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ABSTRACT

The residual thermal stresses in 4-layer cross-ply tubes are
studied. The tubes considered had a small radius to wall-thickness
ratios and so elasticity solutions were used. The residual thermal
stress problem was considered to be axisymmetric and three elasticity
solutions were derived and the results compared with the results using
classical lamination theory. The comparison illustrates the limitations
of classical lamination theory. The three elasticity solutions derived
were: plane stress, plane strain, and generalized plane strain, the
latter being the most realistic. The study shows that residual stresses
in both the hoop and axial direction can be significant. Stacking
arrangement effects the residual stress to some extent, as do the
material properties of the individual lamina. The benefits of hybrid

construction are briefly discussed.
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INTRODUCTION

The use of composite materials in engineering structures has gained
wide acceptance in the last decade. The success of the NASA space-
shuttle program has provided the impetus for the development of large
structures for space applications. In order to increase payload effi-
ciency, these structures will have to be fabricated from 1ightweight,
highly efficient components. For the following reasons these qualities
are uniquely offered by composite tubes: (1) Tubes are components of
high structural efficiency, as measured by torsional and bending stiff-
ness per unit weight. (2) Composite materials are characterized by high
stiffness and strength per weight ratios. (3) Composite tubes can be
fabricated with relative ease compared to other structural members (such
as I or T section beams) using filament winding. braiding, or other
manufacturing techniques. (4) Composite tubes eliminate the free-edge
problem. a problem which exists in other structural components.

Since space structures operate under zero gravity conditions, they
are subjected to relatively mild mechanical loads However environmen-
tal considerations, such as extremely low (-250°F) temperatures, are of
great concern. The space environment will subject thevmateria1 to a
temperature difference as great as -500°F degrees (from the curing
temperature). This is a substantial temperature differential and will
undoubtedly result in high residual stresses. Therefore, in order to
achieve optimal structure design, it is of great importance to be able

to calculate the thermal stress magnitudes in composite tubes.



This paper reports the first step in the investigation of residual
stresses in composite tubes. Specific interest is in the residual
stresses in a tube operating at -250°F. With the tube having a cure
temperature of, say, 250°F, this represents a severe temperature
effect. In reality the effects of mechanical loads must be superposed
on these stresses. These loads, however, will be 1ight and the primary
effect in the tube may well be the thermal effect. Thus the problem
studied here will be the determination of the thermally induced stresses
in cross-ply tubes. The problem can be considered axisymmetric.
Single-material tubes as well as tubes with layers of various materials
are studied. In the following work, cross-ply tubes are studied using
an elasticity approach. These solutions are compared with results from
a laminated shell theory based on Donnell's shell approximation.

This report begins by presenting a review of the literature rele-
vant to the present study. Elasticity theory and shell theory solutions
are reviewed. Next, the governing equations used in the elasticity
solutions are introduced and the appropriate simplifications and assump-
tions use to derive the solution for one-layer transversely isotropic
tube are outlined. The procedure for the solution of a multiple layered
cross-ply tube is then presented. Following this the shell theory
solution to the problem is discussed. Finally, numerical results and

conclusions are presented.



LITERATURE REVIEW

The residual stresses in orthotropic hollow cylinders can be
studied using an exact elasticity solution, an approximate approach
(such as shell theory), or by numerical methods. Since the elasticity
approach provides the most accurate solution to the problem, it is a
very useful tool in determining the accuracy of the approximate and
numerical methods. Unfortunately, elasticity solutions are more complex
and thus difficult to obtain.

In the following discussion, literature related to the thermo-mec-
hanical response of anisotropic hollow cylinders will be reviewed.
Specffic attention will be directed to the analysis of residual stresses
in composite tubes. In addition, studies relating to mechanical loading
of tubes will be mentioned. The method used in investigating mechanical
loads are similar to those employed in thermal problems. Most of the
work found in the literature relates to hollow composite tube subjected
to combined mechanical loads.

The review begins by discussing the elasticity'method. Following
this is a review of the shell theory approximate method. Finally, the

two methods will be compared.

Elasticity Methods

Sherrer [1] used an elasticity solution to determine the state of
stress in a multi-layer filament-wound cylinder subjected to a combined
axial, torsion, and pressure loads. In his model the fiber and matrix

are treated as separate entities. Consequently, his final expressions



were more complex than if the fiber and matrix had been treated as
homogeneous orthotropic material, as is commonly done in the analysis of
composite materials. Pagano et al. [2], used a plane-strain elasticity
solution to investigate the uniformity of the state of stress in an
anisotropic helical-wound composite tube subjected to an extensional
force. In their study the laminae were treated as homogenebus orthotro-
pic layers. This resulted in considerably simplified expressions.
Pagano and Whitney [3] applied a modified plane-strain elasticity solu-
tion, in combination with shell theory, to study the effect of the
degree of material anisotropy and shell geometry on the state of stress
across the cylinder thickness under simulated laboratory loadings and
end constraints. Their approach consisted of combining elasticity
solution to an infinitely long cylinder and a shell analysis to a tube
of finite length. At a certain distance from the constrained ends, the
shell's stress resultants were assumed to be statically equivalent to
the stresses calculated by the elasticity solution. Since the problem
is easily solved by shell theory, this type of analysis simplified the
boundary value problem. Weng [4] used a plane-strain elasticity method
to solve the thermal problem in hollow anisotropic cylinders. Weng
examined the thermal stress in grades ATJ and ZTA graphite cylinders
subjected to thermal gradients in a radial direction. The bulk graphite
was “treated as transversely isotropic material with the hoop-radial
plane taken as the plane of material isotropy. This condition consti-
tutes a special problem in fiber reinforced composite tubes with axial

fiber orientation. His solution was similar to the one generally



employed in the analysis of isotropic cylinders subjected to radial
temperature gradients (see Timoshenko and Goodier, page 448 [5]). In
Weng's solution the constitutive relations were generalized to trans-
versely isotropic materials.

The above studies demonstrated that elasticity solutions can be
obtained for certain anisotropic hollow cylinder problems. However,
these solutions become more complex for angle-ply cylinders. In addi-
tion, elasticity solutions to thermal problems involve the solution to
nonhomogeneous ordinary (or partial) differential equations and thus
adds further complexities to the problem. In some cases, depending on
cylinder geometry and loading conditions, one can utilize an approximate
method such as first or higher-order shell theory in order to simplify

the solution to anisotropic hollow cylinder problems.

Shell Approximation Methods

A number of investigators have utilized shell analysis to quantify
the state of stresses in hollow anisotropic cylinders under combined
loads. One advantage of a shell theory approach, as opposed to the
elasticity method, is the relative ease with which boundary value prob-
lems can be solved. Whitney and Halpin [6] used Donnell's shell approx-
imation analysis to characterize the response of laminated composites
tubes subjected to combined thermal and mechanical loads. Pao et al.
[7, 8] demonstrated that by applying Flugge's higher order shell theory
to orthotropic laminated tubes, the thermal loading problem could be

solved. Pao also compared the results obtained with a higher order



solution. He found that the Donnell method was fairly accurate if the
shell radius-to-thickness ratio, R/t, was large. However, error of up
to 10% occurred in the hoop force and moment resultants when this ratio
dropped below 10. Stavsky and Smolash [9] used a shell approximation to
derive the thermoelastic equations for an orthotropic semi-infinite
hollow cylinder shell. In addition, they also developed the heat
transfer equations which govern the temperature gradient through a
shell,

It appears that a shell approximate method can be useful in the
solution of circular hollow composite shell problems. However, one
should be aware of the various factors which can contribute to error in
the analysis. In the following section we shall discuss some of the
factors and compare the elasticity and shell approximation solution

methods.

Comparison of the Elasticity and Shell Approximate Methods

Shell geometry is one factor which determines the accuracy of the
method employed. Whitney et al. [10] showed that shell approximation
yielded accurate results, as compared to an elasticity solution, for
R/t > 10 in a laminated tube subjected to combined mechanical loads. It
has also been found in previous studies [2, 3, 10] that for large values
of R/t, the state of stresses predicted in each layer of a laminate tube
is similar to those predicted for a laminated flat coupon of infinite
width subjected to the equivalent membrane forces (i.e., using classical

lamination theory). Rizzo and Vicario [11] used a three-dimensional



finite element analysis to determine the effect of R/t and length-to-
radius ratios, L/R, on the state of stress in composite tube speci-
mens. They found that for a boron-epoxy tube the stress was nearly
uniform away from the grip (for R/t > 25) and hence could be accurately
characterized by a classical lamination theory formulation.

The effect of lamina fiber angle, relative to the tube axis, and
stacking sequence on the state of stress in a thermally loaded composite
shell was investigated by Stavsky and Smolash [9]. A similar problem
was addressed by Pagano and Whitney [3] in composite tubes subjected to
combined mechanical loads. Both studies found that fiber angle and
Tamination sequence strongly effected the state of stress in composite
shells under combined mechanical and the%ma] loads. Whitney [12] and
Zukas [13] have pointed out that in laminated composite tubes transverse
thermal expansion as compared to in-plane fiber direction thermal
expansion is relatively large. Consequently, the assumption of zero
strain in the radial direction employed by Donnell shell theory will
result in considerable inaccuracy in the stress calculation. Whitney
presented a modified shell theory which incorporated the effect of
transverse normal thermal strain. In comparing his modified method with
an exact elasticity solution, he found a good level of agreement between
the two for an angle ply tube of R/t = 10.5., However, an analysis of
the same tube using Donnell shell theory resulted in a considerable
amount of error.

From the literature review, it is clear that for values of R/t less

than 10, an elasticity solution or a shell theory of higher order than



Donnell's shell theory must be used. Whitney has presented a higher
order shell theory. The elasticity theory Whitney referenced was a
private communication with Pagano and no written reference was avail-
able., Thus the elasticity solution in the following section is presen-

ted for the purpose of documenting the elasticity approach to the prob-

lem,



GOVERNING EQUATIONS
In the following sections the solutions used to compute residual
stresses in composite tubes are outlined. The discussion begins with a
description of the laminated composite tube geometry. This is followed
by a presentation of the equations which govern the behaviour of a
composite tube., Finally, the analytical solutions to the thermomechan-
ical problem of composite tubes using various elasticity solutions and a

classical shell theory approach are presented and compared.

Geometry

In the following analyses, three sets of orthogonal axis systems
will be referred to; polar cylindrical (r, 6, and x), laminate global
(x', y', and z'), and lamina principal (1, 2, and 3) coordinates.

Figures 1 and 2 show the tube geometry and the coordinate sys-
tems. The tube's inner radius is denoted as ry, the outer radius is rg,

and the tube's mean radius, R. Note that

and R locates the distance of the tubes wall's geometric midsurface
relative to the tube centerline.

The c¢ylindrical r-e-x system measures the 1oca§ion of a material
point within the tube relative to a reference point on the tube's cen-
terline. The directions of the r-e-x coordinates are colinear with the

three base vectors ér’ ée, and éx shown in fig. 1. This local ortho-
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Fig. 1. Tube geometry and coordinate systems used.
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2,3

Fig. 2. Detail of laminate and material coordinate systems,
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gonal base vector system is located in space by the cylindrical coordi-
nates r, 6, and x. The quantity r is the radial distance of the point
from the tube's centerline, 0 is the circumferential position of the
point, and x measures the position of the point along the tube.

The laminate global coordinates x', y' and z' are, except for the
prime notation, those commonly used in the study of composite material
analysis [14]. They are an off-axis coordinate system. The laminate

x',y',z' coordinates are fixed at the laminate's midsurface, i.e., at a

distance R from the cylinder's centerline. It should be noted that

I'=R'Z'.

The lamina's principal coordinates 1, 2 and 3 coincide with the
material principal directions. The 1 and 2 axes represent the fiber and
matrix directions, respectively. The 3 axis is oriented normal to the
lamina plane and is colinear with the r and z' axis. The orientation of
the lamina's fiber (axis 1) relative to the global x' axis is measured
by the angle ¢ as shown by Fig. 2. The above conventions were chosen in
order to unify the notations employed by elasticity and shell theories
while maintaining the common convention used in the area of laminated

composite analysis.

Constitutive Relations

The thermoelastic constitutive relations for an orthotropic lamina

can be written relative to the lamina coordinate system as
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1 V12 V13
€4~ AT = - = = 0 0 0 o
171 E1 E1 E1 1
1 Va3
82'(12AT E—— - ——E— 0 0 U 0'2
2 2
63~a3AT El—- 0 0 0 g3
3
= (1)
Y23 = O 0 23
23
. 1
Y13 Symmetric T 713
13
, 1l
12 G 12
| 12_

where @y, @y and @y are the lamina's linear coefficients of thermal
expansion in the 1, 2 and 3 directions, respectively. The quanti-

ties €15 €25 €35 Yo3s Yi3s and Y, are the total strains. The quanti-
ties 6y, ..., Ty, are the stresses. The lamina's moduli iﬁ the 1, 2 and
3 directions are designated by E; (i = 1,2,3), the shear moduli for the
i-j planes hy Gij (i,j = 1,2,3), and the material's Poissons' ratios are
given by wv.. (i,j = 1,2,3). The following three reciprocal relations

13
hold:

Vo o Voo
s i,j = 1,2,3. (2)
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The temperature change with respect to some reference temperature is
designated by AT, where AT > 0 corresponds to a temperature rise. The
square material matrix is designated by [S] and is referred to as the

compliance matrix, i.e.,

V) v -
] 12 13
. B} 0 0 0 .
E) i3 B
\Y v
2 2 2
AV] V..
31 32 ]
-k 2 = 0 0 0 (3)
3 3
[s] =
]
0 0 0 0 0
79
]
0 0 0 0 L 0
Gy3
0 0 0 0 0 E-l——
" 12

Due to eq. 2, the above matrix is symmetric. The lamina stress-strain

constitutive relations can be written in an inverted form as:



23

13

T

12

0

L.

C12 C13
C22 C23
€32 €33
0 0
0 0
0 0

15

1.
0 el-alAT
0 ' ez-azAT
0 53-0.3AT
0 Yi3
Ces| | Y12

where [C] = [S]~1 and [C] is termed the lamina stiffness matrix. The

inverse of [S] gives the components of [C] as follows:

2
322533 © 523

(i = 5
2
S 3 |l &
22 5
2
o .12 " %1
33 S
_ 1
Cag 57> Css

Cip =

313923 " 512333

S

12523 = 313522

12713

S

Si2 = $,,S :
< 23711 (5)
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where

) 2 2 2
S = 511599533 = 511523 " S22513 ~ $33512%23%13¢

In terms of the engineering constants the Cij components may be

expressed as follows:

o2 2332 V23 o V132V
NTEELS 0“2 TTEES 13 © TEEC

S 1 YRR 1+ A € SN P ) )
22" TEELC * ‘3T TEEC 33T TEEC

Cag = B3 » Cgg = G35 Cg = Gy
and

1-v19991 "V93V32 V31 V1372V V32V 3

C:
B0

As a consequence of the fact that Sij = Sji’ it can be shown that Cij =
Cj-io

Since the equilibrium and kinematic equations of elasticity are
generally written in cylindrical coordinates, it is desirable to express

the constitutive relations in terms of the stresses and strains referred
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to cylindrical coordinate. This is achieved by writing the stresses in
the 1-2-3 system in terms of the stresses in the x'-y'-z' system, and
writing the strains in the 1-2-3 system in terms of strains in the x'-
y'-z' system. From that point, transformation of stresses and strains
from the x'-y'-z' system to the r,8,x system is made.

The relation between the stresses in the 1-2-3 system and stresses

in the x'-y'-z' system is

61 O'Xl \
9, oy
a3 o,
Tog = I:Tl:I ' Ty;z1 (7)
13 ™'z
T12 Tx'y'}
where
me n2 0 0 0 2mn
n2 m? 0 0 0 ~2mn
0 0 1 0 0 0
[ry] = 0 0 0 m -n 0 (8)
0 0 0 n m 0
-mn mn 0 0 0 (m2-n2)

with m = cos® and n = sine.



18

The relations between the total strains in the two systems is

El €x|
82 Syl
€3 €1 R (9)
Y23 = (T2 Yy'z!
Y13 VYx'z!
112 } | Tx'y!
where -
m? n? 0 0 0 mn
nZ m? 0 0 -mn
0 0 1 0 0 0 (10)
(T2l =1 o 0 0 m -n 0
0 0 0 n m 0
-2mn 2mn 0 0 0 (m2—n2)
-
The thermal strains transform like the total strains, i.e.,
alAT ctX:AT
a AT ay.AT
agAT o, 1 AT (11)
0 = [T, ay.Z.AT
0 ay 1,1 AT
0 a1 AT
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where LNIRE ax.y. are coefficients of thermal expansion in the x'-y'-

z' system. The coefficients of thermal expansion in the x'-y'-z' system

are given explicitly by inverting eq. 11. The result is

a.=ma1+n2a2; @ = 0y Fma,, = ag
ay'Zl =0 = aX'Z.; ax'y' = Zmn(al-az). . (12)

Substituting the transformed stresses and strains into the consti-

tutive equations, eqs. 1 and 4, gives

€ , - o AT GXn
[ . - [+ ] |AT o ]
y
€ 1 - O |AT g ]
z z
Yy'z' = [S] T_y‘z' (13)
Yxlzl TX'Z'
Yoi a0 = 0y AT T 4
Xy X'y Xy
where
51 = 7,07 sarryd, (14)

[S] being referred to as the transformed compliance. The transformed

compliance matrix is of the form



with

]

i

20

511 S12 513 0 0 516
S12 S22 S23 0 0 S6
Si3 523 S33 0 0 S36
0 0 S Sas 0
0 0 0 '5'45 §55 0
Si6 S26 S36 0 0 Se6
= m431'1 + m2n2(2512+ 566) + n4322

Sp1 = (' + "4)512 * '“2"2(511+ S22 = Sg6)

Sy = -(n5py + S )g)

S, = MON(2S) - 251, See) + M (25 ,m 25,5t Sgp)

n4S11 + m2n2(2512+ 566) + n4S22

Syp = -(n°Syg * S pg)

Ss, = M (M7 (25,5 Sge + 251,) + n°(Sge- 2511 25,,)]

333

353 = 2mn(813— 523)

m2344.+ n2355

§54 = mn(S44 355)

nSyq + mzs55

4m2n2(511+ 522+ 2312- 566) + 566 .




The inverse relation is given by

with

[cl

21

-1.
7, 17 e LT, ]

1= A |AT

The matrix [C] is referred to as the transformed stiffness matrix.

is of the form

2

o o o A
N

(e}

Co6

3
3
3

e o

o

| © o

()

44

=]
FN
o

<)

<

45

(e

55

6
6
6

e O O o

0

Co6

-

The transformed E%j components are given in terms of the principal

lamina stiffness coefficients as;

(18)

It
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Cil = m4C1 + mZnZ(C12+ ) * n4C22

Tip = Ty = n0°(Cyp% Cppm Hogg) + (n*+ mi)ey,

Ci3 = 651 = n’Cyq + nChy o

The = Top = mn®(C);- Cpm 2Lgg) + nP(Cypm Cppr 2040
T Ty =ity * 2nPnl(Cy ¢ Wgg) + mC,, |

Tps = Typ = 1Cy5 + mChy

Tys = Tgp MN(C; = Cppm Lgg) + MP(C)p= Copt )] (20)

C33 = C33

C36 = Tz = m(Cy3- Cp3)

Cag = m’Cyq + n°Cys

Cas = Tgq = m(Cg5- Cyy)

~ 2 2
Cpg = N Cyhq * mCyp

2 2 2 2.2

(g
(=)
[+,

|

Finally, the stresses and strains can be transformed to

the r-6-x system. The familiar tensor transformation is used, i.e.,

%j T %4k%2%a (21)

The quantity a, ., is the direction cosine between the +m axis in the x'-

mn
y'-z' system and the +n axis in the r-6-x system. The stresses on the
left of eq. 21 are the stresses on the x'-y'-z' system while the stres-
ses on the right are the stresses on the r-6-x system. The following

table shows the specific values of a,, in the transformation.
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Values of a

AULL LN AR 1Y
r 0 X

x' a1 = 0 ajp = 0 ajg = 1

y' ag; =0 agy =1 agy = 0 (22)

z' az] = -1 agp = 0 azz =0

Using egs. 21 and 22,

ox. cx ex.- ax.AT ex-axAT
oy. 9 ey.- ay.AT ee-aeAT
Gz' or ez.- aZ.AT er-arAT
Ty = ~T g Yyig = Yo (23,24)
"'z “Txr Tx'z! xr
Tx'y' Txe R Yx.y.- ax.y,AT Y. 9~ 6AT

Because 344, CAS’ 655 and 344, 345, 355 are the only nonzero terms in

the 4th and 5th row and column of the [C] and [S] matrix, respectively,

the constitutive equations in the r-8-x system can be written as



o, £ - u.xAT

g €g" aeAT

g, ~ eT arAT (25)

o [ = Tro

Txr Txr

Txo Txg™ %xplT

and

€y” axAT 9y

€g” aeAT 9q

€pn" arAT B O (26)
S S & I
Yxr Txr

Yo~ %xotT Txo

With eqs. 25 and 26, the constitutive behavior of the tube is

expressed in terms of the r-6-x coordinate system.

Equilibrium

The stress equilibrium equations can be derived if the equilibrium
of forces which act on a small element isolated from a cylindrical body
are considered. Summing forces in the x, 6 and r directions resuits in

the following stress equilibrium equations:



aor 1 1 aTrG arxr
-5—r—‘—+-F(O' -09) +F-§—é—~—+ X +Fr= 0 (27'3)
T 90 9T
ro 1 €] 0x 2 -
BTXP 1 arex aox
 t T oy + = “r + FX =0, (27.c)

where F, Fe and Fx are the body forces in the r, 8 and x directions.

In the present work these forces will be zero.

Strain-Displacement Relations

The strain-displacement relations in polar coordinates can be

determined in a variety of ways. These relations are

_ ow _ 1 oy _du
“r T %o T F'[§5'+ wls ®x T 3x
_ 1 9w oy
Yo © F'[§§ -Vt 5?1 (28)

_9v 13y
Yxo T3 T 7

where w, v and u are the displacement components in

the e. € and ey polar coordinate directions. This is a notation
commonly used in the area of elasticity. It should be noted that the

engineering shear strain is being used here. In most general elasticity



problems, displacements are a

sed as:

Compatibility Equations
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function of x, 6 and r and can be expres-

u(x,8,r)

v(x,8,r) (29)

w(x,o,r) .

For completeness, the compatibility equations for the strains are

recorded. In many cases these equations are automatically satisfied.

For thoroughness, however, they should always be checked. The compati-

bility equations are

2 2
3 € 9 € 3 Y
ML L (30.a)

X ar arox

2 2 2 :
3 €9 1 9 Yox . l__a €y N _-Eii 1 aer o (30.5)
2 Tr 2 2 Tor B .
9 X 909X r 90 ar X

2 2
3¢ de 3 (ry..) o de

2r S re’ ., (rz.__ﬁ ) =0 (30.c)
96 ar arab ar ar

2 2 2 2
37y 9 3 Y

ooy (Fvg) ~F—2 42— (2c)=0 (30.d)

ax arax 909X arae
2 azer 32 1 ) [1 P} )] 32 ( 2 ) 0 (3 ) ‘
= e - —— (=Y +— = —(ry - —— (r7y = O.e
" 389x  3rae PXT 0 gp Mgy o O 2 3rax ré
Bzyrx aer 82 82 32
——= = 2r —- - —— (ry_ ) + 2r -—— (re,) - —— (ry,.,) =0 (30.f)

36° sx  arag  X® arax 2 aeax 'O
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Boundary Conditions

To complete the statement of the problem the boundary conditions on
all tube surfaces must be specified. The boundary value problem may be
categorized into two types. In the first type the displacements u, v
and w are prescribed on the body's surfaces and the stresses, strains,
and displacements within the body are to be determined. In the second
type, stresses (or tractions) are prescribed on the.body's surfaces and
the stresses, strains, and displacements within the body are to be
determined. More often in elasticity problems one is faced with mixed
boundary value problem, a problem for which stresses are prescribed for
part of the body's surface, and displacements on the remafnder. For the
problem at hand, the boundary conditions will be generally specified as

on the cylindrical surfacés, i.e., @ r ='r0 and r = ry
either 9. 0r W is specified, and
either Tpg OF U is specified, and

either Thg OF V is specified.

on the cylinder's ends, i.e., @ x = Xgpq
either o, oru is specified, and
either T OV is specified, and

either Tep OF W is specified.

However, it is possible to specify integrated conditions at the ends of

the tube, i.e.,
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| o, dA = specified
A
| rty dA = specified
A
. - @ X = Xgng
etc.

Here A is the annular cross-sectional aréa of the layer.

For the most part, solutions to the general field equations and the
specified boundary conditions do not exist. Hence, physical assumptions
are made which simplify the mathematics. The mathematital]y simplier
problem is then solved and the resulting answers interpreted in the
context of the physical assumptions. The approximations for determining

the residual thermal stresses in composite tubes will be stated later.

Mu]tip]e Layers

Laminated composite tubes are most often constructed of muitiple
layers. Each layer is goverhed by the field equations discussed in the
previous sections. Since these layers are part of the tube, certain
conditions should be satisfied at each layer interface. For the layers
within the laminate, these interface conditions replace boundary condi-
tions on the cylindrical surfaces. The interface conditions between the
kth and (k¥.1)St layers are that all tractions acting on the surface are
continuous and all dfsp]acements are continuous. These conditions can

be expressed as:
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u =u T,V =V T, W =W
@ r = ripterface
& = ok—1 X o k-l I . k-1 )
r r > rb ré ’ ‘rx rx
At the end of each layer
either g, oru is specified
either Teg OF V is specified @ x = xendf

either Typ O W is specified.

As with the single layer, it is possible to specify integrated

conditions at the end of the multiple layer tube, i.e.,

[ o, dA = specified
A X

@ x = Xand *

= —

rt.e dA = specified

L

etc.

Here A is the annular cross-sectional area of the multiple layers.

Assumptions'and Simplifications for Computing Residual Thermal Stresses

In the following sections we shall discuss the assumptions and

simplifications used in determining residual thermal stresses in multi-
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layer cross-ply composite tubes.

1) Axisymmetric simplification

If the tube's material properties and tempefature distribution are

independent of 6, then the displacements u, v, and w are not dependent

on 8, Hence

u

u_(r,e,X) u(r,x)
v(r,0,x) = v(r,x)

w(r,0,x) = w(r,x)

In addition

]

9
75 = 0.

As a result, the strains will be independent of 8,

the stresses will then be independent of 6, Thus

(31)

(32)

Through Hooke's Law,

(33)
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The stress-equilibrium, strain-displacement, and compatibility equations

simplify to:

- simplified stress equilibrium

90
— +'% (0, = o) =0
ar
9T 3T
—re X, 2. g (34)
rre
ar ax
aT 90
Loy %'Txr =0
ar X

- simplified strain-displacement equations.

r  ar° ] r? X X
=9V _ Vv
Yreg ~3r " T (35)
qu W

1
|
+
|

<
x
-
@
-
@
x

Q
<

Yxo

(3]
x
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- simplified compatibility equations

826x 32 X 82 rx
+ - = 0 (36.3)
a£2 8r2 ardyx

3 3
Eg b1 2% 1 Mex 0 (36.b)
ax r or r 9x »
3 3e de.
— (P28 r. (36.c)
ar ar ar
2 2
? Tro _ r : (2v,) =0 (36.d)
ax ardyx r X
2
9 P P}
1 1 2
— [ —(r vy, )] - (rfv g) = 0 (36.e)
or " or ox ;2-3r8x ré
de 32
— - (reg) = 0 (36.F)
ax arox

2) Cross-ply assumption

Only cross-ply laminated cylinders are considered in the present
study. Then within each layer there is no coupling between extensional
and shear stresses. The cylindrical lamina constitutive relations for a

layer are reduced to the following:
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- simplified strain-stress relations

Trg
xr

X0

AT

v

12
22

w

55

- simplified stress-strain relations

T
xr

X0

ro

]

]

o)

11

o

12
22

o

666

—

Tro

Txpr

Yxo

AT

In a single orthotropic layer or in a multiple-layer cross-ply tube

subjected to a spatially uniform temperature distribution, there are no

hoop displacements induced by thermal effects, i.e.,
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v = 0, (39)
To summarize, the field equations which govern the residual thermal
stress state in the individual layers in cross-ply composite tubes in a

spatially uniform temperature field are:

- equilibrium

acr 1
= += (0, = 0dg) =0 (40.a)
at T
o, %x,2. 6 =0 (40.b)
3p x rr
ot 30 1
oy Xp 2o =0 (40.c)

(41)

1]
o

YrB

YxO



- compatibility
326 325 82Y
r X rx
7t —=7- -
ax ar ardx
2
97¢q + l_aex - l_aer
axz r ar r dx
9 e Je
0
____(rz ———.—) - r......':::
or ar ar
0 =0 (automatically
0 =0 (automatically
de 32
—_ - (reg) =0
ardx

X

- constitutive equations

sx ax S11
€g ) = { % AT )=
er ar

or

35

0
=0
0 (42)
satisfied)
satisfied)
-
S12 Si3 o
S)2 33 g
333 oL

r? Yxe =0 = Toor (43)
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9% i1 Ci2 Ci3 €x %x
Ue = C22 C23 €e - ae AT
o | C33] r *r
(44)
Tre 0 = Tre® Txr B C55Yxr’ Txg - 0= Txo *

The above system of governing partial differential equations, and
associated boundary conditions, are still quite difficult to solve for a
general axisymmetric situation. The most difficult aspect of the equa-
tions as they relate to tubes is the ability to deal with finite-length
geometries, i.e., dealing with boundary conditions at the ends of the
tube. Further assumptions can be made, however, and particular problems
can be solved. With a proper selection of particular problems, the
solution to the more general problem can be approximated and perhaps
bounded. This is the approach to the problem of interest here. Three
related and solveable problems are examined with the idea that the
residual stresses calculated from the three simplier problems closely
approximate and indeed bound the stresses for a more general situation.

The three solutions are

i) plane-strain solution,

ii) plane-stress solution,

iii) generalized plane-strain solution.
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For certain stress components, the first two solutions represent bounds
to the problem. The generalized plane strain solution is the most
accurate representation of away-from-end response. The solutions are
discussed separately below.

Plane-Strain Solution

In the plane-strain analysis it is assumed that the tube is
restrained from axial motion. Consequently, the axial displacement, u,
is equal to zero and from the strain-displacement relations

= du _
ex— X Oo
In addition, it will be assumed that none of the other variables in the
problem vary with x, As a result, the lamina constitutive relations,

eq. 44, become

Oy - aXAT
9q = [C] €g = aeAT (45)
I € "~ arAT

Txr B C55Yxr'

When 9 and 9. from eq. 45 are substituted into the first equilibrium

equation, eq. 40a, the result is
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where:

y = {(623- Cyy)ay + (Caq- Cozle, + (T3~ 'c‘lz)aX}AT . (47)

From the strain-displacement relations, eqs. 41, substitution
for €4 and € in eq. 46 leads to a nonhomogenous ordinary differential

equation for w(r). That equation is

d2w dw

Tpalg t =) - Ty g7 L (48)

dr dr r

The solution to eq. 48 can be obtained by making the following variable

changes:

C. d2w - T, =.eb )
33 E;?' 22 « °

The above ordinary differential equation has the following homogeneous

solution:
+ Ase ,

where,
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|

O

A = 4 .._.2_2_
1,2 ~ T
33

To find the particular solution it is assumed

In the r domain

oF +%—-%-—r. (49)
337 Y22

In the case when 553 = Eéz the last term of eq. 49 should be replaced by

)
r Inr, and Al 2 = + 1.

In addition, if @ =9 and E&z = Ci3, as in the case of 0° lamina
which assumed to be transversely isotropic, then eq. 49 takes the fol-

lowing form

w(r) = Alr + Ay/r . (50)
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The strains € and ée can be determined from the strain-displacement

relations. The strains are

2 A,-1
- dw _ ) 2
e, T qr Tt 1 Agyr
Taq- T. L=1
337 “22 (51)
Y 2 A, -1

€e=_:'_‘.w'= __.._._..__._.__'I- 2 Alr‘z .

U35 Cyy 271

The stresses can be determined by the constitutive relations, namely

Ci3* Cy2 | g Tt
6, = ——o 2 ¥ (.0, AT+ § (C.,+AC.,)A, r , o (52)
i T T ij’J 2=1 i2 27937 78
33 22
where
i= x,O;r for stresses and coefficients of
thermal expansion,
i=7=123 for stiffness in the same order,

and the double subscript j indicates summation from 1 to 3. For a

transversly isotropic 0° lamina, the strains are

Ay

S S
(53)

A

B 2

ee -A1 + i

r

and the stresses are



ij~j 1
i and j having the meanings of eq. 52.

Since 9y is not considered to be a function of X, the third equi-
1ibrium equation, eq. 40c, results in
- gyl :
Tyep =Br " . (55)
For a single layer the constants A; and A are determined by'the

condition that o. = 0 at the tube's inner and outer boundary, r:; and r

1 o?

respectively.' With no traction Ty applied to the inner or outer bound-
ary, B of eq. 55 must be zero. Thus only radial, houp, and axial stres-

ses are generated.

Multiple Layer Plane-Strain Solution

Since the plane-strain solution constrains u to be zero, continuity
of u at the interface between the (k-1)st and the kth layers is auto-
matically satisfied. The axisymmetry of the pbob]ém and the uniform
temperature distribution forces the tangential displacement, v, to be
zero for each layer. Therefore, the continuity of v is automatically
satisfied. The continuity on w leads to
k( k-l(

r)ye@er =‘r.

r) = w interface
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The stress Ty is zero throughout since there is no applied traction to
cause it to be nonzero. Thus the B in eq. 55 is zero for each layer.

Continuity of the only nonzero stress, Tps at the interface results in

k _ k-1 -
_or(r) "9 (r) @r Finterface

Enforcing Wk = wk'1 at the N-1 interfaces of an N layer cylinder

yields N-1 equations to solve for the N A;'s and N Ay's of eq. 49 or 50,

whichever is applicable. Enforcing oi = ok;l

at each of the N-1
interfaces gives N-1 more equations from which to solve for the Al's and
Az's. Enforcing the traction-free condition on o, at the inner and
outer radii gives two more equations. Thus all conditions are satisfied
in the multilayer tube and the N A;'s and N Ay's can be determined.

From eqs. 52 or 54 the stresses can be computed.

Plane-Stress Solution

In the plane-stress elasticity solution attention is focused on a
thin axial slice of thickness 2. It is assumed that & < <R and the
stress vector in the axial direction is equal to zero. In addition, it
is assumed that all stress components are independent of x. Since the
axisymmetry assumption leads to the stresses being independent of 6, the
plane stress assumption limits the stresses, and strains, té be func-
tions only of r. In addition, except for the axial displacement, the
displacements are functions only of r. The assumptions employed in

plane-stress are summarized below.



43

- stresses
% = Txr T "xo  re 0
o, = or(r)
gy = oe(r‘)
- displacements
u = u(x,r)
w=w(r)
v = 0,

For the individual layers in a cross-ply tube, Hooke's relations for the

above case may be written in the following reduce stiffness form:

o 02 Ty3 eg = AT
= (56)
where the 5}j's are the reduced stiffness coefficients which can be

written as:

The strain-displacement relations can be substituted into the above

relations and the stresses written in terms of the displacement w as
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follows:

% = Tpp (f - apdT) + Tyl - o, 4T)

_ w dw
0. = Tpg (- agaT) + Qgy (g7 - «8T) .

When o4 and o.are substituted into the first equilibrium equation, eq.

40a, the result is

2
Ty gt Gy 287, =L ] (58)
33 ;:?' 33 r dr 22 2 r ’

where
2 = [(623" 622) ) + (633' 623) ("r] AT

The solution to eq. 58 can be obtained by the procedure outlined for the

plane-strain case. The result is:

A A, ) ‘
wir) = Ajr "+t Ayr T4 ———— - (%9)
033~ Uy
where 3
A A= + __2__2_. o
1* "2 T
33

As for the plane-strain case, if Qy, = Q35 the last term in eq. 59 must

be replaced by:
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rinr, and Az =t 1
2033

In addition if a, = a. as will be the case for 0° lamina if we assume

)
transversely isotropic condition, then eq. 59 becomes

A
wir) = Apr +—. (60)
r

The strains €q and €. are obtained by substitution of the displacement w

into the strain-displacement relations to get

Y 2 A, -1
N I
r = = o A
Q33- Qp 2=l
3 (61)
2 A -1
Jdw 2
33~ Qpp 271
The residual stress components are determined from the constitutive
relation to be
Géi+ ﬁ% . 2 _ Al-l
T () Tl T L G Tt e
33 122
where
i=6,r for stresses and coefficients of
thermal expansion,
i=3=2,3 for stiffness in the same order,

and the double subscript j indicates summation from 2 to 3.
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For the transversly isotropic case, the strains are given by

A
2
€=A""‘_
r 1 r2
(63)
A
- 2
eg = Ay * :7
and the stresses are
- -1 T+ T T.-T.) L .
o5 = = QuyogaT + A (Qup Qug) + Ay Q5= Ty 5) 7 (64)

The boundary conditions on the ends of the cylinder are that all
stresses are zero there, a condition imposed by the plane stress assump-
tion. The constants Ay and A, are determined so as to satisfy the
condition that o, = 0 on the inner and outer radii. Only radial,

Tps and hoop, Ggs stresses are generated.

Multiple-Layer Plane-Stress Solutions

The plane stress solution for multiple layers is unrealistic in
that it actually models concentric tubes which can slide axially rela-
tive to one another. An éxia] restraint would require nonzero stresses
in the direction of the cylinder axis, a condition not allowed. Thus
the cylinders have no choice but to slide relative to one another. Thus

uk # uk=1 at the interfaces. Since v = 0 through, vk = yk-1 at all

k o k-1

interfaces. Enforcing w at N-1 interfaces of a N layer cylinder

yields N-1 equations to solve for the N Al's and N A2's. The L stress

is zero throughout by the plane stress assumption., Hence Ttx = Tk;i at

each interface. The stress Trg is zero throughout also. Enforcing
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ot = ct-l leads to N-1 more equations for the N A;'s and N A,'s.
Using &r = 0 at the inner and outer radii gives the final two equations
from which to solve for the N Aj's and N Ay's. Once all the Al‘s and
A2's are found, eqs. 62 or 64 can be used to find the stresses in a
particular layer. As with a single layer only hoop and radial stresses

are generated.

Generalized Plane-Strain

In the generalized plane-strain analysis it is assumed that the
tube is very long. Interest centers on the portion of the tube away
from the ends. It is assumed that in this region none of thg strains,
and consequently none of the stresses, vary with x. Because of the
axisymmetric nature of the problem none of the strains, nor displace-
ments, vary with 6 either. By using the first two compatibility equa-
tions, eq. 36, it can be shown e, = a constant. Thus for the general-

ized plane-strain analysis

=0 = -
€y e”, a constant, €4 ee(r), €p er(r)
V=Yg T Yy =0
u =ulr,x) w=wr) .

From Hooke's Law
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Hooke's relations for the nonzero stresses may be written as follows:

i 7
0 .
o, C_ll 612 613 € o, AT
o (- T T ey - aghT (65)
A

xr 55 Yxp °

Substituting the stress components ¢, and 7. into the first equilibrium

0
equation gives

2 )
w  d% 1 dwy, = 1 _ .
C33 (d_:'z'+’F ) " Copp Wt (66)
r r r
where
eV e (F . F 0
=1+ (C-Ci3)e
and

L= {37 Cpp) g * (€357 Tpy) @ *+ (Cpgm Tpp) oy} aT

It should be noted that eq. 66 is identical to eq. 48 except for the
nomenclature. Equation 66 can be solved by the procedure outlined
previously. The resulting solution is

M r2 )

wir) = Alr + Azr + —————r

where
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In the case that 553 = Eéz the last term in eq. 67 has to be replaced

by:

)

——rInr and A =+ 1
- 1,2 -

In addition if a, = % and Eiz = 513, as will be the case for 0° lamina
if it assumed to be transversely isotropic, the radial displacement w

reduces to:
w(r) = Alr + A2/r (68)

The strain is obtained by substitution of w(r) into the strain-

displacement relation to get:

dw y 2 Ay -1
r dr

1 2

The stresses components for the layer are determined from the constitu-

tive relation to get
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C.,+ C. 2 A, -1
= 0 i3 _"i2 T = = 2
o = {3lie + T ) CijajAT + 2217(012+ xzci3)A2r ., (70)
33 ¥22
where
i=x,0,r for stresses and coefficients of

thermal expansion,

—o
it

j=1,2,3 for stiffness in the same order,

and the double subscript j indicates summation from 1 to 3.

For the transversly isotropic case,

2

8 =A - ——

r 1 r2
(71)

A
_ 2
eg AL * :?
and the stresses are
=TF. 0T T +T T oot oyl
9 Clie Cij“jAT + Al(C21+ C31) + A2(C21 C31) r2 . (72)
Since o, is not a function of x, eq. 40c yields

o =gl (73)

xr
The method for determining the constants e°, Al, and A, for a

single layer is slightly different for the generalized plane strain case
than it was for the two other solutions. The conditions g, = 0 at the
inner and outer radii still are enforced. However, to determine eo, an
integrated condition must be used. This condition states that despite

thermal effects, there is no net axial force in the tube. That condi-

tion is written as
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JA o, dA = 0.
Here A is the annular cross-sectional area of the tube. Since Tep = 0
at the inner and outer boundary, B of eq. 73 is zero.
Multiple Layer Generalized Plane-Strain Solution
Since €y is a constant in each layer, i.e., €0, enforcing uk = uk'1

at the interfaces leads to the conclusion that €y is same in all

layers. Call this strain €% It is an unknown which must be solved
k-1

for. Since v = 0 throughout, K=y
K = k-1

at each interface is automatic-
ally satisfied. Enforcing w at the N-1 interfaces of a N layer
tube leads to N-1 equations from which to find the N Al's, NAy's,

and €% Since Try is zero on the inner and outer radii, it will be zero

throughout and so Ttx = rk;i is automatically satisfied at each
k-1

interface. Enforcing ot =0, at the N-1 interfaces provides N-1 more

equations. Requiring 7. to be zero at the inner and outer radii
provides 2 more conditions for the 2N+l unknowns Ay's, Ap's, and 0.

Using an integrated condition that

jA Oy dA = 0 (74)
provides the final equation from which to solve for the unknown con-
stants. Here A is the annular cross-sectional area of all N Tlayers.
This integral condition is physically interpreted to mean that under

thermal loading only, there is no net axial force acting on the tube
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cross-section. Since the stresses are independent of x in this analy-
sis, the integral condition actually states the absence of a net mechan-
ical load at every cross-section. In each individual layer, however,

there are axial stresses, in addition to hoop and radial stresses.

Details of Multiple Layer Solution

To illustrate the details of obtaining a multiple layer solution,
the necessary steps for the generalized plane-strain analysis of a two
layer cross~-ply tube are presented in this section.

Assume that the inner layer has its fibers running axially (0°) and
the layer is considered transversely isotropic in the r-6 plane. The
outer layer has its fibers running circumferentially (90°). This lamina
can be considered transversely isotropic in the r-x plane but that will
not affect the analysis.

As stated earlier, for each layer the only displacement explicitly
involved in the analysis is the radial displacement. However, to apply
the boundary conditions both the radial and axial stresses are
involved. For the inner layer, referred to here as layer no. 1, the

displacement is

1

wl(r) = A1

- A%; /r (75a)

and the radial and axial stresses are
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) o . .1 1 1
o = Cyge” + AJ(Cyz + Ca3) + A5(Cp3- Cy3) 2
- (C13ax + C23°‘e + C33ar)AT ‘ (75b)
1 _ 0 1 1 1
o = Cpe * A(Cyp* Cig) + AY(Cyp- Cy3) i
- (Cllax + Clzae + C13ar)AT . (75¢)

For the outer layer, here layer no. 2, the radial displacement is given

by

. B} )
wz(r) = Afrk + Agr A + — —r, A (76a)
C33~ Cpp
The stresses are
2 = 0, 22/~ =~ A=l 2/ _ 47 y.-(at1)
_ _ (76b)
C,,+ C
= = = 23 733
- (C13aX + C23ae + C33ar)AT + __———-———- _C_ z
33 22
2 _= o0 2= = A-1 2= = -(A+1)
o (76c)
+C
e = . 12" "13
" (Cpyoy * g * Cpgep AT + =)
33 V22

where the bar over the stiffness coefficients, Cij’ designate a 90°

lamina and unbarred coefficients a 0° lamina.
If the interface radius is denoted as ry, with the inner and outer

radius being denoted by r; and r,, the boundary conditions which must be



54

enforced on the cylindrical surfaces are:

°r1(r1) = 0 (77a)
°r1(r1) = orz(rl) (77b)
0. 2(ry) = 0 (77¢)
wr)) = wi(r)) . (77d)

Across a cross-section, the net axial force being zero, eq. 74,
translates into
ry r

2e JLai(r) rdr v 2n [ O GE(r) rar =0 . (77¢)

r1. Fl

Substituting the stresses and displacements given by eqs. 75 and 76 into
77a-d, carrying out the integration of 77e, and arranging into matrix
form leads to the system of linear algebraic equations given on the next
two pages. Solving these for All, A21, Alz, A22 and eo, the stresses
can be computed in each layer by back substitution into the proper

equation.

Laminated Shell Theory (LST)

The degree of sophistication employed in the analysis of shells
depends to a great extent on the type of assumptions made regarding the
changes in shell curvature and twist. In the present work the Donnell
shell approximation on curvature and twist changes were employed. Under

such approximations all terms of changes in curvature and twist, except
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those involving second derivatives of W, are neglected [15]. The above

assumptions lead to the following form of curvature changes.

2
o W
Xy = ™% (78&)
X ax2
2 .
1 3°W
Xo = "5 T (78b)
8 g% 397
_ |
%0 =%’..§.—w—_ ’ (78(:)
aXxd36

where R designates the radial distance to the laminated shell mid-
plane. The above first order approximation gives good r‘esuH;s for
homogeneous, elastic quasi-shallow shells (10 < R/t). It remains to be
seen if the above assumption on curvature changes will yield agreement
with a more exact solution such as plane elaéticity. The body analyzed
was axisymmetric and under the influence of constant temperature, there-

fore all curvature changes reduced to zero.
=0 (79)

The cross-ply laminated shell constitutive relations are given by the

following expressions

i 3\
Eo a1 aj2 0 -\ N+ N T
X X X
0 \. T \
89 = a22 0 Ne + Ne / (80)
0 .
Yxo LSym. 366 Nxe +0 )
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and

[~ 1
0 T
MX Bl]. 812 0 €X MX
0 T
M6 =1 B2 322 0 €s - MO
0 T
MXG i 0 0 866 ny MXG

(81)

where ¢ o’ e % and Yy O are the strains at the shell's midsurface. The

X y Y

membrane force and moment resultants, the N's and M's, are defined by,

h/2
- Y4
[Nx’Ne’Nxe] = {h/gox,oe,rxe](l + ﬁ) dz
h/2 ;
[MX’MO’Mxe] = {h/zLox,ce,txe](l + ﬁd zdz
) h/2
Ty T T4 = = = = - z
h/2
T T T4 _ _— = == z

The aij

Aij and Bij matrices are defined by,

coefficients are the elements of the inverted Aij matrix.

h/2
[Aij’ Bij] = {h/z Qij[lsZ]dZ s

(82a)

(82b)

(83a)

(83b)

The
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where

C.,C.
Ty =Ty - = =126 (85)
C33

Since we are only interested in the thermoelastic shell problem,

In addition, in the present investigation it was assumed that z/R < <
1. Hence, the z/R term in eqs. 82 and 83 were neglected. The laminate

T

midsurface strains are obtained by substituting NxT and Ne into

eq. 80. The residual stresses in the kth layer are then calculated

through the lamina constitutive relations,

= 0. 0.
o Gll(el alAT) +612(€2 azAT)
g = —Q-lz(elo'alAT) +-Q-22(€20'0.2AT) .

It should be noted that the M's are not zero and can be calculated by

eq. 81 since the M''s are known.



RESULTS

In the following section the numerical results of the study are
presented. The discussion will focus on a set of selected cases that
illustrate particularly significant findings in the current study.

The analysis was conducted using T300/934 and GY70/934 graphite-
epoxy composite systems. The T300 graphite fibers represent a high
strength-low modulus fiber and the GY70 fibers are low strength-high
modulus fibers. The material properties or both composite systems are
given in Appendix A. The curing and service temperatures were taken as
250 and -250°F, respectively. This yielded a maximum temperature dif-
ference of 500°F. Results are presented for all three elasticity solu-
tion methods and the results are compared to the laminated shell theory
(LST).

Only 4 layer tubes are considered. The next 12 figures illustrate
the effects of changing the location through the wall thickness of the
two T300/934 0° (axial) and the two T300/934 90° (circumferential)
layers, e.g., [0/90/0/90]; vs. [90/0/90/0];. The stress levels are
plotted as a function of location through the wall thickness. The ratio
of the inner radius to the wall thickness were chosen to be 12.5., This
represented the geometry of tubes being investigated in another phase of
this overall study. Following this, the next twelve figures illustrate
the effect of changing the number of 0° and 90° Tayers in a tube e.g.,
(0/903) vs. (0/90/0/90),.

After the various 4-layer stacking arrangements are discussed, the
results for a 4 layer T300/934 tube with all layers circumferential
(904) are illustrated. Following that, the comparison between LST

stress predictions and the plane strain elasticity solution is illustra-

60



61

ted. This will illustrate the reason for pursuing the elasticity solu-
tion in this study. Finally, the effect of material properties on
residual stress is demonstrated by varying the 0° and 90° laminae mater-
ial properties in a (0/90/0/90)t laminated tube. Using two types of
fibers, T300 and GY70, the benefit of laminate hybridizing on stress
levels is shown.

The axial residual stress, Oy in a (0/90/0/90)t tube operating at
500°F below its curing temperature is given in Fig. 3. The apparent
lack of agreement between the plane-strain, generalized plane-strain,
and LST analyses can be explained by the different assumptions employed
in each analysis. (The axial stress in the plane stress analysis is
zero). In the plane-strain analysis it is assumed that the tube is
restrained at its ends from axial motion (i.e., u=0 all along the
tube). Therefore, a net axial force is required at the tube ends to
meet this condition. Consequently, the net axial stress across a tube
cross-section is not zero as may be seen from the sum of area under the
plane-strain axial stress cure. On the other hand, in the generalized
plane-strain analysis it is assumed that the tube is unrestrained at its
ends. In addition, it was required that the net axial stress across a
tube cross-section is equal to zero. Away from the ends of a finite
length tube the generalized plane~strain assumption closely resembles
the LST analysis in the x direction. Therefore, these solution
approaches are expected to give close agreement as indeed they do. It
should also be noted that the axial stress in the 90° Taminae (hoop
fiber) is tensile and of considerable magnitude (= 12,000 psi). Such a
stress can lead to circumferential cracking in those plies.

Figure 4 illustrates the hoop stress in the (0/90/0/900)t tube. As

can be seen, the layers with their fiber in the axial direction are
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under considerable hoop tensile stress (~ 12,000 psi). This represents
tension in the matrix direction at a level that will undoubtedly cause
cracking parallel to the fibers. Conversely, the layers with their
fibers in the circumferential direction are under compression in the
fiber direction. This should cause no problems as far as cracking or
other damage. There is not much difference in the three elasticity
solutions. There is a difference between the LST and the three elas-
ticity solutions. For the case shown in Fig. 4, the elasticity solu-
tions and the LST solution differ by 40% at the outer radius. That the
three elasticity solutions are similar is interesting in its own

right. The closeness of the three solutions demonstrates that the hoop
stress is independent of assumptions regarding the stress or strain
state in the axial direction. Recall, in Fig. 3, the plane stress,
plane strain, and generalized plane strain were quite different. All
elasticity solutions predict a gradient in the hoop stress in the 90°
laminae but very little gradient in the 0° lamina. As was shown by the
elasticity analyses, the hoop stress in the 90° lamina varies as a
function of "1 and r'(X+1), where A = /5557555 for the plane-strain
and generalized plane-strain solutions and A = /5557555 for the plane
stress analysis. As for the 0° Tamina, assuming a transverse isotropic
condition, the hoop stress will vary as function of 1/r2.

Since x = 3.7 in the T300/934 material, the hoop stress in the 90°
Tamina will vary with r much more rapidly than in the 0° lamina.

Figure 5 shows the radial stress distribution in the (0/90/0/90)t
tube. The stress is everywhere tension but the magnitude is quite low
compared to the hoop stress or the through-the-thickness strength of a
lamina. Again, the three elasticity solutions are quite close to one

another.
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Figures 6-14 show other stacking arrangements with two 0° layers
and two 90° layers. It appears from these figures that the maximum
axial and hoop tensile stress is unaltered by stacking arrangement. The
peak compressive stress in the hoop direction does vary with stacking
arrangement as does the radial stress distribution. Clustering the 0°'s
and/or 90°'s, Figs. 9-14, does little to alter the peak tensile stress
in the matrix direction.

Changing one of the 90° lamina to be a 0° lamina doesn't alter the
tensile axial stress in the single 90° lamina, Fig. 15, but it does
significantly increase the compressive hoop stress in that 90° lamina,
Fige. 16. The tensile matrix stress in the 0° lamina is still about
12,000 psi. For a (90/03), tube, the radial stress, as shown in Fig.
17, is everywhere compressive. Repositioning the single 0° lamina,
Figs. 18-20, has little effect on the peak axial or hoop stresses.

The effects of having more 90° lamina than 0° lamina are shown in
Figs. 21-26, Still the peak hoop tensile stress in the matrix direction
is about 12,000 psi. The peak compressive stress in the fiber direction
is greater than in other cases. It is interesting to note that LST
predicts the wrong sign for the hoop stress at the inner region of the
cluster of 90° lamina.

The residual stresses in a (90;), laminated tube are presented in
Figs. 27 and 28 as can be seen these stresses are not zero as might
intuitively be expected. The residual stresses arises due to thermal
expansion mismatch in the radial and hoop directions. For the (904)t
case, the plane stress and generalized plane-strain solution predict no

axial stress. However, the plane strain solution predicts an axial
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stress which is practically constant with r and has a value of = -20500
psi.

In order to demonstrate the effect of tube aspect ratio (R/t) on
residual stress magnitude, the maximum hoop and radial stresses are
plotted versus R/t ratios in Fig. 29 and 30 for a (0,90,0,90)t tube. In
Fig. 29 the maximum hoop stresses in the 0 and 90 degree laminae calcu-
lated by generalized plane-strain elasticity are normalized by the value
determined from laminated shell theory. As indicated by the plot, only
at very large aspect ratios does LST give close agreement with an
elasticity analysis. This is particularly true for the 90 degree
lamina. The residual radial stress approaches a small value (10 psi) as
the tube aspect ratio (R/t) increases. However, it should be noted that
even at small aspect ratios the residual radial stress is less than one
percent of the hoop stress.

Finally, Fig. 31 demonstrates the effect of laminated tube hybridi-
zation. It appears that the use of such hybridization can be beneficial
in hoop stress reduction. Specifically, the tensile hoop stress in the
0° plies, of a 4-ply GY70/934 tube, was reduced approximately 20 percent
by substituting T300 fibers for the 90° laminae. The above‘process
maintains high axial stiffness while reducing the tensile hoop stress.
An opposite effect is noted when the GY70 fibers in the 0° laminae are
replaced by T300 fibers (i.e., increasing the hoop stress in the 0°
laminae). The above phenomenon demonstrates the usefulness of hybrid
composite tubes in order to maximize longitudinal stiffness and minimize

residual hoop stress.
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CONCLUSION

In the present section the conclusions that can be drawn from the

investigation are summarized below.

(1)

(3)

(5)

It was shown that the laminated composite tube thermomechanics
problem can be treated accurately by laminated shell theory provi-
ded that the tube's R/t ratio is relatively large (R/t > 10),
However, at smaller R/t ratios considerable deviation is observed
between LST and plane elasticity solutions, particularly in the
hoop stress for a 90° lamina.

The residual radial stress was shown to be negligible as compared
with the other stress components (i.e., hoop and axial).

The data presented allows one to conclude that varying the stacking
sequence while keeping the number of 0° and 90° laminae constant
has little effect on the lTevel of the axial stress in these lay-
ers. The radial stresses are affected. However, varying the
number of 0° and 90° laminae in the laminated tube will effect both
these stresses.

It was shown that tube hybridization may contribute to both a
decrease or increase in the hoop stress. This effect depends upon
the placement of particular fibers in given directions.

A1l plane elasticity solutions agreed well with each other as far
as the calculated hoop and radial stresses. However, the plane-
strain and generalized plane-strain show the best agreement with
each other.

The generalized plane-strain and LST analyses showed ciose agree-
ment on the residual axial stress. However, the plane-strain
analysis failed to give similar results. This was attributed to

the kinematic constraints assumed in this analysis.
94



10.

11.

12.

13.

14,

REFERENCES

R. E. Sherrer, “"Filament Wound Cylinders with Axial-Symmetric
l.oads, Jo. Composite Materials, Vol. 1 (1967), p. 344.

N. J. Pagano, J. C. Halpin, and J. M. Whitney, "Tension Buckling of

Anisotropic Cylinders," Jo. Composite Materials, Vol. 2 No. 2
(April 1968), p. 154.

N. J. Pagano and J. M. Whitney, "Geometric Design of Composite
Cylindrical Characterization Specimens," Jo. Composite Materials,
Vol. 4 (July 1970), p. 360.

Tu-Lung Weng, "Thermal Stresses in Anisotropic Hollow Cylinder,"
Jo. of Basic Engineering, June 1965, p. 391.

S. P. Timoshenko and J. N. Goodier, “Theory of Elasticity," McGraw-
Hi11, Third Edition, 1970, New York.

J. M. Whitney and J. C. Halpin, "Analysis of Laminated Anisotropic
Tubes under Combined Loading," Jo. Composite Materials, Vol. 2, No.
3 (July 1968), p. 360.

Y. C. Pao, "On Higher-Order Theory for Thermoelastic Analysis of
Heterogeneous Orthotropic Cylindrical Shells, Developments of
Theoretical and Applied Mechanics," Vol. xx (1972), p. 787.

Y. C. Pao and K. Peterson, "Optimal Study of Interface Axial Shear

Stresses in Two-Layer Axisymmetric Shell Induced During Curing

Treatment," Jo. Composite Materials, Vol. 16 (May 1982), p. 204.

Y. Stavsky and I. Smolash, “"Thermoelasticity of Heterogenous Ortho-
tropic Cylindrical Shells, Int. Jo. Solids and Structures, Vol. 6
(1970), p. 1211.

J. M. Whitney, N. J. Pagano and R. B. Pipes, "Design and Fabrica-
tion of Tubular Specimens for Composite Characterization,

R. R. Rizzo and A. A. Vicario, "A Finite Element Analysis of Lami-
nated Anisotropic Tubes," Jo. Composite Materials, Vol. 4 (July
1970), p. 344,

J. M. Whitney, "On the Use of Shell Theory for Determining Stresses
in Composite Cylinder," Jo. Composite Materials, Vol. 5, (July
1971), p. 340.

J. A. Zukas, Effects of Transverse Normal and Shear Strains in
Orthotropic Shells," AIAA Journal, Vol. 12, No. 12 (Dec. 1974), p.
1753.

R. M. Jones, Mechanics of Composite Materials, New York, McGraw-
Hi1l, 1975.

95



96

15, L. R. Calcote, The Analysis of Laminated Composite Structures, New
York, Van Nostrand Reinhold Co., 1969,



APPENDIX A

The following material properties of T300/934 and GY70/934 graph-

ite~epoxy composites were used in the study.

T300/934 graphite-epoxy

Moduli (Msi)

E; = 21.3

E2 = 1.32
Glz = 0.67

Poisson's Ratios

Vi3 = 0.30

= 0.49

V12

V23
thermal expansion

ap = - 0.04E-6 in./in. °F
ay = 18.70E-6 in./in. °F

GY70/934 graphite-epoxy

moduli (Msi)

El]. = 44,0
Epp = 0.975
Glz = 0.71

Poisson's Ratios

v = 0.129

12~ 13
0.49

v23
Thermal Expansion

o = -.578E-6 in./in.OF
a, = 14,42E-6 in./in.OF
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