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1. INTRODUCTION. One might ask, Why a paper on nonlinear flight
dynamics at this conference? There are at least two ways that this con-
ference, with its focus on nonlinear problems in control and fluid dynam~
ics, can be viewed. The first involves the basic commonality of nonlinear
problems in control and fluid\dynamics, particular1§ in their underlying
mathematical structure. The second concerns itself with potential
sources of nonlinear problems arising in controlling a flight system
dominated by nonlinear fluid-dynamic forces and moments. It is with the
latter question, and its description in both physical and mathematical
terms, that this paper deals. It should be noted that the mathematical
approach taken, which-emphasizes the qualitative features of the problem,
is not the traditiopal one of the aerodynamics community. Finally, the
mathematical exposition is not intended to be fully rigorous but rather,
to be descriptive, indicating possibilities and directions for future

N
research.

The paper is divided into three parts: (1) a brief formulation of
flight dynamics is presented in Sec. 2 to provide a framework for the
aerodynamic system to be controlled; (2) a broad description of the
source and nature of aerodynamic phenomena that give rise to the nonlinear
forces and moments acting on a flight vehicle, and a discussion of the
unde;lying mathematical structure are presented in Sec. 3; and (3) illus-

trations of how these nonlinear forces and moments manifest themselves
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in the flight~dynamic behavior are presented in Sec. 4. This work
utilizes the concepts of mathematical modeling of nonlinear aerodynamics
summarizedmin the paper by Tobak et al. [1] in this confereﬁce
proceedings.

2. FORMULATION OF FLIGHT DYNAMICS. Flight dynamics is the field
of research concerned with the dynamical behavior of vehicles in flight.
It is the resultant of the interaction of four systems; The two most
basic are the inertial system of the vehicle and the aerodynamic system
acting on the vehicle. Two additional systems are the deformational
characteristics of the vehicle and a control system. The various levels
at which the systems may interact are shown in Fig. 1. At the simplest
level we have the free flight of a rigid body in which the interaction is
between the inertial and aerodynamicé systems. The control system inter-
venes to modulate the interaction between the inertial and aerodynamic
system so as to bring about a desired flight behavior. For vehicles
that are undergoing deformation resulting from, say, some elastic or
nonelastic response to the varying inertial and aerodynamic loads, or
that are undergoing a shape change because of ablation, the additional
system to account for this must be considered, as shown in the'lower
portion of Fig., 1. This new system requires a more sophisticated control
system to arrive at a desired flight behavior. An example problem is
the alleviation of loads caused by gusts which involves an overall aero-
servo-elastic system. For the sake of simplicity, we will confine our
discussion to the inertial and aerodynamic systems.

From a system standpoint, the close coupling between the inertial
system and the aerodynamic system is shown in the block diagram of Fig. 2.
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The inertial system provides the body orientation, that.is, boundary
conditions, to the aerodynamic system. The aerodymamic system, in turn,
provides the forces and moments to the inertial system. The output of
this interaction is both the aerodynamic response (forces, moments, and
flow field) and the vehicle motion history. The inertial system for a
rigid body has six degrees of freedom: three of rotation and three of
translation. The equations of motion (in general six functional-

differential equations) in a body~fixed coordinate system are

£ t
> - >

(mv)t = fal[v(i) ,Q(E):l + fg + fT 2.1

o o 1

and
- -> > - t > t

(IQ) + 9 x I = f v(E),Q(E) + £ s (2.2)
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where m 1is the vehicle mass, v is the velocity vector, 3 is the
angular velocity vector, and I is the mément of inertia tensor. In
these equations ( )t implies differentiation with respect to time (t),
and £ is a dummy time variable. There are normally three sets of
applied generalized forces and moments: those due to aerodynamics, fa

1
and fa , thrust, fT and fT » and gravity, fg. The thrust and gravita-
2

1 2 .
tional forces are normally simple functions. However, the aerodynamic
forces and moments (fal and faz) are functionals rather than functions;
their instantaneous values depend on the history of the vehicle's motion.
This functional dependence 1is indicated in (2.1) and (2.2) by the square
bracket notation.

The aerodynamic force and moment system, which constitutes the

major source of nonlinearity, is now considered in more detail. The
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equations governing the motion of a compressible viscous fluid are a set
of nonlinear partial differential equations. In vector form they can

be expressed as

JE oF oG oH
3t+ax+ay+az"0’ (2.3)
where
T
E” = [p,pu,pv,pw,pe] ,
T - .
F™ = [pu,puu - Oy ?PUV = Txy,puw - TygoPue - §q -0 u- TXyV - szw] ,
T °
G = [pv,puv - T. _,pvv - ¢ VW -~ T ,pve - -t u=-40g V=T W
P xy P yy) p yz P ‘ q Xy vy yz ] »
T .
H = [pw,puw - T g ?PUW = Tyz,pww - 0,,0PWe - q - TU " Tsz - czzw] s

and where o is the fluid demsity, u, v, and w are velocity components,
and e 1is the internal energy. The stress temsor (g's and t's) has
been left unspecified. In their most general form the stress tensor
components would involve the pressure and the molecular viscosity of the
fluid. When the stress tensor is written in this form, the equations
are the full Navier-Stokes equations which are said to govern tpe flow
field surrounding Fhe vehicle and give rise to the nonlinear aerodynamic
behavior that we will describe in the next section. At the present time,
the full equations cannot be solved, even with the largest available
computers, for practical aerodynamic problems involving even siﬁple
geometries. Hence, various approximations are normally employed. For
inviscid problems, dropping the stress tensor yields the nonlinear Euler
equations, for which a wide range of solutions have been obtained. On
the other hand, for viscous problems, performing some form of averaging
on the full equations removes the complexities that occur at high
'Reynolds numbers. These different approximations have various domains
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of validity; however, it is not our purpose here to consider the governing
equations themselves but to discuss the nonlinear aerodynamic flows that
are their result. Before leaving the fluid-dynamic system, we should

note that the boundary conditions needed for this‘system are those of no
flow through the vehicle surface and (for the full equations) no slip at
the surface, and that all disturbances produced at the surface decay at
large distances from the vehicle. The boundary conditions couple the
aerodynamic system to the inertial system.

To conclude, we reiterate that the overall system (inertial plus
aerodynamic) is coupled and complex. A system of this complexity is very
difficult to analyze in full generality, except through full simulation
which makes the problem one of empirically validating guesses. To sim-
plify the study of flight dynamics and control, a way is needed to
uncouple the two systems. This can be achieved by modeling the aerody-
namic forces and moments so that they depend on only a finite number of
parameters, rather than on the entire motion history. The basic concepts
underlying aerodynamic mathematical modeling are described in the com~-
panion paper to this one [l1]. However, a realistic mathematical model
cannot be achleved without a firm idea of the forms of nonlinear aerody-
namic phenomena that need to be acknowledged within it. Nonlinear aero-
dynamics is the subject to which we now turn.

3. NONLINEAR AERODYNAMICS. In this section the fluid-dynamic
phenomena that give rise. to nonlinear aerodynamic forces and moments will
be examined. A framework for classifying and studying these phenomena
will be presentéd. The framework must be sufficiently broad to capture
all essential features and thereby act as a guide in the mathematical
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modeling of the aerodynamic forces and moments for flight dynamics analy-
sis and simulaticn. The framework will consist of both an observational
component and a complementary mathematical component.

First, however, we give a brief description of a simple aerodynamic
flow problem that illustrates some of the important flow phenomena from
which the resulting nonlinear aerodynamic forces and moments originate.
The flow considered is that about a pointed body of revolution with a
tangent-ogive tip. As shown in Fig. 3, the body is immersed in a water
tunnel and dye is injected at various points along the side meridians [2].
In the upper left (o = 25°), alternating colors of dye have been injected
into the surface flow on the facing meridian. The dye streaks 1lift off
the surface and roll up around each other to form a vortical structure
as they move downstream. A similar mirror-symmetric pattern forms on
the opposite side. This is the classic three-dimensional separation and
roll-up into a pair of symmetrical vortices that occurs on all pointed
slender bodies and delta wings at low to moderate angles of attack. At
lower angles of attack (not shown) the dye streaks would remain in the
viscous layer near the surface. They would flow around the body while
moving downstream and pass off the rear of the body. For a blunt-based
body this would also be a separation, but would not yield the strong
streamwise vortices evident in Fig. 3. As the angle of attack is increased
to 48° (upéer right photo), a new flow structure is observed. Note now
that dyes of different color have been injected along opposite meridians
(light on facing meridian, dark in background). Near the rear of the
body, the streaks of dye have collected to form sets of alternate colors
(starting from the top they are dark, light, dark, light, dark, light).
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The dark ones are difficult to see in photographic reproductions. The
vortex structure has become asymmetric but steady (even at the nose) and
departs rapidly from the body, while new vortices appear underneath.
This is again a well-recognized flow structure on slender bodies and
wings. It is important to note that a steady asymmetric pattern occurs,.
even though both the body and the boundary conditions are axially sym—
metric. At somewhat higher angles of attack (¢ = 60°) we see another
change in the flow structure. Although the flow pattern near the*nose
still appears to be asymmetric and steady, the flow in the wake is
unsteady (smearing or apparent breaking of dye streaks). The pattern is
more evident at a = 90° where a well-defined periodic shedding of dye
is observed with considerable smearing of dye streaks (some chaotic
structure) far in the wake. This is the classic periodic Karman vortex
street observed in the wake of circular cylinders in crossflow.

The variation with angle of-attack of the normal-force coefficient
‘(directed normal to the body axis and in the plane of the angle of
attack) that occurs on a simllar body tested in a wind tunnel at various
Reynolds numbers is shown in Fig. 4 (from [3]). The progression of flow
structures is indicated across the bottom of the figure. Exact points
where the flow structures change are not indicated, for they dépend on
Reynolds number. The normal-force coefficients shown represent mean
values when unsteady phenomena occur. The type of unsteadiness, whether
periodic or chaotic (aperiodic), is indicated at the right and is based
on measurements on two—dimensioﬁal circular cylinders in crossflow [4].
The uppermost curve (R = 0.35 x 10%) is very similar to that which would
be measured on the body illustrated in Fig. 3. The normal-force
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coefficient at very low angles of attack (vortex—~free flow or attached
flow) changes linearly and very slowly with increasing angle of attack.
At the onset of separation and the appearance of symmetric vortices,
the normal-force coefficient becomes a nonlinear function of angle of
attack. These two flow regimes and the resulting normal forces are
fairly independent of Reynolds number. However, at higher angles of
attack (above 25°), where steady asymmetric vortex structures arise,
Reynolds number begins to play an important role, ana the nonlinearities
become more exaggerated. It should also be noted that the onset of
asymmetric flow also marks the onset of a side force normal to the plane
of the angle of attack (not shown). It is easier to understand the
effect of Reynolds number by examining the forces at an angle of attack
of 90°. At o = 90°, the variation of mean normal-force coefficient
with Reynolds number is essentially the same as that observed on two-
dimensional circular cylinders in crossflow. For R = 0.35 x 10°%, the
boundary-layer flow on the body is laminar, and separation occurs at or
forward of the side meridians, resulting in a ﬁear—maximum value of the
mean normal force. At this condition there is a vefy pronounced
periodic vortex shedding in the wake and a large-amplitude periqdic force
component in both the normal and side directions. As the Reynolds number
is increased, the wake flow becomes turbulent, with the turbulence moving
forward in the wake toward the separation points. Associated with this,
the separation points move rearward, the mean value of the normal force
decreases rapidly, and the periodic nature of the wake str;cture and
.unsteady forces is replaced by a chaotic (turbulent) behavior with much
smaller amplitude. As the Reynolds number is increased further, beyond
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Re * 1 x 10%, the mean value of the normal-force coefficient begins to
increase again and periodicity begins to reassert itself. Under these
conditions, the sméll-scale turbulence has moved ahead of the separation
points. At intermediate values of the angle of attack (35° < a < 60°),

we see a very strong interaction of a periodic to chaotic wake structure
with the steady asymmetric vortex flow from the body. This brief descrip-
tion of flow over pointed bodies of revolution gives some idea of the
flow's complexity, but also of its ordered nature. Additional flow
structures resulting in important nonlinearities will be described in
subsequent subsectiomns.

3.1 A Framework. The description of the flow about the pointed

body of revolution shown in Fig. 3 illustrates four essential elements of
fluid flows. The four elements can be used to form an observational
framework for the organization and study of aerodynamic flows. We asso-
ciate the first element with the fact that the flows have definite
étructure. In the case shown in Fig. 3, the flow over the body separated
from the sides, and the sheets of separated flow (flow with vorticity)
rolled up to form vortices in different steady or unsteady configurations.
We associate the second element with the fact that the structures cﬁange
in systematic ways as parameters are varied systematically. In the case
shown in Figs. 3 and 4, changes in two parameters, namely, angle of
attack and Reynolds number, resulted in several changes in structure.

The third.element is in reality associated with structure, but its impor-
tance in aerodynamics and its seemingly incomprehensible nature sets it
apart; it is chaos or turbulence. In Fig. 3, we saw the flow change
through a series of well-defined steady structures to a periodic flow
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structure and finally to chaotic flow. The fourth and final element is
associated with the scale of the structures we observe. In Fig. 3 we
were able té see only one or two scales. However, other scales, such as
boundary-layer thickness, were present but were not detectable with the
mode of observation used. The presence of small-scale phenomena or tur-
bulence interacting with large-scale separated structures accounts for
the rapid reduction in-normal-force coefficient with Reynolds number
increase at a = 90° 4in Fig. 4. The four elements — structure, change,
chaos, and scale — would provide no more than a taxonamy for organizing
fluid-flow information 1f there were not also a mathematical component
to complement the observational one. We now consider the complementary
mathematical framework.

A mathematical framework is required to provide a rigorous and sys-—
tematic backbone to the observational material that is available in the
study of fluid flows. The structure of fluid flows can be described by
means of the topology of critical (singular) points of the flow.
Research in this direction was originated in the 1950s by Legendre in
E;ance [5,6] and has been pursued by several other research groups in
Europe and in the United States (e.g., [7-9]). Changes in the flow
structures can be described in the context of bifurcation theory. Bifur-
cation theory has been used extensively in the study of several bounded
fluid-flow problems (e.g., [10]). Recently, some of the concepts involved
have been used»to describe changes in external aerodynamic flows, prin-
cipally by Tobak and Peake (e.g., [8]). As noted in the discussion of
the observational framework, some changes (bifurcations) lead to chaotic
or t;rbulent flows, and indeed it is known that bifurcation in even
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simple systems can lead to bounded aperiodic solutions which, although
deterministic, have chaotic properties that are similar to those of
turbulence. This special class of chaotic¢ solutions (structures) is

characterized by the existence of what have been called strange attractors.

Strange—attractor behavior as a possible property of turbulence will be
discussed. Some of the properties of turbulence will also be described
by means of the idea of fractals, an idea which in a sense describes a
property of a strange attractor. The strange-attractor behavior was
first reported by the meteorologist Lorénz [11] and was first posed as a
model for turbulence by Ruelle and Takens [12]. The fractal properties
of turbulence have been put forward by Mandelbrot (e.g., [13]). Finally,
the scales of the flow structures will be discussed in the context of
some group theory ideas. Many of the scaling concepts, such as dimen-
sional analysis [14], and similarity exemplified in the description

of the Blasius laminar boundary layer (e.g., [15]), are group properties
of the equations describing the corresponding fluid flows and have been
extant for many years.

In the following four subsections, each of the four elements of the
observational and mathematical framework is described. Each subsection,
with the exception of that concerned with chaos, begins with a aescription
of the underlying mathematical ideas. These mathematical concepts are
then related to the observations. However, because of the nature of
chaos and our poorer understanding of its character, that section starts
with a description of the observations and their importance to aerody-

namics. As noted in the Introduction, the mathematical descriptions
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that will be given are intended to be descriptive rather than rigorous,
to illustrate possibilities and directions for research.

3.2 Structure: The Topology of Critical Points. The point of view

taken here is that the important features of fluid flows can be described
by a finite number of critical (singular) points which must conform to
summation rules. The application of the topology of critical points in
fluid flows was first introduced systematically by Légendre [5] in the
mid-1950s and has been pursued extensively in recent years by several
groups of investigators (e.g., [7-9]). We confine our discussion to

flows that are steady in the mean and, in the ?ollowing, to two-dimensional
sections of the steady three-dimensional flow field. On any such sectionm,
a critical point is a point (x4, y,) where the velocity in the sectiomn

is zero, that is,

]

i
o
-

dt u(xo,yo)
(3.1)

H

i
o

dt v<Xo’yo)
If we now expand the velocity (u,v) about the critical point (xo,yo) and

retain only first-order terms, we get the following:

u = ax + by 0
and (3.2)
v=cx+dy=20,

It
Il

where, note, X and v, have been taken as zero (by an appropriate trans-
lation of axes if necessary). A perturbation analysis about this point

(x =0,y = 0) yields the structure of the local flow, that is,

[o] (o]

r? + TR-T + DET = 0 ,
where (3.3)
TR =a + b and DET ad - be .

[]

]
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The nature of the eigenvalues (T') yields the nature of the local flow
structure. The various possibilities are shown in Fig. 5. When the
eigenvalues are both real but of opposite sign (DET < 0), the flow struc-
ture contains a saddle point. When the eigenvalues are both real and of
the same sign (DET > 0), the flow feature is a regular node. In the skin-
friction line pattern on the surface, a regular node represents a point
of attachment (TR < 0) or a point of separation (TR > 0). If the eigen-
values are complex, spiral nodes result, or in the pure imaginary case,
centers result. Spiral nodes or centers usually signal the presence of
vortices in the flow. When a critical point in a section is adjacent

to a solid surface it will be one-sided (saddles and regular nodes only)
and will be called a2 half-saddle or half-node.

When several isolated critical points occur in a flow section or in
the skin-friction line pattern on a body, the assumption of a continuous
vector field requires that they conform to topological summation rules.
There are three surfaces on which these summation rules governing the
collection of isolated critical points are of particular interest. The
first is the surface of a three-dimensional, simply connected solid body.
Here the nodes (N) and saddles (S) in the skin-friction line pattern must
add up as

TN-Ys=2. (3.4)
This is the classic topology for bodies that can be formed from deforma-
tions of a sphere. The next surface of interest is that of a solid body
mounted on the wall of a wind tunnel. Since the wind tunnel can be con-
sidered as a closed torus (the body mounted on the wall does not change
the topological class) the summation rule is
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Yy N~-3.,5=0. (3.5)
The final surface of interest is a plane that cuts a solid three-~
dimensional body. Here nodes and saddles occur both in the flow and on
the intersection with the surface where they are half-nodes or half-
saddles. This plane belongs to the class of topological surfaces formed
from a torus with a spoke across the hole. The summation rule that
applies here is
ZN+%ZN'-ES—%ZS'=-1. (3.6)
Here the primed quantities denote half-nodes and half-saddles. These
rules were put forward for studying fluid flows by Hunt et al. [7].
The richness of structures in fluid flows is well-illustrated in
Van Dyke's book [16]. Additional examples are shown in Figs. 3 and 6
[171]. 'Both are separated flows on pointed bodies of revolution: one at
subsonic speed (Fig. 3) and one at supersonic speed (Fig. 6). With the
exception of the shock waves present in Fig. 6, the flow is topologically
equivalent to that in the upper left photograph in Fig. 3 (a = 25°).
Leaving aside secondary structures (see below), if one were to construct
the flow topologies that occur in a crossflow plane on a pointed body at
various increasing angles of attack, one would get those shown in Fig. 7.
The summation rule for the topology of the flow in a crossflow ﬁlane
cutting a three-dimensional body is Eq. (3.6). The count of N, N', S,
and S' is given in the figure. In the vortex-free flow, the flow in the
section attaches at a half-saddle in front (windward) and leaves the body
at the rear at a half-saddle. Thus, we have minus one for the summation
rule. The next topoleogical structure that occurs is the symmetric vortex
flow (Fig. 7). Here the flow again attaches at a half-saddle as before,
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but the rear flow is much more complex. The flow in the crossflow plane
separates from the sides at half-saddles and the separated "sheets" roll
up to form spiral nodes on each side. The flow at the rear is now directed
back toward the surface and attaches at a half-saddle. To complete the
topology and get the proper flow direction downstream a saddle that closes
the flow structure is required. Again, the summation rule is satisfied.
The third structure, first occurrence of the asymmetric vortex flow

(Fig. 7), has the same topology as the symmetric case. The final struc-
ture shown in Fig. 7 is a three-vortex asymmetric configuration. This
probably occurs with the development of a pair of critical points in the
flow (a spiral node and saddle) on or very near the elongated separation
sheet near the half-saddle point of separation. Additional asymmetric
configurations occur that have more spiral nodes on alternate sides (not
shown). Actually, a complete representation of the flow structures would
require the inclusion of secondary vortices (with corresponding separa-
tiqn and reattachment points) that are in fact induced by the large
primary vortices. Including them would have resulted in undue complexity
for illustrating éhe basic point, although the secondary vortices may be
at least partially responsible for setting up conditions for the creation
of the new spiral node — saddle pair in the three-or-more asymmetric
vortex configurations. We caution that although the summation rules pro-
vide necessary conditions for determining the structures, they are not’
sufficient conditions, and indeed, given the same number and types of
critical points, the structures could be constructed in other ways. It

is rather by studying the evolution of the structures and insisting that
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particle paths (streamlines) remain continuous that one can be reagonably
sure of constructing a "correct' sequence of structures.

Another example of fluid-flow structures is the surface oil-flow
pattern (skin-friction lines) on a wing attached to a‘Wind—tunnel wall
and tested at transonic speeds (see Fig. 8; courtesy of Earl Keener,

NASA Ames Research Center). A complete topological analysis has not

been carried out as yet for this body. However, two points can be made.
First, at M = 0.90 the flow has separated from the wing in the form

of two spiral nodes, the origins of which are clearly illustrated in the
0il flow. Saddle points are also clearly present. Second, here we see
evidence of another parameter, Mach number, playing a role in causing
flow structures to change; at M = 0.82, the flow is attached, evidenced
by the smooth streamwise directions of the oil-flow lines. On the other
hand, at M = 0.9 the flow is separated as indicated by the spiral nodes.

In concluding this section, three points must be made. First, the
flow structures constructed with isolated critical points agree very well
with observed flow structures in practical aerodynamic flows. Second,
the topology of the critical points has proved to be é very useful tool
in analyzing observational data or data obtained from computer simulations
of the flows. Third, there are several important issues concerning
three-dimensional flow separation to which topology may help provide
answers. These 1ssues include (1) the nature of three-dimensional flow
separation and (2) the issue of open versus closed flow separation
(e.g., [18]). Some of these issues may also require information con-

cerning how flow structures change, the topic to which we now turn.
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3.3 Change in Structure: Bifurcation Theory. Generally speaking,

bifurcation theory is a theory of equilibrium solutions of nonlinear

equations. In fluid-dynamic applications, we are interested in equi~

librium solutions of evolution equations of the form

ﬁ’t = H({T,\) , (3.7)

where ﬁ is the velocity vector and A 1is a parameter (e.g., Reynolds
number, angle of attack, Mach number). Equation (3.7) is sufficiently
general (with dependence on the spatial coordinates understood) to
include any of the forms of the equations said to govern fluid flows,
for example, the Navier-Stokes equations. By\an equilibrium solution of
(3.7), we mean a solution to which ﬁ(t) evolves after the transient
effects associated with the initial values have died away. Equilibrium
solutions may be time-invariant, time—périodic, quasi-periodic, or
chaotic, depending on conditions.

We are concerned with equilibrium solutions at two levels. The
first occurs as a result of instability in (3.7). As the parameter A
is varied, a critical value Ac can be reached beyond which the original
solution becomes unstable. New solutions, called bifurcating solutions,
appear, some of which may be stable and some unstable to small perturba-
tions. By stable and unstable we mean the following: If a small per-
turbation of the solution decays to zero as t =+ «, the solution is said
to be asymptotically stable; if the perturbation grows, the solution is
said to be (asymptotically) unstable. Stable branches of bifurcating
solutions can be either local or global. A bifurcating solution is

said to be local if it can be mapped onto the original solution without
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cutting the solution space; if it canmmot, the bifurcation solution is
said to be giobal. In addition, the bifurcation can be supercritical or
suberitical, as illustrated in Fig. 9. In a supercritical bifurcation
(shown by the pitchfork bifurcation), there is at least one branch of
stable bifurcating solutions that is continuous with the original solu-
tion at the bifurcation point Ac' Thus, for a small change in A
across Ac, there is a stable bifurcating solution that is 0(A) close
to the original solution such that as A - AC + 0, A+ 0, This is not
the caselfor a subcritical bifurcation shown on the right of Fig. 9.
Here, for a small change in A across kc’ there is no branch of stable
bifurcating solutions that is continuous with the original branch. This
type of bifurcation normally leads to hysteresis behavior because the
critical point for the upper branch in the case shown does not occur at
the same value of KC as it does for the lower branch. The symmetrical
bifurcation curves shown in Fig. 9 are often the result of an idealized
problem. In practice there is less enforced symmetry, or there is a
boundary condition or a scale that was suppressed in the idealized prob-
lem. When these are brought into consideration, the idealized bifurcation
diagram may undergo an unfolding. This is illustrated in Fig. 9 with the
pitchfork., The idealized pitchfork has the following form (to leading
order)
v - = et -0 =0, (3.8)

whereas the general (unfolded) bifurcatién to this order has the form

p? 4+ a(w? + b)Y +c(A) =0 . (3.9)
For the case shown in Fig. 9, a = 0, and b represents the effect of a
small imperfection. Bifurcation in the case of Couette flow between
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rotating cylinders (the Taylor vortex problem) has this form, in which
the ¢ term is the result of including ends in the concentric cylinders
rather than treating the idealized problem in which the ends are at plus
and minus infinity. The first stage of the Taylor vortex problem typi-
fies a common type of bifurcation in which an original time~invariant
equilibrium solution is replaced at the bifurcation point by another
time-invariant equilibrium solution, in this case one describing the
Taylor vortices. A second type of bifurcation is the "Hopf" bifurcation
in which the original time-invariant equilibrium solution is replaced by
a branch of stable equilibrium solutions which are time-periodic. 1In
turn, time-periodic solutions can bifurcate into quasi-periodic solutions.
‘The Hopf-type of bifurcation is common in aerodynamics. An example is
the Karman vortex street in the wake behind a circular cylinder for

Re > Rec ¥ 50. A third type of bifurcation of great interest occurs
when a quasi-periodic equilibrium solution is replaced by a bounded
aperiodic solution having chaotic properties. Solutions of this kind,
of course, recall the turbulent-like behavior typical of flows at high
Reynolds numbers.

The second level at which we have a particular concern with equi-
librium solutions focuses on the class . of equilibrium solutions-that is
time-invariant. Here, we concentrate attention on the critical points
in the equilibrium flows where ﬁ = 0., With Gt = 0 in (3.7), we can
recast (3.7) to directly describe particle trajectories or streamlines:

Y

- >
U = Xt = G(X,2) , (3.10)
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where X is the spatial coordinate of the fluid element. Equation (3.10)
in effect governs the flow structures that we studied earlier in Sec. 3.2.
Here, as A crosses AC, ; critical point may bifurcate into multiple
critical points, or a new pair of critical points may appear, or a pair
disappear. However, bifurcation at this level need not imply nonunique-
ness in the governing flow equations. Equilibrium solutions may remain
stable and unique on either side of Ac. The bifurcation of critical
points in the flow will be referred to as structural bifurcation. All
structural bifurcations are global in the mapping sense described earlier.
That structural bifurcations are unique appears to be the case in compu-
tations based on the incompressible Navier~Stokes equations for the onset
of steady separated flow behind a two-dimensional circular cylinder as

the parameter Reynolds number (Re) increases past a value of 7. For

Re < 7 the equilibrium solution indicates attached flow and is unique;
for Re > 7 the equilibrium solution indicates separated flow and

appears to be unique. The latter conclusion is based on the observation
that flow structures develop smoothly through Re = 7, with no indication
of the possible existence of multiple solutions. However, as Re passes
through 7, the rear stagnation point (half-saddle) splits, yielding two
centers, three half-saddles, and a saddle to form the symmetric separation
region.

The general topic of bifurcation theory has received considerable
attention in the past few years with development of an extensive body of
literature. When the focus is purely on the classes of steady-state
solutions of a governing evolution equation it is often termed catastrophe
theory, after the work of Thom [19]. Several examples of this genre of
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work are given in [20~23]. An example of extensive use of bifurcation
theory in a fluid mechanics setting is presented in [10].

Consider now some examples of changes of flow fields that illustrate
these various bifurcations and their various properties (local)versus
global; supercritical versus subcritical; periodic and aperiodic). The
first is that of flow about a body of revolution which we have already
introduced. The principal changes in the flow structures observed in
the crossflow plane with increasing angle of attack are shown in Fig. 10.
The change from vortex-free (attached) flow to symmetric vortex flow is
an example of a structural bifurcation in the topology which occurs at a
critical value of angle of attack, but flows both before and after the
change are believed to be unique. In the crossflow plane, the structural
bifurcation is global, in that one flow field cannot be mapped to the
other without cutting the field. The next change with angle of attack,
from symmetric to asymmetric vortex flc&, is a true bifurcation because
both solutions exist beyond a critical angle of attack, but only the
asymmetric one is stable. It has two mirror-symmetric configurations.
This bifurcation is believed to be supercritical, but in the mapping
sense it is local in that a simple stretching of the field would turn
the symmetric flow into an asymmetric flow. With further increases in
angle of attack, the next change in the sequence of/flows is again
asymmetric, but new spiral nodes and saddles appear in the crossflow
plane. This again is a structural bifurcation. Finally, at very high
angles of attack, the bifurcation is normally of the Hopf type, giving

rise to periodic wake-like flow. However, under certain conditions,
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the periodic wake-1like flow changes quickly to an aperiodic flow. These
conditions are associated with another parameter, namely, the Reynolds
number.

The second example concerns asymmetric vortex breakdown on a very
slender delta wing. Vortex breakdown occurs along the core of a vortex
when the axial flow undergoes a rapid deceleration, causing the core of
the vortex to increase in size rapidly, as shown in Fig. 11 (from [24]).
The phenomenon has been studied extensively (e.g., [25-26]). Here, we
will be concerned with the special condition when the pair of leading-
edge vortices on the delta wing break down and there is a mutual inter-
action. The phenomenon, which occurs principally on very slender delta
wings, was first observed by Lowson [27]. It is illustrated in the form
of a bifurcation diagram in Fig. 12, where the ordinate A represents
chordwise distance between the origins of the two breakdowns. Lowson noted
that at low angles of attack (roll angle ¢ = 0) the breakdowns occurred
symmetrically. Thus, A = 0, as shown in Fig. 12. Beyond some angle of
attack a > a, there occurred a finite asymmetry in the positions of the
vortex-breakdown origins (A # 0). Continued increases in o resulted
in increases in A. However, when a was decreased, the return to
A = 0 (the symmetric configuration) occurred at a value of a smaller
than o, Thus, as illustrate& in Fig. 12, we have a source of hysteresis.
Note that A has two branches in view of the existence of mirror-
symmetric solutions. The asymmetric vortex breakdown gives rise to an
aerodynamic rolling moment CZ that is proportional to the magnitude of
A. Now, let the angle of attack a be fixzed at a;. Increasing the
roll angle ¥ 1in one direction increases A, and increasing ¢ in the
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opposite direction diminishes A and proportionately Cz, as shown. At
some negative value of ¢, flow conditions favorable to vortex breakdown
in the opposite direction force the breakdown positions to switch
directions. With this we see another source of hysteresis. Thus, we
have complex bifurcations dependent on two parameters, o and Y. ‘The
solution surface has the form of cusp catastrophe surface.

The third and final example again involves hysteresis. Figure 13
[28] shows the side forces generated on the nose of a body which is at
90° angle of attack and is rotating about the velocity vector with
angular velocit? w (see the inset in the upper left-hand corner of
Fig. 13). The body nose has a square cross section with rounded cormers.
When the Reynolds number is large and the flow in the boundary layer over
the body is turbulent, rotation of the body creates a side force CY
opposite to that of the spin (antispin). The flow is attached to the
sides of the body, and there is a turbulent (chaotic) wake as shown
schematically in the lower right-hand sketch in Fig. 13. This chaotic
flow in the wake gives rise to a small chaotic side force thch generally
is not of great concern. For low-Reynolds-number comditions, the
boundary-layer flow on the body is laminar, giving rise to a much differ-
ent flow, and hence to a side force, as indicated by the curve ﬁarked by
circles in Fig. 13. At low reduced spin rates (), the flow separates
from both sides of the body (not sketched) and we get a large periodic
side force (also not shown) with a small mean side force that increases
slowly with Q until a value of Q@ 1is reached at which the flow
attaches to the body on the side toward which it is spinning (see upper
right-hand sketch in Fig. 13), with a resulting large increase in side
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force. Further increases in Q cause small reductions in side force.
The bifurcation that cccurs here would appear to be supercritical, but
very rapid (no hysteresis is observed). However, at intermediate
Reynolds numbers and low spin rates we get either the flow attached to
both sides or to ome of the two sides depending on the direction of spin
and whether spin rate is increasing or decreasing. In these circum~

~
stances a hysteresis results, as shown in Fig. 13; for example, at

Re = 0.5 x 10°.

As can be seen from the three examples presented, there are many
types of bifurcation that occur in practical aerodynamic %}ows. Further-
more, these bifurcations have significant ramifications for flight
dynamics. They must be understood if logically consistent models of the
aerodynamics are to be formulated.

3.4 Chaos — Strange Attractors and Fractals. Turbulent or chaotic

flow plays a very important role in aerodynamics but is not fully under-
stood. In addition, our present understandiﬁg of how strange attractors
and fractal properties are related to turbulence is less well advanced
than is our understanding of how critical points in the flow topology
and bifurcation theory are related to the origin and change of flow
structures. For that reason, this section will start with the observa-
tional framework; then the mathematical concepts will be introduced.

All fluid flows suffer chaotic behavior at sufficiently high values
of Reynolds number. This basic property of fluid flows appears to be
modeled by the Navier—-Stokes equations, which are said to govern the
flows, through the mechanism of multiple instabilities. On walls, tur-
bulent (chaotic) behavior normally first occurs in the boundary layer,
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and in free shear layers it occurs downstream of vorticity-producing
surfaces. An example of a tufbulent boundary layer is shown in the
photograph in Fig. 14 [29]. The small-scale turbulence near the wall
(scales are of the order of the boundary-layer thickness or smaller)
gives rise to turbulent momentum transport and a significant increase in
the mean (time-averaged) drag force on the body. There are other small-
amplitude, high-frequency unsteady forces but these generally are not
important. (They may be important for sound generation or in certain
structural fatigue problems.) In some cases the small-amplitude, small~
scale turbulence can interact with other larger flow structures to sig—-
nificantly alter the aerodynamics. Finally, there are some large-scale
chaotic~1like flows that can occur, for example, during the stall of a
wing under some Reynolds-number conditions. The state of understanding
of any of these chaotic flows is rather limited. Ideas from bifurcation
theory that have drawn attention to the behavior of strange attractors
already have had a significant effect on our understanding of the transi-
tion from laminar to turbulent flow. The classic view of transition due
to Landau [30], that of an infinite set of bifurcations occurring which
completely fills out the wave-number space, has not corresponded to
observations in which there appeared to be a finite and small ﬁumber of
bifurcations ending in a chaotic flow. With the discovery that even
relatively simple deterministic differential equations could yield
bounded aperiodic solutions with chaotic-like behavior, a route to turbu~
lence consistent with observations became available, entailing a finite
number of bifurcations ending with bifurcation to a strange attractor.
This was first proposed as a model for transition by Ruelle and Takens
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in 1971 [12]. Since then, others have proposed similar routes to turbu-
lence via strange—attractor behavior. A recent review of the various
scenarios is given by Eckmann [31]. Given the role played by the strange
attractor in transition3 it is logical to ask about its properties and
whether it plays a role in fully developed turbulence. These are ques-
tions to which we now turn.

Strange attractors can occur in forced dissipative systems with
relatively small nonlinearities. A strange attractor can be loosely
defined as a subset of solutions all of which are bounded and aperiodic.
Each member of this bounded and aperiodic set occupies zero volume in
the solution space. That is, for example, if the solution is a trajec-
tory (dimension-omne) in a plane (dimension-two), the trajectory, although
staying within a bounded region of the plane, never occupies any area of
the plane. This gives rise to the fractal property of the strange
attractor, to which we will return later. The strange attractors are
also sensitive to initial conditions. Behavior of a system containing a
strange attractor that was first discovered by Lorenz [11] is shown in
Fig. 15. Since its discovery, the system has been studied extensively

by many authors (e.g., [32]). The equations for the system are

dx

ac - oy = %)

dy _ _ -

i Xy + Rx -y, (3.11)
and

dz

& - W - Bz,

where o0, R, and B are system parameters. There are several aspects of

‘the behavior illustrated in Fig. 15 that are similar to turbulence.
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First, although the solutions are deterministic there is chaotic~like
behavior, but there is also an overall structure. It is conjectured
here that the turbulent streaks that are observed in both experiments
and computations of plane flows have a structure that is suggestive of
strange—-attractor behavior. They are not statiomary in flows but rather
tend to wander with time, all the while retaining the same basic struc~-
ture. Figure 16 is an example of these structures taken from the com-
putation of a turbulent channel flow carried out by Moin and Kim [33].
Shown are velocity contours at an instant in time in a plane parallel to
the channel wall. The elongated structures (streaks) move around with
time in an erratic manner. The second important characteristic of a
strange attractor that is similar to turbulence is a result of the fact
that the bounded aperiodic solution does not £ill the solution space, as
noted earlier. This gives rise to intermittency. For example, a mea-
surement probe traversing through the plane of the strange attractor
illustrated in Fig. 15 would record an intermittent series of pulses on
crossing different segments of the trajectory. A review of the relation-
ship of strange attractors to turbulence is given by Lanford [34] while
Ott [35] reviews the role of strange attractors in chaotic dynamical
systems.

It is intermittency which leads to fractal properties (e.g., [13]).
To understand fractal properties we will first consider fractal curves.
A fractal is a curve that is everywhere continuous but nowhere differen-
tiable. A simple example of this is the Koch curve shown in Fig. 17.
The curve is constructed by the following recursive procedure: Take a
line one unit long and divide it into three equal segments. Remove the
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center segment and replace it with two equal segments to form a hat (see
Fig. 17). This process is repeated recursively on each of new segments
that are formed at successive steps. Now the length of the resulting
curve increases without limit as the number of repetitions (n) increases
without limit, but the curve does mnot fill up any spacé. Only a line
with apparent texture results. The following questionlarises: Is there
a way to form a relationship between the line length and the unit of
size at any point in the iteration? There is, and it is shown by the
equation,

L=g", (3.12)
where L 1is the length of the line and s is the length of the element

used to construct L. Hence, for the Koch curve we have

& =[]

or

in 4
in 3

u:]_...
Now u can be interpreted as the difference between the Euler dimension
(DE) of the element (s), which in this case is 1, and the dimersion of

the line L, which is called the Hausdorf dimension (D Hence

H)'

or, for the Koch curve, D = n 4/%n 3, which is about 1.28. Note that

H
if DH = DE’ the length of the line does not depend on the size of the

unit of construction which is what one expects for smooth curves.
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A better example and one more closely related to turbulenceé is the
second example in Fig. 17, namely, that of a surface. One may think of
this surface as a surface of vorticity. It is distorted in a recursive
manner as follows. Divide the unit square into nine smaller squares.

Now remove the four corner squares and the center square and replace them
by building a small square box over the open squares (center box down

for convenience). Now with each of the 29 sides of the new figure,
repeat the process. This surface becomes more and more distorted with
each step, and the actual surface area increases without limit as the
number of iterations (n) increases. Hence this surface in two dimensions
becomes more and more distorted but never fills up space in three dimen—
sions. In a manner similar to that used for the Koch curve, the Hausdorf
dimension is found to be 2n 29/%¢n 9 + 1 or about 2.54. Now this is a
rather simplistic m;del for a sheet of wvorticity that has been distorted
into a parcel of turbulence because of instabilities. Even though the
model is simplistic, it is true that a hot wire passing the distorted
sheet would exhibit intermittency. Observations that high-Reynolds~
number turbulent flows exhibit intermittency go back to a paper by
Batchelor and Townsend [36]. Those authors noted that in high—Reynolds—
number homogeneous turbulent flows, the vorticity was not distfibuted
uniformly but was concentrated on sheets or other localized regions of
space. Atempts have been made to derive a Hausdorf dimension for this
turbulence based on higher—-order statistical information. Values between
2.0 and 3.0 have been derived. However, the reduction of information on
the higher-order statistics to a Hausdorf dimension requires specifica-
tion of a topological form of the turbulence, and this step has led to
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considerable disagreement. Mandelbrot [13] suggests that reasonable
topologies bound the value of the Hausdorf dimension between 2.5 and 2.7.
In a recent attempt to establish a basis for these values, Chorin [37]
calculated the distortion of a vortex tube using the Euler equations.
That calculation showed that the vorticity contracted (in an L, norm
sense) to a Hausdorf dimension of about 2.5, in reasonable agreement with
the lower bound postulated by Mandelbrot.

3.5 Scale: Group Theory. In all flows, and with bifurcations of

the flow structures, a broad range of both spatial and temporal scales
can occur. The scales are normally determined by the interaction between
the various physical effects that come into play. For the sake of sim~
plicity, the discussion will concentrate on four basic ideas and relation-

ships thHat are of special importance. The first is dimensional analysis,

which is widely used. It provides relationships betwéen important
physical effects such as those between inertial and viscous effects. A
simple example of dimensional analysis is the derivation of the form of
the drag force on a flat plate in uniform flow. The drag can be written
functionally as
Drag (D) = F [velocity (V), density (p), length (L), fluid viscosity (u)].
(3.13)
Since D, V, L, and 4 have dimensions composed of mass, length, and

time, the equation for drag can be rewritten, using Buckingham’s pi

theorem [14],

(]
31}

(3.14)
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Here the Reynolds number Re can be interpreted as the ratio of an
inertial property, the length L, to a length characteristic of the
viscous flow, namely, u/oV. We know from experience that there still
remains much richness to this p;oblem in that there are many structures
with various scales that develog‘with different values of Re, in par-
ticular turbulence. /

/ The second class of relationships or)scales concerns those scaling
properties that occur within a given class of flow structure. Again we
can use the flow over a flat plate as an example, but now restrict our-
selves to a Reynolds number for which the flow remains laminar. An
examination of terms in the full fluid-flow equations on the basis of

Re (ratio of plate length to viscous scale)‘being of the order of 10°
(laminar flow) indicates that several terms are of second order. 1In
fact, the entire momentum equation normal to the plate becomes of second
order. Retaining only first-order terms yields a much simpler form of
the equations, with Reynolds number as the parameter. It can be quickly
shown that this reduced equation has a self-similar form [15] if all
dependent and independent variables are normalized by ﬁheir counterparts
(e.g., velocities by free-stream values of velocity and longitudinal
distance by the plate length) with the exception of the verticél_distance

y which is normalized as

5=< @e)t/?, (3.15)

where Re = pVUx/p 1is the local Reynolds number. This normalization
collapses all of the laminar flow solutions (where 10° > R>> 1) to a

single solution. We have a continuous scaling within a given class.
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The next logical step in considering scales would be to consider
problems with two scales and their interactidns. Here, we consider two
examples. The first involves the merging of critical points (three
critical points), shown schematically in Fig. 18. At fine resolution we
distinguish two saddle points with a nodg¢located between them; however,
as the resolution decreases the structure is recognized only as a éingle
saddle point. One can now ask whether it is essential to resolve the
three critical points to get an overall correct solution. This is a
very important issue for finite~difference computational methods because
the need to resolve closely spaced critical points can markedly increase
the grid size required to obtain a valid solution. The answer may depend
on the particular information required and how accurate it must be. If
it is important to resolve the critical points, another problem arises:
When the full fluid-dynamic equations are approximated, for example, by
averaging, care must be exercised to ensure that the reduced equations
are still able to capture the change (bifurcation) from the single
saddle point to the two saddle-point-one node configuration given in
this example.

A second example of multiple.scales is illustrated in Fig. 19 which
presénts a photograph of flow normal to an airfoil, together with a
schematic of the flow. The flow of particular note here is that emanat-
ing from the trailing edge [38]. The flow separates from the trailin;
edge and rolls up into a large vortex (spiral node) structure. In addi-
tion, the separation layer (free shear layer) is itself breaking down into
a series of spiral nodes separated by saddle points (not visible). This
is a two-scale problem in which the two scales have different physical
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origins. The large-scale vortex is a measure of the total vorticity in
the sheet and is relatively insensitive to Reynolds number. The domi~
nant scale here involves an overall dimension of the airfoil. The small
vortices are due to a local instability of the free shear layer. Their
scale is a function of the shear-layer thickness, and is thus sensitive
to the Reynolds number. As a result, the large structure tends to
dominate the flow, but under certain comnditions the interactioh can be
important. Again, how much of this flow structure must be resolved
influences not only the question of grid sizes in finite~difference com-
putations, but the types of approximation that might be imposed on the
equations to simplify them without losing the information that is
essential.

Singular perturbation methods and the method of inner and outer
expansions [39] can be used to treat some of these two-scale problems.
These approaches are particularly applicable to merged singular-point
problems. However, the problem involving interaction of the two scales,
for example of the spiral nodes in Fig. 19, does not seem to be amenable
to these approaches nor do there appear to be other methods available
at present.

The fourth and final issue to be discussed regarding scale is that
of the multiple scales inherent in turbulence. In many cases of interest
the multiple scales that are present strongly influence the mean proper-
ties of the flow, but the details of all these scales are of relatively
minor interest. For example, reconsidering the flat-plate boundary layer
described earlier, but now at higher Reynolds numbers where the flow near
the plate has become chaotic, we have many scales that have had a strong
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influence on the mean velocity profile in the layer and hence on the
drag. How do we develop a rational approach that will account for the
integral effects of these scales without having to deal with all of the
details? The classic approach is by analogy to the interactions of mole~
cules in a gas in which an equation is developed for the transfer of
momentum by means of a viscous term depending on the mean path length
between molecular collisions. On this basis, an analogous model for
turbulence was developed by Prandtl [40] in 1925. The appropriate length
scales were understood to vary through the layer, because large scales
could not exist near the wall. Empirical expressions developed for
mixing lengths resulted in excellent predictions of mean profiles and
drag [41]. However, these empirical expressions did not work well for
other flow situations, in part because the concept contained an assump-
tion concerning the distribution of scales under equilibrium conditions
which was not universally true. Thus far it has not been found possible
to replace the informal basis of the mixing-length idea by more formal
and rigorous extensions. Extension by analogy to nonequilibrium chem~
istry has been proposed [42]; again however, there is no rigorous basis
for this approach. Recent work in other areas of research, in particular
phase transitions in. condensed phase matter, holds considerable promise
of providing a basis for the development of rational approaches to the
fluid dynamics problem. This is the idea of the renormalized group

that has been developed by Wilson and Kogut (e.g., [43]). Feigenbaun

et al. [44], in particular, have adapted renormalized group ideas in a
novel way that has called attention to the existence of "period-doubling"
phenomena and scaling laws governed by "universal numbers." These ideas
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are currently under rapid development in several directidns ([44, 45], and
have the potential of describing not only alternative routés to turbu-
lence but fully developed turbulence as well. Reviews of these develop-
ments, including their relevance to fluid dynamics questions are con-
tained in [31], [35], and [46].

3.6 Aerodynamics with Unsteady Boundary Conditions. In all of the

material covered so far in this section, the body has been assumed to be
either rigidly fixed or statiomary in some uniformly rotating coordinate
system; that is, its shape and orientation have been assumed fixed rela-
tive to the oncoming wind. A few comments are in order for bodies that
are free or forced to move relative to the wind. If this movement is
slow relative to the time taken by a particle of fluid to move from the
tip to the rear of the body, the previous discussions of structure,
change, chaos, and scale will hold in general. The resulting flows will
be the same as those for the steady cases, with the ekception that they
will be shifted slightly in phase relative to the motion. This phase
shift can be expected to change slowly (linearly) with the rates within
a given flow topology, but may shift rapidly when the flow topology
changes. It should be noted, however, that there has not been a great
deal of study relative to this latter point. For movement that-occurs
on the same order of time as flow over the body, there can be a very
strong influence on the flow. One effect of such movement on the flow
is illustrated in Fig. 20. Here we show flow visualization pictures

(by means of hydrogen bubbles [47]) and lift coefficient (CD) data [48]
for an oscillating airfoil in what is referred to as dynamic stall. At

the bottom of the figure are shown several plots of C, versus a for
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different values of k.= we/2V where w 1is the frequency, ¢ is the
chord, and V the free~stream velocity. This parameter represents the
inverse of the chord lengths traveled per cycle; that is, for k/n‘= 0.1
the airfoil in free flight would travel forward 10 chord lengths while
undergoing one cycle of oscillatory motion. Under static (nonoscillatory)
conditions, the flow remains attached to the airfoil for angles of attack
up to 12°, at which point the onset of flow separation causes the 1lift
curve to break and finally to decrease rapidly. After separation, the
flow tends to be periodic; that is, the evidence suggests that a Hopf
bifurcation occurs at o * 12°., When k 1is small, we can hardly detect
the difference in CL (there is a slight change) between the static and
oscillatory case, as long as we are below o = 12°. However, beyond

@ > 12°, there are pronounced differences that increase drastically as

k ‘becomes larger. These differences also depend on whether the angle

of attack is increasing or decreasing. The effect on the flow in a water
tunnel is shown for k = 0.25 in the Fop part of Fig. 20. On the left,
a = 15° on the part of the cycle in which o is increasing. The flow
is generally attached or has a very thin separated layer with strong
periodicity evident in the wake. On the right, the angle of a;tack is
the same, but on the part of the cycle in which o is decreasing. Here
we see a massive separation occurring in which there is considerable
vortical structure that is not necessarily periodic. This class of

flows is important for helicopters and high-performance aircraft, but is
poorly understood. The root of the problem may reside in the fact that
the airfoil oscillation is modulating, in some highly nonlinear manner,

the periodic flow resulting from the Hopf bifurcation near o = 12°.
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3.7 Summary of Aerodynamic Behavior. The foregoing considerations

would suggest at least six major suﬁdivisions of the aerodynamic forces
and moments. These are shown in Fig. 21. Figures 2la-~2le deal strictly
with forces on bodies moving at constant velocity and orientation. The
type of bifurcation that can give rise to these characteristics is noted.
The rate—-dependent forces and moments also can be expected to change at
these bifurcations. The sixth subdivision (Fig. 21f) is one in which
there are strong rate—~dependent effects. Very little is known at present
of this latter category. Since, in general, aerodynamic forces and
' moments are functionals of the motion history, they could potentially
depend on variables other than merely orientation (a) and rate (&4). In
principle, the dependence could rest on all of the history. To under-
stand these issues better, a rational framework for creating a mathemati-
cal model of the aerodynamic forces and moments is required. Aerodynamic
modeling is taken up in the companion paper to this one by Tobak et al.
{1]. Assuming that a method for modeling is available, we now turn to
the flight-dynamic behavior caused by some of these nonlinear aerodynamic
forces and moments.

4, TFLIGHT DYNAMIC BEHAVIOR. With a framework for understanding
the aerodynamic flows and with rational mathematical models forAthe aero—-
dynamic forces and moments (in part) in hand, our lasf step is to bring
these resulis together with the inertial characteristics of the vehicle
and to illustrate some of the flight-dynamic behavior that can result.
Here again we shall be using much of the language that was used in Sec. 3,
in partictlar that associated with the topology of critical points,
bifurcation theory, and strange attractors; however, there is a difference
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here in how these are to be viewed. In discussing the aerodynamic flows,
we were dealing with a continuum and hence with partial differential
equations. The topological structures discussed were "real” physical
structures. In contrast, in the discussion to follow we deal with tra-
jectories of an isolated solid body. In the main, the governing equa-
tions are ordinary differential equations, and the structures (critical
points) are in the phase space of position and velocity. At any time,
the body occupies only one point in this space, and hence the phase bor—
trait describes all the possible states. The study of flight dynamic
behavior has only recently been approached from the bifurcation theory
standpoint (see e.g., [49, 50] and the paper by Hui and Tobak [51} in
this collection).

The full description of the motion of a rigid body requires six
degrees of freedom and hence can be very complex; illustrations of this
order of complexity would not provide much insight. Therefore, with
some exceptions to be noted, this section will be confined to the dis-
cussion of inertial systems having a single degree of freedom. The
motions to be considered all will involve angular rates of change, which
makes it convenient to define the relevant angular coordinate geometri-—
cally rather than kinematically as was done earlier. To mark the dis-
tinction, we designate the angle of attack by o in place of «a.

Figure 22 lists the equations for a single-degree-of~freedom oscillatory
system for five different levels of modeled aerodynamic contributions.
In each case the aerodynamic mathematical model is underlined. In the

:
last two cases, the aerodynamic contributions are left undetermined
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because complete rational models have not yet been developed. Some of
the flight-dynamic characteristics are also listed.

The single-degree~of-freedom system with aerodynamics linear in both
o and § yields relatively simple flight dynamic characteristics. There
is a single critical point at ¢ = 0. If B 1is negative, the system is
called statically unstable, and the critical point can‘Be either a
saddle point orla node depending on the value of A. In the past, air-
craft designs having negative values of B were avoided at all cost.
Recent advances in control system hardware, coupled with significant
potential increases in aircraft performance, have led to consideration of
aircraft having negative static stability (B < 0). When B is positive,
the system is statically stable, and the critical point is always a ncde.
Depending on the value of A, the critical point can be a regular or
spiral node, or, in the special case of A = G, it can be a center. The
system is said to be dynamically stable if A > 0, dynamically unstable
if A < 0. The phase portrait for a statically and dynamically stable
system is shown in the upper left of Fig. 23. This linear system is
normally associated with low angles of attack o. At higher angles of
attack the aerodynamic contributions A and B become nonlinear in ¢
but, for slowly varying motions, the aerodynamic damping term coﬁtinues
to be linear in &. This is the case to which we now turn.

The most general nonlinear, single-degree-of-freedom case is gov=
erned by the Lienard equation and, depending on the nature of the non-
linearity, can have a single or multiple critical points. It can also
have limit cycles which result from Hopf bifurcation from a stable
critical point as well as super- and subcritical bifurcations. Two cases
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are illustrated in Fig. 23. In the upper right is the case for a non-
linear B{(oc) which has only one stable critical point (i.e., B(s) > 0

for |o| > 0). But the values of A(0) are such that near the critical
point (0 = 0) the solution is dynamically unstable (A(c) < 0; ]cl > 0):
that is, trajectories from the origin will spiral outward. On the

other hand, far from the critical point the value of A(c) is such that
the solution is dynamically stable (A(cs) > O; ]0[ > 0) and trajectories
spiral inward. Dividing inward- and outward-directed spirals is a closed
path in the (0,0) plane to which all trajectories are attracted. ‘Hence,
limit-cycle motion occurs for all trajectories. The second case is
illustrated on the lower left of Fig. 23. Here A(s) = 0, and we have
only nonlinear B{c) which in this case can be written as B(q) = Bo + Blcz,
where B, < 0 and B, > 0. Hence, the system is statically unstable for
small values of ¢ but becomes statically stable for larger values of

0. The three critical points are ¢ = 0 (unstable), and o = i(—BO/Bl)l/2
(stable). Since there is no damping, all trajectories are closed. There
is a separatrix that divides trajectories that are closed about the
origin (large amplitude) from those about the critical points

g = i(~BO/Bl)1/2. If A(o) is nonzero the variety of possible motions

is large. In the lo&er right of Fig. 23 we have illustrated one possi-
bility whgn nonlinear damping is added to the nonlinear static case just
described. Here the system is undampéd near the stable nodes

(o = t(—Bo/Bl)l/Z] but damped far from these nodes. Hence, a stable
limit cycle can develop around each of the two nodes, and also a limit
cycle can occur that encloses all three nodes, as shown by the outer
limit cycle in Fig. 23. As we have seen in Sec. 3, the aerodynamics can
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change with various parameters in the system, and hence we can expect
changes or bifurcations in the flight-dynamic behavior that are driven
by nonlinear aerodynamics resulting from at most a supercritical bifurca-
tion in the fluid flow. A complete description of this equation and its
bifurcation structure can be found in [52].

The third case of interest is one with aerodynamic hysteresis. This
is represented in equation form with the inclusion of a switch term (h)
in A and B to indicate which branch is operative. Here again the types
of behavior are many with the possibility of bounded aperiodic (strange
attractor) solutions. The example to be considered here is one with two
degrees of freedom; it is speculative in the sense that a full simulation
of what is to be described has not been performed, but the ideas seem to
be consistent. The case is patterned after the aerodynamics of the delta
wing with asymmetric vortex breakdown described in Sec. 3.3, and the
strange-attractor behavior described by Diener and Poston [53]. The
example is illustrated in Fig. 24. The bivalued rollingrmoment (CQ)’
variation with angle of attack (o) (with the subcritical bifurcation
omitted) is shown in the upper right. At an angle of attack o, we
have a rolling-moment curve Cz versus roll angle (y), as shqwn on the
left. It is required that an aerodynamic control surface produce a trim
rolling moment as shown; that is, there is a stable trim (stable critical
point) at b - Now the damping (rate-dependent) term is taken as non~-
linear such as to produce a limit cycle about V- If the amplitude of
the 1limit cycle were small the motion would always stay on the upper
branch of the hysteresis curve. However, if the amplitude were large
enough to pass the break point in the curve the motion would traverse
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both curves. At this point the motion would be at least periodic (a
limit cycle) or possibly that associated with the existence of a strange
attractor. Motion corresponding to presence of a strange attractor is
much more apt to occur if the body is also aliowed to oscillate freely
about o, where the static pitching-moment curve is such that there is
only one stable point (stable critical point) at o,, and the pitch-
damping is such that a limit cycle in o can occur about 0,. Combining
these two motions, assuming that inertial coupling between the modes is
relatively small, we arrive at the motions shown on the lower part of
Fig. 24. Here a Cl surface versus ¢ and ¥ is shown. It has a fold
owing to the hysteresis (i.e., a cusp catastrophe). The trim point
(0,5¥y) is on the upper sheet. When the limit-cycle amplitude does not
exceed the distance to the fold, all trajectories inside the limit cyclé
converge to it. Those outside either converge to it or some of those
that start out or get to the lower surface can be injected back into the
upper sheet inside the 1limit cycle and hence converge from inside. This
is the case on the lower left. Now, if the limit cycle amplitude is
large enough to cross the fold, trajectories inside the limit cycle spiral
out to fall off the upper sheet onto the lower sheet only to be reinjected
back into the limit cycle on the upper sheet. This, it is believed, will
lead to behavior corresponding to presence of a strange attractor. The
motion is definitely bounded. Whether it is aperiodic needs to be checked.
The one-degree-of-freedom cases with periodic or bounded aperiodic

aerodynamic forces noted in Fig. 22 are very poorly understood. It is

known that they are associated with dynamic stall, "lock in" (a resonant
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condition), and buffeting. Much remains to be done here, but first
reasonable mathematical models for the forces and moments are required.
Flight systems with higher degrees of freedom and with aerodynamics
that are nonlinear are beginning to be attacked from the‘standpoint of
bifurcation theory (e.g., [49]). Here again much work needs to be done.
5. CONCLUDING REMARKS. This paper along with its companion paper

at this conference, Mathematical Modeling of the Aerodynamic Character—

istics in Flight Dynamics [1], is .an attempt to provide a consistent

formulation and theoretical method for studying nonlinear problems in
flight dynamics. A description of a flight-dynamic system was presented
in terms of its two major components, namely, the aerodynamic and iner-
tial systems, and the coupling between them. Two important points follow
from this description. First, because the aerodynamic system is governed
by a set of nonlinear partial differential equations, the aerodynamic
system represents a major source of nonlinearities in the flight-dynamic
system. Second, the nonlinear aerodynamic forces and moments, which are
the coupling from the aerodynamic system to the inertial system, in prin-
ciple depend on the entire flight history and hence appear as functionals
in the inertial system.

The aerodynamic system was examined in considerable detaii and a
framework to facilitate its study was proposed. The framework is composed
of an observational and a mathematical component. A study of observations
of fluid flows led to four important elements for the observational com-
ponent. First, the flow patterns, although in many cases very complex,
have definite structure (e.g., three-dimensional vortical structures).
Second, these structures undergo systematic changes with variatioms in
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parameters such as angle of attack or Reynolds number. Third, under

some conditions these changes lead to chaos (e.g., turbulence). Although
in reality a property of structure, because of its special importance in
aerodynamics and its apparent incomprehensibility, chaos is treated as

a separate element. Fourth, the structures have definite spatial or
temporal scales.

The mathematical component that was proposed to deal with the four
elements of the observational component emphasizes topological concepts
that have considerable descriptive power, as well as the necessary depth
to handle the essential nonlinearity of the problem. The mathematical
presentation was intended to be descriptive, rather than rigorous, to
highlight potential directions for future research. Structures of fluid
flows were described by means of the topology of isolated critical points.
Changes in the structures were examined in the light of bifurcation
theory at two levels: one related to the classic study of stability of
- fluid-dynamic systems and the other to the structural stability of time-
invariant structures. Chaos was examined in the light of recent studies
of nonlinear dynamical systems. The idea here was to relate the occur-
rence of turbulence in fluid-dynamic systems to the chaotic behavior of
deterministic dynamical systems that has been characterized by the
existence of strange attractors having fractal dimensionality. The
scales of structufés were considered in the light of some ideas from
group theory, beginning with cléssic dimensional analysis andAﬁouching
on recent work in renormalized group theory.

Finally, a brief study was presented of some of the forms of flight-
dynamic behavior that can result from the particular nonlinear aerodynamic
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properties that were highlighted. The aerodynamic contributions to the
inertial equations of motion had to be mathematically modeled in accor—
dance with ideas summarized in the above-mentioned companion paper to
this one. Three points can be made concerning this brief study of
flight-dynamic behavior. First, in even a simplg system having only one
or two degrees of freedom, increasing complexity of the ;erodynamic
contribution causes flight-dynamic behavior to range from that corre-
sponding to the presence of a fixed-point attractor to the chaotic motion
corresponding to the presence of a strange attractor. Second, the
mathematical ideas that have proved useful in describing fluid flows are
found similarly useful/in describing flight-dynamic behavior. Third,
even a relatively simple mathematical model of the aerodymamic contribu-
tion to the inertial equations of motion can lead to flight-dynamic
behavior that is sufficiently complex to exceed the range of validity of
the aerodynamic model that was assumed. This emphasizes the importance
of understanding the strong interdependence that exists between the level
of our knowledge of nonlinear aerodyngmic phenomena, our @eans of
mathematically modeling them, and the range of nonlinear flight-dynamic

behavior that results.
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FIGURE CAPTIONS
Fig. 1. Elements of flight-dynamic systems.
Fig. 2. Block diagram of a rigid-body flight-dynamic system.
Fig. 3. Vortex flow on a slender body in a water tunnel; U = 4 cm/sec,
Re = 400.
Fig. 4. Nonlinear aerodynamics; normal-force coefficient of a slender
body.
Fig. 5. Critical points.
Fig. 6. Vapor screen of vortex flow on a slender body in a wind tunnel;
M=2.0, a =21.2°.
Fig. 7. Crossflow topologies for slender body of revolution at increas-
ing angles of attack.
Fig. 8. Surface streamlines on a wing at transonic speeds; Re = 6.8 x 10°,
a =5°%.
Fig. 9., Bifurcation diagrams; some examples.
Fig. 10. Crossflow topologies and bifurcations for a slénder body of
revolution with increasing angle of attack.
Fig. 11. Vortex breakdown on a swept wing in a water tunnel.
Fig. 12. Aerodynamic hysteresis; asymmetric vortex breakdown on a
slender delta wing.
Fig. 13. Aerodynamic hysteresis; flow separation on a spinning body with
a square cross section: nose side force at o = 90°.
Fig. l4. Turbulent boundary layer flow on a hollow circular cylinder in
free flight: M = 3.1, Re = 20 x 10°,

Fig. 15. A strange attractor: Lorenz attractor.
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Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Perturbation velocity contours from a turbulent channel flow
calculation.

Fractals — some examples.

Resolution of critical points.

Two scales; spiral nodes.

Aerodynamics of an oscillating airfoil: dynamic stall.
Summary of aerodynamic forces.

Flight-dynamic characteristics: a single~degree-of-freedom
system.

Flight dynamics: example of phase plane characteristics.
Flight—dynamic characteristics with aerodynamic hysteresis:

two~degrees-of-freedom system.
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in flight dynamics. Emphasis is placed on the aerodynamic component as the major source of non-
linearities in the flight-dynamic system. Four aerodynamic flows are examined to illustrate the
richness and regularity of the flow structures and the nature of the resulting nonlinear aerody-
namic forces and moments. A framework to facilitate the study of the aerodynamic system is
proposed having parallel observational and mathematical components. The observational component
consists of the elements structure, change, chaos, and scale. In the mathematical component,
structure is described in the language of topology. Changes in flow structure are described via
bifurcation theory. Chaos or turbulence is related to the analogous chaotic behavior of nonlinear
dynamical systems characterized by the existence of strange attractors having fractal dimensionality.
Scales of the flow are considered in the light of ideas from group theory.

Several one- and two-degree-of-freedom dynamical systems with various mathematical models of
the nonlinear aerodynamic forces and moments are examined to illustrate the resulting types of
dynamical behavior. The mathematical ideas that proved useful in the description of fluid flows
are shown to be similarly useful in the description of flight-dynamic behavior. The results
emphasize the importance of appreciating the strong interdependence existent between the level
of knowledge of nonlinear aerodynamic phenomena, the means of mathematically modeling them, and
the range of resulting flight-dynamic behavior.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Nonlinear aerodynamics Unlimited
Nonsteady aerodynamics
Large angles of attack

Subject Category - 02

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22, Price”
Unclassified Unclassified 79 AO5

*For sale by the National Technical Information Service, Springfield, Virginia 22161



