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SUMMARY

An algorithm for maximum likelihood (ML) estimation is developed with an effi-

cient method for approximating the sensitivities. The algorithm is applicable to any

parameter-estimation problem and is particularly suited for multivariable dynamic

systems. The ML algorithm relies on a new optimization method closely related to a

modified Newton-Raphson (MNR) technique; the new optimization method is referred to

as a modified Newton-Raphson with estimated sensitivities (MNRES).

MNRES determines sensitivities by using slope information from local surface

approximations of each output variable in parameter space. The fitted surface allows

sensitivity information to be updated at each iteration with a significant reduction

in computational effort. MNRES determines the sensitivities with less computational

effort than using either a finite-difference method or integrating the analytically

determined sensitivity equations as in an MNR procedure. The choice of the type of

surface (for example, nth-order polynomial or spline) and the method of fitting the

surface (for example, least squares or simply solving simultaneous equations) is made
by the user to suit the particular need.

Two surface-fitting methods are discussed and demonstrated, while other possi-

bilities are indicated. Comparisons are made between MNRES and other commonly used

optimization methods such as the Nelder-Mead simplex method (a search technique) and

the modified Newton-Raphson method (a gradient technique). Several sample problems

are solved to compare the techniques. Simple linear systems are used at first, and

then nonlinear aircraft estimation problems are solved by using both real and simu-

lated data. MNRES is found to be equally accurate and substantially faster than the

commonly used techniques. The reduction in computational effort provided by MNRES is

dependent on several factors: the choice of surface-fitting method, the number of

unknown parameters, data quality, and accuracy of the sensitivity calculations.

MNRES eliminates the need to derive sensitivity equations for each model, thus pro-

viding flexibility to use model equations in any format that is convenient and pro-
viding a more generally applicable algorithm.

INTRODUCTION

System-identification and parameter-estimation techniques used to determine

aircraft stability and control parameters from flight data are well established for

the linear flight regimes. In these flight regimes, the aircraft aerodynamic model

can be expressed as a linear function of the states and control inputs. In the non-

linear regimes, as in high-angle-of-attack conditions, the aerodynamic model can be

a complex function of states and control inputs. Thus, identifying the best mathe-

matical representation (model structure) and estimating model parameters can be very

difficult. The need to improve identification and estimation techniques for non-

linear aircraft models has led to further development of the methodology for system
identification.

In reference I a modified stepwise regression (MSR), along with several testing

criteria, is suggested as an efficient method to determine model structure and obtain

initial parameter estimates. This was found to be a useful technique for high-angle-

of-attack aircraft-identification problems in which nonlinear aerodynamic effects are



present. However, the estimates are asymptotically biased and their standard errors

are based on a simplified expression which is valid only for the "classical" linear

regression. Therefore, it is beneficial to improve the MSR estimates by using the

maximum likelihqod (ML) method which has more favorable asymptotic properties
(ref. 2). In addition, it is desirable for the ML algorithm to be independent of

model structure and sensitivity calculations; this independence provides a more

generally applicable algorithm and potentially eliminates some of the computational

burden found with integrating sensitivity equations. Also, a very efficient ML esti-

mation algorithm is desirable to reduce the computational effort involved in process-

ing a large number of parameters and candidate models. Reducing computational

requirements of the ML method requires careful examination of the optimization

methods utilized in the algorithm. Although nonlinear, unconstrained optimization

problems have been studied quite extensively (ref. 3), little has been done to

improve the optimization techniques as they apply to aircraft estimation problems.

The numerical aspects of computing ML estimates for linear dynamic systems in state-

vector form was studied in reference 4.

Aircraft estimation problems, which belong to a class of problems involving

dynamic systems, require substantial computational effort at each step of the opti-

mization process. At each step the parameters are updated and the equations of

motion are integrated to obtain time histories of each response variable. Many ML

estimation procedures for aircraft problems use a Newton-Raphson optimization method

(ref. 5) that requires solving (integrating) sensitivity equations. This accounts

for most of the computational effort since an m state system with n unknown

parameters requires mn sensitivity equations plus m state equations to be inte-

grated each iteration. Several states and 30 or 40 parameters are not unrealistic

for aircraft estimation problems. This is for only one flight condition; if a model

is desired throughout the entire flight envelope, the computational requirements

become overwhelming since analysis of various flight conditions may require more than

one candidate model.

The objective of this report is to provide an ML method which does not require

the analytical form of the sensitivity equations to formulate the algorithm and which

provides a method with reduced computational requirements compared with the commonly

used algorithms. The report first considers both gradient and search optimization

methods: the Nelder-Mead simplex method (SM) (a search technique (ref. 6)) and the

commonly used modified Newton-Raphson method (MNR) (a gradient technique). After a

comparison of these methods, the MNR is selected as a method for further considera-

tion. As a main objective of the report, an efficient algorithm is subsequently

proposed. This algorithm will be referred to as a modified Newton-Raphson with

estimated sensitivities (MNRES) method. It determines sensitivities without the

analytical form of the sensitivity equations and does it more efficiently than a

finite-difference method. Therefore, it is easily used with any model structure

determined, for example, by the MSR method. Properties of the improved method are

discussed and several test cases are provided. Finally, the MNRES algorithm is

applied to a nonlinear aircraft estimation problem by using both real and simulated

data. For this study the estimation problem is simplified by assuming that no

process noise exists in the system dynamics.



SYMBOLS

A system matrix for state equation

a. jth element of A matrix
3

ak incoming-parameter vector for MNRES algorithm

o

ak outgoing-parameter vector for MNRES algorithm

a acceleration in y-direction, g units (where lg = 9.81 m/sec 2)
Y

B control-distribution matrix for state equation

b wing span, m

b. jth element of B matrix
3

C state-distribution matrix for output equation

C rolling-moment coefficient, Mx/qSbI

nondimensional aerodynamic force and moments for trimmed flight
C I,0'Cn, 0'Cy, 0

C yawing-moment coefficient, Mz/qSbn

Cy lateral-force coefficient, Fy/qS

D control-distribution matrix for output equation

E{ } expectation operator

Fy force along lateral body axes, N

G. sensitivity matrix at ith data point
i

J cost function

M Fisher information matrix

M rolling moment, N-m
X

M yawing moment, N-m
Z

m number of states

N number of data points

n number of parameters

n number of elements in A matrix
a



nb number of elements in B matrix

P least-squares-parameter covariance matrix divided by

P roll rate, rad/sec

I

q dynamic pressure, _ pV 2, Pa

R measurement-noise covariance matrix

r yaw rate, rad/sec

S wing area, m 2

sk vector of sensitivities for kth element of Y

Sk_ sensitivity of kth element of Y to _th element of 8

t time, sec

At processing time for Control Data Corporation CYBER 175 digital
computer, sec

U input vector

V airspeed, m/sec

v. vector of measurement noise at ith data pointI

X vector of states or matrix of parameters in MNRES

Y vector of outputs

y scalar output

Z. vector of measured outputs at ith data point1

z. jth element of Z.
3 i

angle of attack, rad

sideslip angle, rad

incremental value

6 aileron deflection, rad
a

6.. Kronecker delta
13

6 rudder deflection, radr

8 vector of unknown parameters

8" vector of optimal parameters
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v. vector of residuals at ith data point
l

p air density, kg/m 3

standard error

roll angle, rad

Subscripts:

a partial derivative with respect to indicated quantity

H,L highest and lowest cost, respectively

i,j,k,_ general indices

Superscript:

j index of surface-fitting points

Abbreviations:

CPU central processing unit

MAX ML program using MNRES algorithm

MAXLIK ML program using MNR algorithm

ML maximum likelihood

MNR modified Newton-Raphson

MNRES modified Newton-Raphson with estimated sensitivities

MSR modified stepwise regression

NR Newton-Raphson

SM simplex method

Matrix exponents:

T transpose matrix

-I inverse matrix

Mathematical notation:

^ estimated quantity when over symbol

• derivative with respect to time when over symbol

V gradient operator
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The following aerodynamic derivatives are referenced to a system of body axes

with the origin at the aircraft center of gravity:

_Cy _Cy 8Cy

Cy = _--_-- C = -- C =
6 Y pb Y rb

p 8 2-_ r 8 2--V

5Cy _Cy 52Cy

Cy = -_-- Cy = _ Cy -
6a a 6r 86 5_ 56r _6

tc 5c 5c
C = i C I C = I

1_ 56 1 pb 1 rb
p 5 2-_ r 8 2-_

_C _C 82C

C = I C = I C = I

16a 86a 16r 56r I 6 5_ 56

82C 5C 5C
l n n

c - 5_ _p c = 5--_- c -
lap n _ n pbp 52--9

tc 5c 5c
C __n n n
n = rb C = _ C =

r 8 2V n6a a n6r 56-- r

1 53Cy 1 53Cn

cy 63 = c =6 563 n63 6 563



COMPARISON OF SEARCH AND GRADIENT OPTIMIZATION METHODS

The twofold objective of this report is to develop an optimization method for

use in the ML estimation which (1) eliminates the need to solve sensitivity equations

and (2) improves, if possible, the speed of the overall estimation algorithm. This

should be accomplished while considering practical examples of nonlinear, multi-

variable dynamic systems such as aircraft systems, which are of primary interest for

this research. As a result of the twofold objective for this report, two well-

established optimization methods were chosen for consideration.

Two optimization methods (the Nelder-Mead simplex method (SM), also called the

flexible polyhedron method, and the modified Newton-Raphson (MNR) method) will be

described in this section. More details are provided in references 3 and 6 for the

SM and in references 2 and 5 for the MNR. A variation of the MNR will be used in

which the derivative information (sensitivities) is computed by using finite differ-

ences (refs. 7 and 8). Both forms of the MNR are used in this report.

The Nelder-Mead algorithm was chosen for this study because search methods ini-

tially appear to be good candidates for reducing computational demands in aircraft

estimation problems. These methods avoid derivative calculations, which is where

most of the computation time is spent in the quasi-Newton methods. The search meth-

ods are independent of model form and thus are readily applicable to any aerodynamic

model. The SM is used at the Langley Research Center and has been found to be advan-

tageous in some aircraft design and control applications (ref. 9).

This report is primarily concerned with nonlinear aircraft estimation problems.

Since the MNR approach is commonly used for these problems, it is included as a

benchmark. Although it is computationally burdensome to estimate derivatives, this

information enables relatively fast convergence of the optimization methods. In

fact, Newton's method converges in one pass for cost functions which are quadratic.

Hence, Newton-Raphson gradient techniques used for estimation problems of dynamic

systems are expected to converge faster when the quadratic approximations for the

cost functions are good. Also Newton's method and the quasi-Newton methods provide

both step size and direction for each iteration independent of relative parameter

scaling. In some problems, however, additional control of step size is needed to

ensure convergence. Since removing the requirement to solve sensitivity equations

has been proposed, the MNR algorithm in this report will use a simple finite-

difference methodexcept when otherwise noted. This does not turn out to be too

costly in terms of computational time (refs. 7 and 8). However, care must be taken

to obtain the derivatives as accurately as possible, especially in large problems.

Description of Two Candidate Optimization Methods

The SM represents a class of methods, called search methods, which do not use

derivative information to minimize a scalar function of n variables J(e). The

method uses a flexible polyhedron surface with n + 1 vertices where each vertex is

defined by a vector e. The vertex eH, producing the highest value of J(@), is
projected through the centroid of the remaining vertices to define a new vertex.

This new vertex, and the remaining ones without eH, form a new polyhedron. This
operation is called a "reflection." If the new vertex produces a lower cost than

e L (the vertex producing the smallest J(e)), then an expansion takes place and a
new vertex is located farther out along the same projection. Similarly, if higher

costs are found, a contraction takes place. The minimum of the cost function is

found by repeatedly deleting the point having the highest value of J(e) and adding
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new projected points that produce lower J(@). The flexible polyhedron is able to

adapt to the shape of J(8) by stretching down slopes, contracting near minima, and

changing direction in curved valleys.

The modified Newton-Raphson optimization method belongs to a class of methods

known as variable-metric or quasi-Newton methods. This class has various techniques

for approximating the Hessian matrix of the cost function (matrix of second partials
with respect to parameters), but they all use first-derivative information for the

approximation. The MNR method will be illustrated in an ML estimation problem for a

linear system without process noise. The theory behind ML will not be discussed; see

reference 2 for details. It is assumed that only the measured outputs are corrupted

by noise and that the noise is an uncorrelated, Gaussian white-noise source with zero

mean. The problem is to minimize the errors between the computed model outputs and

the actual measured outputs. The optimization problem is nonlinear and MNR is

usually applied because of its good convergence characteristics even for large num-
bers of unknown parameters. The system equations are as follows:

State equation:

= AX + BU X(0) = X0 (I)

Output equation:

Y = CX + DU (2)

Measurement equation:

Z. = Y + v. (i = I, 2, ..., N) (3)1 1 1

where it is assumed that

E[v i} = 0 E{v i(vj) T} = R6ij (4)

The symbol R represents a diagonal measurement-noise covariance matrix. Without

process noise, the cost function to be minimized is

N

i )TR- +N R IJ(@) = _ IZi (Z i - _ inl I (5)

The unknown R can be determined by minimization of the cost with respect to R.
This minimization produces (see ref. 2)

N

=_" V. (V.) Tl l (6)



The cost can then be written as

N
I

- ^ -^Yi)TR-I - -̂Y.) + ConstantJ(O) = _" _ (Z i (Zi 1
(7)

i=I

This is the same cost function used in the output error technique from reference 2,

except that the covariance of the measurement noise is used as a weighting matrix.

The MNR method accomplishes the minimization by expanding Y (the computed output

vector) about e0 (the initial unknown parameter vector). A Taylor series expansion
truncated to first order is computed as

= o)

where Ae = e - e0. Then, by substituting equation (8) into (7), a quadratic
approximation of J(@) is obtained. The increment A@ is the unknown. Differenti-

ating J with respect to e and equating the derivative to 0 to find the minima
results in

N N
5J T ^ T^

= -_ (Gi) R-Iv i + _ (Gi) R-IG i Ae = 0 (9)
i=I i=1

where

and, thus,

Ae = (Gi)TR-IG (Gi)TR-Iv. (11)
=I i=I i

This is often written as

5Ji (12)= _M-I e°

emphasizing the Fisher information matrix M and gradient terms. So, for each kth
A ^ ^

iteration the new estimate ek+l is given as ek+l = 8k + Aek+l" Convergence is
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achieved when AJ/J and A8/8 are small enough. The sensitivities Gi are deter-

mined separately from the aforementioned steps. This can be done numerically with a

simple finite-difference method or by integrating the sensitivity equations. The

sensitivity equations for the system defined in equations (I) and (2) are

= AX + 5A

Xaj a _ X (j = 1, 2, ..., na) (13)3 ]

5B (14)

Xbj 3 3
= AXb. + _--_ U (j = 1, 2, ..., nb)

where each element of A and B is an unknown parameter. Details of the

sensitivity-equation approach are discussed in reference 2 and the finite-difference

approach is discussed in references 7 and 8.

Performance of Methods on Estimation Problem I

Estimation problem I demonstrates and compares the Nelder-Mead and modified

Newton-Raphson optimization methods in a simple ML estimation problem. The MNR
method uses a finite-difference technique to compute derivatives which satisfies the

first objective of this research, eliminating the need to compute analytical gra-
dients. The MNR method using numerically determined derivatives generally performs

with about the same speed as a method using analytically determined derivatives, that

is, integrating sensitivity equations (refs. 7 and 8). The purpose of this example

is to compare the relative performance of the two approaches on a problem which is

characteristic of dynamic systems, such as aircraft estimation problems. The impor-

tant characteristics of the aircraft estimation problem are the requirement to inte-

grate equations of motion to evaluate the cost function and the requirement to have
reasonable initial values for the estimated parameters. These initial values might

be given by a least-squares procedure.

The first test problem, referred to as estimation problem I, is a single-

input/double-output, linear second-order system with six unknown parameters. The

system equations used to generate simulated data are given by equations (I) and (2).

The six unknown parameters are the four elements of the 2 x 2 system matrix A and

the two elements of the control-input matrix B found in equation (i). Matrices A

and B are defined in table I as true values of e; matrices C and D of equa-

tion (2) are the unity and zero matrix, respectively. The data were generated

by using a simple Euler integration technique, and the input was selected as

U = sin(t). Initial conditions were set to 0. Process noise and measurement noise

are excluded for problem I.

For aircraft estimation problems, the bulk of computer time is spent in perform-

ing integrations. To prevent any bias in the results due to variations in program-

ming efficiency or integration techniques, the estimation algorithms use the same

integration subroutine. For estimation problems I and II a simple Euler integration

technique is used and the integration subroutine is specifically designed to inte-

grate matrix second-order linear time-invariant systems. In order to accommodate

10



TABLE I.- ESTIMATION PROBLEM I

True Initial Final estimated values

Unknown parameter, value of value of using method -

8 8 8
SM MNR MNRES

81 0 0.01 -0.12 E-03 0.89 E-07 0.73 E-06

8 2 -1 .5 -1 .6 -1 . 5 -1 . 5 -1 . 5

e 3 1 .0 1.1 1.0 1.0 1.0

84 -.5 -.6 -.5 -.5 -.5

85 .2 .25 .2 .2 .2

e6 i 15 i i i
Cost ..... 0.14 E-08 0.61 E-10 0.11 E-07

Equivalent "e;aiuatlon °[[[ 715 28 12

At, sec ................. 2948 106 47

the MNR algorithm, which requires a fourteenth-order system to be integrated each
pass, the system

° ]A 0 X B

Xaj xajl
= 5A/Saj A 0 + 0 U (15 )

l

o o o
is treated as seven, second-order systems: one second-order system for the states

(given by eq. (I)), four second-order systems for the sensitivities with respect to

A matrix elements (given by eq. (13) with j = 1 through 4) and two-second order

systems for the sensitivities with respect to B matrix elements (given by eq. (14)

with j = I and 2). The results of the first-system integration X(t) are used as

the input function for the Xa system. Because the systems are not fully coupled, it

is more efficient and just as accurate to integrate them separately (as described) as

it is to integrate the complete fourteenth-order system.

The performance of the methods used in this report will be evaluated with the

following criteria:

(I) Accuracy of estimates

(2) CPU time to termination

(3) Number of cost-function evaluations

The primary evaluation criteria will be accuracy of estimates and CPU time to termi-

nation. Termination is obtained when parameter and cost-function fractional changes

are computed to be within a specified precision. Both cost-function change AJ/J

and parameter change Ae/8 are required to be satisfied simultaneously to prevent
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premature termination on a plateau where AJ << 1 and A8 is relatively large, or on

a steep slope where A8 << I and AJ is relatively large.

A secondary criterion is the number of cost-function evaluations, which is used

only as an indirect guide since each method advances differently with each cost deter-

mination. However, the number of cost-function evaluations is important since each

method requires the system equations to be integrated at least once for each cost

evaluation, with one cost evaluation representing a significant computational effort.

To emphasize that the same measure of computational effort is used to compare the

different methods, the term "equivalent evaluations" is used. One equivalent evalua-

tion represents the computational effort required to integrate the system equations

once. Each method described in this report requires a different number of equivalent

evaluations to make one update in the parameter estimates.

Only dynamic systems or aircraft system estimation problems are used in this

study, rather than classical test problems such as Rosenbrock's function (ref. 3).

Using classical optimization problems, which usually require very little computational

time to evaluate the cost function, could lead to different conclusions about the

algorithms. The problems in this study range from a simulated linear system with

6 unknown parameters and noise-free measurements (problem I) to a real aircraft

problem modeled by a nonlinear system with 20 unknown parameters and measurements

corrupted by noise (problem IV).

Figure I shows the input and response time histories for problem I, and table I

gives the numerical results. This table shows the true value of the six unknown

zI 0

-i

z2 0

-1

u )

-1

I,,,,I n,,,l
0 I0 2o

t, sec

Figure I.- Time history of input and

response variables for problem I.
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parameters, their initial values, and the final estimated values. Each method was

able to estimate the parameters correctly and satisfy the convergence criterion. The

MNR method performed about 30 times faster than the SM. This is apparent when con-

sidering the number of equivalent evaluations required by each method, 715 for SM and
28 for MNR.

Table I shows clearly that optimization problems having reasonable starting
values and involving time-consuming cost-function evaluations should not be solved

with direct search methods, such as SM. Reasonable initial values tend to provide a

more quadraticlike cost function for which Newton's method is most effective. If

reasonable initial values are not available, the SM may be more attractive. In

response to the results of problem I, this study concentrated on improving the MNR

method. The next section describes the optimization method developed from MNR.

MODIFIED NEWTON-RAPHSON METHOD WITH ESTIMATED SENSITIVITIES (MNRES)

The MNRES method developed in this paper is essentially an MNR optimization algo-
rithm with an efficient method for estimating sensitivities. The sensitivities are

determined with less computational effort than by using either a finite-difference

method or analytically determined sensitivity equations. As in the ML/MNR algorithm

previously described, the same equations (eqs. (I) through (12)) apply for ML/MNRES;

however, the sensitivities G. are computed by using slope information from local

surface approximations of Y(_). The fitted surface allows the slope or sensitivity

information to be updated at each iteration with a significant reduction in compu-
tational effort.

In reference 10, a nonlinear least-squares algorithm is presented which uses a

surface-fitting method. This algorithm uses a linear-surface approximation of a

scalar-response variable to eliminate derivative calculations altogether. In MNRES,

the surface approximation is treated differently by developing an algorithm which

retains derivative information in a Newton-Raphson method for multivariable systems.

This is done to provide directional information for the convergence process and to
provide covariance information.

The sensitivities for MNRES are determined by assuming that they are approxi-
mately equal to the slopes of a surface which has been fit to Y(e). The surface

approximates Y(8) near the series expansion point of equation (8). The choice of

the type of surface (e.g., nth-order polynomial or spline) and the method of fitting

the surface (e.g., least squares or simply solving n simultaneous equations for

n unknowns) is made by the user to suit the particular need. The trade-off in choos-

ing a method involves the choice between accuracy of the sensitivities and computa-

tional effort. The simplest and computationally least demanding approach is to

expand Y(8) in an n-term first-degree polynomial in 8 and then solve for the coef-

ficients (sensitivities) by solving the n simultaneous equations. Although this

approach produces the least accurate sensitivities, this, as well as any other

approach, can have the improved accuracy through step-size control, if necessary.

Theoretically, in the limit as step size becomes very small, the estimates from the

surface fits would equal the estimates from a finite-difference method, which in the

limit equals the actual slope. The trade-off for step-size control involves the speed

of convergence versus the accuracy of the sensitivities and robustness of the algo-
rithm to noisy data.

13



The MNRES algorithm is best described by first looking at the computationally

least demanding approach of using a linear-surface approximation• Expanding Y(8)

in a first-degree polynomial in e for each point in time and at n + I different

points in the n parameter space gives

y3 i ) = Sk0 + Skle + ... + Skne (16)

where i indicates the ith point in time; k indicates the kth element of the output

vector Y(e); and j indicates one of the n + I sample points used to fit equa-

tion (16) to Y(e). Note that YJ(8 j) = Y(e) at each of the n + I points. The

sample points are chosen by allowing a small perturbation of each parameter. Alter-

natively, the perturbation size can be selected to reflect the relative significance

of each parameter to the model• This allows for larger perturbations of the less

sensitive parameters and smaller perturbations for the very sensitive parameters, thus

providing higher quality derivative calculations• This alternative is discussed

further in the next section• The slopes Skl to Skn are the desired sensitivities

{_yk/_ej}i[ and Sk0 is the point on Y(8) where the sensitivities are desired; it
is the serles expansion point of equation (8) for the MNR optimization method. Note

that because this is a linear surface, the slopes are constant over the surface and

need not be evaluated specifically at Sk0. If a higher degree polynomial is fit to
Y(e ), the slopes will vary across the fitted surface and, therefore, must be evaluated

specifically at Sk0. Consider the matrix representation of equation (16) for the
first element of Y and for the n + I sample points:

Y1i = XSIi (17)

_ _ _ o;- -o 1 o o i
Yli 81 82 •'• n s101

1 1 1 1 " • (91 Sl 1 I
Yli 81 82 " n

I
• = ..... (18)

• • • • • I
I• • • • •

I

n 1 n n .. en
Yli el e2 " n Slnli

Since s10 is a known point, equation (18) can be simplified• The first line in
equation (18) can be eliminated by subtracting from the other n equations• Thus,

AYli = _X Sli (19)

14



]0
Yli - Yli A@ "'" n I• = . . . , (20)

• " " _1

n 0 n n [Yli - Yli AOl AO2 ''" AOn Sln

where

j _ 0
Aek = ek ek

Thus, at time i the sensitivities for the first element in Y are given by

-i (21)
Sli = [AX] AYIi

Note that the AX matrix is independent of time. This enables the sensitivities

to be calculated rapidly during each iteration of the algorithm• This is a key

factor in reducing the computational effort of the algorithm; in effect, the integra-

tion of the mn sensitivity equations has been replaced by a set of m matrix

multiplications•

Figure 2 shows, geometrically, two iterations for the case in which @ is of

dimension two and a linear surface is used to fit a scalar y. The expansion is

simply at time i:

= (22)

LYi yiJ _e-_ Ae22Ji

During the first iteration, this espansion requires that y(@) be evaluated at

n + 1 = 3 points: y0, yl, y2. Computationally, the first iteration is the most

costly phase of the MNRES algorithm• Each evaluation of Y requires that the equa-

tions of motion be integrated. The linear surface (indicated by the solid-line tri-

angle in fig. 2) is fit and the slopes (sensitivities) are thereby determined. The

algorithm proceeds as in the ordinary MNR method to obtain

= A k+1
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y(@)

0
y 1

yj = y(O j)
e2

\
_ 01

Figure 2.- Linear-surface fit for two iterations of MNRES.

The new Y is evaluated (through integration) at 8k+ 1 to get y3(8). At this point

the MNRES algorithm has reduced the sensitivity problem to solving a set of simulta-

neous equations. This is done by eliminating the 83 in X, which produced the

greatest cost in J(8), and replacing that information with the newest estimate

of 8. The new surface (indicated by the dotted-line triangle) in figure 2 assumes

that y0 is the high-cost point and thus eliminates it from the fitted surface. The

slopes of the new surface provide the sensitivities for the MNRES algorithm to pro-

ceed. In this method a check should be made to ensure that the new Y3(Sk+1) pro-

duces a smaller value of J(8). In some cases, step-size control or complete

restarting may be needed. Note that initialization of the algorithm requires that

n + 1 integrations be performed for the n + I trajectories, y3. After the

start-up, only one integration of the system equations is needed to evaluate the

cost J(8), outputs Y(8), and updated parameter estimates for each iteration.

The least-squares approach to fitting the surface Y(8) offers another advantage

if an iterative least-squares method is used. The iterative method provides a memory

device reducing the storage requirements from n + I sets of output time histories to

just two time histories. One of the two corresponds to the new response predicted by

the most recent estimate of 8, and the other corresponds to the outgoing 8 that

produced the highest cost. The penalty for this advantage is the need to integrate

equations of motion twice per iteration; this result still requires substantially less

computational effort than that required with the usual MNR method. This algorithm was

used in estimation problems I and II and is described subsequently and also in the

appendix. It should be noted that because problems I and II did not require a large

amount of storage space, all time histories were saved so that only one integration

per pass was performed.

When using the iterative least-squares approach, only two changes are made to

the MNRES algorithm just described. The first change is in the calculation of the

_X matrix, and the second change is in the sensitivity calculation. The development
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of this formulation will begin with equation (16) in condensed form, which is shown in

the following equation. Everything discussed up to this equation in the previous

development applies here. Thus,

Y_i xJ (23)= Ski

Simplifying the notation by dropping the ki subscript and writing the matrix form of

the equation (which removes the j superscript) gives

Y = XS (24)

The least-squares solution for the sensitivity vector is

S = [xTx]-IxTy (25)

Now, defining a recursive relation for the k + 1 iteration gives

Pk+l = _ Xk) TXk] -1 (26)

and the updating equation is

Pk+l = + - (27 )

o

where ak is the new set of e to be included and a. is the outgoing set of 8
which produced the high cost in J. The recursive equation for S is

Sk+l = Sk - Pk+l L_ak) Yk - (ak) Yk + (ak)Tak - k a k S (28)

With the new sensitivities determined, the algorithm proceeds as before. The recur-

sive relations are derived in the appendix.

PROPERTIES OF MNRES OPTIMIZATION METHOD

In this section, properties of MNRES which aid convergence are discussed heuris-

tically, and factors which have a significant effect on speed are indicated. Also,

similarities and differences with the commonly used MNR method are discussed providing

a benchmark for comparison. Finally, to demonstrate the performance of MNRES, two

estimation problems with varying noise levels are solved by using MNRES and MNR to

obtain ML parameter estimates.
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The ML parameter estimates are obtained by solving an unconstrained, nonlinear

optimization problem; that is, find 8* which minimizes the cost function J(8). The

necessary and sufficient conditions for this problem are as follows:

(1) J(8) is differentiable at 8*.

(2) VJ(8*) = 0.

(3) V2J(8 *) > 0.

The theory for solving the unconstrained optimization problem is often based on the

assumption that the cost function J(e) is a quadratic function of e. This provides

a much more tractable theory and allows basic properties to be readily established.

Corresponding theorems for general nonlinear functions are very difficult to prove.

However, techniques developed using the quadratic assumption are still very effective

for nonlinear functions. Many techniques for solving nonlinear minimization problems

are developed from practical experience.

Comparison of MNR and MNRES Properties

Convergence of NR or MNR algorithms, both with and without finite-difference

derivatives, has been well documented (ref. 3). Convergence of MNRES can be shown, at

least heuristically, by considering several details. First, the MNRES method is still

fundamentally an NR method or, for this study, an MNR method. The only critical dif-

ference is that the derivatives are approximate which makes MNRES closer to MNR with

numerically determined derivatives. Second, note that fitting a first-degree, n-term

polynomial such as

y = s + s 8 + ... + s 8 (29)
0 I I n n

to n % 1 data points is equivalent to a simple finite-difference method. In effect,
as A83 (the distance between points on the fitted surface for MNRES) becomes

small enough, the sensitivities become identical to that given by a simple finite-

difference method, regardless of the actual functional representation of Y(8). The

MNRES algorithm simply relaxes the accuracy of the sensitivities in order to reduce

substantially the integration requirements; the degree of relaxation varies during the

optimization process but can be controlled by limiting step size.

The relaxation of sensitivity accuracy generally appears to be a very beneficial

trade-off for Newton-Raphson algorithms. During an MNRES optimization there are two

times that the sensitivities are very close to the finite-difference values; these

times are during the initialization or start-up of the algorithm and toward the end

when A8 becomes small. During initialization of the algorithm, n different 8

are chosen (a perturbation on each element of 8 is sufficient) and the actual sur-

face given by Y(8) is fitted. The user can choose an initial eJ such that

I(8j - 80)/@01 << I for each j. In this study, the same A8 j was used in the MNR
with finite-difference derivatives as that used in the start-up of the MNRES. This

was done for comparison purposes; in practice, the choice of perturbation size for

8 may be very different, as discussed later.
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The computational advantage of MNRES over MNR is determined to a large extent by

the number of unknown parameters n. During the first iteration, both MNRES and MNR

require n + I equivalent evaluations. After the first iteration, MNR continues to

use n + I equivalent evaluations per iteration but MNRES needs only one per itera-

tion. As the estimation process advances, MNRES continually eliminates values of 8

which are far from 8*, based upon the information in one equivalent evaluation.

Thus, at the end, 8 is very close to 8*, producing very small A8 3 for the deriv-

ative estimations. Again, the derivatives obtained by the surface-fitting method

approach the values obtained in a finite-difference method.

Two factors aid in preventing divergence during the critical time period, when

MNRES is between initialization and the end of the optimization, in which potentially

large A8 can occur. First, the user can always incorporate step-size control logic.

Carried to the extreme, MNRES could always be forced to approximate the derivatives

the same as a finite-difference method. Of course, convergence would be very slow

because of the very small steps. In practice, one would let the algorithm take steps

determined by the NR logic (as done in this study); and then if a convergence problem

develops, one would begin controlling step size. Secondly, NR, MNR, and MNRES methods

advance more quickly as the quadratic approximation of the cost function improves;

moreover, the Newton algorithm converges in one step for a quadratic cost function.

Since the quadratic approximation of the cost function improves the closer that 8

gets to 8*, and since initial estimates of 8* are often given by a least-squares

procedure or knowledgeable user, e0 tends to be close to 8*. Thus, MNRES starts in
a region conducive for convergence and, therefore, the method would not be required to

handle very large A8 for many practical cases.

As mentioned previously, in practice it is beneficial to choose the perturbation
size in a different fashion from that used in a simple finite-difference method.

Simply using a l-percent perturbation on each element of 8 to obtain the correspond-

ing perturbation in each element of Y(e) is not optimum for derivative calcula-

tions. Experience has shown that it is beneficial to use perturbation sizes which

reflect the importance of the parameter to the model. By computing the sensitivities

2

as 8jMjj for each parameter and then letting the perturbation sizes be scaled

inversely proportional to the normalized ratios of sensitivities, more accurate deriv-
ative information can be obtained. Of course, this applies only when an initializa-

tion or "restart" is needed. The fundamental issue is that the less sensitive a

parameter, the larger the perturbation necessary to obtain an appropriate size

response in the outputs. This approach could also be applied to an MNR method.

Theoretically, the same derivative should be obtained for any sufficiently small

perturbation in 8; however, because of both the sometimes widely varying sensi-

tivities of the parameters and the numerical-precision limitations, it is beneficial

to vary the perturbation size according to the aforementioned rule. The sensitivity

2

defined as 8jMjj was introduced in reference 11 and used again in reference 12 as a

means of quantifying the significance of a parameter to the model.

There are four factors which have a significant effect on the speed of the MNRES

algorithm. The first factor is the degree of precision demanded by the convergence

criteria AJ/J and A8/8. Naturally, the more precision desired, the greater the

computational demand. How well the algorithm meets the demand is determined by the

computer capability (word size) and by the information content of the data analyzed.
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The second factor is the accuracy of the sensitivities, particularly during initial-

ization of the algorithm. The perturbation size chosen for 8 can have a significant

effect on the accuracy of the sensitivities. In turn, the accuracy of the sensitivi-

ties directly control the speed of the algorithm since Gi determines both the step
size and direction in the parameter-update equation. A third important factor is the

scaling term used in most ML algorithms to reduce the step size. This term is com-

monly used to aid convergence since the computed step size is sometimes too large and

may cause divergence. The scaling term used in this study was equal to I. The fourth

factor is unique to MNRES and is determined by the number of parameters n to be

estimated. This problem is a result of inverting the n x n matrix _X, which may

contain very small numbers as the algorithm proceeds. Experience has shown that

checking this matrix inversion for numerical difficulties is important in the MNRES
method.

Problem I Extended

Estimation problem I is solved again to allow a comparison between MNRES and the

two methods previously considered, MNR and SM. Problem I has been described and fig-

ure I shows the input and response time histories. MNRES uses the same finite-

difference method as that of MNR to determine sensitivities during initialization.

Also, MNRES uses the iterative least-squares form of the algorithm; however, only one

integration per pass is performed. Because of the small storage requirements, all

time histories are saved, thus eliminating the need for an additional integration.

Table I presents the results of using the three optimization methods in the estimation

algorithm. All three algorithms accurately converged to the correct parameter values.

However, MNR was 30 times faster than SM; and MNRES was twice as fast as MNR, or

60 times faster than SM. The number of equivalent evaluations had similar ratios,

that is, 715:28:12.

The initial values were relatively close to the final solution and thus allowed a

good quadratic approximation of the cost function; therefore, the two Newton-Raphson
methods were substantially faster. MNRES, however, capitalized more efficiently on

the information obtained from each integration of the system equations. Each integra-

tion of the system equations provides information which is immediately incorporated

into the numerical process when using MNRES. When using MNR, n + I system integra-

tions (equivalent evaluations) are required before each updating operation; for prob-

lem I, n + I is equal to 7.

Performance of Methods on Estimation Problem II

Estimation problem II is provided to demonstrate the robustness characteristics

of MNRES compared with those of the commonly used MNR. The form of MNR and MNRES used

in problem I is used again in problem II. The known system from problem I is analyzed

again in problem II, except that measurement noise is added and a step input is used

to excite the system. Two cases are considered with different levels of measurement
noise. The noise is zero mean and Gaussian; the standard error of the noise for each

case is 0.0001 and 0.001, respectively. Figure 3 shows time histories of the input

and response variables for the two cases, and table II shows the estimation results.

In case I both methods produce equally degraded results; however, MNRES still

converges to the same precision level more quickly. In case 2, by using a severe
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noise level and a limited amount of data, MNRES was unable to converge at all. The

results showed that it was oscillating about a solution, unable to find a new param-

eter vector which would produce a lower cost. The MNRES used on this problem had no

special step-size control logic. The solution that was obtained, however, was as

accurate as that obtained by MNR, which did converge.

.O03_--E__/_' .01_

zI .O01_-/_,._¢.A_ zI 0

-.001 -.01

"00 "Oiz2 O_ z2-.001 -.0

"0'Iu .005 U .005

0 Oil

llilll lllll llll,l ltill

0 I0 20 0 I0 20

t, sec t, sec

(a) Case I. (b) Case 2.

Figure 3.- Time history of input and response variables for problem II.

Meeting convergence requirements does not guarantee accurate results; the error

in the estimates ranged from a 5-percent error to a 130-percent error. MNR had both

the most accurate and the least accurate estimate. The importance (sensitivity) of a

parameter to the model will significantly affect the accuracy of the estimate, partic-

ularly under these adverse conditions. Based on these examples, it appears that MNRES

performs faster than MNR while providing the same level of precision.

It should be noted that a Euler integration method was used and may have a

slightly degraded performance, particularly for the MNR method. Euler integrations

tend to have an increasing error with the length of integration. This problem was

reduced in part by using relatively few data points. In problem I, only the first

5 sec of data (20 data points) were analyzed. In problem II, for both cases, only

3 sec of data (12 data points) were used. Additionally, step-size control of the

optimization algorithm could have been used as another means of improving the con-

vergence capability. This was not used by any algorithm, although SM has the ability

to determine whether to extend or contract the polyhedron.
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TABLE II.- ESTIMATION PROBLEM II

(a) Case I

True Initial Final estimated values

Unknown parameter, value of value of using method -

8 8 e
MNR MNRES

81 0 0.01 -0.0675 -0.0684

e2 -1 •5 -1.6 -1 •471 -I. 471

83 I.0 I.1 I.009 I.010

e4 -.5 -.6 -.449 -.448

@5 .2 .25 .202 .202

86 .1 .15 .098 .098

Cost .................... 0.105 E-06 0.105 E-06

Equivalent evaluation ... 42 12

At, sec ................. 77.54 24.08

(b) Case 2

True Initial Final estimated values

Unknown parameter, value of value of using method -

8 8 8 MNR MNRES 1

81 0 0.01 -0.705 -0.410

e2 -1.5 -1.6 -1. 228 -I. 549

e3 1.0 1.1 1.757 .799

e4 -.5 -.6 .159 -.238

@5 .2 .25 .210 .251

e6 .I .I5 .087 .037

Cost .................... 0.104 E-04 0.122 E-04

Equivalent evaluation ... 70 27

At, sec ................. 134.44 56.05

IMNRES did not converge.

APPLICATION TO NONLINEAR AIRCRAFT ESTIMATION PROBLEMS

In this section the utility of MNRES is demonstrated by application to nonlinear

aircraft estimation problems by using both simulated- and real-flight data. For

these problems, the computationally least demanding form of MNRES (with eq. (21)

instead of (28)) is used to compute sensitivities. The accuracy and robustness of

the algorithm are assessed by testing the algorithm on simulated data with known

noise levels. Also, performance of the algorithm on real-flight data is checked by

comparison with a well-proven ML algorithm. In both cases the problems involve

nonlinear lateral models of a general aviation aircraft.
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Estimation Using Simulated-Flight Data

In this section ML estimation problem III is considered. This problem simulates

real-flight data with varying noise levels. Three cases are considered: case I

without any measurement noise, case 2 with a representative noise level typical of

flight data for the aircraft, and case 3 with twice the noise level of case 2. The
standard errors of the simulated measurement noise are shown in table III. In each

case the noise is zero mean and Gaussian. The simulated data were created by a

TABLE III.- STANDARD ERRORS OF SIMULATED

MEASUREMENT NOISE

Standard deviations for -

Output variable

Case 1 Case 2 Case 3

6, rad ........ 0 0.010 0.02

p, rad/sec .... 0 0.010 0.02

r, rad/sec .... 0 0.010 0.02

#, tad ........ 0 0.005 0.01

ay, g units ... 0 0.005 0.01

fourth-order Runge-Kutta integration with a step size of 0.05 sec. A maximum

likelihood program called MAX is used to solve the problem and it uses the MNRES

optimization method. The MNRES method computes sensitivities by using a simple

finite-difference technique during initialization and then uses equation (21) there-

after. Program MAX uses two convergence criteria: AJ/J 4 0.001 and A8/8 4 0.001.

Table IV shows the terms used in the nonlinear aerodynamic model to create the

simulation and the parameter estimates obtained through analysis of the simulated

data. Time histories are provided for the three cases in figure 4. The control

inputs were the same for all three cases and are shown in figure 5. As expected, the

estimates of the less easily identified terms are more quickly corrupted as the noise

levels increase; however, the estimates are still very reasonable and the time histo-

ries are accurately predicted. Table IV shows that the MNRES method can be used

effectively in estimating parameters for nonlinear aircraft systems.

Estimation Using Real-Flight Data

In this section ML estimation problem IV is considered. Problem IV uses flight

data from a general aviation aircraft operating at an angle of attack of 8 °. The

problem is solved by using two different ML programs. The first, referred to as

program MAX, uses the MNRES algorithm; and the second, referred to as program MAXLIK,

uses an MNR algorithm. This MNR algorithm integrates the sensitivity equations to
obtain the sensitivities. As used in the simulated-data case, the MNRES method com-

putes sensitivities by using a simple finite-difference technique during initializa-

tion and then uses equation (21) thereafter. MAXLIK is a proven code used at the

Langley Research Center for aircraft-parameter estimation. MAXLIK was developed from

the equations documented in reference 5. For comparison purposes each program uses a
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TABLE IV.- SIMULATED-DATA ANALYSIS USING MNRES

Unknown Parameter estimates for -

parameter, Simulation values

8 Case I Case 2 Case 3

C 0.1 3 0.1 299 0.1 298 0.1 295
Y, 0

Cy -.411 -.4136 -.4261 -.4401

Cyp -.146 -.1524 -.1874 -.2379

CYr .63 .6686 .6070 .5412

Cy -.053 -.0618 -.0733 -.08726a

Cy .075 .0794 .0775 .07516r

Cl, 0 0 .0001 -.0003 -.0005

C -.I 23 -.I 223 -.I 228 -.I 240

CIp -.397 -.3988 -.4026 -.4094

C .257 .2573 .2409 .2239
Ir

C -. 1 82 -.181 5 -. 1778 -. 1755
16a

CI .077 .0067 .0059 .004976r

C lap 2.63 2.6254 2.519 2.4359

Cn, 0 0 -.00005 -.00008 -.0001

Cn 0 .000003 .0001 .0005

C -.1 5 -.1488 -. 1524 -. 1558
np

C -.083 -.0828 -.0861 -.0911
nr

C -.0431 -.0425 -.0434 -.0445
n6a

C 1.7 1.7343 1.4419 1.0118
n 6r
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(a) Case I.

Figure 4.- Measured and predicted responses for lateral simulation.
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Figure 5.- Control inputs for
lateral simulation.

fourth-order Runge-Kutta integration method and an integration step size of

0.05 sec. A convergence criterion is set at _J/J = 0.001 for both codes. Pro-

gram MAX normally uses an additional criterion restricting the parameter change

4@/8; however, in this problem it is removed to ensure that both programs converge

for the same criterion. Both programs use the same bias and scale-factor corrections

to the flight data. These corrections were determined by using a compatibility

program developed in reference 12.

Estimation problem IV involves a nonlinear lateral model. Table V presents a

comparison between parameter estimates and their standard errors from both MAX and
MAXLIK. It also shows the initial values from the modified stepwise regression

program of references 1 and 13. The sensitivities computed as 8_M.. are given in3 33

the last column. Again, there is reasonable agreement between the two approaches.

Standard-error estimates tend to be a little higher for program MAX; this is probably

due to their sensitivity to the derivative information. Repeating the calculations

with program MAX, by allowing the sensitivity ratios to be incorporated into the

initializing derivative calculations, provided a small improvement in the overall

speed of the algorithm. This occurred because only one restart was required during

the optimization process. More improvement would be realized in problems where

restarting occurs several times. Time histories of the measured flight data and

predicted response using the estimated model are shown in figure 6. Execution times

for problem IV indicate program MAX to be about 30 percent faster.
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TABLE V.- ESTIMATION PROBLEM IV

Unknown Initial value Program MAX Program MAXLIK 2
8M

parameter, of 8 ^ 3 33e 6 o 8

Cy, 0 0.036 0.0061 0.0006 0.0213 0.0005 0.7533 E+03

Cy_ -.479 -.4603 .0075 -.4608 .0067 .3756 E+05

Cyp -.186 -.1378 .0485 -.0604 .0439 .9373 E+03

CYr .522 .6677 .0289 .6209 .0256 .1915 E+04

CY6 a -.08 -.0504 .0166 -.0375 .0150 .8129 E+03

CY6 r .083 .0814 .0043 .0763 .0037 .9922 E+03

Cy_ .45 .4300 .0592 .4512 .0504 .9399 E+03

CI,0 0 .0002 .00005 -.0001 .00005 .9618 E+03

CI_ -.079 -.0872 .0015 -.08 .0013 .1493 E+06

C1p -.47 -.5320 .0102 -.4823 .0085 .4529 E+07

Clr .187 .1700 .0043 .1543 .0045 .6838 E+04

C I -.19 -.2035 .0036 -.1852 .0031 .7969 E+056a

C I .01 .00055 .00024 -.0012 .00072 .1340 E+046r

Cl_ -.26 -.2707 .0116 -.2105 .0091 .6327 E+04

Cn, 0 0 -.00063 .00003 -.002 .00002 .1909 E+04

Cn_ .04 .0323 .00045 .0329 .0004 .1515 E+06

Cnp -.056 -.1043 .0026 -.0916 .0022 .1400 E+06

Cnr -.15 -.1462 .002 -.1534 .0017 .5039 E+05

Cn6 a 0 -.0044 .001 -.0037 .0009 .1780 E+04

Cn6 r -.053 -.0550 .0003 -.0532 .0003 .9048 E+07

ICy_ 3 -.39 -.39 -.39

ICn_ 3 .08 .08 .08

Iparameter held fixed.
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3O



.5

I_----

- ++. Measured response

- C'%_ -
0 _rl}_'l_"_'_ _HWH_"r- "_I_n_ 4c_K'jm__smll'Im}:I ::x*

,o - _,,,_

0 4 8 12 16 20 24

t, sec

Figure 6,- Concluded.

CONCLUDING REMARKS

An algorithm for maximum likelihood (ML) estimation using an efficient method

for estimating the sensitivities has been developed. The optimization method is

referred to as a modified Newton-Raphson with estimated sensitivities (MNRES). The

method is applicable to any parameter-estimation problem and is particularly suited

for multivariable dynamic systems. In this study nonlinear aircraft systems were

analyzed.

The algorithm has three advantages over other commonly used techniques. The

first advantage is that the algorithm removes the need to derive sensitivity equa-

tions for each new model; this eliminates the computational burden of integrating the

sensitivity equations during each iteration of the algorithm. This also provides a

lot of flexibility, allowing the model equations to be in any format that is con-

venient - such as splines, polynomials, or a nonanalytic form. The second advantage

is that the algorithm is effective for a variety of methods chosen to fit the output

vector surface in parameter space (needed for sensitivity estimation), allowing the

user to choose a surface-fitting method best suited to the problem. An approach is

discussed which provides a method to reduce storage requirements with little addi-

tional computation. The third advantage of the algorithm is that it reduces the

computational effort in comparison with the commonly used approach referred to as a

modified Newton-Raphson (MNR) method. For small problems (fewer than 15 parameters

to be estimated), the reduction can be substantial. For larger nonlinear problems,

the reduction is usually more modest; however, improvements may still be significant

if data quality, signal compatibility, and sensitivity calculations are good. Based

on this study, it appears that the ML/MNRES algorithm generally performs better than

the commonly used ML/MNR algorithm.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

May 11, 1984
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APPENDIX

ITERATIVE LEAST-SQUARES FORMULATION FOR MNRES

Consider the least-squares problem

Y = XS (AI)

and the least-squares solution

--[xTx]-1xTy CA2

Define for the i + 1 iteration

Pi+l = [(xi)Txi]-I (A3)

Let a_ be one row of X containing old information to be removed from X, and let

ai bela replacement row containing new information to be added to X. Define Z as

the common elements of X between two iterations. Partitioning X for the i - I
and ith iterations results in

X. = (A5)l

By using equations (A4) and (A5), the following relations can be written:

(xi I )Txi I = laO ITaO + (z.)Tz. (A6)- - l l

T T T

(Xi) Xi = (ai) ai + (Zi) Zi (A7)

From equation (A6) obtain

o

(Zi)TZ i = (Xi_ 1 )Txi_ I - (ai)TaO (A8)
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APPENDIX

Substituting equation (A8) into (A7) gives

)Txi 1 r o_T o(xi)Tx'l = (xi-1 - - [ai) ai + (a.l)Ta'1 (A9)

Substituting equation (A9) into (A3) gives

= I r o,T o T ii-IPi+l (Xi-1)Txi-1 - _ai) ai + (a.l) a (A10)

which can also be written as

I ( o_T o )Ta (Ali)Pi+1 = - ai) ai + (ai

Applying the same development to equation (A2) gives

)TYi I r o_T o T i3Si+1 = Pi+1 (Xi-1 - - [ai) Yi + (a.1) y (A12)

and substituting equations (A2) and (A3) delayed a step into (A12):

Si+1 = Pi+l[P[_Si - la°)TY° + (a')TYal (A13)

Expanding equation (A13) gives

Si+l = Pi+iP[Isi _ Pi+1 lai)O_Tyio+ Pi+1(ai)Tyi (A14)

Noting that

Si - Pi+iPi iSi = 0 (A15)

and then adding equation (A15) to (A14) gives

-I+ o)To Cai iSi+1 = Si - Pi+IPi ISi + Pi+IP[I Si _ Pi+l (ai Yi + Pi+l (A16)

E - t o_T o Tyi_ (A17)
= _ p-1 8i @i + [ai) Yi (ai)Si+1 Si Pi+1 i+I - Pi I
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Combining terms gives

_p-1 -1 r o_T o T 1Si+l = Si - Pi+l i+I - Pi )Si + [ai ) Yi - (ai) Yi (A18)

and using equation (All) yields the desired relation

Si+1 = Si - Pi+l ai)Ta'l - (a°)Ta Si + _ai) Yi - (ai)Ty (A19)
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