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f 1. INTRODUCTION

The	 numerical	 solution of	 compressible	 flow problems has
received	 much	 attention	 over the	 past thiry years due,	 to a
Large	 extent,	 to the interests of the aerospace industry.	 The

i solutions	 of such problems are characterised by the appearance
K` of discontinuities,such as shock waves,	 in the flow field and a
k

major	 topic of	 attention has been the deveopment of numerical
+` y) techniques which are able to adequately 	 resolve such phenomena.

A	 recent paper by Woodward and Co[LeLLB 	 [11 gives an excellent
f survey of	 the	 existing	 'state	 of	 the art'	 and compares the

F performance	 of various widely used algorithms iur certain test
problems.	 The	 algorithms	 considered	 are	 finite
difference/finite volume 	 based	 and	 utilise either artificial

u viscosity	 [21,	 linear	 hybridization	 [3]	 or	 explicit
non Linearity	 [4].	 ALL	 the	 schemes	 considered	 are shown to
possess certain advantages and disadvantages.

19

x The	 finite	 element	 method	 has	 only	 recently	 made	 its
appearance	 in this area,	 but	 it	 is	 expected that	 it will make a'^
significant	 contribution	 because	 of	 the	 great	 geometrical
flexibility which is inherent in the method.	 A recent paper by
Hughes	 [S]	 investigates the approach of explicit non Linearity

r in a finite element context. The present authors have made some 1
► ^ initial	 studies	 [6—e]	 of high speed inviscid flow problems in

which they have used the finite element method and an 	 explicit
i

time	 stepping	 algoPithm which is based on the Taylor—Galerkin
k schemes	 of	 Donea at al	 [9-12],	 with an appropriate artificial
-- viscosity	 (13).	 In	 this	 paper,	 we	 combine	 this solution it

algorithm	 with	 an	 automatic mesh refinement process which is
designed to produce accurate steady state solutions to problems a

e

of	 inviscid compressible flow in two dimensions. 	 The results

of	 two	 test	 problems	 are	 included	 which	 demonstrate	 the
excellent	 performance	 characteristics	 of	 the	 proposed
procedures.
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2.•A SINGLE STEP ALGORITHM.

^. Inviscid compressible flow of an 	 ideal gas in two dimensions
is	 governed	 by	 the	 Euler equations,	 which can be written in R:
vector form as

aU

^ 
,

a
,at	 +	 . 1.	 ^Z.	 (2.1)

'2 xX	 J s1 r

where	
P	

(2.2)

a U	 P "'	 F::	 P Is} P--	 P kL	 °J	 pusu + p $3

r "j ?Pe+ P
together with an equation of state

F

r
Here	 p,	 P	 and	 a	 denote	 the pressure,	 density and specific
internally	 energy	 of	 the	 fluid	 respectively while L 	 is the

velocity	 cumponent	 in	 direction x; of a Cartesian coordinate

system.	 In addition,	 the summation convention	 is employed with
denoting the Kronecker delta.

A	 single step algorithm for the solutiion of 	 (2.1)	 has been

fully	 described	 elsewhere	 16 )	 and	 is	 based	 upon	 the

Taylor—Galerkin	 methods	 of Donea	 at	 al	 [9-121.	 A	 brief
descripion of the solution procedure will be given here for the
sake of completeness.

r ^ ,
' " Using a Taylor series expansion about time t = t^ gives 3

'^-^	 -	 '	 (2.4)

correct	 to second order, where t n4-1 = t"' +Qt and a superscript
` f n	 denotes an evaluation at time t = t". 	 Eliminating the time

derivatives via	 (2.1)	 leads to the time—stepping scheme

z
t iJ"4% -- U	 --- ^^ ,^	 Zj	 ^L	 (2.5)

where

aFle
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The region SL over which the solution is required is discretised
using linear 3--noded triangular elements and a Galerkin finite
element solution procedure	 is	 applied	 to	 (2.6) using
approximations

A^ =	 A ke Fe
Here N. denotes the piecewise Linear shape function associated

with node m and Pc the piecewise constant shape function

associated with element e.	 The resulting matrix equation
system takes the form

b

a _M /. U rkt	
U ^' 1	 f ^'	 (2.8)

^
where	 UT — C	 l^^	 ,^;	 (2.9)

and M is a standard mass matrix. 	 An explicit solution
procedure for (2.8) is adopted. For problems involving strong
shocks	 an artificial viscosity term is included.	 The form

used is due to Lapidus 1131	 and replaces the quantities
calculated from (2.B) by smoothed values

	

"4-1

 Cy ^^	 '	 2x	 d^ ,R (2.10)ITAS .^
J'c

9 z
where C y is a constant in the range 0.51<_2 and	 is a

r

representative area for element e.

3 A TWO STEP ALGORITHM

Finite difference workers have consistently avoided the use
of single step explicit algorithms because of the computational
expense involved in performing matrix multiplications of the
form required in (2.5). They have favoured instead two—step
methods which are designed to avoid this requirement. A finite
element two—step algorithm may be p roduced which has certain
features in common with the finite difference scheme of
Burstein (141. Alternative finite element two step algorithm
has recently been proposed by Miner and Skop [151.

Y
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.3.1 The First Step

Using a Taylor series expansion about time t=t" gives

U+•C ... U r^ + of d^, 'at ^^	 (3.1)

correct to first order, where t"4 = 04-A&I and rep Lacing the
time derivative from , (2.1) produces the expression

^V%U n}.t 	 h	 `L &t ,^..^ 13.2)

Employing triangular elements with piecewise linear and
piecewise constant shape functions as previously defined,
approximations are taken in the form.

U h
	 `^E h+.t -

	 uz Pc (3.31

NM
These approximations are substituted into (3.2) and a

weighted residual statement (16) is formed using the weighting
function FE . The result in to give U	 immediately as

Q^ U^^ = 'z lam" N^,dSL - a dt ^ F-" ax
"dSZ (3.4)

r+

where dE denotes the area of element E and ilk denotes the

surface of this element. It may be observed that U E can be
obtained quickly as no assembly of element conributions is
required to form the right hand side of (3.4).

3.2 The Second Step

The second step begins by marring a new Taylor expansion and
writing

n+lU	 _ U  + ^t -au'h^ DL

U 	 .^	 ^t	 (3.5)

and again rep Lacing the time derivative leads to

U 
hk 

1 _ V	 ,—,^ (3.6)

J
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With the approximations

0 	 N v,,,%0

an appropriated wieghted residual form for 	 (3.6)	 is then

U„^^N
,^dJL ^TKA-^ k F	 x 	 F Ndr (3.8)

^ r
where	 n = fC^^)	 is the unit outward norms to the bounds ryP

of L .	 Inserting	 (3.7)	 into	 (3.8)	 then gives

13.91

where U is defined in (2.9),, The solution of this equation
completes the second step. Again the smoothing of (2.101 is
app Lied for problems involving strong shocks. It should be
noted that for Linear problems where

El,  = A 4 V	 (3.10)

and A 
k 
is constant, (3.8) combined with (3.9) produces exactly

the single step equation system (2.8) when d.. =112.

This has been confirmed computationally by applying both
methods to the solution of pure adveci cn problems involving a
cone—shaped profile in two dimensions. Similar problems have
been studied extensively in recent years [9, 17, 181.For this
problem, the govrrning equation is the scalar equation.

	

d I: '+ IN 12 axk = Q	 (3.11)

where (A	 A ) denotes a specified velocit field and U denotes^ ► 	 Z	 P	 Y
the concentratior,- Fig.la shows the initial profile and Fig.lb
illustrates the numericaL solution produced after one complete
rotation in an incompressible -rotating velocity field. A
problem involving the transportation out of the domain of
interest of an initial cone in an uniform velocity field was
also investigated. Fig.lc shows the profile of the
concentration as the cone is about to leave the region
completely. The quality of these; results is excellent and they
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were produced without the artificial viscosity term of (2.10)'
i	i.a. Cy =O.

Preliminary tests show the	 sing Le step and two step
algorithms to be producing similer results for precticaL
probLemo involving the non — linear equati;rn set (2.1) — (2.3),
with the two step method proving to bb computationally more
efficient.

4. DOMAIN SPLITTING

1 It	 is	 weLL-known	 that	 solutions	 of	 high speed inviscid
compressible	 flow	 problems	 exhibit	 narrow	 regions of rapid
change	 (e.g.shocks) which are embedded in	 larger regions where
the	 solution is smooth. 	 The economical method of producing an

j accurate	 solution	 is	 to	 use a discretisation which has many
smaLL	 elements	 in	 the	 region	 of	 rapid	 change	 and	 larger
elements	 elsewhers.	 However,	 the	 small elements used might
then	 require	 that	 a	 correspondi ng Ly	 sma L L	 ve lue	 of	 the
timestep,	 t,	 har to be employed	 to	 ensure	 stability	 of the
algorithms	 described	 in	 the previous	 section,	 whereas	 the
Larger	 elements	 could	 toLerste the use of a bigger timestep.
The	 remedy	 adopted by the authors is to split the domain into
regions	 in	 which different timestep sizes can be used. 	 This
method,	 which	 bears	 certain	 resemblances	 to	 the
explicit —explicit procedures of	 Belytschko	 at aL	 [19)	 and Liu
[20]	 is described	 in detail elsewhere	 [7)	 and	 will	 not	 be
considered further here.	 It should be noted however that this
procedure is performed completely automatically by the computer
code at prescribed times during the analysis.

5. ADAPTIVE MESH REFINEMENT

In general, an analyst will have no a priori knowledge of
the Location of those areas of the solution domain in which
large gradients will exist. An ideal computational algorithm
would then require the ability to autometicaLLy refine the
finite element mesh, in zones of high gradients, as the
computation proceeds. The geometric flexibility of the Linear
triangular element makes it ideally suited to refinement
processes of this type.

Adaptive refinement techniques are currently receiving much
attention [21,22] and two general classes may be identified.viz

` a priori methods and a posteriori methods. Although many
applications employing a priori grid refinements have been
reported, at the present time this approach appears to compare
unfavourably with a posteriori methods with regard to CPU time
requirements [21).	 For this reason, we have concentrated on
the use of a posteriori techniques. Here the solution is

a

9. Y

op,
illl



obtainad on an original mesh and, at a certain time, the mesh
As refined according to some strategy.	 The solution then
proceeds, with further refinements being made as requiud, 	 The
authors have investigated two alternative refinement stategies

p	 viz mesh movement and mesh enrichment.

5.1 Mesh Movement

Here the total number of nodes	 and elements remains
constant, but the location of the nodes is changes in order to
achieve a better overall distribution, 	 Full details of the

ii

	

	 strategy adopted for moving the mesh and handling some of the
subsequent problems which may arise have been given in detail
eLsewhere [8), This approach alone does not appear to possess
the degree of fLexibiLity which would be required for general
aerodynamic problems and so it has been repLeoed by mesh
enrichment.

5.2 Mesh Enrichment
u

In this case the original r;Aoh is held fixed, while
hi era rchicaL elements [163 or simply more elements are added.
Both strategies have their merits and disadvantages. if
further degrees of freedom are added hierarchiciaLLy, the old
shape functions are trained and the new shape functions are
retained and the new shape functions are introduced for
relative values of the unknown. Fig.2 shows the comparison of
this strategy with the classical enrichment method of adding
more elements. The advateges of the herarchical technique are
(i) certain matrices may be	 re—used,	 so avoiding some
recomputation (ii) multigrid solvers may be implemented
naturally (iii) no geometrical problems are encountered in the
transition zone between refined and unrefined portions rf the
mesh. The disadvantages of the hierarchical approach are
(i) more stiffness coefficients appear as all the refinement
levels are interconnected (ii) the program structure becomes
very invoLved and, it is expected that, efficient vectorisation
wiLL be virtually impossible.

The classical way of enriching grids is simply to add more
elements. In this case, all the advantages of the hierarchical
method are lost whle the disadvantages disappear. However,
when a detailed comparison was made of the two possibilities
[23], it was decided that classical enrichment would be more
efficient at this stage for general transient problems and so
this method was implemented in the computer code.

S	 N
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5,3 Error Estimate

Consider a sing Le scalar equation with unknown U and a



corresponding finite element approximation U*- 	 The aim of any
adaptive mesh refinement is to attempt 	 to minimise the highest
orror occurring in the elements representing the domain i.e.

`e

ri	 y Gr

k should be minimised,	 where 1`	 Il k 	 denotes	 some suitable norm.
This criterion	 leads to the requirement 	 that	 the error should
be evenly distributed across the	 domain,	 which amounts to the
requirement

4 it U- U* [5.2) {x
For elliptic problems,	 the appropriate	 norm	 appears naturally
as they energy norm and a fairly 	 complete and general theory of
error	 estimators	 is available	 [24,25).	 However,	 far	 less
research	 has	 been	 directed towards hyperbolic problems and e

f detailed theory	 is still	 lacking.	 Here we attempt to derive a.
simple,	 yet	 reliable,	 error criterion	 for	 hyperbolic problems
and	 linear elemcnts.

It	 has	 been	 shown	 by Strang and Fix [263 that	 a natural
norm for first order hyperbolic equations is the Ly defined by

tt

e r OUR

I	

Z

G	 nn	
(5,3)VG

If	 the	 solution	 of	 hyperbolic	 equations	 is	 viewed	 as an

approximation	 problem	 along	 characteristics	 then	 it can be
q shown	 [263 that
'e

llU- U^	 <^^^ Il	

Q
t5.4)

4 where	 h e 	is a	 representative element	 legnth,	 and using the L L 	I
norm of	 (5.3) gives

L	 f	 e

i
The condition of 	 (5.2)	 is then	 replaced by the	 requirem{.:.,,nt that

11e	 Il u ^^	 CON$ G1N^	 (5,6)

or,	 since	 the	 exact	 solution	 U	 is	 unknown, the practical

^a

requirement becomes
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^11 0,'^ J_= comtAv%t	 (5.7)

If linear elements ere being employed it seems natural to
choose ). = 1 and to define

tl	
IIe	 {  rb,

	

l) OR^	 (5.6)
4	 'fie

If the elements are not bedly deformed then (5.7) may be
approximated by the requirement that

^ e	 r	 K o x -- Cih u } ^ p6bAA (5.9)

where	 or S /x for ^tne, two or three dimensions
reopectively.

5.4 Identification of Regions to be Refined.

The first step in any mesh refinement algorithm is they
identification of the regions of the domain in which refinement
is to be employed.	 For (5.9) it is clear that all elements
which satisfy

e >	 "004 T e—
	 (5.10)

e
should be refined further. The constant 9 in this equation
acts as a thresh p ;.d value for the refinement process. Having
identified in this fashion the patches of elements that are to
be refined, the boundary nodes of these patches are obtained.
In order to avoid 'saw —tooth' type boundary shapes, any element
which has all its node on these boundaries is iteelf included
among the list of elements to be refined.

For systems of equations, a 'key—variable' has to	 be
identified in order to employ (5.10). The choice of this
variable is not obvious but the density has been chosen for the
computations reported here.

5.5 Subdivision of the ELements.

E

	

	 During the subdivision process, three different types of
element can appear according to the number of nodes of the

j'	 eLement which lie on the boundary (S between the region which

[	 is to be subdivided and the region which is to remain



z

^r	 t

^^	 t

^ k

99

ORIGINAL PA ^ ,
OF Poop : c^^:^ .,	 ;^	 ,.	 ;:	 ,  ,r;;

L • P" I	 1 ','l	 I	 ^1' t	 1	 e

, ^ 
	
,^

•
i	 ^	 t i i

f	 i•
• I	 .^	 n.: ^ •ice.: ern '

No

Y
i	 ^--

,

r}

s

R	

nom_

2

^/ tom ^'•	 ^I 1 '	 j i 1 ,

.,	 ^ r	 ,• .•	 .,	 "^•\ /	 , .,,.	 ill.	 ':P^	 ., .. i	 ,.1

	

• ' ^ /^' 

,err-D'. 

^ •^ •!	 :•.	 i.

4
	 ,.. i .. , i	 1	 '	 'r'

ij
ice. !,	 i; '^^t^

	
"t	 ,: 1 I ,—^'	 I	 r r

Firq • 4. ^Volda ►,ee .	 rwe^csz^v e, s ►,b div i^lo^ i^d^ bra® dw^^ Y

st#'adml tltwcwh tkm Atn!	 ^, s^•►rli^^^	 ^ a+k' .^ prcvto^
fib) `1"t^s rcl^ewi io ^t ad,^tmo( Cam) "ice ^ ^e ad rcl;•e.ti,^.

4
.\ .I

i



^t

t

i

l'

R

3

4'1

rl

unchanged. If the element has no nodes on 	 then the element

is simply divided into four elements as shown in Fig.3s. 	 If
the element has one node on (^S then the element is subdivided

into two elements as shown in Fig.3b. Finally, if the element
has more than one node on rs then no subdivision is performed

as shown in Fig.3c. When this process has been carried out, the
new nodal coordinates and the new nodal unknowns are calculated
►yhle the new element connertivites are formed, The
subdivision process is completed by identifying new nodes which
lie on the boundary of the physical domain and assigning to
these nodes the appropriate boundary condition marker.

56 Mesh (duality Enhancement

In many practical situations the straightforward subdivision
strategy described above will prove satisfactory bit, Under
certain circumstances, badly deformed elements can appear.
Three simple devices hve t,ius been implemented in an attempt to
improve the quality of then refined mesh and these are described
below. The resulting mashes are generally free of the
geometrical difficulties usually encountered when meshes are
enriched by straightforward subdivision. In addition, these
strategies can easily be extended to three dimensions if Linear
tetrahedral elements are employed.

5.6.9 Smoothing With the refined grid, the sides of the
elements are replaced by springs of unit stiffness. 	 For badly
deformed elements the resulting nodal forces will not be in
equilibrium, whereas for regions of well —formed elements the
resulting nodal forces will nearly vanish. 	 A relaxation
procedure [8]	 is adopted which	 moves	 the nodes until
equilibrium of the nodal forces is achieved. Five steps of
this process are normally employed and this ensures a local
smoothing of the mesh.

5.6.2 Avoidance of Successive Subdivision into Two Badly
deformed elements can appear when an element that has been
initially divided into two elements as in Fig.3b is again
subdivided in the same fashion. The easiest method of avoiding
this second subdivision is to enlarge the region which is to be
refined by adding to it aLL elements surrounding the element
under consideration. The element under consideration can then
be subdivided into eight elements,	 thus	 enhancing	 the
regularity of the mesi , This process is illustrated in Fig.4.

5.6,3 RemovaL of Badly Deformed Elements If badly '-formed
elements are still present, 	 after	 avoiding	 I^cessive

1

I"

r^
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subdivision into two and after smoothing the mesh, then these

elaments are removed from the computation. This algorithm is
detailed elsewhere LB] and need not be repeated here.

G. RESULTS

Results will be presented which show the application of the
methods described in this paper to two separate problems viz.
steady supersonic flow past a wedge and steady supersonic flow
past a nose cone, As both problems are steady, the transient
algorithms described previously are used here as a device for
integrating to steady state.

r

6.1 Supersonic FLow Past a Wedge
F

The solution domain and the initial	 discretisation is shown
in Fig.5a.	 Along AB the flow variables	 are held fixed at the
values P = 1.125,	 u^	 1020,	 u^	 =	 0,	 e = 727350 giving a	 free
stream Mach number of three.	 The	 boundary ED is a solid wall
while	 'natural'	 conditions are applied 	 aLong	 BC,	 CD	 and AE.
The exact solution for this problem	 consists	 of	 an	 attached
plane shock at an angle of 37.5° 	 to	 the	 %,—axis with uniform
flow ahead of and behind -the shock.

The density distribution after 100 gLobaL timesteps is shown

in Fig.5b,	 and,	 elthough the	 required features are present,	 the
quality	 of	 the solution is not good because of the coarseness

of	 the	 initial	 discretisation.	 The	 mesh	 is	 therefore
automaticelly	 refined at this stage, 	 as	 shown	 in Fig.6a,	 and
the solution is advanced in time. 	 After a further 100 global
steps the density	 distribution	 is	 as	 illustrated	 in Fig-6b and
the improvement in the quality of the solution 	 is apparent.	 A
further refinement was performed,	 producing the mesh of Fig.7e,,.
whch	 produced the density distribution shown in Fig.7b after a
further	 100	 global	 steps.	 The	 quality of this solution is
exceLLent	 when	 compared	 with	 the	 behaviour	 of	 the	 exact

solution.

6.2	 Supersonic Flow Past a Nose Cone

The solution domain and initial discretisation for this
exam le is shown in Fi .B. Along AB the flow variables areP	 Fig .B.
 fixed at the values P = 1, u, = 1.026, u 2_ = 0, e = 1

giving a free stream Mach number of two.	 The boundary CD is a
solid waLL and 'natural' conditions are applied over BC and DA.

" The initial finite element discretisation is shown in Fig.8 and
the solution was advanced 100 gLobaL timesteps on this mesh.
The mesh was then refined as shown in Fig.9a and after a
further 100 g Lobe L time steps the density distribution is as
illustrated in Fig.9b.	 The next leveL of refinement is

E.
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displayed	 in	 Fig.10a	 with the corresponding density contours
-after	 a	 further	 100 global steps appearing	 in Fig.10b.	 The
fineL	 refinement is then performed as in Fig.11a,	 producing the

s density	 contours	 of	 F19.11b	 after	 a	 further 10 global time
steps.	 The quality of the final solution is good, 	 showing the

`.
detached bow shock.
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7. CONCLUSIONS

Explicit	 solution	 techniques	 for the Euler equations have
been	 combined	 with 	 domain	 splitting	 and	 mesh	 e,'trichment
procedures.	 Practical examples	 have	 been	 presented	 which
confirm	 the	 viability	 of the	 procedures for the analysis of
steady	 problems.	 For the analysis of true transient problems,
the	 areas requiring	 refinement wilt traverse the whole of the
domain	 under	 consideration	 and	 the refinement strategy will
require suitable modification	 in	 this case	 [231.
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