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PROJECT SUMMARY

The objective of this project was to demonstrate the technical
feasibility of fabrication of dispersion hardened aluminum alloys
using the principles of rapid solidification processing. Aluminum
alloys containing transition metal elements having zero or negligible
solid solubility in the host matrix when rapidly solidified from melt
as powders form metastable highly supersaturated solid solutions.
During consolidation processing of such powders at high temperature,
an ultrafine dispersion of stable intermetallic phase(s) forms based
on aluminum and transition metals. Such aluminum alloys exhibit
superior strength at elevated temperatures at or above 350°F.

In this investigation, three aluminum alloys containing i0 to
11.5 wt. pct. of Fe and 1.5 to 3 wt. pct. of Cr were studied. Iron
and chromium contents were varied to determine their effects on the
mechanical properties of the alloys. Alloys were prepared as thin

ribbons (.002 inches thick) rapidly solidified at uniform rate of
i0 °C/second by the melt-spinning process. The melt-spun ribbons
were pulverized into powders (-60 to 400 mesh) by a rotating hammer
mill. The powders were consolidated by hot extrusion at a high
reduction ratio of 50:1. The powder extrusion temperature was
varied to determine the range of desirable processing conditions
necessary to yield useful properties. Powders and consolidated
alloys were characterized by SEM and optical metallograph. The
consolidated alloys were evaluated for (i) thermal stability, (ii)
tensile properties in the range, room temperature to 450°F, and
(iii) notch toughness in the range, room temperature to 450°F.

The consolidated alloys showed microstructures consisting of
fine dispersion of metallic phases in an aluminum matrix. Micro-
structure coarsened slightly when the powder extrusion temperature
was raised to 930°F from 750°F. Two alloys, AI-10Fe-3Cr and AI-
llFe-2Cr, showed good tensile preperties at elevated temperatures
(i.e. 350-450°F); however, they possess little room temperature
ductility. Some room temperature ductility was exhibited by an
alloy containing a low amount of chromium. This alloy hot extruded
at 840°F having the composition, AI-II.5Fe-I.5Cr also showed good
high temperature tensile properties. Typical properties at 350°F
were as follows: UTS=54 ksi and 0.2% yield strength = 46.8 ksi
and elongation of 6.8%. Good notched tensile strength values were
exhibited by AI-II.5Fe-I.5Cr alloy from room temperature to 450°F.
The present Phase I study demonstrated the feasibility of fabri-
cation of new aluminum alloys for potential spacecraft applications
at elevated temperatures above 350°F.
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I. INTRODUCTION

Advanced aluminum alloys are of long-term interest for

potential applications as lighweight materials in spacecraft

structures at temperatures greater than 350°F. New aluminum

alloys with far superior high temperature strength/density

and stiffness properties than those from commercial aluminum

alloys are a potential area for innovation. Payoffs will

result from weight savings of structural components which in

turn, lead to increased payload, service life, and decreased

life-cycle cost.

Rapid solidification technology (RST) offers outstanding

prospects for the creation of new engineering alloys which

may have physical properties superior to those otherwise avail-

ableI. In particular, RST can be used to produce metastable

highly supersaturated metallic solid solutions wherein a large

excess of solute elements can be retained uniformly throughout

the host element or alloy. Upon suitable heat treatment, a

fine dispersion of particles of the equilibrium intermetallic

phases can be produced within the host matrix. In fact, the

potential for using this approach to produce unusual dispersion

hardened aluminum alloys having improved mechanical properties

and superior thermal stability was recognized nearly fifteen

years ago when rapid solidification processing techniques
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first began to emerge as viable engineering tools 2. A large

number of binary and multicomponent aluminum alloy systems

have been identified which offer the scope of producing the

precipitation/dispersion hardening phase by the nucleation

and growth from liquid quenched supersaturated solutions,

3
e.g. AI-Fe, AI-Cr, AI-V, AI-Ti, AI-Fe-Ni, AI-Fe-Mo, etc

The decomposition of such supersaturated solutions has been

found to follow the classical AI-Cu sequence of metastable

phase nucleation and growth. Transition metal elements, e.g.

Fe, Ti, Cr, Mo, Nb, etc. with very low diffusivity flux (i.e.

high activation energy for diffusion) and low solid solubility

in aluminum, are particularly effective in formation of ther-

mally stable intermetallic particles resistant to Ostwald

ripening. High temperature strengthening is achieved by the

action of a large amount ( 25-30% volume fraction) of this

dispersed phase, a technique which has been successful in

oxide dispersion strengthened aluminum alloys, e.g. SAP alloys

and the mechanically alloyed alloys. However, strength also

may arise from a highly refined grain size. High modulus

intermetallic compounds contribute to increased modulus of

the powder metallurgical (P/M) aluminum alloy. Another consi-

deration is the influence of a two-phase microstructure on

alloy ductility. It is fairly well accepted that alloy ducti-

lity is inversely dependent on the volume fraction of a

- 2 -



dispersed second phase. Thus, one alloy design principle

indicates an increased volume fraction of second phase is

needed for increased elastic modulus and high temperature

strength; however, another alloy design principle indicates

a decreased volume fraction of second phase is needed for

ductility. Several RST powder product manufacturing

approaches have been pursued during the past several years

by different industrial groups in the United States under

the Department of Defense and the Defense Advanced Research

Project Agency sponsored programs with goals to develop high

temperature dispersion hardened aluminum alloys for aerospace

hardware applications. The potential alloy systems that are

currently being investigated are AI-Mn-Si, AI-Fe-Mo, AI-Fe-
4-5

Ni-Co, AI-Fe-Ce, etc. . Although, encouraging results

have been achieved in these investigations with some alloy

compositions, considerably more work is needed to markedly

enhance the properties of these alloys in order to be compe-

titive with titanium alloys. Furthermore, RST processes

based on melt-atomization techniques are usually plagued with

non-uniform, low average cooling rates.

It appears that there is a need to produce aluminum

alloy powders uniformly quenched at high solidification rates.

A six-month Phase I SBIR research project was undertaken

by Marko Materials, Inc. under the sponsorship of NASA with
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the aim to develop a technology for production of new aluminum

alloys with superior high temperature properties. This effort

involved alloy design concepts as outlined in the aforementioned

section and an innovative rapid solidification powder metal- _

lurgy (P/M) process. The present research on a new materials

technology via Phase I and Phase II of this SBIR program is

anticipated to provide viable lightweight aluminum alloys which

will find applications in future spacecraft.
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II. BACKGROUND

The State of the Art in Rapid Solidification processingi

The advent of RST powder processing has added a new
Q

dimension in alloy design, an unlimited flexibility in the

control of properties by manipulating structures and compo-

sitions. RST processes cool a liquid metal at I06-I07°C/

second, thus these high cooling rates often lead to metastable

phases and complete, or at least greatly enhanced, chemical

homogeneity in the solidified alloys. For properly chosen

RST alloy powders, powder metallurgy (P/M) processing will

result in fully dense bulk materials which will have novel

microstructures transformed from metastable phases and which

will have highly desirable properties not obtainable by nor-

mal ingot casting metallurgy. Many of these processes are

based on modifications of melt atomization techniques, e.g.

(a) centrifugal atomization of melt coupled with forced con-

vective cooling of molten droplets by helium gas, (b) ultra-

sonic atomization of melt into extremely fine droplets, and

7
(c) high velocity gas quenching There are certain limita-

tions of RST powder processes based on atomization. Atomized

droplets undergo variable quench rates which result in a wide

- range of particle sizes. Screening out the larger particles

gives material which has been subjected to a more uniform

and high cooling rate, but the yield is then reduced causing
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the process to be less economical. For solidification rates

greater than 104°C/second, RST powder processes based on gas

quenching of atomized melt, as of today, have reached their

limit. Metal substrate must be used to achieve faster solidi-

fication rates.

Of the various solid substrate quenching processes known

in the present state of the art, the chill-block-melt-spinning

technique appears to be the most viable approach for economi-

cally producing rapidly solidified materials as thin continous

ribbon or tape in large quantities. In this process, a free

jet of molten metal is impinged onto a moving metal substrate.

The molten stream is converted into ribbon which has been

uniformly solidified at an extremely rapid rate of I06°C/

second. One major advantage of the melt-spinning process is

its capability to produce rapidly solidified materials with

high yield up to nearly 100%.

The technology of metal substrate quenching based on melt-

spinning or its modifications has advanced rapidly in recent

years. Large production scale metal substrate quenching

processes have been established for high speed fabrication of

ribbons of rapidly solidified alloys. Such techniques are

being applied to aluminum alloy systems for production of

materials with one hundred percent yield being cooled at one

hundred times faster than gas quenched atomized particulates.
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R_pidly solidified ribbons are generally pulverized into

powders by a rotating hammer mill for subsequent easy fabri-

cation of bulk products by standard powder metallurgy

procedures.

Rapid Solidification Technology of Marko Materials

During the past several years Marko Materials has been

engaged in the development of a rapid solidification powder

technology based on a melt-spinning process. In this process,

the candidate alloys are rapidly solidified as thin, uniform

ribbons by melt-spinning. The melt-spun ribbons are in-line

pulverized directly off the casting substrate by a rotating

hammer mill.

The present research effort funded under NASA's Small

Business Innovative Research Program has been geared to extend

Marko's rapid solidification technology to aluminum alloys

with an objective to achieve superior high temperature mecha-

nical properties. The basic approach adopted followed the

underlying principles of design of advanced high temperature

aluminum alloys by a dispersion of stable, ultrafine inter-

metallic phases based on aluminum and transition metals.
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III. PHASE I TECHNICAL OBJECTIVES

Marko proposed to develop via its rapid solidification

technology based on melt-spinning new advanced aluminum alloys

containing 12-14 percent transition metals with improved ten-

sile strength, fatigue, and creep properties at temperatures

above 106°0. An extremely high cooling rate (106/second)

was anticipated to lead to formation of metastable supersa-

turated solid solution structures in transition metals bearing

aluminum alloys as compared to refined dendritic structures

which are usually retained at lower cooling rates (I04°C/

second). Metastable solid solution structures obtained at

the very high solidification rate of 106°C/second were to be

decomposed by thermomechanical treatments to create stable

and ultrafine intermetallic phases uniformly dispersed leading

to improved mechanical properties at elevated temperatures.

Rapid solidification powder processes which are based on

gas quenching of atomized melt have certain limitations; the

primary one being, low cooling rate (104°C/second). Therefore,

a need was realized to develop a new rapid solidification powder

making process for suitably melting aluminum alloys followed

by conversion of melt into powders rapidly solidified at a

high and uniform rate of 106°C/second. Marko proposed to

extend its rapid solidification technology to the AI-Fe alloy

system. The primary objective of this research effort was to.
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investigate three first iteration alloys and optimize the

thermal processing treatments so as to achieve high modulus

and strength combined with reasonable ductility at room and

• elevated temPeratures upto 450°F. Ternary modifications to

binary aluminum-iron alloys were investigated by other workers

using zirconium, hafnium, niobium, cerium, and molybdenum to

provide additional strengthening. Molybdenum and cerium have

been found to have strong beneficial effects on the AI-Fe

alloys. Chromium when added to aluminum forms very stable

AI7Cr particles at grain boundaries. Such particles resist

coarsening even at 932°F.

In the present effort aluminum alloys containing specific

amounts of iron and chromium were selected for study as rapidly

solidified powder by Marko's RST process based on melt-spinning.

Powders were subjected to consolidation by cold compaction

followed by hot extrusion. Some microstructural characteriza-

tion was carried out using SEM technique. Very fine particles

(-400 mesh) were discarded to eliminate possible contaminants

eroded from the linings and the hammers of the pulverizer. The

consolidated alloys were tested for mechanical properties at

room and elevated temperatures upto 450°F. Because of their

potential applications in spacecraft structures, some measure

of toughness was incorporated in the present alloy investigation

program to ensure a usable product. Such a parameter, which is
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inexpensive and a good indicator of relative toughness, is the

notched tensile strength/yield-strength ratio (NTS/YS).



IV. PHASE I EXPERIMENTAL WORK PLAN

Marko Materials investigated smooth and notched tensile

properties of three candidate AI-Fe-Cr alloys, each hot extruded

at three different extrusion temperatures. The experimental

matrix of alloy composition and consolidation temperature is

shown below. Extrusion ratio was constant at 50:1.

Alloy Composition Extrusion Temperature (°F)

(weight-percent) T1 T2 T 3

AI-10Fe-3Cr 750°F 840°F 930OF

Al-llFe-2Cr 750°F 840°F 930°F

AI-II.5Fe-I.5Cr 750°F 840°F 930OF

The three candidate alloys were prepared as rapidly solidified

powders by the melt-spinning-pulverization technique. Ten

pounds of powders (-60 to 400 mesh) of each alloy were produced.

Consolidation of powders into bars was carried out by the

method of extrusion at three different temperatures, 750°F,

840°F, and 930°F. Powders were cold compacted in 4.5 inch OD

aluminum cans under 70 tons uniaxial load. Powders were vacuum

" degassed at 480°F for 4 hours and then the cans were sealed.

Powders were directly hot extruded into bars excluding a hot
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upsetting step prior to extrusion. Extrusion was carried out

in two steps to achieve a high overall reduction ratio to
i

ensure complete elimination of interparticle prior boundaries.

The first stage extrusion was carried out in a 1400 ton press °

at a reduction ratio of 5:1. All the cans containing three

different alloy powders were soaked at 750°F for 2 hours prior

to extrusion. The extruded bars having 2 inch diameter were

cut-up in 8 inch long billets. Each alloy was subsequently

re-extruded (second stage extrusion) in a 300 ton press at a

reduction ratio of about i0:I. The second stage extrusion of

each alloy was carried out at three different temperatures:

750°F, 840°F, and 930°F. The billets were soaked at each

temperature for 1.5 hours. The second stage extrusion produced

0.63 inch diameter bars. The overall reduction ratio experi-

enced by each alloy was 50:1.

The consolidated alloys were evaluated for (a) density,

(b) thermal stability, and (c) smooth and notched tensile

properties at room and elevated temperature.
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V. RESULTS

SEM and Optical Photomicrographic Investigation

Microstructural characteristics of the consolidated

alloys were conducted by optical photomicrography. The

Characteristics of the powders were investigated by SEM and

optical photomicrography.

The powders were examined both in the loose form as well

as in the mounted and polished state (see Figures 3-8).

Powders prepared by pulverization of melt-spun ribbons were

found to have platelet morphology with featureless micro-

structural characteristics.

Optical photomicrograph of AI-Fe-Cr alloys of various

compostitions consolidated at different temperatures are shown

in Figures 9-13. The majority of the product microstructure

consist of a distribution of small second phase particles

which evolved from the nonequilibrium highly supersaturated

solid solutions Of aluminum-iron-chromium. A small part of

the microstructure of the product contains large crystals of

the primary phase. The equilibrium hypereutectic solidifi-

cation morphology in these powders made from ribbons is

supressed. It is suggested that at high cooling rates, the

• growth of the equilibrium primary intermetallic phase is

. kinetically limited requiring a transition in solidification
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mode to one in which a supersaturated aluminum is the

primary phase.

The photomicrographs (Figure 9-13) show no evidence of

prior particle boundaries. The powders appeared to be well- °

bonded across interparticle boundaries during extrusion at

high reduction ratio of 50:1 A slight coarsening of the inter-

metallic compound is seen in the alloy extruded at 930°F

(Figure ii) as compared to the same alloy extruded at 750°F

(Figure 9).

Density

The three candidate alloys were found to have the

following densities:

AI-10Fe-3Cr: 2.903 gm/cc

AI-IIFe-2Cr: 2.912 gm/cc

AI-II.5Fe-I.5Cr: 2.916 gm/cc

Thermal Stability

The three extruded alloys (AI-10Fe-3Cr, AI-IIFe-2Cr, and

AI-II.5Fe-I.5Cr) were isothermally annealed at 660°F and 750°F

for various lengths of time upto 500 hours. Following annealing,

samples were tested for hardness values at room temperature

using a Rockwell B tester. The specimens showed no change in

room temperature hardness values (approximately between RB

88-90) following annealing indicating excellent thermal stability.
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Mechanical Properties

Tables 1 to 9 list the results of smooth and notched

. tensile tests of the three candidate AI-Fe-Cr alloys in the

range between room temperature to 450°F. The cylindrical test

specimens were prepared according to Figures 1 and 2. Cross

head speed was 0.005 inch/inch/min, upto yield point and

beyond yielding, cross head speed was 0.05 inch/inch/min.

AI-10Fe-3Cralloys extruded at 842°Fand932°F appeared to have

attractive high temperature tensile strength combined with

reasonably good ductility in the range 400-450°F. With

decreasing chromium contents in the AI-Fe-Cr alloy room tempera-

ture ductility was slightly improved. Improvement of room

temperature ductility was also achieved by increase in hot

extrusion temperature. With high solute contents of the pre-

sent candidate alloys the probability of occurrence of the

coarse primary crystals was high. The presence of coarse

particles encourages void nucleation leading to notch sensi-

tivity. This effect places increasing demand on the distri-

bution of the smaller second phase particles.

The temperature selected to consolidate the powder influ-

ences the product ductility and strength. Lower consolidation

temperature led to reduced ductility, perhaps due to poorer

" interparticle bonding. High temperature extrusion led to

improved interparticle bonding. However, strength was reduced
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due to enhanced coarsening of the second phase microstructure

at higher extrusion processing temperatures. The notch tough-

ness measured as the ratio of notched tensile strength to

yield strength was highest for the AI-II.5Fe-I.5Cr alloy

consolidated at 932°F.

The development of improved elevated temperature aluminum

alloys for spacecraft-aerospace applications has been a goal

of research for years. Aluminum alloys having higher strength

and improved creep resistance offer the potential for lower

weight and reduced costs through the replacement of heavier

more costly materials such as titanium. The present Phase I

exploratory research indicates that rapid solidification

processing based on Marko's melt-spinning technology offers

a viable route to fabricate aluminum alloys containing transi-

tion metal elements having improved mechanical properties at

elevated temperature.

The presentresearch has clearly demonstrated that duc-

tility, strength, and notch toughness of dispersion strengthened

P/M AI-Fe-Cr alloys at room and elevated temperatures can be

controlled by the amount of various solute elements, and

powder consolidation processing conditions.
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VI. SUMMARY OF RESULTS

• Three aluminum alloys containing about 13 wt% transition

metals (Fe and Cr) were investigated. AI-10Fe-3Cr, AI-IIFe-

2Cr, and AI-II.5Fe-I.5Cr were prepared as rapidly solidified

powders by the method of melt-spinning and pulverization.

Powders were consolidated by a two-stage extrusion at three

different temperatures between 750 to 930°F. The microstruc-

tures of the consolidated alloys were investigated and tensile

properties were determined over the range from room temperature

to 450°F.

The microstructural characteristics which influence ten-

sile properties of dispersion hardened P/M AI-Fe-Cr alloys

were controlled by the consolidation processing conditions

and the compositions. The microstructure of rapidly solidi-

fied AI-Fe-Cr alloy powders essentially consisted of feature-

less characteristics which indicate very high cooling rates

experienced by the alloys. The microstructures of the consoli-

dated alloys consisted of a distribution of fine second phase

intermetallics which evolved from supersaturated solid solution

matrix phase during thermomechanical processing of the powders.

A smaller part of the product contains somewhat large crystals

of the primary phase.
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The temperatures selected to consolidate the powders

influenced the bulk ductility and strength. Lower consoli-

dation temperature led to reduced ductility. Higher conso-

lidation temperature improved room temperature ductility and

reduced high temperature strength.

Of the three alloys AI-II.5Fe-I.5Cr appeared to be most

promising when consolidated (i.e. extruded) at 932°F. It

combined some room temperature ductility with attractive high

temperature (450°F) tensile strength and notch toughness.
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Figure i. Smooth Tensile Test Specimen.
Dimensionsin inches.
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Figure 2. Notched Tensile Test Specimen.
Dimensionsininches.



Figure 3. SEM photomicrograph of loose
powder of Al-10Fe-3Cr alloy
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Figure 4. SEM photomicrograph of loose
powder of AI-IIFe-2Cr alloy
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Figure 5. SEM photomicrograph of loose
powder of Al-ll.5Fe-l.5Cr alloy
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" Figure 6. Optical photomicrograph of
AI-10Fe-3Cr alloy powder
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Figure 7. Optical photomicrograph of
AI-IIFe-2Cr alloy powder
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Figure 8. Optical photomicrograph of
AI-II.5Fe-I.5Cr alloy powder
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Figure 9. Optical photomicrographs of AI-II.5Fe-I.5Cr alloy

hot extruded at 750°F. Etched in Kellers
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Figure i0. Optical photomicrographs of Al-ll.5Fe-l.5Cr alloy

hot extruded at 840°F. Etched Kellers
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Figure ii. Optical photomicrograph of Al-ll.5Fe-l.5Cr alloy

hot extruded at 932°F. Etched in Kellers



I

I

i00 _ 25

Figure 12. Optical photomicrograph of AI-IIFe-2Cr alloy

hot extruded at 932°F. Etched in Keller$.
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Figure 13. Optical photomicrograph of AI-10Fe-3Cr alloy

hot extruded at 840°F. Etched in Kellers.
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Table 1

Smooth and Notched Tensile Properties of P/M

AI-10Fe-3Cr Alloy Extruded at 750°F

Ultimate Notched Notched Tensile
Test Temp. 0.2% Tensile Tensile % % Strength

(°F) Offset Y.S. (psi) Strength (psi) Strength (psi) Elong RA
I Yield Strength

! 75 -- 4220* 31,800 ......

250 -- 4221" 37,900 ......

300 59,100 62,800 37,400 0.8 i.i .63

350 54,200 56,200 40,500 0.2 0.2 .74

400 50,100 55,900 42,500 0.9 1.5 .85

450 45,700 54,600 39,100 2.0 3.1 .86

* Thread failure at load indicated



Table 2

Smooth and Notched Tensile Properties of P/M

Al-10Fe-3Cr Alloy Extruded at 842°F "

Ultimate Notched Notched Tensile
Test Temp. 0.2% Tensile Tensile % % Strength

i (°F) Offset Y.S. (psi) Strength (psi) Strength (psi) Elong RA
Yield Strength

I

75 -- 2950* 30,600 ......

250 65,700 71,000 34,000 0.5 0.7 .52

300 56,500 67,900 40,500 0.9 1.5 .72

350 55,700 64,600 45,800 1.7 1.3 .82

400 48,100 54,700 45,300 4.3 5.2 .94

450 40,200 48,200 48,700 7.5 8.2 1.21

* Thread failure at load indicated



• • • a

Table 3

Smooth and Notched Tensile Properties of P/M

Al-10Fe-3Cr Alloy Extruded at 932°F

Ultimate Notched % % Notched Tensile
Test Temp. 0.2% Tensile Tensile Strength

(°F) Offset Y.S. (psi) Strength (psi) Strength (psi) Elong RA Yield Strength
I

I 75 -- 4140" 20,800 ....

250 -- 5230* 38,000 ....

300 53,200 63,600 44,600 .09 2 .84

350 48,900 59,400 49,600 1.4 2 1.01

400 44,900 51,000 41,000 7.1 2 .91

450 38,300 44,600 47,400 5.6 4 1.24

* Thread failure at load indicated



Table 4

Smooth and Notched Tensile Properties of P/M

AI-IIFe-2Cr Alloy Extruded at 750°F

Ultimate Notched Notched Tensile
Test Temp. 0.2% Tensile Tensile % % Strength

l (°F) Offset Y.S (psi) Strength (psi) Strength (psi) Elong RA• Yield Strength

I

75 -- 3440* 33,100 ......

250 -- 3000* 22,800 ......

300 63,900 65,500 37,000 0.3 0.9 .58

350 52,200 60,100 36,300 1.0 1.8 .70

400 46,100 55,700 46,800 1.5 1.9 1.02

450 40,000 48,200 44,400 4.9 5.0 i.ii

* Thread failure at load indicated



Table 5

Smooth and Notched Tensile Properties of P/M

AI-IIFe-2Cr Alloy Extruded at 840°F •

Ultimate Notched Notched Tensile% %
Test Temp. 0.2% Tensile Tensile Elong RA Strength

i (°F) Offset Y.S. (psi) Strength (psi) Strength (psi) Yield Strength

I

75 -- 67,600 1690" 0.2 0.2 --

250 -- 3460* 17,300 ......

300 56,700 63,600 29,600 1.0 1.7 .52

350 51,900 58,500 37,500 1.7 3.4 .72

400 44,900 53,000 52,700 5.0 5.0 1.17

450 39,500 46,900 42,900 5.3 8.0 1.09

* Thread failure at load indicated



Table 6

Smooth and Notched Tensile Properties of P/M

Al-llFe-2Cr Alloy Extruded at 932°F

Ultimate Notched Notched Tensile
Test Temp. 0.2% Tensile Tensile % %

l (°F) Offset Y.S. (psi) Strength (psi) Strength (psi) Elong RA Strength
Yield Strength

I

75 68,500 72,300 37,000 0.4 0.9 .54

250 58,400 70,500 49,500 1.2 2.1 .85

300 53,900 59,100 61,700 2.4 4.3 1.14

350 49,200 53,900 62,700 4.7 7.8 1.27

400 42,800 48.600 49,200 7.3 7.2 1.15

450 34,500 42,200 46,200 8.6 i0 1.34

* Thread failure at load indicated



Table 7

Smooth and Notched Tensile Properties of P/M

Al-ll.5Fe-l.5Cr Alloy Extruded at 750°F

Ultimate Notched Notched Tensile
Test Temp. 0.2% Tensile Tensile % % Strength

i (°F) Offset Y.S. (psi) Strength (psi) Strength (psi) Elong RA
Yield Strength

I

75 75,500 81,600 36,900 0.9 1.4 .49

250 -- 5070* 49,500 ......

300 54,200 62,100 61,600 5.4 7.5 1.14

350 44,800 53,500 62,700 10.3 15.2 1.40

400 42,900 48,400 49,200 9.8 13.6 1.15

450 36,200 43,100 46,200 8.5 10.3 1.28

* Thread failure at load indicated



Table 8

Smooth and Notched Tensile Propertiesof P/M

AI-II.5Fe-I.5CrAlloy Extruded at 840°F

Ultimate Notched Notched Tensile
Test Temp. 0.2% Tensile Tensile % % Strength

i (°F) Offset Y.S. (psi} Strength (psi) Strength (.psi) Elong RA Yield Strength

| :....

75 66,600 77,700 39,100 0.5 1.8 .59

250 63,500 70,600 46,500 1.6 2.3 .73

300 52,800 57,900 60,400 8.8 10.1 1.14

350 46,800 54,100 60,000 6.2 5.8 1.28

400 39,800 45,700 58,500 8.8 14.5 1.47

450 35,000 40,700 47,600 10.9 15.4 1.36



Table 9

Smooth and Notched Tensile Properties of P/M

AI-II.5Fe-I.5Cr Alloy Extruded at 932°F

Ultimate Notched Notched Tensile
Test Temp. 0.2% Tensile Tensile % %

i (°F) Offset Y S (psi) Strength (psi) Strength (psi) Elong RA Strength
• " Yield Strength

I

75 54,800 69,700 54,000 2.0 3.4 .99

250 50,600 60,500 66,000 7.1 7.4 1.30

300 47,300 54,800 71,600 ii.i 11.6 1.51

350 42,100 47,600 66,100 13.7 23.7 1.57

400 36,500 41,200 59,800 17.0 21.2 1.64

450 32,000 35,800 45,400 16.7 18.7 1.42
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