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ABSTRACT

The residual thermal stresses in 4-layer cross-ply tubes are

studied. The tubes considered had a small radius to wall-thickness

ratios and so elasticity solutions were used. The residual thermal

stress problem was considered to be axisymmetric and three elasticity

solutions were derived and the results compared with the results using

classical lamination theory. The comparison illustrates the limitations

of classical lamination theory. The three elasticity solutions derived

were: plane stress, plane strain, and generalized plane strain, the

latter being the most realistic. The study shows that residual stresses

in both the hoop and axial direction can be significant. Stacking

arrangement effects the residual stress to some extent, as do the

material properties of the individual lamina. The benefits of hybrid

construction are briefly discussed.
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INTRODUCTION

The use of composite materials in engineering structures has gained

wide acceptance in the last decade. The success of the NASA space

shuttle program has provided the impetus for the development of large

structures for space applications. In order to increase payload effi

ciency, these structures will have to be fabricated from lightweight,

highly efficient components. For the following reasons these qualities

are uniquely offered by composite tubes: (1) Tubes are components of

high structural efficiency, as measured by torsional and bending stiff

ness per unit weight. (2) Composite materials are characterized by high

stiffness and strength per weight ratios, (3) Composite tubes can be

fabricated with relative ease compared to other structural members (such

as I or T section beams) using filament winding. braiding, or other

manufacturing techniques. (4) Composite tubes eliminate the free-edge

problem. a problem which exists in other structural components.

Since space structures operate under zero gravity conditions, they

are subjected to relatively mild mechanical loads However environmen

tal considerations, such as extremely low (-250°F) temperatures, are of

great concern. The space environment will subject the material to a

temperature difference as great as -500°F degrees (from the curing

temperature). This is a substantial temperature differential and will

undoubtedly result in high residual stresses. Therefore. in order to

achieve optimal structure design, it is of great importance to be able

to calculate the thermal stress magnitudes in composite tubes.
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This paper reports the first step in the investigation of residual

stresses in composite tubes. Specific interest is in the residual

stresses in a tube operating at -250°F. With the tube having a cure

temperature of, say, 250°F, this represents a severe temperature

effect. In reality the effects of mechanical loads must be superposed

on these stresses. These loads, however, will be light and the primary

effect in the tube may well be the thermal effect. Thus the problem

studied here will be the determination of the thermally induced stresses

in cross-ply tubes. The problem can be considered axisymmetric.

Single-material tubes as well as tubes with layers of various materials

are studied. In the following work, cross-ply tubes are studied using

an elasticity approach. These solutions are compared with results from

a laminated shell theory based on Donnell·s shell approximation.

This report begins by presenting a review of the literature rele-

vant to the present study. Elasticity theory and shell theory solutions

are reviewed. Next, the governing equations used in the elasticity

solutions are introduced and the appropriate simplifications and assump-

tions use to derive the solution for one-layer transversely isotropic

tube are outlined. The procedure for the solution of a multiple layered

cross-ply tube is then presented. Following this the shell theory

solution to the problem is discussed. Finally, numerical results and

conclusions are presented.
I

!
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LITERATURE REVIEW

The residual stresses in orthotropic hollow cylinders can be

studied using an exact elasticity solution, an approximate approach

(such as shell theory), or by numerical methods. Since the elasticity

approach provides the most accurate solution to the problem, it isa

very useful tool in determining the accuracy of the approximate and

numerical methods. Unfortunately, elasticity solutions are more complex

and thus difficult to obtain.

In the following discussion, literature related to the thermo-mec

hanical response of anisotropic hollow cylinders will be reviewed.

Specific attention will be directed to the analysis of residual stresses

in composite tubes. In addition, studies relating to mechanical loading

of tubes will be mentioned. The method used in investigating mechanical

loads are similar to those employed in thermal problems. Most of the

work found in the literature relates to hollow composite tube subjected

to combined mechanical loads.

The review begins by discussing the elasticity method. Following

this is a review of the shell theory approximate method. Finally, the

two methods will be compared.

Elasticity Methods

Sherrer [lJ used an elasticity solution to determine the state of

stress in a multi-layer filament-wound cylinder subjected to a combined

axial, torsion, and pressure loads. In his model the fiber and matrix

are treated as separate entities. Consequently, his final expressions

3
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were more complex than if the fiber and matrix had been treated as

homogeneous orthotropic material, as is commonly done in the analysis of

composite materials. Pagano et al. [2], used a plane-strain elasticity

solution to investigate the uniformity of the state of stress in an

anisotropic helical-wound composite tube subjected to an extensional

force. In their study the laminae were treated as homogeneous orthotro

pic layers. This resulted in considerably simplified expressions.

Pagano and Whitney [3] applied a modified plane-strain elasticity solu

tion, in combination with shell theory, to study the effect of the

degree of material anisotropy and shell geometry on the state of stress

across the cylinder thickness under simulated laboratory loadings and

end constraints. Their approach consisted of combining elasticity

solution to an infinitely long cylinder and a shell analysis to a tube

of finite length. At a certain distance from the constrained ends, the

shell·s stress resultants were assumed to be statically equivalent to

the stresses calculated by the elasticity solution. Since the problem

is easily solved by shell theory, this type of analysis simplified the

boundary value problem. Weng [4] used a plane-strain elasticity method

to solve the thermal problem in hollow anisotropic cylinders. Weng

examined the thermal stress in grades ATJ and ZTA graphite cylinders

subjected to thermal gradients in a radial direction. The bulk graphite

was 'treated as transversely isotropic material with the hoop-radial

plane taken as the plane of material isotropy. This condition consti

tutes a special problem in fiber reinforced composite tubes with axial

fiber orientation. His ~olution was similar to the one generally

~.
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employed in the analysis of isotropic cylinders subjected to radial

temperature gradients (see Timoshenko and Goodier, page 448 [5]). In

Weng1s solution the constitutive relations were generalized to trans

versely isotropic materials.

The above studies demonstrated that elasticity solutions can be

obtained for certain anisotropic hollow cylinder problems. However,

these solutions become more complex for angle-ply cylinders. In addi~

tion, elasticity solutions to thermal problems involve the solution to

nonhomogeneous ordinary (or partial) differential equations and thus

adds further complexities to the problem. In some cases, depending on

cylinder geometry and loading conditions, one can utilize an approximate

method such as first or higher-order shell theory in order to simplify

the solution to anisotropic hollow cylinder problems.

Shell Approximation Methods

A number of investigators have utilized shell analysis to quantify

the state of stresses in hollow anisotropic cylinders under combined

loads. One advantage of a shell theory approach, as opposed to the

elasticity method, is the relative ease with which boundary value prob

lems can be solved. Whitney and Halpin [6J used Donnell1s shell approx

imation analysis to characterize the response of laminated composites

tubes subjected to combined thermal and mechanical loads. Pao et al.

[7, 8J demonstrated that by applying Flugge's higher order shell theory

to orthotropic laminated tubes, the thermal loading problem could be

solved. Pao also compared the results obtained with a higher order
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solution. He found that the Donnell method was fairly accurate if the

shell radius-to-thickness ratio, R/t, was large. However, error of up

to 10% occurred in the hoop force and moment resultants when this ratio

dropped below 10. Stavsky and Smolash [9] used a shell approximation to

derive the thermoelastic equations for an orthotropic semi-infinite

hollow cylinder shell. In addition, they also developed the heat

transfer equations which govern the temperature gradient through a

shell.

It appears that a shell approximate method can be useful in the

solution of circular hollow composite shell problems. However, one

should be aware of the various factors which can contribute to error in

the analysis. In the following section we shall discuss some of the

factors and compare the elasticity and shell approximation solution

methods.

Comparison of the Elasticity and Shell Approximate Methods

Shell geometry is one factor which determines the accuracy of the

method employed. Whitney et ale [10] showed that shell approximation

yielded accurate results, as compared to an elasticity solution, for

R/t > 10 in a laminated tube subjected to combined mechanical loads. It

has also been found in previous studies [2, 3, 10] that for large values

of R/t, the state of stresses predicted in each layer of a laminate tube

is similar to those predicted for a laminated flat coupon of infinite

width subjected to the equivalent membrane forces (i.e., using classical

lamination theory). Rizzo and Vicario [11] used a three-dimensional

•
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finite element analysis to determine the effect of R/t and length-to

radius ratios, L/R, on the state of stress in composite tube speci

mens. They found that for a boron-epoxy tube the stress was nearly

uniform away from the grip (for R/t > 25) and hence could be accurately

characterized by a classical lamination theory formulation.

The effect of lamina fiber angle, relative to the tube axis, and

stacking sequence on the state of stress in a thermally loaded composite

shell was investigated by Stavsky and Smolash [9J. A similar problem

was addressed by Pagano and Whitney [3J in composite tubes subjected to

combined mechanical loads. Both studies found that fiber angle and

lamination sequence strongly effected the state of stress in composite

shells under combined mechanical and thermal loads. Whitney [12J and

Zukas [13J have pointed out that in laminated composite tubes transverse

thermal expansion as compared to in-plane fiber direction thermal

expansion is relatively large. Consequently, the assumption of zero

strain in the radial direction employed by Donnell shell theory will

result in considerable inaccuracy in the stress calculation. Whitney

presented a modified shell theory which incorporated the effect of

transverse normal thermal strain. In comparing his modified method with

an exact elasticity solution, he found a good level of agreement between

the two for an angle ply tube of R/t = 10.5. However, an analysis of

the same tube using Donnell shell theory resulted in a considerable

amount of error.

From the literature review, it is clear that for values of R/t less

than 10, an elasticity solution or a shell theory of higher order than
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Donnell's shell theory must be used. Whitney has presented a higher

order shell theory. The elasticity theory Whitney referenced was a

private communication with Pagano and no written reference was avail

able. Thus the elasticity solution in the following section is presen

ted for the purpose of documenting the elasticity approach to the prob

lem.



GOVERNING EQUATIONS

In the following sections the solutions used to compute residual

stresses in composite tUbes are outlined. The discussion begins with a

description of the laminated composite tube geometry. This is followed

by a presentation of the equations which govern the behaviour of a

composite tube. Finally, the analytical solutions to the thermomechan

ical problem of composite tubes using various elasticity solutions and a

classical shell theory approach are presented and compared.

Geometry

In the following analyses, three sets of orthogonal axis systems

will be referred to; polar cylindrical (r, a, and x), laminate global

(Xl, yl, and Zl), and lamina principal (1,2, and 3) coordinates.

Figures 1 and 2 show the tube geometry and the coordinate sys-

terns. The tube's inner radius is denoted as ri' the outer radius is ro'

and the tube's mean radius, R. Note that

R =
r.+ r

1 0

2

..

and R locates the distance of the tubes wall's geometric midsurface

relative to the tube centerline.

The cylindrical r-a-x system measures the location of a material

point within the tube relative to a reference point on the tube's cen-

terline. The directions of the r-a-x coordinates are colinear with the
A A

three base vectors er , ea , and ex shown in fig. 1. This local ortho-

9
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z

Fig. 1. Tube geometry and coordinate systems used.
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1

Zl 3
t

Fig. 2. Detail of laminate and material coordinate systems.
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gonal base vector system is located in space by the cylindrical coordi

nates r, 0, and x. The quantity r is the radial distance of the point

from the tube's centerline, e is the circumferential position of the

point, and x measures the position of the point along the tube.

The laminate global coordinates Xl, yl and z' are, except for the

prime notation, those commonly used in the study of composite material

analysis [14J. They are an off-axis coordinate system. The laminate

x',y',z' coordinates are fixed at the laminatels midsurface, i.e., at a

distance R from the cylinder's centerline. It should be noted that

r = R - z'.

The lamina's principal coordinates 1, 2 and 3 coincide with the

material principal directions. The 1 and 2 axes represent the fiber and

matrix directions, respectively. The 3 axis is oriented normal to the

lamina plane and is colinear with the rand Zl axis. The orientation of

the lamina's fiber (axis 1) relative to the global x' axis is measured

by the angle ~ as shown by Fig. 2. The above conventions were chosen in

order to unify the notations employed by elasticity and shell theories

while maintaining the common convention used in the area of laminated

composite analysis.

Constitutive Relations f

The thermoelastic constitutive relations for an orthotropic lamina

can be written relative to the lamina coordinate system as
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e1-(l1~T
1 v12 v13

0 0 0
~ -Ei -Ei" <11

e2-(l2~T
1 v23 a 0 0t2 -E2 <12

e3-(l3L\T 1 a 0 0
"E3 <13

::; ( 1)

1 0 0Y23 623 "23

Symmetri c 1
Y13 G13 "13

1
Y12 G12

't12

where (l1' (%2 and (%3 are the lamina1s linear coefficients of thermal

expansion in the 1, 2 and 3 directions, respectively. The quanti-

ties e1, e2, e3, Y23' Y13' and Y12 are the total strains. The quanti

ties <11, ••• , 't12 are the stresses. The lamina's moduli in the 1, 2 and

3 directions are designated by Ei (i = 1,2,3), the shear moduli for the

i-j planes by Gij (i,j = 1,2,3), and the material's Poissons' ratios are

given by vij (i,j = 1,2,3). The following three reciprocal relations

hold:

i,j = 1,2,3. (2)
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The temperature change with respect to some reference temperature is

designated by ~T, where ~T > 0 corresponds to a temperature ri see The

square materi a1 mat ri xis designated by [5] and is referred to as the

compliance matrix, i.e.,

.
1

v12 v13 0 0 0tI ---r;- - r:- ..
1 1

v21 1 v23
0 0 0-E"2 E2 -E"2

v31 v32 1
0 0 0 (3)-r;- -~ E33

[5] =
0 0 0 1

0 0G23

0 0 0 0 1
0G13

0 0 0 0 0
1

G12

Due to eq. 2, the above matrix is symmetric. The lamina stress-strain

constitutive relations can be written in an inverted form as:



J
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=

a

o

o

a

o

o

a

o

o

o

o

a

a

a

o

o

o

o

o

o

o

o

o

o

(4

where [CJ = [5J-1 and [cJ is termed the lamina stiffness matrix. The

inverse of [SJ gives the components of [CJ as follows:

(5 )

1
C44 = 5

44
'
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where

In terms of the engineering constants the Cij components may be

expressed as follows:

(6 )

and

As a consequence of the fact that Sij = Sji' it can be shown that Cij =

Cjio

Since the equilibrium and kinematic equations of elasticity are

generally written in cylindrical coordinates. it is desirable to express

the constitutive relations in terms of the stresses and strains referred
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to cylindrical coordinate. This is achieved by writing the stresses in

the 1-2-3 system in terms of the stresses in the XI_yl_ZI system, and

writing the strains in the 1-2-3 system in terms of strains in the xl

yl_zl system. From that point, transformation of stresses and strains

from the XI_yl_ZI system to the r,e,x system is made.

The relation between the stresses in the 1-2-3 system and stresses

in the XI_yl_Z' system is

a1 ° x I

°2 0y'

°3 azl
= [T1] (7)1'23 'ylz

1'13 'x IZI

1'12 'x I YI

where

m2 n2 0 0 0 2mn

n2 m2 0 a 0 -2mn

a a 1 a 0 a
[Tl] = a a 0 0 (8)m -n

a 0 0 n m 0

-mn mn 0 0 0 (m2_n2)
..

with m = cose and n = sine.
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The relations between the total strains in the two systems is

E1 EX'

E2 Ey '

E3 EZI (9)

= [T2]
Y23 Yy ' z '

Y13 Yx' z '

Y12 YX'y '

where

m2 n2 0 0 0 mn

n2 m2 0 0 0 -mn

0 0 1 0 0 0 (10 )

[T2] = 0 0 0 0m -n

0 0 0 n In 0

-2mn 2mn 0 0 0 (m2_n2)

The thermal strains transform like the total strains, i.e.,

<ll~T <lx·~T

<l2i\T <l .i\T
Y

<l3i\T <lz·i\T (11 )

0 = [T2] <ly' z. i\T •
0 <lx'z'i\T

0 <Xx'y I i\T
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where a I ••• a I I are coefficients of thermal expansion in the Xl_yl-
x x Y

Zl system. The coefficients of thermal expansion in the XI_yl_ZI system

are given explicitly by inverting eq. 11. The result is

2 + 2 . 2 2aXl = m al n a2 , a I = n a l + ma2, aZl = a3y

aylz I = 0 = aXIZI; axly I = 2mn(a l -a2 )· (12)

Substituting the transformed stresses and strains into the consti

tutive equations, eqs. 1 and 4, gives

e: Xl - a ,~T (1 XlX
e:yl - a ,~T (1ylY
e: Zl - a I~T (1 Zlz

Yylzl = [5] Tylzl (13 )

YXIZI T XIZ I

YXlyl - a I ,~T T xly'Xy

where

(14 )

[5] being referred to as the transformed compliance. The transformed

compliance matrix is of the form



with
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511 512 S"13 0 0 S"16

$12 522 $23 0 0 $26

$13 523 533 0 0 536 (15)

[SJ = 0 0 0 544 54!> 0

0 0 0 545 555
0

516 526 536 0 0 566
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The inverse relation is given by

with

'ylzl

'XIZ I

= [C]

e I - a I.HX X

e: 1- a .AT
y Y

e: .- a .tlTZ Z

Yylzl

YXlyl

YXl YI - ax I y •tiT

(17)

(W)

The matrix OCJ is referred to as the transformed stiffness matrix. It

is of the form

OC] =

Cn
CI2

C13

a

o

CI6

CI3

C23

C33

a

a

C36

o

o

o

o

CI6

<:26

C
36

(19)

o

o

C66

The transformed f ij components are given in terms of the principal

lamina stiffness coefficients as;



22

FinallYt the stresses and strains can be transformed to

the r-8-x system. The familiar tensor transformation is used t i.e. t

(21)

The quantity amn is the direction cosine between the +m axis in the x'

yT~zl system and the +n axis in the r-6-x system. The stresses on the

left of eq. 21 are the stresses on the XI_yl_Z' system while the stres-

ses on the right are the stresses on the r-6-x system. The following

table shows the specific values of amn in the transformation.



23

Values of amn

r S x

Xl aU = 0 a12 == 0 aU == 1

yl a21 = 0 a22 == 1 a23 == 0 (22)

Zl a31 = -1 a32 = 0 a33 = 0

Using eqs. 21 and 22,

a Xl a E: 1- a ,~T E: -a ~TX X X X X
ayl as E: 1- a ,~T E: S-aSI'1Ty y
aZl a e: 1- a .~T E: -a ~Tr z z r r

= == (23,24)Tylzl -T rS Yylzl -Y rS

T x'z' -T Yxlz I -Y xrxr
T Xlyl T XS Y, I-a I ,I'1T YxS-a xS I'1TXy XY

Because ~44' ~45' ~55 and ~44' ~45' ~55 are the only nonzero terms in

the 4th and 5th row and column of the [C] and (5] matrix, respectively,

the constitutive equations in the r-s-x system can be written as
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<1 £ - a ~T
X X x

<1 6 £ - uel1Te

or £ - u r l1T (25 )
r

= [c]
, re Yre

'xr Yxr

'X6 Yxe - uxe l1T

and

£ - uH axx x

e - u6l1T °e6

e - url1T or (26)r
= [S]

Yre ' re

Yxr 'xr

y xe- uX6 ,H 'xe

With eqs. 25 and 26, the constitutive behavior of the tube is

expressed in terms of the r-6-x coordinate system.

Igui 1i bri urn

The stress equilibrium equations can be derived if the equilibrium

of forces which act on a small element isolated from a cylindrical body

are considered. Summing forces in the x, 6 and r directions results in

the following stress equilibrium equations:
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aT h
cr~.) + 1 rO +~ + F = 0
~ r as-- ax r (27.a)

aT 1 aTe acr 1
~ + - ~ +~ + - T + F = 0 ,
d r r dO a X r xr X

(27.b)

(27.c)

where Fr , Fe and Fx are the body forces in the r, e and X directions.

In the present work these forces will be zero.

Strain-Displacement Relations

The strain-displacement relations in polar coordinates can be

determined in a variety of ways. These relations are

aw = 1. [~ + w] au
£

= ar' £0 £ =-r r ae ' x ax

Yre
= 1. raw _ v + r if]r ae

Yxr
_ au + aw
-~ ~

Yxe
_ av + 1 au
-~ r!6'

where w, v and u are the displacement components in

(28)

the e r , eO and ex polar coordinate directions. This is a notation

commonly used in the area of elasticity. It should be noted that the

engineering shear strain is being used here. In most general elasticity
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problems, displacements are a function of x, a and r and can be expres- .

sed as:

u = u(x,a,r)

v = v(x,a,r) (29)

w = w(x,a,r) •

Comp~~Lbi1 ity Equati ons_

For completeness, the compatibility equations for the strains are

recorded. In many cases these equations are automatically satisfied.

For thoroughness, however, they should always be checked. The compati-

bility equations are

(30.a)

(30.c)

(30.b)

(30.e)

(30. f)

(3D.d)

= D

= 0

2
1 a 2- - _.- (r y )
r2 arax ra

a2

- ----- (ry )
aaax ra

a 1 a
+ -- [- --- (ry )1

ar r ar ax

2a
+ 2r -- (re: )

arax a
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Boundary Conditions

To complete the statement of the problem the boundary conditions on

all tube surfaces must be specified. The boundary value problem may be

categorized into two types. In the first type the displacements u, v

and ware prescribed on the body's surfaces and the stresses, strains,

and displacements within the body are to be determined. In the second

type, stresses (or tractions) are prescribed on the body's surfaces and

the stresses, strains, and displacements within the body are to be

determined. More often in elasticity problems one is faced with mixed

boundary value problem, a problem for which stresses are prescribed for

part of the body's surface, and displacements on the remainder. For the

problem at hand, the boundary conditions will be generally specified as

on the cyl i ndri cal surfaces, i.e., @ r = ro and r = ri

either or or w is specified, and

either l' or u is speci fied, andrx
either 1'r8 or vis specified.

on the cylinder's ends, i •e. , @x = xend

either ° or u is specified, andx

either l' x8 or vis specified, and

either l' or w is specified.xr

However, it is possible to specify integrated conditions at the ends of

the tube, i.e.,
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1 Ox dA = specified
A

J rT xe dA = specified
A

@ x = xend

etc.

Here A is the annular cross-sectional area of the layer.

For the most part, solutions to the general field equations and the

specified boundary conditions do not exist. Hence, physical assumptions

are made which simplify the mathematics. The mathematically simplier

problem is then solved and the resulting answers interpreted in the

context of the physical assumptions. The approximations for determining

the residual thermal stresses in composite tubes will be stated later.

Multiple Layers

Laminated composite tubes are most often constructed of multiple

layers. Each layer is governed by the field equations discussed in the

previous sections. Since these layers are part of the tube, certain

conditions should be satisfied at each layer interface. For the layers

within the laminate, these interface conditions replace boundary condi-

tions on the cylindrical surfaces. The interface conditions between the

kth and (k~l)st layers are that all tractions acting on the surface are

continuous and all displacements are continuous. These conditions can

be expressed as:
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uk = k-l yk = k-l wk k-lu y = w

@ r = rinterface·
(1k k-l k = k-l .k k-l= (1

• r6 • r6 '
=.r r ' rx rx

At the end of each layer

either (1 or u is specifiedx
either .x6 or y is specified

either .xr or w is specified.

@ x = xend.

As with the single layer, it is possible to specify integrated

conditions at the end of the multiple layer tube, i.e.,

etc.

Here A is the annular cross-sectional area of the multiple layers.

Assumptions and Simplifications for Computing Residual Thermal Stresses

In the following sections we shall discuss the assumptions and

simplifications used in determining residual thermal stresses in multi-
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layer cross-ply composite tubes.

1) Axisymmetric simplification

If the tube1s material properties and temperature distribution are

independent of a, then the displacements u, v, and ware not dependent

on a. Hence

u(r,a,x) = u(r,x)

v(r,O,x) = v(r,x)

w(r,O,x) =w(r,x)

In addition

a - 0"1nr::: •

As a result, the strains will be independent of 6.

the stresses will then be independent of a. Thus

'( r6 = '( rO(r, x), '( xr = '( xr (r, x), T xO = '( xO (r, x)

Yra ;: Yra (r, x), Yxr = Yxr (r, x), YxEl;: YxEl (r, x) •

(31)

(32)

Through Hooke's Law,

(33)
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The stress-equilibrium, strain-displacement, and compatibility equations

simplify to:

- simplified stress equilibrium

aa r 1
- + - (a (

6
) = 0

3r r r

h r6 hex 2
--+--+-1" =0

ar ax r r6

- simplified strain-displacement equations.

=.£.Yy x6 ax

(34)

(35)
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- simplified compatibility equations

a 2 a€a a€
- (r -) - r _r = 0
ar ar ar

(36.a)

(36.b)

(36.c)

(36.d)

2a 1 a 1 a 2
- [- - (r Ya )] - 2 - (r Yra) = 0
3r r 3r x r 3r3x

ae: (}2
_r (rEa) = 0

3x 3r3x

(36.e)

(36.f)

2) Cross-ply assumption

Only cross-ply laminated cylinders are considered in the present

study. Then within each layer there is no coupling between extensional

and shear stresses. The cylindrical lamina constitutive relations for a

layer are reduced to the following:
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- simplified strain-stress relations

E: ax $11 $12 $13 OxX

E: a - aa = $22 $23 °a

£r ar $33 or

(37)

Yra S-44 a a L ra

Yxr = $55 0 L xr

Yxa '566 Lxa

- simplified stress-strain relations

Ox C11 C12 C13 £x ax

°a = '[22 "[23 £a aa III

° C33 £ arr r

(38)

L ra C44 a 0 Yra

L xr = C55 0 Yxr
L xa '[66 Yxe

In a single orthotropic layer or in a multiple-layer cross-ply tube

subjected to a spatially uniform temperature distribution, there are no

hoop displacements induced by thermal effects, i.e.,
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v - o. (39)

To summarize t the field equations which govern the residual thermal

stress state in the individual layers in cross-ply composite tubes in a

spatially uniform temperature field are:

- equilibrium

<IT aa
~ + x + 1 T = 0

ar ax r xr

- strain-displacement

(40.a)

(40.b)

(40.c)

y r6 = 0

= 0

(41)
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- compat i bil ity

a = a (automatically satisfied)

a = a (automatically satisfied)

de: d2
___r (re:

a
) = a

dX arax

- constitutive equations

(42)

I:: \-\:: \
$11 512 $13 (J

x
liT $22 $23 (16

$33 (J
r

Yr6 = a = T r 6 ' Yxr = 555
T Yx6 = o = T x6' (43)
xr'

or
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Ox Cll C12 E: x (lx

°a = C22 E: a (la ~T

or E: r (lr

(44)

= 0 = Yra' = 0 =

The above system of governing partial differential equations, and

associated boundary conditions, are still quite difficult to solve for a

general axisymmetric situation. The most difficult aspect of the equa

tions as they relate to tubes is the ability to deal with finite-length

geometries, i.e., dealing with boundary conditions at the ends of the

tube. Further assumptions can be made, however, and particular problems

can be solved. With a proper selection of particular problems, the

solution to the more general problem can be approximated and perhaps

bounded. This is the approach to the problem of interest here. Three

related and solveable problems are examined with the idea that the

residual stresses calculated from the three simplier problems closely

approximate and indeed bound the stresses for a more general situation.

The three solutions are

i) plane-strain solution,

ii) plane-stress solution,

iii) generalized plane-strain solution.
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For certain stress components, the first two solutions represent bounds

to the problem. The generalized plane strain solution is the most

accurate representati on of away-from-end response. The sol uti ons are

discussed separately below.

Plane-Strain Solution

In the plane-strain analysis it is assumed that the tube is

restrained from axial motion. Consequently, the axial displacement, U,

is equal to zero and from the strain-displacement relations

In addition, it will be assumed that none of the other variables in the

problem vary with x. As a result, the lamina constitutive relations,

eq. 44, become

- <l 6Tx

E: e - <le 6T

E: r - cx r 6T

(45)

When 0e and or from eq. 45 are substituted into the first equilibrium

equation, eq. 40a, the result is

dar 1 _ dE: e _ dE: r- + -(a - os) = C23 - + C33dr r r dr dr
(46)
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where:

From the strain-displacement relations, eqs. 41, substitution

for £6 and £r in eq. 46 leads to a nonhomogenous ordinary differential

equation for w(r). That equation is

d
2
w 1 dw

C [- + - -] - C22 w2 =1. L •
33 dr2 r dr r r

(48)

The solution to eq. 48 can be obtained by making the following variable

changes:

r = et .

This transforms eq. 48 into the following form:

The above ordinary differential equation has the following homogeneous

solution:

where,
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To find the particular solution it is assumed

_ t
Wp - Be •

This yields the following total solution

In the r domain

(49)

In the case when C33 =C22 the last term of eq. 49 should be replaced by

L
---- r lnr, and Al 2 = ± I •
2t"22 '

In addition, if a r = a e and C12 = C13 , as in the case of 0° lamina

which assumed to be transversely isotropic, then eq. 49 takes the fol

lowing form

(50)
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The strains c r and 8 6 can be determined from the strain-displacement

relations. The strains are

_ dw _ I 2 ACl
8 - err - + I AR,AR,rr -C-33 - -C-22

R,=l

1 I 2 AR,-1
£8 = - w. = + L AR, rr C33- C22

R,=1

The stresses can be determined by the constitutive relations, namely

(51)

o. =
1

where

(52)

i = x,B,r

= j = 1,2,3

for stresses and coefficients of

thermal expansion,

for stiffness in the same order,

and the double subscript j indicates summation from 1 to 3. For a

transversly isotropic 0° lamina, the strains are

= Al
A2

8 - "2r r

Al +
A2

8
6 = 2"r

and the stresses are

(53)
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i and j having the meanings of eq. 52.

Since Ox is not considered to be a function of Xt the third equi

librium equation t eq. 40c t results in

-1
= Br • (55)

For a single layer the constants Al and A2 are determined by the

condition that or = a at the tube's inner and outer boundarYt ri and rot

respectively. With no traction 'rx applied to the inner or outer bound

arYt B of eq. 55 must be zero. Thus only radial. houp. and axial stres-

ses are generated.

Multiple Layer Plane-Strain Solution

Since the plane-strain solution constrains u to be zero. continuity

of u at the interface between the (k-l)st and the kth layers is auto-

matically satisfied. The axisymmetry of the problem and the uniform

temperature distribution forces the tangential displacement. v. to be

zero for each layer. Therefore t the continuity of v is automatically

satisfied. The continuity on w leads to

rinterface •
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The stress Trx is zero throughout since there is no applied traction to

cause it to be nonzero. Thus the B in eq. 55 is zero for each layer.

Continuity of the only nonzero stress, or' at the interface results in

k-l:: or (r) @ r :: rinterface·

Enforcing wk :: wk- l at the N-I interfaces of an N layer cylinder

yields N-I equations to solve for the N AIls and N A21s of eq. 49 or 50,

whichever is applicable. Enforcing ok :: ok-l at each of the N-I
r r

interfaces gives N-I more equations from which to solve for the AIls and

A21s. Enforcing the traction-free condition on or at the inner and

outer radii gives two more equations. Thus all conditions are satisfied

in the multilayer tube and the N AIls and N A21s can be determined.

From eqs. 52 or 54 the stresses can be computed.

Plane-Stress Solution

In the plane-stress elasticity solution attention is focused on a

thin axial slice of thickness t. It is assumed that t < < R and the

stress vector in the axial direction is equal to zero. In addition, it

is assumed that all stress components are independent of x. Since the

axisymmetry assumption leads to the stresses being independent of 8, the

plane stress assumption limits the stresses, and strains, to be func-

tions only of r. In addition, except for the axial displacement, the

displacements are functions only of r. The assumptions employed in

plane-stress are summarized below.
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- stresses

crx = 'xr = 'xe = 're

cr r = crr(r)

cr e = cre(r)

- displacements

u = u(x,r)

w = w(r)

v = o.

= 0

For the individual layers in a cross-ply tube, Hooke's relations for the

above case may be written in the following reduce stiffness form:

"0"23

= (56)

sym

where the Q.. 's are the reduced stiffness coefficients which can be
lJ

written as:

Q.. =C..
lJ lJ

i,j = 2,3 •

The strain-displacement relations can be substituted into the above

relations and the stresses written in terms of the displacement w as
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follows:

(57)

When 06 and or are substituted into the first equilibrium equation t eq.

40a t the result is

where

iw
- 7i" 1 dw - 1 1 \
Q33 ~ + ~33 r dr - Q22 7 W = r L t

(58)

The solution to eq. 58 can be obtained by the procedure outlined for the

plane-strain case. The result is:

where

(59)

As for the plane-strain case t if 022 = 033 the last term in eq. 59 must

be replaced by:
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L
----- r ln r, and At = ± 1
2°33

In addition if a e = a r ' as will be the case for 0° lamina if we assume

transversely isotropic condition, then eq. 59 becomes

(60 )

The strains Ee and E r are obtained by substitution of the displacement w

into the strain-displacement relations to get

1 L 2 A -1
Ee =-w = + L A r !/,r

033- 022 R,=1 R.

(61)
_ dw L 2 A -1t

E r -err = + L AR,AR,r
033- 022 t=1

The residual stress components are determined from the constitutive

relation to be

where

(62)

i = e, r

i = j = 2,3

for stresses and coefficients of

thermal expansion,

for stiffness in the same order,

and the double subscript j indicates summation from 2 to 3.
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For the transversly isotropic case, the strains are given by
A2

E: r = AI - """'2
r

(63)

and the stresses are

(64 )

The boundary conditions on the ends of the cylinder are that all

stresses are zero there, a condi ti on imposed by the pl ane stress assump

tion. The constants Al and A2 are determined so as to satisfy the

condition that or = 0 on the inner and outer radii. Only radial,

or' and hoop, 0
6

, stresses are generated.

Multiple-Layer Plane-Stress Solutions

The plane stress solution for lIl.lltiple layers is unrealistic in

that it actually models concentric tubes which can slide axially rela-

tive to one another. An axial restraint would require nonzero stresses

in the direction of the cylinder axis, a condition not allowed. Thus

the cylinders have no choice but to slide relative to one another. Thus

uk f uk-1 at the interfaces. Since v = 0 through, vk = vk-1 at all

interfaces. Enforcing wk = wk- l at N-I interfaces of a N layer cylinder

yields N-l equations to solve for the N AIls and N A2's. The L stressrx
is zero throughout by the plane stress assumption. Hence k k-l atL rx = L rx

each interface. The stress L re is zero throughout al so. Enforcing
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k k-lor = or leads to N-l more equations for the NAIls and NA2
1 s.

Using ° = 0 at the inner and outer radii gives the final two equationsr

from which to solve for the N AIls and N A2
1 s. Once all the AIls and

A2
1 s are found, eqs. 62 or 64 can be used to find the stresses in a

particular layer. As with a single layer only hoop and radial stresses

are generated.

Generalized Plane-Strain

In the generalized plane-strain analysis it is assumed that the

tube is very long. Interest centers on the portion of the tube away

from the ends. It is assumed that in this region none of the strains,

and consequently none of the stresses, vary with x. Because of the

axisymmetric nature of the problem none of the strains, nor disp1ace-

ments, vary with 6 either. By using the first two compatibility equa

tions, eq. 36, it can be shown ex = a constant. Thus for the general

ized plane-strain analysis

v = y =re
u = u(r,x)

From Hookels Law

y = 0
xO

w = w(r) •

're = 'xe = o.
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Hooke's relations for the nonzero stresses may be written as follows:

(J Cll C12 C13
€o - a fiTx X

O'e = C22 C23 € - CleflT (65 )e

O'r C33 €r - Cl fiTr
L = 'C"55 y •xr xr

Substituting the stress components 0'0 and (Jr into the first equilibrium

equation gives

where

and

2
C

33
(d w + 1. dW)
dr2 r dr

- 1
C22 ""2 W

r r
(66)

Cl +r

It should be noted that eq. 66 is identical to eq. 48 except for the

nomenclature. Equation 66 can be solved by the procedure outlined

previously. The resulting solution is

~~--r (67)

where

A = Je22 ' •
1,2 C

33
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In the case that C33 = C22 the last term in eq. 67 has to be replaced

by:

I
--r ln r and Al 2 = ± 1
2C33

,

In addition if a r = as and C12 = C13 , as will be the case for 0° lamina

if it assumed to be transversely isotropic, the radial displacement w

reduces to:

The strain is obtained by substitution of w(r) into the strain-

displacement relation to get:

(68)

£ _ dw =
r - 'Ci'r ----+

1
EO = r W =

L 2 A -1
---- + L AR,r R,
C33- C22 R,=1

(69)

The stresses components for the layer are determined from the constitu-

tive relation to get
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where

(70)

= x,8,r

= j = 1,2,3

for stresses and coefficients of

thermal expansion,

for stiffness in the same order,

and the double subscript j indicates summation from 1 to 3.

For the transversly isotropic case,
A2

E r = Al - 2"
r

(71 )

and the stresses are

O'i =CUE O - Cijaj~T + Al (C2i + C3i ) + A2(C2i - C3i ) ~2 • (72)

Since ax is not a function of Xt eq. 40c yields
-1

'xr = Br • (73)

oThe method for determining the constants E , AI' and A2 for a

single layer is slightly different for the generalized plane strain case

than it was for the two other solutions. The conditions O'r = 0 at the

inner and outer radii still are enforced. However, to determine EO, an

integrated condition must be used. This condition states that despite

thermal effects, there is no net axial force in the tube. That condi-

tion is written as
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Multiple Layer Generalized Plane-Strain Solution

Since EX is a constant in each layer, i.e., EO, enforcing uk = uk- I

at the interfaces leads to the conclusion that EX is same in all

layers. Call this strain EO. It is an unknown which must be solved

for. Since v _ 0 throughout, vk = vk-I at each interface is automatic

ally satisfied. Enforcing wk = wk-I at the N-I interfaces of a N layer

tube leads to N-I equations from which to find the NAlls, N A2
1 s,

and gO. Since Trx is zero on the inner and outer radii, it will be zero
k k-I.throughout and so T = T 1S automatically satisfied at eachrx rx

interface. Enforcing ok = ok-I at the N-I interfaces provides N-I more
r r

equations. Requiring or to be zero at the inner and outer radii

provides 2 more conditions for the 2N+I unknowns AIls, A2
1 s, and eO.

Using an integrated condition that

(74)

provides the final equation from which to solve for the unknown con-

stants. Here A is the annular cross-sectional area of all N layers.

This integral condition is physically interpreted to mean that under

thermal loading only, there is no net axial force acting on the tube
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cross-section. Since the stresses are independent of x in this analy-

sis, the integral condition actually states the absence of a net mechan-

ical load at every cross-section. In each individual layer, however,

there are axial stresses, in addition to hoop and radial stresses.

Details of Multiple Layer Solution

To illustrate the details of obtaining a multiple layer solution,

the necessary steps for the generalized plane-strain analysis of a two

layer cross-ply tube are presented in this section.

Assume that the inner layer has its fibers running axially (0°) and

the layer is considered transversely isotropic in the r-a plane. The

outer layer has its fibers running circumferentially (90°). This lamina

can be considered transversely isotropic in the r-x plane but that will

not affect the analysis.

As stated earlier, for each layer the only displacement explicitly

involved in the analysis is the radial displacement. However, to apply

the boundary conditions both the radial and axial stresses are

involved. For the inner layer, referred to here as layer no. 1, the

displacement is

and the radial and axial stresses are

1r + A2 /r (75a)
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(75b)

(75c)

For the outer layer, here layer no. 2, the radial displacement is given

by

(76a)

The stresses are

(76b)

(76c)

where the bar over the stiffness coefficients, Cij , designate a 90°

lamina and unbarred coefficients a 0° lamina.

If the interface radius is denoted as rl' with the inner and outer

radius being denoted by ri and ro' the boundary conditions which must be
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enforced on the cyl"j ndri ca 1 surfaces are:

(77a)

(77b)

(77c)

(77d)

Across a cross-section, the net axial force being zero, eq. 74,

trans1ates into

2n (77e)

Substituting the stresses and displacements given by eqs. 75 and 76 into

77a-d, carrying out the integration of 77e, and arranging into matrix

form leads to the system of linear algebraic equations given on the next

two pages. Solving these for All, A2
1 , A1

2, A22 and eO, the stresses

can be computed in each layer by back substitution into the proper

equation.

Laminated Shell Theory (LST)

The degree of sophistication employed in the analysis of shells

depends to a great extent on the type of assumptions made regarding the

changes in shell curvature and twist. In the present work the Donnell

shell approximation on curvature and twist changes were employed. Under

such approximations all terms of changes in curvature and twist, except
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where

and

8
1

• A+l

82 • 1 - A

~ • thermal expansion coefficient in the fiber direction

az • ther-al expansion coefficient transverse to the fiber
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those involving second derivatives of W, are neglected [15]. The above

assumptions lead to the following form of curvature changes.

a2w
Xx = ax2

1 a2w
Xe = R2 ae2

1 a2w
Xxe =if axae

(78a)

(l8b)

(78c)

where R designates the radial distance to the laminated shell mid-

plane. The above first order approximation gives good results for

homogeneous, elastic quasi-shallow shells (10 ~ R/t). It remains to be

seen if the above assumption on curvature changes will yield agreement

with a more exact solution such as plane elasticity. The body analyzed

was axisymmetric and under the influence of constant temperature, there-

fore all curvature changes reduced to zero.

(79 )

The cross-ply laminated shell constitutive relations are given by the

following expressions

0
an a12 0 N + N T

1E: x X X

0 = a22 0 N + N T (80 )E: e e e j0 Sym. a66 N + 0Yxe xe
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and

Mx Bl1 B12 0 0 MT
€x x

Me B12 B22 0 0 MT (81 )= €e a
M 0 0 B66

0 MT
xe y xy xe

o 0 0 Iwhere €x' €y and Yxy are the strains at the shell s midsurface. The

membrane force and moment resultants, the N1s and MiS, are defined by,

(82a)

The aij coefficients are the elements of the inverted Aij matrix. The

Aij and Bij matrices are defined by,

h/2
= J Qi .[l,zJdz

-h/2 J
(84 )
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where

i,j = 1,2,6 • (85)

Since we are only interested in the thermoelastic shell problem,

In addition, in the present investigation it was assumed that z/R < <

1. Hence, the z/R term in eqs. 82 and 83 were neglected. The laminate

midsurface strains are obtained by substituting Nx
T and NeT into

eq. 80. The residual stresses in the kth layer are then calculated

through the lamina constitutive relations,

(86 )

It should be noted that the Mis are not zero and can be calculated by

eq. 81 since the MT·s are known.



RESUL TS

In the following section the numerical results of the study are

presented. The discussion will focus on a set of selected cases that

illustrate particularly significant findings in the current study.

The analysis was conducted using T300/934 and GY70/934 graphite

epoxy composite systems. The BOO graphite fibers represent a high

strength-low modulus fiber and the GY70 fibers are low strength-high

modulus fibers. The material properti es or both composite systems are

given in Appendix A. The curing and service temperatures were taken as

250 and -250°F, respectively. This yielded a maximum temperature dif

ference of 500°F. Results are presented for all three elasticity solu

tion methods and the results are compared to the laminated shell theory

(LST).

Only 4 layer tubes are considered. The next 12 figures illustrate

the effects of changing the location through the wall thickness of the

two T300/934 0° (axial) and the two T300/934 90° (circumferential)

layers, e.g., [0/90/0/90]t vs. [90/0/90/0]t. The stress levels are

plotted as a function of location through the wall thickness. The ratio

of the inner radius to the wall thickness were chosen to be 12.5. This

represented the geometry of tubes being investigated in another phase of

this overall study. Following this, the next twelve figures illustrate

the effect of changing the number of 0° and 90° layers in a tube e.g.,

(0/903)t vs. (0/90/0/90)t.

After the various 4-layer stacking arrangements are discussed, the

results for a 4 layer T300/934 tube with all layers circumferential

(904 ) are illustrated. Following that, the comparison between LST

stress predictions and the plane strain elasticity solution is illustra-

60



61

ted. This will illustrate the reason for pursuing the elasticity solu

tion in this study. Finally, the effect of material properties on

residual stress is demonstrated by varying the 0° and 90° laminae mater

ial properties in a (O/90/0/90)t laminated tube. Using two types of

fibers, T300 and GY70, the benefit of laminate hybridizing on stress

levels is shown.

The axial residual stress, ox' in a (0/90/0/90)t tube operating at

500°F below its curing temperature is given in Fig. 3. The apparent

lack of agreement between the plane-strain, generalized plane-strain,

and LST analyses can be explained by the different assumptions employed

in each analysis. (The axial stress in the plane stress analysis is

zero). In the plane-strain analysis it is assumed that the tube is

restrained at its ends from axial motion (i.e., u=O all along the

tube). Therefore, a net axial force is required at the tube ends to

meet this condition. Consequently, the net axial stress across a tube

cross-section is not zero as may be seen from the sum of area under the

plane-strain axial stress cure. On the other hand, in the generalized

plane-strain analysis it is assumed that the tube is unrestrained at its

ends. In addition, it was required that the net axial stress across a

tube cross-section is equal to zero. Away from the ends of a finite

length tube the generalized plane-strain assumption closely resembles

the LST analysis in the x direction. Therefore, these solution

approaches are expected to give close agreement as indeed they do. It

should also be noted that the axial stress in the 90° laminae (hoop

fiber) is tensile and of considerable magnitude (~12,000 psi). Such a

stress can lead to circumferential cracking in those plies.

Figure 4 illustrates the hoop stress in the (O/90/0/900)t tube. As

can be seen, the layers with their fiber in the axial direction are
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under considerable hoop tensile stress (~ 12,000 psi). This represents

tension in the matrix direction at a level that will undoubtedly cause

cracking parallel to the fibers. Conversely, the layers with their

fibers in the circumferential direction are under compression in the

fiber direction. This should cause no problems as far as cracking or

other damage. There is not much difference in the three elasticity

solutions. There is a difference between the LST and the three elas-

ticity solutions. For the case shown in Fig. 4, the elasticity solu-

tions and the LST solution differ by 40% at the outer radius. That the

three elasticity solutions are similar is interesting in its own

right. The closeness of the three solutions demonstrates that the hoop

stress is independent of assumptions regarding the stress or strain

state in the axial direction. Recall, in Fig. 3, the plane stress,

plane strain, and generalized plane strain were quite different. All

elasticity solutions predict a gradient in the hoop stress in the 90°

laminae but very little gradient in the 0° lamina. As was shown by the

elasticity analyses, the hoop stress in the 90° lamina varies as a

function of rA-1 and r-(A+l), where A = IC 22 /C 33 for the plane-strain

and generalized plane-strain solutions and A = 1Q227033 for the plane

stress analysis. As for the 0° lamina, assuming a transverse isotropic

condition, the hoop stress will vary as function of 1/r2•

Since A = 3.7 in the T300/934 material, the hoop stress in the 9Uo

lamina will vary with r much more rapidly than in the 0° lamina.

Figure 5 shows the radial stress distribution in the (0/90/0/90)t

tube. The stress is everywhere tension but the magnitude is quite low

compared to the hoop stress or the through-the-thickness strength of a

lamina. Again, the three elasticity solutions are quite close to one

another.
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Figures 6-14 show other stacking arrangements with two 0° layers

and two 90° layers. It appears from these figures that the maximum

axial and hoop tensile stress is unaltered by stacking arrangement. The

peak compressive stress in the hoop direction does vary with stacking

arrangement as does the radial stress distribution. Clustering the OOIS

and/or 90 0 ,s, Figs. 9-14, does little to alter the peak tensile stress

in the matrix direction.

Changing one of the 90° lamina to be a 0° lamina doesn't alter the

tensile axial stress in the single 90° lamina, Fig. 15, but it does

significantly increase the compressive hoop stress in that 90° lamina,

Fig. 16. The tensile matrix stress in the 0° lamina is still about

12,000 psi. For a (90/03)t tube, the radial stress, as shown in Fig.

17, is everywhere compressive. Repositioning the single 0° lamina,

Figs. 18-20, has little effect on the peak axial or hoop stresses.

The effects of having more 90° lamina than 0° lamina are shown in

Figs. 21-26. Still the peak hoop tensile stress in the matrix direction

is about 12,000 psi. The peak compressive stress in the fiber direction

is greater than in other cases. It is interesting to note that LST

predicts the wrong sign for the hoop stress at the inner region of the

cluster of 90° lamina.

The residual stresses in a (904 )t laminated tube are presented in

Figs. 27 and 28 as can be seen these stresses are not zero as might

intuitively be expected. The residual stresses arises due to thermal

expansion mismatch in the radial and hoop directions. For the (904)t

case, the plane stress and generalized plane-strain solution predict no

axial stress. However, the plane strain solution predicts an axial



67

stress which is practically constant with r and has a value of ~ -205UO

psi.

In order to demonstrate the effect of tube aspect ratio (R/t) on

residual stress magnitude, the maximum hoop and radial stresses are

plotted versus R/t ratios in Fig. 29 and 30 for a (0,90,0,90)t tube. In

Fig. 29 the maximum hoop stresses in the 0 and 90 degree laminae calcu

lated by generalized plane-strain elasticity are normalized by the value

determined from laminated shell theory. As indicated by the plot, only

at very large aspect ratios does LST give close agreement with an

elasticity analysis. This is particularly true for the 90 degree

lamina. The residual radial stress approaches a small value (10 psi) as

the tube aspect ratio (R/t) increases. However, it should be noted that

even at small aspect ratios the residual radial stress is less than one

percent of the hoop stress.

Finally, Fig. 31 demonstrates the effect of laminated tube hybridi

zation. It appears that the use of such hybridization can be beneficial

in hoop stress reduction. Specifically, the tensile hoop stress in the

0° pli es, of a 4-ply GY70/934 tube, was reduced approximately 20 percent

by substituting T300 fibers for the 90° laminae. The above process

maintains high axial stiffness while reducing the tensile hoop stress.

An opposite effect is noted when the GY70 fibers in the 0° laminae are

replaced by T300 fibers (i.e., increasing the hoop stress in the 0°

laminae). The above phenomenon demonstrates the usefulness of hybrid

composite tubes in order to maximize longitudinal stiffness and minimize

residual hoop stress.
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CONCLUSION

In the present section the conclusions that can be drawn from the

investigation are summarized below.

(1) It was shown that the laminated composite tube thermomechanics

problem can be treated accurately by laminated shell theory provi

ded that the tube's R/t ratio is relatively large (R/t > 10).

However, at smaller R/t ratios considerable deviation is observed

between LST and plane elasticity solutions, particularly in the

hoop stress for a 90 0 lamina.

(2) The residual radial stress was shown to be negligible as compared

with the other stress components (i.e., hoop and axial).

(3) The data presented allows one to conclude that varying the stacking

sequence whi 1e keepi ng the number of 00 and 90 0 1ami nae constant

has little effect on the level of the axial stress in these lay-

ers. The radial stresses are affected. However, varying the

number of 0 0 and 90 0 laminae in the laminated tube will effect both

these stresses.

(4) It was shown that tube hybridization may contribute to both a

decrease or increase in the hoop stress. This effect depends upon

the placement of particular fibers in given directions.

(5) All plane elasticity solutions agreed well with each other as far

as the calculated hoop and radial stresses. However, the plane

strain and generalized plane-strain show the best agreement with

each other.

(6) The generalized plane-strain and LST analyses showed close agree-

ment on the residual axial stress. However, the plane-strain

analysis failed to give similar results. This was attributed to

the kinematic constraints assumed in this analysis.
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APPENDIX A

The following material properties of T300/934 and GY70/934 graph-

ite-epoxy composites were used in the study •

T300/934 graphite-epoxy

Moduli (Msi)

E1 ::: 21.3

E2 ::: 1.32

G12 ::: 0.67

Poisson1s Ratios

V12 ::: v13 ::: 0.30

v 23 ::: 0.49

thermal expansion

~1 ::: - 0.04E-6 in./in. OF

~2 ::: 18.70E-6 in./in. OF

GY70/934 graphite-epoxy

modul i (Msi)

Ell ::: 44.0

E22 ::: 0.975

G12 ::: 0.71

Poisson1s Ratios

v12 ::: v13 ::: 0.129

v
23

::: 0.49

Thermal Expansion

~1 ::: -.578E-6 in./in.oF

~2 ::: 14.42E-6 in./in.oF
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