
NASA Technical Memorandum 85896

NASA-TM-8589619840017494

A Hardware/Software Simulation
for the Video Tracking System of
the Kuiper Airborne Observatory
Telescope
Glenn A. Boozer, Darrell D. McKibbin, Michael R. Haas
and Edwin F. Erickson

February 1984

LIBRARY COpy
..JUfIJ 1 1984

.LA.NGLEY RESEARCH CENTER
LIBRARY, NASA

HAMeTO~L IjIRGIN.lA

NI\SI\
National Aeronautics and
Space Administration

NASA Technical Memorandum 85896

A Hardware/Software Simulation
for the Video Tracking System of
the Kuiper Airborne Observatory
Telescope
Glenn A. Boozer, Boozerco, San Jose, California
Darrell D. McKibbin, Ames Research Center, Moffett Field, California
Michael R. Haas, Mycol, Incorporated, Sunnyvale, California
Edwin F. Erickson, Ames Research Center, Moffett Field, California

NI\S/\
National Aeronautics and
Space Admin'istration

Ames Research Center
Moffett Field, California 94035

1'1 <j'-/-~.;{..j-:-") to Z;-=tf::::

TABLE OF CONTENTS

1.0 SUMHARY

2.0 GETTING STARTED.

2.1 Files Required.
,

2.2 Changes to the Data Acquisition Program.

Page

1

1

1

2

2.3

2.4

Compiling and Loading the Programs ..

Running the Programs.

2

3

3.0 AN OVERVIEW OF THE SIMULATOR 4

4.0 OPERATING THE SIMULATOR.•

5.0 PROGRAM NSIM, PROGRAMMER'S NOTES

5.1 Initialization.

5.2 EXEC CPU Common

4

6

6

6

5.3 Simulator Control Box . 6

5.4 TBLT and BLT Requests 6

5.5 Errors •••..••.. 7

6.0 THE SIMULATOR CONTROL BOX DRIVER .. 7

6.1 Overview.....•••. 7

6.2 Hardware Configuration.•.

7.0 THE SUBROUTINES SEXEC, TBLT, AND BLT

7

7

7.1

7.2

7.3

Overview.....

Initialization. .

Class I/O • • . .

7

8

8

8.0 HARDWARE AND SOFTWARE REQUIREMENTS .

9.0 SIMULATOR CONTROL BOX HARDWARE ..

8

9

10.0 APPENDIX, PROGRAM SOURCE LISTINGS •.

10.1 Source Listing for Program NSIM .

iii

11

11

10.2 Source Listing for the Simulator Control Box Driver · · 19

10.3 Source Listings for Subroutines TBLT, BLT and SEXEC · · 21

11.0 REFERENCES . . . · · · · · 26

12.0 TABLE • · · · 27

13.0 FIGURES. 28
~

· · · . . · · .

iv

1.0 SUMMARY

This simulator was created so that C-141 KUiper Airborne Observatory (KAOj
ref. 1) investigators could test their Airborne Data Acquisition and Management
System (ADAMS; ref. 2) software on a system which is generally more accessible
than the ADAMS on the plane. An investigator can currently test most of his data
acquisition program using the data computer simulator (ref. 2) in the Cave. (The
"Cave" refers to the ground-based computer facilities for the KAO and the
associated support personnel.) The main Cave computer is interfaced to the data
computer simulator in order to simulate the data-Exec computer communications
(ref. 2). However, until now, there has been no way to test the data computer
interface to the tracker. The simulator described here simulates both the KAO
Exec and tracker computers with software which runs on the same Hewlett-Packard
(HP) computer as the investigator's data acquisition program. A simulator control
box is hardwired to the computer to provide monitoring of "tracker" functions, to
provide an operator panel similar to the real tracker, and to simulate the 180 0

phase shifting of the chopper square-wave reference with beam switching. If run
in the Cave, one can use their Exec simulator and this tracker simulator.

The investigator's data acquisition program needs no modification to use
this simulator. The data program makes its normal calls to the standard tracker
and Exec subroutines. These subroutines, in turn, call simulator versions of the
tracker and Exec driver routines, which replace the standard versions at load
time. These driver routines communicate with a background program which replaces
the tracker and the Exec computers. This programming structure requires the
multitasking environment of RTE IVb (ref. 3), HP's disk based operating system.
An early version of the simulator software can also be run under BCS (ref. 4),
HP's memory resident operating system. However, this version does not provide as
good a simulation of the tracker, because the switches on the front panel of the
simulator control box are not always live.

The simulator control box has buttons and indicator LEDs for right beam, left
beam, nod enable, telescope steady, loss of track, Exec communications status, and
tracker communications status. To test a data acquisition program with an
infrared detector system and a chopped source on-line, run the chopper reference
through the simulator control box. The reference will switch phase when beam
switching occurs, thereby causing the demodulated detector signal to change
polarity in the data recording system. Thus, practical testing of the entire
experiment can be accomplished using the investigator's detector system and
software, the ADAMS (data computer) simulator, and the present telescope simulator
hardware and software.

2.0 GETTING STARTED

2.1 Files Required

The source files for use with the simulator are &NSIM, which contains the
main simulator program, &NBLIB, which contains the drivers for the simulator
control box, and &NSLIB, which contains replacement drivers for the standard
tracker and Exec drivers (in the investigator's data acquisition program).
Source listings for these routines are given in the Appendix. The routines &NSIM
and &NSLIB are written in Fortran IV, but &NBLIB is written in HP Assembly
(ref. 5). The Fortran files should work equally well under Fortran IV+.

1

2.2 Changes to the Data Acquisition Program

The telescope simulator software was designed so it can be used with an
investigator's standard data acquisition program. The only changes required are
to the· procedure used to load it. However, as described below, one change to the
investigator's data acquisition program is desirable.

When the investigator's data program is loaded and executed, the first call
to a tracker or Exec subroutine will run the simulator program, NSIM. However,
NSIM does not automatically stop when the data acquisition program is stopped.
It must either be explicitly stopped before the data program is run again, or the
data program must be slightly modified so that it will stop NSIM. The code
required is:

C
C••••• TELL THE SIMULATOR TO STOP
C

CALL SMOVE(20HBR,NSIM
CALL MESSS(IBUF,7)

, , " , 1,20, IBUF, 1)

These lines of code should be put at the very end of the data program, just
ahead of the 'STOP' or 'CALL EXEC(6), statement. They can remain in the program
permanently. If the simulator program is not running and this code is executed,
it will be ignored by the operating system. When adding this code, remember that
IBUF is an integer array which must be dimensioned 40 or more. Since this code is
the last to be executed, it can use any user defined array that is sUfficiently
large.

2.3 Compiling and Loading the Programs

The simulator program, NSIM, can be compiled with:

RU, FTN4, &NSIM, ,
RU,ASMB,&NBLIB,,-

and loaded with:

RU, LOADR, IINSIM

where the file #NSIM contains the following commands:

OP,LB
OP,DC
RE, %NSIM
SE, %NBLIB
EN

Then type 'SP,NSIM' to save the program on disk. NSIM needs to be loaded only
once, as it is the same for all investigators.

2

The data acquisition program and all of its subroutines can be compiled in
the usual manner. To load the program, the KAO utility subroutines TBLT AND BLT
must be replaced with the simulator versions of these same routines. To do this,
simply comment the appropriate lines out of the loader procedure file with a
double asterisk and relocate the module %NSLIB in their place. An example of a
generalized loader procedure file using the simUlator drivers is shown below.
The lines ' ••• ' indicate the location of the user's normal loader commands.

ECHO
OP, •••
OP, •••
RE, •••
SE, •••
SE, •••

,LOAD TRACKER LIBRARY,

**RE,R$BLT
**RE,R$TBLT
RE,%NSLIB

EN

To operate with the 'real' Exec when running on the Cave simulator, use the
command 'RE,R$BLT' in the loader procedure file to relocate BLT and then use
'SE,%NSLIB' to search for the simulator version of the tracker routine TBLT.

2.4 Running the Programs

To run the data acquisition program using the telescope simulator, program
NSIM must not be running, but must be RP'ed (ref. 6). To stop NSIM if it is
running, execute the command 'SYBR,NSIM' from the file manager (ref. 6). If NSIM
does not respond with "NSIM STOP", then it is 'stuck' and needs an 'OF,NSIM,8'
command issued from the file manager two times. Usually the first 'OF,NSIM,8'
command is sufficient, but the second one never hurts. NSIM can be RP'ed by
typing 'RP,NSIM' from the file manager. If this command returns a FMGR 023
error, the program is already RP'ed. In this case, ignore the error and proceed
with running the data acquisition program.

These commands can be put in a procedure file and 'transferred to' from the
file manager. The following procedure file will work for running a program called
NDATA:

:SYBR,NSIM
:OF,NSIM,8
:OF,NSIM,8
:RP,NSIM
:RU,NDATA

If the data acquisition program aborts with a SC05 error, NSIM was not RP'ed.

3

3.0 AN OVERVIEW OF THE SIMULATOR

This simulator was designed to simulate the rudimentary functions of the
tracker and the Exec. It does not provide a complete and thorough simulation of
either. However, it is very useful and has allowed us to find and correct many
obscure errors and to fine-tune our software. The one major area not simulated is
the raster-type tracker functions. These coUld be added at a later date if
desired. The simulator functions currently supported are:

The tracker:
Control the simulator control box LEDs

BNOD Turn on nod mode
MOVE Move the telescope (nod)
ERS Turn off raster scan or nod mode
STEDY Wait until telescope is steady
TRST Update the tracker status area of Data CPU common

Tracker communications up/down

The Exec:
Read the Exec housekeeping buffer
Exec communications up/down

The only Exec housekeeping words (ref. 2) that are updated are UT and RANG,
Universal Time and Rotation ANGle, respectively. The RANG variable is incremented
by 0.20 degrees each minute. The object label is defined as "NO
OBJECT(SIMULATOR)".

A flow diagram for a data acquisition program's interfaces with program NSIM
is given in figure 1. The only nonstandard routines in the data program are the
driver routines TBLT and BLT, which handle tracker and Exec communications,
respectively. The simulator versions of these routines call SEXEC (simulator
EXEC), whi.ch communicates with the simulator program (NSIM) using bidirectional
class READS and WRITES (ref. 7). The standard KAO routines do EXEC (ref. 7) reads
and writes to the appropriate logical units instead.

4.0 OPERATING THE SIMULATOR

The simulator control box operates much like the tracker, although the lights
are smaller and the buttons are in different places. When it is first turned on,
the lights can be in one of three possible configurations:

1) All lights on,
2) All lights off, or
3 Some lights on/off.

The cases 1 and 2 are normal. Case 1 occurs when the computer has been booted
and the simulator has not yet been run. Case 2 occurs when the simulator program
turned off all of the lights before terminating. Case 3 means that the simulator
program was aborted or is still running and needs to be stopped. To stop the
program, check that no one else is using it and then type 'SYBR~NSIM'. If the
message "NSIM STOP" is not displayed shortly, type 'OF,NSIM,8' twice.·

4

The simulator program displays "NSIM ON" on the terminal when it is started.
The lights on the simulator control box should then be as follows (from right to
left):

Bit Function Status

a Left Beam Off
1 Right Beam Off
2 Nod Mode Off
3 Telescope Steady On
4 Loss of Track Off
5 Exec Communications On
6 Tracker Communications On

Pressing a switch associated with bits 3, 4, 5, or ,6 should toggle the
corresponding light. Bits 0 and 1 are mutually exclusive and, in addition, are
controlled by bit 2. That is, if nod mode (bit 2) is turned off, then the left
(bit 0) and right beam (bit 1) lights will both be off. If nod mode (bit 2) is
enabled, either the left or right beam light will be on.

Note that bits 5 and 6, which simulate the Exec and tracker communications
status, respectively, are additions not found on the real tracker. Bit 5
simulates loss of Exec communications and bit 6 simulates loss of tracker
communications. The data terminal should display the appropriate error messages
when this occurs. This can be a good test of the error handling portion of a
data acquisition'program. Interesting tests are to change beams or turn nod mode
off while the data acquisition program is taking data. These types of errors do
not generate a 'Loss of Track' error, so the data program may be fooled.

If the simulator control box is powered on and all of the lights are off,
either everything Is okay or the cable that connects the box to the computer Is
not connected properly. If NSIM runs and says "NSIM ON" and no lights come on,
then the cable is probably disconnected.

If the lights come on in the correct configuration initially, but the
switches are not live, then the cable is probably connected, but the NSIM program
reacts as if the cable is disconnected. This can occur because NSIM was designed
to run quite well without the simulator box. There are three conditions that can
cause NSIM to act as if the the box is disconnected:

1) The simulator box is powered off,
2) The interconnecting cable is not connected at both ends, or
3) The toggle switch on the back of the control box is in

the 'bit 13' position.

If one of these conditions exists, NSIM will set the tracker
status to:

Exec communications Up
Tracker communications Up
Loss of track Off
Telescope steady On

5

To see NSIM set these defaults, toggle the 'bit 13' switch on the back of the
simulator box.

5.0 PROGRAM NSIM, PROGRAMMER'S NOTES

The simulator program is divided into five sections:

1) Initialization
2) Exec CPU Common
3) Simulator Control Box
4) TBLT and BLT requests
5) Errors

A source listing is provided in the Appendix. NSIM has a priority of 19. To
prevent it from dominating the CPU, it suspends itself for 20 msec within its
main loop.

5.1 Initialization

The NSIM run command looks like this:

"RU,NSIM,LU,177,CLASS NUMBER"

The LU passed in the run string is the logical unit of the terminal running the
data acquisition program. The '177' is used to make sure that NSIM was not run
from the file manager because NSIM is designed to run from the data acqUisition
program through TBLT and BLT subroutine calls. The class number passed in the run
string was assigned by the SEXEC subroutine ftom within the data acquisition
program. When properly run, NSIM prints "NSIM ON" and enters its main loop. For
a detailed description of the class I/O communications between NSIM and SEXEC, see
section 7.3

5.2 EXEC CPU Common

The variable UT (Universal Time) is updated approximately every 20 msec. The
variable RANG (Rotation ANGle) is incremented by 0.20 degrees each minute. The
object label is-defined as "NO OBJECT(SIMULATOR)" •.

5.3 Simulator Control Box

The simulator control box switches are polled approximately every 20 msec.
If any of the three conditions which cause the box to be 'disconnected' are
present (see section 4.0), NSIM will set the simulator to its default conditions.
If the simulator box is 'connected', its switches can be used to change the Exec
or tracker status.

5.4 TBLT and BLT Requests

The TBLT and the BLT requests are distinguished, as are the read and write
requests. If there is a read request, the data is read. If there is a write
request, a data header and the data are written.

6

5.5 Errors

If an error occurs in the initialization section, NSIM tries to deallocate
the class number. If an unrecognizable data header buffer is read, NSIM reports
"/NSIM: BAD DATA IN CLASS HEADER" on the data terminal and the contents of the
header record are printed. The 'bad' class buffer is cleared from the class queue
and a special error-reporting data header is sent to SEXEC. If there is not
enough system available memory (SAM) (ref. 8) for NSIM to send the requested data
to SEXEC, NSIM sends a message telling about the "SAM shortage" and then sends a
special error-reporting data header to SEXEC. Since these errors occur seldom,
if ever, subroutine SEXEC does not check for errors in the buffer, but simply
returns normally.

6.0 THE SIMULATOR CONTROL BOX DRIVER

6.1 Overview

The control box driver is written in HP Assembly and uses the $LIBR and $LIBX
system calls (ref. 7) to allow direct manipulation of the HP 12566B MicrocIrcuit
Interface card (ref. 9). This avoids the need for a special purpose driver that
would have to be incorporated into the operating system, thus defeating the
telescope simulator's main goal: transparency.

A source listing for the driver is given in the Appendix. The variable 'BOX'
(located on line 131 of the driver) corresponds to the select code of the
Microcircuit Interface when instal~ed in the simulator CPU backplane. The select
code of the slot containing the card can be found on the CPU chassis just to the
right of the card. It is an octal number, as is the variable 'BOX' (Consult the
Assembler Reference Manual (ref. 5) for information on using octal numbers).

6.2 Hardware Configuration

The HP 12566B Microcircuit Interface card with option 002, which provides for
the transfer of positive-true signals to and from the I/O device (ref. 9), should
be placed in an empty slot in the CPU backplane. If there is a priority
interrupt fence, the card should be placed above it. Remember to turn off the
power to the CPU before inserting or removing cards, or connecting cables. The
system's behavior should be unaffected by the installation of this card.

7.0 THE SUBROUTINES SEXEC, TBLT, AND BLT

7.1 Overview

The source listings for SEXEC, TBLT, and BLT are in the Appendix and a
diagram of program flow is given in figure 1. SEXEC is the simulator's EXEC
subroutine. SEXEC does all the class I/O between the data acquisition program
and NSIM. The arguments of subroutine SEXEC are different from those of an EXEC
call. The simulator versions of TBLT and BLT are similar to the standard TBLT
and BLT routines, except that the EXEC calls have been converted to SEXEC calls
and there are fewer possible error returns.

7

7.2 Initialization

The first call to SEXEC requests a class number for use in communicating
with NSIM and then schedules NSIM with an EXEC(10) call. This class number and
the logical unit of the data terminal are passed in the run string.

7.3 Class 1/0

A single class number is used to do bidirectional data transfers. NSIM
polls the class number with a class GET that leaves the data in the class buffer.
If the buffer isa header buffer and the header is intended for NSIM, then NSIM
will take the header buffer from the class buffer and do as directed by the
header. The header may indicate that a data buffer for NSIM is the next item in
the class queue. In that case, NSIM will also take the data buffer from the class
queue.

SEXEC puts a header buffer and a data buffer into the class queue. If SEXEC
is expecting a response from NSIM, SEXEC polls the class number in much the same
fashion as NSIM. When SEXEC gets the expected header buffer and data buffer,
SEXEC returns the appropriate data to TBLT or BLT, whichever called SEXEC.

If SEXEC detects an error-reporting header buffer, it removes it from the
queue and returns normally to its calling subroutine. This lack of error
checking on the part of SEXEC is generally not a problem, as this type of class

• 1/0 has proven extremely reliable.

8.0 HARDWARE AND SOFTWARE REQUIREMENTS

The following hardware is required:

1) HP 2115, 2116 OR 2117 Computer (HP 1000 M, E, OR F), and
2) HP 125668-002, Microcircuit Interface Card, Positive True (ref. 9),

and the following hardware is optional, but desirable:

3) Simulator control box,
4) Interconnecting cable.

The source code in the Appendix contains the interface card strap settings
and a description of the cable wiring. Chapter 9 gives a more detailed
description of the simulator control box and associated hardware.

The following software is required:

1) RTE-IVB Operating System,
2) &NSIM, Telescope Simulator,
3) &NBLIB, Simulator Control Box Driver,
4) &NSLIB, SEXEC and the Simulator versions of TBLT and BLT,
5) A Data Acquisition Program,
6) Regular Tracker Software.

8

9.0 SIMULATOR CONTROL BOX HARDWARE

The simulator control box provides monitoring of the HP 1000 computer output
bits and provides push-button control of the input bits. Note that this unit may
be used for any 1/0 monitoring purpose, as well as for telescope simulation.

A five-foot cable is provided to connect the simulator control box to the HP
1000 computer. At the HP computer a standard HP 48 pin connector (part of 1/0
card 12566-60025 option 002 kit) connects to the 1/0 card with HP cable 8120-1846
(also part of the 1/0 kit). The cable is terminated in a Cannon 20-41S MS 3126 F
connector, which mates with a Cannon connector on the simulator control box. For
laboratory work at Ames Research Center in Building 245, a similar cable is
connected to four 10-point terminal blocks. These terminal blocks are wall
mounted in the first floor breezeway of Building 245. The terminal blocks
furnish test points for all input and output bits. At the terminal blocks a very
long cable is connected to input bits 0 through 13. Bits 14 and 15 are not used
because the cable does not contain sufficient wires. This cable enters Room 115
from the breezeway and is long enough to use in Room 111.

Within the simulator control box, the HP computer output bits 0 thru 13 sink
current for light emitting diodes (LED). The LED's have current limiting
resistors connected to the positive 5 volt supply. When an HP computer output
bit is low (i.e., approximately 0 volts), the corresponding LED will be lit.

Bit 0 or 1 is selected as one input to an exclusive-or gate (ref. 10) by a
rear panel switch. The other input to the exclusive-or gate is a TTL level,
nominal square wave, chopper reference signal. This chopper signal is isolated
by an optical coupler connected to a front panel mounted BNC connector. Thus the
input chopper signal comes in through the BNC to the opto-isolator, which then
transfers the signal to the exclusive-or gate. The selected bit, 0 or 1, then
provides 0 0 or 180 0 phase shifting of the chopper signal. The output of the
exclusive-or gate in normal or inverse phase is fed to a panel mounted BNC
connector. For tracker simulation, bits 0 and 1 represent right and left beams
and are, therefore, the inverse of each other. Thus, the phase of the chopper is
switch selectable to match either beam position and inverts with beam change,
simulating the phase shift of the detector signal relative to the chopper
reference when the telescope chopper switches position.

Within the box, HP input bits 0 thru 13 are connected to panel mounted,
grounded, normally open, push-button switches. Thus, pushing a button
corresponding to a particular bit causes that input to go to 0 volts. No pull-up
resistors are provided, since source currents from the HP computer inputs provide
pull-up. Also, no debounce circuitry is provided and software must included
debouncing.

Input bit 13 may be selected as a special, hookup test bit by using a second
rear panel switch. This switch connects a transistor to input bit 13. When
power is on, this transistor is on, and if both ends of the cable are connected,
the HP computer will read input bit 13 as low (i.e., approximately 0 volts). If
the simulator power is off, or one or both ends of the cable are disconnected,
input 13 will read high (i.e., approximately 5 volts). Therefore, when the rear
panel switch is closed, bit 13 indicates that the simulator is connected to the
computer and is powered.

9

The simulator control box also contains a Datel model UPM-5/1000. 5.0 volt.
1.0 amp power supply, a power indicator light, a power switch, and a 0.5 amp fuse.
Figures 2 through 5 and Table 1 show the front panel and circuit diagrams for the
simulator box.

For tracker simulation the switches on the back of the box are in the ground
and bit 0 positions. These are the upward positions of the switches.

10

10.0 APPENDIX, PROGRAM SOURCE LISTINGS

10.1 Source Listing for Program NSIM

LET'S DEFINE SOME USEFUL VARIABLES.

SEE BLOCK DATA FOR COMMENTS ABOUT WHAT EXEC COMMON WORDS ARE USED
FOR WHAT.

SEE BLOCK DATA FOR COMMENTS ABOUT WHAT TRACKER COMMON WORDS ARE USED
FOR WHAT.

TRACKER COMMON

EXEC SIMULATOR (831021.1525)

EQUIVALENCE(TCOM(54),IPAUS)
EQUIVALENCE(TCOM(55),IRSON)
EQUIVALENCE(TCOM(56),NODON)
EQUIVALENCE(TCOM(57),LR)
EQUIVALENCE(TCOM(58),LOSS1)
EQUIVALENCE(TCOM(78),IRSX)
EQUIVALENCE(TCOM(79),IMOVE)
EQUIVALENCE(TCOM(80),IXNOD)

EQUIVALENCE(ECOM(8),IYEAR)
EQUIVALENCE(ECOM(151),UT)
EQUIVALENCE(ECOM(165) ,RANG)

EQUIVALENCE(IBUF(1),DEST)
EQUIVALENCE(IBUF(2),ICODE)

INTEGER TSUBF(15)
INTEGER MYNAME(3)
INTEGER IBUF(5)
INTEGER ITIME(5)

COMMON /TRACK/ TCOM(200)

COMMON IEXECC/ ECOM(500)

PROGRAM NSIM(3,19), TRACKER AND
IMPLICIT INTEGER(A-Z)
REAL UT,RANG
LOGICAL IFBRK
EXTERNAL IFBRK

EXEC COMPUTER COMMON

SOME USEFUL EQUIVALENCES

FTN40001
0002
0003
0004
0005
0006
0007 C
0008 C
0009 C
0010 C
0011 C
0012 C
0013 C
0014
0015 C
0016 C
0017 C
0018 C
0019 C
0020 C
0021 C
0022
0023 C
0024 C
0025 C
0026 C
0027
0028
0029
0030
0031 C
0032 C
0033 C
0034 C
0035
0036
0037
0038
0039
0040
0041
0042
0043 C
0044
0045
0046
0047 C
0048
0049

11

DATA TSUBF/52,78,1,41.114,79,0,24,0,0,25,60,138,0,561

EQUIVALENCE(IBUF(3),CPU)
EQUIVALENCE(IBUF(4),ISUBF)
EQUIVALENCE(IBUF(5),SUBLEN)

TRACKER SUB FUNCTION OFFSETS INTO TRACKER COMMON
o MEANS I DO NOT KNOW WHAT THE OFFSET IS.

LOGICAL FUNCTION TO TEST TO SEE IF A BIT IS ON
IBIT(I,J)=(IAND(I,J).NE.O)

MAKE LAST SWITCH SETTING EQUAL TO CURRENT.

LAST SWITCH SETTINGS
LASTSW

EXUP/11
TRKUP/11

LOGICAL IBIT

CALL RMPAR(MYNAME)
LO=MYNAME(1)
I=MYNAME(2)

CALL TSGET(LASTSW)

CLASS=IOR(MYNAME(3),100000B)
CLASSW=IAND(MYNAME(3),077777B)
CLASSC=IOR(CLASS,40000B)
CALL CHGLU(LU)
CALLPNAME(MYNAME)
WRITE(LU,11) MYNAME
FORMAT(" 1", 2A2, A1 ,": ON")

WERE WE RUN BY NDATA?

LET'S SET UP SHOP.
FIRST, MAKE SURE THAT WE HAVE BEEN RUN FROM "NDATA" NOT THE KEYBOARD.

GET CURRENT SWITCH SETTING.

CLASS IS OUR CLASS NUMBER WITH THE 'NO WAIT' BIT SET.
CLASSC HAS THE "LEAVE THE BUFFER IN MEMORY BIT SET." JUST 'C'HECKING•

FUNCTIONS AND DATA

C
C DATA

DATA
DATA

C
C
C STORAGE FOR

INTEGER

0050
0051
0052
0053
0054
0055
0056
0057 C
0'058
0059 C
0060 C
0061 C
0062 C
0063 C
0064
0065
0066
0067
0068
0069 C
0070 C
0071 C
0072 C
0073 C
0074
0075 C
0076 C
0077 C
0078 C
0079 C
0080
0081
0082
0083 C
0084 C
0085 C
0086 C
0087
0088 C
0089 C
0090 C
0091 C
.0092 C
0093
0094
0095
0096
0097
0098
0099 11
0100 C
0101 C
0102 C

12

C
C
C DEALLOCATE THE CLASS NUMBER
C

C
C INCREMENT THE ROTATION ANGLE .20 DEGREES FOR EACH 1 MINUTE
C

UPDATE EXEC HOUSEKEEPING

IF(.NOT. IFBRK(I)) GOTO 40

IF NOT, KILL OURSELF.

IF(NSEC.EQ.ITIME(3)) GOTO 50
NSEC=ITIME(3)
RANG=RANG+.20

CALL EXEC(21,IAND(CLASS,017777B),I,1)
CALL TSPUT(-1)
STOP

CALL EXEC(21 ,CLASS,I,1)
CALL ABREG(A,B)
IF(A.GE.O) GOTO 30

CALL EXEC(11,ITIME,IYEAR)
UT=FLOAT(ITIME(4))+FLOAT(ITIME(3))/60.0

&+FLOAT(ITIME(2))/3600.0
&+FLOAT(ITIME(1))/360000.0

IF(MYNAME(1).EQ.2HNS .AND. MYNAME(2).EQ.2HIM .AND.
& MYNAME(3).EQ.2H) GOTO 20

WRITE(LU,21) MYNAME
FORMAT("I",2A2,A1,": TYPE 'RP NSIM', THEN TRY AGAIN!")
GOTO 30

IF(I.EQ.177) GOTO 19
WRITE(LU, 10) MYNAME
FORMAT("I",2A2,A1,

&": THIS PROGRAM MUST NOT BE RUN FROM THE FILE MANAGER")
STOP

READ THE CLASS BUFFERS UNTIL ALL OF THEM HAVE BEEN READ.

IS OUR NAME "NSIM"?

START MAIN LOOP

CHECK TO SEE IF THE BREAK FLAG IS SET.
IF IT IS, TRY TO DEALLOCATE THE CLASS NUMBER.
TURN OFF ALL TRACKER LIGHTS

0103 C
0104
0105
0106 10
0107
0108
0109 C
0110 C
0111 C
0112 C
011319
0114
0115
0116 21
0117
0118 C
0119 C
0120 C
0121 C
0122 C
0123 C
0124 C
0125C
0126 C
0127 20
0128 C
0129 C
0130 C
0131 C
0132 30
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142 C
0143 C
0144 C
0145 C
0146 40
0147
0148
0149
0150
0151
0152
0153
0154
0155

13

IS THERE A CHANGE FROM THE LAST TIME WE LOOKED AT THEM?

THE SWITCHES ARE SOME HOW DIFFERENT NOW.
IS THE CABLE CONNECTED TO THE BOX??

SET SOFTWARE TO DEFAULT STATE.

PATTERN FOR LATER

IF(.NOT.IBIT(NOWSW,020000B)) GOTO 100

IF(NOWSW.EQ.LASTSW) GOTO 100

IF(RANG.GE.360.0) RANG=O.O

TRACKER TO CURRENT STATE AS PER THE SWITCHES
IF(IBIT(CHNGSW,lB) .AND. IBIT(NOWSW,lB)) LR=O
IF(IBIT(CHNGSW,2B) .AND. IBIT(NOWSW,2B)) LR=l
IF(IBIT(CHNGSW,4B) .AND. IBIT(NOWSW,4B)) NODON=MOD(NODON+l,2)
IF(IBIT(CHNGSW,10B) .AND. IBIT(NOWSW,10B)) IPAUS=MOD(IPAUS+l,2)
IF(IBIT(CHNGSW,20B) ~AND. IBIT(NOWSW,20B)) LOSS1=MOD(LOSS1+l,2)
IF(IBIT(CHNGSW,40B) .AND. IBIT(NOWSW,40B)) EXUP=MOD(EXUP+l,2)
IF(IBIT(CHNGSW,100B).AND. IBIT(NOWSW,100B)) TRKUP=MOD(TRKUP+l,2)

CALL TSGET(NOWSW)

CHECK THE STATUS OF THE CONTROL BOX SWITCHES.

READ SWITCHES ON BOX

SET TRACKER TO CURRENT SOFTWARE STATE
LED=lB
IF(LR.EQ.l) LED=2B
LED=LED+4B
IF(NODON.EQ.O) LED=OB

TRACKING ON STAR 1
TELESCOPE STEADY.
EXEC COMMUNICATIONS UP
TRACKER COMMUNICATIONS UP

IPAUS=l
LOSS1=0
EXUP=l
TRKUP=l
GOTO 110

THE CABLE IS DISCONNECTED.

C
C FIND WHICH SWITCH(ES) CHANGED
100 CHNGSW=IXOR(NOWSW,LASTSW)
C
C SET

C
C SAVE CURRENT SWITCH
110 LASTSW=NOWSW
C
C

0156
0157 C
0158 C
0159 C
0160 C
0161 C
0162 C
0163 C
0164 50
0165 C
0166 C
0167 C
0168 C
0169
0170 C
0171 C
0172 C
0173 C
0174 C
0175
0176 C
0177 C
0178 C
0179 C
0180 C
0181 C
0182 C
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208

14

C==
C==
C
C
C NOW FOR THE HARD PART.
C LET'S READ OUR CLASS NUMBER TO SEE IF THERE IS ANYTHING THERE FOR US.
C

THE BUFFER IS OURS, LET'S READ IT AND REMOVE IT FROM THE BUFFER.

C
C SET THE LED'S TO THEIR CURRENT VALUES.

CALL TSPUT(LED)

NDATA TREATES THEM

IS IT A READ OR A WRITE?

IF(A.LT.O .OR. DEST.NE.1) GOTO 10000

IF(IPAUS.EQ.1) LED=LED+10B
IF(LOSS1.EQ~1) LED=LED+20B
IF(EXUP.EQ.1) LED=LED+40B
IF(TRKUP.EQ.1) LED=LED+100B

IF(ICODE.EQ.1) GOTO 1000
IF(ICODE.EQ.2) GOTO 2000

CALL EXEC(21,CLASS,IBUF,5)

CALL EXEC(21,CLASSC,IBUF,5)
CALL ABREG(A,B)

THERE IS A BUFFER OUT THERE FOR US.

CHECK TO SEE IF THERE IS A BUFFER FOR US.

DES!= INTENDED DESTINATION OF THE CLASS BUFFER.
o = UNKNOWN TRANSFER. TRACKER IGNORES THESE.

AS A REQUEST TO RETRANSMIT THE DATA.
1 FROM NDATA TO NSIM
2 FROM NSIM TO NDATA

ICODE= READ OR WRITE TO EXEC OR TRACKER
1 READ
2 = WRITE

CPU= DATA TRANSFER IS INTENDED FOR TRACKER OR EXEC
1 TRACKER
2 = EXEC

ISUBF= SUBFUNCTION OF THE CALL
SUBLEN= SUB FUNCTION BUFFER LENGTH

C
C THE LEDS ARE OFF FOR 1 BITS AND ON FOR 0 BITS.
C WE SHALL INVERT THE BITS TO ACCOUNT FOR THIS.

LED=NOT(LED)

0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220 C
0221 C
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231 C
0232 C
0233 C
0234 C
0235 C
0236 C
0237 C
0238 C
0239 C
0240 C
0241 C
0242 C
0243 C
0244 C
0245 C
0246 C
0247 C
0248 C
0249 C
0250
0251 C
0252 C
0253 C
0254 C
0255
0256 C
0257 C
0258 C
0259 C
0260
0261

15

SEND THE HEADER FIRST.

SEND THE HEADER FIRST.

IS IT AN EXEC OR TRACKER READ?

IS IT AN EXEC OR TRACKER WRITE?

IF(ISUBF.NE.8) GOTO 20000
DEST=2
ICODE=ICODE
CPU=CPU
ISUBF=ISUBF
SUBLEN=SUBLEN
CALL EXEC(20,0,IBUF,5,I,I,CLASS)
CALL ABREG(A,B)

CONTINUE
IF(TSUBF(ISUBF).EQ.O) GOTO 20000
DEST=2
ICODE=ICODE
CPU=CPU
ISUBF=ISUBF
SUBLEN=SUBLEN
CALL EXEC(20,0,IBUF,5,I,I,CLASS)
CALL ABREG(A,B)
IF(A.EQ.-2) GOTO 20100

IF(TRKUP.EQ.O) GOTO 3100
CALL EXEC(20,0,TCOM(TSUBF(ISUBF)),SUBLEN,TRKUP,I,CLASS)
CALL ABREG(A,B)
GOTO 3200
CALL EXEC(20,0,0,1 ,TRKUP,O,CLASS)
CALL ABREG(A,B)
IF(A.EQ.-2) GOTO 20100
GOTO 10000

IF(CPU.EQ.1) GOTO 5000
IF(CPU.EQ.2) GOTO 20000
GOTO 20000

GOTO 20000

IF(CPU.EQ.1) GOTO 3000
IF(CPU~EQ~2) GOTO 4000
GOTO 20000

SEND THE DATA

3200

C
C
C THIS IS A READ FROM THE EXEC.
C
4000

3100

C
C
C THIS IS A READ FROM THE TRACKER.
C
3000

C
C
C IT IS A READ FROM US.
C
1000

C
C
C IT IS A WRITE TO US.
C
2000
C

0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284 C
0285 C
0286 C
0287 C
0288
0289 •
0290
0291 C
0292 C
0293 C
0294 C
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309 C
0310 C
0311 C
0312 C
0313
0314

16

C
C
C PAUSE THE PROGRAM FOR 20 MILLISECONDS
C THEN GO BACK TO THE START OF THE LOOP
C
10000 CALL EXEC(12,0,1,0,-2)

GOTO 20

READ THE DATA BUFFER.

TELL IT WE GOT JUNK.

BAD HEADER ERRORS WILL COME IN 2'S,MOST OF THE TIME.

LR=MOD(LR+1,2)

CALL EXEC(21,CLASS,I,1)

IRSON=IRSX
NODON=IXNOD
IF(IMOVE.NE.O)
IMOVE=O
GOTO 20

IF(TSUBF(ISUBF).EQ.O) GOTO 20000
IF(TRKUP.EQ.O) GOTO 5100
CALL EXEC(21 ,CLASSW,TCOM(TSUBF(ISUBF)),SUBLEN)
GOTO 5200
CALL EXEC(21,CLASSW,I,1)
GOTO 20

IF(EXUP.EQ.O) GOTO 4100
CALL EXEC(20,O,ECOM,SUBLEN,EXUP,I,CLASS)
CALL ABREG(A,B)
GOTO 4200
CALL EXEC(20,O,O,1,EXUP,O,CLASS)
CALL ABREG(A,B)
IF(A.EQ.-2) GOTO 20100
GOTO 10000

IF(A.EQ.-2) GOTO 20100

SEND A 'HUH' BUFFER TO NDATA.

SEND THE DATA

C
C
C WE HAD AN ERROR.
C
20000 WRITE(LU,20010) MYNAME,IBUF
20010 FORMAT("/",2A2,A1,": BAD DATA IN CLASS HEADER:",6I5)
C
C
C CLEAR OUT THIS 'BAD' BUFFER WITH OUR NAME ON IT.
C

C
C
C THIS IS A WRITE TO THE TRACKER.
C
5000

5100

4100

4200

C
C
C LET'S PRETEND THE TRACKER DOES WHAT EVER NDATA WANTS IT TO.
C
5200

0315
0316 C
0317 C
0318 C
0319 C
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365 C
0366 C
0367 C

17

THE EXEC COMMON IS DEFINED IN THE "ADAMS HANDBOOK", APPENDIX A.

THE DEFINITION OF TRACKER COMMON CAN BE FOUND IN THE FILE CALLED
"T*TRSC"

1=0
CALL EXEC(20,0,I,1,I,I,CLASS)
CALL ABREG(A,B)
IF(A.EQ.-2) GOTO 20100
GOTO 20

EQUIVALENCE(ECOM(8),IYEAR)
EQUIVALENCE(ECOM(151),UT)
EQUIVALENCE(ECOM(165),RANG)

TELL THE) WORLD.

IS A SAM SHORTAGE OVER HERE!")

REAL UT,RANG

COMMON IEXECCI ECOM(500)

EQUIVALENCE(TCOM(54),IPAUS)
EQUIVALENCE(TCOM(55),IRSON)
EQUIVALENCE(TCOM(56),NODON)
EQUIVALENCE(TCOM(57),LR)
EQUIVALENCE(TCOM(58),LOSS1)
EQUIVALENCE(TCOM(78),IRSX)
EQUIVALENCE(TCOM(79),IMOVE)
EQUIVALENCE(TCOM(80),IXNOD)

COMMON ITRACKI TCOM(200)

C
C
C WE ARE HAVING A SAM SHORTAGE.
C
20100 WRITE(LU,20110) MYNAME
20110 FORMAT("I",2A2,A1,": THERE

GOTO 20020
END
BLOCK DATA
IMPLICIT INTEGER(A-Z)

C
C
C TRACKER COMMON
C

0368 C
0369 20020
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391 C
0392 C
0393 CEXEC COMPUTER COMMON
0394 C
0395
0396 C
0397 C
0398 C
0399 C
0400 C
0401 C
0402 C
0403 C
0404 C
0405 C
0406 C SOME USEFUL EQUIVALENCES
0407 C
0408
0409
0410
0411
0412
0413
0414
0415
0416 C
0417
0418
0419
0420 c

18

0421 DATA ECOM(171) /2HNO/
0422 DATA ECOM(172) /2H 0/
0423 DATA ECOM(173) /2HBJ/
0424 DATA ECOM(174) /2HEC/
0425 DATA ECOM(175) /2HT(/
0426 DATA ECOM(176) /2HSI!
0427 DATA ECOM(177) /2HMUI
0428 DATA ECOM(178) 12HLAI
0429 DATA ECOM(179) 12HTOI
0430 DATA ECOM(180) 12HR)1
0431
0432 DATA IPAUS/11
0433
0434 DATA RANGI-.201
0435
0436 END

10.2 Source Listing for the Simulator Control Box Driver

ENT TSPUT,TSGET
EXT .ENTR,$LIBR,$LIBX

ASMB,R
NAM TSBOX,7 G. BOOZER TRACKER SIMULATOR BOX DRIVERS (830912.0908)

OUTPUT A WORD TO THE MICROCIRCUIT INTERFACE CARD.

SIMULATOR BOX DRIVER LIBRARY

FUNCTION

L LED
R LED
NOD MODE LED
STEADY LED
LOT LED
EXEC COMMUNICATIONS LED
TRACKER COMMUNICATIONS LED
N/U NOT USED NOW BUT IS WIRED
N/U
N/U
N/U
N/U
N/U

WHERE I IS A WORD WITH BITS
CORRESPONDING TO OUTPUT BITS.

BIT

o
1
2
3
4
5
6
7
8
9

10
11
12

CALL TSPUT(I)

CALLING SEQUENCE:

** &NBLIB
*

*
** TSPUT -- TRACKER SIMULATOR PUT.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034

19

NOT CONNECTED IN CABLE
N/U
N/C
N/C

FUNCTION

LEFT BEAM SWITCH
RIGHT BEAM SWITCH
NOD MODE SWITCHCH
TELESCOPE STEADY SWITCH
LOT SWITCH
EXEC COMMUNICATIONS SWITCH
TRACKER COMMUNICATION SWITCH
N/U NOT USED NOW BUT IS WIRED
N/U

. N/U
N/U
N/U
N/U
GROUND
N/C NOT CONNECTED IN CABLE
N/C

WHERE J IS A WORD WITH BITS
CORRESPONDING TO INPUT BITS.

BIT

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

13
14
15

BIT 13 IS AT GROUND POTENTIAL «ONLY» WHEN
THE CABLE IS PLUGGED INTO THE CONTROL BOX.
WHEN EITHER END OF THE CABLE IS DISCONNECTED,
BIT 15 IS FLOATING.

CALL TSGET(J)

NOTE:

CONNECTION

CALLING SEQUENCE:

INPUT A WORD FROM THE MICROCIRCUIT INTERFACE CARD.

MICROCIRCUIT INTERFACE STRAP SETTINGS

SKP

SKP

TSGET -- TRACKER SIMULATOR GET.

*
*
*
*

*
*
*
*
*
*
*

*
*==
*
*
*
*==
** STRAP

*

*

*

*
*
*
*

*
*

0035
0036
0037
0038
0039
0040
0041
0042
0043
0044 *
0045 *
0046 *
0047 *
0048 *
0049 *
0050 *
0051 *
0052 *
0053 *
0054 *
0055 *
0056 *
0057 *
0058 *
0059 *
0060· *
0061 *
0062 *
0063 *
0064 *
0065 *
0066 *
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087

20

*

END

SKP

*
*
*

SELECT CODE FOR MICROCIRCUIT CARD

TURN OFF INTERRUPT SYSTEM
AND MEMORY PROTECT

INPUT FROM MICROCIRCUIT CARD IN SELECT CODE BOX
PUT RESULT INTO CALLING PROGRAM BUFFER
TURN ON INTERRUPT SYSTEM AND MEMORY PROTECT
RETURN TO CALLING ROUTINE.

TURN OFF INTERRUPT SYSTEM
AND MEMORY PROTECT

GET WORD TO BE OUTPUT
OUTPUT TO MICROCIRCUIT CARD IN SELECT CODE BOX
TURN ON INTERRUPT SYSTEM AND MEMORY PROTECT
RETURN TO CALLING ROUTINE.

DIC DON'T CARE (PREFER FACTORY DEFAULT)
DIC
DIC
B
NIC NO CONNECTION
NIC
N/C
N/C
A

*
*
BOX EQU 12B
*
*

SKP

*

* -------
* Wl
* W2
* W3
* W4
* W5
* W6
* W7
* W8
* W9
*
*
*
*

J NOP
TSGET NOP

JSB .ENTR
DEF J
JSB $LIBR
NOP
LIA BOX
STA J,I
JSB $LIBX
DEF TSGET

I NOP
TSPUT NOP

JSB .ENTR
DEF I
JSB $LIBR
NOP
LDA 1,1
OTA BOX
JSB $LIBX
DEF TSPUT

0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134

10.3 Source Listings for the Subroutines TBLT, BLT, and SEXEC

The original lines of code are commented out with the 'CB' character string.

0001 FTN4X

21

5
2
6

FAILURE

IERR
IERR
IERR

1
5
2
6
4
3

IERROR=SEXEC(IRW,LUTRK+ISUBF*64,IBUF,ILEN)

IERR = 7
IF (IRW.NE.1 .AND. IRW.NE.2) RETURN
CALL EXEC(IRW+100000B,LUEXEC+ISUBF*64,IBUF,ILEN)
GO TO 900
CALL EXEC (13,LUEXEC,IST1,IST2,IST3)
IEQT5 = lAND (IST1,377B)
IERR = 1
IF (IAND(IEQT5, 10B) .EQ. 10B
IF (IAND(IEQT5, 20B) .EQ. 20B
IF (IAND(IEQT5, 40B) •EQ. 40B

SUBROUTINE BLT(IRW,ISUBF,IBUF,ILEN,IERR)
*,GAB &NSLIB Block transfer to EXEC (831021.1217)

INTEGER SEXEC

'DATA LUEXEC/101

ERROR, ASSUME TRACKER COMMUNICATIONS
IF(IERROR.EQ.O) IERR=4
RETURN
END

C
C IF

CB
CB
CB11
CB
CB
CB
CB
CB

C
C ASSUME NO ERRORS

IERR=1

SUBROUTINE TBLT(IRW,ISUBF,IBUF,ILEN,IERR)
*,GAB &NSLIB Block transfer to Tracker(831021.1217)

INTEGER SEXEC
DIMENSION IA(2)
EQUIVALENCE (AB,IA),(IB,IA(2))
DATA LUTRK/201
IERR = 7
IF (IRW.NE.1 .AND. IRW.NE.2) RETURN

CB CALL EXEC(IRW+100000B,LUTRK+ISUBF*64,IBUF,ILEN)
CB GO TO 900
CB11 CALL EXEC (13, LUTRK, IST1 , IST2, IST3)
CB IEQT5 = lAND (IST1,377B)
CB IF (IEQT5 .EQ. 0) IERR
CB IF (IEQT5 .EQ~ 8) IERR
CB IF (IEQT5 .EQ.16) IERR
CB IF (IEQT5 .EQ.32) IERR
CB IF (IEQT5 .EQ.64) IERR
CB IF (IEQT5 .EQ.128) IERR
CB RETURN
CBC Exec error
CB900 CALL ABREG(IA,IB)
CB WRITE(1,903) AB,IRW,LUTRK,ISUBF,ILEN
CB903 FORMAT('EXEC error in TBLT: 'A4
CB *'EXEC('13'+100000B, 'I2'+'I2'*64,IBUF, '14') ')
C
C
C

0002
0003
0004
0005 CB
0006 CB
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038 C
0039
0040
0041
0042 C
0043
0044 C
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054

22

CB IF (lAND (IEQT5, 100B) •EQ. 100B) IERR 4
CB IF (IAND(IEQT5,200B) .EQ~ 200B) IERR 3
CB RETURN
CBC Exec error
CB900 CALL ABREG(IA,IB)
CB WRITE(1,903) IA,IB,IRW,LUEXEC,ISUBF,ILEN
CB903 FORMAT('BLT --) '2A2' Error on '
CB +'EXEC('I3'+100000B, 'I2'+'I2'*64,IBUF, '14')')
C
C
C

FAILURE

COMMUNICATE WITH THE EXEC/TRACKER SIMULATOR PROGRAM
CALLED "NSIM" USING CLASS I/O.

IERROR=SEXEC(IRW,LUEXEC+ISUBF*64,IBUF,ILEN)

INTEGER FUNCTION SEXEC(ICOD,ICNWD,IBUFF,ILEN)
*, G. BOOZER TRACKER & EXEC SIMUL. COMM. (831021.1217)
IMPLICIT INTEGER(A-Z)

COMMON ICOM(750)
EQUIVALENCE(ICOM(10),LU)

C
C

INTEGER IBUF(5),IBUFF(1)
C
C

EQUIVALENCE(IBUF(1),DEST)
EQUIVALENCE(IBUF(2),ICODE)
EQUIVALENCE(IBUF(3),CPU)
EQUIVALENCE(IBUF(4),ISUBF)
EQUIVALENCE(IBUF(5),SUBLEN)

C
C LU 10 IS THE EXEC COMPUTER
C
C LU 20 IS THE TRACKER COMPUTER

C
C ASSUME NO ERRORS

IERR=1

C
C
C SEXEC
C
C
C
C
C THIS FUNCTION SIMULATES THE EXEC CALLS MADE BY THE DATA
C COMPUTER TO THE EXEC COMPUTER AND THE TRACKER COMPUTER.
C ALL CALLS ARE ROUTED TO "NSIM" VIA CLASS I/O
C
C
C

C
C IF ERROR, ASSUME EXEC COMMUNICATIONS

IF(IERROR.EQ.O) IERR=4
RETURN

0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074 C
0075 C
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107

23

IF FIRST TIME THROUGH, GET A CLASS NUMBER AND RUN "NSIM"
CLASS=100000B
CALL EXEC(17,0,I,1,I,I,CLASS)
CALL ABREG(A,B)
IF(A.NE.-1) GOTO 20
WRITE(LU,10)
FORMAT("/SEXEC: OUT OF CLASS NUMBERS")
STOP
CLASS=IOR(CLASS,120000B)
CLASSC=IOR(CLASS,160000B)
CLASSW=IAND(CLASS,077777B)
CALL EXEC(21,CLASS,I,1)

ERROR IN SCHEDULING "NSIM", DEALLOCATE THE CLASS
WRITE(LU,30) A
FORMAT("/SEXEC: ERROR " ,14," ON SCHEDULING
CALL EXEC(21,IAND(CLASS,017777B),I,1)
STOP

C
C IS IT A CALL TO THE TRACKER?

IF(EXLU.EQ.20) CPU=1

AND QUIT.

'NSIM'")

, LU, 177, CLASS)

CALL IS SUCCESSFUL.

LOGICAL FIRST
D~TA FIRST/.TRUE./

"NSIM"
CALL EXEC(10,6HNSIM
CALL ABREG(A, B)
IF(A.EQ.O) GOTO 100

LET'S START THE SHOW
GET THE LU

EXLU=IAND(ICNWD,77B)
C
C GET THE SUBFUNCTION NUMBER

ISUBF=IAND(ICNWD,177700B)/100B

10

C
C IS THIS THE FIRST TIME THROUGH?
1 IF(.NOT. FIRST) GOTO 100

FIRST=.FALSE.

C
C RUN

c
C IS IT A CALL TO THE EXEC?

CPU=O
IF(EXLU.EQ.10) CPU=2

C
C SET DESTINATION CODE

C
C ASSUME SEXEC
100 SEXEC=1
C
C
C
C
C

0108 C
, 0109 C

0110
0111
0112
0113
0114
0115
0116 C
0117 C
0118
0119
0120
0121
0122
0123
0124
0125 20
0126
0127
0128
0129
0130
0131
0132
0133
0134 C
0135 C
0136
0137 30
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160

24

DEST.NE.2)) GOTO 110

DEST=1

SEND THE HEADER
CALL EXEC(20,0,IBUF,5,I,I,CLASS)
CALL ABREG(A,B)
IF(A.EQ.-2) GOTO 20000

C
C WE GOT OUR HEADER. LET'S READ THE DATA.

CALL EXEC(21 ,CLASSW,IBUFF,ILEN,SEXEC)
RETURN

C
C NO ROOM IN SAM, TELL THE WORLD ABOUT THE SHORTAGE.
20000 WRITE(LU,20010)
20010 FORMAT("/SEXEC: NOT ENOUGH SAM TO FILL MY NEEDS")

GOTO 1
END

C
C LOOP UNTIL WE GET OUR HEADER
110 CALL WAIT(20)
115 CALL EXEC(21,CLASSC,IBUF,5)

CALL ABREG(A,B)
IF(A.LT.O .OR. (DEST.NE.O .AND.
CALL EXEC(21 ,CLASS,IBUF,5)

C
C IF WE ARE SENDING DATA TO "NSIM" WE HAD BETTER GET ON WITH IT.
C WE CAN RETURN AFTER WE ARE DONE HERE.

IF(ICODE.EQ.1) GOTO 115
CALL EXEC(20,0,IBUFF,ILEN,I,I,CLASS)
CALL ABREG(A,B)
IF(A.EQ.-2) GOTO 20000
RETURN

C
C SET SUBLEN

SUBLEN=ILEN

C
C SET ICODE

ICODE=ICOD

0161
0162
0163
0164
0165
0166
0167
0168 C
0169 C
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
01,82
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197

25

11.0 REFERENCES

1. C-141 Gerald P. Kuiper Airborne Observatory Investigator's Handbook,
1983. NASA/Ames Research Center, Moffett Field, California.
(Contact L. C. Haughney, MS 211-12).

2. C-141 Gerald P. Kuiper Airborne Observatory Airborne Data Acquisition
and Management System (ADAMS) User's Handbook, 1983. NASA/Ames Research
Center, Moffett Field, California. (Contact L. C. Haughney, MS 211-12).

3. Getting Acquainted With RTE IVB, 1980. Hewlett-Packard Manual, Part No.
92068-90001, Hewlett Packard Company, Data Systems Division, 11000
Wolfe Road, Cupertino, CA 95014.

4. A Pocket Guide to the 2100 Computer, Chapter 3, 1978. Basic Control
System Reference Manual, Hewlett-Packard Manual, Part No. 5951-4423,
Hewlett Packard Company, Data Systems Division, 11000 Wolfe Road,
Cupertino, CA 95014.

5. RTE IVB Assembler Reference Manual, 1980. Hewlett-Packard Manual, Part
No. 92067-90003, Hewlett Packard Company, Data Systems Division, 11000
Wolfe Road, Cupertino, CA 95014.

6. RTE IVB Terminal User's Reference Manual, 1983. Hewlett-Packard Manual,
Part No. 92068-90002, Hewlett Packard Company, 'Data Systems Division,
11000 Wolfe Road, Cupertino, CA 95014.

7. RTE IVB Programmer's Reference Manual, 1983. Hewlett-Packard Manual, Part
No. 92068-90004, Hewlett Packard Company, Data Systems Division, 11000
Wolfe Road, Cupertino, CA 95014.

8. RTE Iva System Manager's Manual, 1983. Hewlett-Packard Manual, Part No.
92068-90006, Hewlett Packard Company, Data Systems Division, 11000 Wolfe
Road, Cupertino, CA 95014.

9. Operating and Service Manual for the 125668, 12566B-001, 12566B-002, and
12566B-003 Microcircuit Interface Kits, 1976. Hewlett-Packard Manual,
Part No. 12566-90015, Hewlett Packard Company, Data Systems Division,
11000 Wolfe Road, Cupertino, CA 95014.

10. John L. Hughes, Digital Computer Lab Workbook, 1969. Digital Equipment
Corporation, 146 Main Street, Maynard, MA 01754.

26

TABLE 1

TRACKER SIMULATOR WIRING LIST

TO HP FROM HP

9

TB1 TB~

48-PIN 20-41-SPIN 48-PIN 20-41-SPIN
BIT # HP CONN MS 3126 BIT# HP CONN filS 3126

0 1 BRN 1 WH A 0 A BRN/WH 1 WH S
1 2 RD 2 BLK B 1 B RD/WH 2 RD T
2 3 OR 3 BRN C 2 C OR/WH 3 BRN U
3 4 VEL 4 BLK D 3 D VEl/WH 4 RD V
4 5 GRN 5 RD E 4 E GRN/WH 5 OR W
5 6 BL 6 BLK F 5 F BL/WH 6 RD X
6 7 PUR 7 OR G 6 H PUR/WH 7 VEL V
7 8 SLV 8 BLK H 7 J SLV/WH 8 RD Z
8 9 BLK 9 VEL J 8 K BLK/WH 9 GRN a

24 WH'S(COM) 10 WH'S(COM) 10

TB2 TB4--
48-PIN 20-41-SPIN 48-PIN 20-41-SPIN

BIT # ·HP CONN MS 3126 BIT# HP CONN MS 3126

9 10 BLK/SLV 1 BLK K 9 L RD/OR 1 RD b
10 11 BLK/BRN 2 GRN L 10 M RD/VEL 2 BL c
11 12 BLK/RD 3 BLK M 11 N BRN/RD 3 RD rl
12 13 BLK/OR 4 BL N 12 P BRN/OR 4 WH e
13 14 BLKIYEL 5 BLK P 13 R BRN/VEL 5 GRN f

15 BLK/GRN 6 NC S BRN/GRN 6 NC
16 BLK/BL 7 NC T BRN/BL 7 NC
23 BLK/PUR 8 NC 22 BRN/PUR 8 NC
AA RD/GRN 9 NC Z BRN/SLV 9 NC
24 WH'S(COM 10 GRN R BB WH'S (COM) 10 BL

27

DATA ACQUISITION PROGRAM

MAIN ROUTINES
I

I,
TUB

\ ,
\

. ECOM

,--_ BLT
I

TBLT I, ,
,-------.-----,I

SEXEX

CLASS I/O

SIMULATION PROGRAM (NSIM)

Figure 1.- Data acquisition program.

28

TRACK EXEC LOSS TELE-
NOD RIGHT LEFT 0

COMM COMM OF SCOPE MODE BEAM BEAM
TRACK STEADY LIGHT

® o FUSE

0 0 0 0 0 0 0 0 0 0 0 0 0 0IN 2
BIT 13 BIT 12 BIT 11 BIT 10 BIT9 BITS- BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT 1 BITO .5a,3AG

® 00000000000000 0OUT
PWRSWITCH

Figure 2.- KAO tracker simulator front panel.

NOTE: CIRCUIT GROUND IS CONNECTED TO HP SYSTEM GROUND

+5 V

~FROM HP

BITO 7486

IN 1 1

U
BITO·)3 @) REFERENCE

CHOP OUT
BIT 1

BIT 1 2

I 6

I - -- -<'1--- ~/'\..._-
HP 6N139
OPT ISOLATOR

I
-.....J .

IN
5

BIT 13

LED 480 Q

R

19
TO HP

lJ.)

0

BITO 7

.th
BIT 1

I .L +50 I 14
I --_._--(j ~--

I ;+,0.1 pi
BIT 13

N.O.

4.7 K

2N3586 +5

Figure 3.- KAO tracker simulator circuit diagram.

')

DATEL SYSTEM
MODEL UPM·5/1000
5V 1000 rnA

5V -

FUSE

LIGHT INDICATOR
ELDMA
T·2 BULB NEON
100 k,Q

0--------4....--1 AC

u---+...r--. J"'+-....--1 AC

SWITCH

WHITE

GRN

BLACK

t'

Figure 4.- KAO tracker simulator power supply.

Hp·1000 TERMINAL BLOCKS TRACK SIMULATOR

TO HP FROM HP

1 A TB1 TB3

DD
cD28 PAIR

TB2 TB4

DD~ ----1 FEMALE

24 BB
100 ft MS3126F20.41S

I· 16 ft ·1
,1 A

L..r-r----' 24 BB

____~.I FEMALE
5 ft MS3126F20-41S

Figure 5.- KAO tracker simulator cab1e~.

31

~~~~------~--~-~~~~_._-~--



1. Report No. I2. Government Accession No. 3. Recipient's Catalog No.
NASATM 85896

4. Title and Subtitle Fe'graa'1P~e 1984
A Hardware/Software Simulation for the Video
Tracking System of the Kuiper Airborne Observatory ~ Performing Or9lnization Code
Telescope

TP

7. Author(s) Glenn A. Boozer*; Darrell D. McKibbin** 8. Performing Or9lnizatlon Report No.
Michael R. Haas*** and Edwin F. Erickson** A-9662

10. Work Unit No.
9. Performing Organization Name and Address T-4644

*Boozerco, San Jose, CA
**Ames Research Center, Moffett Field, CA

11. Contract or Grant No.

***Myco1, Incorporated, Sunnyvale, CA
13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration
Washington DC, 20546 14. Sponsoring Agency Code

352-02-03

15. Su pplementary Notes
Point of contact: Darrell D. McKibbin, Ames Research Center, MS 245-6,

Moffett Field, CA (415) 965-5231 or FTS 448-5231

16. Abstract
This simulator was created so that C-141 Kuiper Airborne Observatory

(RAG, ref. 1) investigators could test their Airborne Data Acquisition
and Management System (ADAMS; ref. 2) software on a system which is gen-
erally more accessible than the ADAMS on the plane. An investigator can
currently test most of his data acquisition program using the data computer
simulator (ref. 2) in the Cave. (The "Cave" refers to the ground-based
computer facilities for the KAO and the associated support personnel.)
The main Cave computer is interfaced to the data computer simulator in
order to simulate the data-Exec computer communications (ref. 2). However
until now, there has been no way to test the data computer interface
to the tracker. The simulator described here simulates both the KAO
Exec and tracker computers with software which runs on the same Hewlett-
Packard (HP) computer as the investigator's data acquisition program. A
simulator control box is hardwired to the computer to provide monitoring
of "tracker" functions, to provide an operator panel similar to the real
tracker, and to simulate the 180 0 phase shifting of the chopper square-
wave reference with beam switching. If run in the Cave J one can use
their Exec simulator and this tracker simulator.

17. Key Words (Suggested by Authorls)) 18. Distribution Statement
Kuiper airborne observatory tracking
simulator Unlimited

Hardware/software Subject Category: 89
Procedures

19. Security Oassif. (of this report) 20. Security Classif. (of this pagel 21. No. of Pages 22. Price"

UncI. Unc1. 36' A02

"For sale by the National Technical Information Service, Springfiald, Virginia 22161



r,






