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FOREWORD

This document is a compilation of reports from Principal
Investigators and their Associates of NASA's Office of Space Science and
Applications, Solar System Exploration Division, Planetary Geology
Program. The reports present research that adds to our knowledge of the
origin and evolution of the solar system and to our understanding of the
earth as a planet. Advances in Planetary Geologg was established as a
complement to the abstract document "Reports of Planetary Geology Program”
and to professional journals. This document provides a method of
publishing research results which are in a form that would not normally be
published elsewhere. The research reports may be in the form of lengthy
research reports, progress reports, Ph.,D. dissertations, or master's
theses.

Joseph M. Boyce

Discipline Scientist

Planetary Geology and Geophysics Program
Office of Space Science and Applications
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ABSTRACT

Lineament and terrain patterns on the ice-=covered Galilean
satellite Buropa were studied with the aid of enhanced Voyager 2
images and mosaics. New mercator maps of Europa were made from
rectified images. Several questions raised by previous studies of
Europa were addressed. These included: Are thin-ice or thick-ice
crustal models valid? Was there ever liquid water on Europa?

Was there plate tectonics on Europa?

| Simple lineaments, narrow, dark linear markings, are interpreted
as filled crustal fractures. These appear to be the oldest and most
abundant lineaments. Several other lineament types may be related

to these. Wedge-shaped bands are similar but wider. Offset of

older simple lineaments has been associated with the opening of
several wedge~shaped bands, indicating the rotation of crustal blocks.
These bands occur in a broad belt that appears to be a major fracture
zone in Europa's crust, for which a pole of rotation has been deter-
mined. Triple bands are more enigmatic but, as they are often
agssociated with simple lineaments, probably evolved from them.

Linear ridges are found near the terminator where they ére high-
lighted by low sun angles. In earlier images they show as simple
lineaments. Cycloid ridges occur in southern regions and are inter-
preted as compressional features. Terrain units include: plains,

brown spots and brown mottled terrain., Plains are smooth but frac-
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tured. Mottled terrain can be locally resolved into coalesced brown
spots. This terrain may represent icy flows onto the plains, but
this cannot be confirmed.

The fracture style in Europa's crust mimics that of terrestrial
sea’ice, suggesting that Europa's icy crust was relatively thin and
underlain by a liquid water layer during fracturing. Lava lake
crusts display similar features. Histograms of lineament trends
show a simple, orthogonal pattern, suggesting structural control.
Fracturing may have been linked to the creation of the present
orbital resonance locks and increased tidal flexing or thermal frac-
turing of the floating icy crust or to an internal volume increase.
A type of plate tectonics may have occurred in the opening of the
wedge-shaped bands. This may be evidence that a convection cell

operated beneath the wedge~shaped band fracture zone.
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CHAPTER I: INTRODUCTION

1.1 Statement of Intent and Purpose

Europa is the second outward of the four Galilean satellites
of Jupiter. It is the smallest of these, but it is also the
brightest, whitest, smoothest, and has the highest surface water=-
ice content (Smith et al., 1979b). See Table 1.1. It is believed
to be covered by an icy layer 10-100 km thick. Because of these
unusual properties, study of Europa's geology could provide valu=
able insights into the behavior of water ice on a global scale.

The iﬂtent of this study is to make as thorough as feasible
an evaluation of surface features and structures on the Galilean
moon Europa using the available high resolution Voyager imagery,
low resolution support imaging, and what understanding of ice
structure and mechanical behavior science has that is applicable
to the problem. A general discussion of the history of Europa
studies and the fundamental global morphology is undertaken. The
visgible lineament and terrain pattemms ﬁill be described, and
possible origins will be discussed. Observations of faulting and
block rotation previously described by Schenk and Seyfert~(1980)
will be amplified. A comparison of Europa's structures to
terrestrial sea ice and lava lake crust features is also included.
FPinally, an attempt is made at synthesizing a unified model for the

evolution of Europa's crust, which is to be compared with models
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Table 1.1 Galilean Satellites - Physical Properties#*

Water content Maximum Best Voyager
Radius Mass Density  Albedo (wt. %) surface temp. resolution
(km) (moon=1)  (g/cc) bulk surface (° K) (km/1p)
Io 1820 1.21 3.53 0.63 0 0 125-130 <1
| (290)»*
Europa 1565 0.66 3,03 0.64 ~10 >95 125 ~4
Canymede 2640 2,03 1.93 0.43  40-50  80-90 145 ~1
Callisto 2420 1.45 1.79 0.17 50-60  30-90 | 155 ~2
Moon 1738 .1.00 3.34 0,12 ¢] 0 395 -
Earth 6371 81.30. 5,52 0.39 <1 71 320 -
Mercury 2432 4.36 5.42 0.12 0?2 0% 706 ~0.25
(Mariner 10)

*Radii and densities for the Galilean moons are from Smith et al. (1979a), surface
temperatures from Hanal et al. (1979), surface water content from Clark (1980).
**Volcanic hotspot temperature (Hanal et al., 1979).



Table 1.2

Galilean Satellites - Orbital Properties

*Rj = 71,396 km (one Jovian radius); R, = 6,371 km (one

#*Yoder (1979).

14

Orbital
Semi~major period Forced Inclination
_axig* (days) eccentricity* (degrees)

Io 5.90 B, 1.77 0.0041 0.027

Europa 9.40 RJ 3.55 0.0101 0.468

Ganymede 14.99 Rj Te16 0.0006 0.183

Callisto 26.33 Rj 16.69 ? 0.253

Moon 60.34 R, 27.32 0.0549 6.68

Earth radius),



developed by others.

A critical limitation of this, and of all Buropa studies, is
the insufficient resolving power of the highest quality imaging, as
explained below. As a result, the following discussions will be of
a somewhat conjectural nature, and caveats will be repeated where
this problem is severe. Nevertheless, certain features are imaged
clearly enough for there to be little doubt as to their proper
interpretation. Certain other features are suggestive enough to
warrant additional speculation. Discussions are also hampered by
the limited high-resolution photographic coverage, which is re-
stricted to approximately 20% of the surface. This limits the
ability to extrapolate observatioris to pbssible global processes.
Mercator-projected iméges were obtained in order to construct
"detailed maps of the structures within this high-resolution area
(Plates 1-6).

Some of the overriding questions that will be addressed in
this study include: does the surface geology of Europa support
thin~ice or thick-ice crustal models? Did liguid water ever exist
in significant amounts beneath the icy crust? What type of dynamic
processes are/were modifying the surface, i.e., are there plate
tectonics on Europa? A tentative geologic history will be out-

lined and discussed.

1.2 The Data Set

The primary data set for this study included a series of
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images recorded by the Voyager I1 spacecraft as it approached and
passed Europa on July 8-9, 1979 (Table 1.3). Each image consists of
800 x 800 pixels, or picture elements. At closest approach, approxi-
mately 208,000 km, each pixel, at the sub~spacecraft point, corre-
sponds to a surface distance of ~2 km. Best resolution is often
quoted as 4 km per (pixel) line pair (km/lp), which is the effective
limit to. which linear or structural features can be resolved.
Distortions in the scale and geometry increase as the limb of the
planet is approached. Although mercator projections of images can
eliminate geometric distortions, scale distortions of these images
are permanent. The resolution limit and areal imaging coverage for
Europa are the poorest for any of the Galilean satellites.

The images used for this study include one medium-range global
image with resolution of ~12 km/lp, taken July 8, 1979 (Fig. 1.1),
and two close-range global mosaics, with a set of repeated east-west
scans for support imaging of ultraviolet spectrometer (UVS) observa-
tions between. The first mosaic (Fig. 1.2; 1.3), using four filters
for color coverage, consists of 20 narrow angle camera frames covering
the quarter-phase disk. Resolution approached 4 km/lp. The area
covered extends from 130 to 210° W longitude, and from 75° N to
90° S latitude. Reliable morphological information is restricted to
a zone within ~ 10 degrees of the terminator. Beyond this, as the
solar incidence angle decreases, albedo variations become prominent

as topographic highlighting and shadowing effects diminish,
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Table 1.3 Voyager Images Used For This Study
Picture Range Figure
number ¥DS count (%103 km) Filter number
1549J2-002 20625,16 1242.67 Violet Te1
1183J2-001* 20649.10 245.80 Violet 1.2
1198J2~001* 20649.25 241.48 Blue 1.2
1207J2-001* 20649.34 238,74 Violet 1.2
1231J2-001 20649.58 232.54 Violet 1.2
80/02/07/180218%%  20650,01 231,83 Blue 1.2
1255J2-001 20650,22 226,69 Clear 1.4
1279J2-001 20650.46 222.81 Clear 1.4
1348J2-001 20651.55 211,96 Clear 1.4
135232-001 20651.59 210.77 Clear 1.4
1356J2-001 20652.03 211.05 Clear 14
1364J2-001 20652.11 209,10 Clear 1.4
1368J2-001 20652,15 208,35 Clear 1.4
137272-001 20652.19 208,53 Clear 1.4

*Mercator projected versions of these images were also used.

**Mercator version only used for this study.

17



Fig, 1.1 Buropa from Voyager 2. Image taken through blue filter
July 8, 1979, Area of high~resolution mosaics (Figs. 1.2=-1.4) is
along western limbj; nioxrth is up.

18



Pig. 1.2 High-resolution mosaic of Europa from Voyager 2. Images
taken July 9, 1979 through blue and violet filters. PRectangular
areas indicate locations of other figures.
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Fige 143 Geometrically registered mosaic of Europa. Images taken
July 9, 1979 through blue filter.
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The second mosaic (Fig. 1.4) was taken about 6 hrs. after the
start of the first. Taken through clear filters, it consisted of
18 altermating narrow and wide angle camera images, and was executed
éhortly after closest approach. The terminator had advanced 15
degrees west, tranaforming the disk into a distinct crescent.
Resolution was just under 4 km/1p.

Approximately 20% of the surface was imaged at high resolution.
This area includes the anti-~jove point, and corresponds roughly with
the area of mapping for this project, The mercator maps of this
area (Plates 1-6) were produced by assembly of mercator-projected
images (Table 1.3) and use of mylar overlays, The coordinate grid
employed was developed by the author using control points determined
by Davies and Katayama (1981). Feature locations on the maps are
estimated to be accurate to within 20 km.

The maps (Plates 1—6) were constructed on mercator projections
because suitable images were available, and because mercator
projection allows convenient trend determinations (see below).

These maps are useful in that they gllow easily comprehensible
presentation of lineament orientation and distribution patterns and
also comparison among the lineament types and terrains.

Histograms of lineament trends were constructed from the
mercator maps. Trends were measured over entire lineament lengths
and were summed over 10 degree azimuth intervals. Histograms cover
the entire mapped area.

During the summer of 1981, I had access to the Voyager project

21



Fige. 1.4 High=-resolution mosaic of Europa from Voyager 2. Images
taken July 9, 1979 through clear filter. These images were part of
the second imaging mosaic.
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interactive computers. The Europa images were put on tape and
examined, contrast enhanced and enlargements of up to 8x made and
copied. These frames were very useful in mapping. Voyager photo
and figure numbers are listed in Table 1.3,

In addition to the photographic data, a significant amount of
Earth~based information about Europa that is relevant to this study
is in the literature and is reviewed below. The bulk physical

properties of Buropa have been sumarized in Tables 1.1 and 1.2.

1.3 Pre-Voyager Work

Prior to Voyager, data on the Galilean moons were limited to
Earth~based telescopic observations, and crudely known bulk physical
characteristics. The first significant advancement in the study of
Europa came with the spectrosconic confirmation of abundant water
frost on Europa's surface by Pilcher et al, (1972). Subsequent
obgservations refined the data and led to the conclusion that Europa's
surface is composed of 95 to 100% water ice and frost (Clark and
McCord, 1980), a conclusion consistent with Europa's high albedo
(see Table 1.1).

Clark (1980) suggested that the shapes of 1-2 micrometer
spectral bands are consistent with a medium to fine-grained frost
and/or frost-on-ice surface, based on comparison with laboratory
spectra of various frost and ice samples (see Table 1 in Clark, 1980).
Near-infrared spectroscopy by Clark and McCord (1980) indicated

that the water absorption features are due to free water, not bound.
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Clark (1980) suggested .that non-ice surface impurities (only a few
weight percent for Europa) were imbedded in and mixed with the ice.
Weak absorption bands at 0.8~0.9 micrometers may be due to silicate
materials (Clark, 1980). The non-icy components of Europa's
spectra have some similarities to Ganymede's spectra, and the near-
infrared spectra of Io and Ganymede have distinct similarities
(Clark, 1980). This might suggest that the rocky components of the
Galilean moons are similar, and that some sulfur or salt components
(both reported on Io) might also be found on Europa. Unfortunately,
no reliable compositional information on the darker surface component
ig available. See Clark (1980) for a more complete discussion.

Earth-based studies have also shown that Europa's trailing
hemisphere (Europa is in synchronous rotation) is redder than the
leading hemisphere (McFadden, Bell and McCord, 1980), and that it
has bright polar 'caps' (Murray, 1975). Radar measurements have been
made (Ostro et al., 1980) but reveal information only about the
upper few centimeters of the surface.

Pollack and Reynolds (1974) modeled thermal and physical condi-
tions near Jupiter at the time of its formation and concluded that
water ice would form a significant portion of its satellites. Lower
temperature condensates, e¢.g.,, ammonium clathrate, would not be stable.
Thermal modeling in the early 1970's of Ruropa's interior, based on
the accretion modeling of Pollack and Reynolds (1974) and the then
known density, produced models of Europa dominated by a large silicate

¢ore overlain by a thick icy crust, Estimates of the crustal thickness
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varied between 75 km (Fanale et al., 1977), and 150 km (Consolmagno
and Lewis, 1976). These early models were based on an assumed
chondritic rocky component.

Fanale et al. (1977) and Cassen et al. (1979) suggested that
the icy layer might presently be underlain by a liquid water layer.
Subsequent revisions by Cassen et al. (1980) suggested that any thick
water layer formed early in the moon's history would probably freeze;
They assumed that the orbital resonance locks among Io, Europa, and
Ganymede, which are responsible for tidal flexing and heating of
both Io and Europa, are ancient. It is conceivable that this last
condition was not met (Yoder, 1979). See Section 2.9 for further
discussion.

In 1979, Voyager I imaged Europa from é distance, with best
resolution of ~ 33 km/lp (Smith et al., 1979a). The images showed
Europa to be a white and brown sphere crossed by a set of globe-
girdling brown stripes, many along great circles, Three months
later, Voyager II passed much closer and showed the stripes to be
a complex network of intersecting lineaments and the white surface
to be extremely smooth and nearly crater free (Smith et al., 1979b).
Crater counts by Shoemaker and Wolfe (1982) give a surface age
ranging from 30 to 200 m.y., based on calculated cratering rates
near Jupiter., This age might be low if viscous relaxation is more
dominant than thought or if there is an undetected population of

4 km wide craters. The failure to detect more than one possible

relict impact scar on Europa, while these are abundant on Ganymede
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(Smith et _al., 1979b), argues against an older age, however.

Infrared observations by Voyager place the lit-side surface
temperature at ~85° K (Hanal gt al., 1979). No detectable
atmosphere has been reported in the literature. Voyager radio
observations led to a revised density value of 3.03 g/cc (Smith
et al., 1979a), slightly lower than those of Earth's moon and
Io (Table 1.1).

After the Voyager flybys, several major review articles on
Europa's geology were published. Pieri (1981) analyzed the poly-
gons formed by the intersecting lineaments in terms of possible
stress fields. Fimnerty et al. (1981) and Ransford et _al. (1981)
reevaluated the thermal' modeling and proposed that much of Europa's
vwater could be bound in suberustal silicates as water of hydration.
They also proposed a model by which some lineaments could form
through upward fracture propagation. Lucchitta and Soderblom
(1982) (14&S), and Lucchitta, Soderblom and Ferguson (1981) (LS&F)
made a more complete descriptive evaluation and review of the global
geology. The L&S paper is probably the most thorough review of
Furopa's geology to date. However, there are several points on
vwhich the present study differs with L&S and several aspects of the
problem discussed here that are not in L&S, as will be seen later.
Much of the terminology employed here is borrowed from the latter

two sources.
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1.4 Global Morphology

Voyager observations have given us our first clear view of
Europa's surface (Smith et al., 1979a; 1979b). Even in long-
range images, two basic terrain types, or crustal units, are
apparent, one white and visible at most latitudes, and the other
brown and restricted to low latitudes. The average global albedo
(0.64) is the highest in the Calilean system, but the dark brown
units differ from this by only 20% (L&S). Thus, even at 0.45
albedo, this terrain is still brighter than Ganymede (0.43), whose
surface is 70-90% water ice (Clark, 1980). This implies that the
brown terrain is also water rich, despite obvious contamination or
discoloration by unknown agent(s).

The white terrain is crossed by abpndant intersecting brown
lineaments (Fig. 1.3). Long lineaments (triple bands) generally
follow great circles, whereas short ones near the anti-jove point
(simple lineaments, wedge-shaped bands) generally follow small
circles (Smith et al., 1979a). The lineament materials generally
have a color and albedo very similar to the brown terrain (McCord
et al., 1982), suggesting similar compositions. At close range,
white terrain appears quite smooth, whereas brown terrain has a
hummocky but low relief topography, not exceeding hundreds of meters
(Smith et al., 1979b).

For the purposes of this discussion, it is assumed that the
white terrain represents the surface exposure of a global crustal

layer, of uncertain thickness, composed dominantly of water ice with
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trace impurities. The brown units, including brown spots, mottled
terrain and fracture fillings are assumed to be water rich, with
substantial contamination from unknown agents, and derived from
below the surface. These assumptions follow directly from the
preceding discussion.

Various contaminating agents have been proposed for the brown
wits, including organic polymers (Schonfeld, 1982), hydrated
silicates (Kieffer and Smythe, 1974; Finnerty et al., 1981), poly-
sulfides (Lebovsky and Fegley, 1976), and salts (Cassen et al., 1979).
The relative abundance of the later two as volatiles on Io leads
to the suggestion that they may also be abundant on Europa, and
vere incorporated into the water layer during its formation. Saline
discharges from glacier bases in Antarctica commonly have a reddish=
yellow color (Black et al., 1965). The dominant salts there are
halite and aragonite; however, Black gﬁ_gl..(1965) ascribed the
color to iron-~fixing bacteria, or to iron oxidation, something
considered unlikely for Europa (Schonfeld, 1982).

In the case of fracture fillings, this material might have
taken several possible forms, ranging from 'dirty’ liqﬁid water to
water-rich ice slurries to relatively plastic, water-rich silicate
magmas. In only a few cases will it be possible to differentiate
among these., The term 'slurry,"defined here as a dilute watery
mixture, will be used to refer to this material in subsequent
discussions when it is not known which term is valid,.

Europa has been called the smoothest object in the solar system
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(Smith et al., 1979b), although some relief is visible along the
terminator (Fig. 1.4). In addition to abundant ridges (g.v.),

there are several crater-like features (L&S). Some small bright
spots (Fig. 1.3) might also be interpreted as small craters.

Also visible near the terminator are several elliptical or linear
depressions of unknown origin. It is not certain if they are
associated with dark lineaments. There is also irregular hummocky
relief associated with brown mottled terrain (q.v.). This is
composed of irregular flat-topped mesas and interspersed depressions,
with some areas being more irregular. The plains are largely devoid

of local relief; isolated mesas are visible in a few locations.

1.5 Europa in the Galilean System

Our current understanding of the Galilean moon system, based
on Earth~based and Voyager data, suggests that the system is an
orderly one, and that the formation and early history, and thus bulk
composition of these bodies, was influenced by their proximity to the
thermal effects of proto-Jupiter (Pollack and Reynolds, 1974). It
has been known for some time that the densities of the moons decrease
" outward from Jupiter, and that bulk water content increases concom=
itantly (Table 1.1) (Pollack and Reynolds, 1974). An apparent
contradiction émerged when it was discovered that surface water
content and albedo decrease outward from Jupiter, except for Io
which has no water. The Voyager flybys (Smith et al., 1979a; 1979b)
determined that relative surface age decreases dramatically inward

toward Jupiter, apparently as a result of increasing tidal inter-
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actions within the system, and to a lesser extent, proximity to
past or present Jovian thermal activity. It is now generally
believed that Callisto has never been active geologically and
preserves an ancient, mixed ice-sgilicate crust. Ganymede was more
active, replacing some of its ancient crust several aeons ago with
grooved terrain. Europa has experienced one or more global resur-
facing events in its recent past, while Io ia undergoing resurfacing
at the present time (Smith.gg_gl;, 1979a; 1979b). It appears that
the evolution of these bodies was controlled by any combination

of several factors: the thermal energy of proto=-Jupiter, the
resultant bulk compositions of the moons, and heating from tidal

flexture and deformation.
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CHAPTER II: LINEAMENT TYPES AND FRACTURE PATTERNS

2.1 Introduction

In this section, the morphology, structure and distribution of
the various lineament types, first described by LS&F and Pieri
(1981), are reviewed and reexamined. The lineaments are reclas-
sified (Table 2.1) and in part redefined. They are also reinter-
preted, although no models for their origin have conclusive
observational support, except perhaps wedge~shaped bands.

Lineaments, which are narrow, elongate surface features, are
interpreted as erustal fractures. Several lineament types may
be interrelated, or may represent the same structural features
under different lighting conditions. Complex age relationships
between lineament types are also apparent. Histogiams of linea-
ment trends reveal distinct patterns whose meanings are interpreted
below. Lineament widths quoted .below are based on direct measure-
ments from the Voyager images in Pigs. 1.2 and 1.4 and may be

slightly exaggerated by resolution effects in the Voyager cameras.

- 242 Simple Lineaments
Simple lineaments (Fig. 2.1; Plate 1) are defined here as dark,
narrow, straight to. locally arcuate lineaments. They‘are equivalent
to Types 4 and 5 of Pieri (1981). They are the most abundant type,

and are generally no wider than 8 km. Their edges are well defined,
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Table 2.1

Pieri (1981)

Lineament Classifications

L&S

Schenk (this paper)*

Type 1 }
Type 3

Type 7
Type 6
Type 2
Type 4
Type 5

Type 8 (scarps)

Triple Bands

Light Bands
Gray Bands
Triple Bands
Ridges
Wedge-shaped
Bands

(subdued)
Triple Bands

{Triple Bands -
Bright Lineaments
Gray Bands
Bright Bands
Ridges - cycloid

- linear
Wedge-shaped
Bands

} Simple Lineaments

—

- Possible

tensional
features

- Possible

J :

compressional
features

L Probable

tensional
features

*Tectonic classifications at extreme right are preliminary, based
on discussions and interpretations in the text.
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Fig. 2.1 Mosaic showing simple lineaments. Examples are indicated
by symbols. Tyre Macula is the circular dark spot at upper right.
See Fige. 1.2 for location.
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at least down to the 1limit of resolution. They appear to be
reticulate. A histogram of simple lineament trends in the mapped
area (Fig. 2.2a) shows strong east-west and northeasterly peaks
and a smaller, less well defined northwesterly peak. The northeast
peak seems to reflect a strong northeasterly trend among simple
lineaments south of the equator (Plate 1). LS&F did construct
rosette diagrams for other lineament types but not for simple
lineaments. Simple lineaments are observed to cut some triple
bands (q.v.), but are more often cut by them or merge with them
(vig. 2.1). This suggests some overlap in the formation times of
these lineament types, but that simple lineaments are generally
older. This type of relationship is seen with other lineament
types also (see below).

The origin of these lineaments cannot be determined directly,
many being on the threshold of resolution. Their sharp edges and
generally parallel sides argue for a simple crustal fracture model:
i.e., single fractures, opened without graben formation or tilting
of fault blocks. The dark color suggests that we are seeing either
a shadowing effect in deep crevasses, or more likely the filling of
the fractures by dark material. The observation of simple lineaments
under high solar incidence angle and their apparent lack of relief
(Smith et al., 1979b) tends to support the latter model.

An alternative interpretation is that they represent replacement
features, involving the direct conversion of 'clean' white ice to

dirty ice. A clagsic test of fracture vs. replacement is the dilation
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Figo 2.2

Histograms of lineament trends:
b) wedge-shaped bands, ¢) linear ridges and d) triple bands.
axis is frequency, (n) is the number of sampled lineaments.
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(or lack thereof) of an older crosscut lineament. The simple
lineaments are too narrow and too poorly resolved to apply this
test satisfactorily, but it is directly applicable to wedge-shaped
bands and may be to the triple bands., The apparent co-activity of
simple lineamenfs and wedge~shaped bands, which are interpreted as

opened fractures (see below), supports a simple fracture model.

2.3 Wedge-shaped Bands

Brown wedge-shaped bands (Type 2 of the Pieri classification)
extend in a broad belt between 0 and 45° S latitude and 160 and
210° w longitude (Fig. 2.3, Plate 2). These bands are defined here
as any dark, sharply defined, rectilinear lineament greater than
6 km wide, but generally no wider than 40 km, and ranging from 10 to
200 km long. They are generally straight, with some angular bends.
The gdges of these bands fit tightly together when the sides are
rejoined (Fig. 2.4). In other words, for every indentation into the
edge of a wedge—shaped band, there is a borresponding projection
along the opposite edge (Fig. 2.5). This suggests the opening and
subsequent filling of a simple crustal fracture, without graben
formation or flooding. The classification wedge-shaped bands is
uged whether the sides of the lineament are parzllel, or converge in
a hinge-like manner (Fig. 2.5).

While wedge—~shaped bands resemble open tensional rifts in the
icy crust, there is still the possibility of a non-tensional origin.

This will be substantially reduced if definitive evidence for a
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Fig. 2.3 Mosaic showing wedge-shaped bands. Small, irregular brown
spots are also abundant. See Fig. 1.2 for location.
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~r—r—r—
0 100 km ™M

Fig. 2.4 Reconstruction of wedge~shaped bands. a) present config-
uration, b) proposed configuration prior to the opening of wedge-
shaped bands. Letters refer to features descibed in the text.

Maps are approximately 300 km across. See Fig. 1.2 for location.
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Fig. 2.5 a,b) typical wedge~shaped bands, c¢) a typical triple band.
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tensional origin is found. Such evidence might take the form of
simple structural offsets parallel to the direction of opening of
fractures and along lineaments approximately perpendicular to them
(vig. 2.5). This would be analogous to mid-ocean ridge transform
faults. Below is a set of observations that represents such evi-
dence. All letters refer to locations in Fig. 2.4.

1. One set of narrow, simple lineaments (C), and one set of
Type 1 triple bands (D), each on the south side of the east-west
trending lineament (H), can be realigned with counterparts on the
north side of (H) when the edges of the two wedge-shaped bands (4)
and (B) are brought together as in the reconstruction in Fig. 2.4b.
That lineaments (C) and (D) were continuous across (H) is supported
by the constancy of their width, morphology and direction when
reconstructed. Lineament (H) is interpreted as an extension of
band (B3) along which no dilation has occurred. The amount of dis-
placement along (H) precisely matches the maximum width of bands
(o) and (B), at 25 + 2 km. It can be concluded, based on these
observations, that both (C) and (D) have been offset and/or dilated
by movement along lineament (H), resulting from rifting and rotational
separation of crustal elements across fractures (A) and (B) (Fig.
2.4). Additional unlabeled lineaments also appear to be offset
along lineament (H) (Fig. 2.4) but may be secondary fractures
related to the initial fracturing event.

2. Lineaments (¥) and (G) (Fig. 2.4a) strongly resemble

transform type faults in that they appear to have undergone trans-
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lational displacement. They appear to offset the two wedge-shaped
bands (J) and (X) in the same direction (sense) and by approximately
the same amount. Both (J) and (X) are thus interpreted as offset
extensions of the wedge-shaped band (B). These features may be
analogous to mid-—ocean ridge transform faults in form, if not in
origin.

3. Numerous additional wedge-shaped fractures, oriented almost
exclusively northwest-southeast, are found in the region centered
on 7° 8, 195° W, near the anti-jove (Plate 2). The striking
orientation of these fractures breaks down in the area of Fig. 2.3,
an area rich in brown spots. These wedge-shaped bands are all
intercepted by simple lineaments trending perpendicular to the
strike of the bands and folloﬁing small circles (Fig. 2.3). While
offsets have not been conclusively recognized in thias area, laterél
mdtion along these perpendicular lineaments is inferred, generated
by the hinge~like opening of the wedge-shaped bands,

4. These subparallel wedge-shaped bands are distributed in a
linear, northwest-southeast trending belt ~ 1300 km long, just
southweat of the anti-jove point (Piate 2). A less well defined
belt extends southwest from the southern end of the main belt.
Examination of medium range images with a resolution of ~12 km/lp
(Fig. 1.1) reveals no obvious trace of this type of fracturing, at
least on the leading hemisphere, despite sufficient resolution, In
the mosaics, regions north and east of the main belt appear clear of

wedge-shaped bands. Long range images (Voyager frame no. 0333J1-002)
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show a region of brown terrain just west of the fractured zone,

and juét beyond‘the limb in the near-range mosaics; The paucity of
wedge~shaped bands in such terrain and in areas to the north and
east supports the idéa that these bands are a localized phenomenon,
'limited to the white terrain near the anti-jove. It is for these
reasons that a global mechanism, such as global expansion, is
considered unlikely as an origin for the opening of these fractures.

5. The fractures in this zone appear to be Simple; that is,
single faults, perhaps sub-vertical, penetrating the crustal layer.
This conclusion stems from the presence of dark allochthonous
materials within the fractures and the match of offsets with fracture
width, indicating:that these are not flooded grabens, a model often
proposed for Ganymede grooves (Allison et al., 1982; Parmentier
et al., 1982). A comparable fracturing model'is that of polar sea
ice, particularily in the formation of open leads. In sea ice, open
areas called leads develop due to differential ice movement, The
fractures penetrate through the ice, allowing water to fill the
fractures from beneath, This is the interpretation favored by the
author for both wedge-shaped bands and simple lineaments.,

These fractures appear to be the main part of a large scale
rift zone thaf in many ways is reminiscent of terrestrial plate
rifting and separation (Schenk and Seyfert, 1980), and can be ana-
lyzed and described in a similar manner. The nature of wedge~shaped
bands suggests lateral motion of icy blocks has taken place. The

demonstrated offsets and apparent filling from below leads to the
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conclusion that these fractures penetrate through the crustal layer,
dividing the crust into discrete blocks, or plates, such as has
occurrad on Earth. The restricted belt-like nature of the wedge-
shaped bands further leads to the suggestion that this marks a major
rift zone, or divergent boundary, between two large crustal units,
whose smaller components (called plates) appear to have a unified
sense of motion that can be described.

The strikingly parallel orientation of wedge-shape# bands near
the anti-jove and north of Thrace Macula (Fig. 2.6) implies the
dilation of preexisting northwest-southeast fractures (2424 simple
lineaments) in a direction parallel to the simple lineaments that
terminate the fractures. These perpendicular simple lineaments,
inferred to be transform—-type faults, trace small circles roughly
concentric about a point to the southeast (Fig. 2.6). This confng
uration is directly analogous to transform faults along terrestrial
rift zones (Morgan, 1968).

If these inferences are correct, the same geometric rules
governing plate motions on Earth should be applicable here, Relative
motion between two plates on a sphere can be expressed as a rotation
of the plate about a pole of rotation (Morgan, 1968), which can be
located by constructing perpendiculars to transform faults and pin-
pointing their intersection. Transform faults must, by definition,
be concentric about the pole but rift or subduction zones need not
be radial to it if spreading or subduction is oblique (Morgan, 1968).

It should be remembered that the pole is merely a geometric construct
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Fig. 2.6 Wedge-shaped band fracture zone. Lambert conformal conic
projection. Dashed lines are representative perpendiculars to
inferred transform faults.
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describing a motion, and does not bear directly on the location of
the stress.,

Perpendiculars to inferred transforms at the anti-jove converge
in a poorly defined region north of Thrace Macula (Fig. 2.6). The
low resolution limit and small angular spread of the perpendiculars
result in a large error in the pole location. Wedge-~shaped bands to
the north of this area help refine the location by increasing the
angular spread. It is assumed that the ice in this area has moved
with the same sense ag that near the anti-jove since no major breakup
has occurred between. The addition of perpendiculars from this area
gives a more accurate location for the pole, at ~r38° S, 174° W,
with a radial error of ~10 degrees (Fig. 2.6). The fact that a
majority of the perpendiculars do converge further strengthens the
model.

The maximum width of separation across the proposed rift zone
is estimated at approximately 100 km. The angular separation between
the plates can thus be derived, knowing the distance to the pole,
and is estimated to be about 4 degrees. This is relatively minor
compared to the 50-60 degree separation across the Atlantic Ocean.
This implies that the rifting process on Europa either is proceeding
very slowly, is very recent relative to the current terrestrial
spreading cycle, or more likely, did not progress too far before
ceasing.

In many ways, this fracture pattern is similar to that seen in

continental rifting, in which a linear fracture zone, composed of
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subparallel tensional faults and often initiated by doming, splits
continental masses, creating new crustal material between. The
fracture style is different, however. The tilting of fault blocks
and creation of graben associated with terrestrial rifting is
characteriétic of the rifting of brittle crustal blocks overlying
a plastic medium undergoing stretching and necking (Tapponier and
Francheteau, 1978; LePichon et al., 1982). This type of deforma-
tion would be expected if the fractures férmed in an icy shell
underlain by a warm, soft, icy léyer, a8 suggested by L&S. The
lack of this style of fracturing and the presence instead of a sea
ice type fracturing (simple fracture without graben or tilt block
formation) leads me to propose that the near-surface crustal ice
layer floated over a liquid (watery) medium during the period of
fracturing.

A histogram of yedga—ahaped band trends reveals a distinct
northwest-southeast trend (Eig.fZ,Zb).,,This reflects their sub-
parallel character. Addition‘of’&edgp—shgped bands, interpreted
as opened simple liﬁeaments, to the simple lineament trend totals
reveals a strikingly simple conjugate pattern, with peaks at approx-
imately N85W, N55W and N45E (Fig. 2.7). This tends to strengthen

arguments relating wedge-shaped bands to simple lineamenta.

2.4 Triple Bands
Triple bands (Type 3 of Pleri, 1981; L4S) are perhaps the most
enigmatic lineament type. They are so called because they

commonly consist of a dark lineament with a narrow, white stripe
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n=429

nsS539

Fig. 2.7 Histograms of a) wedge-shaped bands and simple lineaments
and b) wedge~shaped bands, simple lineaments, linear ridges and

triple bands. Verticle axis is frequency, (n) is number of sampled
lineaments.
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along the center (Fig. 2.8). This medial stripe usually disappears
if the lineament narrows. The medial stripes are often straighter
than the main lineaments and do not regularly follow the center
of the lineament. Occasionally triple bands merge with simple
lineaments (LS&F), but in many cases they terminate by blending
into brown mottled terrain. These bands vary in width from $ to
30 km or so, and are usually very lohg, gome being nearly global.
They often trace great circles (Smith et al., 1979b) but can be
locally irregular, one example appearing sinuous. Edges can be
sharp but are generally ragged. Examples include Minos Linea,
Pelorus Linea and Cadmus Linea (Plate 3). Agenor Linea is classified
separately as a bright band (q.v.) for various reasons.

In the mapped area (Plate 3), triple bands are divided into
two groups by the equator. North of the equator they trend
northwest-southeast, but to the south they trend northeast-southwest.
Bach set intersects the equator at approximately 30-~35 degrees
(Helfenstein and Parmentier, 1980). The northern set is part of
the group of dark bands that trace great circles (Smith et al., 1979b)
and they arc back toward the equator west of the mapped area.
The southern set does not appear to extend beyond the limits-of the
mapped area. In addition to this, there appears to be a subtle
morphological difference between the two groups. The southern triple
bands do not merge or appear related to simple lineaments. Thgir
trace is generally more irregular, less arcuate. The contrast acroas

the lineament is subdued slightly and the central stripe is less
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Fig. 2.8 Mosaic showing triple bands. Examples are indicated by

the symbols. Bright lineaments are visible at the lower left of
center. See Fig., 1.2 for location.
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distinct and less linear. ‘It is not clear what this might mean,
but it could imply a subtle difference in how the bands are formed.

Tnlike wedge-shaped baﬁds, the sides 6f’triple bands do not
fit together (Fig. 2.5). Some are wuniform in width, but most vary
irregularly and may have the appearance of stretched boudins, as if
composed of adjoining brown spots (L&S). Triple bands never termi-
nate against perpendicular simple lineaments, as do wedge-shaped
bands. All of these observations Suggest"that‘these-lineaments
have had a more complex history than simple crustal fracture.

LS&F suggest that ridges (g.v.) visible near the terminator are
enuivalent to the central stripes of triple bands, based on the
contention by Malin (1980) that these central stripes can be traced
to ridges along the terminator, a contention this author disputes.
An examination of the region of the terminator ridges in low-
phase-angle, medium~range imagery (Fig. 1.1) reveals no trace of
otherwise very distinct triple bands. The region is well illuminated
and triple bands should be visible if present. Thus I contend that
while there may be a correlation between triple band medial stripes
and some ridges, there is little or no evidence to support this,
at least in the study area.

Several origins have been propbsed for triple bands. Finnerty
et al, (1981) proposed that they originate by rapid upward propaga-
tion of fluid-filled basal lithéspheiic fracturea._ The rapidly
moving fluid would break off 'xenoliths' in a subcrustal layer,

creating’a breccia=-rich 'slurry' that would penetrate to the surface.
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They suggest coz-driven kimberlites as an analog. The violence of
.the event would presumably destroy some original crust. The medial
stripe would result from secondary fracturing due to the refreezing
of the fracture plug (Finnerty et al., 1981). Helfenstein and
Parmentier (1980) suggest that they represent tidally induced
conjugate shear zones. This tends to be supported by the distribu-
tion pattern (LS&F), but there is little other evidence for this,

The irregular morphology of these features is somewhat
consistent with the Finnerty et al. (1981) model, in that their
mechanism can act more or less vigorously in different locations,
producing the bulbous appearance of some triple bands. However,
their model predicts a median stripe along the center, and thia is

- Seldom observed. The stréight n;ture of the central stripes might
be more consistent with the conjugate shear model. It‘is also
possible that the triple bands trace anéient, weakened shear zones,
and the emplacement of new 'dirty' material allowed. temporary
reactivation of the shears.

Alternatively, the gradation of some triple bands into simple
lineaments suggests that they may hAVe had an origin as simple éruetal
fractures, i.e., simple lineaments, before evolving into their present
form. Possibly, the material that filled the simple lineaments over-
flowed locally, especially in low spota.’ This would be consistent
with the observed ragged edges and the obsgservation of grading of
triple bands into mottled terrain (3;2;), which could represent a

-8imilar, flood-type feature. It is also consistent with a sea ice

51



model for wedge-shaped bands, which may be of similar age. The
medial stripe may represent the trace of the original fracture,
along which some component of shéar, or lateral stress, was later
reactivated.,
It is interesting to note that triple bands do not cut or
dilate each other at intersections, Central stripes always meet
at the intersection, often in a manner reminiscent of simple
lineament intersections. Sometimes the central stripes appear
offset at intersections, but never consistently in the same direction.
Another alternative is similar to the Finnerty et al. (1981)
modei but is less violent. It involves the upwelling of a 'magma,'
in a style similar to salt doming, along structurally controlled
conduits, i.e., global shear planes. Again, medial stripes would
require a secondary, post—emplaéement event. Resolution is insuffi-
cient to differentiate among these models, although I tend to support
an origin by overflow from simple lineaments, In any case, the semi~
irregular morphology, médial stripes and failure of the sides of
these lineaments to fit back together imply a more complex history
than simple fracture,.although they may have evolved from simple

fractures,

2.5 Bright Bands
Prominent in the region south of the wedge-shaped bands (Figs.
1¢3; 2.9) are two high-albedo, lobate lineaments (Type 7, Pieri,

1981), hundreds of kilometers long, with intermittent dark edges,
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Fig. 2.9 Mosaic showing the bright band Agenor Linea. DBrown spots
Thera and Thrace Maculae are visible at upper right. See Fig. 1.2
for lccation.
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They are young (Pieri, 1981) and are the only such features detected
so far on the surface. L&S consider them to be Type 1 triple bands
(Table 2.1), and Pieri (1981) considers them to be possible modifi-
cations of the same. I regard them as being distinct from triple
bands, or any other type, in morphology, occurrence, and probably
origin. Their trace is distinctly lobate and, on mercator projec—
tions (Plate 4), they parallel ridges (q.v.) more so than triple
bands. They are the only features on the surface kmown to have an

| albedo distinctly higher than the surrounding terrain. The dark
borders, while dominant in iriple bands, are secondary here, being
present along less than 25% of the total length of the bright core,
vhich is fairly constant in width. Their edges are much less ragged
and more parallel than triple bands. Agenor Linea (Fig. 2.9) is the
more pro_;ninent of the two known examples, and is at least 900 km
long, trending roughly east-west,

Both examples terminate by narrowing and fading into the
surrounding plains, supporting the conclusion that they form by
deformation of these plains. Agenor Linea terminates near Thrace
Macula in a short, borderless segment (Fig. 2.9). This segment
joins the main segment of Agenor Lineé. at the intersection with a
short triple band. The bright core of Agenor Linea forks here and
can be traced a very short distance into the triple band, where it’
changes into an ordinary central stripe. Thus Agenor Linea may have
been formed by the partial reactivation of a triple band, or more

likely, it may have formed along the trace of an older triple band, -
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If fracturing and 'plate' rotation is an accurate model for the
development_of wedge-shaped bands,nthen a compressional (subduction-
type) zone might be expecte@ subparallel to the wedge—shaped band
rift zone, assuming no net planetary expansion. Since the rift zone
is believed to be localized, an associated compressional zone is not
unlikely. Several lines of circumstantial evidence suggest that
Agenor Linea is this compressional zone. Its trace is lobate,
reminiscent of some terrestrial subduction zones (2;5L Marianas and
Peru~Chile trenches). Its morphology is not characteristic of
tensional fractures, such as wedge-shapéd bands or lunar rilles, and
is certainly not charécteristic of shear fractures. It does run
sub-parallel to and for approximately thé same length as the wedge-
shaped rift zone (Fig. 2.6). Identifiable tensional fractures are
absent near Agenor Linea. Since both features are believed to be
unique, at least within the mapped area, an associated compressional
zone is not unlikely. | |

The bright bands are tentatively interpreted as compressional
features directly related to the opening of the wedge-shaped band
rift zone to the north. The evidence is not conclusive, however,
and does little to explain the generation of the observed high-
albedo features. They may represent a form of pressure ridge, ale
though there is no indication of negative or positive relief associ=
ated with it. Arctic pressure ridges do have high albedo when
observed from high altitude, possibly due to the exposure of fresh,

broken ice surfaces. The high albedo of Agenor Linea may be due to
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the recrystallization of the ice, causing impurities to migrate
outward, thereby enhancing albedo. This might account for the ob-
served dark borders, which generally cluster in pairs (Fig. 2.9).
Anderson (1970) reports that dark borders on Arctic pressure ridges
are due to the flooding of parallel depressions that result from the
rafting of one ice floe onfo the other. In the Agenor Linea model,
the flooding would be by material forced out of the main ridge.
Alternatively, they may represent the tréces of mega-thrusts, much
like the lobate scarps on Mercury (Dzurisin, 1978). Unfortunately,
these ideas remain conjectural, and the question of how these linea-
ments are produced requires further study and images with improved

resolution.

2.6 Ridges

Ridges (Type 6, Pieri 1981) are defined as narrow, continuous,
topographically elevated rises. Their apparent width is generally
constant, and ranges from 2 to 4 pixels (4 to 8 km). Lengths range
from ~ 20 km to well over 1000 km. AS reported by Smith et al.
(1979%), they are distributed close to the terminator, being high-
lighted by shadow effects (Figs. 1.2; 1.4; 2.10). But some are found
as far as 50 degrees west of the terminator and are abundant south of
50° S (Plate 5). Malin (1980) reports that ridge heights range in
the hundreds of meters.

When ridges intersect other lineament types, they cut across,

and are therefore younger than the other types. Ridges are not
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Fig. 2.10 Mosaic showing ridges (dominantly cycloid). Examples
are indicated by symbols. Several gray bands are visible (G).
See Fig. 1.2 for location.
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observed to intersect the hright bands and most simple lineaments
and triple bands. Resolution is insufficient to detect structural
crosscutting relaticnships among ridges, but it does not appear that
they overlap like twine on a ball, as suggested by Smith et al.
(1979b).

Ridges are separable into two subclasses, based on marphelogy
and probable origin. The linear ridges are generally straight and
can be found from 30° S to at least 55° N (Plate S5). They are ob-
served to trend into simple lineaments in areas north of the equator
and north of Thrace Macula (See Fig. 2.11; Plates 1, %). No instances
were detected of ridges trending into triple bands, contrary to the
report of 1&S. Except for their observed color and apparent topog-
raphy, linear ridges resemble simple lineaments, yet they are rarely
observed in the same area. Simple lineaments fade away within 10
degrees of the terminator, and linear ridges generally disappear
about 10~15 degrees beyond the terminator, although there are excep-
tions. Most lineaments near the terminator in the first mosaic
mapped a3 simple lineaments are revealed as linear ridges in the
second mosaic, when they are some 15 degrees closer to the terminator
(Fig. 2.11). Thus most linear ridges are interpreted as simple
lineaments mwnder low-illumination conditions,

Extrapolating from previous discussions, it can be said that
wedge—-shaped bands are opened simple lineaments and thus the daxk
band that defines the simple lineament is a fracture f£ill analogous

to a dike. My suggestion is that a dark 'slurry,' probably from the
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Fig. 2.11 Stereo pair of simple lineaments and ridges near the
terminator. See Fig. 1.2 for location.
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same source as wedge—shaped band fillings,.intruded up along the
fracture, perhaps in response to hydrostatic or capillary forces.
When the 'slurry' froze, it expanded, being water rich. Unless the
ice fragments were able to give way laterally, a ridge would have
formed. However, unless the 'slurry' source was very shallow, the
'slurry' would probably have frozen before reaching the surface
(Parmentier and Head, 1979).

Resolution is certainly insufficient to resolve the origin of
the ridges. However, any other models must be able to explain the
apparent correlation between linear ridges and simple lineaments. It
is poésible that linear ridges represent a sort of 'pressure ridge'
similar to those found in arctic waters. In this model, similar to
one discussed by LS&F, fractures were opened slightly in the crust,
they were filled, and reclosed, thereby squeezing the £ill up into a
ridge. Another alternative suggests that the ridges involve some
component of lateral shear. Such shear ridges have been reported in
arctic sea ice (Anderson, 1970) but there is as yet no evidence to
support such a model for Europa's ridges.

A fourth posaibility for the generation of a linear topographic
rise is to start with a filled fracture and etch it, through differ-
ential erosion. R. Johnson et al. (1981), using Voyager fields and
particles data, estimated a charged particle sputtering erosion rﬁte
of ~100 meters/1000 m.y. Eviatar et al. (1981) and Purves and
Pilcher (1980) report lower erosion rates. The eroding agent would

be high energy particles trapped in the Jovian magnetosphere. Al~-
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though not specifically addressed in the literature, implications

are that dirty ice would be more resistant than clean ice, leaving
anything composed of dirty ice, such as a ridge, standing high.
Considering the gurface age of 30-200 m.y., and relative youth of
ridges, this erosion rate is insufficient to account for the observed
relief of hundreds of meters;

A trend histogram of linear ridges (Fig. 2.2) shows a peak at
approximately N30W, broadly consistent with the peak found by LS&F.
However, rosettes from LS&F arellength weighted, resulting in higher
peaks. This peak is probably related to the northwesterly peak
associated with simple lineaments, and tends to support the inter-
pretation of linear ridges as highlighted simple lineaments.

In regions south of the equator, ridges are dominantly cycloidal,
in that they consist of a series of connected arcs, the cusps oriented
in the same direction along any one ridge gystem. Locally, some
ridges are extremely irregular while maintaining their regionally
arcuate shape (Fig. 2.10). These cycloid ridges, as well as can be
determined, do not appear to trend into simple, or any other type
lineaments. When traced away from the terminator, they generally
have an albedo similar to that of the surrounding plains, suggesting
the involvement and possible deformation of plains material. Sinuous
ridges in the equatorial region are grouped in this subeclass because
of a similar color relationship and a lack of linearity.

The only cycloid pattern of similar type known to the author

(after a preliminary search of planetary imagery) is along the
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western Pacific Ocean margin. There, arcuate island arc chains join
in continuous sets of concave-west arcs, although not as orderly or
abundant as those on Europa. The Pacific arcs, and the related
subduction zones, were clearly formed in a compressional environment
and seem to be controlled by the simple geometry of subducting a thin
two-dimensional plate on a curved surface (Frank, 1968). Thus,
cycloid ridges could represent the traces of connected, low-angle
thrusts similar to lobate scarps on Mercury (Dzurisin, 1978). Whether
any compressional model for cycloidal ridges can be successfully
applied remains to be seen. Finnerty et al. (1981) make the assump-
tion that they probably are of compressional origin, and this author
has no objection to their model.

ThoSe c¢ycloid ridges that have been mapped are generally con-
centric about the anti-jove region, a region of proposed upwelling
(Schenk and Seyfert, 1980; Finnerty et al., 1981). A region of
compressional siress related to and concentric about a convective
region is not unreasonable. This same convective system would also
be responsible for the openiﬁg of the wedge-shaped bands, about which

the cycloid ridges are also concentric.

2.7 Gray Bands

L&S described this lineament type as arcuate, light brown,
elevated plateaus (Fig. 2.10; Plate 4). There are two known examples,
both south of Thrace Macula. L&S suggest that these are concentric

about a point near 65° S, 110° W, and are a separate class of linea-
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ments., Their location among abundant cycloid ridges and their
similar cycloid pattern suggests that they are a subclass of ridges.
They appear cut, or overlain, by some ridges and so may be an older

ridge pattern, but are too scarce for reliable age determination.

248 Bright Lineaments

Bright lineaments, distinct from bright bands, are the only
lineament type restricted to the brown mottled terrain (9;!:)' They
are also restricted to the vicinity of the anti-jove point (Plate 4).
They appear as fine whitish lines within the terrain, but do not have
an abnormally high albedo (Fig. 2.8). There are an insufficient
number to construct a reliable histogram.

These lineaments may be the equivalent:-of simple lineaments in
the brown mottled terrain, but their limited distribution hampers
interpretation. One area near the anti-jove appears to be crossed by
abundant, very fine, discontinuous bright lineaments, partially mask-
ing the mottled terrain., This area is classified as bright lineated
terrain (Lb) in Plate 6.

During the cooling of Alae Lava Lake, bright sublimate.deposits
were observed along the edges of some cracks on the crust (Peck and
Kinoshita, 1976). These deposits included sulfur, anhydrite and
gypsum (Peck and Kinoshita, 1976). Similarly, bright lineaments may
represent some sort of sublimate deposits, most likely of water frost,
that are otherwise invisible if deposited on a bright surface. They

may instead be related to the central stripes of triple bands.
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2,9 Tracturing Mechanisms and Origins

The global distribution of intersecting simple lineaments and
triple bands requires a global mechanism for their formation. Simple
lineaments have been opened an average of 2-6 km. Triple bands may
or may not have involved major fracture dilation, depending on how
they were formed. A 9% crustal vqlume expansion during the freezing
of a 20 km thick global ocean (Smith et al., 1979b; using the
Ransford et al., 1981 crustal model) would have dilated thege frac-
tures less than 0.1 km, assuming no crustal shortening elsewhere.
The observed simple lineament dilation might be explained by a volume
expansion of a subcrustal ocean durihg outgassing of volatiles from
the interior, stretching a preexisting, overlying icy crustal layer.
While this type of low-level, long-term stress would probably be
relaxed viscously, rather than by brittle failure (Parmentier and
Head, 1979), it may have been responsible for the dilation of frac-
tures once they formed. However, a radius increase of at least 75 km
is required to explain the observed dilation, a value inconsistent
with thin-ice crustal models (Sect. 5.1). Both models are probably
insufficient to explain the observed fracture dilation and require
gome crustal shortening elsewhere. Large-~scale global expansion due
to internal dehydration reactions (Ransford et al., 1981) is possible
but has no supporting evidence.

An internal second-order convection cell beneath the anti;jove

point may have been responsible for the opening of wedge-shaped
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bands and possibly the formation of bright bands and cycloid ridges
in a zone around the anti-jove point (Schenk and Seyfert, 1980;
Finnerty et al., 1981). In my crustal model (Sect. 5.1), this
requires an aqueous plume in a subcrustal liquid-water layer, gener-
ated o?er a hot spot, or outgassing vent, on the rocky ocean 'floor!
(Schenk and Seyfert, 1980). Until more complete photographic cover-
age 18 obtained, it cannot be determined whether convection cells
ever operated within Europa, locally or globally. Confirmation of
this model would strengthen arguments for continued outgassing during
and shortly after crustal formation, and contamination of the sub-
crustal ocean with internally derived rocky materials.

Outward migration of Europa's orbit and consequent relaxation
of a tidal bulge radial to Jupiter is predicted prior to the
establishment of the present three-way tidal resonance lock among
the inner Galilean satellites (Yoder, 1979). The relaxation of the
bulge would induce low=level stresses over a period of several
million years that would be relaxed viscously (Parmentier and Head,
1979). Also, the observed fracture patterns bear little resemblence
to those predicted for such a collapse (Melosh, 1980).

Tidal deformation, if responsible for fracturing, resulted from
the oscillation of Europa's tidal bulge across the sub- and anti-jove
points due to a forced orbital eccentricity as Europa moved in its
orbit (Yoder, 1979). These short-term flexural stresses may have
been insufficient to rupture the icy crust at its present tempera-

ture (Finnerty et al., 1981). If Europa's crust was warmer (and
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thinner) in the past, tidal stresses may have exceeded the tensile
strength of ice near its melting point (Cassen et al., 1979). It
should be stressed that the mechanical behavior of ice, especially
as a function of temperature, is not well understood. One study
suggests that the tensile strength of ice may increase as tempera-
ture decreases (Parameswaran and Jones, 1975). The same study
indicates that ice fractures at very low stress levels (1-5 bars),
a result supported by observations of terrestrial sea ice (Coon and
Pritchard, 1975). The bearing strength of ice is also dependent on
such properties as grain size, crystallographic orientation, and
fluid and solid inclusion concentrations (Kovacs and Mellor, 1975).

A histogram of wedge-shaped band and simple lineament trends
(Pig. 2.7a) shows a simple conjugate pattern with three peaks that
exceed 20, at NB8SW, N55W and NAS5E. This pattern supports suggestions
of structural control (i.e. tidal stresses) during the formation of
these lineaments, and that a relatively simple stress field prevailed
during that time. A histogram of all lineament trends in the map
area (Fig. 2.7b) is similar but the peaks are statistically less
significant.

The preservation of a simple fracture pattern, especially near
the anti=jove poinf where wedge-shaped bands and simple lineaments
dominate, argues that Europa's present surface is not as highly
evolved as other planets appear to be, A similar orthogonal linea-
ment pattern has been reported for portions of the lunar farside

(Casella, 1976), selected areas on Mercury (Dzurisin, 1978;
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Melosh and Dzurisin, 1978), and for a few tectonically active areas
on Earth (Corbett, 1978). This pattern has been extensively obscured
or destroyed elsewhére on these bodies by volecanic, tectonic or
impact events. The Moon's fracture pattern appears to have been at
least partially controlled by major basin-forming impacts (Casella,
1976)., Only one major impact structure (Tyre Macula; see Sect. 3.3)
has been proposed for Europa within the mapped area. The only area
on Europa that might have been subjected to secondary volcanism or
tectonic disruption is brown mottled terrain (S;X;)r where few linea-
ments are found. Thus, Europa's simple lineaments and wedge-shaped
bands may represent a well-preserved example of the 'lunar grid'
network (Strom, 1964). This lineament network may represent an
ancient gloﬁal fracture network common to the terrestrial planets.
The origin, significance and even the reality of this network on the
planets is still debated, however.

Models for sea ice fracturing (Coon and Pritchard, 1975) have
not been applied to Europa. These models include: long-period waves
(esg. sea tides), isostatic imbalance (due to partial rafting of ice
on the seé bed) and thermal fracturing. Thermal fracturing involves
failure due to strong thermal contrast through the ice (Evans, 1971;
Evans and Untersteiner, 1971). If Buropa's subcrustal layer was
ever liquid, as proposed earlier, the strong thermal contrast between
liquid water and deep space could have been a powerful stress-
inducing agent.

Fracturing on Europa may have been due to any combination of
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factors. In any case, tidal stresses probably were a controlling
factor in their development. They may or may not have been suffi-
cient to fracture the crust, but they were probably sufficient to
enhance the lateral propagation of fractures along preferred trends.
Also, some mechanism widened the fractures after their formation.
At present, thermal fracturing, tidal deformation and internal
convection are the most tenable models for the origin of Eu:opa's
fractures. More study needs to be done on the various models,

however.
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CHAPTER III: TERRAIN TYPES AND DISTRIBUTIONS

3.1 Introduction

In this section, I will examine the morphology and distribution
of the three main terrain types and their subdivisions. Two of these,
brown spots and mottled terrain, may be related, but are classed
separately. The classification scheme developed here is similar to
that developed by L&S, with some modification. The last section of
this chapter will deal with possible origins for the terrains. How=
ever, the resolution problem limits the ability to differentiate
among the various models. The terrain types are mapped on Plate 6,

and are best seen in Fig. 1.3.

3.2 Plains

The plains wits (Plate 6) are bright, orange-white, smooth
regions crossed by abundant lineaments (Fig. 1.3). These units
appear to dominate over others, and are found at all latitudes. The
plains can be divided into four subunits: the smooth plains (Ps),
fractured plains (Pf), lineated plains (Pl), and gray plains (Pg).
These units are similar and appear to be subtle variations on each
other.

The smooth plains are the brightest and most abundant, espe-
cially in moderate to high latitudes. Their color is off-white to
pale orange-white. Along the terminator, very little relief is

apparent. They are generally uniform in brightness and color, except
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for the ubiquitous lineaments. All lineament types are present in
the smooth plains, except bright lineaments.

Fractured plains are smooth plains so highly fractured as to
make mapping very difficult. It is possible that the density of
fracturing in the fractured and smooth plains may be related to the
thickness of the icy layer at the time of fracturing. Areas of
denser fracturing would be areas of thinner crust in this model. A
similar concept has been applied on Ganymede (Fink and Fletcher,
1981) (see Sect. 5.1). Lineated plains are found south of the
fractured plains (Plate 6). They comprise abundant, very faint dark
curvilinear and irregular lineaments that are not easily distinguished
from the intervening plains. They may be related to the fractured
plains, to Agenor Linea, which crosses this area, or to the ridges to
the south. They are too poorly resolved to properly discuss their
origin, however.

Gray plains are also similar to smooth plains except for a
slightly lower albedo and a slight grayish-brown to greenish-brown
tint. Their spectra are very similar to bright plains except for an
increased absorption at ultraviolet wavelengths (L&S). It appears
as though these plains may have been stained. This subunit is
almost always associated with and darkest neaxr brown mottled terrain,
vhich may have acted as a source for the stain. The contacts be~
tween the plains units are extremely diffuse, but between any one of

them and either brown spots or mottled terrain, it is very sharp.
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5¢3 Brown Spots

Brown spots (Sb) are irregular, well defined, low albedo markings
within the plains units. Their color is similar to that found in
fracture fillings. They vary in size from pixel size to 150 km
(Thera, Thrace and Tyre Maculae; Plate 6). Some appear to be small
dark rings, but are too poorly resolved to be certain. Unfortunately,
no brown spots can be unambiguously identified near the terminator
or correlated with topographic effects there.

Tyre Macula (Plate 6) has been proposed to be an impact scar, or
palimpsest (L&S). It is roughly circular in shape, and under high
enhancement, displays a set of narrow concentric rings, or lineaments
(Fig. 2.1), supporting an impact interpretation. Also under high
enhancement, the spot appears to have a serrated edge, similar to
that observed around Mare Crisium. Although Minos Linea is tangential
to Tyre Macula (L&S), others are not, and mapping (Plates 1-6) does
not reveal any obvious structural control of fracturing by Tyre
Macula, as proposed by LS&F.

Thrace and Thera Maculae are irregular and more sharply defined
than Tyre Macula. Portions of the plains units around Thrace Macula
appear to have 'calved' off from the surrounding plains and rotated
partially into the brown spot, resembling tabular icebergs.' In this
model, the larger brown spots may represent frozen-over polynyas
(irregular ice-free areas in polar ice packs). This is consistent
with the floating icy crust model developed for wedge~shaped bands.

The absence of any concentric structures within or outside these
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spots suggest that impact is not a likely origin for these spots.
Most spots appear isolated and not associated with linear or
lineament trends. ILocal clustering does occur (Fig. 2.3; Sb in
Plate 6), suggesting these may represent centers of 'volcanic' or
diapiric activity analogbus to the lunar Marius Hills, Martian

Elysium volcanics, or terrestrial Hopi Buttes.

3.4 Mottled Terrain
Mottled terrain (patterned unit in Plate 6) is generally
characterized by low albedq'énd an orange-brown color similar to
brown spots and most fracture fillings. It has been associated with
the hummocky or irregular topograph&”along the terminator (Smith
et al., 1979b; L&S). This wiit is generally confined to equatorial
areas between 4Q degrees ﬁqrth ahd south, although small, subdued
patches may océur as far south as 50° S. It is possible brown units
are covered by‘folar frost‘déPOSits (Murray, 1975; Purves and
Pilcher, 1981), an idea supported by the brightening of Minos
Linea, a triple band at approximately 40° N (L&S). Mediumerange
images indicate that this terrain is distributed over most longitudes.
Albedo is highly variable within mottled terrain. The terrain
appearé to consist of partially coalesced brown spots, imbedded in
gray plains. Along the contact with plains units, mottled terrain
commonly breaks down into discrete brown spots (Fig. 2.8). For these
reasons, brown'spots and mottled terrain are considered to have

similar or rélatedAorigins.
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Only three lineament types have been identified within the
terrain: triple bands, ridges, and bright lineaments. Triple bands
tend to blend into the terrain over a short distance, suggesting a
possible relationship between the two; the few ridges present do not
appear to be affected by the terrain., All other lineamgnt types
abut against the terrain. Occasionally mottled terrain will cluster
around some triple bands, but not necessarily at triple band inter-
sections as suggested by L&S.

Stereo views (Fig. 3.1) are suggestive of possible relief along
the mottled terrain-plains contact noftheast of Thrace Macula. The
appearance is that of a narrow, plains~facing scarp. This apparent
scarp correlates well with the observed contact. Some ridges appear
to emanate from an elevated plateau of similar height, corresponding
to the mottled terrain-plains contact. Some areas of plains material
near the terminator are clearly surrounded by higher elevation, but
contrast loss makes it difficult to locate the contact here. These
features may be illusory, however, due to the limited resolution and

poor illumination. Caution should be used in citing them as evidence.

3.5 Minor Terrain Units

Bright lineated terrain (Lb) consists of abundant bright
lineaments (g;z:) in mottled terrain near the anti-~-jove point. These
may represent frost deposits along fractures or a variety of simple
lineaments, as»discussed in Sect. 2.8. Irregular bright terrain

(1b) (Plate 6) is an area of irregular hills and depressions found
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Fige 361 Stereo pair of region north-northeast of Thrace Macula.

The contact between the plains and mottled terrain runs from north

to south approximately down the center of each image. See Fig. 1.2
for location.
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immediately east of Tyre Macula along the terminator. It appears
bright white in color bhotographs. The biigin of this unit is
unknown, due to its unknown distribution and relation to other
features. It may be some form of ejecta deposit originating from

Tyre Macula, but this is speculative.

3.6 Terrain Origins

Terrain origins can be divided into three possible classes:
external, intrusive, or extrusive. Each model has implications
regarding the relative ages of the various terrain units. Unfortu-
nately, crater counts do not have enough statistical weight to
constrain these ages.

It is conceivgble that spots may represent craters, or
puncture marks, in a thin, icy crust. This has been discussed
for the large spots. The lack of concentric fractures or other
potential impact-reiated features near other spots, and their |
generally polygonal shape tends to argue against an impact origin
for most.spots.

Extrusive models for brown terrain development include flooding
of plains units materials onto mottled terrain and vice versa. There
are two ways to model the former. The first is to flood low=lying
mottled terrain areas with a relatively clean liquid, presumably
water, and freeze it. This is equivalent to the 'silicate mountain'
model outlined in Smith et al. (1979b). In areas of rifting, this

would require ice to flow around fixed and rooted 'silicate'
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mountains, much like an ice sheet, but this is not observed. The
, maintenance of such relief on the ice-silicate core interface is
considered unlikely for Europa (smith et al., 1979b; L&S).

The second is to melt méjor portions of an original crust,
allowing any impurities to settle, and then refreeze the layer,
rafting any remaining portions of original crust (mottled terrain).
Fracture pattermmns are not consistent with the freezing of a layer
- adjoining a fixed 'shoreline.' Observations of the freezing of
fresh-water lakes suggests a pattern both radial and parallel to any
- confining shore (Zumberge and Watson, 1953). Rather, fracture
pattérns appear interrupted, or covered, by mottled terrain. Some
lineaments are observed to disappear into mottled terrain, only to
reappear on the other side along the same trend. This observation
‘'is more consistent with a third extrusive model.

The third model requires that mottled terrain be young, formed

'f by material flooded out onto the plains units, presumably as 'lava'

flows. This is consistent with most observations, including the
apparent scarp along the contact, the sharpness of which does not
unequivocally prove any model, however. The low viscosity of liquid
water or a water-enriched slurry (two possible 'lavas') could account
for the low relief. Small, individual intrusions from many discrete
sites, including fractures, rather than massive eruptions from a few
sites, could account for the mottled or spotty character. .This would
be espécially true if eruptions occurred in several phases., This

model is consistent with the overflow model for triple bands.
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A modification of the latter model suggests that the brown
units represent exposures of diapir-like intrusives, analogous to
terrestrial salt domes. Although structurally controlled 'salt
doming' along fracture traces is an intriguing idea for triple bands,
it is unlikely they would form in stable crust; the 'dirty' material,
most probably being denser than the ice, would resist ascent to the
surface (Parmentier and Head, 1979).

The observation of possible 'calving' of fragments into Thrace
Macula (Sect. 3.3) suggests that some spots may be sites of crustal
foundering. Similar irregular spots, formed by the foundering of
crustal blocks and exposure of fresh material, were seen in the
formation of the Alae Lava Lake crust (Peck and Kinoshita, 1976).

The association of gray plains with spots and mottled terrain
is at first glance difficult to reconcile'with any of the models.
However, ice (and silicate) particles sputtered from the surface by
high—eneréy magnetospheric particles will follow a ballistic
trajectory (Purves and Pilcher, 1980). It is possible that gray
plaina represent otherwise clean ice contaminated by particles or
frost derived from sputtering off adjacent, recently formed mottled
terrain., L&S report that spectral curves for gray plains are darker
in the ultraviolet than other units. Perhaps certain components of
the mottled areas were preferentially sputtered, thus biasing the
contaminant composition and spectral character. L&S also suggest
that the darkening of the gray plains may result from formation of

a lag deposit through the selective sputtering of ice. However, this
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is not consistent with the sharp contact between the gray plains
and the associated mottled terrain. Eviatar et al. (1981) report
the detection of sulfurous particles (g;g; 802) on Europa's trailing
hemi.sphere, apparently implanted by Jupiter's magnetosphere. This
might explain the apparent darkening of the trailing hemisphere
(7. Johnson et al., 1981) and the possible correlation of infrared
spectroscopy with a polysulfide contaminant (Lebovsky and Fegley,
1976). It may also account for gray plains observed west of the
anti-jove point, but does not explain their association with mottled
terrain nor their presence east of the anti-jove point (Plate 6).
Observations of terrain units on Europa tend to support an
extrusive model for the formation of brown mottled terrain, but
not conclusively. In any case, the spectral and visual similarities
between the brown terrain units and fracture fillings (L&S; McCord
et al., 1982) suggests that they were derived from the same material
and possibly the same source region. As will be shown later, this
probably was a contaminated liquid-water layer immediately subjacent

to the icy crust.
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CHAPTER IV: COMPARISONS AND ANALOGS

4.1 Sea Ice

Comparisons and contrasts between Europa's fracturing and
terrestrial sea ice features have been made throughout this thesis.
Leads, shear and pressure ridges, and possibly polynyas (Fig. 4.1),
all seem to be useful analogs to features on Europa. Further
analogs might be found with higher resolution. The fact that these
comparisions can be so abundantly made underscores the probability
that these features formed in an icy crustal layer underlain by a
liquid or quasi-liquid layer. This also supports suggestions that
Europa may prove to be a unique natural laboratory for the study of
the behavior of large scale ice covers.

According to the elastic-plastic theory of sea ice behavior
(Coon and Pritchard, 1975), under typical terrestrial conditions
Sea ice cannot support tensile stress, and responds plastically over
a broad pressure and temperature range to compressional stress before
rupturing. In other words, leads (ppen fractures) and ridges form
under tensile and compressional stress, respectively. This model
is consistent with the observed abundance on Europa of simple linea=-
ments and wedge~shaped bands, and of ridges, interpreted as tensional
fractures and compressional features, respectively. While Europa's
fracturing style resembles that of éea ice, fracture patterns on

Europa are highly rectilinear in contrast to sea ice patterns (Fig.
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Pig. 4.1 Selected photographs of terrestrial arctic sea ice.
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4.1), supporting suggestions of structural control during formation
of Europa's fractures.

The present surface temperature of Europa is near 100° K, well
below that encountered in terrestrial polar regions or typically
employed in the laboratory. At this low temperature, ice behaves
brittlely and plastic behavibr is much more restricted (Parameswaran
and Jones, 1975). Thus, very cold ice behaves much as silicate rocks
do at room temperature, This suggests that Europa's icy crust would
deform brittlely under present conditions and that the observed sea
ice type features were more likely formed at a time when the crust
was considerably warmer than at present. Thermodynamic considerations
(Cassen et al., 1980) suggest that intermal heat is quickly lost
through the ice over geologic time. Therefore it is possible to
imagine a scenario in which Europa's upper layer was warmer in the
past and floated over a liquid water layer, much like sea ice.

During this time the crust was deforming elastic-plastically, followed

by a cooling period marked by refreezing of the liquid layer.

4.2 Lava Lakes

Terrestrial lava lakes display many features that may be
analogous to some on Europa. Tengion cracks in lava crusts (Fig.
4.2), revealing hot magma beneath, are common during Hawaiian erup-
tions (Peck and Kinoshita, 1976; Peck et al., 1979). These cracks
strongly resemble wedge-shaped bands and simple lineaments. Irregular

patches of subcrustal magma are alsc common near the intersections
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Fig 4.2 Alae Tava Lake, Hawaii, during 1963 eruption. View is from
crater rim. Bright curvilinear and irregular features are exposures
of hot magma through fractured and foundered basaltic crust (Peck

and Zinoshita, 1976).
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of some cracks, where blocks of crust have foundered (Fig. 4.2).
These bear a strong resemblance to brown spots. Other comparisons
may be possible with higher resolution.

Studies of the Kilauea lava lakes by Peck and Xinoshita (1976)
revealed several important rheological and thermodynamic differences
between the freezing of sea ice and basaltic lava. The contact
between lava crusts and the subjacent magma was found to be grada-
tional, because of the heterogenous mineral composition of basalt.
Sea water and sea ice have a sharp phase boundary. Thus basaltic
lava lakes more easily transmit stress through the crustal layer,
which acts as a recorder of that stress. Theoretically, dense
basaltic crusts should be hydrostatically unstable, but Kilauean
crusts were relatively buoyant due to incorporation of vesicles as
they solidified._ Foundering was less common than expected. As
basaltic lava cools it forms suspended crystals and exsolves gas
bubbles, both of which 'stiffen' the lava, giving it a more plastic-
like viscosity than sea water (Peck et al., 1979).

The morphology of the filled lava crust fracture in Fig. 4.3
is reminiscent in some ways of itriple bands; more so than wedge-
shaped bands, which are better modeled by sea ice. Triple bands hay
reflect a fracturing episode during which the sub-crustal layer
behaved in a more plastic manner. Differences in fracture style

may reflect differences in the state of Europa's sub-crustal layer.
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Fig. 4.3 Solidified crack in a Kilauea lava flow. Scale bar is
2 meters long.
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4.3 Ganymede vs. Europa

Internally, Europa most closely resembles Io (Table 1.1), and
may ultimately reflect this in its history. The surface materials
on Europa, however, most closely resemble those of Ganymede and a
| comparison of surface features can be made.

featurea on the two bodies bear no direct resemblance to each
other. Formation of Ganymede's grooves is often éscribed to graben=-
style tensional fracturing (Lucchitta, 1980; Allison et al., 1982)
and localized infilling (Parmentier et al., 1982). This deformation
does not appear to involve crust-penetrating fracturing but rather
in situ deformation of older terrain (Lucchitta, 1980), and intra-
crustal extension and necking (Parmentier and Head, 1982), as
described by Tapponier and Francheteau (1978) for continental and
mid=ocean rifts.

Comparison of medium~-range photographs of Ganymede (see Fig. 23
in Smith et al., 1979b) with the photograph of the Antarctic ice
gheet in Fig. 4.4 shows a startling similarity. Eig. 4.4 shows an
area near the edge of the West Antarctic ice sheet (vicinity Ross
Sea) that is currently undergoing stretching as downslope portions
accelerate, Within this area, blocks of relatively undeformed ice
have been separated by deformed zones and partially rotated. The
deformed zones contain discontinuous groove sets in curvilinear
wedge-shaped belts, reminiscent of grooved terrain on Ganymede

(Parmentier et al., 1982), and not to be confused with wedge-shaped

86



Fig. 4.4 Antarctic ice sheet, vicinity of Ross 5Sea and the Trans-
antarctic Mtns. Photo approximately 5-10 miles wide. Courtesy of
W. Burdelik.
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bands on Europa. There is no suggestion of flooding by any new
material within these zones. In Antarctica and on Ganymede, 'new’
crustal material appears to have been created by lateral stretching
of the upper layer and intracrustal, or continental style, deformation
(i.e. thick-skin tectonics)., Europa, as discussed earlier, is
characterized by sea ice style deformation (i.e. thin;skin tectonics).

Another important observation is the reversal in the albedo
relationship between old and young crustal material. On Ganymede,
older, dérker, more silicate-rich crust has been replaced by brighter,
relatively silicate-free material (grooved terrain). This is
consistent with the thermodynamic models of Parmentier and Head (1979)
in which Ganymede retains much of its primordial crust. This con-
trasts with the 'clean' older crust and darker, contaminated
replacement material from the interior seen on Europa. This suggests
a more complicated history for Europa involving total replacement
of the outer layers, and minor subsequent replacement from a well-
mixed subcrustal layer.

Although Io and Europa are grossly similar and appear to be or
have heen active internally, the differences in surface composition
preclude direct comparison. If Io did possess water after formation,
it has since been lost. No Europa- or Ganymede~-style fracturing or
deformation is apparent, despite the high resurfacing rate (Smith
et al., 1979a). This may be due to the different mechanical

properties of a sulfur-enriched crust on Io.
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CHAPTER V: DISCUSSION AND CONCLUSIONS

5«1 Crustal Models

Two types of crustal models for Europa have been proposed in the
literature (Pig. 5¢1). The 'thick-ice' models propose that an ice
shell to 150 km thick overlies a 'dry' silicate interior (Consolmagno
and Lewis, 1976). Fanale et al. (1977) estimate the thickness of the
icy crustal layer at ~ 75 km, the lower 35 km possibly being liquid.
Both models assumed chondritic heat flux values. Cassen et al. (1980)
suggested that any thick water layer would freeze within a few
million years.

Thin-ice models developed after the Voyager missions proposed
that a large portion of Europa's water was tied up as water of
hydration in a 200-300 km thick zone of hydrated silicate material
beneath a brittle, ~ 25 km thick icy crust (Ransford et al., 1981).
Obsexrvation of abundant crust-penetrating fractures and other sea ice
style features tend to support the thin-ice model of Ransford et al,
(1981), a conclusion similar to that reached by L&S (g.v. for further
discussion). Unfortunately, there is no evidence that the proposed
hydrated silicate zone exists.

Crustal deformation, as described in the preceding chapters,
suggests that a modification of thin-ice models might be necessary.

A major conclusion of this work is that the icy crustal layer was

underlain by a liguid-like layer, at least during fracture formation.
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Fanale et al. (1877) Ranstord et al. (1981) Schenk (this text)
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hs. hydrated silicates

Fig. 5.1 Comparison of models of Europa's interior.
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This subcrustal layer is presently exposed as brown fracture
fillings, implying the existence of an intermediate layer (layer 2)
between the icy crust and silicate interior, Plastic (thick-skin)
style deformation would be expected if the hydrated silicate layer,
as described by Ransford et al. (1981), was directly beneath the icy
layer during fracture formation. The gea ice style of fracturing,
relatively high albedo of the fracture fillings (~ 50%), and the
dominance of water in Europa's spectra suggest that layer 2 was
composed of liquid water, with a minor amount of orange-brown
contaminant., The nature and source of this contaminant is unknown.
The thicknesses of these outer layers is a major question that
cannot be answered directly. Price (1966) reported that joint
spacing in subhorizontal rock layers was inversely proportional to
their thickness. This relationship is dependent on several assump-
tions: no lateral lithologic variations, no major tectonic events,
and no effective cohesion between the layers, assumptions that can be
regarded as reasonably valid for the proposed crustal model. Visual
inspection of smooth plains at mid-latitudes suggests an average
spacing between lineaments of 30-40 km, and a corresponding maximum
estimated thickness of 9-10 km for the outer icy layer. A ratio of
between 3.4 and 4.0 between lineament spacing and crustal thickness
was uged., This is the same ratio used by Fink and Fletcher (1981)
when they applied a similar concept to grooves on Ganymede. The 9=10

km estimate is half the value proposed by Ransford et al. (1981),
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but does not include layer 2, since the lineaments are interpreted
as having been formed while layer 2 was liguid. fThe inferred thick-
ness value will decrease if increased resolution reveals more

fractures.

5.2 Origin and Evolution of Zuropa's Surface

My model for wedge-shaped bands and simple lineaments requires
a sub-crustal liquid layer during their formation. Since a liquid
layer is expected to freeze geologically quickly (Cassen et al.,
1980), an energy source supplementary to radioactive decay and normal
tidal energies is needed to maintain the liquid state throughout
Buropa's geologic history, or to initiate a recent remeiting event,
The proposed initiation of the three-way orbital resonance lock
among the inner Galilean satellites at ~ 200 m.y. (Yoder, 1979)
(corresponding to the maximum age estimate of Shoemaker and Wolfe,
1982), and the associated boost in tidal flexing due to forced
eccentricities, may have been sufficient to melt any preexisting icy
crustal layer, or stimulate extensive outgassing of watery materials
from dehydration reactions in the interior, as described by Ransford
et al. (1981).

Extensive outgassing may have had several effects in addition
to creating a global ocean. If the outgassing was energetic enough,
suspended silicates may have been introduced into the ocean, creating
the observed coloration. Contamination of the ocean may have resulted

from the concentration of dissolved 'salts' into a brine as the water
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layer continued to freeze (Reynolds and Cassen, 197%). Alternatively,
primordial gases {002 and CH4), released from the interior, may have
produced organic molecules by reacting with water in fracture
fillings, as suggested by Schonfeld (1982). Outgassing would also
provide a convenient mechanism for apparent planetary expansion and
the opening of some fractures.

If an original outer layer were completely remelted, any
original fracture patterns would be erased. The exposure of liguid
water to deep space would result in violent boiling {Parmentier and
Jead, 1579), perhaps sufficient to generate a temporary atmosphere.
The generation of this atmosphere would have released large quantities
of heat into deep space, enhancing refreezing. With its source then
removed, this atmosphere would both diffuse into space and condense
out on the ice, possibly explaining the observed surface frosts.

If not totally remelted, fracture patterns, craters, spots,
etc., would tend to anneal due to enhanced viscous relaxation and
gravitational segregation of silicates (Parmentier and Head, 1979)
in the warmed crust. This would result in an artifically young age,
and the 200 m.y. date of Shoemaker and Wolfe (1982) would reflect
the time of this event, not the original age.

In either case, a new fracture network would develop in the new
crustal layer as it began refreezing, due to tidal flexing, thermal
fracturing or some combination of these and other factors. Tidal
flexing probably enhanced the lateral propagation of preferentially-

oriented fractures. This is the probable origin for the 'grid'
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pattern in Fig. 2.7a. Outgassing of volatiles into the subcrustal
ocean may have caused the observéd coloration and may have gener-—
ated a localized convection cell or plume beneath the anti-jove
voint, explaining the opening of wedge-shaped bands. Most of the
observed lineaments and brown terrain units were probably formed
during this epoch, as the global ocean began refreezing. The
spectral similarity and global distribution of brown fracture
fillings and terrain units (McCord et al., 1982) suggests they are
formed from similar materials, and perhaps from the same source
region, l.e., a global subcrustal ocean.

Fracturing and deformation probably continued during the
refreezing of the subcrustal ocean, accounting for the overlapping
age relationships among the lineament types. Shortly after the
icy crust first formed, the subjacent liquid-water layer became
contaminated, probably as a result of continued outgassing. Whether
the subcrustal ocean has since refrozen is a moot point. If the
crust was remelted at ~ 200 m.y., calculations by Cassen et al. (1980)
suggest refreezing within several million years. If refrozen to a
depth below 10 km, the ice would be 'soft' (L&S), and probably
behave plastically. Triple bands may reflect deformation of a crust
in such a state, but this is uncertain.

Europa's features can be explained by a history involving a major
reheating event several hundred million years ago, the creation of a
global ocean, and subsequent refreezing, Any record of Europa's

history prior to this event appears to have been erased. The history
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of this period is thus unknown, although if Yoder's (1979) model is
correct, Europa may have been quiet during its first 4.4 b.y.

The evidence for the above scenario is not conclusive, although
in some regards it is compelling. It is hoped that the following
proposed outline will promote further discussion of Europa problems
and their solutions. It is also hoped that these ideas will promote
debate as to their merit and validity.

1. 4,600 to 200 m.y. ago. Presumably events during this epoch
included accretion into a globe and subsequent differentiation, which
may or may not have been completed. No record of these events appears
to have been preserved.

2. ~200 m.y. ago. Creation of a three-way tidal resonance
lock with Io and Ganymede may have been responsible for a sudden,
large~scale increase in tidal heating, remelting major portions of
the exterior, creating a global ocean, and perhaps stimulating
outgassing from the interior. A temporary atmosphere may have been
generated at this time.

3« ~200 m.y. to the present. Due to tremendous heat loss
into space, the global ocean began ¥efreezing. Tidal, thermal and
mechanical stresses acted on the newly forming icy crustal layer,
fracturing, and perhaps locally flooding it. O0scillating tidal
stresses probably acted as a controlling factor on the orientation
and growth of many of these fractures. Whether this fracturing has
continued to the present or whether any liquid remains below the

surface is not ascertainable from the present data, although
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thermodynamic analysis suggests no liquid remains.

Europa's history is certainly more complex than the above
discusgsion suggests. Minor contraction episodes due to the cooling
of the near;surface layers to their present low temperature, cyclic
remelting episodes and the recoupling of the icy crust to the sili-
cate interior are possible processes that have not been discussed.
Also, the 200 m.y. age, based on comparison with lunar crater curves,
is poorly constrained (M. Gurnis, personal communication), although

the relative youth of the surface is readily apparent from the images.

5.3 Conclusions

Several conclusions can be drawn from the preceding discussion
of Voyager imaging and groundbased data. Despite resolution and
coverage limitations, these conclusions, and the preceding tentative
geologic history, can be advanced with some confidence.

1. Offsets of simple lineaments associated with wedge-—shaped
tands demonstrates that Europa's crust has been fraciured and new,
darker material emplaced from below. Although the exact mechanism(s)
of fracturing is (are) uncertain, fracture development was probably
~controlled by tidal oscillations and stresses. The 'grid' pattern in
Fig. 2.7 is evidence thereof. Other forces may have been responsible,
including global expansion during outgassing, and thermal fracturing.

2. Geometrically, plate tectonics is useful in describing the
motions associated with the opening cf wedge-shaped bands and the

wedge~shaped band rift zone and rotations of crustal blocks. A
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compressional zone associated with this opening may exist in the
form of the bright band Agenor Linea. The different crustal and
subcrustal materials result in a distinctly different style of
deformation compared to terrestrial rifting, however. Care must be
taken in extending this comparison beyond the geometrical sense,
although a convective cell may have been operating during wedge-
shaped band formation.

3« A liquid or liquid-like subcrustal layer was present during
the formation of wedge-shaped bands, simple lineaments, and possibly
other lineament types. The sea ice style of fracturing supports
this. The high albedo of fracture fillings and the ubiquitous water
in Europa's spectra imply that this layer was dominantly water, with
some orange~brown coloration.

4. Europa's crust appears to have two layers: a fractured,
relatively 'clean' icy upper layer ~ 10 km thick, and a subjacent
'dirty' water-rich layer from which most fracture-filling material
probably originated. The brown terrain units may have been formed
by extrusions from or exposures of this dirty layer. Aside from
this second layer, the evidence cited here tends to support thin-
ice crustal models in which a relatively thin ice layer, here divided
into two, is underlain by a 200-300 km thick hydrated silicate zone
(Ransford et al., 1981), although there is no observatiocnal evidence
for this hydrated silicate zone. Implicit in this conclusion is that

Buropa's crust was decoupled from the rocky interior during deforma-

97



tion, in contrast to the conclusions of Finnerty et al. (1981) and
L&Se

S5« The extremely smooth and relatively 'clean' icy surfacé and
low crater density imply a recent resurfacing event on Europa. This
may have been linked to the inception of a tidal lock among the inner
satellites and a forced eccentricity (Yoder, 1979), which possibly
resulted in the formation of the subcrustal ocean. Many, if not most,
of Buropa's surface features were probably formed during this time
and the subsequént refreezing of the ocean.

6« Several of the lineament types appear to be related. Wedge-
shaped bands are probably simple lineaments that have been opened more
than a few kilometers, linear ridges are probably simple lineaments
under low sun angles, and triple bands may have evolved from simple
lineaments.

T Sea ice and lava lake crustal behavior are both valuable
models for the fracturing and mechanical properties of Europa's crust
during deformation. I encourage further comparison of Europa with
these terrestrial analogs.

Future investigations are limited because of the quality of the
data. New breakthroughs will probably have to await the arrival of
the Galileo orbiter in the late 1980's. This mission is designed to
perform the first in-depth, long-term investigation of the Jupiter
system. A solid-state imaging system is expected to provide highest
resolution in the 10's of meters on the four Galilean satellites,

and the near-infrared mapping spectrometer should be able to deter-
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mine the composition of the orange-brown material on Europa's
surface, thus answering many questions (it is hoped). More
accurate crater counts, and relative ages, should also result.
YWhether fractures are visible down to Galileo's resolution limit
and whether there is any relief along the plains-mottled terrain

contact may also be determined.
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CAPTIONS FCR PLATES 1-6

The plates are mercator maps of lineament and terrain distributions,
as described in the text. The map edges extend from 55° N to 68° S
latitude and from 130° to 230° W longitude. The anti-jove point is
marked by a dot inside a circle. The scale is accurate at the
equator, and the curved dashed line in the upper left-hand corner
represents the approximate limit of highest-resolution imaging.
Proper names are those adopted by the IAU.

Plate 4:

Bright bands are the two subparallel lineaments at approximately

40° S latitude; bright lineaments are the short lineaments clustered
near the anti-jove point; gray bands are the two cycloid lineament
sets toward the bottom of the map.

Plate 6:
EXPLANATION

Ps - Smooth plains
Pg - Gray plains
Pf -~ Fractured plains
Pl = Lineated plains
Lb - Bright lineated terrain
Ib - Irregular bright terrain
¢ - Crater
¢ - Inferred crater
Sb or irregular
dark spots -~ Brown spots
Patterned unit - Mottled terrain

Contacts are dashed where approximated.
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Analysis of Permafrost Depths on Mars

Gennaro H. Crescenti, Southern Connecticut State College, Planctary
Geology Intern, Summer 1982, Conducted at the State University of New
York at Buffalo.

Permafrost is defined as any soil- or rock material, regardless of
the amount of ioisture content, that has remained below 273%K
(0°C) for more than two years (D.M. Anderson et al. 1973). It is
defined solely on the basis of temperature without reference to ice
content, soil texture, or lithology. It is therefore expected and has
been generally agreed upon that much of the Martian surface is
underlaid with permafrbst. However, the thickness of such layers and
percentage of ice content within the permafrost zone (cryosphere) has
been subject to much debate.

Rossbacher and Judson (1981) modeled thicknesses of permafrost at
latitudes of 10° increments using the average temperature data
obtained from Fanale (1976), surface heat flow of 0.035 W m2
(Toksoz & Hsui, 1978), and a thermal conductivity value of hard frozen
limonitic soil with a 60% ice content of 0.8 W m™l ok-1 (Clark,
1966). Solving for the geothermal gradient, g:

g = Q/K (1)
where Q is the heat flow and K is the thermal conductivity, and their
value of g was 0.044° X ml, The following equation was used to
.solve for the depth or thickness of the permafrost, Z:

Z=Te/-g (2)
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where T, is the mean annual temperature in degrees celcius and g is
the geothermal gradient. Rossbacher & Judson (1981) obtained depths
in the range of 1.1 km at the cquator to 2.6 — 3.0 km at the South and
North Poles recspectively.

However, serious crror may be associated with their thicknesses
due to the thermal conductivity value. The thermal conductivity used
by Rossbacher & Judson is for hard frozen limonite, which is present
throughout the entire surface of Mars but only exists as a mask (Mutch
et al., 1976)., Mutch et al., also go on to suggest that the crust may
be, for the most part, basaltic in nature. This paper, therefore,
recxamines the approach used by Rossbacher and Judson in analyzing the
Martian thermal regime and extends the analysis. Using hasaltic
thermal values, the same technique is used.

Tanperature data for the Martian surface was derived from
Kieffer's et al. (1977) thermal model for the mean, maximum, and
minirmum tempceratures. In their model, diurnal temperatures were
plotted as isotherms for the entire Martian globe (90°N to 90°3),
and for the duration of the entire Martian year. I picked four
temperature points at 900 intervals of the Martian year (areocentric
longitude intervals, 3600 = 1 year) and then were averaged together
for a given latitude. Tatitudes of 1009 intervals were chosen from
90°N to 900S and this was done for each of the three charts (a
minimum, mean, and maximum) fron Kieffer's et al. (1977) paper. The,
tamperature data can be sceen in Table 3. Since the temperatures were
extrapolated from the charts, they may be subject to an error of plus

or minus several degrees.
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The next step was to obtain a heat flow value of the Martian
surface. There are currently two theorical values, Q = 0.035 and
0.040 W m2 from Toksoz & isul (1978) and Davies & Arvidson (1981),
rospectively.

ot to be biased to any one set of thermal vélues for basalt, two

scts are prescnted here. From Wyllie (1971):

K=2.5Wm?’ %1
0=2.0x10° g m™>
C=0.959 J g'l o1
D=9.0x 10" m? sec
And [ceon Kieffler et al., (1977):

K=2.00Wmt %!

p = 2.8 x 106 g m_3
C=0.8Jdgt g1
D=09.3 x 107 m2 sec 1

where K is the thermal conductivity, p is the denéity, C is the heat
capacity, and D, which is equal to K/pC, is the thermal diffusivity of
basalt. Using equation (1), a total of four geothermal gradients were
derived for the Martian crust (see Table 2)., The depths were then
solved by using equation (2) and can be seen for various latitudes
with the different geotherml gradients (Table 3, see also fig. 1).

The next objective was to determine the depth of zero temperature
change of the surface temperature amplitude. The following equation

was obtained from Hillel (1980):
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a = (2p/u)}/? 3)

where d is the damping depth, D is the thermal diffusivity, and w is
the radial frequency. At the depth d, the temperature amplitude
decreases to the fraction of 1/e or approximately 0.37 of the
amplitude at the surface, Ao (Hillel, 1980). By extrapolation the
depth of zero tampzsrature change can be determined graphically (see
figs. 2-G6). The damping depth is directly related to the thermal
properties of the soil or rock and to the frequency of the temperature
fluctuation. The depth of zero temperature amplitude is dependent in
part by fhe surface amplitude, generally the larger the amplitude the
greater the depth of ZeTro temperature fluctuation.

Using equation (3), the values shown in Table 4 were obtained.
Théy give the damping depths for Earth and Mars (both are based on
basaltic crusts) for three cycles — diurnal, annual, and the

obliquity cycle of each planet.

Discussion:

From the results in Table 3 of this paper, it appears that the
thicknesses of the permafrost on Mars are on the order of two to three
times the values obtained by Rossbacher & Judson (1981). This paper
does not take into account such items as thermal inertias and albedo
features and how they have an affect upon the surface temperatures,
the effect on the freezing point of water by influence of dissolved
salts, the thickness of loose regolith (which has lower conductivity

values), and other variables. Nor at the point can this paper offer
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an exact percentage of ice content within the cryosphere. Rosshacher
& Judson (1981) suggest that 7.9 x 106 Km3 of ice is present
within the given parameters of their cryosphere. Should that value of
water content hold true, a similar argument may be applied by having
the same amount of ice distributed over a larger volune such as this
paper suggests. Thus, if all assumptions do hold true, the cryosphere
presented here is much drier than Rossbacher & Judson had originally
conceived. The percentage of ice in their model is 3.7% where as 1.1%
is now suggested in this paper. Also juvenile water, if any at all
does exist, must be taken into consideration when figuring the total
sink of water present on Mars.

The surface heat flow values of both the Farth and Mars are quite
conparable. Harlan & Nixon (1973) give an average heat flow value for
the carth of 0.046 W m"z, and report extremcs 0.025 to 0.084 W
m2. No doubt Mars' values of Q also vary considerably from place
to place, being higher in areas of suspected volcanic activity and
lower near the polar caps. Further studices are necessary to place
extreme limits on the heat flow values given by Toksoz & Hsui (1978)
and Davies & Arvidson (1981). Harlan & Nixon (1978) also give a
normmal geothermal gradient of 0.015° C ml for Farth which is very
comparible to this paper's findings for Mars. FKnowing that Mars is
rmuch colder than Farth, it is natural to expect a much thicker and
more extensive cryosphere. On Farth maximum reported thicknesses of
permafrost are 1400 — 1450 m in the vicinity of the upper larkha River
in Siberia and ahout 1000 m near Alert, Fllesmere Island in the

Canadian Arctic (Washburn, 1980). With all things taken into
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consideration, the depths of the permafrost on Mars does not seem to
be overly brash.

When looking at the damping depths of Mars, we. are primarily
interested in looking at the annual cycles first. In fig. 2, the top
18 meters of the Martian crust vary with the surface temperature
changes. In fig. 3 it is approximately 15 meters and in fig. 4, the
top 14 icters. These layers explained above here should not be
confused with the active layer, which freezes and thaws in a periodic
fashion. In figs. 2—-4 the ground remains frozen from the top down to
the bhotton of permafrost, several kilometers below. After the
designated zero temperature change points on the graphs does the
temperature in the ground follow the geothermal gradient in a linear
fashion. In figs. 5 and 6, diurnal temperatures were extrapolated
from Kieffer's et al. (1977) thermal chart for the most extremne
temperature variations possible to show the mazximum depth of the
active layer. Washburn (1980) defines the active layer as the layer
of ground above the permafrost which thaws in the summer and freezes
again in the winter. From figures 5 & 6, the active layer on Mars has
been determined to be about 6 to 7 cm.

Damping depths were determined for the cycle of obliquity changes
of both Farth and Mars. However, Mars cannot be graphically displayed
because the temperature extremes for such a cycle are not known.
Interestingly enough, Coradini & Flamini (1979) suggested of an active
layer of 100 m for a large scale cycle, which would imply significant

temperature extremes for such a situation to exist.
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TABLE 1

Definitions of Symbols

Surface temperature amplitude, difference between the average
mean and average minimum or maximun temperatures.

Heat capacity (J g~1 OK_l)

Damping depth, temperature amplitude equal to (1l/e) Ao at d.
Thermal diffusivity = K/pC (mz sec-l)

Geothermal gradient (°K m—l, °c m—l) both are equivalent
Thermal conductivity (W nfl oK-l)

Heat flow (W m 2)

Mean average annual temperature (°C)

Mean average annual temperature (°K)

Maximun average annual temperature (°K)

Minimun average annual temperature (°K)

Depth or thickness of permafrost (m)

Density (g nr3)

Radial frequency (2n/# of seconds of given period)
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TABLE 2

Derivation of Geothermal Gradients

0.035 Wm_
0.040 Wm
9.5 §m !

2.0 ¥ m 1

Q /%y =
WKy =
/Ry =
/Ky =

2 Toksoz & Hsui (1978)

2 Davies & Arvidson (1981)
o)l Rieffer et al. (1977)

%1 gyllie (1971)

0.014 °K m 1

0.016 %K m

0.017 %K m ™1

0.019 °K m
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TABLE 3

Average Annual Temperatire 7 = TC/~gx
Temperatures (OK) Amplitude (OK) TC 7./1000 ()

LAT Min| Mean| Max T~y T Ty (°c) | x=1| x=2| x3| x=4 |2 avgJ
20 114 144 | 144 0 0 -129 9.2] 8.1 7.6 6.8 7.9
80 146 147 | 148 1 1 -126 9.0 7.9| 7.4 6.6 | 7.7
70 151 157 | 164 6 7 -116 8.3 7.3 6.816,1} 7.1
60 1617 177 |} 195 16 18 -96 6.9| 6.0} 5.6 5.1 5.9
50 165] 187 | 216 22 29 —~86 6.11 5.41 5.1 4.5} 5.3
40 170} 202 | 251 32 49 =71 5.1} 4.4] 4.2] 3.7 4.4
30 1721 208 | 261 36 33 -65 4.6| 4.1| 3.8 3.4 | 4.0
20 1741 212 | 269 38 57 —61 4.4 3.8( 3.6 3.2 3.8
10 1761 215 | 273 39 58 ~58 4.1] 3.6} 3.4 3.1 | 3.6

0 177 216 | 274 39 58 -57 4.1| 3.6] 3.4 3.0 | 3.5

-10 175 215 | 275 40 60 -58 4.1y 3.613.4}3.1}| 3.6

=20 174} 213 | 271 39 58 -60 4.3} 3.813.5] 3.2 | 3.7

-30 1731 209 | 262 36 53 -64 4.6} 4.0 3.8} 3.4] 4.0

-40 170 | 201 246 31 45 =72 5.1} 4.5) 4.2 3.8 ] 4.4

~50 164 | 183 | 207 19 24 -0 6.4/ 5.615.3|4.7] 5.5

-50 161 { 180 {199 19 19 -93 6.6 5.8 5.5(4.9 ] 5.7

~70 148 | 153 160 S 7 -120 8.6|7.5)7.1}6.3 7.4

-80 1451 147 | 148 2 1 =126 9.0}7.9|17.4}6.6} 7.7

~90 144 | 144 144 4] 0 -129 9.218.117.6] 6.8 7.9

Note: The average temperature must first be converted to °C before it is to be
divided by the geothermal gradient, this can be easily illustrated on a
graph of temperature vs. depth, the geother@;l gradient asg the slope of
the line. Where the line interests the 273K isotherm (0°C) is the

hottom of the permafrost. 125



TABLE 4

Damping Depths for Various Cycles

d = (20/w)l/?
Earth Mars
Period Frequency d Period Frequency d
Cycle {secs) (21/Period) (Meters) (secs) (211/Period) Meters)
Diurnal 86400 7.27 x 100 0.160 88776 | 7.08 x 107 0.162
Annual 3.15 x 100 |1.99 x 1077 3.06 6.10 x 10| 1.03 x 10™7 4.25
- * -
Solar Obliquity | 1.29 x 1012 }4.9 x 10712 | 6.2 x 102 | *5.2 x 10'%| 1.2 x 10722 | 1.2 x 103
%%k -
3.9x 108 1.6 x 1018 | 3.4 x 103
Notes:
D=9.3x107 m? secl, from Kieffer, et al. (1977)

*
Smaller period, 1° change in axial tilt

ok
Larger period, 5° change in axial tilt
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North Pole

Equator

3397 km

Radius of Mars

4 km
L

Thickress of cryosphere
Not drawn to scale with rest
of planet.

Fig. 1

Cross section of Martian cryosphere, adopted and modified yersion from
Rossbacher' and Judson (1981)., Inner circle represents 273°K isotherm,
point at which any frozen groundsice3becomes Tiquid water, Total average
volume of cryosphere is 7.2 x 107 km™=
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SPECTRAL ANALYSIS OF GROOVE SPACING ON GANYMEDE  Robert E. Grimm,

Dept. of Meological Sciences, University of Tennessee, Knoxville, TN 37996

Origin of grooved terrain and the significance of groove spacing:

Ganymede's bright "grooved" terrain is thought to have been formed as the
result of global extension (Smith et. al., 1979), probably caused by phase
transitions during differentiation (Squyres, 1980). Parmentier et. al. (1982)
have argued that graben formation is the overall tectonic style of this ex-
tension. However, it is not clear whether individual grooves represent actual
graben, extension fractures, or ductile necking features. Regular groove
spacing is observed and could result from extension of a brittle lithosphere,
causing a necking instability which undergoes normal faulting at regular
intervals (Fink and Fletcher, 1981). Squyres (1982) argues that grooves are
extension fractures, with spacing depending on a necking instability or the
formation of a cooled, strengthened zone around a fracture where no further
extension can take place. The geothermal gradient at the time of fracturing,
and hence the thickness of the layer in which fracturing occurs, controls all
models of extensional tectonic features on Ganymede. Quantitative estimates
of groove spacing can therefore be used to constrain this important indicator
of planetary evolution.

Here only the technique used to analyze groove spacing is discussed,
complete results and interpretation will follow in future reports.

Criteria for data selection: Approximately 160 tracks perpendicular

to the trend of grooved terrains from 28 Voyager images were selected for
study. Groove sets selected had to satisfy a uniqueness criterion; that is,
no grooves could be traced unbroken into adjacent sets. Grooves that were
not nearly parallel were avoided, as were those that were extensively cratered.
In addition, features of less than a few wavelengths were not used, e.q.,
single grooves and groove pairs. Because of the lack of stereo coverage and
the unsuitability of most images for detailed photoclinometric analysis,
digital photometric intensities as recorded by Voyager cameras through clear
filters were considered to correlate with the relative amplitudes and wave-
'lengths of surface topography. Hence anomalous contrasts in reflectivity had
to be avoided, such as those due to bright ejecta or the planet's terminator.
Similarly, those groove sets judged not to have adequate contrast to be
resolved from noise were not used.

Determination of scale along cross-groove tracks: The relative dis-
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Ganymede groove spacing
Grimm, R. E.

tance per pixel along a given track depends on the angle (a in Fig. 1)
between the subspacecraft position and the target center, and the angle
(b in Fig. 1) in image plane projection between the track and the space-

craft line-of-sight: f d

COS (a .cosB) (1)

where r is the range from planet center to the spacecraft and ¢ is a
constant depending on the camera field of view and the number of pixels
per image. Solution of equation (1) also fequires knowledge of the sub-
spacecraft latitude and longitude, the image north azimuth, the latitude
and longitude of a control point in the image (Davies and Katayama, 1981),
and the line and sample numbers of the control point as well as both end-
points of the cross-groove track. The latitude and longitude of the track
center can also be calculated from this information.

Power spectral estimates of groove spacing: For each desired cross-

groove track, a set of 5 closely spaced tracks are summed, bandpass filtered,
and tapered in the spatial domain in order to reduce the effects of regional
trends, noise, aliasing, and side lobes in the wavenumber domain. The power
in a given spatial frequency is proportional to the square of the modulus of
its Fourier transform:

A(K)= SA( Ne2™dr (2)

PR}~ Re [AK] +Inf [AW]

A sample cross-groove track and its power spectrum are shown in
Figs. 2-3. This spectrum shows a peak at approximately 0.3 km'1 ( about
3 km wavelength), although much of the power is dispersed at higher frequen-
cies. Since groove spacing may depend on latitude (Squyres, 1982), power
spectra in a given latitude band are averaged and compared with other lati-
tudes. The spectra are also statistically analyzed with respect to the
viewing geometry parameters in order to reveal any hidden systematic errors.
When completed, this work will provide a global picture of the variation
of groove spacing on Ganymede.
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INTRODUCTION:

Copernicus is a large, bright-rayed crater located in Oceanus
Procellarum at 9.5°N, 20°W. TIts unique character is due to the presence
of a significant amount of olivine in its central peak region (Pieters,
1982), a mineral which is widely distributed but not abundant on the lunar
surface. Of the 11 large craters for which spectral data is available,
only Copernicus conclusively shows olivine absorption bands. The focus of
this report is on postulating the Copernicus stratigraphy such that it is
in agreement with this observation and known stratigraphic units. This will
be accomplished primarily through cratering mechanics and available Earth-
based spectral data. Diagrams of four postulated stratigraphic sections
of Copernicus are given with accompanying discussion in the text.

GEOLOGIC SETTING:

The large (485 km diameter) mare-filled basin centered approxi-
mately 840 km north of Copernicus is the Imbrium basin. Its outer ring
structures, the Apenninus and Carpatus mountains, lie a crater diameter
north of Copernicus, while a substantial amount of basin ejecta underlie
the mare near Copernicus.

Though the Imbrium cavity may have ejected material from as deep
as 60 km (Grieve, 1979), no major amounts of mantle material have been ob-
served in the mountain ridges during the Apollo missions. Thus it is very
unlikely that olivine-rich mantle would have been deposited near Copernicus
prior to its formation and re-excavated to form the peak material. Also,
the central peaks of Copernicus are comprised of material excavated from up
to 10 km depth, which is much deeper than ejecta emplacement could occur.
This 10 km depth follows from (Dence et al., 1977) relation for bright cra-
ters that the maximum depth of excavation is approximately 1/8 the diameter,
which is 95 km in the case of Copernicus.

SPECTRAL INFORMATION:

A single telescopic near infrared spectral reading encompasses
an area of 5 to 15 km in diameter in the Copernicus region (Pieters, 1982).
The locations of these areas are shown on the map of Figure 1. The telescopic
spectra of the Apollo 16 site are very similar to the spectra of the soil
samples measured in the laboratory (McCord et al., 1981), and is a useful
aid in calibrating the spectral data. The dominant mineral in the breccias
of the Apollo 16 is plagioclase feldspar (Angs-97), with low-Ca orthopyroxene
present in less abundant though significant amounts. Olivine and clinopy-
roxene occur in only minor proportions.

The pyroxene absorption band tends to dominate spectra, oblitera-
ting many of the effects of the nonmafic minerals. These pyroxene bands
are symmetric and narrow at 1 pm, becoming broader and asymmetric at the
2 um absorption band (McCord et al., 1981). Olivine spectra differs from
this in that it displays a multiple band near 1 ym (see Figure 2).

Agglutinates, or glass-welded aggregates of material reworked by
numerous small impact events, will weaken the mineral absorption bands, as
in the case of the Apollo 16 soils. Fresh craters do not yet display large
changes due to the effects of agglutinates. An area with a high albedo gen-
erally has not been affected, which is the situation with the high albedo
peaks and walls of Copernicus (Pieters, 1982). The wall spectra indicate
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orthopyroxene absorption in combination with other absorption bands of in-
determinate composition centered near 1 pym. Orthopyroxenes are associated
with feldspathic lunar crustal material, so the wall deposits as well as
the rim deposits appear to be of the same composition as the lunar terra
material sampled by the Apollo missions. Slightly more distant from the
crater (e.g., point 13 on map), though still in the continuous ejecta de-
posits, clinopyroxenes become sometimes more abundant than the orthopyrox-
enes, indicating more mafic rocks. This could be due to the influence of
local mare material on the more feldspathic ejecta, or it may be a function
of changing pyroxene composition with depth. 1In general, ejecta from
deeper in the crater is deposited closer to the rim (Rehfuss et al., 1977).
This is shown in the accompanying cross sections.

The floor of Copernicus has been interpreted by Howard (1975) to
be pooled and/or veneered with impact melt. An alternative explanation
(S. R. Taylor, 1982) which is consistent with the Apollo 17 infrared scan-
ning radiometer data is that fine-grained debris flows were deposited on
the floor. The spectra of the floor indicate the presence of orthopyrox-
enes and other minerals which skew the absorption band complex to a shorter
wavelength. The undetermined mineral bands could be a result of the highly
shocked debris, which is also present in "pools" on the crater walls and
on the rim deposits. It is difficult to establish the presence of feldspar
in shocked material, as it will not retain its crystalline structure as
will shocked mafic minerals (Adams et al., 1979).

Three peaks in Copernicus have been spectrally analyzed by Pieters
(1982) and inferred to contain a mineral assemblage of olivine and feldspar.
Another large, fresh crater near Copernicus -- Eratosthenes -- does not dis-
play a similar assemblage in its central peak but instead includes clino-
pyroxene. From this one can infer that clinopyroxenes predominate over
orthopyroxenes at the depth of excavation of this crater, which could be
as much as 7 km. A few kilometers deeper, another major compositional
horizon was encountered during the Copernicus excavation, causing an olivine
assemblage to be emplaced in the central peaks.

"UPPER STRATIGRAPHIC UNITS:

The upper units for the Copernicus area include deposits from the
~Copernicus impact, the mare basalts, and the Imbrium ejecta. Using Pike's"
relation (1980) the rim height of Copernicus is 1.4 km, with the rim depos-
its thinning very quickly within the distance of one crater radius from the
rim. A sheet of highly shocked debris or impact melt covers the crater
floor. A1l four stratigraphic models are uniform in displaying these units.

Values for the thickness of the Imbrium ejecta at Copernicus range
from 430 m (McGetchin et al., 1973) to 3.08 km (Pike, 1974), depending on
the ring designated as the crater rim and the choeice of transient crater
models. Copernicus stratigraphic model 1 is consistent with McGetchin et
al., while model 2 is consistent with one of Pike's ejecta thickness rela-
tions. The average thickness of the basalt overlying the Imbrium ejecta in
the Copernicus area was calculated by DeHon (1979) to be 250 m, which all
four models display.
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LOWER STRATIGRAPHIC UNITS:

Another observation made by DeHon (1979) is a localized thicken-
ing of the basaltic crust, possibly filling an old basin centered at 129N,
13%W. Gravity data supports this idea, as well as the presence of a discon-
nected, arcuate trend of old ridges in a circular and concentric formation
(Withelms and McCauley, 1971). This basin has been referred to as South
Imbrium and it predates the Imbrium event. During the South Imbrium impact
event, substantial uplift of the mantle may have occurred, forming a plug
which was later uplifted by the Copernicus impact to its present position
in the central peaks. The proximity of the two crater centers (Copernicus
and South Imbrium) strengthen the case for such a scenario. Both modeis 1
and 2 indicate a prior basinal impact event.

As mentioned earlier, Eratosthenes displays a clinopyroxene as-
semblage in its crater peak, suggesting a substantial clinopyroxene-
bearing unit at the depth of excavation. Though both Copernicus and
Eratosthenes lie within the South Imbrium basin, Copernicus does not dis-
play this mineralogy, but instead is feldspathic and contains significant
amounts of orthopyroxene. This suggests that a more mafic layer which
underlies Eratosthenes either thins westward as it approaches Copernicus
or some other distontinuity occurs between these two craters.

Cadogan (1974) proposes an older, much Targer basin on the Tunar
nearside centered at 26°N, 15% with ring diameters of 1700, 2400 and 3200
km. The existence of Gargantuan basin, as it is called, has not been estab-
lished. Though there is some photogeologic evidence for the existence of
this basin, geophysical data does not support the idea of such a large,
ancient impact (Hawke and Head, 1977). A separate stratigraphic model is
not necessary to display this event, since the same sequence as in models
1 and 2 of mantle uplift and re-excavation by Copernicus applies to this as
well.

An interesting distribution of the olivine in the three central
peaks is observable in the spectra. A narrower, generally stronger, olivine
absorption curve describes the smaller and more central of the three peaks
(point 2 on the map). This is possible evidence for the presence of a very
localized concentration of olivine, such as a dunite plug or dike beneath the
Copernicus crater. A similar situation exists on Annette Island in south-
eastern Alaska where 98% of the plug is serpentinized olivine with only
monor amounts of clinopyroxene and chromite (H. Taylor, 1967). This model
(model 3) doesn't require a previous, larger, impact event.

One final model is inconsistent with the lunar geophysical data,
and is supported only by the original observation that olivine occurs in
the central peaks. Model 4 is of a mantle not at 60 km depth (as the geo-
physical data suggests), but at 10 km, and thus is within excavation depth
of the Copernicus impact event. This model is highly unlikely due to its
unreasonable mantle depth. However, this doesn't preclude a geochemical
differentiation sequence whereby a troctolite layer is formed at a 10-km
depth.
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CONCLUSION:

A table follows summarizing the advantages and disadvantages of

each model discussed in the text.

Despite the points made concerning the

disadvantages of model 1, which postulates an early impact basin centered
near Copernicus with only a thin layer of Imbrium ejecta, this model is

most consistent with the data.

There are points concerning the stratigraphic

units which are not yet understood, but which don't refute the model, either.
The thick layer of feldspathic material above the olivine layer and below
the Imbrium ejecta may be fallback ejecta from the South Imbrium cratering
event, though the origin is left open to speculation.

More extensive spectral data collecting, combined with the more
refined techniques and interpretations that are presently being worked on,
will perhaps provide a means to identify the unknown stratigraphic units.

Model 1 (1)
430 m of
Imbrium
ejecta
over early (2)
impact ba-
sin center-
ed near (3)
Copernicus

(4)
Model 2 (1)
3.08 km of
Imbrium ejecta
over early (2)
impact ba-

sin centered
near Coper- (3)
nicus

(4)

Model 3
Dunite plug/
dike beneath
the Coperni-
cus crater

(1)

ADVANTAGES

Remnant ring structure
suggests a previous
basin subsequently
filled by mare

Depth of early basin is
sufficient to excavate
mantle at 60 km

Gravity data consistent
with early basin
Basaltic crust thickens
near center of proposed
early basin, thinning
outward

Remnant ring structure a (1)
previous basin, subsequent-
ly filled by mare

Depth of early basin suf-(2)
ficient to excavate mantle
at 60 km

Gravity data consistent
with early basin
Basaltic crust thickens
near center of proposed
early basin, thinning out-
ward

(3)

A small plug/dike is con-(1)
sistent with the higher
concentration of olivine

in one peak over the

others

Monomineralic quality of a
plug accounts for this same
quality in the Copernicus

peaks
140

(1)

DISADVANTAGES

Origin of feldspar-pyroxene
unit above the early basin
excavation and below the
Imbrium ejecta is unaccounted
for

No conclusive evidence that
major basins excavate mantle
material

Unlikely ejecta thickness
extrapolated from small-scale
cratering mechanics

Origin of thinner feldspar-
pyroxene unit above the early
basin excavation and below the
Imbrium ejecta is unaccounted for
No conclusive evidence that

major basins excavate mantle
material

The Copernicus impact, by
necessity, had to occur di-
rectly over the plug/dike



Model 4 (1) Simple model, depen- (1)
Mantle at dent on no prior event
10 km depth (2)

Geophysical data inconsis-
tent with 10 km mantle depth
No other evidence for a
shallow mantle
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FIGURE 1: BASE MAPS
A - base map of Copernicus ares, showing spectral points, names
of important geographical areas
B - view of entire moon, showing basins mentioned in text

FIGURE 2: SPECTRAL DATA
A - graphs of typical spectra of olivine, px, feldspar
B - graphs of continuum for Copernicus wall, peak, Eratosthenes
peak, and Apollo 16 sample (offset, on same graph)

FIGURE 3 - A11 4 models
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GEOLOGIC OBSERVATIONS OF THE MARTIAN HIGHLAND BOUNDARY
IN THE MAMERS VALLES REGION

James H. Persky, Department of Geology, Boston University, Boston, MA 02215

During my internship at the U.S.G.S. Branch of Astrogeologic Studies in
Flagstaff, Arizona, I completed a geologic map of the Ismenius Lacus (MC-5) SW
subquadrangle of Mars, using the 1:2,000,000 photomosaic as a base. The mapping,
and a limited study of the surrounding areas, was done under the supervision of
Baerbel K. Lucchitta, and is part of an effort to determine the nature and origin
of fretted terrain, fretted channels, and the northern highland scarp. Some
highlights resulting from the mapping and accompanying topical investigations
are listed below.

1) The cratered highlands of Mars, in the vicinity of Mamers Valles and
Deuteronilus Mensae, appear to consist of ice-cemented material 1-2 km thick,
similar to what has been suggested by Sharp (1973). However, the percentage of
ice appears to be far greater than previously thought. Fully-enclosed, steep-
walled, debris-floored depressions such as the one located at 38.5° N, 332° W
(Viking Orbiter image 567A09) suggest an origin by collapse {Carr and Schaber,
1977) rather than by deflation, because the enclosed debris has not been removed.
Also, in several places, surface layers are inclined toward troughs or along
scarp edges, suggesting withdrawal of material from the subsurface. The removed
material may have flowed away in places (Squyres, 1978), but more likely sub-
Timated in those areas where no external exits existed, such as in closed de-
pressions. Furthermore, flows appear to result in headward expansion of valley
tributaries by sapping, which would require removal of appreciable amounts of
highland material, yet the flow materials do not extend more than about 20 km
into the main valleys. This suggests a sizeable difference in mass between
material removed and material deposited, a difference which sublimation of

ground ice may account for.

2) To the west of Deuteronilus Mensae, a unit of material darker and
topographically lower than the majority of the regional highland surface is
visible. These two highland units will hereafter be referred to as the dark
and light highlands, respectively. The scarps along the dark highlands are
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lower than those along the 1ight highlands, and, on a few mesas in the north-
western Deuteronilus Mensae, the dark unit is seen to underlie the light high-
land material. The dark highlands appear to be stratigraphically lower, and
exposed by erosion of the 1ight hightands. Similar layering is seen along the
Mamers Valles near 33° N, 343° W (Viking Orbiter image 637A16), where three
discrete layers are visible along a channel wall, The two layers of highland
material may be of contemporaneous origin, the difference between them the
result of diagenesis below the interface of ice-rich and liquid-water-rich
materials {Soderblom and Wenner, 1978). The additional Tayering seen along
the southern Mamers Valles could be caused by progressive lowering of the
position of the ice-water interface as the Martian climate cooled.

Crater counts on the dark and light highland units are similar, with the
dark unit apparently being slightly younger (Table 1). This observation is
consistent with the dark unit being an erosional surface that has been exposed
to cratering more recently than the light highland surface. Based on crater
densities, both highland surfaces are much more recent than highland surfaces
in the interior of the highlands elsewhere (Scott and Tanaka, 1981).

Table 1. Crater densities of highland units (values given are numbers of

craters equal to or larger than the given diameter per 106 kmz).
Superposed Craters Light Highlands Dark Highlands
1 km 1080 547
3 km 400 250

3) In Deuteronilus Mensae, the fretted terrain is floored by smooth,
flat-1ying material darker than either of the highland units. Farther north
and west of Deuteronilus Mensae, the floor material and several mesas of dark
highland material are buried by two other units. The first is a dark material
similar to that found along much of the southern extent of Vastitas Borealis,
and has a density of 398 craters greater than or equal to 1 km per IOQ kmz.
The other unit is a material of lesser areal extent which exhibits abundant
polygonal and curvilinear features of unknown origin, The features do not
resemble the patterned ground of probable ice-wedging origin common in the

Mare Acidalium (MC-4) quadrangle. This unit has a density of 456 craters greater
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2
than or equal to 1 km per 106 km . The burying material is apparently quite
young. It appears to have invaded the fretted terrain from the north and west,
and may well represent young lava flows.

Overall, ground ice and its removal seem to play an important role in the
formation of the fretted terrain. The processes have been active relatively
late in Martian history. This implies that either the formation of the fretted
terrain is young, or, if it is old, that the processes acted extremely slowly
or interruptedly from ancient into relatively recent times.
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"

Mangalla Vales is a huge network of channels in the "emnenia
Quadrangle of "Mars. It appears to have bheen produced by a single
catastrophie flood. There are at least three cxamples of cata-
strophic floods known on earth., They are the Charneled Scab-
lands in Zast Jashington (Bretz, 1969; Baker, 1973, 1974),
the ‘nake River Flain in Idaho (lialde, 1968), and the .right
Vallev in Antartica (Smith, 1965; .‘arren, 1965). The cata-
strophic flows on earth involved millions of cubic meters per
seccond of water (Baker and I"ilton, 1974). On earth the volume
is usuvally supplied by the breaching of ponded water (such as
the collapse of glacial dams).

Catastirophic flows on 'ars could not have had the same
source as those on earth. ILiquid water could not exist on I ars'
surface for long without freezing and subliming. Carr (1981)
lists several sources for the formation of catastrophic flevs
on I"ars. They are retrogressive flow slides, liquefaction,
Zz2othermal melting of ice, decomposition of hydrated minerals,
snd the braakout of water from confined aquifers.

Breadout of water from the subsurface is the source of
"anralla Vales (larr, 1981). At the south end of langalla is
a graben that has been breached (639A11). The faults that
Tormed the graben released subsurface vater. The fluid escaped
to the surface via the fault and breached the graben wall,

‘rom there it flowed north for approximatly 750 kilometers.
Zvidence from high resolution pictures prcduced by Viking,
tend to suvport Carr's conclusions.

As the water escaped into the graben it eroded the rock
walls, doubling the original width of the graben ncar the
breach, Ceveral remnant portions of the wall appear in the
middle of the graben (312403). They stand upright and are
roinded. Before the graben was breached the fluid over-
flowed, filling a crater located to the southeast of the
graben breach (312404, 690A01). A channel line can be seen
within the crater. Later, as the fluid flowed north through
‘the breach, the water probably drained from the crater,
because the breach outlet is at a lower level then the crater.

153



Topographic data suggest a source of the waler to the
cast of the breach, on the other side of a ridge of highland
terrain east of NMangella. The source of water is probably
ice lenses within the regolith, To the east of the ridge,
lava flows cover the entire terrain. These lava flows erupted
from Arsia l'ons. ‘'le are suggesting that as the lava flows
extended further from the caldera they heated the grzound and
melted the trapped ice. The lava cover acted as a cap prevent-
ing escape., This area is along the southwest margin of the
Tharsis highland. Ground water flowed down the slope frcm
Arsia Nons and ccllected along the east side of the ridge near
"angalla 7ales, The pore pressure would have gradually increased
at this location.

A contour map was made using radar topography data to
determine the topography of the Vemnonia 2uadrangle. Along
the sraben there is a low point that surrounds the graben breach.
\s ihe fault, that produced the graben, broke into the acuifer
ine water flowed along the fault erupting into the g¢raben.
The Pluid could not have continued flowing west past the pre-
sent graben breach because the elevation increases in that
direction. The fluid collected in this portion of the graben
and then followed the path already outlined earlier.

©!ith the release of the fluid from the aguifer, the
terrain possibly collapséd. There is no direct evidence for
the collapse area because it has been filled by lava. However,
there are features that suggest collapse. There appears to be
2n oval area to the west of the ridge that has no ancient
terrain protruding from the lava flows (646103). Cn the west,
it is bounded by the ridge. To the north, the ridge and crater
vrotrude. To the east, several orld craters and remnant hills
apnear., To the southeast, a remnant crater and crater peak
2an be secen. In addifion, the graben that broke through to
the aquifer, can not be traced across the area but appears at
either side.

The source of the lava flows immediatly to the east of
the ridge near the graben, is different than the other lava
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flows in the arca. The crests of the lava flows were traced

out from high resolution Viking pictures (030a55; 034153,
034A5h; 312403, 312404; 639A11 to 14). Throushout the area

to the east of the ridge, the lava apvear to have flowed east

to west. 3But near the ridge graben intersection the lava flewed
to the north, east, and south in an arc. The source for these
flows can not be Arsia l'ons.

"agna tends to flow along natural paths of weakness with-
in rock strata. [lagma would flow along faults and erupt at
the lowest points along the faults., The graben passed through
the collapse area, which formed when the water was released.
This spot was the low point along the graben. Lava erupted
from the collapse area along the graben. The rising lava
along the Tault, may even have helped to melt the ice in the
regolith., This would have increased the pore prassure in the
aquifer and aided the fluid in bursting out to form the
channel.,

Jor this series of events to have occufred,the lava Tlows
muct have covered the collapse feature soon after it forrmed.
Tvidence exists for this., Within the partially flooded crater
southwest of the breach is a fault. This fault is recorded
in the portion of the crater remaining free of the flow.

The flow obviously buried the fault when it flooded the crater
(637182). The fault passes east through the crater but dis-
appears as it enters the lava flows. Therefore the lava and
the catastrophic flows both occured after the formation of

the fault. The burial of the Tault lend credence %o the

events discussed earlier in the paper.
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Spatial Distribution of Craters on the Moon and Callisto
Alex Ruzicka and Robert G. Strom, Lunar and Planetary Laboratory,
University of Arizona, Tucson, AZ 85721

The crater size/frequency distribution on Callisto (and Ganymede) has

a marked deficiency of craters greater than about 30 km diameter relative
to the heavily cratered regions on the terrestrial planets (Mercury, Moon
and Mars). This deficiency has been attributed to either (a) an
obliteration of large craters by viscous relaxation when the crust of
Callisto was more ‘thermally active (1, 2,), or (b) the impact of a
population of objects which was intrinsicilly deficient in large objects
(3, 4). '
_ To distinguish between these two explanations, Woronow and Strom (4)
conducted a tonte Carlo computer simulation in which a lunar highland
size/frequency distribution was imprinted on a surface and craters
eliminated in such a way as to produce the observed Callisto
size/frequency distribution. The simulation was completely independent
of any assumptions concerning the thermal history, crustal-thickness
history or ice rheology of Callisto. The simulated surface (Fig. 24)
showed a crater spatial distribution markedly different from that
observed on Callisto (Fig 2c). On the simulated surface, extensive
uncratered areas were produced by the obliteration of large craters; a
condition not observed on Callisto. Gurnis (5) carried this approach
farther by using a variety of size distributions in the Monte Carlo
simulation and comparing the resulting spatial distributions with that
observed on Callisto by “nearest neighbor" statistical methods. This
more rigorous study confirmed the previous results and set more accurate
limits on the amount of large-crater obliteration on Callisto. Both
studies indicate that the observed crater size/frequency distribution on
Callisto 1is essentially a production population which differs
significantly from that on the terrestial planets.

In order to further test these Monte Carlo computer results, an
actual surface of the lunar farside highlands was selected to perform a
somewhat similar simulation for comparison with Callisto. Although two
lunar areas were initally chosen for their apparent lack of plains and
secondary craters, one of these areas has a super-abundance of smaller
craters relative to other regions of the lunar highlands. Until we
understand the reason for this anomaly (possibly clusters of secondaries
from Orientale and another nearby basin), only the more typical region
will be considered in this preliminary report.

The goal of this study was to compare the spatial distribution of
craters 8 km diameter on an area of Callisto with that of a lunar
highlands area from which craters had been removed to produce the
Callisto size/frequency distribution. The region on Callisto was one
used earlier by Woronow and Strom (4) for their comparison with the Monte
Carlo simulation, and comprises an area_of 6.4 x 105 km2 (Fig 2c).
The similar-sized lunar area (6.2 x 10% km?) is centered at 160%,
65°N in the farside north polar region (Fig. 2a).

Craters in the lunar area were mapped and classified according to
degradational type using the fiwve-fold LPL scheme where Class 1 is the
freshest and Class 5 the most degraded. The size/frequency distribution
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was then determined and compared with that for the Callisto area (Flg. 1).
Craters were removed from - N

U WY A

the 1lunar area so that the -{ .01' , 1
size/frequency distribution . ' ;
matched that of the Callisto ‘ Sortowia doras Garagle

area. The obliteration sequence v - /l
was determined by the ‘a

degradational state of the ;.
craters; the older degraded .
craters were removed first 1
followed by progressively 1 S :
fresher craters. At the larger 3 \
size even some of the relatively

fresh craters had to be removed
to reproduce the Callisto curve.

Figure 2a, shows the spatial a2 B 1
distribution of craters in the e L
lunar area while Fig. 2b shows . ' Blmacer, W
the distribution after the Fig. 1. Slze/frequency dlstnbutlons
appropriate number of craters for the lunar and Callisto areas
were removed to produce the shown in Fig. 2a and c.

observed Callisto size/frequency distribution (Fig. 1l). A visual
comparison of Figures 2b and 2c shows that the spatial distributions of
the two areas are very different despite the similarities in the overall
crater density and size/frequency distribution. On the lunar area there
are large relatively crater-free regions not observed on Callisto,
because of the necessity of removing substantial numbers of large,
relatively fresh craters in order to derive the Callisto size
distribution. On the other hand, the derived spatial distribution of
the lunar area (Fig. 2b) is similar to Figure-2d, which is the spatial
distribution derived from the Monte Carlo computer simulation of a
lunar-like impact history done by Woronow and Strom (4). This confirms
the validity of the earlier Monte Carlo simulations.

The results of this study, together with those of the Monte Carlo
computer simulations, strongly suggest that the Callisto (and Ganymede)
crater population is basically a production population deficient in
large craters relative to that of the terrestrial planets. This
indicates that the population of impacting objects responsible for the
period of heavy bombardment in the inner Solar System was different from
that at Jupiter, and probably had a different origin as well.
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Fig. 2. Spatial distributions of craters observed on the lunar
area (a) the Callisto area (c), after crater removal
from lunar area to produce Callisto size/frequency
distribution (b) and from Monte Carlo computer simulation
(d). Scale bars represent 100 km. Fig. 2c and d are
from Woronow and Strom (4).
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Callisto: A ILunar-like Bombardment?
Alex Ruzicka, Lunar and Planetary Lab, Tucson, Arizona, 85721

Voyager spacecraft imagery of the Galilean satellites in
1979 revealed Callisto and portions of Ganymede to be densely
cratered, but nonetheless deficient in craters larger than 30 km
relative to the cratered highlands of the moon, Mars, and Mercury
(Strom et al,, 1981; Woronow and Strom, 1981; Woronow et al., 1981).
This relative deficiency of large craters could have been due to
the complete obliteration of large craters through viscous relax-
ation in the icy surfaces of Ganymede and Callisto at a time when
their surfaces were presumably warmer and more mobile (Parmentier
and Head, 1979; Parmentier et al,, 1980; Parmentier and Head, 1981;
Shoemaker and Wolfe, 1981), or the deficiency could have stemmed
from a relative depletion of large impacting bodies in the Jupiter
system, compared with the terrestial planets (Strom et al,, 1981;
Woronow and Strom, 1981; Woronow et al,, 1981).

‘To test which alternative is correct, and, specifically, to
see whether Callisto could have been subjected to a lunar-like
bombardment, two areas on the heavily cratered lunar farside were
compared with an area on Callisto., The two farside regions are
representative of the heavily cratered terranes on the moon uncon-
taminated with plains or basin secondaries., While they appear
typical of the rugged farside terra, they have a visually apparent
difference in the density of large craters. The area on Callisto
is typical of Callisto, and was seen at approximately 4 km resol-
ution near the terminator by Voyager 2 (Woronow and Strom, 1981).

Relative size=-frequency plots for craters 8 km in diameter
and larger show that both farside areas have a greater density of
craters of all sizes than Callisto (Fig. 1), although for craters
between 10 and 30 km in diameter, the northern farside is statis-
tically indistinguishable from Callisto (the error bars for each
region overlap). Also apparent from Figure 1 is the great differ-
ence between the size~-frequency distributions of each farside area——
a disparity that is most striking for craters with diameters below
about 40 km, The equatorial farside distribution (Fig. 1a) strongly
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resembles Hartmann's "pure uplands" plot (Basaltic Volcanism
Study Project, 1981, p. 1118) for roughly the same region, while
the northern farside (Fig. 1b) resembles Strom's (1977) nearside
highlands distribution. The relatively lower density of craters
in the smallest size bin on Callisto could be due to the incom-
plete recognition of craters less than 10 km across, even with
4-km-resolution photography (Strom et al., 1981; Woronow and
Strom, 1981; Woronow et al., 1981).

Figures 2a and 2b show the areal distribution of craters
8 km and larger for the northern and equatorial farside, respect-
ively, while Figure 3a, reproduced from Woronow and Strom (1981),
shows craters 8 km and greater in diameter on Callisto. Comparison
of these figures illustrates the dearth of large craters on
Callisto relative to the moon (especially relative to the northern
farside), and the extremely high density of craters in the
equatorial farside,

All lunar craters 8 km and larger were classified according
to degradation state, using the five=-part Lunar and Planetary
Laboratory scheme developed by Arthur et al, (1963), where 1= a
fresh crater with a little-modified rim, 2= a somewhat more
degraded crater with a modified rim, etc. The density of lunar
craters in each size bin was then adjusted— by removing the
most degraded craters in succession-— until the observed density
of Callisto was reached (Fig. 2c and 2d). In other words,

Figures 2c¢ and 24 have the same size-~-frequency distribution as
Figure 3a., In the case of the equatorial area, many small as well
as large craters were removed (including all class 5 and 4 craters
and most class 3 craters). In the northern area, most of the
craters removed were less than 10 and greater than 30 km in
diameter; only some of the class 5 craters in the 10-30 km range
were removed.

The crater removal from the moon simulates the destruction
of craters by any process that could have converted an original
lunar size-frequency distribution to the observed distribution
of Callisto. In Figures 2c, 2d and 3a, the more uniformly
cratered appearance of Callisto compared with the . lunar regions
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following crater removal can be seen. That both lunar regions,
which have a visually apparent difference in the number of

large craters (Fig. 2a and 2b), and drastically different size-
frequency distributions, should yield the same patchy areal
distribution following reduction to the Callisto size-frequency
distribution, can hardly be coincidence. The moon and Callisto
are so dissimilar that it is impossible to "force" the moon to
look 1like Callisto, even with a process that can effectively
remove any number of craters of any size from the moon. The moon
and Callisto must have been bombarded by two different populations,
and though viscous relaxation could have modified, or even
completely obliterated, craters on Callisto's surface, it could
not have been solely responsible for the observed deficiency of
large craters on Callisto relative to the moon.

The same conclusion was reached by Woronow and Strom (1981),
who used lMonte Carlo simulations of the moon that sought to mztch
the nearside highlands size-~frequency curve to that of Callisto.
They included the effects of completely relaxed craters in por-
traying the areel distribution of craters, and their result (7ig.
3b), shows "gaps" of low crater density where large craters have
been relaxed—— yielding a patchy distribution.

Acknowledgements=-- Special thanks to John Spencer, who verified
the equatorial size-frequency distribution; to Bob Strom, for his
guidance; and to Martha Ieake, for her valued help.
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Figure 1, Relative size-~frequency plots for craters
in the equatorial lunar farside (a) and the

northern lunar farside (b) compared with Callisto.
The Callisto data is from Woronow and Strom (1981).
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Figure 2, Areal distribution of
craters prior to, and following,
removal of craters from: the
northern lunar farside (a and c,
respectively); the equatorial
lunar farside (b and d, respect-
ively). Scale bars rerresent
100 kilometers.




Figure 3, Areal distribution of craters
8 km and larger in the area on
Callisto mapped by Woronow and
Strom (1981§ (a2); and (b), a computer
simulation of the moon following
relaxation to match the size-frequency
distribution of Callisto in (a), from
Woronow and Strom (1981), Scale bar
represents 100 kilometers.
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L CHONDRITE METEORITES: A COMPILATION AND PRELIMINARY ANALYSES.
Alan Silliman, Planetary Geology Intern, Johnson Space Center, Houston, TX.

A compilation of those meteorites currently recognized as being L chon-
drites, exclusive of the numerous Antarctica finds, has been made and is known
as the L Chondrite Register. Data for these 576 meteorites has been collected
from a variety of sources, primarily the British Museum's Catalogue of Meteor-
ites (Hey, 1966) and the Appendix to the Catalogue 'of Meteorites (Hutchison
et al., 1977). Also useéd was the Revised Cambridge Chondrite Compendium
(Motylewski, 1978), which provided a convenient Tisting of L chondrites; other
sources include Chinese Meteorites (Depei, 1981), Meteorites, by Wasson
(1974), and the Meteoritical Bulletin of Meteoritics. ~ This Tast source pro-
vided data for most recent falls and was referenced through March of 1982.
A1l such data were recorded on a computer data file with an HP 2647A terminal,
so that information could easily be retrieved and manipulated. For each
meteorite, the petrographic class, location of find, fall date and hour, mass,
mole per cent fayalite, weight per cent Fe, Si02/Mg0 ratio, shock class, metal
class, 4He abundance, UTh-He gas retention age, K-Ar gas retention age, and
21Ne cosmic ray exposure age, was recorded when known (figure 1).

Upon completion of the L Chondrite Register certain of the data could be
graphically represented with the aid of the HP 2647A terminal. A histogram of
the UTh-He gas retention ages of 189 meteorites (figure 2) was produced to
search for possible shock events in a postulated L Chondrite parent body.
This histogram suggested natural diviisions of time: <0.6 B.y.; =>0.6, <1.4
B.y.; =>1.4, <2.1 B.y.; =>2.1, <3.2 B.y.; =>3.2 B.y. Most available data of
the L Chondrite Register was plotted in histogram form against these UTh-He
gas retention age intervals by producing a sorted listing of all L chondrites
with UTh-He data, and then plotting the appropriate meteorite datum in a
histogram of the appropriate gas retention age interval. Thus each interval
defines its own histogram and a series of five histograms must be produced for
each variable studied, covering the entire range of UTh-He gas retention age
for L chondrite meteorites. From numerous histograms with these intervals,
several plots may be derived which exhibit interesting trends in the variable
concerned. A histogram series of mole per cent fayalite with these time
intervals shows a subtle shift in the distribution toward higher iron content
in olivine with increasing UTh-He gas retention age (figure 3). This shift in
distribution is presented in tabular form in table 1. With a correlation of
unknown significance established between mole per cent fayalite and UTh-He gas
retention age, I sought to further examine chemical parameters vs. gas
retention age by producing histogram plots of the total weight per cent iron
of the meteorite and the S$i02/Mg0 ratio of the meteorite with these time
intervals. An approximate relationship was established between the weight per
cent iron and gas retention age; however, there is no apparent trend between
the Si02/Mg0 ratio and the gas retention age (table 1).

In a 1979 paper, Dodd and Jarosewich establish shock facies criteria by
which L chondrites may further be classified and they have done so for 52 L
chondrites. 1 have constructed a plot of shock facies vs. UTh-He gas
retention age for 47 of these 52 meteorites, and have confirmed a definite
trend toward weaker shock intensity with greater gas retention age, as
previously reported by Taylor and Heymann (1969) (table 1).
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A hypothesis to account for these chemical and petrographic trends is
that all L chondritic material is a sample of a singular parent body.
Presumably, as early impacts with this parent body excavated its surface only,
those meteorites with greatest gas retention ages are chemically
representative of the outermost material of the parent. As impacts continued
to occur an increasing proportion of the parent body's surface which
originally existed at some depth, was exposed by repeated collisions. Thus,
it is reasonable to expect that meteorites with successively earlier gas
retention ages have been sampled fron interior portions of successively
greater depth within the parent body, and that their chemical characteristics
are then representative of the parent body at that depth. Accordingly, this
body possesses a chemical gradient in which the amount of iron in olivine in
the bulk rock decreases with depth and the total weight per cent of iron in
the bulk rock increases with depth. 1 can only note that there exists no
discernable trend in the Si02/Mg0 ratio with gas retention age and thus depth
within the parent body. 21Ne cosmic ray exposure age averaged for the
meteorites of any particular gas retention age interval is interpreted simply
as that amount of time the meteorite mass spent in passage from the parent
body to the Earth. The 21Ne cosmic ray exposure age of the most recent gas
retention age interval is a factor of two less than in the remaining
intervals. Perhaps the L chondrite parent body suffered a shock event some
0.6 B.y. which modified the orbit of ejecta from its previous path, thereby
reducing the amount of time of passage for the ejecta.

The correlation between the shock facies of a meteorite and its UTh-He
gas retention age perhaps indicates a variation in the nature of collisions
suffered by the parent body through time. Since L chondrite meteorites tend
to exhibit evidence of greater shock intensity as their gas retention age
decreases, one may speculate that in general the energy of impacts in the
universe has increased through time.

1 wish to thank Dr. Charles A. Wood for his guidance on this pro-
ject, and James Gooding, Richard Lee-Berman, and Thomas See for their
contributions and suggestions.
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TABLE 1:

UTh-He Gas Retention Age (U) Interval, B.y.

PARAMETER U<0.6 0.6<=U<1.4 1.4<=U<2.1 2.1¢<=U<3.2 U»=3.2
Fa, mole % average 23.98 23.96 24.25 24.38 24.76
Fe, wt.% average 22.42 22.01 21.79 22.34 21.58
SiOZ/Mgo average 1.60 1.63 1.57 1.59 1.64
21Ne exposure age

M.y. average 7.7 13.69 16.49 15.88 16.67
Shock facies average 4.79 4.27 4.25-4.50 3.13 1.90-2.00

number of counts 14 N 4 8 10

Tabulation of preliminary analyses of L chondrite data.
Shock facies data from Dodd and Jarosewich (1979); their
alphabetic scale was converted to a numeric one to allow

averaging of values for each UTh-HEe gas retention age in-
terval, Scale is from 1 to 5 with greater numbers repre-
senting increasing cshocking of the meteorite,

Number of

cocunts referc to shock facles average, ané reccrds the
number of metecrites averaged for each interval,
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THE CRATER DENSITY OF A LINEAR FEATURE

Lawrence Spong,. Department of Geology, Tne University of Toledo,
2801 West Bancroft Street, Toledo, Ohio 43606

The standard method of crater counting presént]y employed permits
determination of the relative ages of areal geologic features on cratered
planets and satellites. A new method is presented here which calculates
the areal density of the craters superposed upon linear features.

The method produces an effective "synthetic" area around the linear
feature for each crater bin size, permitting the line counts to be compared
directly with standard area counts. The shape of the synthetic area produced
by the method is an oval, with the calculation of this area for each bin being
dependent on the median crater size for that bin, as well as the Tength and
width of the linear feature (See Figure 1). Incorporated into the method's
equation is a factor to normalize the count to 106 square kilometers for each
bin. Because ot the dependence of the method on the crater sizes, the largest
possible number of bins should be counted for the method to be the most
effective.

We introduce the method's equation

6 6
RS VLS

A A

CD =

= 2
A= (Dm + WL + 7 (Dm/Z) + me

where CD is the crater density of the crater diameter bin, Nd is the number
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of craters counted in that particular bin, Dm is the median crater diameter
for that bin (in kilometers), W and L are the width and length of the linear
feature (in kilometers), respectively. The equation provides the crater
density for a particular crater diameter size of the number of superposed
craters divided by the effective area for that diameter (see Figure 1).

The equation, and method, is unlike conventional crater counts in that the

cumulative counts and errors of the crater size bins are summed discreetly,

-
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and not directly calculated. As can be seen from Figure 1, when we proceed
from the larger crater diameters to the smaller crater diameters, the effec-
tive area oval approaches the actual area of the linear feature. This decrease
in effective area size, when applied to the equation, produces a statistically
larger crater density for the line in the small size bins that approximates
the crater density for the area for the small size bins.

The method is prone to several error producing situations. First, often
crater diameter sizes found in the area counts are not represented in the
line counts. This is especially true with regard to the Targer diameter
craters which chance not to superpose the linear feature. Second, the number
of craters in any particular bin on the line is much less than the number
of craters in the corresponding bin in the area count. This tends to produce
unusually large error bars in the larger size diameter (sma]1'crater population)
bins. Third, as with the standard count, the crater density of the Tinear

feature is applicable to a specific geologic province. If the linear feature
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occupies a number of geologic provinces, a crater density for each province
is needed. Considering the above in the method's test region, the errors
encountered are acceptable if the linear features length is sufficiently
long (several hundred kilometers or longer) and the number of crater bin
sizes great enough to provide good statistics.

A test of the method was conducted in the Lunae Palus region of Mars
using a 1:2,000,000 quadrangle photomasaic (U. S. Geological Survey, 1980).
The geology of the region consists of moderately to heavily cratered plateau
material and heavily cratered plains and hilly materials. Both rimless and
partially buried impact craters exist, the rimless craters were completely
buried but have since reappeared when material filling the craters were
removed by an undetermined erosional process (Miltor, 1974). Our test
consisted of determining the crater densities of the various geologic
provinces on the photomosaic, then drawing a random line through the region
and determining the line's crater density by the method (see Figure 2). The
Tength of the line was approximately 4900 kilometers and the smallest crater
size counted corresponded to 2 kilometers. The graphical results are shown
in Figure 3. Additional preliminary tests were conducted with grabens in the
Tharsis region where we found that a significantly shorter line (in the range
of several hundred kilometers) with a small number of bins and smaller crater
density will still reflect the crater density of the surrounding plain.

Future research projects that utilize this method fall into three catagories.
First, this method provides us with the opportunity to date the relative ages

of major tectonic and geomorphic events and features on cratered planets and
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satellites. Examples include the rate of retreat of the escarpments of the
fretted terrain and a more accurate appraisal of the age of major stream
channels. Second, research in the direction to refine this method to produce

a more accurate estimate of the true age of the linear feature, rather than
presenting the youngest possible age of the feature, as the method new provides.
Third, and most practical, when wishing to determine the crater density of a
large areal province, using this method, we now have evidence that the crater
density of a random line drawn over a representative portion of the area would
provide a reasonably accurate representation of the crater density of that
province. This promises to save countless hours in future research projects

requiring crater counting.
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TABLE 1.

Crater Density

Median Crater Number of Cumulative 6. 2
Diame%er)of Bin Craters in Bin Number of Crater (Per 10~ km~) Error
km

185 1 1 0.57 0.57
100 1 2 1.14 0.81
85 1 3 1.72 0.99

75 1 4 2.29 1.14

71.25 2 6 3.43 1.4
68.75 1 7 4.01 1.51
65 1 8 4.58 1.62
60 2 10 5.72 1.81

56.25 1 11 6.3 1.9
53.75 1 12 6.87 1.98
51.25 2 14 8.01 2.14
48.75 3 17 9.73 2.36
46.25 2 19 10.87 2.49
43.75 2 21 12.02 2.62
41.25 9 30 17.17 3.13
38.75 2 32 18.31 3.24
36.25 5 37 21.18 3.48
33.75 3 40 22.89 3.62
31.25 10 50 28.62 4.05
28.75 9 59 33.77 4.4
26.25 10 69 39.49 4.75
23.75 11 80 45,78 5.12
22.5 14 94 53.8 5.55
20 22 116 66.39 6.16
17.5 18 124 76.69 6.62
15 16 150 85.85 7.01
12.5 64 214 122.47 8.37
10 113 327 187.15 10.35
7.5 180 507 290.16 12.89
5 378 885 506.49 17.03
2.5 2673 3558 2036.28 34.14

The graph shows the crater density curves for the Lunae Palus test.
The error bars are associated with the line data points. Table 1
shows the crater density data of the Lunae Palus test area described
in the text. The area was approximately 1,747,300 kmz. Table 2 is
the data for the Lunae Palus test line where the Iine'sv1ength was
4905 km and the width was 0 km. The bin sizes were arbitrarily

choosen (size of bin varies from 2-10 km).
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TABLE 2.

Medjan Crater

Number of

Cumulative

Crater Density

Diamet?r gf Bin Craters in Bin Number of Craters (Per 106 ka) Error
km

100 1 1 2.01 2.01
85 1 2 4,37 4.37
73.75 1 3 7.11 7.11
66.25 1 4 10.15 10.15
56.25 1 5 13.74 13.74
48.75 1 6 17.89 17.89
46.25 1 7 22.27 22.27
42.5 1 8 27.03 27.03
37.5 1 9 32.44 32.44
33.75 1 10 38.44 38.44
31.25 1 11 44 .94 44.94
25 4 15 77.43 61.18
20 2 17 97.75 75.55
17.5 2 19 120.98 91.98
13.75 4 23 180.16 121.57
10 3 26 241.23 156.83
7.5 2 28 295.53 195.22
5 8 36 621.46 310.46
2.5 20 56 2251.8 675.01
1.25 25 81 6328.46 1490.34
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Geology 1is the study of the Earth, it's composition, origin,
and history. Evidenée of our origin is difficult to find. The
surface is tectonically active and thevrefore it is hzrd to find
an extended past record. The Earth is also covered by three
quarters water. The erosional effect of this water desiroys
existing surface features and makes it further difficult to study
our past. Geologists, and other scientists, are therefore
forced to rely on‘small clues and experimental data to piece
together a historical scenario.

Studies on the Earth have concentrated on erosion by water,
Fluid studies have been able to accurately predict the zffectis
of water erosion today. Using this information and working
backwards we can establish the existing features of the past.
But there are other agents of erosion, such as wind and ice.
Because of the smaller effect of wind on our surface, zeolian
processes are much less understood than water erosion. 2zgnold
was the piloneer for analysis of wind blown sand. His studles

of .terrestrial. environments provided a basis for future ex-
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perimental work. Studying the Earth alone does not provide
enough information for a universal theory on aeolizn proceuses,

L.ooking to the other planets in our solar system for
answers to guestions about the Earth and the universe affords
a better geologic record of its origin. Galileo first saw the
moon thrcugh a telescope and prgpared a detailed map of its
features. He recognized the use of information from other
bodies and how it can be related to the Earth. Through this
type of observation, Planetary Geology evolved.

The first studies in Planetary Geology included observa-
tions of the Moon and Mars. The Moon, being the closest body,
is the easiest to observe through a telescope znd bLecame the
target for space exploration. Scientists found a preserved
past on the Moon's surface. They were able to study this
surface, and th rocks found there, and relate this informztion
back to the Eartn. The Moon has no atmosphere or gravity =nd
therefore, little erosion. It is necessary to look elsewhere
for comparative studies of zaeolian processes on the Earth.

Mars is the closest planet and the logical choice for
studies on wind erosion., From a practical point of view, Ii=rs
is readily accessible. From telescopic observations, jiars
is believed to have extensive aeolian activity, Jariner 9
returned conclusive evidence of this in 1971. Ascolian processes
such as those found on Mars, are capable of moving enormous

T

amounts of sand over its surface. Large landforms may be seen
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from orbit. A process that effects these chanszses cuan give an
understanding to the geologic environment of a whole planet.
Studying aeolian processes on Earth only gives a small scale
understanding, studying aeolian processes on llars gives a much
larger scale understanding of the planet as a whole and in turn
gives feedback on terrestrial environments.

Being smaller than Earth, Mars has little gravity. Its
atmospheric pressure is much less than that of Earth also. In
order to study acolian processes on Mars, it is neccssary to
simulate the Martian environment. The Martian Wind Tunnel was
constructed for this purpose. It is placed in a specially
designed chamber suitable for achieving Martian pressures.
Experiments are designed to observe the effect of pressure,
gravity, and density on sand movement. Mars has a lower temp-
erature, lower pressure and lower gravity than does the Earth.
Since temperature and pressure effect gas density they are only
important in attaining the corréect gas density for a .artian
environment. Gravity is assumed to be independent. By studying
the results a theory is formulated which fits for data on liars
as well as on the Earth.

To test the assumptions made in setting up the lartizn
Wind Tunnel experiments, a control is needed. Venus provides
just such a control. On Venus, the pressures are nuch higher
than on the Earth. Temperatures ave also higher, and because
the sizes are similar, the gravity on Venus 1is very near the
Earth's gravity. Mars and Venus form the two extremes for

studying aeolian processes with the Earth falling the middle.
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If a Theory for Mars and Farth is able to predict the data for
Venus, then gravity may be assumed an independent variable, and
a-universal explanation for grain saltation as related to
density can be defined. Following thi$ line of thought, a Venus
wind tunnel was constructed.

Verius, being on the other end of the spectrum in the
Mars-¥arth-Venus experiments, required a different set of
conditlions for its simulation. Because density is assumed to be
the controling factor in grain saltation, the experiment is
designed to simulate Venusian density rather than the actual
pressures and temperatures of Venus. Temperature, as in the case
of Mars, is important only in achieving these densities. Carbon
dioxide is used to pressurize the wind tunnel and experiments
are performed to defermine the exact wind speed at saltation
threshold. The conclusions of this experiment agreed with the
Martian and terrestrizl studies. To gain further control over
the effect of fluid density, it was necessary to estiablish the
effect of fluid viscosity on grain saltation. This was done

by design of the nitrogen experiments.
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Theorctical Basis

[ty

Both Mars and Venus contain mostly carbon dioxide in their
atmospheres, therefore all of the experiments thus far have
utilized carbon dioxide for the wind tunnel. This gas is
pressurized to attain densities similar to Venus. As & control
to these experiments and to test the effects of fluid viscosity,
nitrogen tests are also run. 1t ic assumed that fluid density
is the major contributing factor in predicting grain saltation.
By designing an experiment to test fluid viscosity it is hoped
that viscosity wlll have little or no effect on grain zaltation.
If this can be shown, then our theory for grain saltation
may be extended to other surfaces and the wind tunnel, which
was built on the premice that density is the controling factor,
can be used to simulate these surfaces.

Nitrogen gas has a much lower molecular weight thzn carbon
dioxide, therefore 1ts viscosity 1s lower. With the exnperi-
mental paremeters the same as the carbon dioxide threshold
experiment, only the gas and therefore the viscosity differs.
Similar densities are achieved by changing the pressuras of
nitrogen.,

Eefore the experiment is run it is necessary to make some
preliminary calculations:

First, equivalent vressures for nitrogen to simulate the

densities of the carbon dioxide runs are calculated using:

wa RT
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Where P is pressure in atmospheres,f’is the density of czrbon

o

dioxide that iz to be simulated, 2z is a compressibility constant,
R-is the universal gss constant, T is the temperature in degrees
xelvin, and m is the molecular weight of nitrogen.

This calculation can be found in the appendix Table 2.
nraph 1 shows pressure of carbon dioxide in psi versus equiv-
alent pressure of nitrogen in psi. (Data is taken from Table
2 in the appendix.) Along the line shown in Graph 1 carbon
dioxide and nitrogen nave similar densities. This line is
nearly straight with a slope of approximately 1/2. The pressures

used for this experiment w ere read off tne graph ancd are as

P

fo

-

lows, 760, 650, 545, LL40o, 345, 255, 165, and 80 psi. They
aprear in Table 1. |

Second, expected Ap, or the difference in dynamic pressure
and static pressure, which is a function of velocity, 1is cal-
culated for each grain size and pressure using data from carbon
dioxide runs. The formula used is:

AP=N%H

remate

2
where v is the velocity of the wind at threshold for the carbon

dioxide runs, H is the pressure of nitrogen, and Ay is the
number of counts expected. (Using velocities obtzined in the
carbon dioxide runs is valid based on the assumption *hat
velocity at threshold is the same for two gases @i the same
density. This calculation was done only as a rough guide.)

“

Values for expected Ap appear in the appendix Table 3.
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Third, viscosities for nitrogen and carbon dioxide are calculatled
using Graph 2. To use this diagram, first calculate Ty where
S ol
S
T is the temperature in degrees kelvin, e is the temperature
constant for nitrogen or carbon dioxide. Then calculate¥?
where D 0
TR
P is the pressure in atmospheres,fg is the pressure constant
for nitrogen or carbon dioxide. Locating the intersection
of T/ and R on the graph gives a value fégur . My 1s a viscosity
constant for nitrogen or carbon dioxide. Using

M= 4o

AL can be calculated for nitrogen and carbon dioxide.
Calculations of viscosities appear in the appendix Tatle 4 and
Table 5. This particular method was used to takxe intio account
the effect of pressure. A plot of carbon dioxide versus nitrogen
viscosities at similar densities( Graph 3 ) shows the differsnces
in the two gases.
Graph 3 1s a plot of viscosity of nitrogen and czrbon

dioxide versus pressure of the gas. (Data is from the appendix
Table 6) This graph shows that for equivalent densities, there

is a larger difference in viscosity at the lower pressures., If

there is any variance in our theory for grain movement caused
by wviscosity, this variance will appear at the low densities.

However, since the viscosities of the two gases do not differ
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markedly, even at low pressures, it is doubtful whether this
experiment will be conclusive in its attempt to isolate the effect
of viscosity as a variable. Rather, it will gain better control
over the movement of grain saltation and establish a good

working definition of saltation threshold.

Using the calculated viscosities for selective pressures,
and calculations of densities for these same pressures, Reynold's
numbers for the tunnel can be found using:

R = V@?
Where v 1is the ve'LocftLy of the gas at threshold, fls the
length of the bed of sand,f’is the density of the gas, and/LLv
is the viscosity of the gas. Calculated values of Reynold's
nunbers appear in the appedix Tables 7 through 14, Tﬁese
calculations were done as a basic framework for the experiment
and to gather datza so that a graph of Reynold's number versus
coefficient of_friction,C?, could be prepared. raph i in
the appendix is a plot of coefficient of friction and Reynold's
number for each particle size. This graph is used in the
calculation ofége. Table 15 in the appendix is a flcw diagram
of all the variables in the experiment and their relationship

to each other.
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Apparatus

The Venus wind tunnel is a closed circuit wind tunnel
housed at the NASA Ames Research Facility. (See Figure 1)
It is approximately 6 meters long and 3 meters wide and allows
a gas to be circulated around by use of a fan. It has been
tested to 1000 psi pressure. A one meter section of the tunnel
is able to roll out which can then be loaded with a bed of sand.
This test section contains four viewing ports., Two input
systems allow carbon dioxide and nitrogen to enter the tunnel.
The carbon dioxide is stored in a tank outside of the building
and is brought in through a pipe line. It is then pumped into
two tanks which can Be individually heated and then bled off %o
let the carbon dioxide gas infto the tunnel through a valve.
Nitrogen gas 1is stored in a truck outside the building and is
piped directly into the tunnel through a separate valve, The
instrumentation includes a velocity guage which measures d3if-
ferences in dynamic and static pressure( AP), and gives an
electrical signal which registeres on a chart recorder. This
recorder can display tunnel pressure through use of a pressure

guage. A temperature guage records tunnel temperature and i

¥’

digitally displayed. The *tunnel control box, controls the rotor
speed of the tunnel fan. The operator set up is shown in

Ty

Figure 2B and C.

re

Because this experiment required operating at high pressures,
a rcmote observation system was installed. This system consists

of a closed circuilt television camera mounted on a tripod over
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a port hole of the test section, viewing down on the bed,
(See figure 2A) 'The television screen is placed on a table in
the operator area. The camera mount allows free but stable
movement of the camera. The next step involves calibrating
the monitor with the unaided eye. A test to compare the CCTV
with visual observation was designed as follows:

The tunnel was loaded with 710-833 micron sand and then
pressurized at 400psi. The camera was set up viewing the bed
at the lower end down through the top port window. The observer
viewed the bed at the lower end from the side port window. The
operator increased the fan speed until saltation threshold was
reached. Both the observer and the camera system viewed grain
saltation at precisely the same time. This test was repeated
several times and results conclude that the camera system
viewed the same as the cbserver. This test was done so that the
carbon dioxide runs could be compared with the nitrogen rurs

without any inconsistancy in operior viewing of grain saltstion.
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Defining Threshold

While conducting the calibration test, several thresholds
were noted, 1) No movement at all 2) Slight wobling and
rocking 3) Creeping or rolling #) Intermittent grain saltation
5) Continuous saltation. In order to perform the nitrogen tests
a good working definition of threshold has to be defined. The
tunnel is loaded with sand which contains a range of sizes,
When nearing threshold the smaller grains that are exposed will
be carried away by the wind leaving the larger grains.
Saltation will then cease. If the wind velocity is raised, the
wind will carry away the larger grains exposing the smaller ones
underneath and once again saltation will stop when only the
largest particles are left. The veloclty required to 1ift the
largest grain sizes corresponds to Bagnolds idea of "Ultimate
Threshold", and at this velocity saltation will be continuous.
Our definition of threshold includes continuous saltation,
however this is not enough to completely define threshold. There
are two types of threshold, 1) fluid and 2) saltation. fluid
threshold is the point at which the fluid alone 1ifts the par-
ticles which begin to saltate. These particles mz2y; strike
others further down the plate and cause other particles to move,
this is saltation threshold. We are interssied in determining
fluid threshold for our studies. Fluid threshold is difficult

to establish. Sand ins are noeded on the front end of -the

M

bed in order to ensure turvulant flow at the end of the bed.

One alternative would be to fix sand grains to the front end
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so that they can not cause saltution on grains further dowir the
bed and yet still trip the boundry layer to turbulont flow.
Finally, our definition of threshold includes a precice
way in which to measure it, Using the CCTV, and larger particle
sizes, {luid threshold is defined as when saltation is continuocus
and striking grains from the f{ront end of the plate leave small
craters or streaks when they hit in the viewing area., The
effect is seen as dark bands on the TV monitor. TFor smaller
grain sizes motion 1is sudden and continuous thus making threshold
easier to define. The advantages of using this definition is
that we are able to define threshold precisely for both small

and large grain sizes with consistency.
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Experimental Procedure

The sand grains in this experiment are well rounded quartsz
grains which have been sieved by a Ro-Tap to a distribution of
size ranges listed below:

23-38, 38-45, hs5-53, 53-63, 63-75, 75-90, 90-125, 125-175,
250-354, 354-500, 500-600, 600-710, 710-833,

For each run the sand size is picked and loaded into the tunnel.
to load the tunnel, the test section is rolled out, the plate
that's held inside is checked to ensure & level bed, The sand
is introduced in a wooden frame placed on the plate by means
of a funnel. This frame is then pulled across the plate, it
leaves a uniform layer of sand approximately % cm. thick. The
test section is then rolled back and sealed to the tunnel by
means of two clamps, The camera may then be rotated and lowerad
onto the port window., After the light has been set up, the ©V
monitor is turned on and the camera is focused for a sharp
imaze. All valves are then checked to isolatefcarbon dioxide
system. The motor is off and the pressure reading is zerced at
14.7 psi. At this point the nitrogen truck valves are oponed
and the line to the tunnel is pressurized. The wvalve to the
tunnel is opened and the tunrel is filled to approximately
760 psi. When pressure and temperature are stabilized ac 760
psi, the motor may then be turned up until the bed is ";re-
saltated”. 'This ensures uniform size distribution on top of the
d.

be Threshold is accurately determined by increasing the motox
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slowly and noting crcep, intermittent saltation, and continuous
saltation, True threshold is noted when impinging graing leave
dark sireaks across the TV screen. This is repcated two times
for threshold values. Temperature , the number of counts and
pressure are all recorded in the log book. The motor is turned
off and the outside valve is opened. The tunnel is drained
until the next pressure is recached. The procedure is repeated
for each pressure to determine threshold. After 80 psi the
tunnel may be completely drained and unloaded. All data for
this cexperiment is recorded in the log book. The average
values, along with calculations of velocity, Reynold's number,
coefficient of friction, arnd wind sheer velocity, are found

in Tables 16 through 29 in the appendix.

The second experiment run is a calibration experiment
designed to test how well data from the carbon dioxide runs can
be compared with data from the nitrogen runs. The procedure
for this experiment is as follows:

Using 500-600 micron sand the tunnel is loaded. The
tunnel is then filled with carbon dioxide gas. As the tunnel is
filling the top valve is left open so that the air occupying the
tunnel 1s pushed out as carbton dioxide enters. In this way,
we are confident that the tunnel contains mostly carbon dioxlde.
A gas detector 1s used to determine the percentaze carbon
dioxide in the tunnel, this is significant because at lower
pressures the relative percentaze of alr to carbon dioxide is

higher. When the tunnel is pumped up and then bled down, as
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in the original carbon dioxide experiments, air is released to
the atmosphcre as gas is let out, so that at low preszure the
relative percentage of air to gas is low. After closing the
valve, the motor for the fan is turned up to full. The tunnel
continues to fill at a slow rate until threshold is observed.
At this pressure, measurements are taken for‘AF’, pressure, and
temperature. Several runs are taken and recorded in the log
book. The tunnel is drained of carbon dioxide and filled with
nitrogen without reloading the bed of sand. Again, carbon
dioxide 1is bled out of the top valve as nitrogen enters. A
gas detector 1s used to measure the percentage of nitrozen gas.
Runs are made the same as the carbon dioxide runs and recorded.
During this experiment, little bed erosion was observed.

All data and calculations appear in the appendix Table 30 and

Table 31.
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Results

Graph 5- pressure versus threshold velocity. Data is from
Tables 16-29 in the appendix. |

 Some preliminary results are plotted on Graph 5. Threshold

velocity in meters per second versus pressure of nitrogen in
psi is plotted for a few of the grain sizes. The graph shows
how velocity needed to attain grain saltation decreases with
increasing pressure. With large particle sizes at low pressure
there is not enough wind movement to induce grain saltation.
For particles around 90 microns, threshold velocity is approx-
imately the same as for particles 45-75 microns. However, for
particles 23-33 microns, threshold velocity is higher. Particles
in the 710-833 micron range require the largest threshold
velocity for grain saltation. All curves seem to trend and
parallel each other,

Graph 6- pressure versug threshold velocity. Data is from
Tables 16-29 in the appendix.

The graph of pressure of nitrogen in psi versus threshold
velocity in meters per second, shows all data for particle
sizes 23-833 microns. Only four curves are drawn because of the
amount of overlapping of points. Other curves may bs inferred
to be parallel and between curves drawn. This graph shows that
with decreasing pressure, threshold velocity must increase to
1ift the same particle size. .Threshold velocity increases with
an increase in particle size for the same pressure. Particle
sizes between 125 and 45 microns are all clustered around the
same line, they require similar threshold velocitis for the same
pressure. FParticles less *han 45 microns(silt sizes) show a
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slight increase in threshold velocity for each pressure. They
require a larger velocity to cause them to saltate.

Graph 7- particle size versus Reynold's number for 80 psi
nitrogen. Data is from Tables 16-29 in the appendix. This
graph shows that for particle sizes 100 to 500 microns, Reynold's
number increases for increasing particle size. Fror particle
sizes 23-100 microns, Reynold's number decreases with increasing
size. The optimum particle size (or turning point in the curve)
is about 100 micron sand. Grain sizes larger than 500 microns
do not show on the graph because there was no sand movement
at 80 psi for these particles therefore, no Reynold's number
was recorded.

Graph 8- particle size versus Reynold's number for 760 psi
nitrogen. Data is from Tables 16-29 in the appendix.

The curve of this graph is similar to Graph 7. For particle
sizes 100-500 microns, Reynold's number increases for increasing
particle size. At larger grain sizes, 500-833 microns, Reynold's
number remains nearly the same and the graph of the line becomes
a straight verticle line. For particles 23-100.microns, Reynold's
number decreases with increasing particle size. Optimum particle
size is about 100 microns.

Graph 9- coefficient of friction versus pressure. ©Data is
taken from Tables 16-29 in the appendix.

This graph plots the coefficient of friction against
pressure for all particle sizes. At low particle sizes, less
than 125 microns, coefficlent of friction decreases for increascd

pressure. All curves for particles less than 175 microns
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converge for 80 psi and diverge towards 760 psi. For particles
whose size is 250-833 microns, coefficlent of friction remains
constant for increased pressure, for constant grain size.
Coefficient of friction increase§ with increase in grain size
for constant pressure.

Graph 10- wind shear speed of carbon dioxide versus particle
size. Data is taken from Tables 372-45 in the appendix. This
graph has been designed to facilitate comparisons with the
nitrogen data by placing the graph between the transparencies
of the nitrogen graph. All curves seem to follow the same trend
and parallel each other. There is very little overlaping.

There is an optimum particle size of about 75 microns. For
particles less than 75 microns,Uyy decreases for increczsing
particle size. For particles greater than 75 microns,let
increases for increasing particle size. There is an optimum
range of 40-125 microns where wind shear speed doesn't vary
much with particle size. UWsk versus particle size for particles
greater than 175 microns, seem to have a linear relationship
with a steep slope for 50 psi and a shallow slope for 400 psi.
Watincreases for decreasing pressure for a constant particle
size.

Graph 11- wind shear speed of nitrogen versus particle
size. Data is taken from Tables 16-29 in the appendix.

As in the previous graph, ”l1 curves seem to follow the same

trend and parallel each other. There is an optimum size range
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of about 75 microns, Tor particles less than 75 microns, U« t
decreases with increasing particle size. TFor particles greater
than 75 microns, U, increases with increasing particle size.
There is an optimum range of about 40-125 microns where Uy
doesn't vary much with particle size. W«t versus particle size
for particles greater thaﬁl75 microns, seem to have a linear
relationship with a steep slope for 80 psi and a shallow slope
for 760 psi. [lxy increases for decreasing pressure for constant

particle size.

Note- When comparing Graphs 10 and ll,lthere seems to be
an inconsistency in the 53-63 micron particle range. or
both of these curves, the data for this range lies just above
the curves drawn. This size range was sifted on the sonic

sifter and a size distribution curve was drawn.(Graphs 12 and 13)

grains fell within 10 microns

~

These graphs show that 80% of the
of the range. The slight offset of the mode is not enouzh to
cause a change in the values for UWr¢. Since the size aistribution
is good, other explanations must be saught to explain the

inconsistency, like moisture in the sand or operator varience,
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Conclusions
As seen from Graph 11, there is an optimun size range for
particle movement. This range corresponds to about 75 microns
but extends to as much as 40-125 microns. Particles in this
size range are about equally easy to 1ift into saltation at
similar pressures. The slizht upturn in the curve to the
left (less than 40 microns) shows that these particles are more
difficult to move. On the Earth this upturn is more pronounced
and therefore silt sized particles are rarely found in sus-
vension. The sharp rise in the curve to therian (710 microns)
shows that these particles are also difficult to 1ift, this is
true for FEarth as well as Venus. With this information, one
would expect to find a larger size distribution of particles
(40-100 microns) in suspensiocn a2t the same time on Venus, or
a greater amount of fines in suspension as that scen on the Eartun.
This experiment was designed to test the effect of fluid
viscosity on grain saltation. The data for the nitrogen runs
is therefore compared with data from the carbon dioxice runs
in 1wo similar plots (Graphs 10 and 11). The curves for the two
sets of data follow the same itrends. At the smaller particle
sizes (less than 175 microns) the curves vary. The curves
for nitrogen are slightly higher. Small particles in nitrozen
gas seem to be more difficult to move as compared to the carbon
dioxide curves. With the larzer particles, movement seems 1o
be similar for both carbon dioxide and nitrogen. There are

many reasons for these similarities and differences.
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The definition of threshold used for the nitrogen runs
is a good working definition in that we are able to view salta-
tion threshold in a precise manncr. Our definition has bsen
tested by numerous runs. and is shown to be consistant. The
definition of threshold used for the carbon dioxide runs is
ambiguous., It is believed that threshold was defined as first
movement, for this reason thrshold values are consistently
lower for carbon dioxide than for nitrogen.

The CCTV was not utilized in the carbon dioxide runs.
However, calibration tests show CCTV to view the same as the
unaided eye.

The experiment designed to test the operator variznce was
a comparative test between nitrogen and carbon dioxide. Fressure
and therefore density was increased until threshold was noted.

Using the CCTV and our definition of threshold, threshold was

@

determined at precisely the same densities of the two ~asc

(523

If viscosity were a contributing factor in grain saltalion the
effect would be noted at low pressures. Our experiment chowed
no such variance between carpon dioxide and niirogen runs Jor
low pressure (density).

The largest difference in viscosity betwecen carbon dicxide
and nitrogen occurs at low pressures (densitiec). ior 50 rai

carbon dioxide (80 psi nitrogen), viccosity differs by oniy

v

-5 . . e e
2.05 x 10 " gm/cmx sec. It is not certain whether this cilT:zrence
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is large enough to have an effect on grain movement =:4/or be
registered by our insitrumentation.
It is not feasible to compare the carbon diocxide data with
the nitrogen data because of the opertor wvariance. However,
the nitrogen experiment did furnish a good working procedure and
definition for threshold studies. The data gathered is accurate
and precise. Also, the nitregen and carbon dioxlde experiment
for low pressures showed no differences due to viscosity. At
similar densities, the velocity needed for movement is the same,
Because of the problems stated above, the effect of viscosity
is not clearly understood. Initial investigation scems to
nullify the effect of viscosity as a controling factor to zrain
saltation. However, for a conclusive theory it iz su-cested that
a further experiment be run, using a gas which shows considerable
variance in viscosity with nitrogen. Because a definition of
threshold haé been accurately defined, a new operator should
nave no problem in estimating cowmparative threcshold values
consistent with the nitrogen operator definition of threchold.

The two sets of data can then be compared to give a more accurate

account of the difference in viscosities.
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THE GEOLOGY OF THAUMASIA-NORTHEAST QUADRANT
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INTRODUCTION

The northeastern section of Thaumasia is located in the heavily cratered
southern highlands of Mars between 30° S and 47.5° S and 67.5° W and 90° W.
To the northwest lies the Tharis bulge and to the southeast is the Argyre
Basin,

Previous mapping in Thaumasia have included a geologic map of the entire
suadrangle by McGill (1978) at a 1:5,000,000 scale and a map of lava flows in
the northwest quadrant by Scott and Tanaka (1981). Most investigations have
been concentrated west of 90°W long. in conjunction with the Tharis volcanics.

PURPOSE

This investigation was designed to examine the overall geology of this
section of Thaumasia. After distinguishing various geomorphical units, a
geologic map was made at a scale of 1:2,000,000. Tastly, a general secquence
of events was developed for the area.

HETHODS

Mapping was done from individual low, medium, and high resolution images
from the Viking missions, as well as using a 1:2,000,000 scale photo mosaic of
the northeast quadrant of Thaumasia. Amount of cratering and faulting,
superposition, differences in morphology, and albedo were used to separate out
seomorphologically distinct units.

Due to the higher resolution images produced by these two missions, more
detailed mapping was possible. Low resolution images were used to determine
local relief variations as specific radar mapping has not been done in this
arca. Medium to high resolution images were used in unit mapping. Crater
counts were used to determine relative ages of units and to corroborate
similar ages between units.

The geological history was worked out using superposition, crater counts,
and taking into account the overall sequence of events for Mars as established
by other investigations.

RESULTS

Fxtending SW-NE across the center of the area is an old cratered
highlands, parts of which are heavily faulted. In this area, it was
especially hard to distinguish individual units because of the re-surfacing
affects of the acolian deposits or volcanic flow material. Here units were
sepavated by the amount of faulting that was present.

The highlands seem to be an area that once was volcanically active. One
possible voleranic structure was located within the map area and another on its
vestern boundary. At lecast three other sites are possible volcanic
structures., Their degraded nature and/or the lack of high resolution images
prevented a positive identification.
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North and south of this central region are extensive, low-lying arcas
covered with smooth plains material which have buried most of the pre-existing
faults. High resolution images show wrinkle ridges in some arcas of this
unit. This seems to suggest that the material is possibly lava and not
acolian deposits as suggested by McGill (1978). One smooth plains area
contains some widely spaced faulting, but this may be due to thianner lava
flows failing to cover entirely the faults or post lava-flooding tectonic
activity.

South of the highlands is a cratered plateau unit. This stands about as
high as the highlands and is enbayed by the smooth plains unit. It contains
large craters similar to the highlands, but has no evidence of faulting. The
intercrater area appears to be relatively smooth, unlike the highlands, and
this could be do to the re-surfacing effects mentioned previously.

The oldest units appear to be the cratered plateaus and the highlands.
These are part of the ancient highland crust and have been called the
“"cratered plains unit” by others. At the same time these units formed, so did
the Argyre Basin. Because the highlands form an arcuate pattern around Syria
Planun, along with furrowed massifs and scarps, Schultz and Glicken (1979)
speculate that this is the remains of an ancient impact basin. Others feel
that there might have been a pre-Tharis doming at 40° S and 90° W that
developed the N-S fault patterns. Probably associated with this rise, or a
bit later, volcanic structures would have developed on the highlands and
spread volcanic material into the lower lying areas of the highlands.

As the Tharis region began its doming, the NW--SE fault system developed
across the area. TLater, in the lower lying arcas outside of the hizhlands,
lava flows came in and covered over most of the pre-exsisting faults.

ACKNOWLEDGMENTS

I would like to thank the staff at the Flagstaff Center for their help
and support during my project. Special thanks goes to my advisor David Scott
for all the time and help that he has given me.

REFERENCES
Frey, H., Thaumasia: A fossilized early-forming Tharis uplift. J. Geophys.
Res., 84, 1009-1023, 1979.

Greeley, R., and P. D. Spudis, Volcanism in the cratered terrain hemisphere of
Mars, Geophys. Res. Lett., 5, 453-455, 1978.

MeGill, G. E., 1978, Geologic map of the Thaumasia quadrangle of ars, U.S.
Geol., Survey Misc. Geol. Inv, Map I1I-1083, scale 1:25,000,000.

McGill, G. E., Geologic history of Thaumasia quadrangle, Mars, NASA Tech.

Saunders, R. S., Geologic constraints on the evolution of the Tharis region,
Inter. Colloquim on Mars (3rd), 1981.

Schultz, P. H. and Glicken, H., Impact craters and basin control of igneous
processes on Hars. J. Geophys. Res. = Second Mars Colloquim, 84, No. 1%,
8033-8047, 1979.

206



Scott, D. H. and Carr, M. H., 1978, Geologic map of Mars, U.S. Geol. Survey
Misc. Geol, Inv. Map I-1077, scale 1:5,000,000.

Scott, D. H. and Tanaka, K. L., Mars: A large highland volcanic province
revealed by Viking images., Proc. Lunar Sci. Conf. 12th, 1449-1458, 1981.

207



PLANET-CROSSING ASTEROID SURVEY

Peter D. Wilder

NASA Planetary Geology Undergraduate
Research Program

Division of Geological and Planetary Sciences
Jet Propulsion Laboratory

California Institute of Technology

Address:

Department of Geological Sciences
State University College at Geneseo
Geneseo, New York 14454

208



PLANET-CROSSTNG ASTEROID SURVEY
INTRODUCTION:

The planet-crossing asteroid survey was begun in 1973 by Eugene M.
Shoemaker and Eleanor F. Helin of the California Institute of Technology
in order to study those asteroids which may intersect the orbits of the
inner planets. Throughout the history of the survey, many of the various
classes of asteroids have been investigated. The near-Earth objects, in-
cluding the Apollo, Amor, and Aten families, have usually received the most
attention., However, asteroids whose orbits cross that of Mars, and some
objects which are generally confined to the main belt have also been studied.
Improved population estimates of the different asteroid classes will lead to
refinements in the estimated cratering rates of the planets, and provide a
fuller understanding of the processes which are operative in the solar system.
TECHNIQUES:

Asteroids are most easily discovered when they are brightest, during
periods of opposition with the sun. Therefore, by observing at or near the
region of opposition, one would hopefully be able to find the maximum num-
ber of asteroids detectable. Since the study began, observing has been done
on the 18 inch Schmidt telescopé at the Palomar Mtn. Observatory. This tele-
scope is well-suited to survey work because its field width is quite large,
covering more than 8 degrees of arc. Typically, two consecutive photographs
of a favorable field are taken. The exposure times of the films are usually
twenty minutes and ten minutes, respectively. The telescope is guided at
sidereal rate, so that asferoids will leave short trailed images. The films
are then scanned for trails. By comparing the two films, the direction and
approximate  rate of motion of an asteroid may be determined. Those trails
which are longer represent the closer asteroids. Attempts are then made to
obtain recovery films of any faster moving objects. Using this technique,
an average of about two Earth-crossing asteroids has been discovered annually.

Recently, two other techniques have also been used in the survey. The
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first makes use of the 48 inch Schmidt telescope at the Palomar Mtn. Observa-
tory. The field width of this telescope is less than that of the 18 inch
telescope, but the grcater size of the instrument allows much fainter ob-

jects to be detected. Using the larger telescope some asteroids that are

only 20th magnitude in brightness have been detected, whereas the defectability
limits of the 18 inch telescope are near the 18th magnitude. A typical photo-
graphic plate taken at opposition on the 48 inch telescope may yield sevéral
hundred asteroids. Most of these are main belt asteroids, but occasionally
other types are discovered.

The second technique which has been initiated is being conducted on the
18 inch Schmidt telescope. In this method, film pairs of four minute exposures
are taken with approximately 30 minutes separating the two halves of each pair.
The short exposure time is only long enough for asteroids to lcave a star-like
image. The objects are detected by viewing the film pairs in a specially de-
signed stercoptic binocular microscope. A small displacement in an asteroid's
position will occur during the 30 minute gap, and a parallax effect will be
produced. Therefore, the asteroids may be found by a stereopsis technique.
Objects which have moved will appear to be above or below the apparent plane
of the stars. One of the benefits of this method is that the shorter exposure
time allows more films to be taken.

RESFARCH:

Using photographic plates taken on the 48 inch Schmidt telescope, 1
measured the positions of 112 objects as they moved throughout a four day
period. The right ascensions and declinations of the Comet Schwassmann-
Wachmann II, 8 previously known asteroids, and 103 new asteroids were deter-
mined. The apparent photographic magnitudes of the asteroids were visually
estimated by comparison with the magnitudes of known objects. The data on all
objects measured have been forwarded to Brian Marsden of the Smithsonian

Astrophysical Observatory, where they will be kepton file for future reference.
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By measuring films obtained from the 18 inch Schmidt telescope, Caroline
S. Schoemaker was able to provide follow-up positions for 6 of the brighter,
newly discovered asteroids. These films were taken 4 to 5 days after those
on the 48 inch telescope, and the extended arcs which these positions provide
will allow for the determination of more accurate preliminary orbits. A three
to four month arc is necessary to be able to calculaie an object's definitive
orbit,

One asteroid discovered on the plates which were taken on the 48 inch
telescope had an apparent motion that was about twice that of the other aster-
oids, and was given a designation of 1982JD. After its positions were determined,
Brian Marsden calculated a preliminary orbit for the asteroid. He concluded
that the object is probably an inner main belt asteroid of fairly high inclina-
tion, belonging to either the Hungaria or Phocaea families. When follow-up
positions for 1982JD become available, they will increase the accuracy of the
orbit determined.
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Preliminary Results of Albedo Correlation Between Europa and Ganymede
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Building on the work of Johnson et al (1982) on the multispectral
properties of the icy Galilean satelites, Voyager images of Europa and
Ganymede were analyzed to determine values for the exponent k of
the Minnaert photometric function and preliminary spectra for
various regions on the two satellites.

To compare multispectral albedo between satelites three basic sets of
problems with the raw digital images must be corrected. First, corrections
must be made for variations in camera sensitivity and dark current over the
field of view. Next, images acquired in different spectral bandpasses must be
registered. Finally, the photometric function, whose most dramatic effect is
darkening of the image away from the subsolar point, causing the brightness of
a single material to vary over an image as the solar incidence angle varies,
must be compensated for.

Corrections for the first set of problems, sensitivity and dark current,
have been well established using pre-,in- and post-flight camera calibration
corrections and dark current frames (Danielson et al.,1981). Dark current
errors which vary with scan rate and exposure time were corrected empirically
so that the brightness value of dark space is as close as possible to zero.
After this correction, the remaining dark current correction is less than +
0.005. The photometric function is primarily dependent on phase angle (Figure
1), wavelength, surface material and texture (Veverka et al.,1978). Full
representations of the function with its many parameters are in the early
stages of development (Squyres,1981). For the purpose of this paper, a
simplified photometric correction in the form of the Minnaert function was
applied following (Johnson et al.,1982).

The Minnaert function is: K k-1
B=B, cos"i cos" "e

where B=apparent albedo, B =norma’ albedo, i=solar incidence angle, e=viewing
angle (Figure 1) and coefficient k varying with phase angle, and wavelength.
The Minnaert function has been shown to describe the scattering behavior of
various silicate materials at low phase angles (Veverka,1978).

To determine an average value of k for each planet and filter, two sets
of color filtered images for each planet were choosen from the available low
phase angle images. The image sets for each planet were chosen to have
approximately the same phase angle, and provide overlappping coverage under
different viewing and illumination conditons. These criteria were required by
the method used to solve for k (A.McEwen, personal communication). Table 1
lists the images used.

To process the images, known camera distortions were removed (Soderblom
et al.,1978;Danielson et al.,1981). The images were then geometrically
transformed into simple cylindrical projections and the camera calibration
factors applied (Danielson et al.,1981). The two cylindrical projections for
each planet and filter were then registered with each other and their area of
overlap processed to yield the k variable of the Minnaert function for each
image. The mean values of k for the Europa images were found to be equal to
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0.63 for the blue filter; and equal to 0.61 for the ultraviolet filter.
Buratti and Veverka (1981) found the orange filter at phase angle of 2.949 to
have a k equal to 0.7. The decreasing k with decreasing wavelength agrees
with work by Veverka et al.(1978). For the Ganymede images the mean value of
k was found to be equal to 0.50 for the blue filter.

The Minnaert function was then applied to the images to produce maps of
normal albedo. Selected points from these images were used to produce the
preliminary spectra in Figure 2. The most noticeable characteristic of the
spectra is that the slope of the curves for Europa is steeper than that for
Ganymede, making Europa brighter and redder than Ganymede. This is in
agreemen§ with spectra derived from other Voyager images (Johnson et
al.,1982).

This study has shown that the k values for the Minnaert function for
Ganymede and Europa are different and thus that the photometric behavior of
the two bodies is different. This lends evidence to the idea that the
physical nature of the surfaces of Ganymede and Europa are dissimiliar. It
should be noted the many factors such as texture and roughness, not taken into
account in the Minnaert equation have an effect on the photometric function.
Thus, while the spectra do not rule out similar materials occurring on Europa
and Ganymede, they do not contribute any evidence to that possibility. Much
more work needs to be done with the photometric function, the parameters
effecting it and its application to Voyager images before strong evidence for
similarity or lack thereof between Galilean satellite materials can be
established.
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Table 1

Image Pairs Used

Planet PICNO filter phase angle
Europa 0578J1-001 v 3.09
Europa 1432J92-003 ) 3.77
Europa 0580J1-001 B 2.97
Europa 143492-003 B 3.77
Europa 0582J1-001 OR 2.94
Europa 1436J2-003 OR 3.76
Europa 0584J1-001 G 2.94
Europa 1438J2-003 G 3.76
Europa 0586J1-001 uv 2.84
Europa 1440J2-003 uv 3.76
Ganymede 1273J2-004 v 4.87
Ganymede 1758J2-004 ) 4.81
Ganymede 127592-004 B 4,88
Ganymede 1760J2-004 B 4.83
Ganymede 1277J2-004 OR 4.88
Ganymede 1762J2-004 OR 4.85
Ganymede 1279J2-004 G 4.87
Ganymede 1764J2-004 G 4.85
Ganymede 1281J2-004 uv 4.86
Ganymede 1766J2-004 uv 4.82

Figure Captions

Figure 1 Graphical depiction of solar incidence angle i,viewing angle e, and
phase angle a (from Squyres,1981).

Figure 2 Generalized spectra of normal albedo for relative dark, medium and
1ight terrains on Ganymede and Europa.
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ABSTRACT

Mare Acidalium quadrangle lies between 30° - 60°N latitude and
0° - 60°W longitude. Materials that were used in mapping the quad-
rangle include Mariner and Viking single-frame images and photo-
mosaics. Preliminary geologic mapping was done on five 1:2,000,000-
scale photomosaics and selected higher resolution photomosaics. The
data were then compiled on one sheet at a scale of 1:5,000,000.

The Mariner 9 mission revealed a striking planetary dichotomy;
high-standing, heavily-cratered terrain in the south that contrasts
with low-lying, lightly-cratered terrain in the north. Both of these
terrain types occur in Mare Acidalium quadrangle. The boundary
separating the elevated cratered plateau from the lower plains is, in
many places, an escarpment 1-2 km-high, however, in a few places where
there is no escarpment, plains materials embay and overlap the heavily-
cratered plateau material.

Plateau materials cover approximately 20 percent of the quadrangle
and occur in three areas in the southern region. The plateau province
consists of six units: (1) cratered plateau material (302,000 kmz).
(2) dissected and fractured plateau material (25,000 kmz), (3) rugged
plateau material (270,000 kmz), (4) ridged plateau material (95,000 kmz),
(5) fractured plateau material (46,000 kmz), and (6) lower plateau
material (small ﬁatches). |

The cratered plateau and rugged plateau materials, believed to
be the oldest in the quadrangle, are characterized by many ancient

flat-floored, degraded and partially buried impact craters. The
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younger ridged plateau and fractured plateau materials contain
mare-type ridges and NE-trending grabens, respectively. The
dissected and fractured plateau material is characterized by many
N-S trending fractures and ghost craters and occurs near the center
of the quadrangle. Lower plateau material occurs in small patches
along the plateau-plains boundary in the southwest region. The
unit may represent resistant material underlying the older plateau
units and is exhumed, or material that was deposited on top of the
smooth plains.

Lowland plains materials cover the remaining 80 percent of the
quadrangle. The plains province consists of ten units: (1) mottled
plains material - undivided (991,000 kmz), (2) hummocky mottled plains
material (386,000 kmz), (3) patterned mottled plains material (458,000
kmz), (4) subdued patterned mottled plains material (37,000 kmz),

(5) fractured plains material (23,000 kmz), (6) knobby plains material
(193,000 kmz), (7) smooth plains material (1,162,000 kmz),

(8) patterned smooth plains material (60,000 kmz), (9) variegated
plains material (128,000 kmz), and (10) knobby terrain material

(small patches).

The mottled plains units are characterized by high-albedo zones
around impact craters that are surrounded by low-albedo intercrater
plains. To the north, crater floors are commonly filled with light
material, and there is a distinct NE-SE eolian grain. Gradiational
boundaries exist between all mottled plains units. Boundaries be-
tween mottled plains units and other plains units commonly have
distinct morphologic and albedo contrasts. The NW-SE eolian grain

is most apparent on the mottled plains material - undivided. The
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hummocky mottled plains and the higher-albedo knobby plains are charac-
terized by numerous, randomly distributed, small, dark hills or hummocks
that may be volcanic. The patterned mottled plains, subdued patterned
mottled plains, fractured plains, and patterned smooth plains are
characterized by a polygonal pattern of troughs that may be the result
of permafrost, desiccation, or tectonic activity. Lava flows partially
obscure the trough pattern on the subdued patterned mottled plains.

The troughs on the fractured plains are much larger than those on other
plains units. Troughs on the patterned smooth plains may be slightly
smaller than those on other plains units.

The vast smooth plains and variegated plains have few impact cra-
ters. Streamlined landforms and channels on the smooth plains indicate
fluvial erosion and deposition. The variegated plains contain features
that may be volcanic. Knobby terrain material occurs in patches through-
out the lowland plains and may represent erosional remnants of plateau
material, more resistant remnants of an underlying cratered surface,
igneous intrusions, or volcanic constructs.

The heavily-cratered plateau materials in the southern region
record an early period when the impact of large bodies was common.
Later, these regions were partially or completely buried by younger
volcanic and eolian materials and disrupted by faulting. The central
region may have subsided and plateau material that once covered a
large portion of the quadrangle began to break down and erode, leaving
only erosional remnants of the higher surface scattered throughout the
lowland region. Volcanic, eolian, and alluvial materials resurfaced a

large portion of the lower plains. The distinctive and varied surface
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textures in Mare Acidalium quadrangle have been created by impact,
tectonic, fluvial, eolian, periglacial activity and mass movement

processes.
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INTRODUCTION

Galileo, in 1610, was the first to observe Mars through a telescope.
In 1659, Christian Huygens produced the first drawings of Mars showing the
dark markings, maria, that early workers believed represented bodies of
water. Father Secchi, in 1869, introduced the Italian word, "canali,"

which means channels, to describe some of the dark, streak-like martian

markings. Unfortunately, the English language press translated the Italian

word "canali" not as '"channels,"

which has no necessary implication of
intelligent design, but as "canals," (Hoyt, 1976). 1In 1877, Schiaparelli
strengthened the idea that these streak-like features were canals by mapping
their distribution. Percival Lowell, who established Lowell Observatory
at Flagstaff in 1894 specifically to study Mars, suggested that
Schiaparelli's channels were irrigation canals constructed by intelligent
beings to bring water from the pdles to the dry equatorial region (Hoyt,
1976). On the other hand, several scientists suggested that the polar
caps were made up of frozen carbon dioxide, and therefore, subfreezing
temperatures would make Mars uninhabitable. It was not until 1965 that
some of these arguments began to be resolved.

In July, 1965, Mariner 4 flew by the southern hemisphere of Mars and
sent back 22 close-up images that revealed a cratered, lunar-like surface.
Four years later, in 1969, the Mariners 6 and 7 fly-by missions returned
a total of 202 images from the southern hemisphere of Mars, confirming
that relatively uninteresting lunar-like craters were indeed scattered

over the martian surface. These later images also revealed that the

craters were modified by erosion.
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The atmosphere around Mars permits geologic processes that cannot
occur on other planetary bodies such as the Moon and Mercury, e.g., wind
erosion and deposition. It was not until the Mariner 9 orbital mission
in 1971 that the scientists were able to see evidence of the diversity
of geologic processes that have shaped martian geologic history. Processes
.that have been identified are impact, volcanic, tectonic, fluvial
periglacial, and eolian.

Mariner 9 data revealed striking differences between the northern
and southern hemispheres of Mars. This hemispheric dichotomy is expressed
by an abrupt change from the high-standing, densely cratered terrain in
the south, to low-lying, lightly cratered terrain in the north. The
boundary separating these two terrain types is commonly expressed as a 1-2 km
high, irregular scarp (Carr, 1980b), north of which the plains slope
downward to elevations 5-6 km or more below the southern highlands.

The area involved in this investigation occurs along the boundary
between the southern highlands and the northern plains. Several areas
in the northern plains were selected on the basis of Mariner 9 data as
potential landing sites for the Viking landers because the areas appeared
to be relatively smooth. The 40° - 50°N latitude band was of special
scientific interest because of the high atmospheric water content,
moderate surface temperature, and the possibility of near-surface perma-
frost (Masursky and Cradbill, 1976).

When the Viking 1 orbiter arrived at Mars in June 1976, these areas

were photographed in great detail in order to determine the safest landing
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site, and eventually the Utopia Planitia site (48°N, 226°W) was selected.
One of the alternative landing sites, Cydonia (44°N, 10°W), occurs within
the area of this inwvestigation. The Cydonia site was originally considered
for the Viking 2 lander because the atmospheric pressure in this region
was high enough to permit water to exist in a liquid state. The Cydonia

site was rejected because it appeared to be too rough.

Area of Study

Mare Acidalium was one of the dark areas that appeared on
Schiaparelli's map of Mars in the late 1800's (Schiaparelli, 1878). The
area of this investigation is Mare Acidalium quadrangle (MC-4); Acidalia
Planitia, the largest area of low albedo in the northern hemisphere,
constitutes much of the Mare Acidalium quadrangle. This quadrangle lies
between 30° -~ 65°N latitude and 0° - 60°W longitude (Fig. 1). Occultation
data from Mariner 9 indicate that the elevation in the central area of
Acidalia Planitia is more than 3 km below the 6.1 millibar datum, the
elevation reference surface established for Mars corresponding to the

pressure at the triple point of water (Fig. 2).

Purpose of Study

Mariner 9 data from Mars revealed the striking planetary dichotomy,
i.e., southern highlands and northern lowlands. The low-resolution
Mariner 9 images depicted the northern plains as flat to gently rolling

hills with few topographic irregularities (Scott, 1978). A few scattered
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high-resolution Mariner 9 images in this northern region hinted that
the geology was more complex. The higher-resolution Viking orbiter images
have revealed a variety of surface features that confirm the complexity
of the geology in the area. Few detailed studies of this area have
been done utilizing the high-resolution Viking orbiter data.

This investigation incorporates data from both the Mariner and
Viking missions in an effort of identify the materials in, and to infer
the most reasonable geologic history of, the Mare Acidalium region of

Mars.
Methods of Investigation

Photogeology is defined as: '"The identification, recording, and
study of geologic features and structures by means of photography,
specifically the geologic interpretation of aerial and space photbgraphs
and images and the presentation of the information so obtained" (Bates
and Jackson, 1980).

On Earth, aerial photographs commonly reveal details of the geology
that are not detectable on the ground. Both fieldwork and photogeology
are often incorporated into making a geologic map. Because geologic
maps of Mars are based only on photographic observations and other remote
sensing techniques rather than on ground surveys, the various definable
geologic units must be characterized by geomorphic and albedo features.
Ideally, the geologic terrains that are delineated have stratigraphic
significance; however, the surface processes\have been intermittently

active such that surfaces of many ages are exposed in many different
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geographic areas. It is often difficult to distinguish between the age of
a depositional or an erosional surface and the age of the material that
immediately underlies it. The occurrence of surface features such as
volcanoes, lava flows, impact craters, channels, dunes, and fractures are
useful when interpreting the origin and geologic history of an area.

Mars has been divided into thirty quadrangles by the U.S. Geological
Survey. The present investigation involves geologic mapping and inter-
pretation of the plains and adjacent highlands in one of these quadrangles
of the northern mid-latitudes. Materials that were used include Mariner
and Viking single-frame images, stereopairs where available, and photomosaics.
Preliminary geologic mapping was done on five 1:2,000,000-scale photomosaics
and selected higher-resolution photomosaics. The data were then compiled
on one sheet at a scale of 1:5,000.000 for presentation in this thesis.
Also, included in the thesis are larger-scale maps and photomosaics of
particularly relevant regions.

Early lunar workers developed a method based on statistics of impact
crater populations to determine the relative ages of surfaces on the Moon
and planets other than Earth., This method is based on the simple relation-
ship between crater abundance and age, i.e., old surfaces are more’
densely cratered than young surfaces. The technique used for analysis of
crater populations is to plot the crater diameter versus the abundance
or frequency of craters. The early investigators found that the number
of craters increases geometrically as the size of the crater decreases
because the interplanetary debris is dominated by smaller-sized particles

(Mutch et al., 1976).
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To determine possible age relationships between surfaces with
distinctive geomorphic and geologic characteristics, statistical
analyses of crater frequencies were performed in accordance with the methods
outlined by the Crater Analysis Techniques Working Group (Arvidson et al.,
1978). These data are presented in cumulative size-frequency distribution
plots. The locations of the crater counts are shown on Figure 3.

If every crater on a surface is younger than the surface material, this
method will provide a minimum age of the surface material, as well as the
exposure age of the surface itself (McGill, 1977). Caution must be used
with this method of dating surfaces, because, as McGill (1977) pointed out,
large craters have higher walls and deeper pits than small craters. Thin
surface deposits such as lava flows, eolian materials, and air-fall materials,
could completely obliterate the small craters, partially bury the inter-

mediate size craters, but have little effect on the large craters.

Data Base

Mariner 9.--In 1971-1972, nearly 100 percent of the martian surface was
photographed by Mariner 9. The vast majority of the 7,300 images returned
by Mariner 9 have a resolution of 1-3 km (A-frames), whereas approximately
1-2 percent of the images have a resolution of 100-300 m (B-frames).

Within the Mare Acidalium quadrangle, Mariner 9 transmitted to Earth 26
A-frames and 33 B-frames.
Viking.--Following their arrival at Mars in 1976, the two Viking

orbiters acquired approximately 65,000 images of the martian surface. The
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Figure 3. Location of terrains on which crater counts were made. Some
areas extend into adjacent quadrangles; plateau units include:
cratered plateau (plec), rugged plateau (plrg), ridged plateau
(plr), and fractured plateau (plf), plains units include:
mottled plains - undivided (pm), hummocky mottled plains (pmh),
knobby plains (pk), patterned mottled plains (pmp), variegated
plains (pv), and smooth plains (ps).
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 images are categorized into four groups:

(1) low resolution (average 70,000 k:m2

per image, > 180 meters/pixel)

(2) medium resolution (average 40,000'km2 per image, 130-180 meters/pixel),
(3) high resolution (average 10,000 km2 per image, 35-130 meters/pixel), and
(4) very high resolution (average 2,500 km2 per image, < 35 meters/pixel).

In Mare Acidalium quadrangle approximately 1,600 images of varied reso-
lutions were acquired. Figure 4 shows the locations of the high-resolution
strips within the quadrangle. Most of the high-resolution data were obtained

from the Cydonia region, the area that was designated as a potential Viking

landing site.
Previous Mapping

On the basis of Mariner 9 data, Underwood and Trask (1978) mapped the
geology of Mare Acidalium quadrangle at a scale of 1:5,000,000. Mariner
9 images in the northern latitudes were of poor quélity because of atmos-
pheric dust and the high sun angle at which many of the images were acquired,
and, as a result, only a few geologic subdivisions could be recognized
within the lowland plains of the quadrangle. These divisions included:
mottled plains material, plains material, plains and dissected plateau
material, and channel material. The adjacent quadrangles were mapped by Wise
(1979), Lucchitta (1978), Milton (1976), Wilhelms (1976), and Dial (1982)
at a scale of 1:5,000,000. The Cydonia region of MC-4 was designated as
a possible landing site for the Viking lander (Masursky and Cradbill, 1976),

resulting in more detailed geologic mapping in this region (Scott, 1976).

Other cartographic prodﬁcts published by the U.S. Geological Survey
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include: 1:5,000,000 topographic map of MC-4 (1976); 1:5,000,000 shaded
relief map of MC-4 (1975); 1:1,000,000 topographic map of the Cydonia
region (1976); 1:250,000 high-resolution map of the Cydonia region (1976);
and 1:2,000,000 controlled photomosaics of the northeast, northwest,

southeast, south-central, and southwest sub-quadrangles (1981).
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GEOLOGY OF MARS

A general overview of the planet Mars and martian geology is

important for understanding the processes that affect the geologic develop-
ment of a particular region. Several review papers and books have been
published (Masursky, 1973; Mutch et al., 1976; Carr, 1980b, 1981). Scott
and Carr (1978) published a geologic map of Mars that shows 24 geologic
units. Also included on the map are tectonic features, the majority of
which are extensional. A number of geologic features on Mars indicate a
long period of horizontal tensional stresses acting on the lithosphere.
Solomon and Chaiken (1976) and Toksoz and Hsui (1978) presented thermal
history models suggesting that Mars has undergone a period of expansion

that resulted in extensive systems of tensional fractures and volcanism.

Planetary Dichotomy

One of the most interesting discoveries'of the Mafiner 9 mission was
the striking difference between the northern and southern hemispheres of
Mars. There is an abrupt change from the high-standing, heavily-cratered
terrain in the south, to the low-lying, lightly-cratered terrain in the
north. (Fig. 1,5). The boundary between the two hemispheres is approximately
a great circle inclined 35° to the equator (Mutch et al., 1976). The
northern plains slope to elevations > 3 km below the mean datum, that
level where the atmospheric pressure is 6.1 millibars. The southern
highlands generally stand 2-3 km above the mean datum.

The heavily-cratered terrain in the southern hemisphere includes the

planet's oldest exposed surfaces. Superficially, these old surfaces
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Figure 5. All craters greater than 15 km in diameter. Note the distinct difference
in crater density between the northern and southern hemispheres. From
Mutch et al. (1976).



resemble the lunar highlands. The two units are thought to be similar

in age because of the abundance of large ( > 30 km) craters on both units
(Soderblom et al., 1974; Neukum and Wise, 1976). The ancient cratered
terrain on Mars, however, records a far mbre complex history of deposi-
tional.and erosional events. The larger martian craters tend to be highly
degraded, and many of these large craters are channeled and gullied,
indicating erosion by running water. Volcanic activity (Greeley and Spudis,
1978) and eolian activity (Carr, 1981) were important modifying agents.

The old cratered terrain appears to represent a complex mixture of impact
debris, volcanic rocks, and eolian and fluvial sediments.

In contrast,'the northern plains include some of the youngest surfaces
exposed on the planet. Some of the plains material in the Tharsis
volcanic regions are almost devoid of impact craters (Scott and Carr,

1978). The low-latitude northern plains contain a number of overlapping
volcanic units that have been modified to various degrees by fluvial and
eolian processes (Carr, 1981).

The high-latitude northern plains are not as simple to understand as
the low~latitide plains. The high-latitude northern plains appear to
represent a complex history of erosion and deposition. The surface contains
a wide array of topographic and albedo features such as polygonal fractures,
pedestal and flow-ejecta craters, irregular depressions and hills of varied
origin, and light and dark streaks.

Soderblom et al. (1973a) reported that many craters in the high

northern latitudes were filled or partially filled with light material,
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suggesting the presence of an old debris mantle that hés been stripped
away from the intercrater regions. Carr and Schaber (1977), Rossbacher and
Judson (1981), and Lucchitta (1981) have indicated the possible importance
of ice in shaping the northern terrain. To complicate things further,

the northern plains are probably sites of accumulation of fluvial debris
derived from the large outflow channels to the south (Carr, 1980b). The
complex characteristics of the northern plains most likely result from the
interaction of impact, volcanic, eolian, fluvial, mass wasting, and
periglacial-processes.

The boundary separating the heavily-cratered highlands and the
sparsely-cratered lowlands varies. In some places the relationship 1is
simple; the younger plains overlap the older, cratered surface. In these
areas, islands of older, cratered terrain can be seen protruding through
the plains material (Carr, 1981). 1In other areas, the boundary is expressed
by a steep escarpment 1-2 km high. In many areas along the escarpment
there are flat-topped mesas and rounded, equidimensional hills that have
been interpreted as erosional remnants of highlands material left by scarp
retreat (Scott 1978, 1979; Scott and Carr, 1978).

The origin of the planetary dichotomy is controversial. Soderblom
and Wenner (1978) pointed out that extensive areas throughout the northern
equatorial region appear to have been uniformly stripped to depths 1-2 km
below the pre~existing surface. These areas vary in age and in absolute
elevation. Soderblom and Wenner suggested that the southern highlands
are underlain by an ice-laden zone and sections of this layer were removed

from the region by such processes as eolian deflation, gravitational slump,
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collapse, and fluvial transport. Erosion stopped at the liquid-ice
interface because rocks below the zone of permafrost were cemented and
much more resistant. Head et al.: (1977) also concluded that the boundary
between ;he cratered terrain and plains was the result of collapse and
erosion at the north-facing escarpment.

Carr (1980a, 1981) and Wise et al. (1979) have argued that erosion
by surface processes cannot fully explain the disappearance of the ancient
crust from the northern hemisphere because there is no sink of sufficient
size to accommodate the debris. Carr (1980a) and Mutch et al. (1976)
suggested that differentiation produced a crust of varied thickness. The
crust was thinner in the north and thicker in the south. The lack of a
gravity anomaly along the plains-highlands boundary lends support to this
view (Carr, 1980a).

Wise et al.. (1979) discussed the possibility of subcrustal erosion
by a convection cell operating beneath the northern plains region. The cell,
rising beneath the northern plains, eroded the base of the crust and
disrupted the remaining crust by fracturing. Subsequently, the northern
region sank to maintain isostatic equilibrium (Phillips and Saunders, 1975)
and was covered by volcanic material, The eroded basal-crustal material
was eventually transported to the Tharsis region where slow transfer of heat
from zones deep in the mantle produced an extremely long volcanic phase

(Wise et al., 1979).
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Impact Craters

Circular depressions are a common landform on the surface of nearly
every solid planetary body in the solar system. Most workers have inter~
preted these features as impact craters. Impact craters can be very
importént indicators of such things as surface material, erosional and
depositional events, and relative ages of exposed surfaces (Carr, 1981).

The morphology of ejecta around most of the martian craters is different
from that around lunar and mercurian craters. Lunar and mercurian craters
are surrounded by a continuous ejecta blanket that commonly extends outward
as bright rays and fields of secondary craters. Ballistic emplacement is the
mode of deposition of ejecta around these craters. In contrast, many of
the martian ejecta blankets appear to have been emplaced by surface flow
(Fig. 6a). These craters have been identified by a variety of names such
as rampart, fluidized, splosh, flower, flow-ejecta, and so on. They shall
be referred to either as rampart or flow-ejecta craters in this study.

Craters having ejecta blankets with a distinct outer ridge or rampart
were first recognized on Mariner 9 B-frames and are designated as rampart
craters. McCauley (1973) and Arvidson et al. : (1976) attributed their
unusual morphology to wind erosion. Further investigation revealed fine
details of the ejecta blankets that were primary features and not the result
of subsequent modification (Head and Roth, 1976). Most workers presently
believe that the presence of liquid water, water ice, or other volatile
material in the ejecta was the cause of its fluid properties (Carr, 1981).
These fluidized or rampart craters occur on almost every geologic unit on

Mars, and they apparently formed thoughout a considerable span of time
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Figure 6.

Impact crater material. (a) Ejecta lobes of Arandas
crater (30 km diameter); concentric flow-ejecta deposits
are indicated by the arrows; the inner ejecta deposit
was interpreted as part of the crater's overturned rim
flap that was subsequently overridden by the more exten-
sive outer ejecta deposit (Carr et al.,'1977); shadow
length estimates indicate that the inner ejecta unit
rises 40-100 m above the surrounding material, and the
outer ejecta unit rises 80 m above the surrounding plains
(Mouginis-Mark and Carey, 1980); fine radial structure
occurs on the lobes; Viking frame 9A42 (43°N, 14.5°W).

(b) Small pedestal crater (< 2 km diameter); compare

the pedestal crater (p) to the other non-pedestal impact
crater (c) of similar size; note that the pedestal

crater has a low platform that extends outward approxi~
mately three crater diameters; the surrounding unit is
patterned mottled plains material (pmp); the small arrows
indicate troughs; the larger arrow indicates a ridge;
faint lines at eastern and western side are image arti-

facts; Viking frame 26A56 (47.5°N, 5.2°W).
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(Allen, 1979a).

Another type of martian crater with unusual morphology is the pedestal
crater (Fig. 6b). These kinds of craters are common in the northern hemi-
sphere between latitudes 30°N and 70°N (Carr, 198l1) and are craters situated
in the center of a low platform or pedestal that extends outward more than
three crater diameters. McCauley (1973) suggested that ejecta from the
impact armored the surface adjacent to the crater and subsequent deflation
of the intercrater region resulted in the crater and its surrounding ejecta
remaining as a platform or pedestal overlooking the lower intercrater area.
Mutch and Woronow (1980) suggested that the pedestal craters represent

viscous ejecta, i.e., too viscous to flow into lobes.

Permafrost

The presence of permafrost on Mars has long been suspected based on
observations of the annual surface temperatures and the assumed outgassing
history of thevplanet (Sharp, 1973, 1974; Anderson et al., 1967; Farmer
and Doms, 1979; Fanale, 1976). Water vapor or water ice is indicated from
infrared and water-vapor measurements over the polar caps (Kieffer et al.,
1977; Farmer and Doms, 1979) and from soil analysis by the Viking landers
(Biemann et al., 1977). Mariner and Viking orbiter data have reinforced
the suspicion that permafrost has played an important role in the develop-
ment of the martian landscape (Carr and Schaber, 1977).

Probably the most important consideration is that Mars is cold. The
present mean annual temperature is approximately -60°C (Leighton and Murray,

1966) well below the triple point of water. The cold temperature favors
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development of a zone of frozen ground everywhere beneath the surface of
the planet (Carr and Schaber, 1977). Only between latitudes 70°S and 30°N
do the summer, daytime temperatures exceed 0°C (Fig. 7) (Anderson et al.,
1973).

Fanale (1976) showed that at latitudes > 40°, the mean annual surface
temperature is low enough for subsurface ice to be in equilibrium with
current levels of water vaﬁor in the atmosphere. Below 40° latitude, water
ice is unstable and could sublime and dissipate if exposed to the atmosphere.
Observations of the atmospheric water vapor are consistent with the presence
of a permanent reservoir of water ice buried at a depth of 10 ecm to 1 m at
all latitudes poleward of 40° (Farmer and Doms, 1979).

Approximately two-thirds of the study area lies north of 40° latitude.
Fanale (1976) suggested that a regolith of unconsolidated material as much
as two km thick may exist on Mars, and that within this regolith, permafrost
could occur anywhere above the 273° K isotherm (ice-liquid water temperature
boundary).

There have been a number of estimates made of the amount of water out-~
gassed from Mars based on the elemental and isotopic composition of the
atmosphere and on assumptions regarding the initial composition of Mars.

40Ar (Anders

These estimates include the use of the abundances of 36Ar,
and Owen, 1977; Owen and Biemann, 1976; Fanale, 1976), and N2 (McElroy

et al., 1977). These estimates predict that the thickness of a layer of
water that could cover the entire surface of Mars ranges from 9 m (Anders

and Owen, 1977) to 80-160 m (Pollack and Black, 1979). Presently, we observe

water only as frost or ice of the polar caps and as water vapor in the

atmosphere.
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For the last two centuries, astronomers have observed the annual
advance and retreat of the bright polar caps. Initially, these caps were
regarded as comparable to a terrestrial polar ice sheet. Later it was
realized that these masses could be little more than thin frost blankets
(Sharp, 1974). Viking orbiter data indicate that frozen carbon dioxide
advances and recedes from the polar caps seasonally, but the residual
cap left in the summer is composed of water ice (Kieffer et al., 197%).

Estimates on the amount of water contained in the atmosphere, polar
caps and surface frost, and the water lost through exospheric escape have
been compared to the estimates of the amount of water originally outgassed
(Rossbacher and Judson, 1981). These calculations indicate that much
water is still unaccounted for and may be trapped as subsurface perma-
frost or chemically bound in the soil (Owen and Biemann, 1976).

A number of features have been interpreted by photogeologists as
evidence for the presence of permafrost on Mars. Sharp et al. (1974)
and Carr and Schaber (1977) suggested that permafrost may have been important
in the formation of chaotic and fretted terrains and some channel features.
Rampart or flow-ejecta depostis that surround many craters may be the
result of impact into ice-laden regolith (Carr et al., 1977; Gault and
Greeley, 1978). Patterned ground, similar to that seen in periglacial
regions on Earth, characterizes extensive areas of plains in the 40° - 50°N
latitude belt. Carr and Schaber (1977) and Gatto and Anderson (1975)
interpreted scalloped scarps and irregular shallow depressions as thermo-
karst features, structures resulting from disturbances of the subsurface

ice layers.
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In summary, the conditions necessary for the formation of permafrost
appear to exist on Mars. The mean annual temperature is well below
freezing. Theoretical calculations on the outgassing history of the planet
and current water-vapor measurements indicate the presence on Mars today
of large volumes of water vapor or water ice, some of which may be stored
in the subsurface. Geomorphological studies of Mars show many landforms

that further reinforce the importance of permafrost on the planet.
Meteorology and the Atmosphere

An important factor in controlling martian surface conditions is the
nature and activity of the atmosphere. Similar to Earth, the axis of Mars
is tilted approximately 23° with respect to its orbital plane. As a result,
the martian atmosphere undergoes seasonal changes analogous to those on
Earth. The eccentricity of the martian orbit results in the southern
hemisphere having a shorter but hotter summer than the northern hemisphere.

From Mariner 4 observations, scientists learned that the thin
atmosphere of Mars was composed primarily of carbon dioxide and that the
atmospheric pressure was much lower than had been previously assumed;
Martian atmospheric pressure is an average of 7 millibars (Earth's average
atmospheric pressure is 1,013 millibars (Carr et al., 1980). Goody and
Belton (1967) recognized that such an atmosphere would respond strongly and
quickly to variations in solar heating and radiative cooling during the day,
thus, causing changes in pressure that would result in diurnal wind systems.

Because of the tenuous atmosphere of Mars, much stronger winds than

those on Earth are required to set particles into motion. Arvidson (1972)
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estimated that saltating grains of a given diameter will travel 20 times
faster on Mars than on Earth. High-velocity winds combined with relatively
low settlingvelocities permits fine particles to remain aloft in the
martian atmosphere sufficiently long to result in global dust storms

(Mutch et al., 1976).

Even before the Mariner and Viking missions, telescopic observations
showed that major dust storms are fairly common on Mars. Antoniadi (1930)
was the first to suggest that wind might be modifying the surface of Mars.
He proposed that increased solar heating of the atmosphere during peri-
helion provided enough energy for wind to raise large amounts of dust.

Mars observers, for more than a century, have been able to distinguish
between yellow clouds (i.e., dust clouds) and white clouds (Snyder, 1979).
Several types of white clouds have been observed: morning and evening |
hazes, recurrent localized clouds (i.e., in the Tharsis, Olympus Mons, and
Elysium regions), and polar hoods. Generaliy, most of these clouds are
believed to be composed of water; however, some may consist of carbon
dioxide (Briggs et al., 1977).

During the winters the polar regions cool to extremely low temperatures,
forming an extensive cloud cover known as a polar hood. North of about
60° latitude, the polar hood is believed to be partially composed of carbon
dioxide ice particles. This cloud cover disappears in late winter to reveal
a surface covered largely with carbon dioxide frost or snow (Leovy and Briggs,

1974).
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Wind Features

Mariner 9 arrived at Mars during one of the more intense planet-wide
dust storms. After the dust settled, Mariner cameras revealed a wide
variety of landforms that can be attributed to wind. These features
include dune fields, yardangs, and varied light and dark markings that are
interpreted as surficial wind streaks (McCauley, 1973). The Viking mission
has provided additional information about the eolian regime.

The most common eolian features observed on Mars are wind streaks.
These streaks are almost always associated with impact craters or other
topographic obstacles. Although wind streaks occur in a variety of shapes,
sizes, and topographic settings, most can be grouped into one of three
categories: (1) bright depositional streaks, (2) dark erosional streaks,
or (3) dark depositional streaks (Thomas et al., 1981). Presumably, the
orientations of wind streaks relect both global flow patterns and slope-
controlled winds.

A vast field of transverse and barchan dunes, several hundred
kilometers across, surrounds the north polar cap (Tsoar et al., 1979).
Smaller fields of transverse dunes occur in craters and in canyons and
valleys all over the planet (Ward et al., 1982). Wind directions can be
derived from dune shape and orientation of the slip faces.

Crater splotches are irregular, dark deposits that occur on the down-
wind interior sides of craters. Many of these dark splotches have been
resolved to be fields of dunes, through image enhancement. The occurrence
of dark crater splotches increases with increased latitude (Thomas et al.,

1981).
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Yardangs are streamlined erosional landforms aligned with the strongest
regional winds (Ward, 1978); other wind-erosion features on Mars include
pits and grooves. Ward et al., (1980) considered these erosional features
to be indicators of long-term wind trends. Most of the erosional landforms
occur in the equatorial region of Mars, i.,e., the area swept clean of eolian
debris (Soderblom et al., 1973b).

The global wind pattern can be derived from systematic mapping of
the orilentation of eolian features (Ward et al., 1980). Of particular
interest to this investigation is the circulation pattern in the
northern hemisphere.

Coriolis-type winds appear to dominate near the pole (above 80°N).
Between 80°N and 40° - 50°N, most streaks and dunes trend northwest-
southeast showing no coriolis affect. Ward et al., (1980) suggested that
the mid-latitude trend may be the result of storm winds locally generated
form thermal contrast produced by the retreating ice cap during the spring.
South of 40° - 50°N latitude the winds may be influeéenced by the coriolis

effect as they change to a northeast-~southwest orientation (Ward et al,, 1980).

Channels

The channels on Mars have been the subject of considerable contro-
versy since their discovery during the Mariner 9 mission; however, most
workers have concluded that they are fluvial features. The main question
is whether significant quantities of water could have existed in the past
on the planet's surface (Mutch et al., 1976). Presently, the.:surface is

too cold (Leighton and Murray, 1966), and the atmospheric pressure is too
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low at the lower latitudes (Fanale, 1976) for liquid water to be stable

at the martian surface. These problems led to the suggestion that different
atmospheric and climatic conditions existed in the past (Mutch et al.,

1976; Carr, 1980b).

The two types of channels that are important to the present study
are the small runoff channels that occur in the cratered terrain and the
large outflow channels that occur around the Chryse basin. Runoff
channels are commonly simple gullies or troughs a few tens of kilometers
long. Their number and length tend to decrease toward the high latitudes
(Carr and Clow, 1981). Masursky et al. (1977) suggested that the water
that cut the channels may have been derived from rainfall. Alternatively,
Pieri (1980) concluded that sapping or seepage from the groundwater system
was more probable. Several of these small channels occur in the old
cratered terrain in Mare Acidalium quadrangle.

The outflow channels are very wide, have few, if any, tributaries,
and commonly extend for more than 100 km (Fig. 1). Scour patterns and
teardrop-~shaped islands are commonly associated with the channels (Carr
and Clow, 1981). These large outflow channels have been interpreted as
having been formed by catastrophic flooding (McCauley et al., 1972;
Masursky, 1973; Masursky et al., 1977; Milton, 1973; Baker and Milton,
1974; Nummedal, 1976; Carr, 1979; Baker, 1982).

Carr and Clow (1981, Fig. 7) mapped the planetwide distribution of
the outflow channels, the largest of which are around Chryse Planitia.

Scours from the channels that enter the Chryse region from the south extend
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northward into Acidalia Planitia before they disappear between 35°N and

40°N. Channel deposits of Kasei Vallis occur in the southwestern part of

Mare Acidalium quadrangle.

Volcanism and Ice

The effects of volcanism on surface ice have been investigated by
Allen (1979b) and by Hodges and Moore (1978, 1979). Mesa-like structures
on the martian gurface resemble Icelandic tablemountains believed to be
the result of volcanic eruption beneath an ice layer. Moberg ridges,
thought to be subglacial fissure eruptions, have also been tentatively
identified in the northern plains of Mars (Allen, 1979b). Frey et al,
(1979) have identified what they believe to be pseudocraters in the Cydonia
region. Pseudocraters are small domes with or without summit craters that
develop from steam venting when lava flows over wet ground (Lucchitta,

1981).
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GEOLOGY OF MARE ACIDALIUM QUADRANGLE
Impact Craters

In the present investigation, craters have been assigned to one of
four morphologic categories based on crater preservation state according
to the guidelines adapted for the Mars Geologic Mapping Program of the
U.S. Geological Survey. A 4 classification indicates young crater material;
the rims are sharp, and the floors are deep. Small 4 craters ( < 10 km)
generally have a bowl shape whereas the larger ¢, craters have central peaks.
The ejecta blankets are fresh and extensive., Craters of Cq classification
are moderately fresh, although they have been somewhat modified. The
crater rims are relatively sharp. The larger cg craters may or may not
have a central peak, but the floor is still lower than the surrounding
terrain. The ejecta blankets show somewhat less detail than ¢, craters.
Moderately old or degraded craters are designated as c, craters. The crater
rims are rounded, the floors are generally flat, and they have no central
peak. The ejecta blankets may have been partly buried or stripped away.
A ¢, crater is highly degraded; the crater rims are subdued, and the floors
are flat and shallow and usually filled with younger material. The ejecta
may have been completely obscured or removed, and only parts of the rim still
exist., Greeley et al. (1977), in mapping the Chryse Planitia regionm,
emphasized that the rate of degradation of craters is probably not uniform

on a global scale but may be considered fairly uniform over a limited area.

To determine possible age relationships between units; crater counts
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were made on all matéfial units of sufficient size to provide a valid
statistical sample. The cumulative crater size-frequency is defined

as the number of craters per unit area with diameters equal to, or greater
than, a specific diameter (Nuekum and Hiller, 198l1). The data

are presented on plots of log crater frequency (number per unit area)
versus log crater diameter (Fig. 8). The frequency plots should shift to
higher crater densities as the surface-rock units become older. The
relationship is demonstrated in Figure 8; the cratered plateau unit is
believed to be the oldest in the quadrangle based on the abundance of
large ( > 20 km) impact craters. Utilization of larger craters in size-
frequency plots is preferable because large craters are less susceptible

to destruction than smaller ones.

Plateau Province

The elevated plateau province contains the oldest exposed surfaces
in the quadrangle based on the crater size-frequency distributions and
marks the northern extent of the ancient southern highlands. Plateau
material occurs in three areas: the southeast corner, containing
cratered plateau material (302,000 kmz); the central region, containing
dissected and fractured plateau material (25,000 kmz); and the southwest
corner, containing rugged plateau material (270,000 kmz), ridged plateau
material (95,000 km2), fractured plateau material (46,000 ka) and small
patches of lower plateau material.

Cratered Plateau.--The surface of the elevated cratered plateau in

the southeast corner of the quadrangle appears to be the oldest in the map
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area based on the abundance of large ( > 20 km) impact craters (Fig. 8).
The cratered plateau material is characterized by many flat-floored,
degraded and partly buried ¢y and <, impact craters. Craters of c3 age
and younger are superposed on the cratered plateau surface. The age

of the material forming the cratered plateau surface and burying the older

craters .must, therefore, be older than the craters of c_, age. The

3
lithology of these deposits is unknown but may comprise thin volcanic
lava flows and eolian material.

Processes of eolian deposition and erosion appear to be currently
active. Dark material commonly occurs on the floors of larger craters,
and in a few places the dark material seems to have been blown out of the
crater interior, forming a dark plume downwind from the crater. Light
streaks of light material also are present but are less common.

Several small sinuous channels occur on the cratered plateau surface
(Fig. 9) and are included on Carr and Clow's (1981) global-distribution

" for these features.

map. These authors use the term "valley networks
Pieri (1980) suggested that these features may imply immature drainage
from restricted source regions as a result of mobilization of volatile
material in the subsurface, e.g., through sapping or seepage from
permeable strata.

Shultz and Glicken (1979) used the term "floor-fractured crater" to
describe impact craters, commonly found along the plateau-plains boundary,
that have apparently been heavily modified by processes restricted to the

crater interiors. Several of these modified craters occur on the cratered

plateau in MC-4 (Fig. 10). Because modification occurs only in certain
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Figure 9. Small channels on cratered plateau. (a) Dendritic
network of channels (large arrow) associated with rim

material of the large c, craters near the plateau-plains

2
boundary; small trough along the rim of old ci crater
indicated by arrow; small A craters occur with or with-
out central ﬁeaks; several north-northeast trending
ridges occur 6n the cratered plateau; compare the tex-
ture of the smooth plains (ps) and the cratered plateau
(ple); see Figure 11 for regional setting; image arti-
facts occur along the eastern and western margins of the
image; Viking frame 218520 (36.4°N, 8.5°W).
(b) Sinuous channels at plateau-plains escarpment; channels
on cratered plateau (plc) indicated by arrows; northeast
vchannel discontinuous, partially covered in one area by
small impact crater; chahnel originates from circular
depression; irregularvrimiess depressions that may be
thermokarst features occur on cratered plateau; knobby
material (k) occﬁrs on smooth plains (ps); image arti-
facts occur albng east and wéSt~margihé'of the image;

Viking frame 205402 (30.9°N, 14.7°W).
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Figure 10.

Floor-fractured crater on cratered plateau. See Figure 11
for regional setting; compare the floor morphology of the
20 km diameter , floor-fractured crater in the center of

the mosaic and the larger ¢, crater only partially shown

1

along the western margin of the image with smaller cl
crafers to the west; small bowl-shaped <, crater occurs
just south of the floor—fractﬁred crater; note the three
smaller (10 km diameter) craters north of the floor-
fractured cfater; a rim is still visible on the crater
farthest south, whereas the two craters to the north
exhibit only faint circular outlines; angularity of some

crater outlines, e.g. western-most c, crater that is only

1
partially shoWﬁ, may be result of regional fracture
patterﬁ; low ridges and faintl& visible irregular de-
pressions (small arrows) give the intercrater surface a
rough appeafance; small sinuous channel indicated by the
large arrow} image aftifact occurs along the eastern

margin of the mosaic; Viking frames 216506, 218519,

218521 (35°N, 8.5°W).
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craters in a given region (Fig. 10) and affects craters of widely different
formation ages, Shultz and Glicken suggested that modification of the
craters is directly related to processes that are localized beneath certain
crater floors and not necessarily related to the initial impact events.
They suggested that these craters are sites of localized intrusions; the
injection of the intrustion is assumed to lift the crater floor and cause
fracturing and slumping of the wall material. During advanced stages of
intrusion, concentric grabens surrounding the floor and polygonal fractures
in the central floor plate may form. Heat released by the intrusion beneath
the brecciated zone of the impact crater could thaw permafrost resulting

in the release of water or vapor through the fractures. This release of
water may result in further.surface deterioration and modification

(Shultz and Glicken, 1979).

The boundary between the heavily-cratered plateau material and the
lightly-cratered, smooth plains is varied. In the southern region, an
escarpment several hundred meters high characterizes the boundary. There
are many small channels, fractures, and irregular depressions on the
plateau near the escarpment (Fig. 9b). These features may be the result of
removal of water ice trapped in the plateau layers. This removal would
result in collapse depressions and in scarp retreat. Franke et al. (1981)
have begun a survey of slope features along the plateau-plains boundary and
are applying standard equations and techniques for the analysis of slope
stability. Their results, however, have not yet been published.

Along the northern boundary, dark plains materials that may consist of

volcanic flows embay old ) and ¢, craters (Fig. 11), indicating that the
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boundary in this region may be partly depositional. Numerous mesas and
knobs, interpreted as erosional remnants of plateau material, occur along
the entire plateau-plains boundary, indicating that the plateau material
may have, at one time, covered much more of this region. Scott (1978)
reported that, in many areas along the plateau-plains boundary, lava flows
of the lowland plains embay older highland rocks, and remnants of the
highland surface project as islands above the lava-covered plains. From
the data of the Great Escarpment of Basutoland Plateau in Africa, Scott
(1978) extrapolated a 0.16 cm/yr rate of scarp retreat for the martian
"escarpment. Scott estimated that a minimum of 200 million years would have
elapsed between the beginning of lateral erosion of the highlands and the

extrusion of lava in the lowlands.

Dissected and Fractured Plateau Material.--The dissected and fractured

plateau material covers a small area in the center of the quadrangle. The
plateau surface is smooth and is cut by a number of fractures and troughs
that commonly trend north-south. This region was mapped in detail, and
the geologic map is included as Appendix II. Only a few impact craters
occur on the areally restricted plateau surface, thus crater statistics
for relative age determination would be unreliable.

The remnants of degraded impact craters occur along the southern
margin and are commonly embayed by dark plains materials (Fig. 12). The
lack of ejecta or crater rims associated with these crater forms suggest
that they were partially buried or that erosional stripping has left only

the circular depressions. The plateau may consist of light eolian material
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Figure 11.

Cratered plateau - smooth plains boundary. (a) Compare the
number of craters and the surface roughness of the cratered
plateau (plc) and the smooth plains (ps); smooth plains
materials embay the three large (40 km diameter) craters

in the center of the image; knobby material (k), thought

to be erosional remnants of the cratered plateau, can be
seen scattered across the smooth plains in the northwest
portion of the image; several of the intermediate-size
craters in this region have linear sections of walls that
may reflect a regional fracture pattern; the area shown in
Figure 9a is delineated by the box; the floor-fractured
craters shown in Figure 10 are indicated by arrows; image
artifacts occur along the eastern and western margins

of the image; Viking frame 561A07 (36.9°N, 11.0°W).

(b) Schematic cross-section showing the smooth plains -

cratered plateau boundary from A to A'.
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Figure 12.

Dissected and fractured plateau material. Numerous
fractures and troughs trend north, northwest, and north-
east; patterned, and subdued patterned mottled plains
materials (pmp, pmps) surround this isolated remmant of
dissected and fractured plateau material (pldf). The
small arrows indicate areas where subdued patterned
mottled plains materials have filled depressions in the
plateau. The two large circular depressions in the
lower left corner may be old impact craters; small dome
with summit knob (large arrow) occurs in the center of
low-albedo material on the dissected and fractured
plateau; knobby material (k) occurs to the north, east,
and south of the plateau; image artifact occurs along
eastern margin of image; Viking frame 670Bl6 (48°N,
24.5°W); for a more detailed map and cross-section, see

Appendix IIL.
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blanketing an older, cratered surface.

Along the northern boundary, there is a large region of knobby
terrain; the knobs are interpreted as erosional remnants of a higher
surface. Plains materials overlie and embay fractures and depressions
in the plateau along the eastern and western boundaries. An escarpment
marks the plateau boundary to the south. The knobs and isolated plateaus
that occur near this escarpment are erosional remnants of plateau
material.

Igneous processes have been active in this central region as indicated
by the presence of several lava flows, a number of small domes with summit
craters, and structures that have been interpreted by Allen (1979b) as
tablemountains produced by volcanic eruptions beneath an ice sheet. The
fractures that cut the plateau may, in some way, be tectonically related
to this pulse of igneous activity. Alternatively, they may be the result

of more regional stresses.

Rugged Plateau Material.--The rugged plateau material covers a large

portion of eastern Tempe Plateau. The unit is characterized by many

degraded flat-floored c, craters and crater ghosts. The intercrater area

1
is rough, with many irregular scarps (up to 0.5 km in height), channels,

and depressions (Fig. 13). Crater statistics (Fig. 8) indicate that the

surface is older than the associated ridged or fractured plateau material
but may be slightly younger than the cratered plateau material in the

southeast corner of the quadrangle. The unit is interpreted to be volcanic

and eolian material that has resurfaced the old, heavily-cratered terrain,
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leaving exposed only the partially buried outlines of the larger craters.
The region was subsequently disrupted by faulting.

Based on Mariner 9 data, a large volcanic center was recognized
along the western border of Mare Acidalium quadrangle (Underwood and
Trask, 1978) and the eastern boarder of Arcadia quadrangle (Wise, 1979).
The radial etched-mountain material was described by Wise (1979) as
radial, flat-bottomed, bifurcating, discontinuous valleys interspersed
with steep-walled closed depressions and was interpreted as basaltic
flows from a major volcanic center. High-resolution Viking images show
that the radial channels do not extend into Mare Acidalium quadrangle,
and thus the materials in this region are mapped as rugged plateau material.

Gatto and Anderson (1975) pointed out the similarity between the
rugged intercrater region and terrestrial thermokarst topography.
Thermokarst is produced by the melting of ground ice and accompanying
collapse of the ground surface. On Earth, thermokarst topography consists
of pits, dry gullies and valleys, small hummocks and closed depressions
(Fairbridge, 1968). Gatto and Anderson (1975) suggested that the water
produced during melting of ground ice continued to flow, forming the
"stream'" channels that are seen in the area. Subsequent wind erosion may
have enlarged some of the depressions.

Other distinctive features of the rugged plateau surface are the
circular structures with unusual interior morphology, that appear to be
old, degraded impact craters. Several of these flat-floored depressions

have an annular moat just inside the rim wall; other irregular depressions
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Figére 13. Rugged plateau material. The numerous irregular escarp-
ments and depressions give the surface a rugged appearance;
lettered bars indicate locations of topographic profiles
shown in Figure 14; compare the interior morphology of the
craters indicated by the lettered bars with the crater
interiors seen in some of the other figures or with the cqy

crater seen in the southwest corner of the image; most of

the craters seen on the rugged plateau have interior

moats, although none of the crater interiors is exactly

alike; small crater occurs in center of larger crater

at A-A'; the channel-like depressions in the center of the

image that may be somewhat radial to the circular mound

at D-D'" have been interpreted as thermokarst features;

other irregular depressions on the rugged plateau may also

be thermokarst depressions; the large circular mound shown

at D-D' has been interpreted as a possible volcanic center

(Scott, personal communication, 1981); ghost crater occurs to

the east of the mound; small, unusual mesas (arrows)

occur in the northern region; one of the mesas has an

elongate summit depression; knob (k) may be volcanic

intrusion or more resistant remnant of an underlying unit.

Northeast trending fracture system occurs in the central

region; mare-type ridges occur in the southeast corner

of the mosaic; Viking frames 704B38-39 (45°N, 56.5°W).
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Figure 14. Relative-height profiles of crater forms shown in Figure 13.

The profiles are constructed by computer from a program
developed to extract topographic data directly from the
Viking orbiter digital-image files. From Davis et al. (1981).
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contain circular ridges. Figure 13 shows examples of these
unusual features. Relative-height profiles of three "moat" craters
were plotted by Davis et al., (1981) and are shown in Figure léa-c.

The circularity of these features strongly suggests that they are
impact craters; the lack of sharp crater rims or ejecta blankets indicates
later resurfacing or exhumation. The unusual morphology may be related
to the target material. Roddy (1977) reported complex internal structure,
including moat-like topography, from explosion experiments in unconsolidated
alluvium overlying water-saturated clays. Alternatively, Fagen et al. (1981)
suggested that these circular depressions result from surface subsidence
rather than from impact onto the surface. These authors proposed that
either the entire central region sank downward as one mass along fracture
lines, or the central region broke into a number of small segments which
eventually deteriorated leaving the depression. They do suggest, however,
that the location of the collapse depression may depend on the existence
of the impact craters and other topographic features of a more ancient
terrain that underlies the plateau strata.

A large (40 km) circular feature with positive relief also occurs in
this region, and a profile was produced by Davis et al. (1981) (Fig. 14d).
Scott (personal communication, 1981) suggested that this feature may be
the remains of an ancient volcanic center similar to the radially etched
mountain material in MC-3 (Wise, 1979). Another alternative is that the

feature is an exhumed, filled impact crater.

279



The boundary between the rugged plateau and the smooth plains is
varied. To the south, the boundary is marked by a steep escarpment. This
escarpment may partially be a result of fluvial erosion assoclated with
Kaseil Vallis. Farther to the north, the boundary appears to be depositional;
smooth plains material overlies the plateau material, embaying or
completely burying old craters. The boundary of the rugged plateau material

with the other smoother plateau units is morphologically distinct.

Ridged Plateau Material.--The ridged plateau material occurs in the

southern region of Tempe Plateau in MC-3 (Wise, 1979) and MC-4. This unit
forms a-relatiyely smooth surface with many north-northwest trending mare-
type ridges (Fig. 1l5a, b). The crater size~-frequency distribution curve
for the ridged plateau material (Fig. 8) indicates that this unit is
younger than the adjacent ruggéd plateau material and the cratered plateau
mate:ial in thé éoutheast cofner of the quadrangle. The ridged plateau,
however, may be similar in age to the fractured plateau material to the
north inasmuch as‘their crater-density plots are similar.

A possible flow front occurs on the ridged plateau surface near the
boundary with the rugged plateau terrain (Fig. 16a). Other flow fronts
have been reported on the ridged plateau surface in MC-3 (Fig. 16b) (Wise,
1979). These features led fo the interpretation of this material as
volcanic flow rock. |

Many north-northwest t;en&ing mare-type ridges occur on this ridged
plateau surface. Mare ridges were first observed on the Moon and were def-

ined as broad, elongate arches or swells associated with narrower, steeper
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crenulated ridges or spines (Strom, 1972). Individual ridges on Mars
may be as long as severdal hundred kilometers, ranging in width from 1-20
km, and as high as several hundred meters (Gifford, 1981).

The origin of mare ridges remains controversial. The two general
hypotheses advanced to explain the origin of these ridges on the Moon
involve igneous processes that produce such features as plutons, pressure
ridges, squeeze-ups of lava, and fissure eruptions (Strom, 1972; Quaide,
1965; Hodges, 1973), or tectonic processes, such as faulting or folding
(Lucchitta, 1976, 1977; Sharpton and Head, 1980; Howard and Muehlberger,
1973). The controversy is similar for Mars. From studying the mare-type
ridges in Chryse Planitia (directly south of Acidalia Planitia), Greeley
et al.. (1977) favored the volcanic origin for the mare-type ridges because
of their association with plains of volcanic origin and because none of
the mare-type ridges truncated impact craters as would be expected if the
ridges were tectonic. Alternatively, Lucchitta and Klockenbrink (1981)
and Gifford (1981) found that the planet-wide trend of the ridges is pre-
dominantly north-south and concluded that the ridges were tectonic.

Although many mare—tybe ridges in MC-4 occur on the ridged plateau
unit, they are not restricted to this unit. Some of the ridges extend
into the rugged plateau material, a few ridges occur on the smooth plains,
and one ridge can be traced across the higher ridged plateau unit and the
lower smooth plains (Fig. 15b). This tends to support a tectonic origin for
the ridges in this region. The occurence of the ridges on both plateau
and plains material indicate that the ridges were formed after the develop-

ment of the highlands-lowlands boundary.
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Figure 15.

Ridged plateau material. (a) High-resolution image
showing several mare-type ridges; the ridges are
asymmetric, with steepervflanks to the east, lunar mare
ridges are commonly asymmetrical (Lucchitta, 1976);
ridges trend approximately north-south; several of the
small (< 1 km diameter),cfaters have distinct, high-
albedo wind plumes indicating that the winds are from
the east; image artifacts occur along the eastern and
western margins of the image; Viking frame 668A06
(34.7°N, 58.7°W). |

(b) Mare-type ridge cutting across the plateau-plains
boundary (arrow); the difference in topographic ex-
pression of the ridge between the plateau (plr) and the
smooth plains (ps) may be a function Qf material strength;
the effects of differential erosion are apparent i.e.

the ejecta blanket of the large ¢, impact crater in the

3
center of the image is only visible on the plateau;
the crater rim is particularly resistant to erosion;
dark patches, interpreted as eolian material, are con-
fined to low-lying areas on the upwind side of scarps
and on the floor of the large crater (the wind is from
the north-northeast); image artifacts éccur along the

eastern and western margins of the image; Viking frame

558A34 (34.6°N, 52.5°W).

282



283



Figure 16.

Flow fronts on ridged plateau. (a) Numerous flow fronts
(arrows) on the ridged plateau (plr) along the boundary
with the rugged plateau (plrg); fresh, bowl-shaped c,
crater with radial, ballistic- and flow-ejecta

deposits occur in the center of the image; knobby
material (k) occurs in the northern portion of the image;
relict crater indicated with large arrow; image artifact
occurs along the western margin of the image; Viking frame
668A10 (33.9°N, 56.9°W). |

(b) Flow fronts on the ridged plateau in MC-3; well-
defined flow lobe are indicated by arrows; large impact
craters at the top of the image obscure possible source
areas for the two flows; both flows have been cut by

en echelon grabens trending northeast-southwest; a few
mare-type ridges can be seen in the southern region;

Viking frame 704B58 (37.5°N, 65.6°W).
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The boundary between the relatively smooth ridged plateau material and
the rugged plateau material is fairly distinct. Volcanic flow rock of
the younger ridged plateau surface may have completely buried the older,
rugged plateau surface. To the south, the ridged plateau - smooth plains
boundary is erosional, with an escarpment separating the higher plateau
material from the lower smooth plains. North of latitude 37°N, the
boundary appears to be depositional with smooth plains material overlying
and embaying grébens cﬁt into the ridged plateau material. In some areas,
a small channel filled with light, possibly alluvial material lies along

the plateau-plains boundary (see Appendix I; see also Fig. 37).

Fractured Plateau Material.--Fractured plateau material occurs along

the northern edge of Tempe Plateau in MC-4 and extends south and west into
MC-3 (Wise, 1979). The unit forms a relatively smooth surface interrupted
by numerous northeést—trending horsts and grabens. Individual troughs
range in width from 1-10 km and are as long as 200 km. The grabens cut

older ¢y and <, craters, but do not cut younger c, and <, craters. The

3
crater size-frequency distfibution curve for the fractured plateau material
(Fig. 8) indicates that the unit is younger than the adjacent rugged plateau
material but may be equivalent in age to the ridged plateau material to the
south.

Wise (1979) suggested that the fractured uplands (fractured plateau

material) consists of lava rock similar to the Lunae Planum material
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(ridged plateau material) to the south. The material that makes up the
fractured plateau is interpreted in the present study to be volcanic and
eolian material that was later disrupted by faulting.

The fractures in this region cut all but the freshest impact craters
indicating that the fractures are relatively recent features. To the
west in MC-3, the faults extend north into the plains material. In MC-4,
however, the fractures terminate at the plateau-plains boundary. Regionally,
the fractures of the Tempe Fossae system are part of the semiradial fault
system of the Tharsis province. This fault system may reflect an
extensive zone of deep crustal weakness (Wise,'1979).

The boundary region between the fractured plateau material and plains
material was mapped in detail and is included as Appendix I. Rim walls
of degraded and embayed craters form the plateau-plains boundary in
several places. Grabens that cut 1nto the higher plateau surface terminate
at the plains boundary and are also embayed by smooth, dark plains material.

A sinuous channel, oriented normal to the fracture trend, is cut into
the plateau material (Fig. 17). 1In the same area, other sinuous channels
within a graben deposited outwash or flood plain material onto the plains
(Fig. 17). This indicates that there was drainage and a redistribution

of material from the plateau.

Lower Plateau Material.--The lower plateau material occurs in small

patches along the southeast margin of Tempe Plateau. This unit forms a
rough surface at an elevation intermediate between the lower smooth plains

material and the higher ridged or rugged plateau material (Fig. 18). A
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Figure 17.

Fractured plateau material. Boundary region between
fractured plateau (plf) and smooth plains (ps); large
(17 km wide) graben that cuts into the plateau

trends northeast across the southeast corner of the
image; smooth plains matérials cover the floor of this

large graben; debris also appears to bury fractured

plateau material to the west of the large graben;

smaller faults occur within the 1arg¢ graben; small
arroﬁs indiéate sméller grabens cutting the fractured
ﬁlateau; a sinuous 3-4 km-wide channel extends across
the western portion of the image; the‘light—cqléred
fén—shaped material (large arrow) on the smooth plains,

has been interpreted as outwash or flood p1§in matérial

from drainage of thevplateau; compare the differences

in the preSe;vation of the craters and ejeéta on the
fractured plateau and on the smooth_plains; especially
note the cy flow-ejecta crater in the northern part of
the image; Viking frame 61B52 (53.16N, 60.5°W); for a

more detailed map, see Appendix 1.
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Figure 18.

Lower plateau material. (a) waer plateau material (pll) at
southwest margin of Tempe Plateau is bounded by higher rugged
plateau material (plrg) and lower smooth plains material (ps);
the lower plateau material appears to underly stratigraphically
the rugged‘plateau material; alternatively, the lower plateau
material here may be a down-faulted block of rugged plateau
material; the dark patches on the smooth plains are thought to

be eolian accumulations; notice that the ejecta blanket of the

¢, crater in the southeast corner of the image has been partially
stripped away; image artifact occurs along the eastern and
western margins of the image; Viking frame 558A17 (31.5°N, 55°W).
(b) Lower plateau material (pll) is shown in relationship to
smooth plains material (ps) and an isolated remnant of ridged
plateau material (plr); lobate flows of 1§wer plateau material
appear to embay a circular depression on the ridged plateau
(arrow) indicating that the lower plateau material is a younger,
possibly volcanic flow unit; compare the surface roughness of

the lower plateau material with that of the smooth plains; north-
south ridge is truncated by lower plateau material just west of
isolated remnant of ridged plateau material; image artifacts
occur along the eastern and western margins of the image; Viking
frame 668A27 (31.1°N, 49.6°W).

(¢) Schematic cross-sections A-A' and B-B' showing two possible

stratigraphic positions of the lower plateau material.
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few cq and ¢, impact craters ( < 10 km) occur on this surface indicating
that it is relatively young.

Exposures of lower plateau material, such as that seen in Figure
18a, indicate that stratigraphically the lower plateau material underlies
the other plateau materials and has been exposed by erosion and scarp
. retreat. Other areas (Fig. 18b) show lower plateau material embaying a
circular depression in the higher ridged plateau material, indicating
that some of the lower plateau material was emplaced after the highlands-
lowlands boundary developed and was subsequently modified by erosion.

In several places small channels cut the lower plateau material,
creating streamlined remnants up to 40 km long trending east-northeast
(Fig. 19). Aqueous erosion is indicated by the presence in these channels
of streamlined landforms.

The main channels of Kasei Vallis occur to the south and west between
latitude 20° - 30°N, longitude 50° - 75°W (Fig. 1). Kasei Vallis has been
interpreted as the site of catastrophic floods of great depths and high
velocity (Baker and Milton, 1974; Baker and Kochel, 1979). The erosional
and depositional effects associlated with running water in Kasei Vallis
appear to have extended into the southwestern region of MC-4 (Scott and

Tanaka, 1980; Carr and Clow, 1981).

Plains Province

Lowland plains material covers approximately 80 percent of the area

of MC~4. On the basis of Mariner 9 data, Underwood and Trask (1978)
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Figure 19.

Streamlined remnants of lower plateau material. Chaﬁnels
that cut into lower plateau material (pll) created stream-
lined landforms such as those seen in the southwest
corner of the image; large arrows indicate possible
fluvial bars or erosional grooves; the ejecta of a c3
crater on the lower plateau has been partially stripped
away; isolated remnants of ridged plateau material (plr)
surrounded by smooth plains material (ps) do not appear
to be streamlined; in many places, escarpments bounding
the ridged plateau are linear and may be structurally
controlled; dark material accumulates on the upwind,sides
of many topographic obstacles; light streaks associated
with several of the small craters indicate that the wind
is from the north-northeast; a continuation of the mare-

type ridge seen in Figuté 15b is indicated by the small

arrow in the northeast corner of the image; image artifact e

occurs along the western margin of the image; Viking frame.;iV

558A15 (32.2°N, 52°W).
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subdivided the lowland plains into three basic geologic terrain typeé:
mottled plains material, plains material, and plains and dissected
plateau material - undivided. Results from the present investigation
using Viking data indicate that nine subdivisions can be recognized
within these lowland plains. Wherever possible, the descriptive modifiers
used by Underwood and Trask (1978) were incorporated into the names of

the units in the present investigation. These units are: mottled plains
material - undivided (991,000 kmz), hummocky mottled plains material
(386,500 kmz), patterned mottled plains material (458,200 kmz), subdued
patterned mottled plains material (37,000 kmz), fractured plains material
(23,000 kmz), knobby plains material (193,000 kmz), smooth plains material
(1,162,400 kmz), patterned smooth plains material (60,000 km2), and

variegated plains material (128,000 kmz).

Mottled Plains Region.-~The mottled plains extend almost entirely around

the planet between latitudes 50° - 70°N (Scott and Carr, 1978). The term
fmottled plains' was first used by members of the Mariner 9 imaging team
(Carr et al., 1973). Soderblom et al. (1973b), in mapping the geologic
terrain of the north polar region, described the mottled cratered plains as
characterized at Mariner A-frame resolution ( £ 3 km) by an abundant
population of small craters ( < 20 km) and a highly mottled appearance.

The mottled pattern consists of a complex of streaks of bright material and
concentrations of bright material highlighting the interior and exterior

parts of crater rims and ejecta blankets. Soderblom et al. pointed out that
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the mottled cratered plains has a lower average albedo than most of
Mars and that it is one of the few regional units intrinsically charact-
erized by its albedo.

The cause of the extreme albedo contrast between the ejecta blankets
and the intervening plains is uncertain. Soderblom et al. (1973a)
suggested that the bright materials are remnants of the debris mantle
that, at one time, buried the mottled plains, Subsequently, the debris
has been removed leaving patches of light materials trapped in the
coarser—textured parts of the craters, such as their rims and ejecta
blankets. High-resolution Viking data have commonly revealed fine detail
on some of the ejecta blankets and bright crater rays, similar to those
seen on the Moon. These fresh craters show little or no eolian modifi-~
cation, thus, it is difficult to interpret these bright-ejecta patterns
as the result of trapped particles. Another explanation that was suggested
by Carr (1981) is that impacting meteorites excavated higher-albedo material

from below the dark surface.

The mottled plains occur in the northern two~thirds of MC-4., On the
basis of variations in surface texture and detail, the mottled plains were
subdivided into four units: mottled plains material - undivided, hummocky
mottled plains material, patterned mottled plains materials, and subdued

patterned mottled plains material.

Mottled Plains Material - Undivided.--The mottled plains material -

undivided covers .most of the northern region. The unit 1s characterized by
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high-albedo zones surrounding many of the impact craters; the intercrater
plains have very low albedo. The crater size-frequency distribution of
craters > 1 km (Fig. 20) indicate that the mottled plains material -
undivided may be similar in age to the rest of the mottled plains units.
The mottled plains material may consist of volcanic rock and eolian debris.

The western part of the mottled plains is characterized by a distinct
northwest-southeast eolian grain. Many light streaks occur downwind
from impact craters, and dark eolian material occurs in craters and forms
splotches on the intercrater plains. Many of the smaller craters on these
plains, north of latitude 45°N, appear to be filled or partially filled
with light material (Fig. 2la). Soderblom et al. (1973a) reported that
craters filled with light debris are common poleward from 30°N. These
authors pointed out that it would be difficult to imagine a process that
would £1ill only the crater interiors, so they suggested that the entife
northern region was, at one time, mantled with light-colored debris thick
enough to bury the craters. Subsequently, erosion has removed most of this
mantle, leaving only materials protected within the crater interiors
(Soderblom et al., 1973a).

The Vikings' data generally are superior to those obtained by the Mariner

9 spacecraft, However, the majority of Viking images north of approximately
40° are low- to-medium resolution (220 meters/pixel), equivalent to the
Mariner B-frames, Many of the surface details are at the resolution point.
One of these surface textures is a reticulate pattern that occurs in the

intercrater region (Fig. 21b). It is difficult to determine the topographic
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where N is the number of craters (Arvidson et al., 1978).
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Figure 21.

Mottled plains material - undivided, example 1.

(a) Low-resolution image of the mottled plains material -
undivided; high-albedo ejecta blankets extend outward

2-3 crater diameters and are surrounded by low-albedo plains;
the arrows show some of the impact craters with interiors
that appear to be filled with light-colored material;

the light-colored material is believed to be the remnant
of a debris mantle that, at one time, blanketed the
northern region (So&erblom et al., 1973a); small-scale
patterned ground occurs in the intercrater region;
scattered dark hummocks occur in the north-central part of
the image; dark streaks occur in the southern portion of the
image; the wind is from the northwest; Viking frame 672B74
(60°N, 25.7°W).

(b) Enlargement showing the small-scale detail of the
mottled plains material - undivided; faint retiéulate
pattern of varied scale occurs in the intercraterbregion;
this pattern may be similar to that seen farther»south in
the patterned mottled plains or the fractured plains;ﬁ
compare the filled or partially filled impact craters in
the southwest corner of the image with the fresh bowl-
shaped crater indicated by the arrow; the fresh crater
also has light-colored ejecta; scattered dark hummocks
occur throughout the area; Viking frame 672B76 (60°N,

20.9°wW).

300



301



relief of these surface features that have produced this pattern, but
it may be similar to that of the fractured plains and patterned mottled
plains to the south,

Another pattern that is equally perplexing is a series of concentric
arcs that occur near the mottled plains - smooth plains boundary (Fig. 22a).
As with the reticulate pattern, the topographic relief cannot be determined.
The pattern of arcs vaguely resemble the patterned ground that occurs in
MC-5 at latitude 45°N, longitude 354°W. Carr and Schaber (1977) suggested
that these arcuate features marked successive positions of thq retreat of
an escarpment during removal of a former mantle. Alternatively, Lucchitta
(1981) suggested that the ridges resemble moraines. Rossbacher and Judson
(1981) proposed that the "fingerprint'" patterns may be solifluction lobes
and ice-cored ridges similar to those observed in the Canadian arctic.

The boundaries with the other mottled plains units are gradational.
The mottled plains - hummocky mottled plains boundary is marked by
increased numbers of small, dark hills that characterize the hummocky
mottled plains. The boundary between the mottled plains material -
undivided and the ﬁatterned mottled plains has been placed at the first
recognition of the polygonal»troughs, the detection of which may be a
result of resolution. fhe boundary with the lighter, dissected and fractured
plateau material is generally recognized by contrasts in albedo and in
morphology. The boundary'betweén the mottle& plains and smooth plains is
commonly recognized by a textural and albedo variation: to the east, the

smooth plains have higher aibedo than the mottled plains; to the west, the
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smooth plains have much lower albedo. A narrow, high-albedo line runs
along the contact in places (Fig. 22b). To the west, a sinuous channel
filled with light material runs along the mottled plains - smooth plains

boundary.

Hummocky Mottled Plains Material.--~The hummocky mottled plains material

occurs along the northern border of MC-4 and extends north into MC-1, Botts
(1980) used the name "bulbous plains'" for a unit with similar characteristics
that occurs at 70°N latitude. The hummocky mottled plains are
characterized by many small ( < 1 km) dark hills surrounded by lighter-
colored material. These dark hills, in combination with high-albedo ejecta
blankets, give the surface a mottled appearance (Fig. 23a). The crater
size-frequency distribution (Fig. 20) indicates that the hummocky mottled
plains may have a slightly greater abundance of large ( > 10 km) craters
than the other mottled plains units. Because the boundary between the
mottled plains - undivided and the hummocky mottled plains is gradational,
and because several of these large craters lie in this transition zone,
this variation may not be significant. The light material that constitutes
most of the surface is interpreted to be eolian., The darker material that
occurs in the intercrater plains may be volcanic. Botts (1980) came to a
similar conclusion for the origin of the bulbous plains in MC-1.

Similar to the mottled plains material - undivided, the hummocky
mottled plains have many craters that are filled or partially filled with

light material. There are also several large, fresh craters with high-albedo
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Figure 22,

Mottled plains material -~ undivided, example 2.

(a) Faint curvilinear features of undetermined origin

can be seen in the center of the image; these curvilinear
features are located near the mottled plains - smooth
plains boundary; unusual troughs with central ridges

are iﬁdicated by the arrows; a pedestal crater (p)

occurs in the northeast corner of the image; the extreme
albedo contrast is a function of image processing; Viking
frame 670B30 (43.7°N, 42.8°W).

(b) Boundary between the mottled plains material -
undivided (pm) and the smooth plains material (ps) near
Tempe Plateau; smooth plains are low albedo in this region;
high-albedo line marks the boundary; high-albedo wind
streaks associated with some craters indicate the wind is
from the northwest; streak formation may be related to the‘
topographic relief of the crater rimé; note the narrow
trough on the smooth plains (arrow); Viking frame 670B0L

(53.1°N, 50.3°W).
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Figure 23.

Hummocky mottled plains material. (a) Dark irregularly
spaced hills and knobs are scattered throughout the inter-
crater region; the unit has a mottled appearance, with high-
albedo ejecta blankets surrounded by low-albedo plains;

the craters in the eastern part of the image are filled
with light-colored material; the interior of the freshest
crater in the northwest corner of the image contains a
dark splotch presumed to be eolian material; compare

this image with Figure 2la and notice that the eolian
grain is not as obvious on the hummocky mottled plains;
image artifact occurs along the eastern margin of the image;
Viking frame 672B77 (62.7°N, 18.2°W).

(b) Large fresh impact crater on hummocky mottled plains
shows little evidence of subsequent modification; two
ejecta types surrounding this crater; thin, high-albedo,
ray-forming ejecta extends out more than 5 crater diameters
and thick flow-ejecta deposits occur close to the crater;
compare this crater with the filled craters in the south-
east portion of the image; the surrounding plains have a
hummocky appearance; some of the dark hummocks appear to
have summit depressions (small arrow) and, in places, the
hummocks appear to coalesce (large arrow); image artifact
occurs along the eastern margin of the image; Viking

frame 669830 (65.9°N, 43°W).

(¢) Schematic cross section showing possible origins of

the knobs or hummocks on the hummocky mottled plains.
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ejecta blankets and rays (Fig. 23b). These larger, fresh craters commonly
have deposits of dark material in the interior of the crater. The eolian

grain, however, is not as apparent as in the mottled plains region to the

south,

The features that characterize the hummocky mottled plains material
are the small, irregularly spaced, dark hills and the low albedo crater
rims. The knobs may be plutons, volcanic domes, volcanic necks, cinder
cones, or permafrost features such as pingos. Alternatively, these knobs
may represent a lower hummocky, cratered surface that has been mantled
with lighter material leaving only the tops of the dark hills and crater
rims exposed. This lower dark unit may or may not be volcanic. The presence
of similar dark hummocks or knobs in the large ¢y crater, Lomonosov,
weakens the hypothesis that the knobs may be high hills on a hummocky,
low-albedo surface largely mantled with lighter material. There are
no high-resolution images of this region, so no definite interpretations
on the origin of the dark hummocks can be made.

The boundary with the mottled plains material - undivided to the
south is gradational. The boundary between the mottled plains material
and the lighter knobby plains is based on albedo, which may be the result

of a thicker debris mantle covering the knobby plains.

Patterned Mottled Plains Material.--The patterned mottled plains

materials cover a large part of east-central MC-4. The unit, as with

other mottled plains units, is characterized by high-albedo ejecta blankets
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that extend out 2-3 crater diameters, surrounded by low-albedo inter-
crater plains. A polygonal pattern of troughs 1s superimposed on the low-
albedo, intercrater plains. The impact crater density ( = 1000 craters

>1 km/106 kmz) for this unit is slightly higher than that of the other
plains units; however, the crater size-frequency curve (Fig. 20) is very
similar to the other plains units indicating that there probably is little
age varlation between the units. The patterned mottled plains material
probably consists of dark volcanic material that was subsequently disrupted
to form the polygonal pattern of troughs (Fig. 24).

Patterned or fractured terrain occurs over extensive areas of the
northern plains and has been the subject of considerable controversy since
its discovery during the early stages of the Viking mission. Proposed
mechanisms for the polygonal pattern include: permafrost activity,
desiccation of water saturated sediments, cooling of lava, and tectonic
deformation.

Carr and Schaber (1977), Coradini and Flamini (1979), Helfenstein and
Mouginis-Mark (1980), and Helfenstein (1980) suggested that the fractures
were created by ice-wedging processes such as those that occur in
terrestrial periglacial regions. The major objection to the hypothesis
is scale. The martian patterns are as much as two orders of magnitude
larger than ice-wedge polygons on Earth. Morris and Underwood (1978)
pointed out that the largest polygonal fractures on Earth ( £ 1 km diameter)
are associated with desiccation of thick, formerly water-saturated playa

sediments. Helfeﬁstein and Mouginis-Mark (1980) suggested that the smaller
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polygons (2-5 km diameter) were formed by ice-wedging and later desiccation
processes caused some of the smaller polygons to coalesce, producing the
10-20 km polygons.

Morris and Underwood (1978) and Masursky and Cradbill (1976)
suggested that the troughs may be large-scale lava cooling cracks. As
with the ice-wedge hypothesis, the origin of the polygonal fractures by
contraction and cooling of lavas faces a scale problem, Pechmann (1980)
pointed out that few lava flows on Earth are thick enough to accommodate
tension cracks that are hundreds of meters deep.

Pechmann (1980) investigated the possibility that the polygonal pattern
of troughs was caused by deep~seated tension of tectonic origin that
resulted in normal faulting. He reported that troughs in Acidalia Planitia
locally exhibit preferred orientations. He compared the fractures on
Mars to troughs of similar scale and morphology in the Caloris Basin on
Mercury and suggested that both sets of troughs are grabens formed in
response to a nearly isotropic horizontal tensional stress.

All of the proposed theories on the origin of the polygonal pattern
have their limitations. It is possible that the troughs are polygenetic,
that is, formed by more than one process. The larger fractures may be
tectonic, whereas the smaller polygons closer to the pole may be the
result of permafrost activity. Some of the troughs may have originally
been formed by one or more processes and extended or enlarged, or both,
by other processes.

Common on the patterned mottled plains are numerous small, dome-like
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Figure 24,

Patterned mottled plains material. (a) Enlargement

showing the crudely polygonal pattern of troughs super-
imposed on low-albedo plains; the sun is from the west;

few of the polygons are closed; the large circular feature
may reflect a buried impact crater; unusual ridge with
summit trough (arrow) appears to eminate from a small
crater and cuts across the circular trough; numerous

small (< 1 km) craters can be seen on this image especially
in the western region; Viking frame 32A18 (44.1°N, 18.3°W).
(b) Numerous small (< 1 km) dome-like structures with or
without summit craters are common throughout the patterned
mottled plains; they may occur in clusters or chains as
seen on this image; compare the morphology of the cratered
domes with that of the small impact craters in the southeast
corner of the image; the dark circle in the northwest
corner is an artifact of the imaging system; Viking frame

9A44 (43.4°N, 13.6°W).
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structures with summit craters (Fig. 24b). Several origins have been
suggested for these features. Wood (1979) and Hodges (1979) suggested

that these features were product; of volcanic activity, i.e., cinder cones;
Frey et al. (1979) interpreted them to be pseudocraters produced by

lava flowing over water-saturated ground. Lucchitta (1981) and Wood

(1979) suggested that these domes resemble terrestrial pingos produced

by the arching of frozen ground forced upward by the intrusion of water
under pressure. Masursky and Cradbill (1976) and Carr (1981) offered yet
another explanation; small impact craters were eroded to inverted relief.

Unlike those of the mottled plains units to the north, i.e., mottled
plains material - undivided and hummocky mottled plains material, few of
the impact craters on the patterned mottled plains are filled with light
material. Fine detail is observed on the ejecta blankets, and there is
little evidence for eolian modification. This suggests that the blanket
of light-colored debris that once covered the mottled plains and knobby
plains to the north did not extend southward into the patterned mottled
plains region. The lack of the partly eroded debris mantle in this area
may also explain the higher density of small impact craters, i.e., they
have not been covered by the debris mantle as in the north.

Boundaries with all surrounding units are gradational. The boundaries
with all the non-mottled plains units (variegated plains, fractured plains,
smooth plains, patterned smooth plains) are based on albedo; the patterned
mottled plains have much lower albedo than the other units (Fig. 25). In

jdentifying the variegated plains and the smooth plains, the occurrence of
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the polygonal trough pattern also was a criterion. The boundary with the
mottled. plains material ~ undivided was difficult to define because of

the poor quality of the images, but the boundary is based on the occurrence
of the polygonal troughs. The boundary between the patterned mottled
plains and the subdued patterned mottled plains is placed where the troughs
decrease in abundance, probably because they have been filled or partially

filled by lava flows.

Subdued Patterned Mottled Plains Material.--The subdued patterned

mottled plains material occurs in close proximity to the central plateau.
The unit exhibits the same characteristics, at medium resolution, as the
patterned mottled plains material. At higher resolution, however, the
troughs are observed to be more discontinuous. Crater counts were not made
on this surface because of its limited area, but the crater density is
assumed to be slightly less than that of the patterned mottled plains
material. The presence of flow fronts, pressure ridges, and possible
volcanic cones led to the interpretation of this unit as volcanic flows that
fill or partially fill pre-existing troughs.
A portion of the subdued patterned mottled plains was mapped in detail,

and the geologic map is included as Appendix II. Figure 26 shows examples
of lava flows that occur on this surface., The source of these lavas is
somevhat uncertain. The flows may have originated from fissures that were
subsequently buried, or from central vents. Several small, low-albedo

domal structures that resemble pedestal craters, may, in fact, be small
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Figure 25.

Patterned mottled plains - variegated plains boundary.
Compare the texture and albedo change between the patterned
mottled plains (pmp) and the variegated plains (pv); a
white line marks the boundary; the large (40 km diameter)
<, flow-ejecta crater covers the boundary in the eastern
region; rugged ejecta occurs near the crater rim; a small
pedestal crater (p) occurs on the west side of the image;
large (30 km diameter) circular structure gsimilar to that
seen in Figure 24a is indicated by the arrows; a less
distinct circular feature occurs to the right of the pedestal
crater (arrow); the impact craters in this region appear
fresher than those on the mottled plains to the north

(Fig. 21); Viking frame 673B34 (47.3°N, 2.5°W).
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Figure 26. Lava flows on subdued patterned mottled plains. (a) A
large low-albedo lava flow can be seen in the center of
the image; small arrows mark distinct flow lobes; another
flow can be seen in the northwest corner of the image;
the ejecta of the large impact crater in the center of
the image may have been buried by older lava flows;
lava flows may have originated from fissures that were
subsequently buried, or from domal structures that are
indicated by the large arrows; alternatively, these domal
structures aléo resemble pedestal craters; smaller domes,
seen as white dots in the southern part of the image, may
be similar to those seen in Figure 24b; knobby material (k),
from the breakdown of the plateau, occurs to the north and
south of the large lava flow; two north-south trending frac-
tures can be seen in the northeast corner of the image;
Viking frame 35A32 (45.4°N, 28.4°W).
(b) Possible pressure ridges on a lava flow are indicated by
arrows; a source for this flow is uncertain; note the clusters
of small domes in the northeast corner and the larger dome
(d) in the southeast corner of the image; if these domes are
volcanic, they may be a local source for the flows; note
the obscure pattern of troughs in the northeast corner of the
image; isolated patches of knobby material (k) are scattered

throughout the region; Viking frame 35A41 (46.5°N, 22.2°W).
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volcanoes (Fig. 26a). There are also numerous .small, cratered domes,
such as those that occur on the patterned mottled plains, that could
be volcanic cones (Figs. 26, 27).

Hodges and Moore (1979) and Allen (1979b) believed that several of
the small mesas and buttes in this region may be analogous to Icelandic
tablemountains produced by subglacial central-vent eruptions and moberg
ridges produced by subglacial fissure eruptions. These structures are
commonly a few kilometers across and several hundred meters high (Fig.
27). If these martian features are true tablemountains and moberg ridges,
then at one time this region must have been covered by a layer of ice, or
possibly a combination of ice and rocky material, several hundred meters
thick. Alternatively, these features could be erosional remmnants of the
dissected and fractured plateau material.

The boundary between the subdued patterned mottled plains and the
dissected and fractured plateau boundary is commonly expressed by an
escarpment with lava flows embaying incomplete impact-crater depressions
on the plateau surface (Fig. 12). The boundary with the patterned mottled
plains material is'marked by an increase in trough abundance on the

patterned mottled plains (Fig. 28).

Fractured Plains Material.--The fractured plains cover a small area

between the patterned mottled plains and the cratered plateau in south-
eastern MC-4. The unit has a higher albedo than the mottled plains units

and is characterized by wider troughs than those of the patterned mottled
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plains and the patterned smooth plains. Crater counts were not made

on this surface because of its limited area, but visual estimates indicate
a fairly low crater density. No craters larger than 5 km in diameter
exist on the fractured plains surface. The fractured plains material

may consist of volcanic and eolian material.

The troughs of the fractured plains may be as wide as 2km, as opposed
to the troughs on the other patterned plains units that are generally less
than 1 km wide. Commonly the troughs are shallow and have flat floors
(Fig. 29). Pechmann (1980) reported that some of the troughs on the
fractured plains have one or two smooth terraces along a portion of the
wall. He also reported vertical offset in several of the troughs and
concluded that these features were the result of normal faulting (Pechmann
1980; Figs, 1-3).

A small section of the fractured plains was mapped at higher resolution
(Appendix III). In this region, the fractured plains nearest the large
remnant of cratered plateau material (mesa material on the high-resolution
map) may have been partially resurfaced by lava flows, as indicated by
the presence of several possible flow fronts and by the subdued and
discontinuous pattern of fractures.

The presence of a scarp forming the boundary between the fractured
plains and the higher variegated plains and the presence of knobs and
mesa material on the fractured plains led Guest et al. (1977) to conclude
that the fractured plains material is an old unit that stratigraphically

underlies the plateau material. Figure 29b shows a part of the scarp
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Figure 27.

Subdued patterned mottled plains material, (a) Small mesas
(m) with or without summit knobs may be tablemountains

or erosional remnants; many small cratered domes are at

the limit of resolution; éjecta from the large <, crater is
not cut by the arcuate fracture at the eastern side of the
image, the smaller craters and éjecta blankets in the
southern part of the image also are not cut by the fracture,

indicating that the fractures are older than the ¢, craters;

4
northwest-southeast and northeast-southwest fracture grid occurs;
Viking frame 26A30 (44.8°N, 20.4°W); for a detailed map

and cross-section, see Appendix 1I.

(b) The small mesa (m) in the northwest corner of the image

is cited by Allen (1979b) as a possible tablemountain; from
shadow-length measurements, Alleﬁ estimated that the mesa

is 470 m high; numerous small cratered domes can be seen

as white dots in the ndrthern‘part of the image; a possible

flow is indicated by arrows; the polygonal pattern of

fractures is more obvious in this region than the region

to the west (Figure 26b); Viking frame 26A28 (44.8°N,

21.7°W); for a detailed map and cross-section, see Appendix II.
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Figure 28.

Patterned mottled plains - subdued patterned mottled plains
boundary. The boundary (white line) is marked by a rapid
change in the abundance of troughs; also the subdued patterned
mottled plains (pmps) may be slightly lower albedo; the image
is too low in resolution to detect individual lava flows on
the subdued patterned mottled plains, but the proposed
tablemountain shown in Figure 27b is indicated by a small
arrow in the southern part of the image; knobby material (k)
is scattered throughout both the patterned mottled plains
(pmp) and the subdued patterned plains (pmps); large circular
trough dn the patterned mottled plains occurs in the east-
central portion of the image (large arrow); image artifact
occurs along the eastern margin of the image; Viking frame
670B18 (47.2°N, 21.2°W); part of the area of this image

was mapped in greater detail and is included as Appendix II.
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Figure 29.

Fractured plains material. (a) Compare these troughs with
those seen on the patterned mottled plains (Fig. 24);

troughs on the fractured plains can be as large as 2 km

wide (troughs on the patterned mottled plains are generally
less than 1 km wide); the wider troughs have flat floors and
steep sides that Pechmann (1980) believed are consistent
with either formation by downdropping of the trough floor

or by separation of the trough walls followed by infilling;
matching irregularities in some of the opposite walls of

the troughs suggest tensional separation of the walls; arrow
indicates the region where Pechman reported downward offset
at the trough walls; numerous small domes occur in the southern
portion of the image; knobby terrain (k) occurs in the south-
east corner of the image; impact craters on the fractured
plains unit do not have high-albedo ejecta blankets; Viking
frame 35A64 (40.4°N, 13.9°W).

(b) Sinuous escarpment along the boundary between the
fractured plains (pf) and the variegated plains (pv);

the low albedo fractured plains material appears to termi-
nate 2-3 km away from the escarpment; the arrow indicates a
lobe-like structure that may be a thin lava flow; three fresh

flow-ejecta craters can be seen in this image; several clus-

- ters of secondary craters occur in the southern and eastern

regions; the knobs in the southwest corner of the image appear
to be layered; image artifacts occur along the eastern and west-

ern margins of the image; Viking frame 35A73 (41.6°N, 8.7°W).
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boundary. It appears as though the darker fractured plains materials do
not always come in contact with the scarp. Guest et al. (1977) suggested
that scarp retreat occurred by a breakdown of the rocks as a result of
sapping and other ground ice activity and that as the scarp retreated,

it left piles of lighter debris on the rocks stratigraphically below the
smooth plains material. Alternatively, the lower fractured plains may
have been partially resurfaced by thin lava flows, with the albedo
boundary marking the extent of these flows.

In some areas a small escarpment marks the boundary of the fractured
plains and the higher knobby terrain. If these knobs are erosional
remnants of the higher cratered plateau material, then the escarpment
boundary would suggest that the fractured plains lie stratigraphically
underneath the cratered plateau and were exposed be erosion. The boundary
with the darker mottled plains unit to the north is based on an albedo

difference.

Knobby Plains Material.--The knobby plains material occurs in the

northeast corner of MC-4 and extends eastward into the adjacent quadrangle,
MC-5. The unit exhibits characteristics similar to those of the adjacent
mottled plains including the filled and partly filled impact craters. The
knobby plains, however, have mﬁch higher albedo (Fig. 30a). The crater
size~frequency distribution curve for the knobby plains is very similar

to that of the mottled plains units (Fig. 20), suggesting that the units
are of similar age. The lithology of the knobby'plains is interpreted to

be eolian material blanketing a lower, possibly volcanic surface.
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Knobs similar to those on the hummocky mottled plains are common
on the knobby plains. These dark hummocks are present on the floor of
the large crater Lomonosov (64°N, 9°W) (Fig. 30b). These darker knobs
may be volcanic or permafrost features. It is not likely that they represent
a lower, darker unit that has been partially mantled with lighter material.
The knobby plains -~ mottled plains boundary is a sharp albedo contrast
(Fig. 30a). This contrast may be the result of a thicker layer of
debris that still mantles the knobby plains, i.e. has not been eroded as
completely as it was in the mottled plains region. Alternatively, the

albedo contrast may be the result of variations in surface lithologies.

Smooth Plains Material.--The smooth plains cover a large portion of

the southern region of MC-4 and are relatively featureless at medium
resolution. Patches of knobby terrain are scattered throughout the smooth
plains region, including several places where the knobs form a circular
outline (Fig. 3la). The albedo varies; in the east, the smooth plains are
intermediate to high albedo, whereas to the west, especially along the
northern and southern margin of Tempe Plateau, the smooth plains are low
albedo. Bright and dark wind streaks are common throughout the smooth
plains region. The crater size-frequency curve for the smooth plains
(Fig. 32) is very similar to those of the mottled plains units, suggesting
they may be equivalent in age. The smooth plains are believed to consist
of eolian and alluvial deposits that buried an older, cratered surface.

In two areas, small sections of smooth plains were mapped at high
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Figure 30.

Knobby plains material. (é) Bouhdary between the knobby
plains (pk) and the lower-albedo mottled plains (pm)

(lower white-line); the smooth 1iéht—colored material

in the northwest corner of the imagé is ejecta from a

large <, crater to the northwest; the knobby plains do

not exhibit the same albedo contrast between the plains

and ejecta blankets as do the mottled plains; a sinuous
ridge on the mottled pléins,is indicated by the arrow;
image artifact occurs aidng'the eastern margin of the
image; Viking frame 673B08 (54.3°N, 5.2°W).

(b) Large (130 km diameter) ¢, impact crater, Lomonosov,
occurs on the knobby plains near the northern boundary of
MC-4; small (< 1 km) dark hills occur on the floor of the
crater; these knobs are similar té those seen in the inter-
crater region of the knobby plains and hummocky mottled
plains (Fig. 23>; the large patch of dark material on the
crater floor may be 'a field of dunes; the wall of this large
crater consists of a complex of short ridges; the striped
pattern in the lower right corner is an image artifact;

Viking frame 672B56 (65.1°N, 9.8°W).

330



331



Figure 31.

Smooth plaing material. (a) Circular outlines of knobby
material mark the positions of partly buried impact
craters; the varied albedo pattern is caused by a shifting
eolian mantle; both the light and dark wind streaks are
scattered throughout the region; the arrow shows a dis-
continuous sinuous ridge and trough, many of which are
scattered throughout the smcoth plains; image artifacts
occur along the eastern and western margins of the image;
Viking frame 524415 (34.5°N, 38.4°W).

(b) Streamlined remmants of an old impact crater; crater
rim material is often much more resistant to erosion than
is other, less well-compacted material; the streamlining
of this feature iIs in a direction opposite to the wind;
two unusual curvilinear troughs can be seen in the southern
portion of the image (arrows); the mouths of several large
outflow_channels.occur to the south of this region;

the wind direction is from the northeast as indicated by
the numerous light streaks formed downwind from impact

craters; Viking frame 558A07 (32.7°N, 40.5°W).
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resolution (Appendix I, III). One area occurs along the northwest margin
of the cratered plateau in the southeast corner of the quadrangle
(Appendix ITI). Numerous small ( < 1 km) gratered domes similar to those
that occur on the patterned and subdued patterned mottled plains and on
the variegated plains are scattered across the smooth plains surface in
this region. Frey and Jarosewich (1981) discovered a definitive bimodal
distribution of cratered dome diameters on the smooth plains. They
suggested that if the domes are pseudocraters, the bimodal distribution
may be the result of varilations in the thickness of lava flows.
Alternatively, the bimodal distribution may indicate that these domes have
formed from more than one process. If these domes are volcanic edifices
(Wood, 1979) or pseudocraters (Frey et al,, 1979), the smooth plains in
this region may consist partly of volcanic material.

The other area that was mapped using high-resolution data occurs
along the northern margin of Tempe Plateau. In this region, smooth plains
- material embays troughs and channels that are cut into the higher plateau.
Scott (1978) recognized lobate scarps and small convex cones and suggested
that the smooth plains in this region are basalt flows. In the present

investigation, most of the '

'small convex cones'" are interpreted as impact
craters, and the lobate scarps were not recognized. As a result, the
smooth plains in this region have been interpreted as alluvial sediment
from erosion and drainage off the highland block and as eolian material.

Scours and streamlined features oriented northeast occur in the southern

smooth plains region (Fig. 31b) and disappear near 35°N. These features
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have been interpreted to be the result of erosion associated with the
release of water from the large outflow channels to the south (Carr and
Clow, 1981). Much of the smooth plains material in this southern region
may consist of debris deposited during the flooding.

Several mare-type ridges occur on the smooth plains in the south-
western region. Figure 33a shows one of these ridges that was cut by
faults that are aligned with the faults of Tempe Plateau. Another mare-
type ridge cuts across both the higher plateau and lower smooth plains
material (Fig. 15b). The occurrence of these ridges on units with varied
lithology and different elevation supports the hypothesis that the mare-
type ridges in this region are tectonic,

Other unusual ridges of more uncertain origin occur throughout the
smooth plains (Fig. 33b, 34). The sinuous ridges near the plateau plains
boundary in the southeast region show no preferred orientation and can be
more than 60 km long (Fig. 33b). Several of these ridges subdivide into
two or more branches. Figure 34a shows a meandering pattern of troughs
with ridges running down the center. Less well~preserved examples of this
pattern occur as far north as 40°N. Scott (personal communication, 1982)
suggested that these may be meander-scrolls from shifting stream channels.
A wider and more subdued pattern of ridges or swells occurs on the
smooth plains around 37°N, 17°W (Fig. 34b). These subdued swells form a
more regular pattern of branches.

Light wind streaks and patches of dark eolian material are common

throughout the smooth plains region. The streaks record north and northwest
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windé at north latitudes greater than 40°., Farther south, the streaks
record a more northeasterly wind direction.

The boundary of the smooth plains with the darker mottled plains
units to the north is based on albedo. The smooth plains - patterned
smooth plains boundary is more gradational and is placed where trough
abundance increases. To the southeast and southwest, the boundary between
the smooth plains and the higher plateau units is a steep escarpment.
Farther northwest, the escarpment is not always present, and smooth

plains material embays and rests on the plateau units.

Patterned Smooth Plains Material.~-The patterned smooth plains material

occurs in the central region adjacent to the patterned mottled plaimns.
The unit is characterized by a crudely polygonal pattern of troughs that
is approximately the same size as that which occurs on the patterned mottled
plains. The lack of high-albedo ejecta blankets and the overall higher
albedo distinguishes the patterned smooth plains unit from the patterned
mottled plains., No crater counts were made on this unit because of its
limited extent and gradational boundary with the smooth plains, but crater
density is assumed to be similar to that of the smooth plains. The
lithology of the patterned smooth plains material is thought to be similar
to that of the smooth plains material to the south, i.e., predominantly
eolian material blanketing an older cratered surface (Fig. 35).

There are several possible explanations for the presence of the
troughs on the smooth plains. Patterned mottled plains material may have,

at one time, extended farther south and been subsequently blanketed with
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Figure 33.

Ridges on the smooth plains, example 1. (a) A mare-type
ridge on the smooth plains near Tempe Plateau is truncated
by east-west trending faults; faint traces of the ridge
(arrow) extend to the impact crater; isolated remnants

of plateau material can be seen along the western margin
of the image; dark patches are interpreted as eolian
material; well preserved <, flow-ejecta crater occurs

in the center of the image; image artifacts occur along
the eastern and western margins of the image; Viking frame
558A31 (37.0°N, 49.1°W).

(b) A sinuous ridge near the plateau-plains boundary in
the southeastern region; the ridge bifurcates at the
knobby material then continues on the other side; a smaller
ridge (arrow) cannot be seen as well because it runs
parallel to the sun angle, and thus, no shadow is formed;
the sun is from the top right; the mesas (m) and knobs (k)

are believed to be erosional remnants of cratered plateau

material; well-preserved 4 bowl-shaped crater occurs in

the northeast corner of the image; Viking frames 218S01-02

(33.0°N, 14.5°W).
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Figure 34. Ridges on the smooth plains, example 2. (a) Meandering
pattern of troughs with ridges; the shallow troughs can
be as large as 2 km wide; narrow ridges appear to run down
the center of these troughs; Scott (personal communication,
1982) suggested that these are meander scrolls, however
orthogonal intersections are atypical of meander scrolls;
a large (20 km diameter) impact crater occurs on the
eastern side of the image; dark patches and streaks of
eolian material occur in the central region; the striped
pattern on the west side is an artifact of the imaging
system; Viking frame 524A28 (29.1°N, 28.0°W).

(b) Enlargement showing a subdued pattern of wide ridges
or swells; some of these swells are 3-4 km wide; many of
‘these swells subdivide into two or more branches; isolated

knobs are scattered throughout the region; Viking frame

597A12 (37.5°N, 17.4°W).
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Figure 35.

Patterned smooth plains material. This enlargement shows
the subdued pattern of troughs superimposed on the inter-
mediate-albedo smooth plains; compare this image with
Figure 24, which shows a similar pattern of troughs that
bound polygons of slightly larger size; few of the troughs
form closed polygons; circular forms are less common than
on the patterned mottled plains; the albedo contrast
between the crater ejecta blankets and the surrounding

plains is not as extreme as on the mottled plains; Viking

frame 597A05 (39.6°N, 24.2°W).
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a thin mantle of lighter smooth plains material that slightly obscured
the trough pattern. More feasible is the hypothesis that the smooth
plains materials were subjected to the same mechanisms that produced the
troughs on the adjacent mottled plains, i.e., permafrost activity,
desiccation, or tectonism.

The boundary of the patterned smooth plains with the darker mottled
plains material to the north is based on albedo. The occurrence of the

trough pattern marks the smooth plains - patterned smooth plains boundary.

Variegated Plains Material.--The variegated plains material occurs

along the eastern border of MC-4 and extends into MC-5. These plains are
smooth, relatively featureless, and at medium resolution display a patchy
albedo pattern. The crater size-frequency distribution (Fig. 32) for the
variegated plains indicates that this unit may have a slightly higher
number of larger craters, but the standard error bars are large and the
difference may not be significant. The variegated plains are believed
to be composed of volcanic and alluvial material (the latter only occurs
near the plateau-plains boundary). These plains are blanketed by a thin
mantle of shifting eolian material that forms thé patchy albedo patterns.
A small section of the variegated plains around Bamberg crater
(40°N, 3°W) was mapped using high-resolution data, and the map 1is included
as Appendix III. On the geologic map the variegated plains are sub-
divided into the rough plains, hilly plains, and variegated plains. The
rough plains are located adjacent to the ejecta deposits from Bamberg

crater. The rugged texture is produced by the presence of many small
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( <1 km diameter) depressions that are believed to be secondary impact
craters. The hilly plains are characterized by small ( < 1 km wide)
domes with summit craters similar to those that occur on the patterned
and subdued patterned mottled plains and in places on the smooth plains.
Clusters of these cratered domes are scattered throughout the variegated
plains.

There are several small streamlined features on the variegated
plains near the plateau-plains boundary along the eastern edge MC~4. Small
channels occur on the cratered plateau near the plains boundary. The
variegated plains material appears to blanket a portion of the ejecta
deposits from Bamberg crater. These features suggest that the variegated
plains in this region may consist of alluvial material deposited by
channels draining the plateau to the south. Alternatively, the streamlined
features may have been produced by wind erosion, and the variegated
plains in this region may consist of eolian material.

Structures resembling Icelandic tablemountains occur in several
places on the variegated plains. Figure 36a shows one of these steep~
sided, flat-topped mesas with a summit knob. Alternatively, the features
have been interpreted as erosional remnants of a higher, probably layered
surface (Guest et al., 1977).

The variegated plains.- cratered plateau boundary is in .many places
expressed as a low escarpment. In other areas the boundary is textural,
between the relatively rugged, highly-cratered ﬁlateau unit and the smoother,

variegated plains unit (Fig. 36b). A small irregular escarpment marks the
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Figure 36.

Variegated plains material. (a) Smooth, featureless
plains with few topographic irregularities; two small
irregularly shaped secondary craters from a large crater
occur in the southeast corner of the image; a small mesa
with a summit knob (m) resembles Icelandic tablemountains
(Allen, 1979b); alternatively, the mesa may be an erosional
remnant of layered plateau material; two smaller knobs (k)
occur in the southern region; dark circle in the center of
the image is an image artifact; Viking frame 36A44 (43°N,
4.2°W) .

(b) Boundary between the cratered plateau (plc) and the
variegated plains (pv); compare the differences in crater
densities between the two units; an escarpment (large
arrow) marks the plateau-plains boundary; to the west of
the escarpment, the circular outline of two old impact
craters can be seen; many irregular depressions occur on
the cratered plateau (small arrows) and are believed to be
collapse features from the breakdown of the plateau;
Bamberg, a cq crater approximately 50 km in diameter,
occurs along the left side of the image; numerous secon-
dary craters occur east of Bamberg; Viking frame 673B60
(40.5°N, 0.9°W); part of this region was mapped in greater

detail and is included as Appendix III.
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boundary with the lower fractured plains materials (Fig. 29b), suggesting
that the variegated plains material may be younger and, therefore, overlie
the fractured plains material (Guest et al., 1977). The boundary between
the variegated plains and the darker patterned mottled plains is based

on albedo and the presence of the polygonal pattern on the mottled plains

(Fig. 25).

Other Material

Dark Material.--Dark material occurs in patches through the quadrangle

but is particularly abundant on the smooth plains near the southern margin
of Tempe Plateau. Commonly these dark patches are associated with some
sort of topographical barrier. Dark material occurs in and around craters
on the plateaus and the plains (Figs. 15a, 30a), in valleys (Fig. 37a),
along escarpments (Figs. 153’,19)’ and in the inter-crater regions of the
plains (Figs. 2la, 3la). These low-albedo materials are believed to be
accumulations of eolian debris that reflect the present wind direction.

In certain areas these dark patches have been resolved as fields of trans-

verse dunes (Fig. 37a).

Light Material.--Light material is not as abundant as dark material.

It occurs only in two areas: (1) along the northern margin of the south-
east cratered plateau, and (2) along the northern margin of Tempe Plateau
(Fig. 37b). A fan-shaped deposit of light-~colored material is seen on the
smooth plains adjacent to the fractured plateau (Fig. 17). The northern

Tempe Plateau region was mapped in greater detail and is included as
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Appendix I. This unit is interpreted as eolian material and alluvial
material from drainage of the highland block.

Channel Material.-~High-albedo channel material occupies an elongate,

sinuous depression along the smooth plains -~ mottled plains boundary north of
Tempe Plateau (Fig. 37b). The channel ranges in width from 10-25 km and
extends approximately 200 km. A very narrow trough can be traced another

100 km before it pinches out. This region was mapped in detail and is
included as Appendix I. The unit is interpreted as alluvium filling an old

stream channel (Scott and Tanaka, 1980).

Knobby Terrain Material.-~Knobby terrain material occurs throughout the

lowland plains but is particularly common in close proximity to the
cratered plateau in the southeast region and the dissected and fractured
plateau material in the central region. The terrain consists of irregular
hills of knobs that rise above the level of the plains. These knobse¢vary
in size; the largest are 15 km across and are approximately 3000 m high
(Fig. 38a). Most of the knobs are much smaller.

The origin of the knobs is varied and depends on the location. Knobs
and mesas that occur close to the highlands probably are erosional remnants
of the plateau material left by scarp retreat. Many of the knobs in this
region appear to have basal debris accumulations (Fig. 38b). Squyres
(1978) suggested that these debris flows may be similar to terrestrial rock
glaciers.

Numerous patches of knobs occur on the smooth plains. In several

areas, the knobs form a circular outline (Fig. 3la). These knobs are
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Figure 37.

Dark, light, and channel material. (a) Dark material

occurs on the smooth plains between two plateaus; the

small field of transverse dunes is indicated by the arrow;
other dark material has accumulated on the upwind side of
the small isolated plateau; this region is included on the
low-resolution image shown on Figure 15b; Viking frame
668A17 (33.2°N, 53.6°W).

(b) High-albedo channel material (ch) can be seen along the
boundary between the smooth plains (ps) and the mottled
plains (pm); fractured plateau material (plf) occurs in the
southwest corner of the image; patchy light material (1lt)
can be seen on the mottled plains in the northwest corner;
several high-albedo wind streaks associated with some small
craters indicate that wind is from the northwest; the smooth
plains in this region are lower albedo than the mottled
plains; the pattern on the east side of the image is an arti-
fact of the imaging system; Viking frame 669B76 (53.9°N,
53.4°W); high-resolution map and cross-section of this area

are included as Appendix I.
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Figure 38.

Knobby terrain material. (a) Largest knobs in the quad-
rangle occur near Kunowsky crater, a large ¢, crater on
the boundary between the knobby plains (pk) and the
mottled plains (pm); these knobs are as much as 15 km
across and more than 3000 m high; smaller knobs lie south
of the large knobs; this image overlaps with the image in
Figure 30b; a sinuous ridge is indicated by the arrow;
pattern at the right side of the image is an artifact of
the imaging system; Viking frame 673B06 (54.7°N, 9.2°W).
(b) Knobby terrain near the plateau~plains boundary in
the Cydonia region; many of the knobs appear to have basal
debris accumulations; the arrow marks apparent flow lobe;
Squyres (1978) interpreted the striations on the flow as
the result of compression and contraction from movement;
the knob with a summit crater (C) may be a cinder cone;
stratification of the knobs is obvious in a few places;
subdued pattern of troughs occurs on the plains; Viking
frame 70A09 (40.4°N, 11.0°W); this area was mapped in

greater detail and is included as Appendix III.
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believed to represent more resistant remnants of an underlying heavily

cratered terrain.

A few of these knobs in the Cydonia region have summit craters (Fig.

38b). West (1974) and Frey et al. (1979) interpréted these features

as cinder cones.
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GEOLOGIC HISTORY

Before concluding with an interpretation of the geologic history
of the quadrangle, it is important to mention a point that was brought
up by Milton (1976) and re-emphasized by Guest et al. (1977). Milton
indicated that it is often difficult to distinguish between the age of
an erosional surface and the rock units exposed on that surface. From
mapping in the Cydonia region, Guest et al. (1977 p. 4119) concluded: "The
northern 'plains' are composed of an intricate mixture of young rock units,
young surfaces cut in old rocks that have been modified by surface
processes such as wind, permafrost, etc., and old exhumed rock surfaces
probably equivalent in age to units exposed in the southern cratered

highlands of Mars."

Early Cratering

The process that dominated throughout the early history of the Mare
Acidalium quadrangle was undoubtedly impact cratering. The oldest surfaces
exposed in the quadrangle, as indicated by crater density, are the cratered
plateau to the southeast and the slightly younger rugged plateau to the
southwest. Both units have many large (up to 120 km) degraded craters
of ¢ and c, age. Many of the old craters, however, were subsequently

buried or partly buried by volcanic or eolian material or both. This

resurfacing took place before the craters of c, age were formed inasmuch

3
as c, craters are superimposed on the surface and show little evidence

of modification.
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Outgassing

Soderblom and Wenner (1978) suggested that during planetary out-
gassing water was injected into the upper few kilometers of the crust by
subsurface igneous activity, surface volcanic eruptions, and lateral
migration of liquid and vapor. Many geomorphic features that occur on these
older plateau surfaces such as the small channels, irregular depressions,
and floor-fractured craters, suggest that the materials that make up these

two surfaces were rich in volatile substances.

Early Volcanism

Sometime after the rugged plateau surface was formed, the lavas
and eolian materials that formed the fractured plateau and the ridged
plateau were emplaced. The faults of the fractured plateau are a part
of the Tempe Fossae system that extends to the southwest. This fault
system is relatively old because it predates the emplacement of the
smooth plains material., Other faults to the south that are oriented in
a more east-west direction cut both plateau and plains materials, and,
therfore, are considerably younger. Wise (1979), based on mapping of the
adjacent MC-3 quadréngle stated: '"The cause for localization of the older
fault system of Tempe Fossae is unknown, although the alignment of three
younger giant volcanoes of Tharsis southwestward along this line suggests
that the fault system may reflect an extensive zone of deep curstal

weakness."
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Scarp Formation

The formation of the boundary between the intensely cratered
southern hemisphere and‘thé lightly cratered northern lowlands must
have occurred sometime after the emplacement of the youngest plateau
material. This boundary may be the result of collapse and erosion of an
ice~-rich layer in the northern region (Soderblom and Wenner, 1978), the
result of more global processes such as differentiation that produced
a crust of varied thickness (Mutch et al., 1976; Carr, 1980a), or sub-
crustal erosion and subsidenée of the northern region (Wise et al., 1979).
The large depression of Acidalia Planitia was suggested to be the result
of crustal subsidence caused by uplifting and volcanism of the Tharsis

region to the southwest (Carr, 1974; Phillips and Saunders, 1975).

Scarp Retreat and Formation of Plains Units

The knobby terrain materials that occur in large patches near the
southeast plateau-plains boundary have been interpreted as erosional
remnants of the higher plateau material that were left by erosion and
scarp retreat. Dissected and fractured plateau materials and associated
knobby terrain exist 800 kildmeters northwest of the southwest cratered
plateau and 1000 kilometers east of the southwest plateau province. These
materials may also be erosional remnants of the plateau suggesting that
the highlands material, at one time, extended over much of the plains
region. This supports the mechanism of deterioration of an ice-rich layer
and concomitant scarp retreat proposed by Soderblom and Wenner (1978) for

the formation of the plateau-plains boundary. Much of the material that
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forms some of the plains units may have been derived from the breakdown
of the plateau.

The age relationships between the plains material are difficult to
determine for several reasons. Boundary escarpments or embayment
relationships are rare. The boundaries between the units are commonly
gradational, reflecting only albedo or textural variations, or both.

Crater size-frequency distributions for all the plains units tend to
follow the same general trend suggesting that most of the plains surfaces
were exposed or emplaced during the same general time interval., Alternatively,
the crater statistics may not represent accurate age relationships because
of the complexity of the depositional and erosional events that have |
occurred., Almost all of the craters that occur on the plains are ¢y Or
younger.

Although the mottled plains occur some 1,000 km north of the highlands,
Scott (1979, p. 3052) proposed that the plains may be a part of this surface.
He stated:"Possibly the mottled plains unit represents lower, more
deeply eroded remnants of the highlands that have survived an ancient
episode of crustal separation caused by drifting or downfaulting and
followed by volcanism with flood basalts filling the intervening: region
and forming smoother plains between the ségregated parts of the crust."

It is apparent that the mottled plains - undivided'and the hummocky
mottled plains have been blanketed with a light-colored debris mantle that
has been partially stripped away. Whether the underlying darker material
is an old erosional surface or younger, volcanic material is uncertain.

The knobby plains resemble these northern mottled plains units in that the
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knobby plains are rocks of uncertain age that have subsequently
been blanketed with a layer of light material.

The patterned mottled plains are more likely to represent younger
plains material rather than old rock exposed by erosion. The.low albedo
and the presence of many small, cratered domes suggest that these may be
vast volcanic plains that were subsequently fractured by tectonic, desiccation,
or permafrost processes. The pattern, however, appears to be fairly old
because few of the superimposed impact craters were affected by the
fracturing.

The subdued patterned mottled plains represent a more recent period
of volcanic activity that caused lava flows to bury partially some of the
troughs of the patterned mottled plains. These flows embayed and
partially buried parts of the dissected and fractured plateau material
that occurs in this central region.

The fractured plains are another example of the problem of material
age vs. surface age. Guest et al. (1977) suggested that the fractured
plains material is an old unit stratigraphically ﬁnderlying the plateau
material. The fractured plains surface was exposed by erosion and scarp
retreat, with the fractures forming after the surface was exposed. The
present investigation suggests that part of the fractured plains surface
may consist of younger volcanic or eolian material. Boundary escarpments,
where the fractured plains form the lower surface, indicate that the
fractured plains are old in relation to some of the adjacent units.

The pattern of troughs on the smooth plains adjacent to the patterned
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mottled plains and in close proximity to the fractured plains suggest that
some of the smooth plains material was emplaced at approximately the same
time as the patterned mottled plains. Part of the material that makes up
the smooth plains may have been derived from the breakdown of the plateau.
The presence of relics of large circular structures suggest that the smooth
plains material in the central region buried a lower, more heavily cratered
surféce.

To the southwest, large-scale floodiﬁg and erosion associated with
Kasei Vallis and other large outflow channels to the south were occuring
either during or shortly after the emplacement of the majority of the
plains material. This flooding may have contributed a large quantity of
alluvial material to the smooth plains. Fluvial erosion created sfreamlined
landforms; scours, and channels, and exposed layers of lower plateau material

along the plateau-plains escarpment.

Tectonism

Tectonic stresses, probably the result of the Tharsis-related stress
system, created north-south trending mare-type ridges that occur on both
the plateau and the smooth plains in the southwestern region. Later, more
tectonic activity resulted in east-west trending fractures that occur on
both the plateau and the plains, as these fractures also extend across the
mare-type ridges.

Farther north, the plateau-plains escarpment, streamlined landforms,
erosional remnants, and tectonic features do not occur. Smooth plains

material covers a narrow region between northeast Tempe Plateau and the
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mottled plains. Circular outlines on the smooth plains together with

the embayment of grabens on the plateau by smooth plains materials,
suggest that the smooth plains material buried the older plateau material
in this region. Perhaps the smooth plains material was deposited in a
gentle depression that existed along the plateau~-mottled plains boundary.
Also occurring in this region are sinuous channels and fan-shaped deposits
of light material. These features are believed to be the result of sub-
sequent small-scale drainage and deposition of material from the highland
block.

In the Cydonia region, the smooth plains differ from those to the west.
A high density of small cratered domes and the gradational boundary with
the subdued fractured plains, which are believed to be lava flows that
partially fill the troughs, suggest that the smooth plains in this region
may consist of volcanic material.

The origin of the variegated plains to the east is probably similar
to that of the smooth plains, i.e., some of the material that constitutes
these plains may be volcanic, whereas the variegated plains along the
plateau~plains boundary may be partly alluvial and colluvial material
deposited from drainage of the highland block. The emplacement of the
variegated plains is believed to postdate the creation of the fractured
plains because of the escarpment boundary; however, the age-relationship
between the variegated plains and the patterned mottled plains to the north

is uncertain.
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Late Volcanism

Maﬁy of the volcanic features, i.e., lava flows, pressure ridges,
and domes, that are scattered throughout the plains region appear to have
formed recently because they show little subsequent modification. The
proposed tablemountains and moberg ridges are assoclated with these young
volcanic features and require the presence of an ice-rich unit to form.
Clifford (1980) and Hodges and Moore (1979) proposed that a primitive ice
sheet may have, at one time, covered a significant portion of the planet's
surface. The ice sheet subsequently retreated in response to climatic
changes, and the water from this ice sheet is presently stored in the ground-
water system and in the polar caps. If this hypothesis is correct, then
many of the unusual surface textures and features that occur on the lowland
plains could be explained by the breakdown and removal of this ice-rich

layer.

Recent Processes

Currently eolian erosion and deposition and mass wasting are the
dominant processes within this region. Although many other processes
are active, they do not play the determining role they once did. The
margins of the plateaus and the knobby terrain are areas where permafrost
decay and mass movement processes are creating collapse pits and debris
flows. Freezing and thawing of the surface continue to produce small-
scale permafrost features such as pingos and ice-wedge polygons. Tectonism

and volcanism may also be active geologic processes.
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SUMMARY AND CONCLUSIONS

High-resolution Viking orbiter images show the geology of the Mare
Acidalium quadrangle to be much more complex than previously had been
suspected from the lower-resolution Mariner 9 images. Two major
terrain types exist within the quadrangle; the higher, heavily-cratered
plateau province, and the lower, lightly-cratered plains province. Both
provinces can be subdivided into a number of material units. The plateau
province consists of six units: (1) cratered plateau material, (2)
dissected and fractured plateau material, (3) rugged plateau material,

(4) ridged plateau material, (5) fractured plateau material, and (6)

lower plateau material. The plains province consists of nine units: (1)
mottled plains material - undivided, (2) hummocky mottled plains material,
(3) patterned mottled plains material, (4) subdued patterned mottled plains
material, (5) knobby plains material, (6) fractured plains material,

(7) variegated plains material, (8) smooth plains material, and (9)
patterned smooth plains material.

The oldest surfaces in the quadréngle occur in the southeast and
southwest plateau regions., These surfaces record an early period when
large impacts were extremely .common. Subsequently, these regions were
partially or completely buried by younger materials. To the west, the
Tempe Plateau reglon was disrupted by faulting, possibly related to an early
stage of Tharsis tectonism.

The central part of the quadrangle may have subsided in response to

uplift of the Tharsis region to the southwest. Plateau material that once
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covered a large portion of the quadrangle began to break down and erode,
leaving only erosional remnants of the higher surface scattered throughout
the lowland region.

Volcanic, eolian, and alluvial sediments resurfaced a large portion
of the lower plains. Processes such as wind, permafrost, mass movement,
and tectonism created unusual and varied surface textures. Episodic floods
of water from the large outflow channels to the south and west modified the
surface in the southwest region, creating streamlined landforms and exposing
the lower units of the plateau. Also, in this southwest region, tectonic
activity associlated with Tharsis-related stresses created mare-type ridges
and east-west trending fractures. At the present time, wind erosion and
deposition are the major processes active at the surface, although other
processes such as tectonism, volcanism, mass movement, and periglacial

activity may still play a role in molding the martian surface.
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APPENDIX

Three areas were mapped using high resolution photomosaics, and
these maps are included as Appendices I - III1. These areas are: (1) the
Tempe Plateau region (centered at 52°N, 58°W); (2) the Central Plateau
region (centered at 46°N, 26°W); and (3) the Cydonia region (centered at
40°N, 7°W). See Figure 7 for locations of high-resolution maps. Caution
must be used when comparing the photomosaics with maps because the maps
are larger scale to enable more detial to be shown. Appendix IV contains
five subquadrangle maps and descriptions of all the units in Mare
Acidalium Quadrangle. For reference purposes, representative Viking
frame numbers are included in all map unit descriptions. Some of these
images are included in the text and are so indicated. For reasons of

space and cost, not all of the representatives images could be included.
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Figure 39.

Photomosaic of the Tempe Plateau Region.
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Figure 40. Geologic map of the Tempe Plateau region.
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APPENDIX I - TEMPE PLATEAU REGION

FRACTURED PLATEAU MATERIAL - Occurs in southern half of region;
intermediate albedo; moderate crater density; forms high surface
cut by numerous faults trending northeast-southwest; northwest-
southeast trending sinuous depression cuts fractured plateau
material at 53°N, 60°W (Fig. 17); boundary with lower smooth plains
materials marked by escarpment; smooth plains materials embay
grabens cut into fractured plateau material; representative image
61B56.

INTERPRETATION: Volcanic and eolian material covering ancient
crustal deposits; subsequently disrupted by Tempe Plateau faulting;

faults cut older (cl) impact craters.

LARGE KNOBBY MATERIAL - Occurs in three locations close to, or at,
the boundary between fractured plateau and smooth plains; forms
small, elongate and equidimensional, steep-sided mountains
(largest = 10 km across) that rise above both plains and plateau
material; representative image 61B56.

INTERPRETATION: Volcanic material; alternatively may represent
resistant volcanic, or other, material underlying fractured

plateau and smooth plains material,

SMALL KNOBBY MATERIAL - Occurs in small patches on plains north
of fractured plateau; forms small ( < 1 km across), rounded hills

or knobs that stand above surrounding plains materials;
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representative image 61B55.

INTERPRETATION: Erosional remnants of higher surface material.

MOTTLED PLAINS MATERIAL - Occurs in northern part of area;
low albedo; moderate crater density; relatively smooth plains
with variegated-albedo pattern; ejecta blankets surrounding
craters are generally higher albedo than surrounding plains;

pedestal craters common; older ¢, craters partially filled with

3
material; boundary with channel material marked by abrupt change

to higher albedo; representative image 61B57.

INTERPRETATION: Volcanic and eolian plains; some small hills with
summit craters may be volcanic; craters filled with eolian material

suggest earlier existence of widespread eolian mantle, now largely

deflated.

SMOOTH PLAINS MATERIAL - Occurs between fractured plateau and
channel material; low albedo; low crater density; forms smooth
plains; smaller craters ( < 1 km diameter) partially filled

with debris; small hills with summit craters at limit of resolution;
escarpment commonly marks boundary with higher fractured plateau
material; albedo change marks boundary with high-albedo channel
material; representative image 61B52,

INTERPRETATION: Alluvial, eolian, and volcanic deposits; small
hills with summit craters may be volcanic (Scott, 1978); plains

materials fill sinuous channel cut into plateau and deeply embay
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grabens in fractured plateau; eolian material partially buries
small impact craters.

CHANNEL MATERIAL - Occurs between mottled and smooth plains
(Fig. 37b);high albedo; low crater density; fills elongate,
sinuous, gentle depression ranging in width from 10 - 25 km;
representative image 61B57.

INTERPRETATION: Stream channel containing alluvium (Scott and

Tanaka, 1980).

LIGHT MATERIAL - Occurs in patches close to fractured plateau
in western region; high albedo; very low crater density; light-
colored material appears to overlie plains materials; fan-shaped
deposit at 53.2°N, 58.8°W; representative image 61B52 (Fig. 17)
INTERPRETATION: OQutwash of flood-plain deposits, the result of

drainage of higher plateau surface.
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Crater Material

All craters mapped believed to have been produced by impact;
subdivisions based on morphologic characteristics believed to reflect

relative age.

4 YOUNG CRATER MATERTIAL - Sharp, complete rim crests; steep
walls; deep, rough floors; bowl shape; extensive ejecta deposits;
representative image 61B59.

INTERPRETATION: Relatively recent impact-crater material.

Cq MODERATELY YOUNG CRATER MATERIAL - Rim crest high, complete;
walls relatively steep; floor may be rough and lower than adjacent
terrain; ejecta deposits less extensive than c4 craters;
representative image 61B56.
INTERPRETATION: Moderately young but slightly degraded impact-

crater material.

OLD CRATER MATERIAL - Rim crest low, incomplete or nearly absent;
shallow flat floors generally filled with younger material;
commonly forms rugged and partially buried ring; little or no
ejecta deposits; representative image 61B58,

INTERPRETATION: Oldest, degraded impact-crater material.
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Figure 41.

Photomosaic of the Central Plateau Region.
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APPENDIX II - CENTRAL PLATEAU REGION

DISSECTED AND FRACTURED PLATEAU MATERIAL - Forms high surface
between 46° - 49°N and 22° ~ 28°W; intermediate to high albedo;

low crater density; relatively smooth surface cut by many fractures
that generally trend N - S; fracture width ranges from few hundred
meters to more than 2 km; very few impact craters; escarpment
characteristically marks the boundary of the plateau material

with surrounding plains materials; representative image 35A35.
INTERPRETATION: Remnants of higher unit that may have, at one time,
covered region; circular depressions mark locations of large
degraded craters; resurfaced by eolian and volcanic materialg

subsequently disrupted by faulting.

KNOBBY MATERIAL - Occurs adjacent to fractured and dissected plateau
and in scattered patches on plains; low crater density; knobs

are small, irregularly shaped hills (average 2 km across) similar

in height to that of plateau; knobs occur individually and in
clusters and stand above plains material; some conical hills have
summit craters; representative image 35A41 (Fig. 26b).
INTERPRETATION: Erosional remnants of plateau material; locally

may be small volcanoes.

SUBDUED PATTERNED MOTTLED PLAINS MATERIAL - Surrounds dissected

and fractured plateau and occupies circular depression bounded
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by plateau and knobby material; very low albedo; modérate

crater density; relatively smooth, dark plains cut by many
discontinuous arcuate troughs generally < 1 km wide; pedestal
craters common; high albedo flow-ejecta craters superimposed on
plains; small ( < 1 km wide) domes with summit craters common ;
representative image 26A27,

INTERPRETATION: Volcanic flow rock; pbssible flow fronts and
pressure ridges occur in several areas (Figs. 26a, b); domes may
be cinder cones; low dark hills with summit craters may be small
shield volcanoes; volcanic material fills or partially fills

pre-existing pattern of troughs.

MESA MATERIAL ~ Forms isolated plateaus in region of svldued
patterned mottled plains materials; low albedo; low, steep-sided,
flat-topped mesas generally < 8 km across and several-hundred-
meters high; several mesas have small knob or ridge on top;
representative image 26A28 (Fig. 27b).

INTERPRETATION: Tablemountains resulting from subglacial volcanic
eruptions; may have small cinder cones on top; alternatively may

be erosional remnants of dissected and fractured plateau material.
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Crater Maﬁerial

All craters mapped believed to have been produced by impact;
subdivisions based on morphologic characteristics believed to reflect

relative age.

cy YOUNG CRATER MATERIAL - Sharp, complete rim crests; steep walls;
deep rough floors; bowl shape; extensive ejecta deposits; repre-
sentative image 26A24.

INTERPRETATION: Relatively recent impact~crater material.

Cq MODERATELY YOUNG CRATER MATERIAL - Rim crest high, complete; walls
relatively steep; floors may be rough and lower than adjacent
terrain; ejecta deposits less extensive than C, craters; repre~
sentative image 26A26.

INTERPRETATION: Moderately young but slightly degraded impact-

crater material.

cpd PEDESTAL CRATER MATERIAL - Small ( < 5 km diameter) bowl-shaped
crater; ejecta extends outward 2 - 3 crater diameters; ejecta
forms platform that stands above surrounding terrain; representative
image 35A36.
INTERPRETATION: Impact-crater material with associated viscous
ejecta flow; flow too viscous to form lobes (Mutch and Woronow,

1980).
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Figure 43.

Photomosaic of the Cydonia Region.
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Figure 44. Geologic map of the Cydonia regionm.
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APPENDIX III - CYDONIA REGION

CRATERED PLATEAU MATERIAL -~ Occurs east of Bamberg crater at
eastern edge of mosaic area; intermediate to high albedo; high
crater density; characterized by many large degraded impact
craters with flat floors; intercrater area relatively smooth with
varied albedo; many small ( < 1 km diameter) craters and crater
clusters; boundary with variegated smooth plains expressed by
rapid increase in density of craters and in places, a gentle
escarpment; representative image 72A30.

INTERPRETATION: Ancient crustal deposits partially resurfaced by
volcanic and eolian depostis; removal of volatile substances
trapped in mantle deposits may have caused collapse depressions
and debris flows; many small craters and crater clusters may be

secondary craters from Bamberg.

MESA MATERIAL - One large mesa and several smaller mesas lie near
39.5°N, 10°W; intermediate albedo; low crater density; size of
mesas range from 10 km2 to 1400 km2 and mesas may be several-
hundred-meters high; rough texture superimposed on larger mesas;
irregular pits occur on mesa centered at 39.85°N, 9.8°W;
representative image 72A09.

INTERPRETATION: Outliers and erosional remnants of cratered

plateau material that occur approximately 150 km south; breakdown

of lenses of layers of ice produced irregular collapse pits.

390



kl

ki

ks

LARGE-KNOB MATERIAL - Occurs mainly to west between 10° - 15°N
and 39° - 42°N; irregular knobs and ridges generally 1 - 2 km
across; heights of knobs similar to heights of mesas; spacing
between knobs ranges from 0.5 - 4 km; low crater density; conical
knobs with summit craters occur (Fig. 38b); some knobs appear
layered or resting on top of lower mesa; small domes ( < 1 km
wide) with summit craters occur throughout knobby region; inter-
knob area smooth, low albedo; discontinuous, low escarpment forms
boundary of knobby terrain with fractured plains material to north;
smooth plains material surrounds knobs; representative image
70A05.

INTERPRETATION: Small volcanoes or erosional remnants of cratered

plateau material, or both; embayed by smooth plains material.

INTERMEDIATE-KNOB MATERIAL - Occurs along west side of large mesa
at approximately 39°N, 10°W; forms low irregular hills and knobs;
width of knobs ranges from 0.5 - 1.5 km; heights of knobs generally
< 500 m, and lower than surrounding large—knobé; inter-knob spacing
ranges from 0.2 - 1.5 km; low crater density; representative image
72A09.

INTERPRETATION: Erosional remnants of cratered plateau-material;
intermediate size and apparently 1§wer height represent erosion

to a lower unit or layer of cratered plateau material.

SMALL-KNOB MATERIAL - Occurs primarily in arc east of mesa

material at 38.5°N, 8.5°W; forms low, small hills and knobs
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ranging from 0.1 - 0.8 km across; spacing between knobs very
close, generally < 0.1 km; circular pattern of knobs occurs at
boundary with smooth plains material; low crater density;
representative image 72A14.

INTERPRETATION: Erosional remnants or debris from breakdown of
overlying cratered plateau material; locally may represent more

resistant remnants of crater rims.

FRACTURED PLAINS MATERIAL - Occurs north of large-knob material

to west; moderately-high albedo; low crater density; characterized

by crudely polygonal pattern of troughs cutting smooth plains;
troughs range in width from 0.2 - 1.5 km and are 5 - 10 km apart;
depth ranges from 30 * 10 m to 100 * 10 m (Pechmann, 1980); wider
troughs commonly have flat floors; in some areas, boundary of
large-knob material with lower fractured plains material characterized
by escarpment (40°N, 12.6°W); escarpment not present in other areas
(40°N, 13°W); fractures terminate abruptly at contact with low-
albedo inter-knob plains material; representative image 70A03.
INTERPRETATION: Fractured material may be old unit stratigraphically
underlying cratered plateau and mesa material (Guest et al., 1977);
overlying units subsequently stripped away; alternatively, may be
younger plains material; fractures may have occurred after

erosional stripping or after deposition and may be result of perma-
frost activity (Carr and Schaber, 1977), desiccation (Morris and

Underwood, 1978), or tectonism (Pechmann, 1980).
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RADTIALLY FRACTURED PLAINS MATERIAL - Occurs only in southwest,
centered at 38°N, 13°W; low albedo; low crater density; fractures
range in width from 0.2 - 0.8 km and extend radially outward
approximately 25 km from 2 x 6 km ridge; two fracture traces aligned
from one side of ridge to the other; numerous small ( < 1 km)
domes with‘circular summit depressions occur on radially fractured
plains; fractures do not cut knobby material; gradational
boundary with surrounding smooth plains; representative image
72A02.

INTERPRETATION: Ridge may be moberg ridge (Allen, 1980) or
erosibnal remnant of plateau material; domes probably volcanic
(Allen, 1980; Frey et al., 1979; Wood, 1979); fractures may be
tectonic and may have influenced location of intrusions of igneous

material.

SUBDUED FRACTURED PLAINS MATERIAL - Occurs north of, and surrounding
large knobs west of mesa material between 39.5°N - 41°N and 10° -
12°W; moderately-high albedo; very low crater density; fractures
Narrow, generally < 0.5 km wide and discontinuous; some small

domes < 1 km wide with summit craters; gradational boundary with
smooth plains and fractured plains; representative image 70A07

(Fig. 38b).

INTERPRETATION: Volcanic flow rock that fills or partially fills

fractures; cratered domes may be small volcanoes.
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VARIEGATED SMOOTH PLAINS MATERIAL: Occurs only at east margin
adjacent to cratered plateau material; high and low albedo; low

crater density; smooth, featureless surface; several small

114

(2 5 km long) dark streamlined features oriented SE-NW occur close
to boundary with cratered plateau material; boundary with cratered
plateau marked by rapid decrease in crater density on smooth

plains; in places boundary is expressed as gentle escarpment

- overlooking lower smooth plains; boundary with rough radial material

of Bamberg crater is abrupt textural change; representative

image 72A29.

INTERPRETATION: Sedimentary blanket and channel deposits origin-
ating from highlands to the south during plateau breakdown and

scarp retreat.

ROUGH PLAINS MATERIAL - Occurs between 39° - 42° N and 5° - 8° W;

low albedo; high density of small craters < 1 km diameter; surface
appears rough at high resolution; gradational boundaries with
adjacent hilly plains material and rough radial material; more
distinct textural boundary with smooth radial material; representa-
tive image 70A21.

INTERPRETATION: Plains of unknown origin with many secondary craters
from adjacent Cq impact crater, Bamberg; presence of many secondary

craters makes crater counts unreliable.

HILLY PLAINS MATERIAL: Occurs between 39° - 41.5°N and 7° - 9°W;

low albedo; low crater density; characterized by high density

(30 - 40/100 km®) of small ( < 500 wide) hills; many hills appear
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to have summit craters although craters are at limit of resolution;
boundary with smooth plains is distinct albedo and morphologic
change; gradational with rough plains; representative image 70AlS5.
INTERPRETATION: Volcanic plains with small cinder cones (Wood, 1979)
or pseudocraters (Frey et al., 1979; Lucchitta, 1981); alternatively,

hilly plains may represent fields of pingos (Wood, 1979).

SMOOTH PLAINS MATERIAL - Occurs in several regions between 38° -~ 40°N
and 7° - 1l1°W; intermediate albedo; very low crater density; smooth,
featureless plains; most impact craters < 1 km diameter; 6

conical hills approximately 2 km diameter occur on smooth plains
between 38.8° - 39.2°N and 8.5° ~ 9°W; some hills appear to have
summit craters; in same area a 25 km~long, 2 500 m-wide, straight
trough oriented NW-SE traverses smooth plains; another more sinuous
trough of similar width oriented approximately parallel occurs 30
km west; trough originates from 2 km-wide conical hill with summit
depression and meanders northward approximately 60 km through
narrow region of smooth plains bounded on both sides by knobby
terrain; boundary with knobby terrain in most places gradational;
representative image 72A12,

INTERPRETATION: Volcanic and eolian plains; conical hills may

be small volcances; troughs may be collapsed lava tunnels or tubes

analogous to lunar sinuous rilles (Greeley and Spudis, 1981).

SMOOTH PLAINS MATERIAL WITH DOMES ~ Occur mainly west of mesa
material between 38° - 40°N and 10° - 13°W; low albedo; moderate

crater density; relatively smooth plains with many small
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( < 1 km across) domes with summit craters; gradational boundary
with subdued fractured plains and with radially fractured plains;
dark smooth plains material and domes surround knobs; representative
image 70A04.

INTERPRETATION: Volcanic and eolian deposits; small domes may

be cinder cones, pingos (Wood, 1979), or pseudocraters (Frey et al.,

1979; Lucchitta, 1981).

APRON MATERIAL - Surrounds knobs and occurs at base of mesa
escarpments; intermediate albedo; very low crater density; valley
fi1l between knobs and mesas commonly has ridges and troughs
parallel to escarpment; distal margins of apron material lobate;
representative image 70All, |

INTERPRETATION: Lobate debris flows from escarpment; ridges and
troughs parallel to escarpment are compressional features from
flows (Squyres, 1978); young age indicated by scarcity of impact

craters.
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Crater Material

All craters mapped believed to have been produced by impact;
subdivisions based on morphologic characteristics believed to reflect

relative age.

<, YOUNG CRATER MATERIAL - Sharp, complete rim crests; steep walls;
deep rough floors; bowl shaped; extensive ejecta deposits;
representative image 70A02.

INTERPRETATION: Relatively recent impact-crater material.

c MODERATELY YOUNG CRATER MATERIAL -~ Rim crests high, complete;
walls relatively steep; floors may be rough and lower than
adjacent terrain; ejecta deposits less extensive than <, craters;
representative image 70Al2.

INTERPRETATION: Moderately young but slightly degraded impact-

crater material.
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Bamberg Deposits

CENTRAL PEAK MATERIAL -~ Peak centrally located in Bamberg crater;
diameter approximately 10 km; summit pit diameter approximately
6 km; no stratification observed, representative image 72A25.
INTERPRETATION: Formed by elastic rebound following impact;

central pit may be collapse pit created by release of trapped

volatile material.

FLOOR MATERIAL - Smooth and relatively featureless; varied albedo;

no impact craters; terminates at ridges of rim material; representa-

tive image 72A25.
INTERPRETATION: Eolian or slumped material fills interior of

crater.

DUNE MATERIAL: Series of dark parallel ridges; occurs near south
margin of floor material; representative image 72A25.

INTERPRETATION: Small field of transverse dunes.

CRATER RIM MATERIAL - Consists of many ridges and hills; rim
material may be as wide as 18 km with very low crater density;
representative image 72A25,

INTERPRETATION: Rim formed during impact process.

CRATER CHAIN MATERIAL - Extends north of Bamberg crater for
approximately 70 km; maximum width 3 km; consists of 40 small
craters or depressions (Mouginis-Mark, 1979); representative
image 70A27.

INTERPRETATION: Chain of secondary craters formed during impact.
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ROUGH RADIAL MATERIAL - Forms rough surface radial to Bamberg
crater; extends outward up to 3 crater diameters from rim material;
many closely spaced pits and depressions; boundary with smooth
radial material is abrupt textural change; representative image
70A25.

INTERPRETATiON: Ejecta deposit of Bamberg crater; some flow
lobes; many secondary craters and crater clusters produced by

impact.

SMOOTH RADIAL MATERIAL - Forms relatively smooth surface radial
to Bamberg crater; extends outward 2 - 3 crater diameters from
crater-rim material; varied albedo; low crater density; representa-

tive image 70A27.
INTERPRETATION: Ejecta deposits of Bamberg crater possibly more
volatile~rich than rough radial material and thus with a smoother

surface.
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APPENDIX IV - MARE ACIDALIUM QUADRANGLE

Crater densities are given for units for which crater counts have been
made. Number refers to the cumulative number of craters 1 km in diameter
and greater per 106 km2 as determined from crater size-frequency
distribution curves. All numbers were derived directly from the size-

frequency curves and not extrapolated. Crater densities > 1,000/106 km2

are considered moderate; crater densities _<__1,000/106 km2 are considered

low.

Plateau Materials

plc CRATERED PLATEAU MATERIAL - Occurs in southeast corner of quad-
rangle between lat 30° - 40°N, long 0° - 20°W; low albedo, moderate

6

crater density (1460 craters > lkm/10 km2); characterized by

many large (up to 120 km diameter), flat floored, Sy and ¢, craters;
intercrater areas contain irregular depressions and low escarpments;
irregular depressions are common near plateau-plains boundary;
escarpment commonly marks boundary with lower plains units;
representative image 561A07 (Fig. 11).

INTERPRETATION: Ancient crustal deposits partially resurfaced by

volcanic and eolian material that also fills large craters.
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pldf DISSECTED AND FRACTURED PLATEAU MATERIAL - Occurs between lat
46° - 49°N, long 22° - 28°W, intermediate to high albedo; low
crater density (few craters observed); relatively smooth surface
cut by numerous fractures and troughs trending north-south;
fracture widths up to 2 km; fracture lengths up to 50 km; escarp-
ment marks the boundary of plateau unit in some places; other
areas, sharp change from high-albedo plateau material to low-
albedo plains material; representative image 670B16 (Fig. 12).
INTERPRETATION: Remnants of a higher unit that earlier may have
covered the region; large circular depressions mark the location
of degraded and filled craters; resurfaced by eolian and volcanic

materials; subsequently disrupted by faulting.

plrg RUGGED PLATEAU MATERIAL - Occurs in western region between lat
31° - 52°N, long 50° - 60°W; intermediate albedo; moderate crater
density (1150 craters > 1 km/lO6 kmz); forms rough surface with
numerous shallow, flat-floored o craters up to 90 km diameter;
intercrater area contains many rimless, irregular depressions and
escarpments; several channel-~like depressions trending north-south
with openings to the north; northeast trending fractures; boundary
with surrounding smoother units generally morphologically distinct;
representative image 704B38~39 (Fig. 13).
INTERPRETATION: Volatile-rich volcanic flow rock and eolian
material resurfacing ancient crustal deposits; melting of ground
ice caused local collapse and formation of depressions that were

later modified by the wind; local disruption by faults of the

Tempe Plateau.
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RIDGED PLATEAU MATERIAL - Occurs between lat 31° - 40°N, long

50° - 60°W; intermediate albedo; moderate crater density

(1300 craters > 1 km/106 km2); forms smooth surface with north-
northwest trending mare-type ridges, oriented similarly to those
ridges in MC-10; few fracture traces; boundary with rugged
plateau material is morphologic change from smooth, ridged plateau
surface to rough, rugged plateau surface; representative image
668A06 (Fig. 15a).

INTERPRETATION: Volcanic flow rock with mare-type ridges; locally

disrupted by faults of the Tempe Plateau.

FRACTURED PLATEAU MATERIAL - Occurs in western region between
lat 48° - 52°N, long 52° - 60°W; intermediate albedo; low crater

6 kmz); relatively smooth surface cut

density (700 craters > 1 km/10
by many northeast trending flat-floored depressions up to .17 km
wide; escarpment generally forms boundary with lower plains
material; distinct morphologic boundary between relatively smooth
fractured plains material and rugged plains material; representative
image 61B52 (Fig. 17).

INTERPRETATION: Volcanic flow rock and eolian material cut by

many faults of Tempe Plateau.

LOWER PLATEAU MATERIAL - Occurs in small patches between lat 30° -
36°N, long 49° - 60°W; varied albedo; few craters observed; forms
rough surface at elevation intermediate between smooth plains and

plateau units; cut by channels creating mid-channel, streamlined,
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erosional remnants up to 40 km long; boundary with smooth
plains commonly marked by low escarpment with lobate pattern
in places (Fig 18b); escarpment marks boundary with higher
plateau units; representative image 668A27.

INTERPRETATION: Remnants of a lower, more resistant plateau
layer exposed and eroded by fluvial activity; may also be

eroded lava flows or plains material.
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Plains Materdials

MOTTLED PLAINS MATERIAL - UNDIVIDED - Covers large area between lat
40°N - 63°N, long 15° - 60°W; varied albedo; low crater density
(550 craters > 1 km/lO6 kmz); high~albedo zones extend out 2-3
crater diameters; low-albedo intercrater plains; small craters
filled or partially filled with light material; distinct northwest-
southeast eolian grain indicated by wind plumes and streaks;
boundary with other mottled plains units gradational; boundary
wicth smooth plains marked by change from intermediate-~albedo smooth
plains material to low-albedo mottled plains material; representative
image 672B74 (Fig. 2la).

INTERPRETATION: Volcanic and eolian material; former blanket

of light material now being stripped away by wind; ejecta

blankets may act as trap for fine-grained windblown particles.

HUMMOCKY MOTTLED PLAINS MATERIAL - Occurs in northern part of
quadrangle between lat 58° - 65°N, long 5° - 60°W; extends northward
into MC-1; varied albedo; low crater density (675 craters > 1 km/lO6
kmz); high albedo zones surround impact craters; intercrater plains
characterized by low dark hummocks or knobs (generally < 1 km wide)
surrounded by lighter material; many craters aré filled or partially
filled with light material; gradational boundary with all surrounding
units; representative image 672B77 (Fig. 23a).

INTERPRETATION: Volcanic and eolian plains; small dark knobs or

hummocks are volcanic, plutonic, or permafrost features such as
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pingos; alternatively, knobs may represent a lower hilly,
irregular surface mantled with light material leaving only
dark summits of once-buried hills exposed; ejecta blankets
may act as trap for fine-grained, light-colored windblown

material.

PATTERNED MOTTLED PLAINS MATERIAL - Occurs between lat 40° -
50°N, long 0° - 30°W; varied albedo; low crater density (1000
craters > 1 km/106 kmz);high-albedo ejecta blankets extend
outward 2-3 crater diameters; intercrater region very low albedo;
crudely polygonal pattern of troughs; troughs generally < 10

km long,< 1 km wide, and = 100 m deep; pedestal craters common;
small ( < 1 km wide) domes with summit craters common; boundary
with all surrounding units gradational; representative image
32A18 (Fig. 24a).

INTERPRETATION: Volcanic plainsg; domes are small cinder cones;
high-albedo zones surrounding impact craters are result of impact
excavating lower material having high albedo; troughs originated
through permafrost (Carr and Schaber, 1977), desiccation (Morris

and Underwood, 1978), or tectonic (Pechmann, 1980) processes.

SUBDUED PATTERNED MOTTLED PLAINS MATERIAL - Occurs around
dissected and fractured plateau near center of quadrangle; crater
density observed to be similar to patterned mottled plains; low
albedo; relatively smooth dark plains cut by many discontinuous,

arcuate troughs generally < 1 km wide and averaging 5 km long;
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small ( < 1 km) domes with summit craters common; boundary with
patterned mottled plains gradational; boundéry with higher
dissected and fractured plateau marked by escarpment; represen-
tative image 35A41 (Fig. 26b).

INTERPRETATION: Volcanic flow rock; flow fronts and pressure ridges
occur in several places; domes are small cinder cones; volcanic
material fills or partially fills pre-existing troughs.

FRACTURED PLAINS MATERIAL - Occurs between lat 40° - 43°N, long
10° - 15°W; intermediate albedo; no craters iarger than 5 km;
characterized by crudely polygonal pattern of troughs cutting
smooth plains; trough widthé range from 0.2-2.0 km, are as long

as 20 km, and are 5-10 km apart; depth of troughs range from
30-100 m (Pechmann, 1980); wider troughs mostly have flat floors;
decrease in trough abundance marks boundary with surrounding
units; representative image 32A36.

INTERPRETATION: Fractured materials may be old unit stratigraph-
ically underlying the plateau materials exposed by scarp retreat;
alternati&ely, may be young volcanic and eolian material; fractures
are post depositional and are the result of tectonism (Pechmann,
1980), desiccation (Morris and Underwood, 1978), or permafrost
activity (Carr and Schaber, 1977).

KNOBBY PLAINS MATERIAL - Occurs in the northeast corner of
quadrangle, lat 52° - 65°N, long 0° - 15°W; extends eastward into
MC-5; intermediate to high albedo; low crater density (750 craters
>1 km/lO6 ka); small craters ( < 2 km) mostly filled with light

material; ejecta blankets of 2-10 km craters obscured by light
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material; numerous small ( < 1} km) irregularly spaced knobs give
surface rough appearance; boundary with mottled plains material
marked by distinct albedo change from high-albedo knobby plains
to low-albedo mottled plains; representative image 673B08

(Fig. 30a).

INTERPRETATION: Volcanic plains blanketed with light-colored
eolian material; knobs are eroded volcanic material or partially

buried impact craters.

SMOOTH PLAINS MATERIAL - Covers large portion of southern region
between lat 30° - 40°N, long 10° - 50°W; intermediate to high

6 ka); patches

albedo; low crater density (760 craters > 1 km/10
of knobby terrain material are scattered throughout smooth plains;
large (up to 120 km) circular features are outlined by knobs;
grooves and streamlined features oriented east and northeast

are common to the southwest; boundary with higher plateau units
marked by escarpment, boundary with mottled plains marked by
albedo change form intermediate- to high-albedo smooth plains to
low~albedo mottled plains; representative image 558A07 (Fig. 31b).
INTERPRETATION: Eolian fill and, especially to south, alluvial
fill from large outflow channels to south and west; locally may

be volcanic material; overlies older cratered surface; shifting

eolian material results in varied albedo.

PATTERNED SMOOTH PLAINS MATERIAL - Occurs between lat 37° - 40°N,

long 18° - 31°W; intermediate albedo; low crater density assumed
to be similar to smooth plains materials; characterized by

subdued pattern of discontinuous troughs only a few hundred meters
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wide and averaging 5 km long; high-albedo wind streaks associated
with many craters; decrease in fracture abundance marks boundary
with smooth plains material; change from intermediate albedo to low
albedo marks the boundary with mottled plains; representative

image 597A05 (Fig. 35).

INTERPRETATION: Thin mantle of light-colored eolian material
blanketing patterned mottled plains, partially filling troughs;
mantle thickness increases to the south; alternatively, fractures
may be result of permafrost activity (Carr and Schaber, 1977),

desiccation (Morris and Underwood, 1978), or tectonic activity

(Pechmann, 1980) and may have occurred after smooth plains

materials were emplaced.

VARIEGATED PLAINS MATERIAL - Occurs between lat 38° - 46°N,

long 0° - 10°W; varied albedo; low crater density (880 craters
Z_km/lOb kmz); smooth, featureless plains; patchy albedo pattern;
scattered occurrences of small ( < 1 km wide) domes with summit
craters; small patches of knobs and mesas occur; boundary with
patterned mottled plains occurs where troughs begin; boundary
with cratered plateau changes from rough plateau material to
smoother plains material; representative image 36A44 (Fig. 36a).
INTERPRETATION: Volcanic plains; domes may be cinder cones;
alternatively, these plains may consist of alluvial and eolian
material; small knobs and mesas erosional remmnants of plateau

material to south.
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Other Materials

DARK MATERIAL - Very low-albedo material; forms patches in and
around craters, in valleys, along escarpments, and on plains
units; representative image 558A15 (Fig. 19).

INTERPRETATION: Eolian material aligned with present wind circu-

lation; locally may be small dune fields.

LIGHT MATERIAL - High-albedo material; forms patches near plateau-
plains boundary; representative image 669B76 (Fig. 37b).

INTERPRETATION: Eolian and alluvial material.

CHANNEL MATERIAL - Occupies elongate depressions near plains-
plateau boundary in western region; high albedo; very few craters;
representative image 669B76 (Fig. 37b).

INTERPRETATION: Alluvial deposits of former streams.

KNOBBY TERRAIN MATERIAL - Irregular hills or knobs rising above
level of plains; may be up to 15 km across and 3000 km high but

generally smaller; locally knobs form circular pattern; at high

resolution, some knobs appear to have summit craters; representative

image 70A09 (Fig. 38b).

INTERPRETATION: Erosional remnants of higher surface of plateau
material; in some areas may represent crater rims and more resistant
facies of lower cratered unit; locally may represent exposed

igneous intrusions or small volcanic cones or mountains.
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Crater Materials

All craters mapped believed to have been produced by impact;

craters with diameters < 10 km not mapped; subdivisions based on

morphologic characteristics believed to reflect relative age.
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YOUNG CRATER MATERIAL - Sharp, complete rim crest; central peak;
steep walls; deep rough floors; extensive ejecta deposits;
representative image 558A31 (Fig. 33a).

INTERPRETATION: Relatively recent impact-crater material.

CRATER RAY MATERIAL - High-albedo material that surrounds several

large ( > 20 km) ¢, craters on mottled plains (units pm, pmh, pmp);

representative image 670B36.

INTERPRETATION: Fine-grained, light-colored primary and secondary

ejecta material.

MODERATELY YOUNG CRATER MATERIAL -~ Rim crests high, complete; may
have central peak; walls relatively steep; floor may be rough and
lower than adjacent terrain; ejecta deposits less extensive than
c, craters; representative image 673B60 (Fig. 36b).

INTERPRETATION: Relatively young but slightly degraded impact-

.’

crater material.

CENTRAL PEAK MATERIAL - Rugged, irregular peaks centrally located
in Cq and <, craters; representative image 597A46.

INTERPRETATION: Formed by rebound following impact.
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PEDESTAL CRATER MATERIAL ~ Small (generally < 5 km) bowl-shaped
craters; ejecta extends outward 3 crater diameters; ejecta forms
platfdrm that stands above surrounding terrain; convex slope at
distal edge of ejecta blanket; representative image 26A56

(Fig. 6b).

INTERPRETATION: Impact crater with assoclated viscous ejecta
flow (flow too viscous to form lobes; Mutch and Woronow, 1980);
alternatively may represent preferential retention of eolian
debris in and around craters as intercrater debris is eroded

away (Carr, 1981).

MODERATELY OLD CRATER MATERIAL - Rim crests low, rounded, complete
or imcomplete; no central peak; floors generally flat; may be
partially flooded or filled with younger material; ejecta deposits
show little or no surface texture, or are partially stripped away;
representative image 672B56 (Fig. 30b).

INTERPRETATION: Moderately old and partially degraded impact-crater

material.

OLD CRATER MATERIAL - Rim crest low, incomplete, or nearly absent;
no central peak; shallow flat floers generally filled with younger
material; commonly forms rugged and partly buried rings; little or
no ejecta deposits; representative image 218819 (Fig. 10).

INTERPRETATION: Oldest, highly degraded impact-crater material.
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CORRELATION OF MAP UNITS

o it d .
pv pmps \ cr cp |cpd
I~ | PSP A Pk "M pmh | pm
ps pt pmp Ca\
plf {plir piL] &
pldf C,
plrg
plc X
MAP UNITS
PLAINS MATERIALS
Variegated Plains Material
Cesp ] Patterned Smooth Plains Material
Smooth Plains Material
Knobby Plains Material
Fractured Plains Material
Subdued Patterned Mottled Plains Material
Patterned Mottled Plains Material
(emh] Hummocky Mottied Plains Material
[(pm] Mottled Plains Material - Undivided
PLATEAU MATERIALS
Fractured Plateau Material
Ridged Plateau Material
Rugged Plateau Material
Lower Plateau Material
Dissected and Fractured Plateau Material
Cratered Plateau Material
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OTHER MATERIALS
Dark Material
Light Material
Channel Material
Knobby Terrain Material

CRATER MATERIALS
Young Crater Material
Crater Ray Materia!
Moderately Young Crater Material
Central Peak Material
Pedestal Crater Material
Moderately Oid Crater Material
Old Crater Material

SYMBOLS
Contact; albedo contact dotted
Steep scarp; used as contact in places; hachures point downslope
Gentle scarp; barb points downslope
Narrow depression; graben, channel, trough
Low ridge
Mare~-type ridge
Lineament; topographic or tonal
Sharp albedo variation
Light wind streak; arrow shows orientation of streak
Dark wind streak; arrow shows orientation of streak
Dune field
Mesa with ridge or knob; may be tablemountain
Region with cratered domes <1 km diameter; domes may be volcanic cones
Crater rim crest 210 km diameter; hachures point toward center of depression
Partially buried or highly degraded crater rim crest
Secondary crater chain

Irregular, rimless depression; hachures point toward center of depression

#U.S. GOVERNMENT PRINTING OFFICE:1984 -739 -010/ 5 REGION NO. 4
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