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HIGH SPEED INVISCID COMPRESSIBLE FLOW
BY THE FINITE ELEMENT METHOD

0.C.Zienkiewicz, R.Lohner and K.Morgan

University of Wales, Swansea, Great Britain

1. INTRODUCTION

The numerical solution of compressible flow problems has
received much attention over the paest thiry years due, to 8
large extent, to the interests of the aerospace industry. The
solutions of such problems are characterised by the appearance
of discontinuities,such as shock waves, in the flow field and 8
major topic of attention has been the deveopment of numerical
techniques which are able to adequately resolve such phencmena.
A recent paper by Woodward and Coltlella [9) gives an excellent
survey of the existing 'state of the art' and compares the
performance of various widely used slgorithms fur certain test
problems. The algorithms considered are finite
difference/finite volume based and utilise either artificial
viscosity  [2], linear hybridization [3] or explicit
nonlinearity [4]. ALl the schemes considered are shown to
possess certain advantages and disadvantages.

The finite element method has only recently made its
appearance in this area, but it is expected that it will make a
significant contribution because of the great geometricsl
flexibility which is inherent in the method. A recent paper by
Hughes [5] investigates the approach of explicit nonlinearity
in a finite element context. The present authors have made some
initial studies [6-8] of high speed inviscid flow problems in
which they have used the finite element method and an explicit
time stepping algorithm which is based on the Taylor-Galerkin
schemes of Donea et al [9-12], with an sppropriate artificisl
viscosity [13]. In this paper, we combine this solution
algorithm with an automatic mesh refinement process which is
designed to produce accurate steady state solutions to problems
of idinviscid compressible flow in two dimensions. The results
of two test problems are included which demonstrate the
excellent performance characteristics of the proposed
procedures.
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2,- A SINGLE STEP ALGORITHM,

Inviscid compressible flow of an idesl gas in two dimensions

is governed by the Euler equations, which can be written in
vector form as

wWo,og
5g T 75’4‘-5 = O j=\2 (2.1)
where [ P . \ (2.2)
P
U _ rul F:_. fuﬁS*‘FSJ.'
-~ (e =) P“z“li +p 8
f< “jtrere)

together with an equation of state

P = (Ve Le- '\i“j“:)] (2.3)

Here p, p and e denote the pressure, density and specific
internally energy of the fluid respectively while W: is the

velocity cumponent in direction 15 of a Cartesian coordinate

system. In addition, the summation convention is employed with
gﬁ denoting the Kronecker delta.

A single step algorithm for the solutiion of (2.1) has been
fully described elsewhere [6 ] and is based upon the
Taylor-Galerkin methods of Donea et al [8-12]. A brief
descripion of the solution procedure will be given here for the
sake of completeness.

“ .
Using a Taylor series expansion about time t =t gives

2V \“ N AR\
\ > —
U™z VMot St v 5 =p (2.4)

1 .
correct to second order, where t" = + At apd 8 superscr1pt
n denotes an evaluation at time t = t". Eliminating the time
derivatives via [2.1) leads to the time-stepping scheme

n
°F " 2 D oL
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The region SL over which the solution is required is discretised

using Llinear 8-poded triengular elements and & Galerkin finite
element solution procedure is applied to (2.5) using
approximations

Uz U*= 5 U, N

m

F; E‘.*: 2 —F_)"M NM (2.7)
Apr AR = Z Arve R

Here N, denotes the D1ecew1se linear shape function associated

with node m and Pe the piecewise constant shape function

associated with element e. The resulting matrix equation
system takes the form

M(O™—0n) = £ 2.0

. p,\_

where U = (\;\‘\2_1_') (2.8]
and M 1is a standard mass matrix. An explicit solution
procedure for (2.8B) is adopted. For problems involving strong
shocks an artificial viscosity term is included. The form

used is due to Lapidus [18] and replaces the quantities
calculated from (2.8) by smoothed values

k) ? ._ BNN
l,)_::s = L_),,.,\“—- C”AEZ:‘J 'Ej ¥ 0!\9-(2 10)
Je

)
where C,, is & constant in the rangeUS‘-C,AE and "\
representative area for element e.
8 A TWO STEP ALGORITHM

Finite difference workers have consistently avoided the use
of single step explicit slgorithms because of the computational
expense involved 1in performing matrix multiplications of the
form required in (2.5). They have favoured instead two—step
methods which are designed to avoid this requirement. A finite
element two-step algorithm may.be produced which has certain
features 1in common with the finite difference scheme of
Burstein [14). Alternative finite element two step algorithm
has recently been proposed by Miner and Skop [15].
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-B.i The First Step

Using & Taylor series expansion sbout time t=t" gives

rYOR M
U™ = Uy war 2

Lnd

(3.1)
correct to first order, where t“*i

‘ . = t™«8k, and replacing the
time derivative from (2.1) produces the expression

U™ - ) Ofy \“
- \;.). - <At '53’3
Employing trisngular elements with

piecewiss constant shape functions as
approximations are taken in the form.

_\_)_“ = \_2*“ = Z U;; Nim
M et
g.v\‘\-t2 Q&M-L_: QZ Ve Pc:
“ L2 B ] ey
.E} :‘\-‘ g;)' = 442-‘ _EJ..M Nm

Thesg approximations are™ and a

weighted residual statement [1B] is fg!med using the weighting
function B, . The result is to give Uz immediately as

Ae u“é‘ = 2 _\).:\ ijo\D. —dAtZEj:\ %gf‘alsz (3.4)
™ e m ng 9

(3.2)

piecewise Llinear and
previously defined,

(3.3)

substituted into (3.2)

where Ag denotes the ares of element E and JZEdenotes the

surface of this element. It may be observed that g“** can be
obtained quickly as no assembly of element conributions is
required to form the right hand side of (3.4).

3.2 The Second Step

The second step begins by making a new Taylor expansion and
writing

U {ne et
Um\ - Ur\ + At.b.::\

[3.5]
and again replacing the time derivative leads to
. “—‘-d
UM‘ — UM — At ?:5 \ (3.6)
— - - Y
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With the approximations

U™ U™ = 22 U N,

™ (3.7)

FTVHJL Fr% n4d :Ei ;:
e_
an appropr1ated w1eghted residual form for (S.EJ is then

nei _ L "'*“)N( _ i
ng U™ N, d —af‘.}. de&u‘&ff) ﬁj,m A:'(,ngwr (3.8)
where n = [(4,4,) is the unit outward normal to the boundary [

of . Inserting (3.7) into (2.B) then gives
Sl A e
M.Lp- - Q ) = _3_ (3.9)

~
where U is defined in (2.8). The solution of this equation
completes the second step. Again the smoothing of {2.10) is
applied for problems involving strong shocks. It should be
noted that for Linear problems where

F, = A, U (3.10)

———

and Ay is constant, (3.8) combined with (3.8) produces exactly
the single step equation system (2.8) when® = Yo

This has been confirmed computationally by applying both
methods to the solution of pure advecticn problems involving a
cone~shaped profile in two dimensions. Similar problems have
been studied extensively 1in recent years [8, 17, 1Bl.For this
problem, the govsrning equation is the scalar equation.

A\z v, =0 (3.11)

where (A , A,) denotes a specified velocity field and U denotes
the concentratior. Fig.1a shows the initial profile and Fig.1b
illustrates the numerical solution produced after one complete
rotation in an incompressible - rotating velocity field. A
problem involving the transportation out of the domain of
interest of an initial cone in an uniform velocity field was
also investigated. Fig.1c shows the profile of the
concentration as the cone 1is about to Lleave the region
completely. The quality of these results is excellent and they
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?ere cprodgced without the ertificial viscosity term of (2.10)
IB =
. ” L]

Prgliminary tests show the single step and two step
algorwthms_ to be producing similar results for practical
problems involving the non-linear equatiun set (2.1) - (2,3),

with the two s&tep method proving to be computationally more
efficient.

4. DOMAIN SPLITTING

It is well-known that solutions of high speed inviscid
compressible flow problems exhibit narrow regions of repid
change (e.g.shocks) which are embedded in larger regions where
the solution ie smooth. The economical method of producing an
accurate solution is to use a discretisation which has meny
small elements in the region of rapid change and larger
elements elsewhers. However, the small elements used might
then require thet e correspondipgly small value of the
timestep, t, has to be employed to ensure stability of the
elgorithms described 1in the previous section, whereas the
larger elements could tolerste the use of a biyger timestep.
The remedy adopuvad by the authors is to split the domain into
regiens in which different timestep sizes can be used. This
method, which bears certain resemb Lances to the
explicit-explicit procedures of Belytschko et al [18] and Liu
[20] is described in detail elsewhere [7] and will not be
considered further here. It should be noted however that this
procedure is performed completely automatically by the computer
code at prescribed times during the analysis.

5. ADAPTIVE MESH REFINEMENT

In general, en analyst will have no & priori knowledge of
the Llocation of those areas of the solution domain in which
large gradients will exist. An ideal computational algorithm
would then require the ability to automatically refine the
finite element mesh, 1in zones of high gradients, as the
computation proceeds. The geometric flexibility of the Llinear
triangular element makes it iJdeally suited to refinement
processes of this type.

Adaptive refinement techniques wre currently receiving much
attention [21,22] and two general classes may be identified.viz
@ priori methods and a posteriori methods. Although many
applications employing a priori grid refinements have been
reported, at the present time this approach appears to compare
unfavourably with a8 posteriori methods with regard to CPU time
requirements [21). For this reason, we have concentrated on

the use of a posteriori techniques. Here the solution is



obteincd on en original mesh and, et a certain time, the mesh
.is refined according to some strstegy. The solution then
proceeds, with further refinements being made as requied, The
suthors have investigated two alternetive refinement stategies
viz mesh movement and mesh enrichment.

5.1 Mesh Movement

Here the total number of nodes and elements remains
constent, but the location of the nodes is changes in order to
schieve & better overall distribution, Full deteils of the
stretegy sdopted for moving the mesh and handling some of the
subsequent problems which may arise have been given in detail
elsewhere [8), This eapproasch slone does not eppear to possess
the degree of flexibility which would be required for general
serodynamic problems and so it hes bsen replaced by mesh
enrijchment.

5.2 Hash.Enrichment

In this cese the original mrsth 1is held fixed, while
hierarchical elements [16] or simply more elements are added.
Both strategies have their merits and disadvantages. If
further degrees of freedom are edded hierarchicielly, the old
shape functions ere trained end the new schape functions are
retained and the new shape functions are introduced for
relative values of the unknown. Fig.2 shows the comparison of
this strategy with the classical enrichment method of adding
more elements. The advatages of the herarchical technique are
(i) certain matrices may be pre-used, so avoiding some
recomputation (i) multigrid solvers may be implemented
naturally (iii) no geometrical problems are encountered in the
transition zone between refined and unrefined portions ~f the
mesh., The disadvantages of the hierarchical approach are
(i) more stiffness coefficients appear as all the refinement
levels are interconnected (ii) the program structure becomes
very involved and, it is expected that, efficient vectorisation
will be virtually impossible.

The classical way of enriching grids is simply to add more
elements. In this case, all the advantages nof the hierarchical
method are Llost whle the disadvantages disappear. However,
when a detailed comparison was made of the two possibilities
[23], it wes decided that classical enrichment would be more
efficient at this stage for general transient problems and so
this method was implemented in the computer code.

5.3 Error Estimate

Consider a single scalar equation with unknown U end 8



cérresponding finite element approximation U*, The aim of any
adaptive mesh refinement is to sttempt to minimiee the highest
error occurring in the elements representing the domein {.e.

E = max “ U~ U*“z (5.1)

should be minimised, where “ “h denotes some suitable norm,
This eriterion leads to the requirement that the error should
be evenly distributed scross the domain, which emounts to the
requirement

“ v~ U* u\: = Congtant (5.2)

For elliptic problems, the appropriate norm appears naturally
as the energy norm end 8 fairly complete and genersl theory of
errnr estimators is availeble [24,25]. However, far Lless
research hes been directed towards hyperbolic problems and s
detailed theory is still lacking. Here we attempt to derive e
simple, yet reliable, error criterion for hyperbolic problems
end linear elements.

It hes been shown by Strang and Fix [2B] that a natural
norm for first order hyperbolic equations is the L, defined by

e L .
ivis = £, (Wraek 5.0

If the solution of hyperbolic equations is viewed as an '
approximation problem along characteristics then 1t cen be !
shown [2B8] that

lo-vie < kh7FOIT

where h,. is a representative element legnth, and using the L,
norm of (5.3) gives

lu=ve e xhe (U1

The condition of (5.2) is then replaced by the requiremsnt thet

‘\: “U“i = | constant (5.6)

or, since the exact solution kl is unknown, the practical
requirement becomes
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\qe{ “ 0’! t\i‘ = Cowstant (5.7)

If Llinsar elements are being employed it seemes natural to
choose & = 1 and to define

{ U*l\f = {ch (%%:)Lo\& " (5.8)

IT the elements are not badly deformed then (5.7) mey be
approximaeted by the requirement that

\Ee — L\eﬁ § W&K. U!.—- wgs\ U*}: teveant  (5.9)

where b =Y, 1 or 3/ for ane, two or three dimensions
respectively.

5.4 Identification of Regions to be Refined.

The first step in s8ny mesh refinement algorithm is the
jdentif{cation of the regions of the domsin in which refinement
is to be employed. For (5.8) it is clear that all elements
which satisfy

@e > max pe (5.10)

should be refined further. The constant 8 in this equation
acts as a threshnid value for the refinement process. Having
identified 1in this fashijon the patches of elements that are to
be refined, the boundary nodes of these patches esre obtained.
In order to avoid 'saw—tooth' type boundary shapes, any element
winich has all its node on these boundaries is itself included
among the list of elements to be refined.

For systems of equations, a 'key-variable' has to be
identified in order to employ (5.10}, The choice of this
variable is not obvious but the density has been chosen for the
computations reported here,

5.5 Subdivision of the Elements.
During the subdivision process, three different types of
element can appear according to the number of nodes of the

element which Llie on the boundary G betwesen the region which

js to be subdivided and the region which 1is to remain
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unchanged, If the element has no nodes on i} then the element

is simply divided into four elements as shown in Fig.8a. If
the element has one node on [1 then the element is subdivided

into two elements as shown 1in Fig.8b. Finally, if the element
has more than one node on Q then no subdivision is perfarmed

as shown in Fig.8c. When this process has been carried out, the
new nodal coordinates and the new nodal unknowns are calculated
while the new element connestivites are formed, The
subdivision process is completed by identifying new nodes which
lie on the boundary of the physical domain and assigning to
these nodes the appropriate boundary condition marker.

5.6 Mesh Quality Enhancement

In many practical situations the straightforward subdivision
strategy described above will prove satisfactory bnt, under
certain circumstences, bedly deformed elements can appear.
Three simple devices hve thus been implemented in an attempt to
improve the guality of the refined mesh and these are described
below. The resulting meshes are generally free of the
geometrical difficulties usually encountered when meshes ars
enriched by straightforward subdivision. In =addition, these
strategies can easily be extended to three dimensions if linear
tetrahedral elements are employed.

5.6.1 Smoothing With the refined grid, the sides of the

elements are replaced by springs of unit stiffness. For badly
deformed elements the resulting nodal forces will not be in
equilibrium, whereas for regions of well-formed elements the

resulting nodal forces will nearly vanish. A relaxation
procedure [B] is adopted which moves the nodes until
equilibrium of the nodal forces 1is achieved. Five steps of

this process are normally employed and this ensures a local
smoothing of the mesh.

5.6.2 Avoidance of Successive Subdivision into Two Badly
deformed elements can appear when an element that has been
initially divided into two elements as in Fig.3b 1is again
subdivided in the same fashion. The easiest method of avoiding
this second subdivision is to enlarge the region which is to be
refined by adding to it all elements surrounding the element
under consideration. The element under consideration can then
be subdivided 1into eight elements, thus enhancing the
regularity of the mesit. This process is illustrated in Fig.4.

5.6.3 Bemoval of Badly Deformed Elements If badly '~formed
elements are still present, after avoiding ‘~cessive

—— et .
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subdivision into two and after smoothing the mesh, then these

elements are removed from the computation, This algorithm is
detailed elsewhere [B] and need not be repeated here.

6. RESULTS

Results will be presented which show the application of the
methods descpibed in this paper to two separate problems viz.
steady supersonic flow past a wedge and steady supersonic flow
past a nose cone. AS both problems are steady, the transient
algorithms described previously are used here as a device for
integreting to steady state.

6.1 Supersonic Flow Past a Wedge

The solution domain and the initial discretisation is shown
in Fig.5a. Along AB the flow variebles are held fixed at the
values £ = 1.185, u, = 1020, u, = 0, e = 727350 giving a free
stream Mach number of three. The boundary ED is a solid wall
while 'natural' conditions are applied along BC, CD and AE.
The exact solution for this problem consists of an attached
plane shock at an angle of 37.5° to the %,-axis with uniform
flow ahead of and behind the shock.

The density distribution after 100 global timesteps is shown
in Fig.5b, and, although the required features are present, the
quality of the solution is not good because of the coarseness

of the initial discretisation. The mesh is therefore
automatically refined at this stage, as shown 1in Fig.6a, and
the solution is advanced in time. After a further 100 global

steps the density distribution is as illustrated in Fig.Bb and
the improvement in the quality of the solution is apparent. A
further refinement was performed, producing the mesh of Fig.7a,
whch produced the density distribution shown in Fig.7b after &
further 100 global steps. The quality of this solution is
excellent when compared with the behaviour of the exact
solution.

6.2 Supersonic Flow Past a Nose Cone

The solution domain and initial discretisation for this
example 1is shown 1in Fig.B8. Along AB the flow variables are
held fixed at the values f =1, u = 1.028, u, =0, e =1
giving a free stream Mach number of two. The boundary CD is &
solid wall and 'natural' conditions are applied over BC and DA,
The initijal finite element discretisation is shown in Fig.8 and
the solution was advanced 100 global timesteps on this mesh.
The mesh was then refined as shown 1in Fig.8a and after =
further 100 global time steps the density distribution is as
illustrated in Fig.Sh. The next Llevel of refinement 1is
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displayed in Fig.10a with the corresponding density contours
-after & further 100 global steps appearing in Fig.10b. The
final refinement is then performed as in Fig.11a, producing the
density contours of Fig.11b after a further 10 global time

steps. The quality of the final solution is goond, showing the
deteched bow shock.

7. CONCLUSIONS

Explicit solution techniques for the Euler equations have
been combined with domain splitting and mesh e4richment
procedures. Practical examples have been presented which
confirm the viability of the procedures for the analysis of
steady problems. For the analysis of true transient problems,
the areas requiring refinement will traverse the whole of the
domain under consideration and the refinement strategy will
require suitable modification in this case [23].
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