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Summary

The original intent of this grant was

1. to obtain commercial Surface Acoustic Wave Resonator (SAWR) devices,

2. to reconstruct and experiment with coventional oscillators in order

to gain more experience with different oscillator configurations,

3. to construct and evaluate an oscillator using a SAW resonator.

Since no commercial SAWR devices were available to the start of

the grant period, additional steps had to be taken to achieve the goal.

A parallel grant (Grant No. NCC 2-143) was obtained by my colleague, Prof.

Chen Yuen, for the manufacture of SAWR's in our Integrated Circuits

facilities. Prior to the manufacture of these devices different low

frequency oscillators were investigated, for example the lumped element

(LC) delay line oscillator, the single transistor Colpitts oscillator and

the tuned gate junction FET oscillator. Also, in order to obtain, experience

in the high frequency region a two stage oscillator-filter (in the Clapp

configuration) tuning in on the 3rd harmonic of a 20 MHz crystal, was

experimented with. In an effort to better understand the input-output

characteristic of a SAW-device, the filtering behavior of a Crystal Tech-

nology CTI 55B SAW filter was tested.

Initial measurements on the first run SAWR device manufactured at

SJSU using the impulse response method showed very high attenuation.

Sustained oscillation could not be obtained when using the device in a

delay line oscillator configuration with a two stage amplifier. In a

second production run of SAWR's the ion was decreased by closer spacing

of the input/output interdigital transducers (IDT), and the desired

center frequency near 180 MHz could be achieved. This device, however,

has only a small peak on top of a too broad bandwidth, making its appli-

cation for an oscillator impracticable. The spurious peaks and broadening



of the bandwidth appears to be caused by random reflections of the surface

wave from the edges of the device, overshadowing the forced reflections

by the seven reflections on each side. The importance of the reflection

was demonstrated by the 3rd run device, where the reflections have been

left out completely while the IDT structure was more finely tuned. Latter

devices showed no peaking at all.

Finally, a commercial 280 MHz SAWR could be obtained from Hewlett

Packard. Special arrangements were made to receive a few "reject" devices,

devices which did not meet HP's tight frequency specifications, since these

devices are not sold outside; they are made only for one of HP's own

instruments. Using this high Q resonator in a common-base Colpitt's

configuration, its capability to stabilize the oscillation frequency of

a resonating circuit was demonstrated.

. Thus, it was shown that a SAWR stabilized oscillator is superior to

the crystal controlled oscillator particularly in radio telemetry applica-

tions in biological space shuttle experiments where low power, light

weight and small size is important. It was demonstrated that a SAWR with

the desired 180 MHz frequency can be manufactured by using the same IDT

spacing as before, by placing the input and output IDT's in close vicinity

for strong coupling and by using a large number of reflections for the

achievement of standing waves. Based on the achievements of this grant

(NAG 2-85) and Professor Yuen's parallel grant NCC 2-143 the foundation

was laid:for Professor Yuen's grant NAG 2-280 for,the manufacture of

a hybrid SAWR oscillator containing SAWR and circuitry on one device.
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Abstracts of the Reports

Part 1: "Simulating a SAW Oscillator Using a Lumped Element LC Delay

Line", by Timothy Upshaw, Dec. 6, 1981.

The lumped element (LC) delay line is analogous to the SAW (Surface-

Acoustic-Wave) device because they both have the ability to delay the signal

This paper analyzes an oscillator constructed from a lumped element delay

line to compare it with the SAW oscillator. The LC oscillator is frequency

variable (depending on the delay tap) and contains only two elements: the

LC delay line and a NAND gate. This paper describes delay line theory,

analyzes the delay line oscillator, and discusses the SAW device as an

oscillator.



Part 2: "SAW Oscillator Design Project", by Michael Williamson, May

™ 16, 1982.

A review of oscillator theory is given, and, in particular, the

single transistor Colpitts oscillator and the tuned-gate junction FET

oscillator are discussed. It is shown that, though crystals may be

used for the stabilization of the oscillators up to about 200 MHz, harmonics

have to be used at frequencies higher than 20 MHz. Thus the use of Surface

Acoustic Wave Resonators (SAWR's) promise more simple circuitry in higher

frequency regions. After giving a brief qualitative explanation of the

principle of SAW's, the two most common types of SAW oscillators, the

SAW delay line and the SAW resonator oscillator are discussed.

A two stage 60 MHz oscillator-filter-amplifier circuit using the 3rd

harmonic of a 20 MHz crystal was constructed and evaluated, in order to

gain more experience with high frequency oscillators. In an effort to

better understand the input-output characteristics of a SAW device, the

filtering behavior of a commercial bandpass SAW filter was tested.

Tests conducted on a SAW manufactured at the SJSU integrated circuits

facilities showed about 70 dB attenuation. In an attempt to use this

device in a two stage SAW oscillator configuration sustained oscillations

could not be achieved.



Part 3: "Evaluation of a Surface Acoustic Wave Resonator Manufactured

at San Jose State University", by Andreas Guile, Dec. 15, 1983.

Three experimental Surface Acoustic Wave Resonators (SAWR's),

manufactured at the SJSU Integrated Circuits Lab facilities were evaluated.

The devices were intended to be used for the frequency stabilization of a

180 MHz oscillator. For a reference, measurements were made on a commer-

cial 280 MHz SAWR from Hewlett Packard, as well as on a Crystal Technology

SAW bandpass filter. Frequency and phase response as well as the input/

output impedance of the devices were correlated with their geometries and

equivalent circuits.

The first batch of SAWR devices manufactured at SJSU, using two

electrode pairs and seven reflectors, showed a high loss due to the large

distance between the interdigital transducers (IDT's). From the second

run, where the number of electrode pairs was increased to 15, and where

the distance between the IDT's was reduced by a factor of two, useful

measurements could be obtained. The transfer function displayed a center

frequency close to the desired 80 MHz frequency, indicating correct spacing

of the electrode pairs. The bandwidth of 8 MHz, however, was too wide causing

the device to be useless as a resonator. The multiple secondary resonance

peaks probably are caused by multiple superimposed reflections of the surface

wave from the edges of the device. The importance of-reflectors is demon-

strated in a third run, where the spacing of the IDT's was improved, but

where the reflectors were omitted, resulting in the disappearance of a distinct

resonance peak.

This study showed that a desired center frequency was obtained due to

correct spacing of the IDT's, that the transmitting and receiving IDT's



have to be close for sufficient coupling and that a large number (about

:^r JOG) reflectors are required for the creation of a standing wave resulting

in a high Q-value.

That a SAW device can be used for stabilizing the oscillation frequency

of a resonating circuit was demonstrated by using a commercial high Q 280 MHz

resonator from Hewlett Packard in a common-base Colpitts configuration. The

advantage of using a SAW device for oscillator stabilization is obvious

when considering that the llth harmonic of a bulk acoustic wave crystal would

have to be used in order to achieve the same oscillation frequency.



Appendix: Interim Status Report covering period Feb. 1, 1981 to Sept. 30, 1981,

In this report the difficulty in obtaining commercial SAW resonators

is described. Only SAW filters could be obtained which were used for

exploratory measurements. The initial phase of the work of two students

experimenting with different oscillator configurations and doing a prelim-

inary assessment of an experimental SAWR manufactured at SJSU is illuminated.
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Introduction

Wide application for SAW oscillators has been predicted because of

their simple fabrication capability and direct oscillation in the UHF

band. This paper deals first with the operation of conventional LC and

quartz crystal oscillator circuits and, second, with the construction of

an oscillator which utilizes a SAW resonator as the frequency determining

element within the oscillator circuit. The frequency of the SAW resonator

is determined by the spacing of its grooved reflectors. Since the

resonator may be fabricated on a single substrate, the oscillator can

be mass-produced using photo!ighography.



Oscillators

The overall behavior of sinusoidal oscillator circuits is determined

by the frequency and amplitude-determining mechanisms of the given circuit.

These mechanisms are characterized by their stability as a function of

time, temperature, supply voltage and the interrelationships between

amplitude and frequency.

At a minimum, all sine-wave oscillators must contain

1) an active device with power gain at the operating frequency,

2} a frequency-determining element or network, and

3) an amplitude-limiting and stabilizing mechanism.

While sinusoidal signals can be produced by filtering separately

produced square waves, or impulse chains or by shaping techniques applied

to triangular wave, only sinusoidal oscillations produced by linear

feedback will be treated here.

Of paramount importance to sustaining of sinusoidal oscillations in

conventional oscillators is the existence of a pair of complex conjugate

poles in the right half complex plane when power is first applied at t = 0.

When excited by thermal noise or the step generated by switching on the

power, these unstable poles will give rise to a sinusoidal output voltage

with an exponentially increasing amplitude envelope. Since the objective

is to produce a sustained constant amplitude sinusoidal output, this

envelope cannot grow indefinitely. Thus, as the envelope of the sinewave

increases, it must cause a change in the value of one or more of the

network parameters in such a way that the complex conjugate poles are

driven toward the imaginary axis. This is usually accomplished by

altering the amplification of the oscillator circuit. In effect, the

amplitude of the sinusoid increases until the complex conjugate poles



lie on the imaginary axis and a constant amplitude sinusoidal output

results. If for any reason the amplitude continues to increase, the poles

move into the left half plane causing a decrease in amplitude until the

poles again lie on the imaginary axis. Likewise, a decrease in the

required sinusoidal amplitude will cause the poles to move back into the

right half plane. Again the amplitude will increase until the poles

are positioned on the imaginary axis.

The basic requirements for a sinusoidal oscillator are now clear.

We need a network with a pair of small-signal complex conjugate poles

which determine the frequency of oscillation, and a mechanism for moving

the poles toward the imaginary axis whenever the envelope of the sinusoid

deviates from the desired amplitude. In order to obtain right-half plane

poles, we require positive feedback such that the output and input are in

phase at the frequency of oscillation. The figure below illustrates a

generalized feedback amplifier.

A Y.CO

Figure 1. Positive Feedback Amplifier
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The transfer function is -given by V (s) _ .

VTUT 1 - AH(s)

where AH(s) is defined as the loop gain. In order for the oscillator circuit

to have a pair. of complex conjugate poles in the right half plane, the

zeros of 1 - AH(s) must include the desired pole pair.

Thus, in designing a sinusoidal oscillator we select a suitable pole

zero pattern for AH(s) which causes one pair of complex conjugate roots

of 1 - AH(s) to cross the imaginary axis at a predetermined frequency w

as JAJ increases. Care must be taken not to introduce any other conjugate

pairs since this will introduce unwanted oscillations. After determining

the minimum magnitude of A which places the roots on the imag-inary axis,

A is chosen somewhat larger than this value to insure self-starting.

Then, to prevent the output from increasing without bound, a non-linear

device which reduces the magnitude of A as the output oscillations grow

toward the desired amplitude is incorporated.

From root locus stability analysis we know that at least two open

poles of 1 - AH(s) are required' to have right-half plane complex conjugate

roots. However, two poles are not a sufficient condition for oscillations

to occur. If AH(s) has two poles, one zero must also exist. The simplest

pole-zero configuration for AH(s) which is capable of producing right-hit If

plane roots is shown below.

AH(s) = Aw1s

(s+w1)(s+w2)

Figure 2. Root Locus of AH(s) with two poles and one zero
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For A>0 oscillations will-occur when the root locus crosses the jw axis.

To find the frequency of oscillation and minimum gain we set s = jw

and A = A. When the Barkhausen criterion

R

m

[AH(JW]|- = i,

= o

is invoked, we find that with

l [AH( jwl = m^n Wl ° W^2 ^ -r
mL J wo

2(Wl + w,)2
 + (W lw2 - wo<

= 0

The value of w = \[w~yw^ > where w is the frequency of osci l lat ion. Then

- W yieldswith WQ =

from which we obtain

= 1,

A . - W 1 - + W 2
w 1

The small-signal circuit diagram with this pole-zero pattern is i l lus-

trated below.

A'vJO

II

Since

Figure 3. Small Signal Oscil lator Circuit

A ' ( R / L )
s + R/L s + 1/RC

AH(s ) is given by
AH(s ) = ( A ' ) 2 ( R / L ) s

(s + R/L) (s + 1/RC) '
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Thus, Amin - 1 + 2/ITC,-v^ = R/L, and w2 = 1/RC. If 1/RC = R/L the

special case results where w, = w0 = wn = 1/\lLC~~and A . -2.I <L u mm

Alternatively, a pole-zero pattern with two complex conjugate left-

half plane poles and a zero near or at the origin will also produce

oscil lations. The root locus for this case is shown below

A>0

AH(s ) =
Asw

?
s + w w

Figure 4. Root Locus of AH(s) with two complex
conjugate poles and a zero near the origin.

Again when the Barkhausen criterion is applied, we find that with

jAwown^n
2 - Q = _

r\ o o O *"> O *J

o n o

the conditions for oscillation became w - w and A . = 2£ . Note that

2^ = 1/Q-r where QT is the Q of the passive elements within the feedback

loop. Clearly, then, as QT increases, the required amplification of the

active element within the feedback loop decreases.

A second advantage of this pole-zero pattern over the previous

example lies in the fact that frequency stability is increased by

positioning the complex conjugate poles of AH(s) near the jw axis. Then

if any poles and zeros should appear due to parasitic capacitance and
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inductance the modified root loci will still be constrained to cross the

imaginary axis relatively close to w = w . Viewed from the perspective

of the phase shift due to the passive components, we observe, that if QT

is high, the phase shift varies rapidly with frequency in the vicinity

of w . This is easily shown by noting that for

Asw
AH(s) = -K ^ 5-

the phase <p of AH(jw) in the vicinity of w is given by

= -tan
-1 2Q (w-w )
' ' n

w

and dw
= -2QiT when is small .

w wn n

Therefore, spurious phase shifts introduced by parasitic elements in the

feedback loop will require only a small .change in' frequency away from w

to produce a compensating phase shift. For example, a typical quartz

crystal has a Q on the order of 10,000. Thus if wn = 20MHz, a 1° shift

in overall loop phase requires only a 17.5Hz shift in frequency to

compensate.

The figure below illustrates one of many small signal oscillator

circuits whose loop transfer function AH(s) contains a pair of complex

poles and a zero at the origin.

n

Figure 5. Oscillator Circuit with a pair of complex conjugate
poles and a zero at the origin.
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For this circuit

Vt(t) = gmV(t)
s(Gt/C) + 1/LC

= nV t(t)

Thus

AH(s) -

s +2f ws

Gwhere wp = NJl/LC, 2 § w p = GT/C and.GT = GL = n2Gi

This circuit can be realized by cascading the passive elements with a

common base transistor or common gate FET. In either case the minimum

gm required for oscil lat ion at w = w is gm = G.,, . This value decreases

with decreasing GT or, equivalently, with increasing QT = w C/GT

In practice- the majority of osci l lators in common application are

self-limiting single transistor oscil lators of the form shown below.

I
, ' J
f 1

rc-
X

JL c ^— *"4*•

1

H[
F ^

_L

Figure 6. Single Transistor Colpitts Oscillator
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In this circuit, known as a Colpitts oscil lator, the tapped capa-

citive transformer constitutes the frequency-determining network. Other

oscillator circuits which employ this same transformer-like network

include the Hartley and Tuned-collector osci l lator.

For the Colpitts oscillator shown above the quiescent emitter current

is given by
IEQ

R

Thus, the small signal input conductance at the emitter is given by

g. = ql /kT and the small signal transconductance has the form ofi n g - eq

gm = *<g. . If we now assume that QT>10, QF>10 and nQTQ,- >100, then thei n^j i L i L

capacitive transformer may be replaced by the transformer model used to

illustrate AH(s) with two complex conjugate poles. That is, the Colpitts

oscillator can be modeled as

^rvJ -| -

Figure 7. Colpitts Oscillator Small-Signal Model

where C = n = gm = 9 n

WQ = l/vflC, nQTQE>100 and QE>10 ;

Provided that = G + n2 G
4 min n(l-n/oc )
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The frequency of oscillation will be given by w = \]l/LC. If the inequality

holds, the oscillation grows until the transistor non-linearities manifested

in Kreduce AH(jw) to unity at which level the oscillation stablizes.

The use of an FET as the active .element in a turned-gate oscillator

possesses certain advantages, that other oscillator circuits lack. In

the configuration shown below the tuned circuit has virtually no loading

due to the FET.

4-

Figure 8. Tuned-gate J u n c t i o n FET Osc i l l a to r

Thus , it is poss ib le to m a i n t a i n a. h i g h va lue of QT and consequent ly good

frequency s t ab i l i ty . Two condi t ions w i l l assure this property to ex is t .

W i t h Rp in the nomina l range of IMJi-to 10M.fl-no a p p r e c i a b l e load is

presented to the tank w h i l e if M/Lp«T only a n e g l i g i b l e amount of l o a d i n g

due to ou tput impedance (both capac i t ive and res i s t ive ) of the FET w i l l

be reflected through the transformer. In a d d i t i o n the ac component of

Vnc. is kept low when M/L9«1, resu l t ing in a n e g l i g i b l y smal l " M i l l e r
L/O C-

effect'.1 Therefore, the capacitive loading of the FET input directly

across the tuned circuit is minimized. The Colpitts, Hartley, and tuned-

drain configurations possess none of these advantages.
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' One interesting feature of the tuned-gate oscillator is the clamped

biasing resulting from the capacitor C- and the gate-to-source junction

diode. This negative clamping circuit clamps vfc. to the turn-on bias of

the diode, V . Since V is a function of the average diode current and

an RG of several megohms requires the average diode current to be quite

small (**. luA), V is usually required to be less than 0.5 volts, even

for silicon. Thus, as a good first approximation we can assume V &Q.

Thus, since C~ is an ac short at the oscillation frequency, we find that

if v. = V, cosw t, then vrc - V, (cosw t) - 1 . This form of bias,
I I 0 b b ' L I 0 _ J

in contrast to the biasing obtained by inserting a negative voltage

source in series with R~, has the advantage of stablizing the osci l lat ion

amplitude with the FET operating within its square-law region. This can

be quite desirable when the tuned-gate osci l lator is employed in the

construction of mixers since undesirable undermodulation products are

minimized when the FET is operating in the square Igw region. With a

clamped bias, the FET transconductance decreases with increasing

sinusoidal input voltage amplitude within the square-law region, while

for a fixed negative bias the FET transconductance remains independent of

input voltage amplitude for operation completely within the square-law

region.

To obtain a model of the tuned-gate circuit we observe that with

, the reflected impedance in drain circuit remains quite small.

Hence, we may neglect the output resistance of the FET, V , when calculating

the drain current. Thus, . _ , ,, VGS>
" * ~ V "'

-10-



In'addition, M/L^sl ensures operation within the saturation region since

in this case the ac drain voltage will be quite small.

From the assumption outlined above and that QT of the tuned circuit

is sufficiently high to keep v-(t) sinusoidal, the large-signal model for

the tuned-gate FET oscillator can be found. In this model, shown below,

only the fundamental component of the drain current is reflected through the

transformer, because of the high 0_. In this manner we obtain the driving

current source given by (M/I_2)(G V,cosw t) where Gm is the large-signal

fundamental transconductance of the clamp-biased FET.

L
'/,

Figure 9. Tuned-gate FET Oscillator Large Signal Model

w C
GN1 = 3/Rr QT = " rML b I b.,1 + b.

From the large signal model we can see that

I |A, (jw~)| = 0 for w = I/

and that

When the need for high frequency stability exists the use of a

piezoelectric resonator is indicated. Used in place of a conventional

L-C combination the available Q may be as much as 1000 times greater than

-11-



that of the L-C combination. Since frequency stability is directly

proportional to the value at Q, quartz crystal oscillators are used

whenever high frequency stability is necessary. The basic electrical

model of a quartz crystal is shown below.

where C = case electrode
capacitance

Figure 10. Electrical Model for a Quartz Crystal Resonator

Normally the crystal operates wi-thin 1% of the series resonant

frequency of one of the shunt branches, hence the-circuit is usually

reduced to C parallel with a series shunt resonant circuit. The multiple

branches result from mechanical vibrations at approximately the odd

harmonics of the fundamental frequency. The existence of these

overtones allows for the construction of crystal oscillators up to

the neighborhood of 200MHz. Since the mechanical frequency of the

fundamental vibration is proportional to the crystal dimensions, absence

of these overtones would limit the fundamental frequency of vibration

to approximately 20MHz. When frequencies beyond the limits of the quartz

resonator are required harmonic multiplication must be employed.
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Z(s) =

where w

•

(•

C

1
p

Q
r

•

£

?

\

A
4

bU>

-t a

1

s2
 + sf + w/

L 0

= w L
0

- X

j

X

€

if cc

H k^|

-'

Figure 11. Crystal Model

The figure above illustrates a simplified version of the quartz

crystal along with its impedance equation and pole zero pattern. Typical

values of capacitance, inductance and resistance are, for example,

w = 10 rad/sec, C/C = .01, C = 4pf and Q. = 20k. These values lead

to C = .04pf, L = 250mH and r = 125 . For this case,Aw, the vertical

spacing between the pole and zero in the vicinity of w approximately

equals w /200. While the negative real portion of the complex pole and

zero is at a distance of w /40,000 from the jw axis. Thus, in effect, we

have two isolated very high Q poles and zeros. With this in mind we

see that the crystal can operate as a low impedance (near a zero) or as a

high impedance (near a pole).

-13-



In the series resonant mode of operation the crystal is placed

directly in the feedback path for the purpose of holding the loop gain

below the minimum required for oscillation except at the series resonant

frequency of the crystal. A capacitance C placed in series with the
A

crystal can be used to modify the resonant frequency slightly. However,

this slight adjustment is purchased at the expense of narrowing the

pole-zero spacing.

Field effect transistor oscillators predominantly employ the crystal

operating in the high impedance mode. The operating frequency tends to

be below the pole of Z(s) by approximately w /Q, or less. Within this

rather narrow frequency range the crystal looks like a parallel inductance-

resistance combination and as such the crystal is often used to replace

an inductance in a Colpitts or Hartley oscillator configuration.

A relatively new method for constructing oscillators involves the

use of surface acoustic wave devices (SAW).

The basic mode of energy transfer in SAW devices involves the propa-

gation of elastic waves along the surface of a piezoelectric substrate.

The propagation of elastic waves is typically in the range of 10 to l(rm/sec.

This surface wave excitation results in material deformation near the

surface of. the substrate. The actual material displacement has its

greatest amplitude at the free surface and decays exponentially with

depth into the solid. Essentially, all the mechanical energy transported

by the wave is concentrated within one wavelength of the surface. When these

elastic.waves are introduced on a piezoelectric substrate, local electric

fields are induced. The electric fields travel along with the mechanical

-14-



wave and extend into the space above the surface of the solid. Metal

electrodes placed on the surface of the substrate will interact with these

electrical fields. The resulting effect can then be used by connecting

the electrodes to an external circuit.

Due to impedance requirements and size restrictions, surface wave

electrodes or transducers have a limited dimension transverse to the

direction of the exciting wave. Typically this dimension, which determines

the width of the radiating wave, lies within the range of 10 to 100

wavelengths in magnitude. To a first order, simple interdigital trans-

ducers exhibit a two-dimensional diffraction analogous to the diffraction

encountered in optics when a plane wave illuminates a long narrow slit.

For an elastic wave the end of the transducer is analogous to the

slit width, that is, it determines the dimension of 2a. Just as in the

optics case, two diffraction regions exist, a Fresnel region and a

Fraunhofer region. In the Fresnel region, which extends from the
9

aperture to approximately a~/>- , the radiation of the wave is beamlike;
2

while in the region beyond a /^ , the Fraunhofer region, the wave

pattern has a constant angular form. Thus, if we wish to have the

energy propagated between transducers as a more or less parallel beam,

we must operate in the Fresnel region. By operating in the Fresnel

region, almost all of the energy radiated by the transmitting transducer

will be captured by the receiving transducer of aperture comparable to

that of the transmitter. By contrast, operation in the Fraunhofer region

will result in an appreciable loss of energy due to diffractive spreading

of the input wave.
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The two most common SAW oscillators are the SAW delay line oscil-

lator and the SAW resonator oscillator. SAW oscillators have a stability

which is considerably better than the common LC oscillator but not as

good as the crystal controlled oscillator. SAW oscillators do not relay

.on harmonic operation as do some crystal oscillators. In fact,

resonators at frequencies above one GHz with Q values over 3200 have

been fabricated.

Basically, a SAW delay line oscillator consists of a SAW delay

line and an external amplifier which provides positive feedback from

the output transducer to the input transducer. The figure below illus-

trates the essence of such a circuit.

A

mm
V 1

Figure 12. Delay Line Oscil lator

The condition for oscil lat ion is that the phase shift around the

loop must be an integral multiple of 2ir • Thus,

w L/V +4>r = 27TNo r t

where L = effective delay path

VR = Rayleigh velocity of the surface wave
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w = angular frequency of oscillation

= phase shift external to the delay line

If we assume that <PE is a constant, then dw = dVR - d_L . Also, if we
~w~ ~T~ L

wo XR

neglect the thermal expansion, we find that d\v = dVD /VD . Considering the
0 K K

~"o~

thermal expansion to be negligible is reasonable because the temperature

coefficient of expansion is very small compared to that of the velocity.

For example, the temperature coefficient of expansion for YZ LiNbCU is

on the order of 2ppm/°C while that of velocity is about 90ppm/°C.

Therefore, we see that frequency stability is primarily a function of

the Rayleigh velocity. Stated in a slightly different manner, if we let

the phase shift between the input and output transducer be given by

= J(w/VR(z))dz

where z is the direction of propagation, and since temperature is taken

to be a spatial function of depth only we find that VD is independent of
K

z and thus <p= wL/VR. Now if we assume w is the frequency of an externally

connected frequency generator, thermal variations will cause overall

changes in L and VD. Thus, dj> = d_L - dV . By the same reasoning we
• f L v-t

applied above we find that d^ = -dV . Therefore, the phase change is

<f> TT

approximately of the same order as that of the Rayleigh velocity. A

change in phase implies a change in w for oscillation to occur.

The second type of SAW device employed in the construction of

oscillators is the SAW resonator. The resonator relies on the reflection

from shallow reflecting groove arrays etched into the surface of the

substrate. "The figure below illustrates the basic construction of a SAW

-17-



resonator and resonator controlled oscillator.

Figure 13. SAH Resonator Oscillator

IZZXZ^
7

/

-J L x.
i.

7

^
*T* H h

LRJ~ff~~Lr

Figure 14. One-Port SAW Resonator
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The reflectors, consisting of arrays of shallow etched grooves are spaced

to form a resonant cavity in which one or two recessed aluminum trans-

ducers are located. Maximization of the cavity length is essential to

achieve high Q values. Also, the recessed-transducer configuration

virtually eliminates transducer reflections and the distortion resulting

from this source. When the resonance is not centered in the reflector

stopband, loss and distortion increase dramatically. This undesireable

effect results because radiation losses are not minimized and resonance

develops asymmetrically.

The presence of a transducer within the resonant cavity will contri-

bute to losses due to finite electrode conductivity and from bulk mode

scattering associated with surface wave scattering for acoustically

reflecting electrodes. Distortion wi l l be introduced by the transducers

due to acoustic reflection and by the velocity differences between the

transducer, the free surface and the reflector sections of the resonator.

A thorough discussion on how these effects interrelate can be found

in 12 . In this discussion it is shown that the recessed metal transducer

on quartz reduces losses and distortion in resonators.

The portion of the resonator which serves to contain the energy in

the resonant cavity is made up of the surface wave reflectors. Their

ability to contain the energy is by no means perfect. Loss of energy

does occur through radiation transmitted through the reflector and by

scattering energy in the bulk acoustic modes.
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The operational characteristics of an etched groove reflector are

primarily determined by the groove depth (h), the total number of grooves

(N) in an array, and the separation of the grooves Oy2). Secondary

factors are the groove profile and the groove width to separation ratio

(2W/?<o). Groove profile has been shown, theoretically at least, to be

noncritical by Otto and Gerard J3J. The effect of the groove width to

separation ratio has been shown by Li, Alosow and Williamson 4 to result

in a maximum reflectivity when 2W/p^ is slightly less than 0.5 depending

on the groove depth.

Bulk acoustic mode losses (Log) occur whenever a surface wave is

reflected from a discontinuity. These losses increase with the size of

the discontinuity where LgG is directly proportional to (h/jc) , 15 J.

Thus, in order to reduce Lgg, groove depth is reduced. However, if

each groove is shallow and lightly reflecting, there must be a large

number of grooves in order to obtain sufficiently low-radiation loss.

In the lower frequency range between 10MHz and 300MHz, the material

losses are fairly low, and thus extremely shallow grooves (h/x^O.5%)

may be necessary to attain the desired high Q value. This would dictate

very long arrays, and thereby the overall device dimensions may be the

limiting factor. At significantly higher frequencies (F<800MHz) material

losses increase considerably and as such, allow for somewhat deeper

grooves (h/pL >.2% perhaps) and still keep the bulk-mode losses less than

losses due to the material. A more detailed discussion on reflector

construction is given by Tanski 2 I.
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The recessed transducer/grooved-relector system lends itself to

a simple fabrication process. It is necessary in resonator fabrication

that no critical photolithograph mask realignment be performed since each

of the device components (reflectors and transducer) must be positioned

to an accuracy of a few hundredth? of a wavelength or better with

respect to one another. This accuracy cannot generally be attained by

using conventional methods to superimpose masking steps. A complete

discussion of the fabrication process steps is given by Tanski 12 J.

Application of the techniques mentioned above has resulted in

the production of resonators with a series resonant Q of 75300 and Fc

of 72MHz (VpjsSlBS m/sec). This device had an 80-\cavity, J\= 44 microns,

The reflectors, etched to h/x = 1%, contained in excess of 1000 grooves.
T
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Experiments

In the initial stages of this experiment experience was gained in

the construction and operation of conventional oscillators. The oscillator

circuit used is shown below.

Figure 15. Two Stage Oscillator-Filter-Amplifier Circuit

This circuit utilized the clapp oscillator configuration and two tuned

stages to filter off the desired harmonic component. The crystal used

had a fundamental frequency of 20MHz. Each stage was tuned to the third

harmonic or 60MHz. The air core inductors had a calculated inductance

of 0.09uH and a measured Q of|47 at 50MHz. The tank circuits were tuned

.by adjusting a 4-35pf variable capacitor, in parallel with a 68pf

capacitor, until the 60MHz frequency component was maximized. The

supply voltages V~ and Vrr were set at 2.0 volts and -2.0 volts

respectively.

The harmonic frequency components at various points in the oscillator

circuit were measured with a Hewlett-Packard 8557A Spectrum Analyzer.

The following data was obtained.
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Measurement
Point

Drain of 0~

Collector of Q-j

Collector of Q2

Frequency
Component

20MHz
40MHz
60MHz

20MHz
40MHz
60MHz

20MHz
40MHz
60MHz

Magnitude

-19dB
-42dB
-34dB

-31dB
-17dB
-lldB

-34dB
-25dB
6dB

TABLE 1: Harmonic Amplitudes

Thus, we can see that the 60MHz component has been increased in magnitude

by a factor of 100 while the 20MHz and 40MHz components have been altered

by factors of .18 and 7.1 respectively. Also, at the output of the second

stage the 60MHz component overpowers the 20MHz component by 100:1 and over-

powers the 40MHz component by 35.5:1. The output of the second stage

exhibited a relatively good sinusoidal symmetry and an RMS voltage of

113mV. The 20MHz input to Q] had an RMS voltage of 18.5mV. This technique

of amplification and filtering can be applied up to the fifth harmonic

of the fundamental frequency of each stage, provided we stay within the

frequency limit of the transistor employed.

In an effort to better understand the input-output characteristics

of a surface acoustic wave (SAW) device, the filtering behavior of a

crystal technology CTI 55B SAW filter was tested.

The CTI 55B SAW filter is designed for use as an output filter for

Class 1 channel 3 and channel 4 signal sources for direct coupling to

the antenna terminals of a color TV receiver. The illustration below

outlines the pin layout and connections used.
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o

O
H

Pin Connections

Pin 2 NC
5 Input Channel 3
6 Ground
8 Input Channel 4

11 Output

Figure 16. CTI 55B Pin Layout

n

Oscil loscope

Figure 17. Test Circuit

The channel 3 input (pin 5) has an RF impedance of 50-J140 ohms at

61.25MHz. However, no attempt was made to match this impedance during

testing. For testing purposes the CTI 55B was mounted and grounded inside

•a metal box with male BNC connectors on each end. Input and output signals

were transmitted through RG-58 coaxial cable throughout the test circuit.

Table 2 and Figure 21 below detail the data generated.
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Frequency
(MHz)

50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80

Input
(Vp-p)

24.0
20.0
16.8
14.5
13.0
11.5
10.8
11.0
10.8
12.5
13.0
14.8
14.8
12.0
9.0
12.0

Output
(VP-P)
0.25
0.32
0.34
0.46
0.64
0.38
3.6
4.6
4.7
.85

1.05
1.10
.98
.•85
.60
.78

Insertion Loss
(dB)

-39.6
-35.9
-33.9
-30.0
-26.2
-29.6
-9.5
-7.6
-7.2

-23.3
-21.9
-22.6
-23.6
-23.0
-23.5
-23.7

TABLE 2: In-Band Response of CTI 55B

This data coincided well with the data provided on the CTI 55B data sheet.

However, the CTI 55B data sheet showed an insertion loss of 10dB less

throughout the in-band as compared to the data presented here. With

consideration for the test method used in this experiement, a difference

of lOdB is acceptable.

A SAW resonator was fabricated for the purpose of constructing a

SAW oscillator. The reflector array grooves were spaced approximately

18;jm apart in order to realize a resonator in the 80MHz range. The

resonator layout is shown in Figure 18.

Tests conducted to determine the attenuation in the resonant cavity

found that an attenuation of approximately -69.5dB resulted from propa-

gation through the cavity. Figure 19 illustrates this attenuation. The

upper pulse represents the signal sent down the resonant cavity. The

lower trace represents the signal picked up by the resonator transducer
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at the launch port. Note the spike at approximately ABQnsec after the

input pulse was launched.

Figure 18. Two-port SAW Resonator Layout

Figure 19. Resonator Pulse Response
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The magnitude of this spike represents the degree of attenuation due to

the absorption of energy within the resonant cavity and losses associated

with the reflecting array grooves. This test indicates that an external

amplifier with a gain of approximately 70dB will be necessary to sustain

oscillations.

The circuit shown below was designed for the purpose of providing

the necessary external gain to allow sustained SAW resonator oscillation.

Figure 20. SAW Resonator-Oscillator Circuit

The two-stage amplifier has a maximum theoretical gain of about 75dB.

At the time of this report, however, sustained oscillations have not

been achieved.
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Summary

This paper dealt with the application of SAW resonators in the con-

struction of oscillator circuits. While the construction of a stable

oscillator was not achieved, suggestions for future improvement are

outlined below.

1. Decrease the resonant cavity width. This should reduce the loss

of energy due to substrate material absorption.

2. Attempt to optimize the grooved reflector depth. This will

reduce distortion and provide more efficient reflection of

energy into the resonant cavity.

3. Increase the number of reflectors in the reflector arrays.

This will result in more energy being reflected into the

resonant cavity.

4. Design a more sophisticated amplifier which can achieve the

required high gain-bandwidth products which are necessary to

achieve stable oscillations with the present SAW resonator.
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ABSTRACT

The Lumped, element(LC) delay line is analogous to the
SAW(Surface-Acoustic-Wave) device because they both have the
ability to delay the signal. This paper analyzes an oscillator
constructed from a lumped element delay line to compare with
the SAW oscillator. The LC oscillator is frequency variable
(depending on the delay tap) and contains only two elements:
the LC delay line and a Nand gate. This paper describes delay
line theory, analyzes the delay line oscillator, and discusses
the SAW device as an oscillator.



1.0 INTRODUCTION

The purpose of this paper is to investigate the
characteristics of Delay Lines used as oscillators.
In an experimental set-up, these characteristics will be
measured/ discussed and analyzed. Other oscillator alter-
natives that will improve the Delay Line oscillator's
performance will be discussed also: The ECL Delay Line
oscillator and the Tunnel Diode Delay Line oscillator.

Finally, the Delay Line oscillator will be compared to the
SAW oscillator.



2.0 BACKGROUND INFORMATION

2.1 Electromagnetic Delay Line

The Electromagnetic Delay Line is merely a "compressed"
form of a conventional transmission line and exhibits the same
general electrical properties. The many advantages and innum-
erable uses of such lines have been a tremendous boom to the
electronic industry for some of the reasons given below:

1. Delay capabilities from nanoseconds to milliseconds.

2. Ability to temporarily store many "bits" of infomation
using pulses.

3. Low-Loss Passive devices require no power(other than the
input signal) and which are very stable with time and
temperature.

4. They are useful as energy storage devices.

The information can be digital or analog. In digital ap-
plications, we are interested in the pulse fidelity reproduc-
tion at the output of the delay line. In analog applications,
we are interested in the phase-linearity produced by the delay
line.

Of all the types of delay lines available, the electro-
magnetic delay line is the most widely used and fits the most
applications due to its wide band response. (See Figure' 1)

IM

Q£L#Y )i

i nm
1 J
T 1

r ac
> 3

rm
•• •••

> 45

12

rm
•» ••

6C

4

nm
*» •••^ —

? -75

It

nm
^ ^

»̂

nm
^ ^H

5 /ft

r /c

nm
•• ^
^ ^B

5" /Z

) (

nm
•• ^M

o /3

9

nm
^ ^m

mm ••

5" C^^ec)

Figure 1 Ten Section Delay Line



2.2 General Delay Line Calculations

n
T

T

ABBREVIATIONS

Number of Taps
Time Delay, Sec. (variable)
Time. Rise, Sec. (= 25 nsec)
Characteristic Impedance ( = 100 ohms)
Bandwidth @ 3 dB down point ( = 14 Mhz)

1.

2.

3.

4.

CAPACITANCE

IND.U.CTANCE

C = Td/Z0 = 15 nsec/100 = 150 pf

L = TxZ = 15 nsecxlOO = 1.5 uH

QUALITY FACTOR Q = T,/T = 150 nsec/25 nsec = 6_
(Note that the total delay of the delay line is
used here.)

RESULT OF MISMATCHING E TERMINATION = E Initial
Z /2R, + .5

\̂ T"

where R. is the terminating resistance.

2.3 Circuit Operation

To make an oscillator from a delay line, a Nand Gate was
used to generate the pulses. (See Figure 2 ) To start oscil-
lation, pin 1 of the gate is tied high to +5 volts. Assuming
that pin 2 of the gate is low at the present state, this results
in a logical high at the gate's output. The logical high goes through
the delay and exits to pin 2 of the Nand gate. .This cycle
reoccurs thereby initiating oscillation. Measurements were
taken from various taps of the delay line which produced dif-
ferent frequencies. (Discussed in Section 3.0).
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DATA SHEET

Pulse
Engineering

Inc.
TJTJTJ~LI~LJ~LTL

A VARIAN SUBSIDIARY

ELECTRICAL SPECIFICATIONS AT 25°C

Catalog
Numbvr

22212

22213
^22214^
v^2Ts'

22216
22217

22218
22219

22220

lmp*4anc*
Zo Ohms ±10%

100

100

100-
100

200

200 '
200

200

200

Total Delay
ns=5%

50

100

150

200

50

100

150

200

300

Delay Per
Tap (na)

5 ±2.0
10i2.0
15 ±3.0

20 ±3.0

5 ±2.0

10±2.0

15 ±3.0

20 ±3.0

30 ±3.0

RlM

Time
na Max.

8.0

15.0
•25- Q

30.0

8.0

15.0

24.0

30.0

45.0

OCR
Ohms Max.

2.3

3.0

3.6

4.5

2.6

3.6

4.5

5.0

8.0

Distortion
At Taps
% Max.

.10

'10

10

10

10

10

10

10

10

Schematic

A

A

A

A

A

A

A

A

A

22223
22224

22225

22226
22227

22228

22229

22230

22231

100.
100

100

100

200

200

200

200

200

50

100

150

200

50

100

150

200

300

5 ±2.0

10±2.0
15±3.0
20*3.0

5 ±2.0

10 ±2.0

15 ±3.0

20 ±3.0

30 ±3.0

8.0

15.0

23.0

30.0

8.0

15.0

24.0

30.0

45.0

2.3

3.0

3.6

4.5

2.6

3.6

4.5

5.0

8.0

10

10

10

10

10

10

10

10

10

B

B

B

B

B

B

B

B

B

Data Subject To Change Without Notice IS 30_45_fc075jOj05n ,35-

> .7SO MAX
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XXX MS
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3.0 PROCEDURE

The circuit was constructed as shown in Figure 2. In an
attempt, to avoid unwanted ground loops and their associated
problems, the DC power supply and the oscilloscope had their
ground leads brought to the same common ground point.

To obtain the desired delay of the delay line, the jumper
wire was connected from pin 2 of the Nand Gate to the desired tap
of the delay line. The DC voltage was set at 5 volts. On the
oscilloscope(Trigger source, mode and slope on EXT.,AUTO and +
respectively), the waveforms of e-j_n and e^(delayed signal) were
observed.(See Figure 3 )

c.; joo nscc

Figure 3



EQUIPMENT LIST

1. DC Power Supply

2. Oscilloscope (Tektronix 475)

3. Pulse Engineering LC Delay Line

4. 74LSOO Dual Input Nand Gate

5. 2"x2" Perf Board

6. 100 ohm resistor

7. Wire Wrap wire

8. Jumper wire

9. Chip clip
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3.1 Frequency Measurements

To obtain the 15 nsec delay, the jumper wire was connected
from pin 2 of the Nand Gate to pin 13 of the delay line. The
waveform in Figure 3a was observed and the corresponding fre-
quency measurement is:

T(period) = 3 div x 20 nsec/div = 60 nsec

f = 1/T = 16.67 Mhz

Measurements were recorded for the 75 and 150 nsec taps
and placed in Table 1.

TA3LE 1

Delay (nsec)

15

75

150

Period (nsec)

60

180

320

Frequency (Mhz )

16.67

5.55

3.12 .

3.2 Phase Measurements

The phase difference of e. and e, was measured in this
procedure. From an identifiable point on the waveform, the phase
shift was measure by the following procedure: The distance (in
divisions) of one period of this signal represents 360°. The
result of the shift in divisions divided by the period in div-
isions is multiplied by 360° to obtain the phase shift between the
two signals in degrees. The results are in Table 2.

TABLE 2

Delay(nsec) Shift(div) Period(div) Phase Shift(deg)

15 0.8 '2.9 99.3

75 • 1.5 3.6 150

150 3.2 6.4 180



3.3 Voltage Measurements

In this step, the peak-to-peak voltages were measured
and recorded in Table 3. Note that the attenuation increases
as the frequency increases.

TABLE 3

Delay (nsec)

15

75

150

Frequency (Mhz )

16.67

5.55

3.12

ein(V)

2.8

2.2

2.0

ed(V)

1.8

1.9

1.9

Attenuation (dB)

-3.81

-1.27

-0.9

3.4 Mismatched Termination

Out of curiosity, the termination impedance was removed
from the circuit. As Z went.to infinity, the amplitude of
the delayed signal, e^ increased twofold! The output of the
150 nsec delay was severely distorted when Z was removed.
(See Figure 4 )

V .- 4.1 V <£ 2-,

Figure 4 with Z0 removed

The cause of this effect will be discussed in Section 4.1

10



4.:0 DISCUSSION OF RESULTS

4.1 Analysis of Waveform Shapes

Referring to Figure 3, it is apparent that the waveform is
almost a square wave at the 150 nsec tap and almost sinusoidal
at the 15 nsec tap. This is related to the rise time and switch-
ing limitations of the Nand Gate. In the 15 nsec case, the
circuit is oscillating at a rate which is too fast for the speed
of the Nand Gate. The 74LSOO has a worst case rise and fall time
of 15 nsec each. The gate does not have adequate time for the
pulse to properly settle into a square wave, therefore the
corners are rounded off and the result is an approximate sine
wave. In the 150 nsec case, this speed is slow enough for the
Nand Gate to handle, so the result is a square wave.

In the experiment, the amplitude increased twofold when
the termination impedance was removed. If the improper ter-
mination is used, a signal reflection will result as shown in
Figure 5. •

Figure 5 Improper Termination

Reflections such as termination mismatch is undesirable
since this will result in distortion in the input and output
signal. Voltage gain due to improper mismatch at the output is
expressed in Section 2.3.

Et = Ei

V2Rt - 5

Where E. •= Voltage at Termination

E- = Voltage at input

Rt = Terminating value of resistor



In this case, assume E.= 1 volt. When R = infinity then,

= 1 V = 1 V = 2V
-.5 .5

....:. This shows that the voltage doubles for an infinite termination
impedance.

4.2 Attenuation and-Filtering Effects

Figure 6 shows, one section of the delay line.

Figure 6

-Its frequency response is shown in Figure 7
l

treri Figure 7

Figure 6 is a "constant k" low pass filter. It is value
of the L's and C's that determine the cutoff frequency of the
delay line per unit length. It has an approximate bandwidth of
14 Mhz. This is the reason why the delayed signal becomes
attenuated as the frequency increases. At lower frequencies,
the 150 nsec tap, attenuation-approaches zero.

Attenuation in a delay line may be the effect of several
sources of loss:

1. Internal DC resistance of the delay line

2. Dielectric and ground plane losses

3. Pulse Width limitations



4.3 Frequency Response

The frequency response is a function of the number of
sections into which L and C are divided. A larger number of
sections will reduce L and C of each section thereby increasing
the overall frequency response. Since most delay line inputs
are composed of a fundamental and odd harmonics/ the frequency
components must be delayed equally to assure minimum pulse
shape distortion.

If the higher frequencies of the incoming pulse are delayed
to a greater extent than the lower frequencies, then the output
pulse of the delay line will appear as in Figure 8a. If the
higher frequencies are delayed.less than the -lower ones, then the
output will appear as in Figure 8b.

Figure 8a . Figure 8b

The frequency response of a delay line affects its ability
to approach the rise time of the input pulse to be delayed.
Therefore, frequency response is accounted for in rise time of the
delay line.

4.4 Phase Shift

Since the signal coming out of a delay line is delayed
in time, it is clear that there is also a phase shift of the
delayed signal. Phase shift in a delay line is given by the
followinf formula: . :

Phase Shift(deg) = Td (nsec)xfrequencyx360'

Table A shows theoretical and experimental phase shift
obtained by using the above formula.



TABLE 4

Frequency (iMhz) Phase Shift (theo.) Phase Shift (exp.)

15

75

150

16.

5.

3.

67

55

12

90°

150°

168.5°

99.

150

180

3°

0

a

10

6

.33

0

.8

The error occurring between the theoretical calculations
and the experimental values is probably due to human error in
measuring the frequency of operation and the divisions for the
phase shift measurements.

4.5 Frequency of Operation

The delay line oscillator has 10 taps which vary in delay time.
For each tap, there is an associated frequency. To correlate
the frequency with the delay time, we must add all of the
delays in the signal-path:

1. Delay time = variable

2. Rise time of delay line(Tr) = 25 nsec

3. Propagation delay times of the Nand gate.
a) t HT (propagation delay from High to Low) =9.5 nsec(typ)
, . .pnij

pLH (propagation delay from Low to High) =9.5'nsec(typ)

For example, for the 15 nsec .tap we get

delay time 15 nsec

T 25 nsec

fc
PHL 9.5 nsec

59 nsec total (period)

frequency = 1/T = 16..9 Mhz



The actual frequency was 16.67 Mhz. The error percentage was;
% = 1.7%.



5.0 DELAY LINE OSCILLATOR ALTERNATIVES

5.1 ECL Delay Line Oscillator

Other oscillator alternatives were considered for the
delay line. One idea was to see if the frequency of opera-
tion would increase if an ECL Nand Gate was used. It has
a lower propagation delay time than TTL.(approx. 2.7 nsec)
The circuit was constructed as in Figure 9. The operation
is the same as the TTL gate oscillator.

-aev-

10104
i-N PUT

Figure 9 ECL Oscillator

This oscillator exhibited a frequency of 22 Mhz com-
pared to the TTL's oscillator's 16.67 Mhz.(For the 15 nsec delay)
This is a frequency increase of 32%, but due to this freq-
uency, the output signal was attenuated more because the-
operation frequency exceeded the delay line's 14 Mhz bandwidth.
The signal was attenuated by -4.7 dB.

5.2 Tunnel Diode Delay Line Oscillator

This circuit works as follows: When the .diode switches
from its low voltage state to its high voltage state, a vol-
tage -step occurs. The step is reflected back in opposite polar-
ity after it propagates down the delay line by the short circuit.
The diode reverses state when the reflected step is returned,
thus generating a pulse train. The frequency rate of the signal
is dependent on the time constant of the diode and the delay
tap that is chosen. (See Figure 10)



„
did not permit further investigation.

0-H2LV

IX. IV

Figure 10 Tunnel Diode Oscillator
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6.0 DELAY LINE COMPARISON WITH THE SAW DEVICE

Although my experience with the SAW device is limited,
I can attempt to compare the Delay Line Oscillator to the
SAW oscillator.

The unique feature about the TTL delay line oscillator
discussed in this paper is the fact that it requires no
external amplification to generate a signal. The TTL gate
plays the main part in generating the signal. On the other
hand, the SAW device'-s output is fed back tq the input with
sufficient gain to overcome the loss in the acoustic line.
(See Figure 11)

The phase condition for the SAW device is

2rrn = 0el + 27TfnL/s

where n = integer

0 , = phase shift through feedback loop

f = frequency of the n*- mode

L = acoustic path length

s = speed of sound

The frequency of oscillation is dependent to the relitive
size of the phase shift and 2Tf L/S. The previous statement
is an important property of the oscillator because it allows
a choice to be made between modulation and stability capability.

Figure 11 SAW Oscillator



The SAW oscillator depends on reflections from periodic
discontinuities placed at half wavelength spacings to create
a resonant structure. The LC Delay Line oscillator depends
on transitions within the Nand Gate to generate pulses for
oscillation.

This SAW oscillator will have a much better stability
than the Delay Line oscillator. The Delay Lins oscillator's
frequency can be affected by temperature which affects the
Nand Gate's operation. The SAW oscillator's frequency of oper-
ation will be much higher because it does not depend on the
rise times and propagation delays as the .Delay Line oscillator
does. These extra delays slow down its frequency of operation
considerably.



7.0 SAW -DEVICE OSCILLATOR ATTEMPT

An attempt was made to construct a working SAW oscillator.
For the sustaining external amplifier, the Harris HA-2535
was chosen because of its 320v/nsec slew rate. An estimated
gain of about 60 dB(1000) is needed to overcome the atten-
uation of the delay line. The gain for closed loop operation
was quickly calculated as follows:

G = -A
1+AF Rl+Rf

=-952 where F = Ri

R

i*TO = 5x 10

Rf
-5

and A = 1000

. 500.n.
'500+

The SAW device's pinout is shown in Figure 12.

Figure 12 SAW device pinout

The circuit was constructed as shown in Figure 13.

SAW
ovT

Figure 13 Saw oscillator



.This circuit did not work also. Since the SAW device's
attenuation is practically unknown, this may be a major
factor in the oscillator's failure. The attenuation might be
greater than 60 dB, which is the gain that corresponds to the
op-amp's external components' values. Another possible reason
for the failure may be due to a miscalculation for the op-amp's
external components.(frequency compensation) If the op^amp is
defective,the circuit will|not operate. The SAW device, which
was manufactured at San Jose State University could have been
defective also.



•8.0 CONCLUSION

This paper discussed the characteristics of the LC Delay Line
oscillator: frequency of operation, mismatched termination,
phase shift, and the voltage amplitudes. The theoretical calculations
that were made were pretty close to the experimental values.
(less than 10% error) Later in the paper, other"-6scillator
alternatives were tested and briefly discussed: The ECL oscil-
lator improved the operating frequency while the Tunnel Diode
oscillator did not function.

Later on in this paper, the LC Delay Line oscillator .
was compared to the SAW oscillator. There is no reason to
beleive that these two oscillators are comparable. The SAW
oscillator's operating frequency is much higher than the other
and its stability is superior. This is like comparing a
Volkswagen to a Porche.

An attempt was made to make the actual device oscillate,
but this failed. Due to time limitations, this could not be
investigated further.

The scope of this paper on this subject is somewhat
limited, but I hope that the reader has gained an understanding
of the basic principles of delay lines used as oscillators.

22.
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EVALUATION OF A SURFACE ACOUSTIC WAVE RESONATOR
MANUFACTURED AT SAN JOSE STATE UNIVERSITY

by

Dipl. Eng. Andreas Guile
Supervisor: Prof. Udo Strasilla

Abstract

Three Surface Acoustic Wave Resonators with different geometries
manufactured in the SJSU Integrated Circuits Laboratory were evaluated. In
order to better analyze their features they were compared with commercial
SAW devices. In the first device no useful measurements could be achieved
due to the fact that the distance between the interdigital transducers (IDT's)
was too large and because only two electrode pairs could not couple a
sufficient signal. The second SAW with an increased number of electrode pairs
(15) and the same number of reflectors showed a frequency characteristic with
a center frequency near the required 180 MHz frequency indicating proper
spacing. However the Q value was rather poor vending the device useless in
an oscillator configuration. In the third device, where the reflectors were
omitted, the importance of reflectors were demonstrated. The frequency ,
characteristic of this device was poor due to the superposition of uncontrolled
randomly reflected waves from the edge of the device.

The study shows that the signal strength and Q-value will be increased
greatly if the IDT's are spaced close for sufficient coupling and if a high
number of reflectors, preferably grooved, are used in order to create a
standing wave. Due to limited equipment for the UHF-range no observations
of the sine wave was possible. >

That a SAW device can be used for stabilizing the oscillation frequency
of a resonating circuit was demonstrated by using a commercial high Q 280 MHz
resonator from Hewlett Packard in a common-base Colpitts configuration. The
advantage of using a SAW device for oscillator stabiliaztion is obvious when
considering that the llth harmonic of a bulk acoustic wave crystal would have
to be used in order to achieve the same oscillation frequency.
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I. Introduction

Usually oscillators use crystals operating in the bulk mode in

order to stabilize the frequency. The problem is that bulk-acoustic-

wave resonators (BAWRs) can only work up to the range of 50 MHz . If

one needs higher frequencies the harmonics can be used, or a frequency

multiplication network may be added. A multiplication network often

takes too much space in a certain design. The use of the crystal's

overtones are limited by the low amplitude (high loss in the BAWR).

Basically due to the low amplitude the oscillator circuit cannot be

stabilized enough (eg. using the 10th overtone).

Those problems can be overcome by using a SAWR. Its frequency

abilities range from 50 MHz to 1 GHz2.

hp-journal p. 14.
2hp-journal p. 14.



II. Theory of the SAWR

The key elements are the Interdigital transducer (IDT). It

couples the electric signal to the crystal and produces the

acoustic wave. The acoustic wave travels on the surface of the

crystal (bulk waves are also produced) to a second IDT. This

transforms the acoustic wave back to an electrical signal.

This mechanism becomes useful for a frequency selective

device. There will be only a fairly small frequency range where

a good coupling occurs. This resonant frequency depends on the

spacing of the fingers of the transducer.

innut

crystal

output

Figure 1: Principle of a SAWR

The IDT sends waves to all directions. They will be reflected

at the edges of the crystal. These reflected waves (see Fig. 1)

will interfere in a random way with the main wave. In order to

eliminate that problem an array of reflectors is used.



Quartz
Substrate

Grooved Array..
Reflector

Input
IDT

Two-port surf ace-acoustic-wave resonator. The arrays
of grooves at each end reflect the surface waves excited by
the input IDT. The reflected waves constructively add at a
frequency largely determined by the periodicity of the
grooves.

Figure 2: Two-port SAWR

"The arrays of grooves at each end reflect the surface waves

exited by the input IDT, The reflected waves constructively add at a

frequency largely determined by the periodicity of the grooves" . If

there are enough reflectors at both ends with an appropriate spacing

(x/2) there will be created a standing wave. This standing wave will

give a very sharp resonance peak (very high Q.) with a steep slope of

the phase. This will lock in the frequency of an oscillator and

stabilize it very accurately to the resonance frequency of the SAWR.

hp-journal p. 9.



III. The Equivalent circuit

The equivalent circuit of the SAWR is a series resonance

circuit (with effective components L^ Ci, Rj) parallel with a

capacitance (C0) due to the IDT.

J_

X/2
A/2-H

n miniNlimn

--T̂  I ̂£jL .I ,= ri
L,

(a) T (b) t
u

(c)

Figure 3: Crystal resonator geometries and equivalent circuits.
(a) One-port, bulk-acoustic-wave resonator.
(b) One-port surface-acoustic-wave resonator.
(c) Two-port surface-acoustic-wave resonator.

For a one-port device (b) the capacitance C0 has to be

compensated with an external inductor (Lex) resonating at the

resonance frequency.

f -To

In addition, parasitic capacitance exists between the leads

and the package.

hp-journal p. 10



IV. Evaluation of Commercial Devices for Comparison

For comparison two commercial devices were studied. One was

. the CTI91 44 MHz intermediate frequency filter from Crystal

Technology. The other was the hp 1GA1 280 MHz SAWR.

a. The hp 280 MHz SAWR

a) Total view

b) Closeup view

Figure 4: Picture of the hp 280 MHz SANR

The array of grooves working as reflectors is seen as a

grey band.

The hp 280 MHz SAWR is bonded as a one port device. Therefore

the capacitance C due to the IDT's is a dominating factor (see

equivalent circuit).. This capacitance determines the response

outside the resonant frequency.



reference: -2dB

5dB/Div

fp =280.14 MHz

50 kHz/Div

Figure 5: Picture of the frequency and phase response of the hp 280 MHz
SAWR.

The first positive peak occurs at the resonance point of the

series resonance circuit which is the desired frequency of 280 MHz.

(This device is 140 kHz off and was therefore rejected by the

Hewlett Packard Quality Control Dept.) In that case C0 is almost

shorted out since only the low Rj limits the feedthrouqh.

The negative peak occurs when C0 and LI resonate as a parallel

resonance circuit giving a low feedthrough (-*0).

The second positive hump indicates a side mode. This can be

modelled by a second series resonance circuit with a much higher R2-
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T
Figure 6: Equivalent circuit for the hp 280 MHz SAWR

The insertion loss of about -2dB shown in the picture agrees with

the data specifications.

It is obvious that the peaking at the resonance frequency is

not high enough above the level outside the resonance frequency. This

level is .due to Ca. As it is later shown in the oscillator design,

the C0 has to be compensated by an external inductor.

Figure 7: Picture Of the input impedance (transfer locus)
of the hp 280 MHz SAWR.



Since the hp 280 MHz SAWR is connected as a one port device one

gets a different input impedance character than looking into a two port

(see equivalent circuits). While the input of a two port is dominated

by C0 the hp device shows an inductive characteristic.

By the very thin trace of the main loop (main resonance) a fast

phase shift is indicated. This agrees with the phase plot in Figure 5.

There is also an agreement between Figure 5 and Figure 7 by the

indication of the secondary resonance point as shown in the small loop.

The impedance around the main resonance point becomes real. The

highest value given in data specifications is 60 n (typically 35 ft).

This is normalized for 50 n: 60 n/50 n = 1.2. The picture shows

2.4 • 50 a = 120 n to 4.0 • 50 n = 200 n as real impedance. This

difference in the real part is most probably due to real losses in

the fixture. Omitting that error, the curve in the Sn-plane lies

closest to the center point (1 in the impedance plane responding to

a reflection coefficient of r=0).

b. The CTI 91 Filter

Figure 8: The IDT's of a CTI 91 intermediate filter
1hp-journal p.15
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It can be clearly seen that the input IDT on the left hand side

is different from the output IDT on the right hand side. The different

length of the electrodes of the input IDT shapes the filter

characteristic.

The CTI 91 is bonded as a two port device. Here the IDT capacitances

C are seen at each port. (See equivalent circuit). This has to be

considered by looking at the impedance of the ports.

Frequency response

b) data specifications2 '

a) measured

Figure 9: Frequency and phase response of the CTI 91 Filter

The device is designed as an IF-Filter rather than a resonator.

Therefore its response shov/s a broader bandwith than the hp device.

The tested device shows a bandwidth of ca. 5.5 MHz while the bandwidth

given in the data specifications is 6.6 MHz.

-2Crystal Technology data specification
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The high insertion loss is a result of a failure in the fixture

as later discovered.

Input impedance (normalized to SOU) Z\
vs frequency (Zi = 0)

Output impedance (normalized to 50fl)
Zo vs frequency

(input conjugate matched)

Figure 10: Input (a) and output (b) impedance given in the data
specification .

Due to the design of the CTI 91 (see Fig. 8) the Sn and S22 plane

look different. Beside the resonance frequency, both the input and output

show an almost lossless capacitive character. It is obvious that the

device has to be operated with a conjugate matching circuit in order to

convey the transfer locus close to the reflection less point r=0 in the

center of the Smith chart.

Crystal Technology data specification
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V. The Devices Manufactured at SJSU

The requirement is to manufacture a SAWR with a resonance

frequency of 180 MHz. This target has to be met in steps.

So far three designs have been made. Two with a 10 vim spacing

in the Integrated Circuit laboratory of SJSU and one with 5 ym

technology using outside facilities to produce the mask. All

designs use LiNb03 as crystal material. With a velocity of 3600 m/s

the expected frequency can be calculated as follows:

fo = 2d~

where d is the distance of an electrode pair.

This gives for

10 ym spacing d=40 ym, therefore

f _ 3600 m/s _ on MU,
fo " 2-40 ym - 80 MHz

and for

5 ym spacing d=20 ym, therefore

f , 3600m/i = 8Q „
0 2-20 ym

The following analysis was done with an HP-network analyzer,

a) First run, SAW1

For the first run two electrode pairs and seven reflectors were
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used. The distance between the IDT's was 780 ym.

Figure 11: Picture of the first device (called SAW1)

No useful measurements could be achieved with this device since

the long distance between the IDT's has a too high loss. Also two

electrode pairs are not efficient enough to couple a sufficient signal,

b) Second run, SAW2

In the second step the electrode pairs were increased to 15 (N=15),

The number of reflector strips remained at seven. The space between

the IDT's was reduced to 420 ym.

The distance of the electrode pairs points towards an expected

bandwidth of approximately:

f
T

_
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Figure 12: Picture of second device (SAW2)

reference:

-lOdB

lOdb/Div

fQ = 82.5 MHz

2 MHz/Div

Figure 13: Frequency and phase response of a SAW2
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The transfer function shows the center frequency is about 3 MHz

higher than that designed for^ The bandwidth..with_about.8 MHz is about

3 MHz wider than estimated.

For a SAWR the bandwidth is much too wide and the phase not steep

enough.

Figure 14: Input impedance of a SAW2

It can be seen that, near the main resonance (large loop) many

secondary resonance points (secondary loops) occur. This agrees with

the S2i picture which shows many small peaks. This is most likely due

to a travelling wave with random superposition.

As predicted by the equivalent circuit the device bonded as two

port shows a strong capacitive characteristic (due to CQ).

c) Third run. SAW3

The third design was meant to meet the required 180 MHz resonance

frequency. As seen, this requires aspacing of 5 ym for the IDT

electrodes, exceeding the capability of the masking facilities at SJSU
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to produce masks with this spacing. Therefore the masks were produced

in facilities of a Silicon Valley company.

Figure 15: Picture of the third device (SAW3)

This time, reflectors were omitted in order to study the pure effect

of the IDT's. Again 15 electrode pairs were used. Therefore the expected

bandwidth is

Af , 180_MH2 = 12 MHz

The distance between the IDT's is 210 ym. .
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t;/̂

reference:

-20dB

lOdB/Div

f0 = 185 MHz

10 MHz/Div

Figure 16: Frequency and phase response of a SAWS

- As expected the frequency response does not show a distinct

resonance peak. The main peak occurs with about 185 MHz, 5 MHz above

the designed frequency. Its bandwidth, about 10 MHz, is relative close

to the expected 12 MHz. Here the full range of such effects are

obvious, which have to be eliminated in order to get a usable resonator.

MA
Figure 17: Input and output impedance of a SAW3
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As expected from viewing the frequency response the transfer locus

is full of wiggles and side loops. At the resonance frequency occurs

the largest loop.

Here Sn and S22 are shown on top of each other indicating the

symmetry of the device. The impedance of both parts start off with

the character of an almost lossless capacitance. At frequencies higher

than the resonance peaks it becomes inductive. When the phase shift

becomes zero again the impedance shows a capacitive character again.

There are two frequencies where a real impedance occurs. The first

is very close to the point of complete matching [point. 1 in the

impedance plane (center point) indicates a reflection factor of r=01.

In order to see the effect of reflection at the edges of the

crystal, wax was applied at the crystal edges. The wax absorbs the

surface acoustic waves.

-Figure 18: .Picture of a SAWS with wax applied
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The result can be seen in the following picture:

Figure 19: Frequency and phase response of a SAWS after the
wax was applied.

Mostly the ripple's in the main peak were prevented by the application

of the wax.



20

IV. Discussion

The results show that the frequency range of the device is

determined by the spacing of the IDT's. In order to reduce the

loss the IDT's have to be close enough for sufficient coupling.

The most, important step is the design of the reflectors. By

omitting the reflectors, travelling waves are created which are

randomly reflected at the edges of the crystal. Due to a random

superposition the waves are subtracted .and added randomly. By

introducing some reflectors those effects decrease and a resonance

peak occurs. In order to create a narrow band resonance peak a

fairly high number of reflectors is needed as seen in the commercial

devices. If the number of reflectors is high enough a standing

wave will be created. This will give a high Q device.

In order to meet the requirements for a 180 MHz resonator the

necessary step is to design a device with enough reflectors so that

a standing wave will be created. As learned from discussions with

experts from industry a good approach will be about 100 reflectors.

As shown, the spacing of 5 vim gives the wanted frequency range by

using LiNb03 as substrate.
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VII. Appendix

A 280 MHz oscillator stabilized with a SAWR

In order to gain the knowledge how to use a SAWR for stabilizing

an oscillator circuit an hp 280 MHz SAWR was used.

In general there are two commonly used circuit configurations.

One (a) is for a SAWR packaged as a two port and one (b) for a SAWR

packaged as a one port.

Output

V V

(b)

SAW oscillators using two-port SAWRs in a common-emitter or Pierce circuit (a) and a
common-base circuit (b).

Figure 20: SAW oscillator circuit configurations
i

The common-emitter (or Pierce) type (a) achieves in general

better results but requires relatively exact inductors "to remove

the reactance (at resonance) caused by IDT capacitance. " Further,

an impedance matching network is needed.

The common-base configuration "is only conditionally stable

which leads to ... a higher noise floor far away from the

fundamental signal1" but has less noise near the resonant frequency

than the common-emitter type.

hp-journal p.17, p.16.
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. Due to the accessibility of a one port device, the common base

configuration was chosen. An application was found in the 280 MHz

intermediate frequency oscillator of the HP 8558 spectrum analyzer.

There is an eleventh overtone BAWR substituted by a SAWR for better

stability.

Analysis

O 250 MHz OSCILLATOR
U4J. ,,

0.1 8 1

„. lev '

J 10 /^~^\ Q ' Z 1 -1
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Figure 21: Modified IF 280 MHz oscillator of a HP 8558
spectrum analyzer

The circuit is based on a Colpitts configuration. The SAWR is in

series to the input of the amplifier.
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iz.

J_
(X3)

i SAWS-^J—
ZC (X 2> ( . ' J

. ,xAj-i=>-

"̂"1
Hz.

a) Shematic of a
Colpitts-oscillator

b) Colpitts-oscillator
with a SAY/3

c) AC- co-figuration of the circuit

Figure 22: Development of the circuit analysis

The conditions for oscillations are:

A * AO *^o

Gain: Arr = - v^ = —« 5 and

Phase: = 0.

Therefore:

-1/»0C5

MoC5



24

C, + Cr

A = n

c5

and

1 1 + uL = 0

o3nL = — (F~ + 7-) = — L- ; where - = - +o u>0 C C

Using the values of the circuit:

C5 = 20pF || 5pF = 4.0PF

for 280 MHz:

L = ') \ r^c = 80.7 nH

X. = unL = w-80.7 nH =
L 0 O

This gives a sufficient gain for the base configuration

_ 20pF + 5pF _

Due to parasitic capacitance the inductor L = 80 nH -»• 90 nH (2% turns

of copper <f) 40 mil &lmm around an RF-core) had to be reduced to \h turns.

The value of this inductor could not be measured any more.

By trial and error an appropriate inductor was found to couple

the output to a 50S7 load. The circuit performance became excellently

stable.
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Figure 23: Picture of the oscillating frequency observed with
an HP 8557A spectrum analyzer

-Figure 24: Picture of the entire spectrum
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Application of Surface Acoustic Wave Devices to

Radio Telemetry

(Interim Status Report covering period 1. Feb. 81 to 30. Sept. 81)

The purpose of the project is:

1. the procurement of a commercially available SAW resonator,

2. the reconstruction and experimentation with conventional oscillators

to gain more experience with different oscillator configurations

and with the operations of these in the 100 MHz region,

3. the construction and evaluation of an oscillator using a SAW resonator.

The results up to now in regard to the proposed phases are summarized below:

Phase 1 - Procurement of resonators

Up to now we were unsuccessful in obtaining commercial SAW resonators.

The following firms involved in the manufacture of SAW devices were contacted:

Anderson Labs. Inc., Crystal Technology, Kyocera International, Plessey

Semiconductors, Rockwell International, SAWtek Inc., Hewlett Packard,

and Crystek Corporation. Though many of above companies make SAW devices,

they concentrate on the high volume market of filters, TV delay lines etc.

Only some companies made resonators (Crystal Technology and HP, for example),

however, only for internal research. Many companies are now trying to assess

the potential market for SAW resonators, and will come up with products only

if there exists a high volume potential.

A visit of the manufacturing and testing facility of Crystal Technology

at Palo Alto convinced us that this company is strongly committing itself to

SAW devices in general. Funded by their new parent company Siemens., they

purchased new fabrication equipment expanding to new facilities this fall.



From Crystal Technology SAW bandpass filters were obtained: the CIT 55B

and the CTI 91 with center frequencies of about 65 MHz and 45 MHz, respectively.

Experimentation with these devices are in progress to gain familiarity with the

measurement problems of SAW devices in the greater than 40 MHz region (see

second part of status report by Michael Williamson).

Phase 2 - Experimentation with different oscillators

Two students are involved in this phase: Michael Williamson and Timothy Upshaw.

Their results are described in their informal interim status reports attached.

Williamson experimented with a conventional.crystal controlled oscillator similar as

that used by Ames Research in some of their radio telemetry applications. He used -•'..".

the third harmonic of the 20 MHz crystal controlled oscillator to achieve

60 MHz oscillation. Measurements on the Crystal Technology SAW filter

CTI 55B with the interdigit pattern shown in Fig. 1 are now underway.

Upshaw simulated a SAW delay line by using a tapped lumped element LC delay line,

where the tapped output was fed back to the input via a NAND gate, producing

oscillation where the frequency depended on the effective length of the delay

line (or on the tap used). It appears that this scheme of making an oscillator

with different fixed frequencies can be also realized with a SAW device,

provided that a device is fabricated with multiple output ports, each at a different

distance from the input port.

In addition, other oscillators were designed and constructed, for example the

Wien Bridge oscillator and phase shift oscillator. Though these circuits operate

in the audio range, they served the purpose of studying the fundamentals of

oscillator design, and they could be used for demonstration in a senior circuit

design course at San Jose State University (EE 124).

Phase 3 - Construction and evaluation of oscillator using SAW resonator

This phase was not started yet, partially due to the nonavailability of

commercial SAW resonators. Due to the fact that there is no hope in obtaining

resonators this year, it is fortunate that another research grant was awarded

to Prof. Chen Yuen at SJSU, which is concerned with the fabrication of SAW

resonators.



In an initial attempt Prof. Yuen fabricated a SAW resonator with the

pattern shown in Fig. 2. This is being packaged at Crystal Technology.

When this device will be available we can proceed with the third phase of

the project, as outlined in the project proposal. Though this initial

device is ..only a first order approximation of the desired resonator,

it will serve well the purpose for developing measurement techniques:

for example delay measurements, insertion loss and distortion measurements.

Finally the different oscillation schemes will be tried, like the one with

the amplifier in the feedback path and the other with the NAND gate,

and the performance will be evaluated.
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Fig. 1 Interdigit Pattern of Crystal Technology

CTI 55 B SAW Bandpass Filter ( 65MHz)
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Fig. 2 Interdigit Pattern of Potential SAW

Resonator Fabricated by Prof. Yuen (Sjsu)




