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CHAPTER I

INTRODUCTION

The experimental investigation of the ice accretion process is of prime

interest in aircraft design. Components that have been under investigation include

inlets, wings and rotors. The flight safety of an aircraft flown into icing conditions

may be affected in a very short time. For example Lake and Bradley [1] have

documented a case in which intolerable rotor icing conditions on a helicopter were

reached within minutes of the onset of icing.

The deleterious effects of ice accretion on airfoil characteristics are well

known. When ice forms at the leading edge of an airfoil during flight conditions its

effect on the performance is devastating [2]. The airfoil suffers a loss in

maximum lift and an increase in drag.

Ice accretion on airfoil surfaces is a result of flight into a region of super

cooled water droplets. -The two principal formations of accreted ice are rime ice

and glaze ice. Rime ice occurs when the .water droplets are highly super cooled

and freeze immediately on contact with the surface. Glaze ice occurs when the

liquid water content of the atmosphere is high and the droplets are not so highly

super cooled. Water droplets impinge on the surface, a fraction of which runs back

along the wing surface before freezing. Reference [3] gives a more thorough

description of the conditions necessary for the formation of ice accretions.

A significant parameter in the analysis of the ice accretion process is the

local convective heat transfer coefficient. It is easily seen that the accretion of

glaze ice is dependent on the rate of heat transfer out of the dynamic freezing

zone (the zone where the solidification of the impinging droplets occurs). The
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extent of runback and thus the shape of the ice accretion is dependent on the rate

of solidification, which in turn is dependent on the rate at which the heat of fusion

may be released to the surroundings. What may not be so obvious is that the

formation of rime ice is also dependent on the heat transfer out of the dynamic

freezing zone. Immediate freezing of the impinging water droplets is said to occur

as long as the Ludlam limit (defined as the maximum liquid water content of the

free stream corresponding to the case where all impinging drops are frozen on

impact) is not exceeded. To check for this it is necessary to consider the heat

transfer processes within the dynamic freezing zone and its surroundings and thus

the convective heat transfer coefficient is a required parameter.

In past studies various methods have been used to predict the local

convective heat transfer coefficients. Commonly, the coefficient used is a

derivative of the study of flow about a circular cylinder. For example, Lowzowski,

et. al.[4] have used local Nusselt numbers for smooth and rough circular cylinders

as suggested by Achenbach [5]. They acknowledge a need for quantitative data for

local heat transfer on icing cylinders. Ackley and Tern pie ton have used an average

heat transfer coefficient taken from Bosch's formula [6].

The purpose of this experimental study was to provide more accurate

information on the convective heat transfer characteristics of ice shapes than what

was currently being used (i.e. ice shapes vs. circular cylinders). The objectives

were to select a method of determining local convective heat transfer coefficients

and, using that method, to evaluate the four ice accretion shapes shown in Figure 1.

The shapes represented three stages of glaze ice formation and one rime ice

formation. To simulate the roughness of the ice it was desired that the ice shapes

be tested with rough surfaces. The test program employed a graded approach in

which the ice shapes had initially smooth surfaces. The shapes then had increasing

degrees of roughness applied to them.



CHAPTER II

THE EXPERIMENTAL METHOD

Review Of Experimental Methods

A number of experimental methods for determining local convective heat

transfer coefficients were examined for possible use in this study. A review of

these methods follows:

1. Thin-Skin Heat-Rate Measurement (Ref. 7)

The thin-skin technique is accepted as one of the accurate methods of

convective heat transfer measurement. It is a transient method in which the model

is either heated or cooled by the air stream while the skin temperatures are

recorded with time. The thin-skin temperature data are reduced to coefficient

form/using the calorimetric heat balance as follows.

h _ P be dT m
" — T ^T— TIT \i/Tr^r at

where the symbols are defined as:

b = model skin thickness

c = model skin material specific heat

h = heat transfer coefficient

t = t ime

T = skin temperature

Tr = free stream temperature

p = model skin material density



The above equation is based on the assumption that all heat transfer is due to

convection. Radiation and conduction effects are assumed to be negligible. This

assumption is valid with regard to radiation since radiation effects in wind tunnels

are small. However, conduction effects due to temperature gradients along the

skin frequently appear and lead to considerable uncertainty in data. Methods to

predict conduction effects have been developed for special cases but their general

application is at best difficult.

A technique using equation (1) in a different form has been developed to avoid

problems with conduction effects. The equation is integrated to put it in the form

h

pbc
<t - In V Ti

T- T
(2)

If equation (2) is then differentiated to put it in the form

h = pbc
dt

In V Ti

T - Tr

(3)

since h, p , b, and c are constants it can be seen that the term

In
Tr - Ti
T - T

must be linear with time if the original assumptions are not violated. If the log

term is not linear with time then the assumptions have been violated.

This knowledge gives rise to a data reduction procedure in which the log term

is plotted against time and the plots are examined for non-linearities. The rate of

change of the slope (the non-linearity) is a direct indication of the errors present in

the data. Data is then chosen to avoid the non-linearity thus avoiding the errors.
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Using this approach, then, the data must be plotted in terms of log vs. time

and evaluated to determine which thermocouples are subject to conduction errors.

2. Discrete Point Methods (Ref . 7)

This section covers a number of methods similar to the thin-skin method, the

difference being that the heat rate is measured at isolated points. Typical of these

methods is the use of the Garden gage, shown in Figures 2 and 3. There are two

copper-constantan thermocouple junctions in this arrangement, one at the center

of the disc and one at the edge of the disc. The equation relating the incident heat

flux to the temperature difference across the disc is

<V Vc e

where the symbols are defined in Figure 2.

Note that the heat flux is directly proportional to the temperature difference.

Thus the output of the gage, (which is a result of the temperature difference) is

also directly proportional to the incident heat flux.

It is possible to insulate the Gardon gage to reduce or eliminate conduction

effects. Also the dimensions required for calculating the heat flux (R, b) may be

accurately known and are in fact given in a calibration factor, along with other

constant factors, so that the heat flux may be calculated directly from the

electrical output.

The difficulty with using the discrete point techniques is in the preparation of

the model. The temperature sensing devices (e.g. the Gardon gage) must be

installed so that they are exposed to the convective air stream, but the model

surface must be smooth. In the case of the Gardon gage there will be a



discontinuity of the model surface at the gage because the gage surface cannot be

formed to accomodate the curve of the model surface.

A device that avoids this problem is the coaxial thermocouple gage (Figure

4). It consists of an insulated Chromel wire fixed concentrically within a

constantan jacket. The thermocouple is mounted on the model so that it protrudes

above the surface of the model. The thermocouple is then filed down so that it

conforms exactly to the surface of the model. In the process of filing the

thermocouple materials are blended together to form the thermocouple junction.

Data reduction is accomplished by modeling the coaxial gage as a one-

dimensional, semi-infinite solid. With this model the gage output is directly

proportional to the square root of the run time for a step input of constant heat

flux at the surface.

3. Phase Change Paint Method (Ref. 7)

The phase change paint technique makes use of a paint that melts at a

specific temperature. The paint changes from an opaque solid to a transparent

liquid when it melts thus giving an accurate visual indication of the surface

temperature. The painted model is injected into the wind tunnel. High speed

cameras record the time response of the paint as it melts. The heat flux can then

be determined from the time response of T using the equation

h =
p ck (5)

where 8 is determined using the equation

— *-! = 1 - e^erfc (6) <6>
- T.



p = model material density

c = model material specific heat

k = model material thermal conductivity

Tj = model initial temperature

Tr = free stream recovery temperature

One of the advantages of using this method is that complex model shapes can

be used. The main disadvantage of this method is the difficulty in obtaining

quantitative data. Because of the difficulties in determining the properties in the

parameter /pck, it's value can rarely be known better than within 10 percent. Thus

the precision of the heat transfer coefficient is about 15 percent when all error

contributions are considered.

4. Liquid Crystal Method

The use of liquid crystals to determine convective heat transfer is described

by Hippensteele, et al. [8]. The model surface to be investigated is covered by a

composite skin consisting of an outer layer of liquid crystal sheet and an inner

layer of a heating element sheet. The composite sheet is calibrated for heating

uniformity. Then the sheet is applied to the model and calibrated in this

configuration to obtain heat losses. The heat transfer is calculated using the

equation

qe - QI = h A (Tc - Tft) (7)

where

q = electric power applied (corrected using the calibration)

q, = heat transfer losses

T = model surface temperature determined by observation of the

liquid crystal's color

T = ambient air temperature



One of the problems with this method is that although it can be very

accurate, it requires subjective judgment to determine the color and thus the

temperature of the surface. This disadvantage can be minimized if the person that

is making the judgment is "calibrated" using a portion of the liquid crystal sheet in

a controlled temperature water bath.

Another limitation of the method is that the liquid crystal/heating element

composite cannot take compound curves. Thus the geometry of the model must be

simple. This limitation could be overcome with the use of liquid crystals in slurry

form and conductive paint for a heating element. The technique would, however,

require development.

5. Napthalene Sublimation Method

Measurement of the sublimation rate of solid napthalene is a well proven

method for determining mass-transfer coefficients in convective situations [9].

Because the heat and mass transfer equations are analogous, the technique can be

used to predict heat transfer coefficients. The problem of measuring heat transfer

rate is thus converted to the problem of measuring mass transfer rate. Average

mass transfer rates can be determined by use of a weighing technique. Local mass

transfer rates can be measured by several methods. A conceptually simple method

is that of spraying the surface in question with a thin napthalene film of controlled

thickness. The surface is then subjected to convective conditions and the time for

the napthalene film to clear locally is observed. In another similar technique the

napthalene does not clear the surface. Rather, accurate physical measurements

are made before and after convection to determine the amount of sublimed

napthalene.

It can be seen that the use of napthalene sublimation requires very accurate

experimental procedures. In the technique where the napthalene is allowed to
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clear from the surface, the initial film must be applied in an accurately controlled

thickness. A technique for doing this on complex surfaces is not known. In the

technique where the napthalene surface is measured, it is essential that the

measurements be accurate. It is difficult to achieve the required accuracy by

mechanical measurements. A measurement techique which utilizes laser

holographic interferometry has been investigated but has been fruitless [10]. In

both of these techniques the temperature of the convective stream must be held

constant. The sublimation rate changes by 10% with a temperature change of 1 ° C.

Selection Of the Method For the Present Study

The thin-skin method was chosen based on the criteria that the method be

simple and usable with the low-speed wind-tunnel at the University of Tennessee.

Napthalene sublimation was not pursued because the measurements required to

determine the amount of sublimed napthalene would be extremely difficult with

some of the more complex model shapes. The use of phase change paint was not

considered because it would require extensive modification of the wind-tunnel.

Use of the liquid crystal method was not initially ruled out, but the testing

technique would have to be developed before the method could be used. The thin-

skin method was chosen over the discrete point methods for its simplicity.

Normal practice with the thin-skin method is to inject the model to be tested

into the wind-tunnel air stream. The initial skin temperature of the model is

different from the air stream temperature. The transient skin temperatures are

recorded with time and the heat transfer calculated from that data.

It was necessary to design an apparatus for injection of a model into the

wind-tunnel at UT. A method was considered in which the model is fixed in the

wind-tunnel and heated in place by radiation from theater type lights. Rough

9



calculations showed that an unreasonable amount of power would be required to

reach the desired initial temperature. Also, as it was learned later while testing,

radiant heating would produce a very non-uniform temperature distribution on the

model skin which would result in unreliable data.

The decision was made to build a device that would heat the model before

injection into the tunnel. This "heating box" is shown in Figure 5 and is described

in the next section. It consisted of an oven-like box equipped with a mechanism

that would inject the model into the wind-tunnel while the wind-tunnel was

running. With this device it was possible to perform a thin-skin heat rate

measurement in a manner similar to that employed conventionally in the aerospace

industry.

Heating Box

The heating box was the device for heating the model and injecting it into the

wind-tunnel (Figure 5). The mechanism for injecting the model was a long swinging

arm on which the model was mounted. The model could be positioned inside the

box for heating or outside the box in the run position. There was an opening in the

face of the box through which the model entered the wind-tunnel. When the model

was in the heating positon this opening was closed off by a door. At the initiation

of injection the door opened into the wind-tunnel. While the model was in the

wind-tunnel the door lay against the face of the heating box downstream of the

model.

Two schemes were used for model heating. The first was the use of infrared

radiation from quartz tubes mounted on a reflector. The resulting temperature

distribution around the circumference of the model was not uniform using this
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scheme of heating which led to uncertainty about test results (see Appendix A for

more details). In the configuration used for experimentation the air inside the box

was heated by two finned heating elements. A fan was used to circulate air

through the heating elements thus creating a more uniform temperature. The

temperature distribution could then be held to within a 1.5 ° F difference over a

0.25 inch span if the need arose.

The heating box had some other important features. One entire side of the

box was removable for access to its interior. All of the moving parts could be

dissassembled and removed from the box for modification or replacement. The box

was supported on a wheeled stand and could be removed from the wind-tunnel by

releasing two clamps. This allowed easy conversion back to normal wind-tunnel

use.

Wind Tunnel

The wind tunnel was an open circuit, closed test section type with the fan

downstream of the test section. The tunnel had a speed range of 0-200 mph. The

turbulence level was O.5% or less. The speed measurement was made by a

calibrated manometer that showed the difference between the test section static

pressure and the external ambient pressure.

The test section was 28 inches by 20 inches in cross-section. It was

accessable from either side through plexiglass doors hinged at the top. In the

configuration used for this test one of the doors was removed. The face of the

heating box took the place of that door and became a wall of the test section.
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Models

The models consisted of a wooden substructure to which metal skins were

attached (Figure 6). The models had a span of 12 inches and represented ice

accretion on a a cylinder of 2.5 inches diameter. The shapes for the ice accretions

were provided by NASA. They were obtained by accreting ice on a 2 inch diameter

cylinder in the icing wind tunnel. It was not possible to form the skin exactly to

the shape desired (maximum error was approximately + 0.25 inches). The

coordinates of the shapes as they were tested are given in Tables 1 through 4 along

with the Figures 9, 14,17, 20, and 23. The models were supported in the center of

the test section by an 8 inch long, 2 inch diameter tube.

The wooden substructure was designed so that the metal skin would have a

minimum of contact with the wood itself. The skin was attached to it by a row of

screws running spanwise along each of its edges. There was an air space behind the

skin that insulated the skin from the wood substructure. This air space was sealed

to prevent convective currents on the back of the skin. The air space was 0.25 inch

thick when the skin for modeling a cylinder was used. The thickness of the air

space, of course, varied with other skin shapes.

The skin was 0.015 inch thick stainless steel. The thermocouples were

attached to the back of the skin using a capacitive discharge welder. The

thermocouple wires were anchored to the skin about 0.5 inch from the

thermocouple junctions by spot-welding a stainless steel shim stock strap across

them. This followed the method suggested in Reference 11. To eliminate effects

of the finite aspect ratio, the thermocouples were located at midspan. The

thermocouple wire was 30 gauge copper-constantan with glass braid sheaths. The

properties of the skin material, density and specific heat, were determined by

normal methods.
12



Data Acquisition

A Hewlett Packard model 9826 microcomputer was used in conjunction with a

Hewlett Packard model 3497A analog/digital scanning voltmeter to record times

and temperatures during testing. The scanning voltmeter serially scanned the

thermocouples and stored the voltage data. The computer's internal clock provided

the timebase. The program used for data acquisition and reduction is provided in

Appendix B.

The air temperature inside the heating box was monitored with an Omega

model 2166A digital thermometer.

Test Procedure

In preparation to test, the computer was turned on and the reference

thermocouple was put in an ice bath. The model was put in the run position (in the

wind-tunnel) while the heating box came up to temperature.

When the interior temperature of the box had stabilized at a temperature

between 340°F and 380°F the model was pulled into the box, the door of the box

was closed, and the model was allowed to heat up. The thermocouples on the

model were monitored, and when the temperatures reached about 300° F the wind-

tunnel was started and the desired air speed was set. The data acquisition was

started and approximately 1 second later, the model was injected into the tunnel.

While data were being recorded, the air speed in the tunnel was also recorded.

(The air speed would be different than what was set before the model was

injected.)

13



If more tests were to be conducted the model was allowed to continue cooling

in the air stream to protect the wooden model substructure from excessive

temperatures. After sufficient cooling the wind-tunnel was stopped and the test

procedure was repeated.

Data Reduction

The computer program for storing digitized data also computed the heat

transfer coefficient and for the ice shapes the film temperature and Nusslet

number were calculated as well. Appendix C contains more information. The

computation was done for each reading of a thermocouple using the previous

reading of the same thermocouple as the initial reading, and by assuming a linear

relationship between In [(Tr -Ti)/(Tr -T)] and time between sucessive readings of

each thermocouple. Thus, equation (2) was used in the form

in ^
h = p be —-,-.

TiiT J

Part of the difficulty with using the thin-skin method was the elimination of

conduction errors. Although a plot of In [(Tr - Tj)/(Tr - T)] against time would be

linear unless conduction errors were present, the non-linearity was small in

magnitude and was difficult to detect. The possibility of conduction errors arose

mainly because some regions of the model's surface cooled more rapidly than

others which created circumferential temperature gradients. The end result was

that the Nusselt numbers calculated during data reduction varied with time as the

degree of conduction along the skin varied.
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As mentioned previously, Trimmer et al.[7] suggested that conduction errors

Fr " Ti~lcould be avoided if the data used was such that In =— _,

was linear with time. For the conditions of this study.the non-linarities were not

obvious even when severe conduction errors were expected. :

By plotting some of the data on a greatly expanded scale it was determined

that conduction errors could be avoided by using data sufficiently close to the time

of injection while still avoiding the injection transient. A good example of this is

the 15 minute rime ice shape where severe temperature gradients were established

soon after injection. Data is plotted on a greatly expanded scale shown in Figure 7

where it can be seen that after the second scan following injection the data

became non-linear. Thus the first and second scans after injection were used for

data reduction.

Another indication of the best data to use was gained by observing the change

of Nusselt number with time in areas of high heat transfer. For areas where there

was a sharp heat transfer peak, the Nusselt number would rise until conduction

caused it to decrease. Figure 8 shows the change in Nusselt number with time.

The injection occurred during the first scan shown. The Nusselt number reached a

maximum at thermocouple 4 during the second scan after injection. As time

continued the temperature gradients had the effect of smoothing out the Nusselt

number curve.

To pick the best data a combination of indicators were used. Primarily, data

near the injection were used. If the model had a sharp peak in heat transfer, a

peak in Nusselt number with time was used as an indicator. Using these criteria it

turned out that the data used was from either the first and second scans or the

second and third scans for each model.

15



For all models used in this study the Nusselt number and Reynolds number

were calculated using the film temperature and a characteristic length of 2.5

inches (the diameter of the wooden cylinder on which the thin-skin is mounted).

The film temperature was calculated by averaging the skin temperatures, then

averaging that temperature with the free stream temperature.

Re, = (8)

Nu =

16



CHAPTER HI

TEST RESULTS

Data Code

To ease handling and identification of the data each set of data was assigned

a data code. An example of the data code is given below.

G5 B

GLAZE ICE / ROUGHNESS TYPE

5 MINUTES Re = 86,000

The first letter indicates a rime or glaze ice shape. The following number

indicates the number of minutes of ice accumulation that produced that shape.

The letters after the first underbar indicate the surface condition. They are SM

for smooth, SP for a sandpaper strip, B for roughness "B", and D for roughness "D".

The number after the second underbar are the thousands digits of the Reynolds

number at which the test was conducted.

Circular Cylinder

Initial tests were run on a circular cylinder model so that the experimental

method could be proven against available information. An analytical equation
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developed by Frossling [12] was used as a basis for evaluating the experimental

results. The equation is

= 0 .9449 - 0.51 X2 - 0 .5956 X4 (10)

'Red

where X = L/d

\

The equation is for a laminar boundary layer and does not account for transition to

a turbulent boundary layer or for separation of the boundary layer.

Some problems were encountered in the initial tests which may be of interest

to other experimenters considering the use of the thin-skin heat rate technique. A

discussion of these problems and their solutions is included in Appendix D.

The circular cylinder with the thermocouple locations is shown in Figure 9.

The results are given in Figure 10 and in Table 4 in Appendix E. The results agreed

with equation (10) within approximately + 15%. The uncertainty analysis is

presented in Appendix F. The uncertainty is highly sensitive to the rate of

temperature change. For this reason the maximum uncertainties, in units of Nu,

are given in the figures where the results are presented. Uncertainty bands for the

maximum Re cases are also given in the figures where the smooth surface results

appear.
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To simulate a rough surface, stainless steel wires were attached to the model

as shown in Figure 11. The wires were 0.020 inch in diameter and ran span-wise on

the model. The wires were situated between the thermocouples so that the

thermal mass of the skin at the thermocouples would not be affected. For the

cylinder the wires were held to the surface by wires wrapped around the cylinder

approximately 1 inch away for the thermocouples. For the ice shapes the wires

were attached to the surface using the thermocouple welder. This configuration

was called roughness "B" and the results appear in Figure 12 and in Table 6 in

Appendix E.

Roughness "B" greatly enhanced the heat transfer of the circular cylinder.

The curves of Figure 12 are qualitatively similar to the findings of Achenbach [5]

for rough surfaced cylinders. Achenbach's results and the results of the present

study cannot be compared quantitatively because the roughness heights and

Reynolds numbers used in the two studies are not comparable.

Actual ice accretions can be very rough. Therefore a method of further

roughening the surface, designated as roughness "D" was tried. Roughness "D",

shown in Figure 13, consisted of 0.020 inch stainless steel wires which had loops

spaced at approximatley 0.25 inch intervals. The loops were made by twisting the

wire one turn giving a loop height of approximately 0.125 inches. The actual height

of the loops above the model surface was difficult to determine since the wires

could not always be made to lie on the model's surface. The wires were attached

to the models in the same way as for roughness "B". The loops spanned

approximately 5 inches at the center of the model and ran span-wise between

thermocouples.

The results of the circular cylinder with roughness "D" are shown in Figure 12

and Table 7 in Appendix E. It is interesting to note that the maximum Nusselt

19



numbers were less for roughness "D" than for roughness "B". It was speculated that

this was caused by a thickening of the boundary layer due to the projections (the

loops). As mentioned previously, the thermocouples were in the "valleys" between

the trip wires on the model surface. The average heat transfer in these "valleys"

would be expected to be less than an average heat transfer for the fully rough

surface.

15-Minute Rime lee Shape

The shape for 15 minutes of rime ice accumulation, shown in Figure 14 with

coordinates given in Table 1, was tested extensively and was used to further

validate the method by comparison to results of NASA in-house tests[13]. There

was some apprehension when the results of this study did not agree with the NASA

results. An investigation of the differences between the two studies was conducted

and it was concluded that the disagreements were due to differences in the models

and the flow conditions and with identical test conditions the results would be

identical. Appendix G details the results of the investigation of the differences.

Also, as part of the investigation into the discrepencies between the NASA

results and the results of this study, the 15-minute rime shape was used in an

investigation of possible conduction errors due to non-uniform initial temperature

distribution on the model's surface. It was particularly difficult to achieve a

uniform initial surface temperature on this model due to the relatively sharp

curvature of the leading edge and the flat surface from the leading edge to the

cylinder. A series of modifications were made to the heating arrangement to

achieve a more uniform temperature. The subject is discussed in detail in

Appendix A. The conclusion of Appendix A is that for the conditions studied
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(convective heating arrangement, an average initial skin temperature of

approximately 290° F, and the range of variation of skin temperatures of 42° F,

17° F, and 12° F) there was little affect on the results. Nevertheless it was

considered wise to have a uniform initial surface temperature distribution (less

than 20 °F variation) to eliminate a possible source of errors (i.e. reduce the

possibility of conduction errors).

The results of the 15 minute rime ice shape with a smooth surface are given

in Figure 15 and in Table 8 in Appendix E. The Nusselt number at the stagnation

point was relatively low. The Nusselt number peaked at a point on the highly

curved portion (near thermocouple number 4) of the leading edge downstream from

the stagnation point. From there it dropped sharply and then remained constant

along the flat portion of the model. Tufts were placed on the model to give a

visual indication of the flow and it was observed that there was no boundary layer

separation from the model for all Reynold's numbers tested.

To determine the effect of leading edge roughness, the same model was

tested with a 0.125 inch strip of 60 grit sandpaper (3M 50R4 Garnet Paper Dwt.

Open Coat) running span wise between thermocouples 6 and 7. The results are given

in Figure 16 and in Table 9 in Appendix E. The results at thermocouples 6 and 7 are

not valid due to the influence of the sandpaper on the thermal mass in that area so

they have not been reported. The roughness created turbulence had a significant

affect on the heat transfer. At thermocouple 8 the Nusselt number was more than

3 times higher than it had been for the smooth surface case which indicated a high

degree of turbulence. Further downstream, the Nusselt number smoothly dropped

down to the level of the smooth surface case indicating that the turbulence was

being damped out.
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Results for the ice shape with roughness "B" are given in Figure 16 and in

Table 10 in Appendix E. The Nusselt numbers near the stagnation point were not

much different than those for the smooth surface. As the curvature of the leading

edge was passed the Nusselt number jumped up to a high value as was the case

when the sandpaper strip was used. With roughness "B", however, the Nusselt

numbers were higher for all downstream points.

Results for the ice shape with roughness "D", given in Figure 16 and in Table

11 in Appendix E, were similar to the results with roughness "B". The peak in

Nusselt number occurred at a slightly upstream location compared to roughness

"B", possibly due to the greater roughness height. The drop in Nusselt numbers

downstream of the peak was more than that for roughness "B", which could have

been due to a thickening of the boundary layer as was mentioned in the results for
-%,

the cylinder tests.

2-Minute Glaze Ice Shape

The shape for 2 minutes of glaze ice accumulation is shown in Figure 17 with

coordinates given in Table 2. The results for this shape with a smooth surface are

given in Figure 18 and Table 12 in Appendix E. As was expected the results were

similar to the results of the circular cylinder which is similar in shape. The Nusselt

numbers near the stagnation point were lower than those for the circular cylinder.

It is believed that this is due to the flatness of the shape near the stagnation point.

It can be shown using analytical expressions that the Nusselt numbers at the

stagnation point of a flat plate perpendicualr to the flow will be less than that for

a circular cylinder at similar Reynolds numbers.
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This model was tested with a 0.125 inch strip of 60 grit sandpaper running

span-wise between thermocouples 3 and 4 (the results are not reported for 3 and 4)

to make the boundary layer turbulent. The results appear in Figure 19 and Table 13

in Appendix E. There was a peak in the Nusselt numbers just past the strip.

Otherwise the results are similar to the smooth surface case.

Results for the ice shape with roughness "B" are given in Figure 19 and in

Table 14 in Appendix E. The results were similar to the results for the circular

cylinder with roughness "B". The remarks made earlier regarding the Nusselt

numbers near at the stagnation point also apply to this case. One further

observation is that the roughness did not greatly affect the heat transfer near the

stagnation point.

Results for the ice shape with roughness "D" are given in Figure 19 and Table

15 in Appendix E. The results were similar to those for roughness "B" with a

slightly extended region of high heat transfer rate.

5-Minute Glaze Ice Shape

The shape for 5 minutes of glaze ice accumulation is shown in Figure 20 with

coordinates given in Table 3. It was not always possible to form the skin precisely,

as was evident in this model. The line connecting the stagnation point to the

center of the circular wooden cylinder on which the skin was mounted was

approximately 3° from perpendicular to the front surface of the model. The model

was mounted in the wind tunnel so that the front surface was perpendicular to the

air flow and it was assumed that the 3° that the model had to be rotated to

achieve perpendicularity did not affect the data.
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The results for the 5-minute glaze shape with a smooth surface are given in

Figure 21 and Table 16 in Appendix E. As can be seen there were peaks in the

Nusselt number on the convex portion of the surface. The convave portions of the

surface including the stagnation point had relatively low Nusselt numbers. The ice

shape formation is at least partially a result of the circumferential distribution of

heat transfer so it was not surprising to find high heat transfer rates in areas of

greater ice build-up.

This model was tested with a 0.125 inch strip of 60 grit sandpaper running

span-wise on the surface between thermocouples 3 and 4 (the results for 3 and 4

are not reported) to make the boundary layer turbulent. The results are given in

Figure 22 and in Table 17 in Appendix E. The results were similar to those for the

smooth surface case with a much higher Nusselt number peak.

Results for the ice shape with roughness "B" are given in Figure 22 and in

Table 18 in Appendix E. The results were similar to the smooth surface case with

greatly increased maximum Nusselt number.

Results for the ice shape with roughness "D" are given in Figure 22 and in

Table 19 in Appendix E. The results were similar to the roughness "B" case with

increased Nusselt number everywhere except at the stagnation point.

15-Minute Glaze Ice Shape

The shape for 15 minutes of glaze ice accumujatin is shown in Figure 23 with

coordinates given in Table 4. As was the case for the 5 minute glaze ice shape the

model for this shape had to be rotated about 3° in the wind-tunnel so that the front

surface would be perpendicular to the air flow.
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The results for 15-minute glaze shape with a smooth surface are given in

Figure 24 and Table 20 in Appendix E. The comments made for the 5 minute glaze

shape concerning the Nusselt number peaks and the ice shape also apply to this

model. One observation that needs to be made but is not obvious in Figure 24 is

that there was apparently a very high peak in the heat transfer near thermocouple

9. As mentioned in the Data Reduction section, at points of maximum heat

transfer the indicated Nusselt number would peak at some time soon after injecting

the model into the wind tunnel. This was not the case for thermocouple 9. For

thermocouple 9 the Nusselt numbers continued to rise as time passed after

injection. Also, the plots of

Ti~ TRIn (= =-) versus time indicated increasing amounts of
R

conduction out of the area around thermocouple 9 as time increased. Both of these

conditions could have resulted from a high peak in Nusselt number near

thermocouple 9 but not at thermocouple 9, thus the conclusion that there was a

high peak nearby.

Figure 25 and Table 21 in Appendix E give results for tests run with a 0.125

inch strip of 60 grit sandpaper running span-wise on the surface between

thermocouples 7 and 8 to make the boundary layer turbulent. This location for the

strip was chosen because it was upstream of the region of maximum heat transfer.

It was recognized that due to the expected air flow pattern around the model,

placement of the strip nearer to thermocouple 9 would have been desirable. But it

was more desirable not to have the strip affect the thermal mass at thermocouples

8 and 9. Further, it was felt that there was significant space between 7 and 8 to

prevent the sandpaper from affecting their thermal mass. The only significant

difference between these results and those for the smooth surface were increased
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heat transfer just past the strip of sandpaper. Heat transfer at the other positions

was apparently unaffected.

Figure 25 and Table 22 in Appendix E give results for this shape with

roughness "B". Roughness "B" seemed to decrease the heat transfer except at the

peaks where it was greatly increased. The heat transfer past the peak was only

slightly affected because the air flow is separated from the model in this region.

Figure 25 and Table 23 in Appendix E give results for this shape with

roughness "D". The results were essentially the same as for the case with

roughness "B". There was increased heat transfer compared to roughness "B" in the

separated region downstream of the peak, possibly due to the significant roughness

height.
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CHAPTER IV

CONCLUSIONS.

The objective of the study was to determine the local conyective heat

transfer coefficients for ice shapes. At the present, heat transfer coefficients for

circular cylinders are used in analytical work for ice shapes. It was felt that.the

coefficients for ice shapes would be significantly different from those of circular

cylinders. Thus, there was a need for the measurement of heat transfer

coefficients of ice shapes. Four ice-shape models were tested with varying degrees

of surface roughness.

The thin-skin heat rate technique was .chosen as the method of measuring the

heat transfer rates. It was validated by comparing Nu measured for a circular

cylinder model with the Nu .predicted by the analytical expression derived by

Frossling. Agreement between the measured Nu and predicted Nu was within +

15%. . . . .

The 2-minute glaze ice shape, which was similar to the circular cylinder in

shape, had Nu similar to those for a circular cylinder. The front of the 2-minute

glaze ice shape near the stagnation point was flat. Nu near the stagnation point

on a flat plate perpendicular to the flow are constant for a given Re and they were

constant on the flat portion of the ice shape. This suggests that the Nu trend could

have been predicted intuitively knowing the trends for a flat plate and a circular

cylinder. No attempt was made to relate the magnitudes of the Nu measured for

the ice shape to the magnitudes of the Nu predicted for a flat plate or circular

cylinder. Roughness increased the maximum Nu by 100% but the minimum Nu were

virtually unchanged.
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The shapes for greater amounts of ice accretion were very different from a

circular cylinder, but their Nu trends could have been predicted intuitively. Both

the 5-minute and 15-minute glaze ice shapes had Nu peaks in regions where the

surface was convex and dips in the Nu in regions where the surface was concave.

The maximum Nu occured on the "horns" of the glaze ice shapes and on the

curvature of the leading edge of the rime ice shape. The effect of roughness was

different for the glaze and rime ice shapes. On the glaze ice shapes roughness

increased the maximum Nu by 80% but the other Nu were virtually unchanged. On

the rime ice shape the Nu near the stagnation point were unchanged. The

maximum Nu was increased by 45%, but the Nu downstream of the peak were

increased by approximately 150%. The roughness changed the Nu distribution from

one with a sharp peak to one with a step that tapered off in the downstream

direction.

An important point that should be made about this study is that the Nu were

measured for four specific ice shapes and no attempt was made to generalize the

results to apply to other shapes of similar geometry. It would be beneficial in

future studies of the convective heat transfer on ice shapes to investigate the

effect on Nu of small changes in the geometry of the ice shapes.
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Figure 7. Data for the 15-Minute Rime Shape Showing Non-linearities.
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Figure 8. Time Variation of the Nusselt Numbers.
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u

Figure 9. The Circular Cylinder with Thermocouple Locations.

The hatched portion represents the wooden cylinder
used as a substructure.
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Figure 10. Nusselt Numbers for the Smooth Circular Cylinder.
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Figure 11. Roughness "B" on the Circular Cylinder.
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Figure 12. Nusselt Numbers for the Rough Circular Cylinder.
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Figure 13. Roughness "D" on the Circular Cylinder.
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Figure 14. The 15-Minute Rime Ice Shape.

Thermocouple locations are shown. See Table 1 for coordinates.
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Table 1. Coordinates for the 15-Minute Rime Shape

e

0

2.5

5

7.5

10

12.5

15

20

25

30

35

40

R/d

1.044

1.064

1.084

1.088

1.06

0.992

0.932

0.828

0.748

0.692

0.652

0.62

6°

45

50

55

60

65

70

75

80

85

90

R/d

0.6

0.58

0.564

0.552

0.544

0.536

0.516

0.52

0.516

0.516

-6°

2.5

5

7.5

10

12.5

15

20

25

30

35

40

45

R/d

1.068

1.092

1.1

1.084

1.032

0.96

0.836

0.744

0.684

0.64

0.604

0.576

-e«

50

55

60

65

70

75

80

85

90

R/d

0.552

0.54

0.524

0.52

0.512

0.508

0.496

0.496

0.496
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Figure 15. Nusselt Numbers for the Smooth 15-Minute Rime Ice Shape.
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Figure 16. Nusselt Numbers for the Rough 15-Minute Rime Ice Shape.
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u

Figure 17. The 2-Minute Glaze Ice Shape.

Thermocouple locations are shown. See Table 2 for coordinates.
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Table 2. Coordinates for the 2-Minute Glaze Shape

0

0

5

10

15

20

25

30

35

40

45

50

55

57.5

60

62.5

R/d

0.644

0.648

0.652

0.66

0.668

0.668

0.668

0.668

0.664

0.664

0.66

0.625

0.644

0.628

0.608

6°

65

67.5

70

72.5

75

80

85

90

95

R/d

0.584

0.544

0.528

0.516

0.512

0.508

0.504

0.508

0.508

-e°

5

10

15

20

25

30

35

40

45

50

55

57.5

60

62.5

65

R/d

0.644

0.656

0.664

0.664

0.668

0.668

0.668

0.672

0.66

0.66

0.656

0.648

0.628

0.608

0.58

-8° R/d

67.5 0.548

70 0.516

72.5 0.504

75 0.496

80 0.488

85 0.492

90 0.492

95 0.5
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Figure 18. Nusselt Numbers for the Smooth 2-Minute Glaze Ice Shape.
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Figure 19. Nusselt Numbers for the Rough 2-Minute Glaze Ice Shape.
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Figure 20. The 5-Minute Glaze Ice Shape.

Thermocouple locations are shown. See Table 3 for coordinates.
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Table 3. Coordinates for the 5 Minute Glaze Ice Shape

e

0

5

10

15

20

25

30

35

40

45

R/d

0.616

0.600

0.690

0.700

0.696

0.680

0.676

0.710

0.788

0.832

e

50

55

60

65

70

75

80

85

90

R/d

0.832

0.788

0.688

0.604

0.548

0.508

0.504

0.500

0.500

-e

5

10

15

20

25

30

35

40

45

R/d

0.67

0.204

0.712

0.708

0.712

0.736

0.796

0.852

0.848

-e

50

55

60

65

70

75

80

85

90

R/d

0.804

0.700

0.624

0.548

0.508

0.492

0.490

0.492

0.492
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Figure 21. Nusselt Numbers for the Smooth 5-Minute Glaze Ice Shape.
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Figure 22. Nusselt Numbers for the Rough 5-Minute Glaze Ice Shape.

55



Figure 23. The 15-Minute Glaze Ice Shape.

Thermocouple locations are shown. See Table 4 for coordinates.
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Table 4. Coordinates for the 15-Minute Glaze Shape

6

0

2.5

5

7.5

10

15

17.5

20

22.5

25

30

32.5

35

R/d

0.952

0.960

0.980

0.984

0.972

0.952

0.952

0.972

1.012

1.072

1.260

1.380

1.484

6

37.5

40

42.5

45

50

55

60

65

67.5

70

75

80

85

90

R/d

1.520

1.492

1.372

1.228

0.968

0.752

0.656

0.576

0.544

0.520

0.508

0.504

0.504

0.500

-e

2.5

5

7.5

10

15

17.5

20

22.5

25

30

32.5

35

R/d

0.968

0.984

0.980

0.976

0.960

0.960

0.980

1.020

1.076

1.260

1.372

1.456

-6

37.5

40

42.5

45

50

55

60

65

67.5

70

75

80

85

90

R/d

1.476

1.448

1.324

1.204

0.988

0.832

0.752

0.656

0.624

0.596

0.544

0.504

0.504

0.504

57



900

800

700

600

500

400

300

200

100 i

Data Code
G15_SM_130

G15_SM_107

G15_SM_88

G 1 5 S M 6 0

l l
0.0 0.2 0.4 0.6 0.8 1.0 1.2

L/D

H h -I 1 1- 4- H 1 1 1-
5 7

Thermocouple
11

Figure 24. Nusselt Numbers for the Smooth 15-Minute Glaze Ice Shape.
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Figure 25. Nusselt Numbers for the Rough 15-Minute Glaze Ice Shape.
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APPENDIX A

INITIAL TEMPERATURE-DISTRIBUTION EFFECTS

Non-uniform initial temperature distribution of the model skin was thought to

be adversely affecting the data because of possible conduction errors. To

investigate this possibility Figure 26 was prepared from data for the 15-minute

rime ice shape. The figure gives the Nu obtained for tests in which the initial skin

temperatures had ranges of variation of 42°F, 17°F, and 12° F. The improvements

toward uniform initial temperature distrubtion, from 42° F to 17° F to 12° F, were

obtained by successive modifications of the heating system.

A typical initial temperature distribution had a maximum temperature near

the stagnation point of the model. From there the temperature dropped smoothly

to a minimum at the point of contact between the skin and the wooden support.

From Figure 26 it was seen that for the conditions tested the non-uniformity

of the initial temperature distribution had little affect on the Nu. The only

significant effect of the non-uniformity appeared to be at the stagnation point. It

was believed that this was a result not of the non-uniformity of the initial

temperature but of the time variation of the Nu. For reasons not relavent to this

discussion it was necessary to use data from a relatively long time after injection

(approximately 1.4 sec) to calculate Nu for the 42°F range case. (The time

variation of Nu was discussed in the Data Reduction section and the variation of

Nu with time for the 15-minute rime ice shape was shown in Figure 8.) In this

investigation it was observed that for early scans, tjhe Nu distribution was similar

to that for the 17 °F and 12° F range cases (data for these was from early scans) and

for later scans the Nu distribution was similar to that for the 42° F range case (for

which the data was from later scans). It was thus concluded that the difference in
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Figure 26. Initial Temperature Distribution Effects on Nusselt Numbers.

Data for the 15-minute rime ice shape.
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Nu at the stagnation point was due to time variation of Nu rather than non-

uniformity of the initial temperatures.

It was concluded that, based on this investigation, the non-uniformity of the

initial skin temperature distributions discussed above had little affect on the

resulting Nu. Nevertheless, to minimize the possibility of unforeseen problems, it

was preferable to keep the range of variation of the initial temperatures to about

15° F or less. By modification of the heating arrangement this goal was achieved in

all but a few cases. For those few cases the range was kept below 20° F.
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APPENDIX C

DATA REDUCTION .

The equations used for data reduction are (the symbols are as defined for

equation (1) in Chapter n)

- Pbc .[ T i - I T r i ]
r~=nE— ln T—^"T—i M-l L i Lri J

where

K = The thermal conductivity of air at

d = The diameter of the cylinder (2.5 inches in all cases)

where

Uoo = free stream air speed

v = kinematic viscosity for air at Tfji

Tfilm was calculated by averaging the skin temperature and then averaging

that temperature with the free stream temperature. The heat transfer coefficient

is not very sensitive to changes in Tfijm for a cylinder[14] . Rearranging

Frossling's equation for heat transfer at the stagnation point of a cylinder

demonstrates this.

Nu = 0 .9449

or

h = 0 .9449 K_
AT
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The temperature dependent term is K//v which is not sensitive to

temperature changes.

T(°F)

100

150

175

200

K(Btu/hr-ft-F)

0.0154

0.0164

0.0169

0.0174

V(ft2/sec)

0.18 x 10-3

0.21 x 10-3

0.224x10-3

0.239 x 10-3

K//v

-1.148

1.132

1.129

1.126

At one time during testing it was discovered that there was an error in the

data reduction so that Tfjim was being calculated approximatley 6% too high.

Some of the data were re-reduced by hand to evaluate the effect the error had on

final results. The difference in Nu numbers calculated using the high value of

Tfilm and the correct value of Tfiim was less than 1%, which was negligible.

Furthermore, since the Re was calculated using the same Tf jim as the Nu the error

would tend to cancel when the Nu is considered with respect to the Re.
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APPENDIX D

INITIAL PROBLEMS

A number of problems were encountered during initial testing and it may be

of benefit to later experimenters to learn of these problems and thus avoid them.

The configuration for the first tests was as follows; the wooden suppport

structure of the model was in direct contact with the skin except in the immediate

vicinity of the thermocouples where there was a small air gap. Spot welding of the

thermocouples had left indentations on the external surface of the skin at each

thermocouple junction, and infrared heating elements were used to heat the skin.

Results from the first test run were compared to the experimental results of Giedt

[16]. Qualitatively, the results were in very good agreement with Giedt's. They

followed the circumferential variation quite well. But they were all considerably

lower than Giedt's results, especially at the higher Reynolds numbers. The results

showed very little indication of any heat transfer effects other than convection

(plots of the data were linear). .

After concluding that the wooden model was affecting the apparent Cp of the

skin, the model was modified so that there was a larger air space between the skin

and the wood. Tests were rerun with all other conditions unmodified. The results

improved slightly. Again there was little indication of conduction effects.

It had been noted in tests that there were circumferrential temperature

gradients as high as 30°F/inch, but since plots of the data were linear it was

assumed that the conduction effects were negligible. It was then decided that

despite the evidence of the plots the conduction effects were not negligible. The

equipment was modified by replacing the radiant heating system with a conduction

heating system. (The model was heated by the surrounding air which was in turn
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heated by resistance heating elements.) With this system the initial skin

temperature distribution could be held to gradients below 4°F/inch. Also, a data

reduction procedure in which only data corresponding to relatively uniform skin

temperature was adopted. Tests were rerun with this modification and again the

results improved with respect to Giedt's results. The results were then compared

to the Frossling equation, equation (10), and found to be in better agreement. An

investigation into the discrepency between Frossling's equation and Giedt's results

revealed that Giedt's experiments had apparently been run in very turbulent flow

although no turbulence level was stated. All subsequent comparisons were then

made with respect to the Frossling equation.

Further refinment included rewelding the thermocouples so that the skin

surface was not affected. With this modification the results discussed in the Test

Results section were obtained.
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APPENDIX E

TABLES OF NUSSELT NUMBERS

The explaination for the Data Code appears in Chapter in on page 17. The

location of the thermocouples on the Circular Cylinder is given in Figure 9 on page

40.

Table 5. Nusselt Numbers for the Circular Cylinder with a Smooth Surface

Thermocouple

Data Code 1 2 3 4 5 6 7 8 9 1 0

CC_SM_128 336 352 328 300 288 269 217 152 197 197

CC_SM_97 311 319 303 283 268 249 205 164 241 311

CC SM 65 242 245 236 220 201 204 161 104 113 123

Table 6. Nusselt Numbers for the Circular Cylinder with Roughness "B"

Thermocouple

Data Code 1 2 3 4 5 6 7 8 9 1 0

CC_B_163 364 330 293 511 805 818 728 584 482 421

CC_B_128 293 273 231 360 679 684 605 480 392 281

CC_B_98 284 254 206 244 508 564 542 403 326 259

CC_B_65 202 191 165 138 250 373 403 351 275 208
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Table 7. Nusselt Numbers for the Circular Cylinder with Roughness "D"

Thermocouple

Data Code 1 2 3 4 5 6 7 8 9 1 0

CC_D_128 306 337 398 493 564 587 — 435 401 418

CC_D_90 236 276 284 347 405 413 422 254 209 180

CC_D_63 , 195 227 299 265 301 312 — 176 176 145

(An explaination for the Data Code is on page 17)
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The locations of the thermocouples for the 2-minute glaze shape are given in

Figure 17 on page 49.

Table 12. Nusselt Numbers for the 2-Minute Glaze Shape with a Smooth Surface

Thermocouple

Data Code 1 2 3 4 5 6 7 8 9 1 0

G2_SM_134 247 248 287 287 286 244 213 183 201 148

G2_SM_U3 234 236 269 256 245 228 197 163 163 131

G2_SM_88 197 200 233 221 211 202 173 144 130 102

G2 SM 61 169 170 196 185 176 166 141 109 87 84

Table 13. Nusselt Numbers for the 3-Minute Glaze Shape with a Sandpaper strip

Between Thermocouples 3 and 4.

Thermocouple

Data Code 1 2 3 4 5 6 7 8 9 10

G2_SP_134 236 238 — — 403 304 254 192 227 166

G2_SP_112 227 219 — — 317 247 210 162 183 129

G2_SP_87 200 196 — — 243 194 170 141 115 104

G2_SP_60 172 170 — — 193 167 146 114 107 78

(An explaination for the Data Code is on page 17)
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Table 14. Nusselt Numbers for the 2-Minute Glaze Shape with Roughness "B"

Thermocouple

Data Code 1 2 3 4 5 6 7 8 9 1 0

G2_B_132 209 224 280 565 596 628 575 259 236 148

G2_B_113 188 191 251 502 543 555 515 237 218 139

G2_B_88 173 165 207 330 405 430 407 180 166 110

G2 B 60 138 130 163 97 197 291 314 144 134 84

Table 15. Nusselt Numbers for the 2-Minute Glaze Shape with Roughness "D"

Thermocouple

Data Code 1 2 3 4 56 7 8 9 10

G2_D_138 227 234 337 569 565 536 560 286 172 163

G2_D_112 181 202 290 472 484 448 472 230 145 135

G2_D_90 156 172 222 387 410 385 399 180 110 110

G2_D_61 150 150 180 261 288 288 301 140 82 70

(An explanation for the Data Code is on page 17)
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The locations of the thermocouples are for the 5 minute glaze shape are given in

Figure 20 on page 53.

Table 16. Nusselt Numbers for the 5-Minute Glaze Shape with a Smooth Surface

Thermocouple

Data Code 1 2 3 4 5 6 7 8 9 1 0

G5_SM_134 100 240 259 55 82 291 343 202 209 260

G5_SM_113 76 204 218 49 72 266 310 185 176 235

G5_SM_90 90 180 186 53 71 222 271 164 146 177

G5 SM 64 73 156 176 64 64 181 228 144 135 170

Table 17. Nusselt Numbers for the 5-Minute Glaze Shape with a Sandpaper Strip

Between Thermocouples 3 and 4.

Thermocouple

DataCode 1 2 3 4 5 -6 7 8 9 10

G5_SPJ35 74 162 — — 265 468 661 227 189 207

G5_SP_113 76 173 — - ^ 2 4 3 407 583 159 166 189

G5_SP_88 53 128 — — 129 327 407 154 124 159

G5_SP_59 42 114 — — 46 199 186 126 107 134

(An explaination for the Data Code is on page 17)
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Table 18. Nusselt Numbers for the 5-Minute Glaze Shape with Roughness "B"

Thermocouple

Data Code 1 2 3 4 5 6 7 8 9 1 0

G5_B_135 106 225 177 72 249 506 457 210 252 292

G5_B_U3 69 210 163 55 194 443 411 165 218 255

G5_B_86 76 180 147 36 103 358 342 153 183 210

G5 B 61 60 149 119 29 62 261 273 146 134 191

Table 19. Nusselt Numbers for the 5-Minute Glaze Shape with Roughness "D"

Thermocouple

Data Code 1 2 3 4 5 6 78 9 10

G5_D_135 91 219 237 218 323 360 616 429 266 286

G5_D_114 73 191 192 138 251 317 547 345 235 250

G5_D_89 81 169 173 118 229 316 461 293 200 199

G5_D_62 59 127 131 70 133 218 349 209 162 171

(An explaination for the Data Code is on page 17)
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APPENDIX F

UNCERTAINTY ANALYSIS

Nu - dh - inNU ~ ~ ~ - lnt - ^ T - Tt . _ j ) T j - T r .

The uncertainty of the Nu can be written as[15]

2 . _,_ , 3 N u \ 2 l l / 2
• • • *

3 N u l
r. fr— > J

Substituting the differentiated terms and dividing by Nu gives

toNu
Nu~

t 2 i
2 < > + < -i.! T

r i '

( T i-rT i )

l * * m t)
211/2 (12)

i - i -T r i ' ^ i -T r i ' J

where

At

A = li
T i -Tr i
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Estimates of the individual uncertainties are

d = 2.5 + 0.125 in.

K = 0.017+ 2x10-4 Btu/hr-ft-°F

p = 494 + 10 Ibm/ft3

b = 0.015 + 2.25 x 10'4 in.

c = 0.115+ 0.007 Btu/lbm-°F

At = 0.285 sec uncertainty on t = + 0.001 sec

Tri = 79 + 0.5 °F

TV! = 290 +0.5 °F

Tj = 285°+0.5 °F

Using these values the uncertainty is

NiT

However, the uncertainty is sensitive to Tj and TH and highly sensitive to the

difference between them. As the difference becomes small the log term, A, goes to

zero and the Uncertainty increases dramatically. Small differences in Tj and Tj_i

correspond to low Nu. It was found that if the uncertainties were expressed in

units of Nu rather than as percentages the uncertainty bands had less variance.

The uncertainty for the Re is calculated in a similar fashion using the

values

U oo = 100 + 1 mph

v = 2.3 x ID'4 + 0.05 x 10"6 ft2/sec
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APPENDIX G

COMPARISON TO NASA TESTS

When testing the 15 minute rime ice shape it was found that the results

predicted a Nu approximately 50% below the Nu predicted by NASA in-house

tests[13]. Investigation of the NASA data revealed that a transition was occurring

in the flow at a Re number of 60,000 as indicated in Figure 27. The transition did

not occur in tests for the present study. It is believed that the transition was not

present due to differences in the model and the flow conditions.

To investigate further, the NASA pre-transition data was extrapolated to a

Re range comparable to the range used in this study. Figure 28 shows how the

experimental results compare to the extrapolated NASA results. There is good

agreement particularly in the region from L/D = 0.4 to 0.7. The differences

apparent in the regions L/D = 0.05 to 0.4 and 0.8 to 1.1 were likely due to

differences between the NASA model and the UTK model. The curvature around

the nose of the NASA model was much sharper than that of the UTK model, see

Figure 15 and 29. A comparison of the approximate radii in this region is given

below.

Model

NASA

UTK

r(in)

0.11

0.25

d(in)

2.0

2.5

r/d

0.055

0.1

r = Radius of curvature

d = Base cylinder diameter
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0.0 0.2 0.4 0.6 0.8 1.0 1.2
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Figure 28. Nusselt Numbers for the Smooth 15-Minute Rime Ice Shape

Extrapolated From NASA Pre-transition Data.
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Figure 29. The NASA Model for the 15-Minute Rime Ice Shape.
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The effective radius of curvature was nearly twice as sharp for the NASA model.

The local velocity would be expected to be higher around the smaller radius and

thus the heat transfer would be greater.

In the region L/D = 0.8 to 1.1 the NASA model had a slightly concave

curvature. On the UTK's model there was a slightly convex curvature in this

region.

Several combinations of trip wires and sandpaper trips were tested on the

model. Figure 30 shows that the trip wires on the model effectively brought the

Nu up to the levels reported by NASA for the smooth surface and fully turbulent

flow. Figure 31 shows the same trend when sandpaper trips were used. Figure 32

shows roughness "B" compared to the NASA data. Except near the nose of the

model the data falls between the smooth and rough surface data.

Also, it is believed that with roughness "B" the trip wires not only induced,

turbulence but thickened the boundary layer. The thermocouples were always

situated in the "valleys" between the wires which may have been relatively

stagnant regions. It would have been preferable to use an average of measurements

for peaks and valleys but the thin-skin method precluded such measurements.

The conclusion based on extensive testing of the 15 minute rime ice shapes

are:

1. The NASA tests had a transition that did not appear in this study which was

speculated to be due to differences in the models and flow conditions,

2. The methods and results of this study are bes.t suited to smooth surfaced

models,

3. With proper duplication of the conditions of the NASA tests the NASA results

could also be duplicated.
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APPENDIX H

VALIDITY OF LUMPED SYSTEM ASSUMPTION

One assumption that the thin-skin method makes is that the outside skin

temperature is the same as the inside skin temperature. To ensure that the

assumption was valid the Biot number for the system was made much less than 1.

Ri - nb
Bi - -

For some conservative values the Bi is

Bi = 0 .009

where

Btuh = 80
h r - f t -°F

K = 11 Btu

h r - f t - v F

b = 0 .015 in.
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