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INTRODUCTION






INTRODUCTION

1. Project Objectives

This report is concerned with the Formal Verification of computer systems. In the course of
carrying out the work reported herein we have developed a number of methodologies for verifying
systems, developed computer-based tools that assist users in verifying their systems, and have
applied these tools to verifying in part the SIFT ultrareliable aircraft computer.

By formal veri fication we mean showing by mathematical reasoning that a system satisfies its
requirement. By a system we mean the computer hardware and the collection of programs that
run on the hardware. A requirement is a description of the function to be carried out by the
system. The requirement indicates the system's response to all sequences of inputs that could be
applied to the system. If the verification is successfully carried out, the system is, in principle,
guaranteed to be correct; no further validation (e.g., testing) should be required.* However, it
should be noted that the system might still contain some errors that require conventional testing
to uncover e.g. due to: errors in the requirement, ommisions in the requirement, errors in portions
of the system that are not verified. Thus one should view formal verification as a systematic
approach to analyzing a system that when combined with standard methods, is potentially
capable of reducing significantly the number of errors in delivered systems.

How can it be assured that requirements are free of errors? The most obvious answer is to
produce requirements that are short enough and simple enough to be carefully reviewed. We
have found that even for very complex systems, requirements can be written that indicate only
what is essential to understand what the system is supposed to be doing. Details of the system’s
implementation need not be part of the requirement. It is our conclusion, then, that short
requirements statements can be produced. In order to be processible by the verification tools, the
requirement must be expressed in a formal language. We will be using three different languages
for stating requirements (STP, Boyer-Moore theory and SPECIAL). Those familiar with
mathematical logic will have no trouble reading and understanding the requirements we present
in this report. Those who have not been exposed to mathematical logic will be able to understand
the requirements through the English comments that accompany the formal logic statements.

We wish to contrast our approach to system verification to the traditional approach, in particular
stressing why our approach leads to simpler and more believable requirements, and why it makes
the process of verifying large systems feasible. The traditional approach, which we call code

vert fication, is concerned with verifying algorithms expressed in a programming language. For
example a sort algorithm is shown to satisfy the requirement that the output is ordered and a
permutation of the input. (The requirement for such algorithms is commonly called the

spect fication.)

Code verification in itself is inadequate since it does not lead to requirements that are short and

*To understand the implications of verification, the reader might find it helpful to make analogy to
what a proof in, say, plane geometry means. Reasoning similar to what we describe in this report is used
to prove the Pythagorean Theorem. Once verified, a theorem can be freely used in any circumstance
where it applies -- the assumptions underlying the theorem (there is a right triangle with sides a, b and
hypotenuse c.) are satisfied.



simple. For example, an operating system consists of many subprograms. Each of these
subprograms can be given a specification: The specification for the scheduler will indicate what it
means to schedule; the specification for the directory manager will indicate what it means for
directory entries to handled properly. However, these specifications in toto fail to clearly indicate
the overall purpose of the operating system which, in the case of SIFT, is to assure that aircraft
control programs are processed correctly. It is the interaction of these programs that determines
if the overall goals of the system are to be satisfied.

What is needed, then, is a requirement statement that addresses higher-level issues. To achieve
this, we suggest that a system requirement be expressed as a model, which we take to mean a
collection of higher-level functions together with properties (expressed as axioms on the
functions). This model must be shown to be consistent with the specifications for the subprograms
that comprise the system; we call this process design vers fication. (Code verification is then
employed to show the consistency of the subprograms’ specifications with their implementation.)

Often, as was the case in SIFT, the jump from the model to the specifications is too large to be
carried out in one step. Hence we introduce additional models, the collection of models forming a
hierarchy. Design verification, then, consists of proving that each model is consistent with the one
directly below it in the hierarchy. It should be noted that in a well-conceived hierarchy, each
model will introduce a particular element of design; the SIFT hierarchy nicely illustrates this

concept.

In support of the steps of design verification and code verification, we have developed a collection
of interactive tools. The heart of the design verification tools is the STP theorem prover, the
language which it supports being used to define the models. Besides the theorem prover, the tool
set contains various support packages, including ones that manage the overall verification process
and that output a final proof in a form that is reasonably readable.

The code verification system supports the verification of Pascal programs whose specifications are
expressed in the SPECIAL specification language. The methodology underlying the tools, (called
the Hierarchical Development Methodology [HDM]), allows the code itself to be decomposed in a
hierarchical layering of levels. This process greatly simplifies the verification of large programs.
Another significant feature of the code verification system is that it can be easily tailored to
handle any particular programming language. This independence of programming language is
achieved through a tool called the meta- vers fication condition generator, which accepts the
syntax and (axiomatic) semantics of a programming to produce a code verification system unique
to that language.

As indicated above, the scope of this project is aircraft electronics systems. Our primary
accomplishment was the development of the verification systems (for design and code verification)
and the application of the design verification system to SIFT. It should be noted that design and
code verification, as carried out in this project, do not cover all parts of an aircraft electronics
system. Missing from our verification (besides the parts of SIFT we did not verify -- see below)
are the following: Assembly-level programs, Hardware logic, and Application programs

Consideration of these areas begins to complete a full hierarchy for an aircraft electronics system,
the components of which are: ‘



e Application programs -- in particular, flight control programs
e Design for a fault-tolerant aircraft computer -- SIFT
e Higher order code (Pascal) for SIFT software

e Assembly level code, which in the case of SIFT is in the Bendix BDX930 instruction
set

e Hardware logic -- implementation of the BDX930 instruction set

In each of these areas, we developed techniques that give some promise of being suitable for
verifying real systems.

2. Significant Accomplishments of ’Project
The significant accomplishments of the project are the following:

1. The development of experimental verification tools (for design and code vériﬁcation).
It should be noted that versions of these tools have been used to verify security-related
properties of operating systems; this work was carried out on other SRI projects.

2. The application of the design verification tools tools to the verification (in part) of the
SIFT operating system. As we indicate later, SIFT achieves reliability by having tasks
execute on 3 or more processors, the results being voted on after completion of each
task. When an error can be pinpointed to a processor, it is logically removed and
replaced by another processor. The requirement for SIFT (informally stated) is that
the probability of producing an incorrect result shall be less than 10°-10 per hour over
a 10 hour mission. The major property addressed by the design verification exercise
and expressed in a model is that all aircraft tasks managed by the SIFT system will
yield correct results within their prescribed deadlines, as long as the system is in a
safe state. Here tasks are programs that implement the various aircraft functions
(flight control, navigation, etc.); correct means that the tasks will always get the right
inputs and deliver the output as would be produced by a working processor; within
the deadline means that the result is produced according to some preassigned
schedule. Sa fe state, is not given a definition at the highest model; when defined in a
lower model, it means that the number of good processors exceeds the number of
failed processors in a configuration -- voting works. We believe that this model
expresses exactly the significant functional properties of SIFT. Moreover, it should be
noted that the design verification turned up a significant design error, that previously
escaped our attention. Our verification of the SIFT design is currently incomplete,
failing to prove the following

e Reconfiguration: When a processor is found to be faulty, the reconfiguration
design will logically remove from the configuration of processors. Current work
is considering this verification. '

e Quantitative reliability, the failure probability for SIFT is 10"-10/hour for a
10 hour mission. Our design hierarchy does include a model, called the reliabslsty



model that expresses, in terms of a Markov model, the concept of system failure.
However, we did not formally relate the reliability model to the other models;
this connection might be carried out in current work. This connection by itself,
however, will not lead immediately to a verification of quantitative reliability
since the rates of processor failure and reconfiguration must be derived; these
rates can only be derived from significant experimentation with SIFT, as
currently being carried out by NASA-Langley.

3. The application of the code verification tools to the verification (in part) to a Pascal
implementation of SIFT. As in the design verification exercise, our concern was just
with the safety-related properties; we did not carry out the verification of the SIFT
code concerned with recon figuration. Among other current deficiencies of the code

verification effort are:

e Although the code we did verify would successfully run SIFT, it is not the code
that in the SIFT system delivered to NASA-Langley. The delivered code is a
combination of Pascal and BDX930 assembly code. Moreover, the Pascal portion
is written in a version of Pascal tailored to an efficient real-time processing; for
example, it permits the specification of absolute addresses, and accomplishes the
transfer of data among processors by a special assignment statement. Our code
verification system, support standard Pascal, does not handle such features.

e The program that assures the clocks of the SIFT processors are in
synchronization was not verified. The specifications for the clock synchronization

program were, however, used in the design proof.

e The program that handles interactive consistency, i.e., the transfer of single
source data among processors.

4. An initial approach to verifying assembly language programs. This approach, if
mechanized, would be used to verify that portion of a system not expressible in a high-
level language. We attempted, but did not complete, the verification of a scheduler
for a real time system. A byproduct of this effort was a formal definition of the
BDX930 instruction set in the Boyer-Moore theory.

5. An approach to verifying the precision of numerical algorithms, e.g., navigation
programs. This approach is suitable only for programs where the correctness
property (ignoring precision, the algorithm computes a certain function), and the
precision property (the error introduced through round-off and other error-introducing
operations is bounded by a specified value) can be handled separately.

6. An approach to verifying control applications. Again, separating design verification
from code verification proved to be extremely useful. The code verification exercise
proves that the program correctly implements a particular filter function. The design
verification shows that a configuration of filters achieves a particular control law. We
used the Boyer-Moore theory to express the control law for a simple application -- the
control of a vehicle subject to bounded disturbances in one dimension.



7. An approach to verifying hardware logic that demonstrates the consistency between a
hardware logic circuit and a specification for the functional behavior of that circuit.
Using our method, we successfully verified a hardware frequency comparator. A more
ambitious undertaking, not yet attempted, would be to verify the implementation of
the instruction set for a computer.

3

3. Organization of Report
This report, having been compiled largely from existing reports, papers, listings, etc., is large and
not well structured. The following is a brief guide to the report.

The report is organized into the following areas:

1. STP Theorem Prover -- Chapters 2-3. Chapter 2 provides an easy to follow
introduction to the STP logic. Chapter 3 describes the command interface of the STP
theorem prover for those who want to consider using it.

2. Design Verification of SIFT -- Chapters 4-7. Chapter 4 presents an easy introduction
to the technique of design verification, presents an informal verification of a very
simple voting system, and presents a synopsis of the design verification of SIFT.
Chapter 5 gives the listing of the mechanization (using STP) of the verification of the
simple voting system. Chapter 6 presents more detail on the SIFT design verification,
in particular describing the hierarchy of models. Chapter 7 presents the complete
listing of the design verification of SIFT.

3. High Level Language Code Verification -- Chapters 8-15. Chapter 8 introduces, in a
tutorial manner, the subject of code verification in general. Our approach to verifying
a hierarchy of modules -- the Hierarchical Development Methodology (HDM) -- is
introduced in Chapter 9. The discussion here is centered around the language
(SPECIAL) used to specify these modules and an i{deal language (called ILPL) used for
module implementation. In later chapters we show how an existing language (Pascal)
can be used for module implementation. The Meta-Verification Condition Generator,
the approach to producing a language-independent code verification system is
presented in Chapter 10. Included at the end of this chapter are rules for the context-
independent semantics of a Pascal subset. Chapters 11-13 introduce the code
verification system we developed to prove hierarchies of Pascal programs, each of
which is specified in SPECIAL. Chapter 14 presents the portion of the SIFT code we
verified and Chapter 15 gives sample listings of the proofs. Finally, Chapter 15
presents a formal definition of a subset of the HDM proof methodology; the Boyer-
Moore logic is used to express the formal definition. Our motivation in producing such
a formal definition is to reduce the chances for errors being introduced in the
verification process itself; a careful reading of such a formal definition should uncover
errors in the verification technique.

4. Assembly language-level Verification -- Chapters 17-18. Chapter 17 presents our
(incomplete) attempt to verify a scheduler written in assembly language. The
definition of the assembly language (BDX930) that would have been used is presented
in Chapter 18.



5. Numerical Algorithm Verification -- Chapter 19
6. Verification of Flight Control Programs -- Chapter 20

7. Verification of Hardware Logic -- Chapter 21

’
8. Tutorial on the Boyer-Moore Logic and its application to Verification of Fortran

Programs -- Chapter 22

9. Conclusions -- Chapter 23

4. Recommended Chapters

We expect that most readers will be interested in the verification of SIFT and the tools that
made it possible. To this end, the chapters to read are: 2, 5, and 7; chapter 8, containing the
complete listing of the verification, is recommended for those few who will want to carefully

scrutinize the detailed steps in the verification.
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STP: A Mechanized Logic
for Specification and Verification

R. E. Shostak, Richard Schwartz, and P.M. Melliar-Smith

1 Introduction

This paper describes a logic and proof theory that has been mechanized and successfully applied to
prove nontrivial properties of a fully distributed fault-tolerant system. We believe the system is close to
achieving the critical balance in man-machine interaction necessary for successful application by users
other than the system developers.

STP is an implemented system supporting specification and verification of theories expressed in an
extension of multisorted first-order logic. The logic includes type parameterization and type hierarchies.
STP support includes syntactic checking and proof components as part of an interactive environment for -
developing and managing theories in the logic. In formulating each new theory, the user begins with a
certain core theory that comprises a set of primitive types and function symbols, and extends this theory
by introducing new types and symbols, together with axioms that capture the intended semantics of the
new concepts. The mechanical proof component of the system is predicated on a fast, complete decision
procedure for a certain syntactically characterizable subtheory. By providing aid to this component in the
form of the selection of appropriate instances of axioms and lemmas, the user raises the level of competence
of the prover to encompass the extended theory in its entirety. As a result of a successful proof attempt
using STP, one obtains the sequence of intermediate lemmas, together with the axioms, auxiliary lemmas,
and their necessary instantiations, which lead to the theorem. The system automatically keeps track of
which formulas have been proved and which have not, so that the user is not forced to prove lemmas in
advance of their application. The system also monitors the incremental introduction and modification of
specifications to maintain soundness.

This paper is organized as follows: Section 2 discusses motivation for the form of man-machine
interaction embodied by STP. Section 3 contains a formal description of the logic and the proof theory,
and illustrates the description with an example. Section 4 discusses the use of STP in a large-scale effort to
prove nontrivial properties of SIFT, a distributed Software-Implemented Fault-Tolerant operating system
for aircraft flight control. Finally, Section 5 describes directions for further work.

2 Issues in Mechanized Verification Support

STP's design was guided to a considerable extent by our experience in attempting to formulate and
reason about properties of SIFT. The following concerns were strongly influential.

This research was supported in part by NASA contract NASI-15528, NSF grant MCS-7904081, and by AFOSR contract
F48620-79-C-0099.
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2.1 Property-Theoretic Specification

It is often desirable to specify program or system characteristics abstractly by stating properties
possessed without defining the method of attainment. High-level system specifications represent, in
effect, system requirements, rather than a prescription of implementation characteristics. That: the
specification method allow such partial specification of system properties is important; without this
capability, one is forced to overapecify system descriptions. As a consequence, one both overconstrains
possible implementation solutions and introduces spurious detail into the design specification.

2.2 Credible Specifications and Proofs

The intent of formal specification and verification is to increase one's confidence that a system will
function correctly. As such, the specification and proof of system conformance must be believable. To
produce credible specifications, the specification language must be sufficiently close to the user’s conceptual
understanding of the task the system is to perform. Specifications that are as long as or longer than the
actual code for the system are likely to be harder to understand than the code itself.

Credibility of a verification effort requires that the end product be a proof that can be independently
scrutinized and subjected to the social process. It must be possible to separate the process by which the
proof was obtained from the proof itself.

2.3 Form of Verification Support

Mechanical theorem provers can be characterized by the style and level of user direction necessary
tolcomplete the proof. The spectrum of possibilities ranges from completely automatic "out to lunch”
verification, where no user interaction is necessary to-direct the proof to completion, to a proof checker
(e.g., the FOL [Wey 80] system) where all steps are provided by the user. Between these extremes are '
interactive semi-automatic systems (such as LCF [Mil 79]) in which proofs are generated by a symbiosis
of mechanically derived and user-provided steps. This is necessary because, in practice, theories that are
sufficiently rich to be useful are usually either undecidable or have combinatorics that preclude practical
decision procedures. Research in theorem proving has thus focused on methods by which the user can
direct machine inference. :

Mechanical deduction in most systems has taken the form of heuristic algorithms for searching large
state spaces to determine the sequence of intermediate steps necessary to form a proof. Because of the
difficulty in determining the ultimate success or failure of a heuristically chosen proof strategy without
exhaustive search, the user is charged with the responsibility for monitoring the proof attempt and aborting
an unpromising path. Where the user can determine that an inappropriate proof strategy has been chosen,

“he then introduces additional lemmas in an attempt to induce the system to follow a more fruitful path.

A drawback to heuristic theorem-proving attempts is that successful proof depends upon intimate
knowledge of the heuristics employed. One must understand how very subtle changes in specification
structure, even those that preserve semantic equivalence, can affect the direction and final outcome of the
proof attempt. Lemma form becomes as important as content. In many cases the user may be aware
of the proof steps necessary to justify the lemma within the supported theory, but he may be unable to
suggest the lemmas in the form appropriate to zuide the verification system down the proper path. This
difficulty may be attributed to the inability to provide a succinct, yet complete, characterization of the
heuristics employed by the theorem prover. Without this characterization, effective use of the system will

12



depend not only on the understanding of the underlying theory, but also upon intimate knowledge of the
theorem prover implementation.

Our experience has led us to believe that effective symbiosis between man and machine depends upon
a. The predictability of machine-supplied deduction

b. the user’s ability directly to provide prool strategies and steps beyond the automatic deductive
capability :

c. machine interaction with the user in the style and level of conceptualization natural to him

d. the machine’s ability to provide responsive deductive support to maintain continuity of user interac-
tion.

Our proof experience indicates that the predictability of machine aid is far more important than the
occasional burst of insight. Successful interaction with a theorem prover depends upon the user’s having
a clear picture of how the formula is deducible within the theory and when user assistance is necessary.
It seems unlikely in systems supporting extensive, but incomplete, deduction that the user would succeed
without this insight.

In a system involving extensive user interaction, one should not underestimate the importance of the
user interface. It is crucial that all interaction be presented at the level of user input and in a natural
and succinct notation. Management of information becomes a major problem during proof construction.
That the user retain a clear intuitive understanding of the specifications is paramount. Techniques for
aggregation of information, such as theory parameterizaton, as suggested by Goguen and Burstall [BuG
77), are extremely important. Data base management aids for organizing and retrieving theories are
critical.

For the man-machine relationship to be symbiotic, machine response must keep pace with the user.
The size of conceptual steps comprehensible to the user must be well matched to the computational
efficiency of the theorem prover. Our experience indicates that a delay of more than on the order of one
minute in machine response tends to cause loss of concentration.

2.4 Related Work

Much progress has been made in the last ten years on techniques for formal specification and
verification. Early contributions to formal specification include Milner's work [Mil 87] on weak simulation
and Parnas’ [Par 72] on hierarchical methodology. The concepts introduced in this early work were
further developed and incorporated in the HDM methodology [RoL 77,LRS 79]. The more recent research
of Goguen and Burstall on Clear [BuG 77] and of Nakajima on Iota [Nak 77] introduced the notion of
higher-order theories and theory parameterization.

At the same time, a great deal of research has focused on systems for mechanical verification. The
earliest such systems depended strongly on heuristic-based, theorem proving strategies. The systems of
King [Kin 69] and Levitt and Waldinger [LeW 75| are among these. The Boyer-Moore theorem prover
(BoM 79| is one of the most striking examples of the power possible using heuristic techniques. The
deductive component of STP, however, is more akin to the theorem provers of Bledsoe (Ble 74], Nelson
and Oppen [OpN 78|, Shostak [Sho 77}, and Suzuki [Suz 75], all of which are founded on the use of decision
procedures. The GYPSY system [Goo 79], the Jovial Verification System [Els 79|, the Stanford Verifier
[Luc 79], and the SDC system [Sch 80] are recent examples of program verification systems.

By and large, specification research has been pursued independently of work on verification. Only in
the last few years has emphasis been placed on the interaction between the specification medium and the
13



verification component. The Afirm system [Mu 80}, for example, utilizes a term rewriting system, both
as an algebraic specification medium and as a vehicle for mechanical proof. The system described in the
current paper continues the emphasis on maintaining a close balance between the level of conceptualization
supported in the specification and the level at which machine-aided deduction occurs.

3 The Logic of STP

Before presenting a formal description of the logic supported by the system, we present a simple
example to give an intuitive feeling for the specification style.

We define a parameterized theory of Pairs of objeéts of two arbitrary type domains. We then use this
theory to derive a theory of integer Intervals, represented by pairs of beginning and end points.

Figure 1 shows the specification of these theories in STP. The user declares the parameterized type
PAIR.OF(T1 T2) in line 3, having previously declared type variables T1 and T2 in lines 1 and 2. The
accessor operation FIRST is defined by the DS (Declare function Symbol) command in line 4 to take a value
of type PAIR.OF(T1 T2) and return a value of type T1. The SECOND component accessor is analogously
defined in line 5. A pair constructor MAKE.PAIR(T1 T2) is declared in line 8. Variables X and Y are
declared to be of schematic types T1 and T2 (respectively) in lines 7 and 8. These declarations introduce
new function and variable symbols, but attach no semantics. Lines 9 and 11 introduce two axiom schemes
to define the properties of Pairs. Axiom Al defines the accessor functions FIRST and SECOND to retrieve
the first and second components (respectively) of a pair constructed by MAKE.PAIR. Axiom A2 extends
the equality operation by defining two Pairs to be equal exactly when the corresponding components are
equal. Equality is predefined over all domains.

INTERVAL is introduced as a subtype of PAIR.OF(INTEGER INTEGER) in line 13. Note that
type variables T1 and T2 are thus both instantiated as ground type INTEGER. The subtype declaration
declares Intervals to be an extension of the theory of Pairs of Integers. The type theory allows implicit type
coercion from a subtype to a supertype (but not vice versa). Thus, all axioms defining Pairs of Integers
are applicable to Intervals - in this case, instances of axiom schemes Al and A2.

Lines 15 and 16 introduce derived Interval operations BEGINNING and END, defined as the selection
of the first and second Pair values (respectively). The DD (Declare Definition) construct can be viewed as
a means of conservative extension. Semantically, line 15 is equivalent to introducing the axiom (EQUAL
(BEGINNING II) (FIRST II)). Operationally, the DD defining BEGINNING is automatically instantiated
and applied as an axiom. Similarly, a MAKE.INTERVAL constructor is derived in line 20 in terms of the
MAKE.PAIR operation of the supertype.

After introducing the signature for an Interval MEMBER operation in line 21, axiom A3 in line 22
begins to introduce Interval semantics. An Integer [ is defined to be a Member of Interval II exactly when
it lies between the beginning and ending points of the Interval. This completes our abbreviated definition
of Integer Intervals.
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10.
11.
12.

(DTV T1)
(DTV T2)

(QUOTE "The following is a partial theory of Pairs”)

(DT PAIR.OF (T1 T2))

(DS T1 FIRST ((PAIR.OF T1 T2)))

(DS T2 SECOND ((PAIR.OF T1 T2)))

(DS (PAIR.OF T1'T2) MAKE.PAIR(T! T2))

(DSV T1 X)

(DSV T2 Y)

(DA A1 (AND (EQUAL X (FIRST (MAKE.PAIR X Y)))
(EQUAL Y (SECOND (MAKE.PAIR X Y)))))

(DSV (PAIR.OF T1 T2) P)

(DSV (PAIR.OF T1 T2) P1)

(DA A2 (IFF (EQUAL P P1)
(AND (EQUAL (FIRST P) (FIRST P1))

(EQUAL (SECOND P) (SECOND P1)))))

(QUOTE "The theory of Intervals is now derived as a subtheory of Pairs”)
(DST INTERVAL (PAIR.OF INTEGER INTEGER))
(DSV INTERVAL 1)
(DD INTEGER BEGINNING (II) (FIRST II))
(DD INTEGER END (II) (SECOND II))
(DSV INTEGER I)
(DSV INTEGER J)
(DSV INTEGER K)
(DD INTERVAL MAKE.INTERVAL (I J) (MAKE.PAIR 1J))
(DS BOOL MEMBER (INTEGER INTERVAL))
(DA A3 (IFF (MEMBER 1 II)
(AND (LESSEQP (BEGINNING II) 1)
(LESSEQP I (END 11)))))

Figure 1
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3.1 Formal Description of the Language

The language of our logic is similar to that of conventional multisorted first-order logic, but provides
for parameterized sorts and sort hierarchies. Before describing the structure of formulas in our logic,
we need first to define the language of sort expressions (which, for reasons of conformance with the
specification literature, we call type expressions). ’

3.1.1 Language of Type Expressions

The vocabulary of type expressions is very much like that of ordinary first-order terms. A theory
in our logic has a countable set of type variables, and for each n > 0, a countable set of n-ary type
symbols. Type symbols of degree O are said to be elementary, while those of nonzero degree are said to
be parameterized. Every n-ary parameterized type symbol has associated with it a parameterized type
template given by an n-tuple of (not necessarily distinct) type variables. The intended meaning of the
templates will be clear shortly. A legal type ezpression, or simply type ezpression is a term recursively
constructed from type variables and symbols in the following manner:

a. A type variable is a type expression.

b. An elementary type symbol is a type expression.

c. Iftis an n-ary parameterized type symbol, t;, ¢z, ..., t4 are type expressions such that t; == t; whenever
the ith and jth components of the type template of ¢ are equal, then t(ty,¢2,...,t,) is a type expression.

Note that the template of a parameterized type symbol forces certain of the symbol arguments in
a type expression to be identical. If, for example, INTEGER and REAL are elementary type symbols,
U and V are type variables, and MIXEDTRIPLE is a trinary type symbol with template <U,U,V>,
then MIXEDTRIPLE(INTEGER INTEGER REAL), MIXEDTRIPLE(REAL REAL REAL), and MIXED-
TRIPLE(V V U) are all legal type expressions, but MIXEDTRIPLE(INTEGER REAL REAL) is not.

We refer to type expressions that contain type variables as schematic types and those that do not as
ground types. By type substitution, we mean a substitution that replaces type variables by type expressions.
By a type inatance of a given type, we mean any type resulting from the application of a type substitution

to the given type.

The rafson d’etre for schematic types is to permit us to talk about many types of objects at once. For
example, we may want to formulate and apply a certain property of SETs, in various contexts, to SETs
of INTEGERs, SETs of FOOs, and so on. Rather than stating and proving the property separately for
SET(INTEGER), SET(FQO), etc., we need only prove it about SET(U), where U is a type variable. As
will be seen later, we will then be able to apply the property in the context of each specific instance of U.

In addition to a set of type variables and type symbols (and templates), each theory in our logic has
associated with it a subtype structure, expressed as a binary relation over type expressions. The subtype
relation is defined in the following way.

First, certain type symbols are designated as subtype symbols . Associated with each elementary
subtype symbol is a ground type expression, said to be its immediste supertype. Associated with each
parameterized symbol # is a schematic type expression ¢, said to be the immediate supertype of the type
expression 8(ty,t2, ..., 1), where < ¢y,%2,...,¢s > 13 the template of s. The type expression ¢ is constrained
to have exactly the same set of type variables as the set of type variables occurring in the template of 3. As
a further constraint, it must be possible to find a total ordering of all subtype symbols in such a way that
each is junior in the ordering to every subtype symbol occurring in its associated immediate supertype.

(This constraint is necessary to prevent circularity in the subtype structure, and is automatically satisfied
16



in the mechanization by virtue of the chronological ordering of subtype declarations.) Now, the subtype
relation is defined recursively as the coarsest binary relation over type expressions that:

i. contains < a,¢ > for each elementary subtype symbol s with immediate supertype ¢.

ii. contains < é(t1,12,...,tn),t > for each parameterized subtype symbol s with immediate supertype ¢
and template < ¢;,22,...,85 >.

iii. is closed under reflexivity, transitivity, and type instantiation.

By “closed under type instantiation”, we mean that if ¢ is a subtype of ¢ (i.e., < ¢, > isin the
relation) and o is a type substitution, then o(t) is a subtype of o(t).

Suppose, for example, that U and V are type variables, that SET and SETOFPAIRS are unary type
symbols with template <U>, that HOMOGPAIR is a binary type symbol with template <V,V>, and
that INTEGER, RATIONAL, and REAL are all elementary type symbols. Suppose also that INTEGER is
a subtype symbol with immediate supertype RATIONAL, RATIONAL is a subtype symbol with immediate
supertype REAL, and that SETOFPAIRS is a subtype symbol with immediate supertype SET(HOMOG-
PAIR(U U)). Then the following are true:

INTEGER is a subtype of RATIONAL and REAL
RATIONAL is a subtype of REAL
SET(INTEGER) is a subtype of SET(INTEGER)
SETOFPAIRS(V) is a subtype of SET(HOMOGPAIR(V V))
SETOFPAIRS(SET(INTEGER)) is a subtype of SET(HOMOGPAIR(SET(INTEGER),SET(INTEGER)))
SETOFPAIRS(SET(SET(U))) is a subtype of SET(HOMOGPAIR(SET(SET(U)),SET(SET(U))))
Note, however, that SET(INTEGER) is not a subtype of SET(REAL).

One can prove from the definitions that the subtype relation imposes a well-founded partial ordering
on the type expressions of the theory. This partial ordering, moreover, is structured as a set of top-rooted
trees (thinking of sons as subtypes of fathers). A type expression can have several soms, but no type
expression can have two unrelated ancestors.

3.1.2 Primitive Types

Different theories in our logic can, of course, have quite different type vocabularies, supertype struc-
tures, or both. All, however, are considered to share certain primitive types. These include the elementary
type BOOL and the elementary types INTEGER, RATIONAL, REAL, and NUMBER. INTEGER is a
subtype symbol with immediated supertype RATIONAL, RATIONAL is a subtype symbol with immediate
supertype REAL, and REAL is a subtype symbol with immediate supertype NUMBER. Neither BOOL'
nor NUMBER is a subtype symbol. As we will see later, these symbols are all interpreted, i.c., have a
priors semantics in interpretations. We will see that the semantics are as one would expect, except that
NUMBER, REAL, and RATIONAL are considered to have identical semantics. In addition, each theory
is considered to have the type variable *T*. The inclusion of at least one type variable is necessary for
defining certain primitive function symbols, such as EQUAL.

As a theoretical aside, it might be noted that BOOL is the only primitive type that is truly necessary
to provide the bootstrapping power needed to define interesting theories. For once BOOL is provided, one
has all the power of conventional first-order logic, and can axiomatize other concepts (such as INTEGERs).
We have included the other primitive types as an important convenience. As the conventional semantics

17



of other useful types (such as SETs, SEQUENCES, and so on) are mechanized, these types wiil also be

considered as primitives.

~ 3.1.3 The Language of Formulas

In conventional predicate calculus, formulas are constructed from atomic formulas and the familiar
propositional and first-order connectives. The atomic formulas, in turn, are constructed from predicate
letters and term expressions. All of the structure at or above the level of predicates in a first-order
formula is of course Boolean, whereas all of the function symbols occurring beneath the predicate symbols
are interpreted over an arbitrary nonempty set (said to be the domain of the interpretation).

Formulas in our logic are constructed similarly, except that the symbols occurring in terms can have
arbitrary types, including type BOOL. There is therefore no reason to distinguish between “predicates”
and “terms”. In recognition of this point, it will be convenient simply to speak of symbolic czpressions;
formulas, in particular, will merely be symbolic expressions of type BOOL. As an abbreviation, we will
sometimes simply say “expression” rather than “symbolic expression” when there is no possible confusion
with type expressions. It is important to note, in this connection, that we want to draw a firm distinction
between symbolic expressions and type expressions; in particular, “TYPE" is not itself a type, contrary to
the viewpoint expressed in some programming languages.

These remarks having been made, we return to formal description. Beyond the vocabulary of type
expressions described earlier, a theory in our logic has a countable set of symbolic variables (or just
variables) vy, v, ..., and for each integer n > 0, a countable set of n-ary function symbols [T, f3,...

Associated with each variable and function symbol is a signature. The signature of a variable is an
arbitrary type expression, said to give the type of that variable. The type signature of an n-ary function
symbol is an n + l-tuple of type expressions. The first component gives the return type of the function
symbol, and the remaining n components the formal argument types. The only restriction placed on these
type expressions is that for function symbols other than constants (i.e., of degree > 1), each type variable
that occurs in the return lype must occur in ot least onc of the argument types. For example, if F is a unary
function symbol with return type SET(U), then the formal argument type of F could be HOMOGPAIR(U
U) but could not be HOMOGPAIR(INTEGER INTEGER). The intent here is that any ground binding of
the type variables in the formal argument types should uniquely determine a ground instance of the return
type. We will say that a variable or function symbol whose signature has at least one schematic type is
schematic. The intuitive meaning is that a schematic symbol is a kind of abbreviation for an entire class
of symbols, the signature of each member of which is a ground instance of the signature of the schematic
symbol.

The legal symbolic ezpresssons, or just ezpressions of a given theory are defined recursively as follows.
We say that t is an ezpressson if

i. tis a term, i.e., either a variable or of the form f(ty,¢2,...,2s), where f is an n-ary function symbol
{n > 0) and each ¢; is (recursively) a term, and

11. t lypechecks.

The only departure from predicate caleulus is thus the type-checking restriction. Roughly speaking,
the meaning of “typechecks” is what one would expect: that the arguments to a function symbol are of
the appropriate type. Because of the presence of type variables and subtype structure, however, the exact
meaning of “appropriate” needs some explanation.

Since the subtlety owes primarily to the type variables, let us first consider terms none of whose

symbols is schematic. We will say that the return type of such a term is just the return type of the
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outermost function symbol (or, if the term is just a variable, the return type of the variable.) We will
say that such a term typechecks if and only if the return type of each actual argument to a function
symbol occurring in the term is a subtype of the corresponding formal argument type in the signature of
the function symbol. For example, if QPLUS takes two RATIONALS and returns a RATIONAL, and if
INTEGER is a subtype of RATIONAL is a subtype of REAL, then QPLUS(X X) typechecks if the type
of X is INTEGER or RATIONAL, but not if the type of X is REAL.

The situation becomes more interesting if any of the symbols occurring in the term ¢ is schematic. In
this case, t typechecks if there is a way of instantiating the signature of each such symbol that causes ¢ to
typecheck in the sense just given for terms with no schematic symbols. For example, suppose that F is a
schematic symbol with signature <SET(U),U,U> (i.e, F takes two arguments of type U, U a type variable,
and returns a SET(U)). Suppose also that | and X are variables with types INTEGER aad RATIONAL,
respectively. Then F(I X) typechecks, since applying the substitution {U / RATIONAL }to the signature
of F (meaning that F now takes two RATIONALS and returns a SET(RATIONAL)) causes the type of
each actual to be a subtype of the corresponding expected argument type.

In the case where a schematic symbol occurs more than once in a term, we permit a separate
instantiation of its signature for each occurrence. For example, if G is a binary function symbol that
takes a SET(BOOL) and a SET(REAL) as arguments, the term G(F(TRUE, TRUE), F(I, 1)) typechecks,
using the substitution {U / BOOL}for the left occurrence and {U / REAL}{or the right occurrence of F.

Schematic variables and constants are treated specially. The substitutions associated with occurrences
of variables and constants in an expression must agree on all type variables their signatures have in common.
For example, if variables A and B are both of type SET(U), the term G(A,B) does not typecheck, since
the substitutions associated with A and B must give U the same value.

Each assignment of substitutions to the symbol occurrences of a term that causes the typechecking
requirement to be satisfied will be called a syntactic interpretation of the term. We can say, then, that
a term is a legal expression if and only if it has at least one syntactic interpretation. Just as schematic
symbols can be viewed as representing a class of symbols, terms involving schematic symbols can be
considered as representing classes of terms, one for each syntactic interpretation.

It should be noted that the definition of “typechecks” just presented is completely nonconstructive;
we have not said how to find the needed signature instances; indeed, we have not even explained how or
whether it is possible to tell whether one type expression is a subtype of another. Clearly, without an
effective way of testing for syntactic well-formedness, a logic is hardly of practical interest. Fortunately,
both the subtype relation and the typecheck predicate are eflectively (and easily) computable. We show
in a forthcoming paper that the subtype relation can actually be computed using a finitely terminating
canonical term rewrite system. A type expression ¢ is a subtype of another type expression ¢ iff ¢
(eventually) rewrites to t/; the canonical forms of the system are those types that are subtypes only of
themselves.

We also give an algorithm for type checking that depends on the notion of least general syntactic
inlerpretation. We say that one syntactic interpretation is less general than another if the type substituted
for each type variable in the substitution corresponding to a given symbol occurrence in the first syntactic
interpretation is a subtype of the corresponding substituted type in the second. (For example, the syntactic
interpretation of F(I I) in which the substitution {U / INTEGER }is used for the occurrence of F is less
general than that in which {U / RATIONAL }is used.) One can show that each expression has a unique
least general syntactic interpretation modulo the assignment of types to the type variables in the signatures
of variable and constant symbols. 19



3.1.4 Primitive Function Symbols

Each theory is considered to include the following function symbols as primitives. For each symbol,
the return type is given first, then the function symbol followed by a list of argument types.

BOOL TRUE{)
BOOL FALSE()

BOOL AND(BOOL BOOL)

BOOL OR(BOOL BOOL)

BOOL IMPLIES(BOOL BOOL)

BOOL NOT(BOOL)

BOOL IFF(BOOL BOOL)

BOOL FORALL(*T* BOOL)

BOOL EXISTS(*T* BOOL)

BOOL EQUAL(*T* *T*)

BOOL LESSEQP(NUMBER NUMBER)

BOOL LESSP(NUMBER NUMBER)

BOOL GREATEREQP(NUMBER NUMBER)
BOOL GREATERP(NUMBER NUMBER)

*T* IF(BOOL *T* *T*)

NUMBER PLUS(NUMBER NUMEER)
NUMBER DIFFERENCE(NUMBER NUMBER)
NUMBER MINUS(NUMEER)

NUMBER TIMES(NUMBER NUMBER)

The IFF construct shown above is interpreted as Boolean equivalence. The IF construct is the
McCarthy three-placed if statement that is interpreted to return the value of the second or third argument,
depending on whether the predicate in the first argument place is true or false, respectively.

In addition to those in the list above, there is a constant symbol for each integer and rational number.
Note that arithmetic functions, such as PLUS, all take NUMBERSs as arguments. Thus, if [ is an INTEGER
variable, and F is a monadic function symbol with argument type INTEGER, then PLUS(I I) is a legal
expression, but F{PLUS(1 1)) is not, even though the semantics of INTEGERSs guarantee that the sum of two
integers is always an integer. The desired effect can be obtained in practical applications by introducing
a function symbol IPLUS with INTEGER arguments and return type, and endowing that symbol (using
a definition) with the semantics of PLUS, restricted in integers.

The signatures of EQUAL and IF in the list above both use the primitive type variable *T*. It
follows from the typecheck requirement that the types of the two actual arguments to EQUAL in a legal
expresssion need not be the same; they must, however, have a common supertype. Similarly, the types of
the two branch expressions of a three-placed IF construct must have a common supertype.

For the two quantifiers (FORALL and EXISTS), an additional syntactic restriction is imposed beyond
the usual typecheck rule: the first arzument to each of these in a legal expression must be a variable.
20



3.2 Semantics of Theories in the Logic

As one would hope, the meaning of formulas in the language reflects intuition. Once again, the only
real departure from conventional quantification theory with equality stems from the presence of sorts.

Expressions have meaning only with respect to interpretations. An interpretation consists of the
assignment of sets, called domasns, to the type expressions of the theory, and of functions to the function
symbols of the theory.

More specifically, an interpretation assigns to each ground type expression a nonempty set in such a
way that for any two ground type expressions ¢ and ¢/

i. The set associated with ¢ is a subset of that associated with ¢ if and only if ¢ is a subtype of ¢/,

ii. The set associated with ¢t has a non-empty intersection with that associated with ¢ if and only if ¢
and ¢ have a common supertype.

ili. The set of rational numbers is associated with types NUMBER, RATIONAL, and REAL, the set of
integers is associated with type INTEGER, and the set of truth values (true and false) is associated
with type BOOL.

Clause (i) says that the partial ordering of assigned domains under set inclusion must be isomorphic
to the subtype partial ordering. Clause (iii) gives RATIONALS, INTEGERS, and BOOLS their standard
interpretation, but identifies NUMBERS and REALS with rationals. REALs thus acquire the same
interpretation they are given in most programming languages in recognition of the limitations of machine
representation.

An intepretation also assigns to each n-ary nonschematic function symbol an n-ary function whose
signature is obtained from that of the function symbol by replacing each type expression with its assigned
domain. Constant symbols, in particular, are assigned elements from the domain associated with their
return types. Primitive nonschematic function symbols are given their standard meanings.

Every schematic function symbol is assigned a multiplicity of functions - one for each ground instance
of its signature. (Intuitively, one can think of schematic function symbols as abbreviations for a class of
symbols.) The signature of the assigned function corresponding to a given signature instance is that
obtained by replacing each type expression in the instance by its assigned domain. Once again, primitive
symbols, including the quantifiers, are given their usual semantics. Note that each quantified variable
ranges over a single domain.

Now, each closed expression (closed in the sense of having no unbound variables) takes a meaning, or
valuation, with respect to a given interpretation I and a given assignment 4 of ground type expressions to
the type variables occurring in the signatures of variable and constant symbols. For expressions involving
only nonschematic symbols, the valuation is defined recursively in the way one would expect: the valuation
of a constant is just the domain element assigned to it by I, and the valuation of a nonconstant is obtained
by recursively applying the function assigned to its outermosc symbol to the valuations of its arguments.
For expressions involving schematic symbols, the valuation is defined as that of the least general syntactic
interpretation (as defined earlier) modulo the assignment A. (Note that the assignment A is analogous to
the assignment of domain values to free variables in interpretations of predicate calculus.)

The notions of validity and satisfiability are now defined in the usual way. A formula (i.e., an
expression of type BOOL) is said to be valid if and only if its universal closure has valuation true in all

interpretations; it is satisfiable i its existential closure is true in at least one interpretation.
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3.3 The Proof Theory and its Mechanization

The connection between the model-theoretic semantics described in the previous section and the proof
mechanism used in our system is made by a generalized form of the Skolem-Herbrand-Godel theorem.
Herbrandian semi-decision procedures, of course, have long been the most popular means of mechanizing
quantified logics. Because of the extensions to ordinary quantification theory provided by our language, a
generalized form of the theorem must be used and a mechanical proof procedure formulated on the basis
of this generalization.

Before outlining the theorem and the derived procedure, it will be helpful to describe the deductive
mechanism that lies at the heart of the prover. This mechanism consists of an efficient implementation of a
decision procedure for unquantified formulas in an extension of Presburger arithmetic. The theory includes
the usual propositional connectives: equality, rational and integer variables and constants, the arithmetic
relations <, <, >, >, and addition and multiplication. Uninterpreted predicate and function symbols of
type integer and rational are also permitted. The decision procedure is complete for the subtheory of this
theory having no integer variables or function symbols, and containing no nonlinear use of multiplication.
The procedure is sound, of course, for the entire theory, and is able to prove the vast majority of formulas
involving integer constructs that are actually encountered in practice. The speed of proof, moreover, is
fairly impressive: theorems occupying several pages in the SIFT effort were usually proved in well under
a minute. (Indeed, as we noted elsewhere, such speed has proven to be essential to our methodology.)
It should be noted, however, that this decision theory does not include gquantified formulas, nor does it

support function symbols of user-defined types.

The proof procedure derived from our generalization of the S.-H.-G. theorem can be viewed as a
means of reducing the proof of formulas in the typed first-order theory that the user has formulated to
the automatic proof of formulas in the underlying unquantified decision theory we have just described.
Informally speaking, the S.-H.-G. theorem states that a formula of predicate calculus is valid if and only
if some disjunction of instances of its validity Skolem form is tautological. The instances must replace
variables in the Skolem form with terms in the Herbrand Universe of the formula. The generalization of
the theorem to deal with formulas in our typed language is stated similarly, but requires that

i. Each variable be instantiated with an expression whose type is a subtype of that of the variable, and

il. Each instance typechecks.

The generalization states that the given formula is valid according to the semantics defined in the
last section if and only if some disjunction of instances satisfying (i) and (ii) above is true, considered as o
formula in the underlying decision theory, where it is understood that symbols of a subtype of BOOL are
considered to be of type BOOL, symbols of a subtype of INTEGER are considered to be of type INTEGER,
and all other symbols are considered to be of type RATIONAL. In effect, the generalization holds that
once the instances have been typechecked, all of the type information other than that distinguishing
RATIONALs, INTEGERSs, and BOOLs can be stripped away.

The theorem immediately gives rise to a proof procedure: with assistance from the user, appropriate
instances of the Skolem form of the theorem to be proved (together with instances of any axioms or
lemmas needed to prove it) are formulated, disjoined, and submitted to the underlying decision procedure.
A detailed description of the decision procedure is given in [Sho 82].

Orperationally , the user is saved from any details of this process other than selecting appropriate
instances. In particular, the process of Skolemization is completely transparent to him, as are the
disjunction of instances and the submission of this disjunction to the underlying decision mechanism.
The user is thus free to reason exclusively at the level of his first-order typed theory.

As an illustration, let us return to the example from the theory of Intervals presented in Section 2.1.
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We prove the simple theorem that every interval with an end point greater than or equal to the beginning
point contains at least one number as a member. Figure 2 shows the expression and proof of this theorem.
Line 23 encodes the theorem within the theory of Intervals previously defined. As expected, one proves
a formula of the form 3z P(z) by demonstrating some value v such that P(v). In this case, the user
must observe that, from (GREATEREQP J ]) in the antecedent, axiom A3 defining Interval membership,
and the definition given in Al of the Interval constructor MAKE.INTERVAL, one can determine that the
beginning interval value I satisfies the formula (MEMBER | (MAKE.INTERVAL I J)). In line 24, the
user invokes the PR command to construct this proof. The system then prompts the user for the needed
substitutions.

93. (DF THEOREM (IMPLIES (GREATEREQP J I) .
(EXISTS K (MEMBER K (MAKE.INTERVAL I J)))))

21. (PR THEOREM
Al
A3)

Want instance for THEOREM? Y
K/ 1
Want instance for A17 Y
Y/
X/1
Want instance for A3? Y
11/ (MAKE.INTERVAL 1 J)

I/

Proving:
180 conses
.2 seconds
Proved

Figure 2

4 The Proof of SIFT

SIFT (Software-Implemented Fault Tolerance)[Wen 78| is a reliable aircraft flight control computer
system. SIFT uses five to eight Bendix BDX930 computers, each equipped with its own private storage.
A broadcast communication mechanism allows each processor to transmit its results to a buffer area in
each processor. The design is fully distributed, with no common buses, no common clocks, no common
interrupt or synchronization registers, no common storage, and no physical means of isolating a faulty
processor. The SIFT processors (physically) share only the ability to communicate with one another.

In SIFT, fault masking, detection, and reconfiguration are all managed by software. Safety-critical
tasks are replicated on three or more processors, with all processors voting on the results of each redundant
computation. A Global Executive task, which is itself replicated, is responsible for fault diagnosis on
the basis of error reports irom the voting software, and for selecting a new configuration excluding the
precessors deemed to be faulty. The result of this reconfiguration is that tasks are shifted from faulty
processors to those still working. Every processor votes on the results of the Global Executive and adjusts
its task schedule accordingly. 23



‘SIFT’s processors run asynchronously; each contains its own private clock. The software must
maintain a loose synchromnization to within approximately 50 microseconds, and each processor runs
a task periodically to resynchronize its clock with those of the other processors in the configuration.
Care was taken in the design to ensure that, even under fault conditions, all working processors retain
synchronization and remain consistent in their schedule and configuration.

4.1 The Design Hierarchy of SIFT

The problem of specification credibility in the proof of SIFT is addressed through the use of hierar-
chical design specification and verification. This approach allows incremental introduction and verification -
of design aspects — making a step-by-step connection between the high-level, abstract view of the system
to the detailed control and data structures employed in the implementation. Figure 3 illustrates the
SIFT design hierarchy. At present, the STP system does not provide specific mechanical support for the
hierarchical specification structure; we discuss future work in this direction in Section 4.

The 10 Specification, the most abstract functional description of the system, asserts that, in g safe
configuration, the result of a task computation will be the eflect of applying its mathematical function
to the results of its designated set of input tasks, and that this result will be obtained within a real-time
constraint. Each task of the system is defined to have been performed correctly, with no specification of
how this is achieved. The model has no concept of processor (thus no representation of replication of tasks
or voting on results), and of course no representation of asynchrony among processors. The specification
of this model contains only 8 axioms.

The Replication Specification elaborates upon the IO Specification by introducing the concept of
processor, and can therefore describe the replication of tasks and their allocation to processors, voting on
the results of these replicated tasks, and reconfiguring to accommodate faulty processors. The specification
defines the results of a task instance on a working processor based on voted inputs, without defining any-
schedule of execution or processor communication. This model is expressed in terms of a global system
state and system time.

The Broadcast Specification develops the design into a fully distributed system in which each processor
has access only to local information. Each processor has a local clock and a broadcast communication
interface and buffers. The asynchrony among processors and its effect upon communication is modeled.
The specification explicitly defines each processor’s independent information about the configuration and
the appropriate schedule of activities. The schedule of activities defines the sequence of task executions
and votes necessary to generate task results within the required computation window. The Broadeast
Specification is the lowest level description of the complete multiprocessor SIFT system.

The PrePost Specification consists of specifications for the operating system for a single processor.
The specification, in terms of pre-condition/post-condition pairs, facilitates the use of sequential proof
techniques to prove properties of the Pascal-based operating system as a sequential program. These
specifications are very close to the Pascal programs, and essentially require the programs to “do what they
do”.

The Reliability Analysis is a conventional discrete semi-Markov analysis that calculates the probability
that the system reaches an unsafe configuration from the rates of solid and transient fauits and from the
reconfiguration rates. Neither this Reliability Analysis nor the other Fault and Error Models will be
described here.

A more detailed presentation of the SIFT specifications and their verification can be found in [MeS
32]. 24
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4.2 The Proof of the SIFT Design

Hierarchical proof of design involves axiomatically defining a mapping from functions and predicate
symbols of a level of the design to terms of the level below. One then proves each axiom of the higher

level as a theorem in the theory of the level below.

The most substantial portion of the verification of the IO Specification involved proof of the axioms
that define the results of tasks in a safe configuration. To derive these from the Replication level involved
a demonstration that task replication and majority voting suffice to mask errors in a safe configuration.
To do so required approximately 22 proofs, with an average of 5 premises necessary per proof, and 106
instantiations of axioms and lemmas used overall.

The proof of the relationship between the Replication Specification and the Broadcast Specification
was more challenging. This proof required demonstrating the consistency of information present in each
working processor (the set of processors still in the configuration, in particular), of the correct schedule to
be used, and of the results of past task iterations. Furthermore, the proof required showing that the various
processors, operating independently and asynchronously with only local information, can communicate
with each other without mutual interference, and can cooperate to produce a single global system defined
by the Replication Specification. It was also necessary to show that the task schedules were such that
the task results are always available in other processors when required. The derivation of the Replication
axioms involved 56 proofs, with an average of 7 premises each, and 410 instantiations of axioms and

lemmas overall.

The proof of the relationship between the Broadcast Specification and the PrePost Specification was
easier. Most of the interest centered on the mapping between the properties of the changing values of
variables in the Pascal system and the properties of the Broadcast model’s more abstract state functions
which are explicitly parameterized by time and processor. A futher complication concerned mapping the
functional representation of data structures in the Broadcast model to the (finite) Pascal data structures.
Derivation of the necessary Broadcast axioms involved 17 proofs, with an average of 9 premises each, and
148 instantiations overall. The proof of the Pascal programs from the PrePost Model specifications used
conventional verification condition generation.

5 Future Work

As a result of experience with both design and code proof in the SIFT effort, several improvements
and changes to STP are contemplated. We intend to implement decision procedures for an expanded set of
primitive theories - all syntactically characterizable. We envision doing this at least for a large fragment of
set theory (following the work of Ferro and Schwartz [FeS 80]), sequences, and tuples. Mechanical support
for induction schemes is also needed. The user currently can introduce "induction” axioms, but with no
implied semantics. We also anticipate providing direct mechanical support for hierarchical development.

Improvements to the user interface will take several forms. In the current system, the user is forced
to specify theories in the abstract syntax of Lisp. For all but the heartiest of users, pure prefix syntax
is clearly unsatisfactory. We are currently defining an external, enriched specification language and
a corresponding reduction to the current type theory. The language will contain explicit support for
hierarchical specification, theory encapsulation, scoping, and implicit state; it will support SPEC[AL-hke
state-machine specifications [LRS 79] as a sublanguage.

A zraphics interface is contemplated to assist in constructing and manipulating theories and libraries
of theories. In addition, our experience with code proof indicates that forcing the user to reason at the level
of formulas mechanically generated by a VCG is doomed to failure. Reasoning at this level is antithetical
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to our philosophy of man-machine discourse at the level of user conceptualization - in this case, the level
of the program structure. We intend over the next year to experiment with user interaction at the level of
path (and subpath) assertions within the program structure, hoping that this will achieve in the program
domain what was gained in the present system by hiding the internal first-order/ground formula mapping
from the user in present design proof.

Finally, we intend to supplant after-the-fact mechanical support for complete proof construction with
incremental proof construction. Our goal is to replace, insofar as possible, explicit user instantiation of
symbols with a formal language in which the user can incrementally construct and apply a high-level proof
strategy. With this approach, we believe we have a more efficient proof strategy while requiring less effort
on the user’s part. In this way, we hope to preserve the man-machine balance as we increase the user’s
capability to formulate and reason about larger conceptual steps within the theory.
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STP Theorem Prover--Command Interface

Command Reference List for STP

Declaration Commands
DTV(symbol) (Declare Type Symbol)

Declares symbol to be a type variable. Symbol must be atomic and not presently declared as a
type or type variable.

DT(symbol [(typevarl, typevar2 ... typevarn)]) (Declare Type)

Declares symbol to be a new type. Symbol must be atomic and not presently declared as a type
or type variable. If the optional list (typevarl typevar2 ... typevarn) is provided, symbol is
declared as a parameterized type. In this case, n must be at least 1 and each typevari must be
prescntly declared as a type variable. The typevari's need not be distinct.

DST(symbol [(typevarl typevar2 ... typevarn)] typexp) (Declare SubType)

Declares symbol to be a subtype of the type given by the type expression typexp. Symbol must
be atomic and not presently declared as a type or typevariable. If the optional list (typevarl
typevar2 ... typevarn) is provided, symbol is declared as a parameterized subtype of typexp. In
this case, n must be at least 1 and each typevari must be presently declared as a type variable.
Typexp must be a legal type expression. The set of parameters of the declared subtype must be
identical to the set of type variables occurring in typexp. (In particular, if no parameter list is
given, typexp must contain no occurrences of type variables).

DSV(typexp symbol) (Declare Symbol Variable)

Declares symbol to be a variable of type typexp. Symbol must be atomic and not presently
declared as a variable or function symbol. Typexp must be a legal type expression.

DS(typexp symbol (typexpl typexp2 ... typexpn)) (Declare Symbol)

Declares symbol to be function symbol of return type typexp and argument types typexpl,
typexp2, ... typexpn. Symbol must be atomic and not presently declared as a variable or function
symbol. Typexp, typexpl, ... typexpn must be legal type expressions. n may be zero, in which
case symbol is declared as a constant. In this case, the third argument to DS need not be
provided. Note that this is not the same as declaring a symbol variable. Unless n is 0, each type
variable occuring in the return type typexp must occur as a type variable of at least one of

typexpl typexp?2 ... typexpn.
DD(typexp symbol (varl var2 ... varn) exp) (Declare Definition)

Declares symbol as a defined function symbol of type typexp with formal parameter list (varl
var2 ... varn) and body exp. Symbol must be atomic and not presently declared as a variable or
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function symbol. typexp must be a legal type expression. Each vari must be presently declared
as a variable, and exp must be legal expression containing at least one occurrence of each vari. N
may be zero. The declaration causes symbol to be declared per

DS(typexp symbol (typel type2 ... typen))

where typel, type2, ... typen, respectively, are the types of varl, var2, ... varn. Note that since
exp must be a (presently) legal expression, symbol cannot be defined recursively.

The body exp must be a legal symbolic expression not containing any quantifiers. The type of the
body need not be the same as typexp. However, the expression (EQUAL symbol exp) must be a
legal symbolic expression (where symbol is assumed to be declared as above.)

DF(name formula) (Declare Formula)

Associates name with formula. Name must be atomic, and not currently associated with a
formula. Formula must be a legal expression of type BOOL. The status of name is initialized to

UNPROVED.
DA(name formula) (Declare Axiom)

Associates name with formula, and changes its status to AXIOM. Equivalent to: DF(name
formula) CS(name AXIOM)

DC(newname oldname) (Declare Copy)

Associates newname with the formula with which oldname is currently associated. Newname
must be an atomic symbol not presently associated with any formula, and oldname must be
presently associated with a formula. Equivalent to:

DF(newname form)
where form is (FORMULA oldname).
UDT(symbol) (UnDeclare Type)

Undeclares type or type variable symbol. Symbol must currently be declared as a type or type
variable, but must not be referred to in the declaration of some other presently declared type or

symbol.
UDS(symbol) (UnDeclare Symbol)

Undeclares function symbol or variable symbol. Symbol must currently be declared as a function
symbol or variable, but must not be referred to in the declaration of any presently declared
formula. If symbol was declared by a DD, the associated definition is lost.

UDF(symbol) (Undeclare Formula)

Undeclares the formula associated with symbol. Symbol must currently be associated with a
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formula. The status of all formulas whose proof depends upon (either directly or indirectly) the
undeclared formula is changed to UNPROVED.

Commands Associated with Proving
PR(form form1 form?2 ... formn) (PRove)

Attempts to prove the formula form using forml, form?2, ..., formn as hypotheses. N may be
zero. Form must be either the name associated with a presently declared formula, or a list of the
form

(name sub)

where name is associated with the formula to be proved, and sub is a substitution to be applied to
the free variables in the validity skolem form of that formula before the proof is attempted. Sub
must be of the form ((varl term1)(var2 term2) ... (varn termn)) where each vari is one of the free
variables, and termi is a legal expression. The vari's must be distinct, but need not include all of
the free variables. The expression obtained by substituting each termi for vari in the validity
skolem form of the formula associated with name must be a legal expression (i.e., must
typecheck.) In addition, the type of each termi must be a subtype of some instance of the type of
vari. Further restrictions and conventions regarding the termi's are discussed below.

In the case where form is an atom rather than of the form (name sub)), if the named formula has
free variables in its validity skolem form, the user is asked whether he desires an instance. If so,
he is prompted for a substitution variable by variable. If no substitution is desired for a given
variable, the user can so indicated by pressing carriage return.

Similarly, each of the hypotheses form1, form2, formn may be either the name of a declared
formula, or a list of the form (name sub). Here, however, sub must be a substitution for the free
variables of the satisfiability skolem form of the named formula, as opposed to the validity
skolem form. Once again, if no list is supplied, the user is asked whether he desires an instance.

The formula submitted to the theorem prover consists of the implication of the instantiated
formula to be proved by the conjunction of the instantiated hypotheses. (Upon completion of the
PR command, this formula is the value of the atom IMPLICATION. A version of
IMPLICATION with all defined symbols replaced by their definitions is given by
EXP.IMPLICATION). If the proof is successful, the status of form (or the first element of form, if
form is a list) is changed to PROVED. Otherwise, the status is unchanged.

Proof Debugging Commands
CHECK MONITOR

Enters the CHECK MONITOR subsystem. This subsystem provides some help in discovering
why a proof in STP has failed. After a proof in STP has failed, calling the function
(CHECK.MONITOR) will place the user in a subsystem which provides information about the
failed proof. While in the CHECK.MONITOR, the user is prompted for a command by a "*".
The subsystem commands are E, PP.PR, PP.PR.ATTEMPT, QI, QF, PR, and PC.
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E

The E command exits the CHECK.MONITOR.

PP.PR

The PP.PR command prints the conclusion and each premise along with a formula number (the
conclusion being numbered zero) and the substitutions for each formula.

PP.PR.ATTEMPT

The PP.PR.ATTEMPT command prints the information in PP.PR along with the instantiated
versions of each formula.

(QI number)

The QI command is typed in parentheses along with a number as in (QI 3) and prints the
substitutions and instantiated version of the numbered formula, as in PP.PR.ATTEMPT.

(QF name)

The QF command is parenthesized along with a formula name as in (QF PREMISE1) and prints
the uninstantiated version of the named formula.

(PR number) or (PR numberlist)

The PR command is parenthesized and takes either a single number as an argument as in (PR 3),
a list of numbers as in (PR (1 2 3)), or (PR ALL). This command attempts to check the
applicability of each (specified) numbered premise in the proof by assuming the proof proceeds
through the use of Modus Ponens.

(PC number) or (PC numberlist)

The PC command is similar to the PR command and takes the same type of arguments. It
checks the applicability of premises assuming the contrapositive direction (i.e., attempts to show
that the consequent is false and thus the antecedent is also false).
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Specifying and Verifying Ultra-Reliability
and Fault-Tolerance Properties

Richard L. Schwartz and P.M. Melliar-Smith

Abstract

A methodology to rigorously verify ultra-reliability and fault-tolerance system proper-
ties is described. The methodology utilizes a hierarchy of formal mathematical specifications
of system design and incremental design proof to prove the system has the desired
properties. A small example of the approach'is given, and the application of the methodol-
ogy to the large-scale proof of SIFT, a fault-tolerant flight control operating system, is
discussed.

1 Introduction

How does one begin to substantiate a claimed Mean Time Between Failures (MTBF)
of 2 million years? This was the problem facing the designers of SIFT [1]. Clearly,
rates of failure this small are beyond the point where testing and fault injection can
suffice.” Validation by fault injection, while necessary, is unlikely to convince one that
the reliability requirements have been met.

Substantiation of such an ultra-reliability requirement must be based on some form
of analytic reliability analysis. Discrete Markov analysis is frequently used to analyze
system fatlure and recovery transition rates. Because of the normally quite large number
of actual system states and failure modes, one typically uses an extrapolation from fault
rates and system states that are easier to measure.

The validity of this extrapolation depends on a number of assumptions, and, at
the desired level of reliability, even “minor” violations of the assumptions can have

This work was supported by the NASA Langley Research Center under Contract NAS1-15528

*Indeed, this has been referred to as the “Smithsonian Experiment”.
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significant effects on the reliability achieved. Thus the assumptions must themselves be
quite rigorously substantiated if the claimed reliability is to be believed. For instance,
one important assumption of the Markov analysis is that the occurrence of faults is well
described by a Poisson model with complete independence between processors.

The validity of the Markov analysis depends also on the assumptions (1) that the
states and the transitions of the Markov model correspond accurately to the actual system,
and (2) that the states in which system failure is possible are correctly identified. But
this correspondence is far from obvious: actual systems have very many states with many
complex transitions between them. Without some means to reconcile the assumed states
and transitions of the Markov analysis with those of the real system, one can produce
highly optimistic reliability estimates.

In attempting to substantiate the ultra-reliability requirement of SIFT, we employed
a three-part methodology. The first of these is a demonstration that, so long as a system
safe predicate remains true, the system performs the desired flight control function, even
though one or more processors may be faulty. This is a correctness property for the
function performed by the system.

The second is a demonstration that the Markov analysis computes an upper bound
on the probability that system safe becomes false. This is a correctness property for
the probabilistic reliability analysss of the system.

The third and last step in the methodology is to prove that each state and transition
of the Markov model reflects a valid abstraction of the states and transitions of the

functional specification.

By showing that system safe remains true over the desired period and that its being
true implies the system will perform as desired, one can establish correct and reliable

system operation.

Because even a very small defect in the demonstrations could allow failures at an
unacceptable rate, these demonstrations must be performed with the rigor of mathemati-
cal proof. Our experience has been that it is simply too easy either to overlook or abstract
details of system operation inappropriately. A formal, unambiguous, specification and a
formal system of mathematical deduction is necessary to attain the degree of confidence
expected for critical system components. Run-time validation, (i.e., testing) techniques
simply cannot be used to ensure that software, operating on a working processor, will per-
form as specified. Ezhaustive software testing being impractical, a rigorous methodology
for specifying and proving properties of all possible program behavior becomes necessary.

The need for formal mathematical proof to ensure the desired functional and reliability
requirements presents two major issues:

» How does one define the criteria sufficient to ensure the correct functioning of the
system?
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» How does one prove that the criteria are satisfied by the actual system?

The first issue is crucial if the formal verification effort is to have any practical
significance. Even as a noncomputer scientist, one must have confidence, that the formal
specifications, stating what is meant by the correct functioning of the system, in fact
reflect the intended behavior. That a formal specification expresses what the system
designer intuitively means must, in the end, be determined by inspection. A formal
specification must therefore be believable if rigorous mathematical correspondence to the
specification is to ensure the desired effect.

The larger and more complex the system, the more acute the problem becomes.
Specifications reflecting the detailed behavior of the system allow the most straightforward
formal verification effort, but it is difficult to ensure that low-level specifications embody
what is meant by the proper functioning of the system. Very high-level specifications,
abstracting from the details of the system, are necessary if we are to state the overall func-
tional and fault-tolerance properties of the system in a way that can be understood and
believed. The problem then becomes one of reconciling the very high-level specifications
with the detailed transformations performed by the programs of the actual system.

In order to state high-level system specifications that can be shown to be consistent
with the actual program, one must formulate not just a single specification of the sys-
tem, but a hterarchy of specifications. Our approach is to state a tiered set of system
specifications, as illus