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ABSTRACT

This report studies the secondary pattern of a perfectly conducting offset
main reflector being illuminated by a point feed at an arbitrary location. The
method of analysis is based upon the application of the Fast Fourier Transform
(FFT) to the aperture fields obtained using geometrical optics (GO) and
geometrical theory of diffraction (GTD). Key features of the present work are
(i) the reflector surface is completely arbitrary, (ii) the incident field
from the feed is most general with arbitrary polarization and location, and
(iii) the edge diffraction is calculated by either UAT (Lee and Deschamps) or
by UTD (Kouyoumjian and Pathak). Comparison of this technique for an offset
parabolic reflector with the Jacobi-Bessel and Fourier-Bessel techniques shows
good agreement. Near field, far field, and scan data of a large reflector are

presented.
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1. INTRODUCTION

Reflector antennas are widely used in communi~ation satellite systems
because of their relatively good radiation characteristi~s, low cost, and
light weight. A central problem in the analysis of a reflector antenna is
the secondary pattern computation. As sketched in Figure 1, for an inci-
dent field from a feed located at Pl’ the problem 1s to calculate the scat-
tered field E° from a known reflector I at a far-field observation point T.

Several methods exist for calculating the high-frequency asymptotic solu-

tion of ES(;), as explained below.

(i) Physical Optics Method (PO, Fig. la) [1]-[7]. The induced
current on the reflector is approximated by 2; x ﬁi. An integra-
tion of this current over the curved reflector I gives the far
fleld E°.

(i1) Geometrical Theory of Diffraction (GTD, Fig. 1b) [8]-[10]. At a
far-field observation pecint ;, the scattered field Es consists of
two terms: the reflected field on :ay'FIET, and the edge

diffracted field on ray P 0.

1
(111) Aperture Integration Method (AI, Fig. le) [1],[11}~[13]. The
field on aperture plane Za is first calculated by tracing a
reflected ray PIOrP2 using geometrical optics theory and an edge

diffracted ray PlOdP2 using GTD. Next, we integrate the field

over Za via FFT to obtain the scattered far-field Es.

The accuracy of the above three methods is discussed below. As 5
reference, let us represent the exact solution of [ by a high-frequency

asymptotic series, namely,
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(a) Physical Optics Method

! (b) GTD

"’L E™ ()

(c) Aperture Integration Method

Figure 1. Three methods for calculating scattered field ES from a reflector.
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Then, we may summarize the accuracy and limitations of the three methods in
the following table:
TABLE 1

R ACCURACY AND LIMITATIONS OF PO, AI, AND GTD

Methods Accuracy Limitatiou

PO . not accurate for
recover K; and partial Al
Al wide—angle lobes

GTD recover K; and Kl predicts infinite

field in main
beam direction
(caustics)

In this report, we will study the mai > reflector far-field pattern

using the aperture integration (AI) method for the following reasc

(1) Unlike the other two methods, Al gives the near-field (aperture
field) as well as the far field. Most of today's large reflector
measurements are done in a near field range. Thus, only Al
: provides a convenient theoretical check for the near field
’ measurements.
(11) The accuracy of Al is comparable to the popular PO. The use of
FFT in Al makes it numerically efficient. Furthermore, as will '

be discussed later, the present AI formulation is most suitable

comd ' s g, §e

for extension to multiple (2 or more) reflectors.

S

There exists an extensive list of published literature on AI - notably,

Silver [1]), Kauffman and Croswell [11], Acosta {1?], and Hwang, Tsao, and
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Han [13]. 1In comparison with these prior works, the present AI analysis may
be considered as an extension in one or more of the following areas:
(1) The surface of the reflector is completely arbitrary. It can be a
numerically specified surface.

(11) The edge of the reflector is not restricted to a circular curve.
It can be an arbitrary curve lyinz on aa elliptical cone or
cylinder.

(i11) The divergence facter of the GO field is correctly computed.
Hence, our analysis is nol testricted to feeds located very close
to the focal point (in which case the divergence factor is nearly
unity and is {gnored br several researchers).

(iv) The edge diffracted fiezld is included in the aperture field
calculation. Near tne incident and reflected shadow boundaries,
two uniform theories [14]~-[15] are used so that the aperture
field is c-atinucus from the lit to the shadow region.

In short, the present AI analysis represents a generalized and improved
version of previous work, In particular, it is amendable for a convenient
extension for analyzing multiple reflectors,

The organization of this report is as follows: The desrciption of the
problem is described in Section 2. The incident field, feed coordinates,
and power radiated “rom the feed are covered in Section 3, Sections 4 and
5 give a step-by-step procedure to compute the various contributions that
make up the aperture fleld, namely, the geometrical optics and edga-
diffracted fields. Section 6 covers the aperture field theory, the applica-
tion of the FFT, and gain normalization, Numerical results and concluding
remarks will be presented in Sections 7 and 8.

T ———— e e,

- L comh ol e e BW - —

1

4 H
@

-

- e -t —— e ———— —r ———— . ——



73
1

+ aleez o peey .1r

2. DESCRIPTION OF PROBLEM

The geometry of the problem under consideration is sketched in
Figures 2 and 3. A reflector I is illuminated by the incident field from

a point source at P,. The problem is (a) to determine the high-frequency

1
asymptotic solution of the total field at an ohservation point on the aper-
ture grid Za as shown in Figure 2, and (b) to determine the secondary

pattern using the FFT as depicted in Figure 3. In this section, we shall

describe the various eleme..ts involved in the problem.

2.1. Coordinate Systems and Time Convention

The main coordinate system is the rectangular system (x,y,z), whose
origin and orientation are arbitrarily chosen. 1In calculating the edge
diffracted field which involves the boundary of the reflec~tor, we employ
a primed rectangular system (x”,y”,2"), whose reiation with (x,y,z) is

explicitly stated later., The feed coordinate system (x ) required to

£27¢0 %
describe the polarization and incident field is related to the mai» coor-
dinate system by Eulerian angles [16]. This will be discussed in detail in

Section 3. The time factor is exp(+jwt) and is suppressed throughout.

-

: 2.2, Source
We assume that the source has a well-defined "phase center” at P1 with

- coordinates (xl,y ,zl), and radiates a spherical wave denoted by (ﬁi,El).

1

If the feed is an array, it is necessary to consider each element in the

array separately and superimpose their final scattered fields.

2.3. Reflector I

The perfectly conducting surface is described by the equation
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P| (xp Y Z')
b4 Source

Figure 2. A reflector I with edge T being illuminated by
the incident field from a point source at Pl'

typical P,

FFT :
2 ;
Secondary
Aperture Pattern
P Gl'id 2°

Figure 3. Secondary pattern using the Fast Fourier Transform.
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2z = f(x,y) , for a<x<b and c <<Cy<«d (2.1)

It is not necessary to know the analytical form of the function f(x,y). In
fact, the present computer program requires only a set of discrete data
points (xn,yn,fn) with n = 1,2,...,N as the description of £. Those poinc;
are fitted by a cubic spline which gives automatically first and second
partial derivatives of f, namely, 3f/3x, 3€/3y, 32f/3x2, Bzflaxay, 32f/3y2.
There are two requirements on the cubic-spline fit: (i) the data points
can be distributed over a random grid, but they must be dense enough to
describe the fine degails of £; (ii) the domain of the data points

(a < x < b,c <y <d) must be somevhat greater than the area defined by the
boundary I' of the reflector. Thus, we must know surface I in the shaded
region in Figure 4 as well. Typically, the “width” of the shaded region is
about 3 to 4 wivelengths. Our present program contains an extrapolation
subroutine, which automatically extends I outward "smoothly to obtain the
necessary data points in the shaded region,™ The final scattered field,
for all practical purposes, is independent of the surface outside T.
Consequently, the exact manner in which the extrapolation is done is

unimportant.

2.4. Boundary T

Two types of reflector boundaries are most frequently used in prac-
tice, and they ;eceive our special attention.

(a) Cylinder Case. In the first case, I is the intersection of sur-
face £ and an elliptical cylinder (Figure 5a). The parameters of the

cylinder are:

| ey 4 ety o ————— o s
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b. I on elliptic i cone. ‘
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Figure 5. Two examples of boundary [ of the reflector. !
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(xc,yc) = center of the ellipse

(KI’KZ) = gemiaxis along (x,y) direction.

Using a point on the axis of the cylinder as the origin, we introduce the

second rectangular coordinates system (x*,v",z") such that

<
/]
<
[}
)

(2.2)
c

The curve I' may be described by a parametric equation with parameter ¢°,

0< ¢° < 2n,

b
]

» gl(oa) — po cos ¢’

P:{ y" = g,(¢7) = p” sin ¢°
27 = gy(¢7) = f(x = x_+ g,y =y_+ g,) (2.3)
where
o - {co,s(lf 2 + {si;;' 21172 (2.4)

The projection of T on the x-y plane is always an ellipse.

(b) Cone Case. 1In the second case, ' is the intersection of surface
L and an elliptical cone (Figure 5b). The axis of the cone lies in the
y” = z” plane and its parameters are

(x =0,y =0,z = -p) = tip of cone

<
\

3= inclination angle of cone axis measured from z-axis

(81,92) = half-cone angles in the x* - z° and y* - -° plane

¥
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Using the cone tip as the origin, the primed coordinates (x”,y”,z”) are

introduced such that

{ y° = -y cos 63 - (z - p) sin 93

-

z” = y sin 63 - (z - p) cos 6, (2.5)

\

Using parameters ¢°, the curve T is described by

-

[x* = g,(¢7) = p” cos ¢~
F: 1y~ = gz(o‘) = p” sin ¢~

2”7 = g,(¢7) = p”[{cot 6, cos ¢‘)2 + (cot 6, sin ¢‘)2]1/2 (2.6)

To determine p” as a function of ¢~, we must solve the following nonlinear

equation:

f(x,y) ~ p + y” sin 93 + z” cos 8y = 0 (2.7)

For a given ¢~°, there is a unique root p~ from (2.7). The pair (¢~°,p")

gives the desired relation p° = p“(¢°), which is fitted by spline functionms.

The projection of T on the x-y plane is, in general, a pear-shaped curve.
(c) Arbitrary Case. In addition to the above two frequently used

special cases, I may be an arbitrary curve described by
x” =g, (7,57 = g,(47),2" = g,(¢7)

where (x°,y”,z°) is related to (x,y,z) by either (2.2) or (2.5). The func~

tions (gl,gz,g3) can be specified either analytically or numerically.

11
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2.5. Aperture Grid Points

A general point on the aperture plane Za is denoted by P2 with coor-
dinates (xz,yz,zz). Each point on Ea as shown in Figure 3 is fed into the
cowputer for repeated calculations of the scattered field. It 1is essential
that successive observation points are adjacent, because of the following
facte In determining the reflection (specular) points on the refle~tor, we
make an exhaustive search only for the first observation point in a batch.
From the second point on, we use the reflection point of the previous
observation point as the initial guess for the current reflection point.

It is only when successive observation points are adjacent that such an
initial guess ensures fast convergence. In the cases that were considered,
only one iteration was needed to obtain the reflection point for all obser-

vation points other than the first observation point.

2.6. Method of Solution

For a given incident field (ﬁi,Ei) from the source at Pl, the _symp-
totic solution of the total field (ﬁt,ﬁt) at point P2 is determined by
Keller's geometrical theory of diffraction (GTD) {17]. Explicitly, the

total magnetic field is asymptotically given by

Reller: H(p,) = ¥ + Moy, k+e (2.8)

Here ﬁg’ the geometrical optics field, is of order k® relative to the incti-
dent field and is the dominant term. The second term ﬁd is the edge-
diffracted field and is of order k_l/z. It is well-known that ﬁd becomes
infinite and (2.8) fails if observation point P2 is close to the incident

or reflected shadow boundary. 1In the latter case, we will use the uniform

asymptotic theory (UAT) [14], [18]-[21], which amnounts to replacing ﬁd in

VR N
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(2.8) by a new term #P (with capital D):

+» -
var: Kp) =W+ W+ o, ks e (2.9)
Once H* is found, we calculate e from it by using the fact that ﬁg’ ﬁd,
and &P are all the so-called "ray fields" which are locally plane waves.
Once the tangential fields (Et or ﬁt) on Za are obtained, the Fourier

transform of these fields will essentially produce the secondary pattern.

This will Le discussed in detail in Section 6.
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3. INCIDENT FIELD

The definition of the incident field is given. The incident power
from an arbitrarily polarized feed is derived so that the secondary pattern
has the correct gain level. Finally, the computation of the incident field

at a point on the reflector in the reflector system is described.

3.1. Definition of Incident Field

The surface current at the radiating aperture of the feed element may

be expressed as
J(x,y) = I(; aed ¥ + ;b) (3.1)

where (a,b,y) are real and

af + bt a1 . (3.2)

By choosing (a,b,y), one may obtain any feed polarization. Table 2 shows

the values of a,b, y corresponding to linear and circular polarizations.

TABLE 2

VARIOUS FEED POLARIZATIONS

a b v

linear x 1 0 0

linear y 0 1 0
RHCP /72 /72| 90°
LHCP /72| /77 -90°

P N
B Ak w1 L e
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The radiated electric field due to J given by (3.1) 1s

~jkr
S ICKY) (3.3)

4 e
~

E

r

where ¥(6,¢) is the active element pattern. The function f(6,¢) may be

approximately expressed by

£(0,0) = 8U;(0)(ae¥ cos ¢ + b sin 4) + 4U(8)(5 cos ¢ - ae)? sin ) (3.4)

where

Ug(8) = E-plane active pattern

UH(G) = H-plane active pattern
Typically, these active patterns may be approximated by (cos 0)9, 1i.e.,
e
Ug(8) = (cos 8) (3.5a)

UH(G) = (cos B)qH (3.5b)

3.2, Incident Power Radiated

From (3.3) and (3.4), the radiated electric field is given by

-jkl‘ ~ -
E ~ & = [UE(G)(aejw cos ¢ + b sin ¢)6 + UH(O)(b cos ¢ - ae‘”’ sin ¢)¢]
(3.6)
The power radiated, assuming forward radiation only, is
2n n/2 + »
P, = EE* +2 gin 0d0de (3.7)
inc ¢.0 =0 ZO
where
Zo = 1207 ohms. (3.8)
Using (3.2), (3.6), and (3.8), the incident power radiated is
) /2 * *
Pie ™ mfo [UUg + UyUy] sin 8de (3.9)

P s ——————— - tra— am WS e v
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For (cos 8)9 type patterns,
+ + 1
I

9
inc - 60(2q + D(2q + 1)

P (3.10)

3.3. Determining the Incident Field on the Reflector

The geometry of this problem is illustrated in Figure 6. The feed
coordinate system (xf,yf,zf) and the main rceflector system (x,y,z) are
related by Eulerian angles Y1,72,73. In the most general case, these
Cartesian systems can be aligned by thre. rotations. The angles of these
rotations are known as Eulerian angles. Figure 7 illustrates the Eulerian
angles Yl’YZ’YB' The definitions of these angles [22] are as follows.
Angle Yl describes a counterclockwise (ccw) rotation about the z axis which
brings the x axis to the x" axis aligned with the line of nodes (line of

intersection between xy and x yf planes), angle v, defines a rotation about

£ 2

the line of nodes in a ccw sense as indicated so that this brings the z

f

the x" axis with the Xe axis in a ccw sense. Typically, Xe and z are

given., Let these unit vectors be expressed by

axis to z_, and angle Y3 is another rotation about the zf axis and aligns

~ a

Y -~ ~ ~

Xe = XX + X,y + X572 (3.11)
=z x+z2y+z22 (3.12)

f 1 2 3

Then, the Eulerian angles are given by

-1 %y
Yl = tan —-——] (3.13)

" J (3.14)

o e e ——— A s A& e e e b £
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z Ye
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Figure 6. Feed and reflector coordinate systems.

LINE OF NODES
«w (INTERSECTION OF «xy

X" AND xy, PLANES)

Figure 7. Eulerian angles.
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YYo= tan-l{ x3
’ lzlxz = xlzz

From [16], it can he shown that

-~ ~ ~ A A A

[xf Yg zf]T = K[x y Z]T

where

-
cosylcosy3-sinvlcosvzsiny3 sinylcosv3+cosylcosyzsiny3

g |
[ ]

-cosylsin73-sinylcosyzcosy3 coqvlcosYzcosys-sinY]siny3

sinylsinyz -cosYlsinY2

e

18

(3.15)

(3.16)
siny?siny3
sin72c0573

cosy 2

(3.17)

Thus, a point with coordinates (x,y,z) in the main coordinate system on

L has coordinates (xF,yF,zF) in the feed coordinate system given by

Z zZ - 2

The corresponding sprherical coordinates are
2 F F 1

e = [+ D+ )2
-1, F

1 Of cos (z /rf)

b, = tan-l(yF/xF)

n

(3.18) ¢

(3.19)
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From the feed function given by (3.6), the incident E-‘ield may be
obtained. To find the incident h-field, the following equation is used:
rx k
rx
A T, inc
ﬁinc c [Hr Hg H¢ ] —_— (3.20)
f £ °f o
where Zo is given by (3.8). Next, the incident field is converted from
spherical compoaents to rectangular components using
erf- [s1n0 ccosd ¢ cosB ccosd ¢ ~sin¢£ rﬂrf‘
Hyf = |sind sinpg cosd esind ¢ cosd ¢ Hef (3.21)
H -sind 0 H
"z, | _F°sef simo ¢ i ¢f_

Finally, the incident H-field in the (xf,yf,zf) system is converted to the

(x,y,z) system using the following equation

"H ] LR
X xf

H |= a%H (3.22)
y Ve

H H,

- A L g

where & is given by (3.17).
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4. GEOMETRICAL OPTICS FIELD

The geometrical optics field H® in (2.8) consists of two components:
the incident field ﬁi and the reflected field H' which is calculated in
this section. It should be noted that the incident field at an observation
point on the aperture grid is taken to be zero because the incident field

does not contribute to the secondary pattern.

4.1. Reflection Point

For a given source point Pl and an observation point P, (Figure 2), a
reflection point Or may exist on the reflector I, and we denote its coor-

dinates by (x,y,z=f(x,y)). The vectors
d - x(x - x) + y(y - y) + 2(£(x,y) - z)) (4.1a)
32 = ;(xz - x) + ):(yz ~y)+ z't(z2 - f(x,y)) (4.1b)

r r
are the connecting vectors between P. and O , and O and P

1 20 respectively.

The condition on the reflection point is that the distance (d1 + d2) must

be stationary, i.e.,
2@ +d)=0 2 4 +4) =0 (4.2)
x "} 2 ’ Iy "1 2

which is explicitly given by

p

of 1 of
‘lj_l {(x - x) + [£Cxy) - zy J ﬁ‘} "'d_z {x - x,) + [£(x,y) - ZZ]E} =0

£,1 "
%1- {ty -y + [Exy) - zllg—y} +Tz- (v - 50 + [,y = 2, | 55} =0

(4.3a)

- P - Y s -
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A root (x,y,z=f) of the two nonlinear equations in (4.3a) gives the loca-
tion of a reflection point. For a given Pl and PZ’ there may be none, one,
or more than one reflection point. It may be shown that (4.3a) is equiva-
lenc to the satisfaction of Snell's law.

The system of equations (4.3a) can be also satisfied if Pl’ or, and P

are collinear. Such a spurious root may be eliminated by an additional

2

condition
o - e x Yo o _ v -y 2 o, -
ix X . x XZIZ +i y -y, . y y2i2 N z z) N z 2z, 2 S
D d d d d, | d d, |
P4 2 | 1 2 ) U9 '

(4.3b)

where 4 is a small positive number. We set § = 0.000l.
A root of (4.3) may or may not fall inside the boundary I' of the
reflector (Figure 4). Thus, for each root (x,y,z=f) or its corresponding

coordinates (x“,v",z°) in the primed svstem, the following test must be

performed. If

/o) + ) < ay (4.4)

then the root is inside I and it is indeed a reflection point on the

reflector. If (4.4) is not satisfied, then the root should be discarded.

The parameter £, in (4.4) is given by

2 2 1/2 r(x;\'z {yo\Z‘i"l/z

L, = [+ )] ’{E" + 1‘(—; | (4.5a)
1) 2) |
- 4

if I lies on an elliptical cyvlinder (Figure 5a); and
1/2 -1/2
- jf » 2 » 2 r » 2 » 2
L= 27 |[(x) + WY [(x* cot 8)° + (y° cot 8,)°] (4.5b)

i€ I' lies on an elliptical cone (Figure 5b).
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4.2. Formula for Reflected Field

The reflected magnetic field at P2 is given by

» - kd > - A
ip,) = (DF) e adtoty - 27 co%)e N]N (4.5)

>
which is given in terms of the incident field Hi at the reflection po.nt

r r
0 , the surface normal N of the reflector at 0 , and a divergence fac*or

A A

DF. We choose N pointing toward the source; thus, (Nez) is always gre=ter

than zero (Figure 8). Explicitly, N is given by

N = A(-fxx - fyy + z) (4.7)

where A = +(fi + f; + l)-l/2 and the subscript x of fx, for example, means

partial derivative with respect to x. The divergence factor in (4.6) is

1

T yor
T r
1+ (dzlkl) 1+ (dz/Rz)

(4.8)

where the square roots take positive real, negative imaginary, or zero
value (so that DF is positive real, positive imaginary cr infinite).
(R:’R;) are the principal radii of curvature of the reflected wavefront

T
passing through 0, Their computation is given next.

4,3, Curvatures of Reflected Wivefront

We use the formulas given in Section IV of [18] for calculating
(RT,R;). The three orthonormal base vectors of the incident pencil are

chosen to be (Figure 8)

;(z - zl) - ;(x - xl)

2 1/’2 (4-93)

x, )]

[(z - 21)2 + (x -

. . g B o AR P - =

22
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Figure 8. Reflection from reflectoy J.
! ! !
? -
d4
[ |
P(x,yp2))

r

Figure 9. Diffraction from boundary I' of the reflector.
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where (x,y,z) are the coordinates of the reflection point of.

reflected

Note that

x xl
1

-y

x(x - xl) + ;(y

ORIGINAL PAGC

OF POOR QUALITY

- yl) + ;(z - zl)

[x-xp2+ (v =yp2+ (2 - 2

pencil are chosen

X, 2(x1-N)N

Y ~ A A

i i
Xy = Z(XZON)N

2

to be

x(x2 - x) + y(yz -y)+ 2(z2 - 2)

1/2

[(xy = 0%+ (7, = N + (zp = 2]

(4.10) chosen above is a left-handed system, i.e., x

2

1/2

NS

(4.9b)

(4.9c)

Those of the

(4.10a)
(4.10b)

(4.10¢)

~

Y
x3.

This choice, of course, does not affect the final solutions of (R;,R;).

The three orthonormal base vectors of reflector I at Or are chosen to be

Aza
X

")

~z
X3

(1 +f¢

-~ ~

x + 2f
X

2,1/2
(1 +£)

y + zf
2,1/2
y)

=

From (4.9) and (4.11) the elements

SRS Y St

(4.113a)

(4.11b)

(4.11c)

24
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i “i °L
Pmn =x x , mn= 1,2,3 (4.12)

can be calculated with the results

. (z - 2) - £ (x - x)

p E 3
11 (1 + f2]1/2 ((

. (4.13a)
X - xl)2 +(z - z2)21/2

{ -f (x - xl)
p = (ac Jb)
12 "7, f2]1/2 ((x - xl)z (2 - 212 t
. ’ ~(x-x )(y-yl)-f (y-yl)(z-z )
p =
21 [1+£, 11/2{(x -x,) (y-yl) +[(z-z ) +(x-x )2) +(Y‘Y1) (z-z; )2}1/2
(4.13¢)
32 2
pi i (z zl) +(x-x1) -fy(y-yl)(z-zl)
22 {1+f2][72{(x-xl)z(y-yl)2+[(z-zl)2+(x-x1)2]2+(y-y1)2(z-zl)2}1/2
(4.134)
pl oAl Af(x-x)+E(y~y) - (z-2)] (4.13€)
3379 x" 1 y oy © N 1 )

The first four elements in (4.13a) through (4.13d) form the 2 x 2 matrix

;i. Because of the particular choice in (4.10), we have P’ = Fi. The

curvature matrix of the incident pencil is

L o
Q' = - (4.14)
0 d

25
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The curvature matrix of reflector I at 0F is

2 2 1
A%(eG - £F)  A(fE - eF)
3 - J (4.15)
a2(s6 - gF)  A2(gE - f£F)
where
E=1+f£ |, F=ff , G=1+¢
X Xy y
e=-Af, o, E=-f ., g=oAf

A is defined just below (4.7)

The desired curvature matrix 3: may be calculated from the following matrix

equation

= i = -] =¢ ={ -
Q" = ot + 2 ,0eH T D! (4.16)

Let us denote the four elements of ar by

Q2

ol
]

(4.17)
Ra1 Q2]

Then the desired radii of curvature of the reflected wavefront at 0¥ are

given by

111 2 3
i LR UPORE '[(Qn Q)7 - 4Q %,y - Q5% )}
1

(4.18)
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Both Rf and R; are real. Their signs have the following meaning: 1If Rf
is positive (negative), the corresponding normal section of the reflected
wavefront is divergent (convergent). The same convention applies to R;.
Two final remarks about the calculation of the reflected field:
(1) For a given P1 and P2, there may be more than one reflection point on
I. Then the total reflected field is the superposition of the contribu-
tions from each reflection point. If there is no reflection point on E,
the reflected field is zero; (ii) If the reflection point is close to the
boundary I', we still calculate its reflected field in the usual manner. We

shall adjust the diffracted field ﬁd later by using UAT so that the total

field ﬁt in this case is correct.
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5. EDGE-DIFFRACTED FIELD

S5.1. Diffraction Points

To calculate the edge-diffracted field, the diffraction points on the
boundary T of the reflector must be located first. Consider a source point
P, at (xf,yf,zf) and an observation point P, at (xi,yi,zi), with their
coordinates given in the primed system (Figure 9). A diffraction point

0d with coordinates (x°,y”,z”) can be determined from the law of diffrac-

tion
L e =t d e
— d,t ==, *t (5.1)
d3 3 d4 4

Here t is the unit tangent of T at Od, and
33=x(x -x) +yyt -y + 2zt - 2)) (5.2a)
d, = x"(x5 = x) + y*(y; = y) + 27(z5 = 27) (5.2b)

From Fermat's principle, (5.1) is equivalent to
4 4. +4 ) = 0 (5.3)
de” "3 4 .

From (5.2), (5.3) may be written as a nonlinear equation for unknown ¢~ :

=" 8% % (8 v & 5] %
t dy d, 36~ l dq d, 3"
8, =27 g, - 2,| 3¢
l d, d, 3%

where (gl,gz,g3) are defined in (2.3) if T lies on a cylinder, and in (2.6)

if T lies on a cone., A root of ¢° of (5.4) determines a diffraction point



on '« Depending on the geometry, there exist examples whe:te as many as

four diffraction points have been found.

5.2. Formula for Diffracted Field

Corresponding to each diffraction point Od, there 1s a contribution
to the diffracted field ﬁd in (2.8). Following Equation (5.21) of [18], the

formula for such a contribution reads

1 1
/T + (dé/Rl) sin B

(80"} + ap®l] (5.5)

R, = glkd,)

Here g is a cylindrical wave factor

g(x) = Ni_n;Eexp [—j x + %H (5.6)

The other factors used in (5.5) are explained below.

5.3. Divergence Factor

The square root in (5.5) as usual takes positive real, negative imagi-
nary, or zero value, R1 is a radius of curvature of the diffracted
wavefront passing through Od. It may be calculated from Equation (5.11) of

[18]) which reads

-

X 1 =+ 1 |»
+ [‘—1—3- d3 -H—JdA (3V] (5.7)

I.—

L.
R

=%

1 Y3 sinlp 4

~

Here B is the angle between tangent t and 54 (Figure 9). The factor sin 8

is given by

sin 8 = /1 - Q% (5.8a)

Lo~ ¢ emamh 2l Ao Cal Y - - T

29
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where
U P! L .
:‘P—d;[(x -XI)W"’ (y -yl)%-r+ (z -ZI)W (S.Bb)
agl 2 agz 2, 833 21172
P %] e t o (5.8¢)

{ J

All the dorivatives in (5.8) and in the remainder of this section are eval-

d Ud » >
uated at the diffraction point 0, whose coordinates are (x*,y",z").

The
curvature ¥ and normal n of the curve I' at Od can be calculated from
Equation (13,9) of [23]. The results are

< =5 (5.9a)
P
x) yl -
~ - l— g'g" - glg‘l g)gl P g’gﬂl g‘g" - g'gll (5 9b)
PR{%2°3 372 3”1 1°3 1°2 2”1 *
g Y g3

where the prime on g; signifies *he n»artial derivative with respect to ¢~

and

2.1/2

rd ~p - 4 > s, 2 - , o - 4 >~ 2 U4 r - -, ,
R = ((1223 83%5 )7+ (s;3gl 81%3 + (glgz 2% )] (5.10)

Summarizing the results in (5.7) through (5.10), we obtain the final
expression for the divergence factor of the diffracted field

1 1
DFD # ~—=mce————— » —————— .1
/1 + (dA/Rl) /Y1 + G (5.1

30
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d R
4 4 2
G-r+ 4

3 P“(sin 8)2 [[ dy d,

» S,

50638 ) - e )

(a_‘ . _ o
y °h Y TN .o

[31(3132 85817) - 33(3233 8385 )]

2 4 S il , A, - vl 0‘ﬂ- vl L4
+ T * —5—|(85(8587" - 83857) - g((838," - £1837)]

5.4. Diffraction CoefZicients

The soft and hard Keller's diffraction coefficients p® and Dh are

defined in Equation (5.22) of [18], namely,

psoh xi 5 xF

= ~gec é'(° - ¢i) t gec é-(¢ +al) (5.12)

The angles ¢i and ¢ are shown in Figure 10. Because of the fact that
Nez > 0, it can be shown that vector t x N is tangent to I at oY, and
points away from (not toward) £. We calculate ¢1 and ¢ from the relations
.’ ~ ~
{ (Proj d3).(t x N)

cos $ = < (-1) (5.13)
|Proj d, |

(Proj 54).(2 < N)
cos § = - (5.14)
[Proj 4, |

~

+* >
Here Proj d3 is the projection of dj on the plane perpendicular to t,

namely,

=

oy,

e 7= o ot 1 e <A AR — A = — e TS
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32

Projection of Figure 9 on a plane perpendicular to cangent t.
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Proj d3 = dy - (dyet)t
=x331+y532+
where

R L
SIS Ul i T

d.Q 3g
AN L
32 =G =YD T R
PR L
33 = (27 -2} -5 %7

Similarly Proj 34 is given by

2 ’ ‘I A‘
Proj d4 = X 541 +y 842 +
where

S - O - ) d,Q 2g;
41 - X2 T X P 3¢~
.. 4038,

$,0 = (93 =¥ -~
2”
s _ . . dAQ 323
437 (3 =) -5 3

The norwal

application, it is convenient to change its base vectors to

primed coordinate system. The

N = x'Nl + y°N

~

2 + 2 N3

where

e o —
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z 533

N of the reflector at 0d is given in (4.7). For

result is

R R R T e e

. D s i e e W =

33

(5.15)

(5.16)

the present

those in the

(5.17)

-

oy

. A WP o ——— <

e e



f ORIGINAL PAGE 19
: OF POOR QUALITY

il boundary T lies on an elliptical cylinder; and
1 -Afx

2 -A(-fy cos 93 + sin 63)

-A(fy sin 8, - cos 93)

if T lies on an elliptical cone.

Substitution of (5.

34

(5.19a)

(5.19b)

(5.19¢)

15) through (5.19)

into (5.13) and (5.14) gives the final formulas for calculating ¢i and ¢:

i 2 2 .-
cos o' =[Sy + Sy M) + Sy Ml(sy) + S5, + 53, 2 (5.20)
cos p = [341M1 + 542H2 + SA3M3][521 + SZZ + 523]‘1/2 (5.21)
where
M, = -LPN igi - N ;aEg-
1 P, 2 3¢p” 3 3%~
| og 8
1 3
S Tl el T T ar]
i r
% \{ = -l— N ig—z- - N —ag—l-
§ “3 P 1 3¢~ 2 3¢~
i% )
'% The solutions of ¢ and ¢ are subject to the following tests:
A+ i
L (1) ¢ takes the value in the range (0,n) if f3_2_0, and the
~
: range (n,27) if T, < 0, where
% T, = (~Proj 33)-N = =S,,N, = S3,N, = 533N (5.22)
4
t
x
H
E
— R - e - e
by 4

- R P S  has I L

-
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(ii) ¢ takes the value in the range (O,x) if Ta‘z 0, and the range

(w,2n) if T, < 0, where
’ ~
T, = (Proj d,)eN = 5, N, + 5, ,N, + S43N3 (5.23)

(iiti) If the observation point P2 is exactly on the incident shadow

boundary, then
i
$ -¢ -nm =20 (5.24)

(iv) If the observation point PZ is exactly on the reflected shadow

boundary, then

When the observation point is exactly on the incident shadow boundary, the
first factor xi in (5.12) becomes infinite, and causes computational dif-
ficulty. A simple remedy is to shift P2 slightly whenever (5.24) is
satisfied. It should be remarked that when P2 is near but not exactly on
the incident shadow boundary, xi is large but finite. It does not cause
any computational difficulty at the moment. Later on, the diffracted field
ﬂd ia this case will be modified to become ﬁD by using the uniform asymp- -
totic theory so that the total field ﬁt is correct. Similarly, xr in
(5.12) becomes infinite if the observation point P2 falls exactly on the

reflected shadow boundary. Hence, we shift P2 slightly when (5.25) is

satisfied.

5.5. Spherical Components of Incident Field

. i *i
Fields ﬁB and Ha in (5.5) are the two spherical components in the

directions of Bi and ai of the incident magnetic field ﬁi evaluated at Od.
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The base vectors (Bt,ai) are shown in Figure 11 and may be calculated from

gl = (ol x 53)/d3 (5.26a)
al = (& x 4)/(d4 sin 8) (5.26b)

Then it may be shown that

i -1 »i 4, °
HB “sin® (0 )t}
ag g 3g
-1 1 2 3
Ty [Hl 5%° + H2 Pre + Hy e (5.27a)
o}
e ;
g g
= )] - - — -
Ha Pd, sin B{ Hl[a¢' (27 -2 —57 Uy Yl;}
-
|y g,
+ HZ'L“, (x* - xl) Ty (z2 - 2°)
ragl . ) 3g2 i }
+ H3 3% (y" - Yl) TS (x* - X] (5.27h)
L
Here (HI'HZ’H3) are the components of ﬁi in the directions of (x",v",z2").

They are given by

Ho=Hoh , w, H;(Od) . iy = 10D (5.28a)
if [ lies on elliptical cylinder; and
{ R = Hi(0T)
My = -cos 8, Hi(od) - sin 8, H;(Od)
|
I Hy = sin @, H;(Od) - cos 8, H-(0D) (5.28b)

if I lies on elliptical cone.
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Figure ll. Spherical base vectors (§i, ai) and (8, a).
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5.6. Rectangular Components of Diffracted Field

The diffracted field ﬁd calculated from (5.5) must be eventually
expressed in terms of rectangular components in the directions of (;,;,;),
so that it can be conveniently superimposed with the geometrical optiecs
field i® in Section 4. In (5.5), the two spherical base vectors (é,;)
(Figure 11) may be calculated from

8 = (axd)d, (5.29a)

a = (t x §,)/(d, sin 8) (5.29b)

The diffracted field expressed in terms of the primed base vectors are

»d s, ~. >,
H (Pz) x hl +y hz + z h3 (5.30)
where
_ h i s i 1
hn [D B, H8 +D a Ha] g(kda) (DFD) sing * °° 1,2,3
E
o =l 53 ¢ . %%y (2 - 2%)
1 P4, sin 8| 3" y Y2 3s° ‘2 %
~
a, = L 8 ( 5) --351 (x* = x5)
2 Pd, sin B 3¢’ z Zy 9 X )
a, = L ! (x* -~ x3) -'iEl &y =y
3 Pd, sin B | 3%’ X TX T Y T

L 4,
- L— - - -> - rd - 4
82 dl. [al(z zz) 03(x xz)]
- .l—- rd - rd - > - »
B4 q la,(x" = x3) - a,(y" - y3)]
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The factor g is defined in (5.6), DFD in (5.11), and sin B in (5.8). The
final expressions for the diffracted field in the umprimed coordinate

system are as follows:

d ~.d

H (P ) = xHx + yH + zH (5.31a)
where

d d d

Hx = hl , Hy = h2 , Hz = h3 (5.31b)

if T lies on an elliptical cylinder; and

d
Hy = hy
4Hd=-h 0s 8, - h, sin 8
y 2 €08 F3 7 N3 8 3
Hd = h, sin 6, - h, cos 9 (5.31c)
z 2 3 3 3

if T lies on an elliptical cone. The corresponding diffracted electric

field Ed at PZ is calculated from

»*d -1.+d >
E (PZ) = 120w d4 [H (P2) x dA] (5.32)

5.7. Detour Parameter

The diffracted field ﬁd calculated from (5.5) is not valid when obser-
vation point P2 is near the reflected shadow boundary which is defined by
(5.25). To detect if P2 is indeed so, we may calculate the so-called

"detour parameter” of the reflected field (Section VI of [18]).
- - - 1/2
£ = e[k(d3 + d4 dl dz)] (5.33)

Here ¢ is the shadow indicator of the reflected field defined by

39
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+1, if P2 is in the shadow side of the reflected field

-1, if P2 is in the 1it side of the reflected field

It may be shown that

€= Sgn[—cos -;- (¢ + ¢1)] (5.34)

The square root in (5.33) takes positive real, negative imaginary, or
zero value, When the caustic of the reflected field falls on the reflected
shadow boundary, £ is imaginary; otherwise, & is always real. Detour
parameter £ in (5.33) becomes zero when P, is exactly on the reflected
shadow boundary, because the diffraction point 0d and reflection point

0F coincide (Figure 2). Following the numerical study in [24], we take

lg} = 2 (5.35)

as on the on-set point. Thus, if |£] > 2, P, is considered to be away from

the reflected shadow boundary, and the diffracted field ﬁd in (5.5) 1is

valid. 1If |g} < 2, P2 is considered to be near the reflected shadow boun-

dary, and we must replace ﬁd by ﬁD as stated in (2.9).

When £ is small, (d3 +d,) in (5.33) is nearly equal to (d1 + d2). In
many practical problems, the reflection point 0f and diffraction point
Od may not be determined with great precision. Thus, when £ is small, a
direct computation of £ from (5.33) can have a numerical accuracy problem,

To circumvent this possible problem, we have given below an alternative formula

for £ when its value is small:
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E = -[cos % (¢ + ¢1)] sin B V2k
L+ (d,/R])1 + (d,/R3)

1 1 — (OFYd,
= -cos-2-(¢+¢) SinB/ZkW)— . if IE|+O (5.36)

where (DF) of the reflected field is defined in (4.8), and (DDF) of the
diffracted field in (5.11). The derivation of (5.36) is given in
Appendix A of [14]. 1In all of the following computations, we use (5.33) if

l€] > 2, and (5.36) 1if |g] < 2.

5.8. Uniform Asymptotic Theory

We shall calculate H° by the UAT developed in [14], [19], [21]. The for-

mula reads
ﬁD(PZ) = ﬁd(Pz) + [F(E) - ;(E) - %-(1 - e%] ﬁr(Pz) (5.37)

where F is a Fresnel integral defined by

. © 2
F(z) = ﬂ—l/z eJ“/Q f e_jt dt (5.38a)
z
and
F(z) = —— exp|-] (22 + %) (5.38b)
2z/n 4

The factor (1 - €)/2 in (5.37) is one if P, is in the lit region of the

2
reflected field, and zero, 1if P2 is in the shadow. As expected, ﬁD reduces
to ﬁd when P2 is away from the reflected shadow boundary. This 1is because

of the fact that for |E| + »,

PR L - R e T - -
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[F(&) = F(D)] ~F (1 - o (5.39)

When P2 is near or on the reflected shadow boundary, ﬁD in (5.37) 1s always
finite, and compensates exactly for the discontinuity in % so that the

total field H' in (2.9) 1s everywhere continuous.
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6. SECONDARY PATTERN COMPUTATION

6.1. Aperture Field Theory

Refer to Figure 3. From field equivalence principles, solutions for
the far field may be obtained knowing the tangential fields at 28. The
aperture plane Za is taken to be perpendicular to the z-axis.

Let us denote the tangential electric and magnetic fields at Za by
Ea and ﬁa’ respectively, The field may be determined by using vector
potentials [25]. However, it is more convenient to express the far field

directly in terms of the aperture fields. Let us define the following vec~

tor quantities:

?(u,v) = ff Ea(x,y) ejk(ux+vy)dxdy (6.1)
za
2(u,v) = I/ ﬁa(x,y) ejk(uX+vy)dxdy (6.2)
88 ‘
where
u = sin 8 cos ¢ (6.3) .
v = gin 0 sin ¢ (6.4)
k = 2n/)
8,0 = spherical coordinates of far field point

Y

Since the aperture fields are tangent to z, let

‘E = fx X + f)’ y (6.5)
’ ~ -~ ~
g =g X + gy y (6.6)

1
!
‘
§
t
‘
]
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From each of the 3 equivalence principle formulations, three different

expressions arise for E, and E, of the far field, namely,

J ¢

»
(1) using Ea and Ha

-jkr
Ee = J%?r—-— [fxcoscb + fysim + Zocose (gycoso - gxsimp)]
(6.7a)
ke—jkr
E¢ = -1————4”_ [cose (fycos¢ - fx81n¢) - Zo(gysimp + gxcos¢)]
(6.7b)
(2) using ﬁa
jk ZO e-jkrcose
Ee = rTS (gycos¢ - gxsin¢) (6.8a)
fk 2 e IKT
E¢ = 5T (gysin¢ + g, cosd) (6.8b)
(3) using Ea
ke—jkr
Ee = S (fxcos¢ + fysin¢) (6.9a)
'ke-jkrcose
E¢ = LEF_— (f cosp - f sind) (6.9b)

This method suits large apertures (in terms of A) because the Fourier

transforms of the aperture field, % and E, are highly peaked in the fre~

quency domain.

&)
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This method i1s exact if the fields at Za were known everywhere,

However, one nmust truncate Za to finite dimensions in order to employ the

FFT.

6.2 Fast Fourier Transform

To employ the FFT subroutine, the integrals (6.1) and (6.2) must be

rearranged so that the form of the integral matches the definition given by

the documentation of the FFT subroutine. For this particular z-dimensional

FFT subroutine, the function bsing considered s assumed to be periodic in

X and y with period 1 in x and y. Hence, the aperture grid as shown

figure 12 must be scaled accordingly.
Many manipulations are required in order to use the FFT. These

pulatinns are carried nut for fx. Similarly, this can be applied to

fy’ g, and 8y From (6.1) and (6.5)

Y2 *2
fx(u’v) - f f Eax(x’y) ejk(u)ﬁ‘VY)dxdy
nx

in

mani-

obtain

(6.10)

where Eax is the x-component of ga(X.y) in (6.1). Using the substitutions

X = (xx))/(x)~x))
Y = (y-y))/(y,m5)),

(6.11) becomes

11
£ (u,v) = K g g B, (% * X(xpmx)), vy + Xyymy)) o

2n - —
F=(ulxy=x )X + v(y,~y,)¥) _ _
e A 201 277 XX

where

- . el Al AW > - T

(6.11)

(6.12)

(6.13)

45
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j%l(uxl+vyl)
K = (xz-xl)(yz-yl) e (6.14)
The expression Eax(xl+(x2-xlﬁ§, yf+(y2-yl)g) under the integral may be
interpreted as Eax(x,y) scaled to F(a,b) where 0<a<l and 0<b<l (see Figure

12), F(a,b) may be approximated by

N, 3
F(a,b) =] § cmneJZ"(‘“-’?"l) , (6.15)
n=Nl m=Ml

where Cmn are the Fourier coefficients obtained using the FFT subroutine.

For a 32x32 FFT,

zZ
[}

1 Ml = ~15

From (6.13) and (6.15),

11 Y2 M 2 (mralx D)X + (A+vlyoyD)T) _
f(uv) =K [[ T | ¢C e dXdY
X 1 mn -
00 n=N1 m=Ml
(6.16)
Interchanging the summation and integral signs and noting that
1 jg§cx sin(lfd 1%5
[ e dx = —— 2 e (6.17)
0 e
A
the expression for fx is
N M R ¥
z2 z2 _];Ltm”'n) sin[;—(nﬂ+u(x2-x1))]sin[g‘-(nh-v(yz-yl))]
f (u,v) = K C e
x n=N, m=M ma ﬂ(mx+u(x2-x1)] W(ul+v(y2—yl))

A A

(6.18)

- + i, Alh il i Ty > - T
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where

IF (ulxpex2) + w(y1+y2))
K = (xy-x1)(y2-y])e (6.19)

In summary, to evaluate the fntegral (6.10), we first calculate {cnn} of

(6.15) by FFT and then calculate fx(“'v) via (6.18).

6.3 Gain Normalization

The secondary pattern is usually decomposed into two orthogonal

polarizations. Following Ludwig's definition 3 [26], the following unitary

polarization vectors are introduced.
E = ;(aej*cos¢ + bsing) + ;(-aej¢31n¢ + bcos¢) (6.20)
E = 8(ae-j*sin¢ - bcos¢) + ;(ae—jvcos¢ + bsing) (6.21)

Let the secondary pattern be expressed as

P [3 U + 4 U¢] (6.22)

r

The reference-polarization and cross-polarization expressions of t are

Reference-pol of E= (E-(R*)*] (6.23a)
> -»‘**
Cross—pol of E = (Ee (C*)*) (6.23b)

The second conjugate operation in (6.23) results from the change in direc-
tion of the field after being reflected by the reflector.
The directivity for the reference polarization is defined by

w [Ber |2/,
Dp (8,4) = —p—r (6.24)

inc

I UL NN
e

Iy

w .



Similarly, the directivity for the cross polarization is defined by

’ (8,¢) - lE'e|2/Z° (6.25)
D. (8,¢) = —s—— .2
% ¢ Pine

where Pinc is the incident power radiated from the feed. Noting that

-—gl
e j&r/r factor is common in both the seccondary pattern (6.22) and the inci-

dent radiated field (3.6) the directivity formulas are

6n|Ue(aej*cos¢ + bsing) + U (-aej*sin¢ + bcos¢)|2
D(8,¢) = T L (6.26)
o inc

Anlua(ae-jvsin¢ - bcosp) + U¢(ae—j¢cos¢ + bsin¢)l2

D(8,4) = T (6.27)
o i

nc

Thus, for any feed polarization (a,b,¥), (6.26) and (6.27) give the

reference and cross-polarization directivities.

Nt
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7. NUMERICAL EXAMPLES
The present apertiure integration method for calculating the secondary

pattern of a reflector entails the following steps:

(1) TInput the reflector geometry, eq. (2.1), and the boundary
description.

(ii) Input the feed pattern as described in eq. (3.4).

(iii1) Calculate GO contribution to the aperture field.

(iv) Calculate edge-diffraction contribution to the aperture field.
Use either UAT [14] or UTD [15] for aperture grid points near the
shadow boundary.

(v) Use the FFT, eq. (6.15), to obtain the far field.

(vi) Decompose the far field pattern into reference-pol and cross-pol
components using eq. (6.23).

(vii) VUse eqs. (6.26) and (6.27) to obtain the reference and cross-
polarization directivities.

In this section, we shall present some numerical results to establ _sh

the numerical accuracy of the present method. Near field, far field and

scan data for a large reflector are presented.

7.1. Effects of Aperture Grid Size and Location on Secondary Pattern

The aperture field theory used to determine the secondary pattern is exact
if the tangential fields are known everywhere on the aperture plane Za.
When employing the FFT, Za is truncated. To minimize the amount of com-
puter time spent, the size of Za should be as small as possible while cap-
turing almost all of the field. To this end, a study of varying the aper-
ture grid size aad location of Ea was performed to determine their effects on

the secondary pattern.
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The reflector used for this study is an offset parabolic reflector

(see Figure 13) with typical f/Dp and £/D values:

f - f =
‘D_' 0040' ‘D- 1'00 (7.1)

P

The corresponding values of nl, 92, and H are

Ql = 14,25° (7.2a)
Q = 64.01° (7.2b)
H = 0,25D (7.2¢)

The reflector is being illuminated by a §f-polarized feed at focus with
10 dB feed taper. Assuming (cos e)q type patterns, eq. (3.5), the E~ and

H-plane feed patterns are given by

UE(e) = (cos 6)11'82 (7.3a)

UL(8) = (cos g) 11+ 82 (7.3b)

Refer to Figure 14, Let the aperture plane Za be located a distance L
away from the focal plane. The focal plane is located at z = f, Plots of
the tangential components of the aperture field along two cuts of Za are

obtained as the distance L 18 varied. These two cuts are

x-cut: y=H+ 0,5D, z= £ + L

y-cut: x =0 ,z2=f+ 1L

The diameter of this test reflector is 50A. Due to the choice of feed
polarization, only the y-component of the electric field, Ey, is plotted.

Figures 15(a)-(c) are plots of |Ey] for a x-cut for L = 0, 10, and 20),

W)
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(a) y-cut
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(y=H+D/2)
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(b) x-cut

Two cuts of aperture plane I, at distance L away from focal plane.
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respectively. Figures 16(a)-(c) are plots of lEyl for a y-cut for L = 0,
107, and 20\, respectively.

From Figures 15(a)-(c) and 16(a)-(c), note that the aperture field
does not spread as L increases. This 1s so because the feed is at the
focus. To demonstrate that the aperture field does spread as L increases,
let's move the feed toward the reflector along Ef by an amount df (see
Figure 17). Figures 18(a)-(c) are plots of lEyl for a x-cut for df = 2
at L = 0, 10A, and 20\, respectively. Figures 19(a)-(c) are for the y-cut.
Figures 18(a)-(c) and 19(a)-(c) show a slight increase of IEyl for grid
points near the edge of the aperture grid. Also note that the width of the
region where the GO field is nonzero increased when L is increased. Thus,
to minimize the field strength for a fixed size of Xa, L = 0 was chosen.
Let the aperture grid be W by W. Choosing the criterion that the field at
the edge of Xa is at least 20 dB below the maximum field value on Za, W=

1.14D centered at the midpoint of the projected aperture was chosen.

7.2 DBS Antenna
A direct broadcast satellite (DBS) antenna was designed by Lee et al.
[2: Pattern computation programs using the Jacobi-Bessel series tech-

nique [4] were developed by Y. Rahmat-Samii. A parabolic reflector was

used and it is described by

D = dish diameter = 108,148A (7.4a)
f = focal length = 94.867) (7.4b)
H = offset height = 16.865) (7.4¢)

The feed is located at the focus and the primary pattern, eq. (34), is

described by
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a=1/V2 , b=1/V2, y = 90° (RHCP) (7.5a)
U(8) = (cos g) 36 (7.5b)
UR(e) = (cos 0)2'B (7.5¢)

Using this aperture integration technique, the secondary pattern for ¢ = 0°
was computed using GO and GTD constructions. As shown in Figure 20, two
patterns are superimposed with Rahmat-Samii's results. One pattern used GO
fields only and in computing the other pattern, the edge-diffracted field
was included in the aperture field calculation. The gain and sidelobe
levels of these two patterns are tabulated versus Rahmat-Samii's results in

Table 3 below.

TABLE 3

COMPARISON WITH RAHMAT-SAMII'S RESULTS

Rahmat~Samii GO + GTD GO
main beanm 48.28 48.33 48.32
l1st sidelobe 28.42 28.29 28.42
2nd sidelobe 22.29 22.18 22.93
3rd sidelobe 18.05 18.02 18.12
4th sidelcbe 14.95 14.96 13.40
Sth sidelobe 12.39 11.85 11.14
6th sidelobe 10.31 9.05 8.41

Due to the limited amount of computer working space, a 43 x 48 FFT was
used. Despite the coarse sampling, the results in Table 3 are in good
agreement.

The scan performance of this reflector has been studied by Hung [28].
The Fourier-Bessel series technique is used to compute the secondary pat-

tern. Using the same feed, eq. (7.5), the feed was displaced 5.8 1in the
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-if direction to produce a pattern with peak directivity at 6 = 3° (see
Figure 21). The H-plane scan pattern was also computed using the aperture
integration technique with and without the edge-diffracted field. Figure
22 depicts the H-plane scan pattern using the aperture integration and

Fourier-Bessel series techniques. The patterns are in good agreement.

7.3. TRW Antenna
A dual reflector antenna system was designed by TRW for NASA-Lewis
Research Center. The dual reflector is an offset Cassegrain reflector.

The main reflector 1s parabolic and it is described by

D = dish diameter = 257.89A (7.6a)
f = focal length = 318.74X (7.6b)
H = offset length = 135.51A (7.6¢)

The reflector is being illuminated by a }E-polarized feed at focus with

18 dB edge taper.

Two cuts of Xa at the focal plane were taken,

x-cut: y=H+ 0.5D0, z = f

y-cut: x =0 , 2 = £.

The magnitude and phase of the y-component of the electric field, £ _, are
plotted in Figures 23(a)-(b) for the x—cut and in Figures 24(a)~(b) for the
y-cut.

The secondary pattern for ¢ = 0° of this main reflector is shown in

Figure 25. The key features of the reference-pol directivity plot are

¢
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Figure 21, Feed position for scanning.
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‘
' GO + GTD Go
Gain (dB) 56.95 56.95
HPBW (deg) 0.276 0.277
SLL (dB) -32.00 -32.26
Figure 2, is a plot o¢ the cross-pol directivity.

The hyperbcloid subreflector has a magnification factor of 2. 1In
approximating the performance of this dual reflector system, we employ the
equivalent paraboloid [29]. The equivalent paraboloid is described by

D = 257.89 (7.7a)
f = 2(318.74) = 637.48 (7.7b)
H = 135.51 (7.7¢)
The corresponding secondary pattern for = 0° is shown in Figure 27.
The gain, HPBW, and sidelobe level (SLL) are
GO + GTD GO
Gain (dB) 56.87 56.88
HPBW (deg) 0.279 0.280
i SLL (dB) -33.87 -35.15
7% Figure 28 is a plot of the cross—pol directivity.
;; Scan performances of the TRW main and :juivalent reflector were
- studied. The scan plane chosen is the XeYg plane and E- and H-plane scans
= were performed (see Figure 21).
>

For E-plane scan, the coordinates of the feed are

- g Bl o e W W > -
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Reference-pol. directivity plot of TRW equivalent reflector, 4 = Q°,
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x=0 (7.8a)

y = —=f tan (N<HPBW) cos 8. (7.8b)

z = f - f tan (NHPBW) sin 8, (7.8¢)
where

f = fccal length

B = 2 tan ! 62—15%4220 (7.9)

number of beamwidth's scar.

HPBW

beamwidth of secondary pattern (¢ = 90°) with feed at focus.

For H-plane scan, the feed coordinates are given by

x = =f tan (N -EPBW) (7.10a)
y=0 (7.1Cb)
2z =f (7.10¢)
where
f = focal length
N = number of beamwidth's scan
HPBW = beamwidth of secondary pattern {¢ = 0°) with feed at focus.

As the feed moves away from the focus, the secondary pattern degrades.
The degradation may be characterized by peak gain loss and half-power beam—
width. These 2 figures-of-merit are plotted versus number of beamwidths
scanned for the following four cases:

(1) TRW main reflector, E-plane scan (see Figures 29-30)

(2) TRW equivalent reflector, E-plane ccan (see Figures 31-32)

(3) TRW main reflector, H-plane scan (see Figures 33-34)

(4) TRW equivalent reflector, H-plane scan (see Figures 35-36).

As expected, the scan performance of the equivalent reflector is much
better than for the main reflector due to its larger f/D value. For ti

same number of beamwidths scanned, the peak gain loss and amount of beam
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broadening were much less for the equivalent reflector for both E~ and H-
plane scans. Also, the cross—pol directivity was much lower for the equiva-—
lent reflector. Figures 37(a)-(b) and 38(a)-(b) are the reference-pol and
cross—pol directivity piots for 6 beamwidth scan in the H-plane for the

TRW main and equivalent reflectors, respectively. With respect to the peak
directivity, the maximum cross-pol directivity value is ~39.15 4B for the

equivalent reflector and only -27.95 dB for the main reflector.
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8. CONCLUDING REMARKS

We have developed a method of calculating the secondary pattern of an
arbitrarily shaped reflector illuminated by a feed with arbitrary polariza-
tion. An edge-diffracted field was added to the geometrical optics field in
the aperture field calculation. By employing the FFT, the secondary pat-
tern is computed very efficieuntly. The results for the secondary pattern
are in good agreement with those obtained by the physical optics integral.
Furthermore, this method can be conveniently extended to secondary pattern

computation of multiple reflector systems, which will be done in the next

phase of this project.
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APPENDIX A
INSTRUCTIONS TO RUN COMPUTER PROGRAMS
To run the computer programs on the University of Illinois CYBER 175
system to compute the secondary pattern of an offset parabolic reflector, the

user should perform the following

(1) create input file TAPE2
(2) run program BALl

(3) run programs BPT, BFFT
(4) for plot, use BPLOT3

The computer commands corresponding to steps (1)-(4) are

(first create TAPE2)

R

BAL1

R

P.LOAD(BPT,BFFT); EXECUTE
R

BPLOT3

The secondary pattern is stored in TAPEl3.
The input file TAPE2 consists of 14 lines. These inputs are described
below,

1. H,D,f,z, =— offset parabolic reflector parameters as depicted in
Figure 13

2. 1 == cylinder boundary or 2 =- cone boundary

3. X Yoo Kl, K2 == cylinder boundary parameters or P, 61,62,63 -

cone boundary parameters as shown in Figure 5

4, Y2 Ype Y3 == Eulerian angles (see Figurc 7)

- - Cemgmp ol o s B B -, .



5.

9.
10.
11.

12,

13.

14,

For
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XY 2%, ~= source point coordinates in main reflector coordinate

system.
a,b,y =— polarization of feed
9psdy =~ feed taper parameter for E~ ..u H ~'ane primary patterns

L -- location of aperture plane beyond the fo.«l plane as shown
in Figure l4a (taken to be zero)

type in 1 or 2

X) s Xy, N X]2Xy,¥)sY, are bounds of z, (see Figure 12a), N is the
number of points in sampling.

YI ’yz )N
0 =- use UAT or ! ~- use UTD, 0 -- compute GO and edge-diffracted

field or 1 —— compute GO field only

el,ez,NFFP -- For a theta cut, 91 is the first value and 62 is the
last value of theta. NFFP is the number of 6 values for the
secondary pattern

1 -- use E-fields only for the aperture field calculation or 2 —-
use H-fields only, PHI -~ this is the constant ¢ value when
computing the secondary pattern.

an arbitrarily shaped reflector, the user should use the binary ver-

sion of MAIN instead of BALl., However, lines 97 to 107 must be replaced with

either the coordinates of the points that define the reflector or the new

equations that describes the refl:.tor. For an arbitrary reflector, line 1 of

input file TAPE2 has no meaning. Thus, delete line 41 of MAIN and the input

file is lines 2 through 14 of TAPE2 d.:scribed above.

- - f gD, aB e T B W - —
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APPENDIX B

VIEWGRAPHS FOR A PAPER ENTITLED "CALCULATION OF NEAR-FIELD OF A REFLECTOR BY

GTD" BY P, T. LAM, S. W. LEE, AND R. ACOSTA PRESENTED IN INTERNATIONAL
IEEE/AP-S SYMPOSIUM NATIONAL RADIO SCIENCE MEETING, JUNE 1984

GTD Analysis ot Reflector Antennas

P.T.Lam and S.W. Lee
E|echromaﬁne‘l:ics Lab
Universi)g of Tllinois

omd

K. Acosta
Nasa-Lewis Research Center

Outline

|. Troblem desmPJcion
7. Motivation

3. Approach

4'. RQSMHS
5 Conclusion
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MO{W&{ZI‘OY\ ORIGINAL QPC(:E rrg?z
F POOR
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(U
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]
- g

A
# ebficient secondary pattem computation
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5 )4/1 = B(F)

(a) Physical Optics Method

E* ()

(¢} Aperture integration Method
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ComParison of the three methods

As a reference let us re

Presen{: the_

evact solution of Ef by the follow
lf\(qh—frecwenc% (Kltmp‘fo‘tiﬁc_ Seér(es wﬂﬂ

E*6)~ SO K oo+ kTA )4k Ao ]

'g:or |<—> 0O
Methods Accuracy Limitation
PO recover A, and | net accurate for
AT partial A, wide-angle lobes

-

A,

GTD | recover —A_:, ond

Pred fc'ts in‘fini\l;e,

‘ﬁ'eld in main bem
divection (caustics)
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Advantages of aperture inteqration (AT)

. Mag be conveniently extended +o
myltiple cellector sgsjcems

7. Provides a theoretical check for near
field wensurements

3. ACCUF&CH IS ComPamble ‘to Phggu‘(,al
optics (¥0). The use of the "FFT
makes it numen‘cn_(,lﬁ efLicient.
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Whot's new in this AT aPProach?

l, Edﬂe-dlﬁ:mcted ﬁeld s included in
the aPerJCure, —p-‘eld calewlation.

2. Surface of reflector is ComPlefe(j
arh?{mr%.

3. Edﬂe 01L re@lec{'or S not resén‘clced
o a Gredar curve, T+ may be an

ark-"cmrj curve ljmg on an eHn‘Pﬁcal
Cone. or ca\mder.
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Keflector and feed coordinate systems

fef/ecfor and feed a)orc/fnafe fysfems
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REF-POL DIRECTIVITY (dB)
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CONCLUSION

% With this AL approach, the moin beam and

sidelobe reqions of the Se_COndarj pa‘ft&rn
is accumjcelﬂ comPu‘(Ted.

¥ The reflector shaPe is ComPlei’elj arbifro.rj.

* T"fS Jceckni%ae 1S numen'c“_”j e)C.{;‘Cl'ent
bﬂ e""PI"‘j""‘j the FFT.
%* Near field measurements may be checked

¥ This AL formulation is suitable for
extension o mulfipfe, reflectors.

. ~ o e WP W L - ~-



Future work

¥ extend %echm%ue to a
dual reflector fysfem

* array feed

X% ma/filD/e reflectors
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