7)

199 FORMAT(1H .7F15.10)
WRITE(6,198) TOFFB

198 FORMAT(1HO,37X,' EXACT OFF TIME= '.F15.10)
WRITE(6,51) IT1

51 FORMAT!1 HO,37X,' NO. OF ITERATIONS REQD.= ',14)
C

C * CALCULATION OF THE MATRIX PS I AND ITS EIGENVALUES *
C
C



DO 2000 1=1,7
DO 2010 IRICH=1,U
DO 61 IZ=1,7
XA(IZ)=X(IZ)

61 XB(IZ)=X(IZ)
DX(I)=CON(IRICH)*ABS(X(I))
IF(ABS(X(I )).LE.TOLL) DX( I)=CON( IRICH)
XA( ! )=X( I )+DX( I )
XB(I)=X(I)-DX(I)
TFFC1=TOFFB
IT=0
T=TOFFB
CALL STRAN(T,PHIF,DF,F2,G2,7,U,7,l*,1,0,ERROR,DIFMAX, ITER, IFLSG)

1101 ZETA=0.0*XA(1)+0.0*XA(2)+PHIF(7,3)*XA(3)+PHIF(7,'O*
1XA(U)+PHIF(7,5)*XA(5)+1.0*XA(7)+0.0*U(1 )+DF(7,2 )*U(2 ) +
2DF(7,4)*U(l4)-ET+PHIF(7,6)*XA(6)
IF(ABS(ZETA).LE.EPS) GO TO 1102
IF(IT.GE.NIT) GO TO 1003
DTOFF=CON(IRICH)*TFFC1
T=TFFC1+DTOFF
CALL STRAN(T, PH I FT, DFT, F2, G2, 7, U, 7, 4, 1, 0, ERROR, D I FMAX, ITER, I FLAG)
ZETAN=0.0*XA(1)+0.0*XA(2)+PHIFT(7,3)*XA(3)+PHIFT(7,k
1)*XA(tt)+PHIFT(7,5)*XA(5)+1.0*XA(7)+0.0*U(1)+DFT(7,2)*
2U(2)+DFT(7,4)*U(U)-ET+PHIFT(7,6)*XA(6)
DZETA=ZETAN-ZETA
SLOPE=DZETA/DTOFF
TFFC1=TFFC1-(ZETA/SLOPE)
T=TFFC1
CALL STRAN(T,PHIF,DF,F2,G2,7,U,7,U,1,0,ERROR,DIFMAX, ITER, I FLAG)
IT=IT+1
GO TO 1101

1102 DO 13 J=1,7
TEMP=0.00 .
DO 14 K=1,7
DO-81 MENT=1,6

81 PHIF(MENT,7)=0.0
PHIF(7,7)=1.0
PHIF(7,1 )=0.0
PHIF(7,2)=0.0

1U T£MP=TEMP+PHIF(J,K)*XA(K)
DO 15 K=1,U
DF(7,1)=0.0

15 TEMP=TEMP+DF(J,K)*U(K)
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FUN1(J)=TEMP
13 CONTINUE

TFFC2=TOFFB
IT=0
T=TOFFB
CALL STRAN(T,PHIF,DF,F2,G2,7,l*,7,U,1,0,ERROR,DIFMAX, ITER, IFLAG)

1103 ZETA=0.0*XB(1)+0.0*XB(2)+PHIF(7,3)*XB(3)+PHIF(7,U)*
1XB(U)+PHIF(7,5)*XB(5)-H.O*XB(7)+0.0*U(1)+DF(7,2)*U(2)+
2DF(7,U)*U(/4)-ET+PHIF(7,6)*XB(6)
IF(ABS(ZETA).LE.EPS) GO TO 1104
IF(IT.GE.NIT) GO TO 1003
DTOFF=CON(IRICH)*TFFC2
T=TFFC2+DTOFF
CALL STRAN(T,PHIFT,DFT,F2,G2,7,4,7,U,1,0,ERROR,DIFMAX,ITER,I FLAG)
ZETAN=0.0*XB(1)+0.0*XB(2 ) + PHIFT(7,3}*XB(3)+PHIFT(7,U

1 )*XB(t») + PHIFT(7,5)*XB(5)-H.O*XB(7)+0.0*U(1)+DFT(7,2)*
2U(2)+DFT(7,U)*U(l4)-ET+PHIFT(7,6)*XB(6)
D2ETA=ZETAN-ZETA
SLOPE=DZETA/DTOFF
TFFC2=TFFC2-(ZETA/SLOPE)
T=TFFC2

- CALL STRAN(T,PHIF,DF,F2,G2,7,t,7,U,1,0,ERROR,DIFMAX, ITER, IFLAG)
IT=IT+1
GO TO 1103

1104 DO 62 J=1,7
TEMP=0.00
DO 63 K=1,7
DO 82 MENT=1,6

82 PHIF(MENT,7)=0.0
PHIF(7,7)=1.0
PHIF(7,1)=0.0
PHIF(7,2)=0.0

63 TEMP=TEMP-t-PHIF(J,K)*XB(K)
DO 6U K=1,U
DF(7,.1)=0.0

6li TEMP=TEMP+DF(J,K)*U(K)
FUN2(J)=TEMP

62 CONTINUE
DO 2011 J=1,7

2011 RVAL(J,IRICH)=(FUN1(J)-FUN2(J))/(2.0*DX(I))
2010 CONTINUE

DO 65 J=1,7
RVAL(J,5)=(RVAL(J,2)-0.25*RVAL(J,1))/0.75



RVAL(J,6)=(RVAL(J,3)-0.25*RVAL(J,2))/0.75
65 RVAL(J,7) = (RVAL(J,»*)-0.25*RVAL(J,3))/0.75

DO 66 J=1,7
RVAL(J,8)=(RVAL(J,6)-0.0625*RVAL(J,5))/0.9375

66 RVAL(J,9)=(RVAL(J,7)-0.0625*RVAL(J,6))/0.9375
DO 67 J=1,7

67 TEMP2(J,I) = (RVAL(J,9)-0.015625*RVAL(J,8))/0.98l4375
2000 CONTINUE

DO 17 1=1,7
DO 17 J=1,7
TEMP=0.00
DO 19 K=1,7

19 TEMP=TEMP+PHIN(I,K)*TEMP2{K,J)
PSI(I,J)=TEMP

17 CONTINUE
WRITE(6,92)

92 FORMAT(1HO,37X,' MATRIX PSI= ')
DO 30 1=1,7

30 WRITE(6,93)(PSI(I,J),J=1,7)
93 FORMAT(7F15.10)

GO TO 100'*
1003 WRITE(6,100) I
100 FORMAT(//,' CONVERGENCE NOT OBTAINED FOR X(l),l= ',14)
1004 CONTINUE

CALL EIGRF(PSI,7,7,2,W,Z,7,WK,IER)
WRITE(6,94)

9U FORMAT(1HO,37X,' THE EIGENVALUES ARE--')
WRITE(6,103)(W( I ),1 = 1,7)

103 FORMAT(1H .7F15.10)
WRITE(6,10U) WK(1),IER

10U FORMAT!1 HO,37X,' CONVERGENCE TOLERANCE=',F15.10,' IER= ', IU)
905 CONTINUE

STOP
END

C
C

SUBROUTINE STRAN(TAU,PHI,THETA,A,B,NA,NB,MA,MB,MODE,NTERMS,
1 TOL.DIFMAX, ITER, I FLAG)

REAL PHI(NA.NA),THETA(NA,NB),A(NA,NA),B(NA,NB),
1 WORK1(10,10),WORK2(10,10),DUMMY(1,1),FAC1,CON1,FAC2,CON2
C1 = 1
TS=TAU
DO U I=1,MA
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DO 2 J=1,MA
WORK1(I,J)=0
WORK2JI ,J)=0
PHI(I,J)=0

2 CONTINUE
WORK1(I,I)=1
WORK2(I,I)=TAU
PHI(I,I)=1

4 CONTINUE
DO 6 1=1,MA
DO 6 J=1,MB

6 THETA(I,J)=0
DlFMAX=1. E8
NDO=50
IF(NTERMS.GT.O) NDO=NTERMS
FAC1=1
IFLAG=0
DO 1000 1=1,NDO
CALL MXMUL(DUMMY,WORK1,A,TS,1,1,10,10,NA,NA,MA,MA,MA,MA,1)
FAC1=FAC1*I
CON1=1./FAC1
IF(NTERMS.EQ.O.AND.I.GE.U) CALL SERROR(PHI,WORK!,CON1,NA,NA,

.1 10,10,MA,MA,DIFMAX)
CALL MXADD(DUMMY,PHI,WORK1,C1,CON1,1,1,NA,NA,10,10,MA,MA,1)
IF(MODE.EQ.2) GO TO 500
FAC2=FAC1*(1+1)
CON2=TAU/FAC2
CALL MXADD(DUMMY,WORK2,WORK1,C1,CON2,1,1,10,10,10,10,MA, MA, 1)

500 CONTINUE
ITER=I
IF(NTERMS.GT.O.OR.I.LT.4) GO TO 1000
IF(DIFMAX.LE.TOL) GO TO 1100

1000 CONTINUE
1100 CONTINUE

IFfMODE.EQ.1) CALL MXMUL(THETA,WORK2,B,C1,NA,NB,10,10,NA,NB,
1 MA,MA,MA,MB,2)
IF(ITER.EQ.NDO.AND.NTERMS.EQ.O) IFLAG=1
RETURN
END

C
C

SUBROUTINE SERROR(AMX,BMX,CCC, IA,JA, IB,JB, I DO,JDO,DlFMAX)
DIMENSION AMX(IA,JA),BMX(IB.JB)
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DIFMAX=1.E-30
DO 100 l=l,IDO
DO 50 J=1,JDO
IF(AMX(I,J).EQ.O.O ) GO TO 50
CHANGE= ABS(BMX(I,J )*CCC/AMX(I,J))
IF(CHANGE.GT.DIFMAX) DIFMAX=CHANGE

50 CONTINUE
100 CONTINUE

RETURN
END

C
C

SUBROUTINE MXADD(RMX,AMX,BMX,ACC,BCC,IR,JR,IA,JA,IB,JB,IDO,JDO,
1 MODE)

DIMENSION AMX(IA,JA),BMX(IB,JB),RMX(IR.JR)
IF(IA.LT.IDO.OR.JA.LT.JDO) GO TO 999
IF(IB.LT.IDO.OR.JB.LT.JDO) GO TO 999
GO TO (10,100),MODE

10 CONTINUE
DO 50 1=1,IDO
DO 50 J=1,JDO

50 AMX(I,J)=AMX(I,J)*ACC+BMX(I,J)*BCC
GO TO 300

100 CONTINUE
IF(IR.LT.IDO.OR.JR.LT.JDO) GO TO 999
DO 200 1=1,IDO
DO 200 J=1,JDO

200 RMX( I,J)=AMX( I,J)*ACC+BMX( I,J )*BCC
300 RETURN
999 CONTINUE

RETURN
END

SUBROUTINE MXMUL(RMX,AMX,BMX,CCC,IR,JR,IA,JA,IB,JB,IDA,JDA,IDB.JDB
1,MODE)

DIMENSION AMX( I A,JA),BMX( IB,JB),RMX( IR,JR),TEMP(20)
IF(IDA*IDB*JDA*JDB.GT.IA*IB*JA*JB) GO TO 999
IF(JDB.GT.JDA) GO TO 999
GO TO (10,210),MODE

10 DO 100 1=1,IDA
DO 20 L=1,JDA

20 TEMP(L)=AMX(I,L)
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DO 80 J=1,JDB
SUM=0
DO 40 K=1,JDA

40 SUM=SUM+TEMP(K)*BMX(K,J)
AMX(I,J)=SUM»CCC

80 CONTINUE
100 CONTINUE

GO TO 600
210 CONTINUE

IF( IR.LT. IDA.ORj.JR.LT.JDB) GO TO 999
DO 1*00 1 = 1, IDA
D0'380 J=1,JDB
SUM=0
DO 340 K=1,JDA

340 SUM=SUM+AMX(I,K)*BMX(K,J)
RMX(I,J)=SUM*CCC

380 CONTINUE
400 CONTINUE
600 RETURN
999 CONTINUE

RETURN
END



DTOFF=CON(IRICH)*TFFC2
T=TFFC2+DTOFF
CALL STRAN(T,PHIFT,DFT,F2,G2,6,4,6,4,1,0,ERROR,DIFMAX,ITER,IFLAG)
ZETAN=PHIFT(6,3)*XB(3) + PHIFT(6,H
1)*XB(»4)+PHIFT(6,5)*XB(5)+1.0*XB(6)+DFT(6,1)*U(1)+DFT(6,2)*
2U(2)+DFT(6,3)*U(3)+DFT(6,»*)*U(4)-ET
DZETA=ZETAN-ZETA
SLOPE=DZETA/DTOFF
TFFC2=TFFC2-(ZETA/SLOPE)
T=TFFC2
CALL STRAN( T, PH I F, DF, F2, G2,6, H, 6, U, 1, 0, ERROR, D I FMAX, I TER, I FLAG)
IT=IT+1
GO TO 1103

110U DO 62 J=1,6
TEMP=0.00
DO 63 K=1,6
DO 82 MENT=1,5

82 PHIF(MENT,6)=0.0
PHIF(6,6)=1.0

63 TEMP=TEMP+PHIF(J,K)*XB(K)
DO 6H K=1,4

64 TEMP=TEMP+DF(J,K)*U(K)
FUN2(J)=T£MP

62 CONTINUE
DO 2011 J=1,6

2011 RVAL(J,IRICH) = (FUN1(J)-FUN2(J))/(2.0*DX( I))
2010 CONTINUE

DO 65 J=1,6
RVAL(J,5)=(RVAL(J,2)-0.25*RVAL(J,1))/0.75
RVAL(J,6) = (RVAL(J,3)-0.25*RVAL(J, 2))/0.75

65 RVAL(J,7)=(RVAL(J,4)-0.25*RVAL(J,3))/0.75
DO 66 J=1,6
RVAL(J,8)=(RVAL(J,6)-0.0625*RVAL(J,5))/0.9375

66 RVAL(J,9)=(RVAL(J,7)-0.0625*RVAL{J,6))/0.9375
DO 67 J=1,6

67 TEMP2(J,I)=(RVAL(J,9)-0.015625*RVAL(J,8))/0.98U375
2000 CONTINUE

DO 17 1=1,6
DO 17 J=1,6
TEMP=0.00
DO 19 K=1,6 •

19 TEMP=TEMP+PHIN(I,K)*TEMP2(K,J)
PSI(I,J)=TEMP
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