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CHAPTER |

INTRODUCTION

Three-dimensional turbulent boundary layers occur in. both
external and internal flows. Examples are boundary layers on swept
wings and boundary layers on turbomachinery endwalls between
compressor blades or turbine blades. Gaining physical understand-
ing of such flows is very important for both analysis and design pur-
poses.

The present work treats turbomachinery endwall boundary
layers. pointing out some basic physics of such flows and suggest—
ing a model which attempts to describe parts of the flow-field
analytically.

Figure 1 shows a schematic of a turbomachinery flow-field.
indicating the regions treated by the present work. Region | is the
part of the endwall flow which is not influenced by the blades and
which is pressure-driven, the crosswise pressure gradient creating
the secondary flows which give this part of the flow its three-
dimensional character. Region |l is the blade/endwall juncture re-
glon. where the three-dimensionality of the flow Is created by
secondary flows induced by interference effects due to the mutual
interaction of the two boundary iayers on each side of the juncture.

There is another juncture region between Region | and the suction



side of the other blade. which Is omitted from Fig. 1 for clarity.
The cross—hatched plane depicts a typical streamwise station in
which the present analysis is done.

Region | Is treated much more extensively in the literature
than Region Il. Coles 1] was apparently the first to suggest the
possibility of treating three-dimensional turbulent boundary layers In
vector form. whereby the entire velocity profile is described by the
sum of two vectors: a wall component and a wake component.
Based on the experimental data avallable to him. he tentatively stat-
ed that if the wall component Is in the direction of the surface shear
stress. then the wake component would be very nearly parallel to
the direction of the pressure gradient. Johnston [2] suggested the
approach of treating the secondary (or crosswise) component of a
three—-dimensional turbulent boundary layer as a function of the main
(or streamwise) component and of certaln additional parameters.
He was thus led through examination of data to the proposition of
his well known triangular model to describe the form of the velocity
hodograph. Based on his own experiments and those of others, he
suggested two explicit relationships to describe the triangular model:
one for the reglion adjacent to the wall and the other for that near
the freestream. His model Is successful enough In the regions
away from the vertex of the triangle but fails to match the data ade-
quately in the vicinity of the vertex. As will be shown later. this
reglon corresponds to the transitional region from the wall- to the

wake-sublayer. in spite of Its relative success, Johnston‘s model



suffers from being a product of data—correlation without the benefit
of a supporting analysis.

The maln phenomenon in juncture flows is the corner vortex
[3-6]. which is composed of two sources. the "horseshoe” vortex.
created by the wrapping of the oncoming vorticity around the blades.
and the "passage” vortex. which rolls up from the skewed boundary
layer-induced crossflow. The blade leading edge region is predom-
inantly Inviscid and rotational. Shabaka’s [5] experiments indicate
the existence of a Reynolds stress—induced “boundary jet® outflow
from the juncture over the endwall. it Is important to realize that.
since the eddy viscosity scales are different for the blade and
endwall. a singie eddy viscosity mode! cannot work for juncture
flows.

in order to gain further Insight Into the physics of three—
dimensional. endwall turbulent boundary layers. it became clear that
more analysis would be helpful. To this end. Mellor's (7} two-
dimensional asymptotic analysis for large Reynolds number turbulent
boundary layers has been extended to three dimensions in the
present work. The results of this analysis provide the scaling of
three—-dimensional boundary layers of both juncture - and pressure-
driven - types. including rotationai effects. The analysis of the
former type inciudes both symmetric and asymmetric cases. The
analysis of the latter type leads to the proposition of a composite
three~dimensional Law-of-the-Wall and Law-of-the-Wake model. util-

izing a vector approach in the wake sub-layer. This model is com-



pared with van den Berg and Elsenaar’s [8] infinite swept-wing flow
data and Museller’'s [10] forced turning flow data with good agree-
ment. It should be mentioned that Johnston'’s trlangie emerges as a
particular limit of this model.

The analysis presented here does not include soiutions of the
equations of motion found for the various sub-regions. and therefore
it comes short of predicting forces and moments acting on the

blades of a turbomachinery component.



CHAPTER I

ASYMPTOTIC ANALYSIS

1n.1. The Pressure-Driven Case (Regfon [)

A typical skewed boundary layer and basic nomenclature are
shown in Fig. 2. For incompressible. steady flow, with no curva-
tures. the mean part of a turbulent flow is described by the follow-
ing equations:

Mass conservation:

3U, /38X, =0 &)
Momentum:
Y, [au,/axl] = - 3P/3X+
asax, [e2r”+e2£:au,/axl] (2)
where
u,=0,/0_. P=F/pU>. T, = - g g, sux?,
e ij i



1

=X = 7 2A= 7 =R
X I/I,e u"/Ue,e € v/(Uel) Rel

i

In the above equations. €2 is the scale for the Reynolds stresses.
with u' being an as of yet undetermined perturbation velocity scale.
€2€ Is the scale for the viscous stresses, which is aiso given by
-1

Re . Thus € Is the relative magnitude of viscous— to Reynolds-
/

stresses.

in addition. the following boundary conditions are required:
UI(X.O,Z)=0

and. assuming a uniform external fiow.

o] tem) - 3]

(for a fixed (X.Z2) iocation )
Next. an asymptotic analysis is carried out (following Mellor

{71) for the above equations. using the following expansions:
A. Outer Expansion
Q=Q.+€Q, +e2Q +- - -

1 2 3

T”=0 (This assumes no free-—stream turbulence)



where Q stands for the three velocity components and pressure:

Q=(UX(X.Y,Z).Uy.UZ. P) 1)

B. Middle Expansion

y=Y/€

2
U =u, ((X.y.Z) + eu, + e€u, + <--
X X, X5 Xq

2
U = + U oo
y € [uy'l euy2+€ vy

2
U ,=u, +eu, +€u + -

P =Py t €p, ¢ e2p3 t e

T”=l

2
t ety 4+

+ €t
! 2 i

1

C. Inner Expansion

A A L)
y=y/e=Y/¢€e€

A A A Da
U =u (X.y.2) + €u + €eu + -
x Xq X5 Xq
{JINOTE: In the prt;;sentwaﬁélysls an expression of the form

U(X.Y.2) should be Interpreted as U(Y) at a given (X.,Z) location.



b4 Yh Yo Ya
A A 2a
U =u_ + eu teu, + +--
z z, z, Z3

These expansions are substituted into Eqs. (1) and (2) and the
analysis proceeds in the manner of matched asymptotic expansions,

tho details of which are described in Appendices A. B and C. It

should be noted that this analysis assumes that both € and € are
much smaliler than unity. The features of the resulting equations in
the throe regions are summarized in Tabie 1 to the first three ord—
ers. The main features of the fiow. as indicated in the table. are
the following: the outer layer is inviscid: the middle layer is Infiu-~
enced by Reynolds stresses to orders 2 and 3. where the 2nd order
equations are of the boundary layer type while the 3rd order ones
arc Re averagod Navior Stokes equations: the inner layer is dom-~
inated by constant total shear (viscous- plus Reynolds-stresses)
across it. with no pressure gradient or inertia effects through order
3. The important information for the subsequent analysis Is con-
tained in the 1st order outer region equations and in the 2nd order

middie- and inner- region equations.



As a resuit of the asymptotic analysis and the matching pro-

cedure,

the following conclusions emerge:

1. The flow possesses a 3-layer structure:

2. The Inner and middle layers have a common loga-
rithmic overlap:

3. The inner layer is exponentially thin compared to the

middle layer: €=0 |e € as € - 0.

4, The pressure gradient does not influence the inner
layer, hence the wall shear stress is the only driving force
there. It Is reasonable to assume that the shear field main-—
tains its two-dimensionality within this sub-layer. Thus the
flow is two-dimensional in the inner layer and the velocity
vectors are co-planar in the Tw-directlon.

5. Since the outer flow is in the freestream direction, all

the turning from the Tw direction to the Ue -~ direction

must take place in the middie layer.

While the first three conclusions apply also to two-dimensional

boundary layerss., the last two are speciai to the three-dimensional

case.

See Appendix G for the effects of rotation on the equations of

motion In the pressure—driven case.

1.2.

The Case of Juncture Flow (Region I1)



Figure 3 describes the main features of the flow field In a
juncture. An oncoming endwall boundary layer interacts with a
blade situated normal to the endwall. This iInteraction gives rise to
several phenomena: the vorticity carried by the oncoming b.!. wraps
around the blade. thereby creating a "horseshoe" vortex: the stag~
nation line at the blade leading edge creates a pressure gradient
that induces skewing of the oncoming b.l. and the formation of an
endwall crossflow, which later rolls up into a so-called ‘passage
vortex": this and the “horseshoe® vortex augment each other and
create the corner vortex which stretches downstream without dimin-
Ishing Its strength for quite a distance downstream of the blade
leading edge: If the latter Is biunt. the oncoming filow may separate
upstream of it. creating one of several possible three-dimensional
separation patterns. such as a saddle-point or a node.

As the oncoming flow hits the blade. a boundary layer
develops over it. This b.l. interacts with the one which has been
developing over the endwall, resulting in a corner (or juncture) flow

which Is investigated in this section.

n21. Scaling and normalized equations

The fiow variables in the juncture are normalized as follows:

10



x = x/xref. Y = Y/XWA. Z = Z/)\bb (x = 2/Cf)

where (x.Y.Z) is a locally carteslan coordinate system.

The scaling of ¥ and Z is based on the resuits of the
analysis of the three-dimensional boundary layer outside the juncture
region (Region D, which Is performed In Section 2.1. (See also
Appendix D). When the equations of motion are written in terms of
these variables. the factors Xref/(wa)=£ and xb 6/(wa) = { ap-
pear in them (see Appendix F1) and these require additional con—
sideration. By using the (1/n)th power law for turbulent flat plate
flow as a model. it can be shown (Appendix F1) that the equations

of motion for the juncture flow become

*€v2vTxx +
N TN P AOAR 2PN
+e§Txy]+ (3)

n



B[22 38v £3f,-1 24 3v_ 2
té ay[‘E €w ayt€ Tyy] T az [c €w€w 3zt Ew sz]
aw W £ 8W _ _£3P 3 -1 2. 3W
UaxteV 3yt W3z caz*ax[‘ €wEw ax
20 2
+ ¢ €w sz] +
3 [22 W . 202 £3r,-12: 3w
re aY [ewew ay e ew Tyz] M ¢ 3z [C ewew az
20 2
¢ 0, T,,]
where. in analogy with the treatment of Region I,
28 = WU AN .e=u_ /0
Cwéw =V e’"w 'ew-u-rW e
and the additional notation is
t=(ere) 2 o= 10208 2 x .00 B8)
= ley ey T &= Xeot w
The boundary conditions are:
= = - Y=0.,2 20
U=vs=w-=0e {z:o.y>o

.2, 2. Asymptotic treatment

Two Independent parameters appear in Eqn. (3). namely €y

and { (the 3rd parameter, f-:w, is related to €, as shown in Ap-
pendix B). While €y Is a small parameter evarywhere along the
juncture. { increases from 0 at the blade leading edge to O(1) at
the trailing edge. and may thus be viewed as a measure of both

streamwise location and extent of asymmetry. For the purpose of

12



asymptotic analysis of Eqn. (3). a new parameter. € .. is used as

a basic perturbation paramoter. to be determined (along with :-:c)
from matching conditions (Appendix F2). In order to avoid double
expanslons In terms of €y and (. it is intended to stretch the junc-
ture coordinates Yc and Zc in such a manner that the juncture
equations derlved from Eqn. (3) are symmetric w.r.t. these coordi-
nates as weil as w.r.t. Vc and Wc regardiess of whether the flow
itself is symmetric or not. Such a coordinate transformation leaves
€. as the only perturbation parameter. enabling singie expansions as
for the Region | treatment. The detalis of the coordinate stretchings
are given In Appendix F1. resulting in the foliowing expansions, valid
for an arbitrary (non-zero) ({:

Middie region

_ _ _ 2a 2a
y = Y/(eec), z = Z/(eec). ¢ = ewew/(ecec)

13



i = [ec/ew]z [+ [em2 - ’]"/z]'

2 0.j#z

t + e t + et +---.0=[ -
[1” 02” c3” ] lz 1.f=2

inner reglon
A A LY A
y = Y/(Eecec). zZ =¢ Z/(eecec)

A
U—u]+ecu2+e

~ 2a

vV = <-:cec[v1 + ecv2 + <—:cv3 + ]

A A A 2a
w = ecec[w] + €Wy t €Wg t ]

P =3] + 6062 + 6533 LR
Ty = [ec/ew]2[1 + [c-za - 1]6121-

(6, + ek + <%, o -]
i i i

As shown In Appendix F2,

I i lime, = €. . lim e_ = ¢
m ec = ew. mec = €b. mec = €w. m Gc = Gb
Z =0 y -0 A A
C (o zc-oa: yc-om

These expansions are Inserted into Eqn. (3) and the resulting equa-

tions are sorted out to orders 1. €, and eg for the middle and

inner regions, as shown in Appendix F1. It is Important to realize

14



that the Reynolds stresses scale differently in the endwall- and

blade- boundary layers (Reglons 1). Thus. in the endwall b.!l.:

T =t + €t + o
Yir i W<

with related expansion for the inner layer. in the blade b.l.:

L] ]
T, =1t, +¢€t, + *°°
by~ Ny by,

and similarly for the inner layer. The juncture region contains Rey-
nolds stress contributions from both boundary layers adjacent to it.
and this is taken into account by the series expansion representation

of Tc as demonstrated below:

if
[t. + e, + ccc. 0 #2
1” w2”
lImTc =
-0 — 1]
A S (R SRR B
| i i
20
(4 t + €.t 4+ e |.j] # Z
[1,, b2, ]
IlmTc = |, '
y -~ " t + €.t + e, j =2
c TEAT

Thus. the factors C:t2o compensate for the two different scales for
T” on endwalli and blade. enabling smooth matching of the juncture
reglon Reynolds stresses with those on the two Region i boundary

layers.

15



The equations of motion are derived In Appendix F1, whiie
Appendix F2 Includes a detailed description of the procedure to
match the corner region with the boundary layers outside the
corner. Since the equations are symmetric, it suffices to perform
the matching to half of the corner, say the sector between the Z-
axis and the bisector of the right angle between this and the Y-axis.
The resulting matching lines are indicated in Fig. 4 by the numbers
1. 2 and 3. Important resuits from the matching procedure are
given in Appendix F2 and summarized beiow:

1. The pressure in the corner reglon is imposed by the
external flow: the gradients of the external pressure normati
to the solid boundaries vanish along the corner.

2. The streamwise veloclty has a common logarithmic
overlap between the corner middie region and the inner
layers on both endwall and blade.

3. The streamwise velocity component In the inner region
vanishes to O(1),

The final version of the equations of motion is given in Table
2. These equations indicate the foliowing main features of turbulent
corner flows:

1. The pressure field in the corner region is imposed by
the outer flow.

2. In the middle region. the flow is inviscld and without
Reynolds stresses to O(1). and is described by an Euier-

type equation for the streamwise momentum., This same

16



momentum equation becomes of a parabolized Navier-Stokes

type with Reynolds stresses only, to 0(e). The O(ee) flow
is described by a Re-averaged N-S-type equation for the
streamwise momentum and by parabolized N-S equations for
the two crosswise momenta. Again. these equations in-
ciude feynolds stresses only.

3. The inner region is characterized by the fact that the
crosswise derivatives of the total shear (viscous + Reynolds

stresses) on each wall are equal in magnitude and opposite

in sign. Also, the 0(62) flow includes pressure gradients
normal to both walls, which are balanced by crosswise

Reynolds stress gradients. There are no inertia effects in

the inner region through O(€2) at least.
it is noted that, unlike the Reglon | equations. those of Re-
gion 1i cannot be solved starting at the lowest order and continuing
to higher orders based on previous solutions. Rather, one has to
use symultaneously equations belonging to different orders, to have
enough non-trivial equations for the number of unknowns [15,16].

Specifically. in the middle reglon the continulty and streamwise

momentum equations of 0(e™ have to be coupled with the two

+2

crossflow momentum equations of O(em ) to soive for the O(Gm)

m+2

velocity components and O (e ) pressure: in the inner region the

continuity and streamwise mometum equations of O(em) must be

17



solved symultaneously with the crosswise momentum equations of

O(em+232) to get a complete filow picture. This means that con-

siderably more terms of the asymptotic series must be retained in
Region 1l than in Reglon |, especially in the inner region. Note
also that a “"composite profile® does not exist for the juncture flow.
since the outer, middle and Inner regions do not share common
surfaces and thus do not have common asymptotes (see Fig. 4).
Finally. the extent of the juncture region for an arbitrary 674
ratio is of interest. This is determined by letting the coordinates of

the various subreglons be of the order of their scales. Thus

<
]
i

<
1}

- —'l _
. = 0D Oltey =V = o[ew eceA] = 0[£AuTc/uTw]

v, =0 ~v=o0¢ e ] ¥ =0e
Ve e ea) = o]e K:JLTW
uT
zZ, =0 ~Z = o[ece/c]~z' = 0[“5;1%55“] = O[DT_:%"
Z, =0 =~z =0 (e er¢c] ~Z=0 [e;‘ececoe/c]
ol

b

Figure 4 shows the various sub-~regions for a juncture flow with

18



nonzero but otherwise arbitrary 8/A ratio. The corner vortex. dis—

cussed earlier in this Chapter, is situated in the juncture middle re-

glon.

For rotational effects on the equations of motion in the junc-

ture, consult Appendix G.

19



CHAPTER 1lI

PROFILE RELATIONS FOR PRESSURE-DRIVEN BOUNDARY LAYERS

n.1. General Discussion
Based on the results of the pressure-driven 3D analysis, the
general forms for the Law-of-the-Wall and Law-of-the-Wake are the

foliowing:

Law-of-the-Wall

(LY [%.7.2)
u =

’ u_ X.Z
where

v 172
v’ o= % Yr = [.‘;_WJ

where

20



[« JE

n =
Matching these two laws yields the logarithmic overlap (see Appendix

D):

F[)E,n,z'] -« Vinn + A" .9-0

ut [y+] - Vinyt Byt e
where
k= .41,B = 5. 0,A' = 2« IT
which are Coles’ parameters.

x

if u Is now chosen as u, then the relationships between F

and u+ on the one hand and the 2nd order middle- and inner—

variables on the other, become (see Appendix D):

1/2
F=-[uf+u] n =Yy
2 2

1/2
u+=[ﬁf+ﬁgl ,y+=f
2 2

This enables the construction of the composite velocity profile. fol-

lowing the general scheme

composite _ _ ~
[ profile } = (outer profile) -(common outer-middle
asymptote) +(middle profile) - (common middle-inner

asymptote) +(inner profile)

21



Written out explicitly, the composite profile. to order €. has the

form (see Appendices C and D):

U X
{U"} = Wxv.zy | -
b4 z]
U"1 3 U”1
U (X.0.2) + € 7 3y lu (X.0.2)1{ +
z z
1] 1
0x1 cosy
u (X.n.2) - € {—sin'y} F(X.n.2Z)
¥4
]
cos¢
w -1, .+
e{ } [K iny #B]]
[ sln¢w
cos¢
w + +
+ [e{ }u (y )]
sln¢w
where

U
(.2 21172, _ . -1 (Y
U = [ux + UZ]"%. ¢ = tan [—UxJ

and v Is the angle between F and Ue' in order to be able to
use this profile in actual calculations. It Is necessary to provide ex-

plicit models for the Wall- and Wake~Laws.

m.2. LAW-OF-THE WALL

22



1n.3.

Based on the results of the asymptotic analysls, the

Wall-Law Is written In the form:
it =1l e=0, )

with components

+ + + +
u =u . = U .
X cos¢w u, slml’w

For f Musker’s [12] explicit expression Is chosen:

+
fyt) = 5.424 tan”" [2 = ‘;"5}
[+ + 10.6)96

-3.52

+ Iog]0 3

2
[y+ -8.15y7 + 86

LAW-OF-THE-WAKE

In view of the conclusions from the asymptotic analysis,

the wake function is defined In the form:

Cid
1
Ci e

with streamwise component

23



Fe = Fcosy = m

and crossflow component

Uz
Fz =—Fsln‘y=-u—
r

See Fig. & for basic nomenclature.

The two-dimensional defect function may be expressed by

Musker’s {12] formula

where the Wake Parameter., II. Is determinable from

op = K [2“[‘“3772 +20°) < inm - % [1-n] ) (5

1 (see Appendix

ED.

1+1T -
2IT - in ko +x[8 xx]-o
ox
with
o)
x -~
o, EJ [I-U x] dy
(o]
and
172

[cos¢w] 172

There is not an unique generalization of on to three dimensions.

Possibilities for on inciude:

24



Cht

e

- l&l] su_: 8 [0,-0,]7u

The first possibility was rejected since it led to poor data — correla-
tion: the second is difficult to test or use: the third possibilty is the

simplest and is the one used henceforth. Thus

F
F =20 (6)
cosY

The geometry of Fig. 5 provides the Wake-Law formulation:

12
U= [1-2{'1/-‘ cosy+ [x"F]2]

7N

s=tan”" { 2 'E siny }
1- )\_1Fcos'r

!

or. equivalently,

- ] X
tany = [ F cosy 1] tang (8)

in order to complete the formuiation of the Law-of-the—-Wake.

it Is necessary to determine the function ¥(7m). Flgure 6 shows a
plot of experimental values of T = ,yl- where 'ym is the maximum
m

vaiue of ¥. The data are from Refs. 8 and 10. it is observed that

25



the lower portion of the plot is different for different stations and
that these individual branches merge into a single curve further up.
This suggests that T' could be describable by a combination of two
parts. one of which Is a function of 7 and of some physical param-~
eters pecullar to each measurement station. while the other Is a
function of n oniy. Pursuing this direction, one arrives at the for-
mulation described below. the detalls of which are worked out in
Appendix E2. In the logarithmic overlap region. ¥ is determined

from the solution of

dy _ Xcosz'y [g_ [ Fap -1 ]dF2D} (9)
n FgD tany kn XCosav dan

where U is given by Eq. (7) and F2D by Eq. (5).

The initial condition is

7=‘70977=‘l70 (9a)

where Mo Is the point where the Wake-Law crosses ¢w (see Appen-
dix E2, and Figs. 7 and 8).

In the defect layer. ¥ Is chosen In the form

r = = 1-8 []_n]a (10)

<X
m

as shown In Appendix E2. where
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an 111 I—I'.l
a = [1—1;1 —_—. B8 = (10a)

[1—[‘]] [1'711]‘!

with subscripts 1 denoting the point of switching from the portion of
the curve described by Eq. (9) to the one described by Eq. (10).
(see Appendix E2). The dimensionless distance n, Is a function of
Reynolds number and pressure gradient. A typical value is 0.03S.
Figure 8 depicts the relation of M, to ng. and Appendix E3 outlines
the procedure to determine M-

At the upper edge of the defect layer ¥ attains its maximum

2
value. Ym’ which Is calculable from

Be

-ym=tan'1 2U2J gg_ an
o Ue

where Be is the local freestream direction relative to the direction at
the upstream position. Eqn. (11 is a result of integrating a
sheariess version of the boundary-layer equations along main-flow
streamiines. This approach Is based on the assumption that a
sheariess analysis can yield valid results in the outer part of
boundary~layers which are well developed before being perturbed by
a main-flow turning. Under such circumstances crossflows develop
mainly as a result of the reorientation of vorticity in the layer, while
frictional effects are felt only near the wall. The determination of

Y thus requires knowledge of the external flow field only. Figure 9
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depicts a typical comparison between the above mods! for Y and ex-
perimental data.

it should be noted that the entire analysis described above did
not involve the actual solution of the equations of motion. There-
fore, four parameters are required as Input in order to enable cal-

cuiations. These are:

1. Cf
2. ¢w
3. Rea
4. Be

In addition, the determination of Ym requires knowiedge of the
external flow fleld. In a real situation these wouid be unknowns.
and the equations of motion would have to be solved. subject to a
prescribed pressure distribution and Initial velocity profile. However,
regardless of the method of solution, the above model couid then be
incorporated into the solution scheme. since it does not Introduce

any additionali unknowns of its own.

1.4, Comparison with Experimental Data

The data of Refs. 8 and 10 have been used to check the
validity of the proposed models for the Wali- and Wake-Laws. Both
sources of data use flow geometries which lead to a build-up of ad-
verse pressure gradient with eventual three-dimensional separation.

The measurement stations chosen for comparison between theory and
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data were all fully attached. Results of two stations from Ref. 8
and three from Ref. 10 are reported here: in station C4 of Ref. 10
an 8% crossflow is present: in station D5 the crossflow is about
12% and in station F7 it reaches about 25% of the streamwise flow
component. In station 7 of Ref. 8 the crossflow is about 22% and
in station 8 it reaches 27%. Figures 10A through 10E show com-
parisons between the present model and the data of the representa-
tive measurement stations. The figures include comparisons for both
the hodograph and the resultant velocity profile (in terms of magni-
tude and direction). The agreement Is good for all stations. In
particular, it is noted that the model is able to predict the smooth
transition from the wall- to the wake-region. The discrepancy
between the model and the data of Ref. 10 involving the magnitude
of the velocity (most pronounced In station F7) may be due to the
fact that the experiment of Mueller has a curvature effect, which is

not accounted for in the model.

11.5. Comparison with Johnston’s Triangular Model

Johnston [2]1 assumed the following model for the UZ—UX
hodograph:
U - Uxtan;bw. Ux<Up

Z la [1-,] - U0,

In contrast, the present model assumes no geometric relationship.
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Rather. the hodograph results on the basis of the fundamental as-
sumption that the wake function Is a vector quantity. In comparing
the two models. it is observed that the first leg of Johnston’s trian—
gle corresponds to the Wall-Law of the present modei., while the
second leg corresponds to a special limit of the present model's
Wake-Law, namely, T = 1 with A = tan'ym. However. this is an
inadequate choice since it fails to correctly describe either the tran-
sition from the wall~ to the wake-region or the magnitude and loca-
tion of the maximum crossflow (see Fig. 7). These shortcomings
are apparent from Johnston’s own polar plots (see Ref. 2). The
other basic difference between the two models stems from the fact
that whereas Johnston regards the vertex of his triangle as the edge
of the wall sublayer, the present model locates this point at No°

corresponding to 70 (see Fig. 7).
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CHAPTER IV

CONCLUSIONS
An asymptotic analysis has been carried out for three-—
dimensional, endwall turbuient boundary layers. This analysis Indl-
cates that, as in the two-dimensional case. the flow is multi-
structured, possessing an inner (or wall) layer: a middle (or de-
fect) layer: and an outer layer., and the pressure in the b.l. is im—
posed by the outer fiow.

in the blade/endwall juncture. the defect region is describable
by parabolized Navier-Stokes equations through 0(62) except for the

streamwise momentum of 0(62) which is a Re-averaged N-S5-type

equation. Rotational effects appear in the form of centrifugal terms

to 0(1), Coriolis terms to 0(€2) and there is no influence on the
0(e) momentum components. Viscous stresses are absent from the
defect region. The inner region Is characterized by the crosswise
total shear gradients on each wall being equal in magnitude and op-
posite in sign. and no inertia effects. except for centrifugal ac-
celerations in the case of a rotor.

It is also found that the streamwise velocity has a common
logarithmic overiap between the corner middle region and the inner

layers on both endwall and blade.
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The same equations which describe the non-symmetrical junc—
ture flow also describe the symmetrical case, but the coordinates
and Reynolds stresses scale differently in the two cases.

In the pressure-driven part of the endwall boundary layer out-
slde the juncture. the Inner layer is dominated by constant total
shear across it. Inertla and pressure gradients having no significant
influence there. The middle layer is driven by both pressure gra-
dients and Reynolds stresses. and may be described by boundary
layer-type equations to 0(e) and Re-averaged N-S equations to

0(62). These two sub-layers share a common iogarithmic overlap

region. The outer layer Is Inviscid and generally rotational.
describable by the Euler equations.

The results of the analysis Indicate that the wall sub-layer Is
two~-dimensional. flowing in the iocal wall shear direction. and ali
the turning from this to the freestream direction takes place in the
defect sub-layer.

Based on the results of the analysis for the pressure~driven
part of the b.l.. a model is proposed for the three-dimensional
counterpart of the Law-of-the-Wall and Law-of-the-Wake. which

agrees quite well with experimental data.
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FIG. 5 HODOGRAPH WITH VECTOR TRIANGLE AND BASIC ‘TERMINOLOGY
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Table 1 - Momentum equation in the three sub-iayers, to orders 1,

€, and 62.
OUTER MIDDLE INNER
REGION REGION REGION
(0] Euler equa- p,= A
tions 1 Py -P1 (X.0.2)
P.(X.0.2)
R (No Reynolds Euler equa- $ =0 =0
stresses) tions S ERATES
D =0
1
o Ux -Uye—Uzz- p2-0 p2-0
R P2=0 Boundary- Constant total
Layer equa~ | shear across
tions. Rey- | sub-layer
nolds
stresses only
D
€
o Euler equa- Re-averaged
tions Navier-Stokes
equations for
X~ and 2Z-
momenta
Reynolds
stresses oniy
R g =
D B (x.0.2)+
3
2 i
1
cdhstant total
shear across
sub~layer
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Table 2: Juncture equations for an arbitrary (non-zero)
6/ ratio. (See text for definitions of coordinates).

Middle region Inner region
o
au1+av1+aw1=0 X X
ax dy 38z av] aw]
—_—t+t — =0
A A
dy 8z
du du A
] 1 p, =P, (x,0,0)
Ui Bx + £ -——ay + 1 1
. au] _
1 9z
dP1
" ax (x.0.»
Ote)
au2+av2+aw2=o i )
dx dy dz au av aw
2 2 2 _
> T A + =0
ay az
4 au A
3 T2 au,
ax () T oy 0=2 |—F+7 ]
au.| au2 au.| dy 24 yx
s 3y YY1 3z T Y2 3z T 3l
at, at, s 257
A PN 1
= LN x 3z \ 9z x
dy oz
p2 = 0 A
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Middle Reglon

inner Region

O(ee)

au3 R au3 . aws - o
ox dy az

du

a3 2
3 (u1u3) + u2 ax +

aw.| aw.' dw
Uu, — + v, — + w 57

aps
dz dy az

50

=t ==+ —2 =0
dy az
au
0= %[——f + 1 } +
dy L dy yx
au
2|2,
az 3z b2
0=
653 at, at,
- =+ f’y +
gy dy az
0=
~  af af.
ap 1 1
- f + i’z " 2z
az dy az
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Appendix A: Preliminary form of the equations of motion in the

various layers to orders 1. € and €
After substituting the asymptotic expansions for the three layers

into Eqns. (1) and (2) and collecting terms of the same order. the

following equations are obtained:
1. Outer layer

o

- {%, %, aiz ] [P1] (AD)

0(e)
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d 3 _
[Ue axt Ve Y*we a_z']{ul' Vo Wl} =

} {«'?x v az] [P2] (A2)

oCe)

d d (<)

{ax' 3y &} [Ps] (A3)
2. Middle layer
on

au.l av] dw
ax dy azZ
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3u du, du, ap,
“1 3 "V ey Y™z T e
0P
ay
aw aw, 3w, P,
Y“1 3% tV1 ey YY1 ez T T ez e

0Ce)
aU2 . Bv2 + awz =0
ax ay aZ
du du du u
a 1 2 L
ax ()T T Tt T e
ap at
_ 2 + Ixy
ax dy
ap
0=—=2
dy
3w ow aw dw
2 2 1 d
Uy 3 YU E TV ey T2 oy taz ["ve)
at
a3p 1
-2, _ Y
- e + 5 (AS5)
0(62)
603 avs aws =0

ax tay t ez
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a 2
ax (Y1Ys] T Bt 5 t Y 3y TVs 3y T "iaz t

du du
2 1 _
2 3z * Y3 3z
at,
_ 8p 3 + at'lxx + 2yx + a"lxz
ox Sx dy aZz
dv dv dv ap at
Uu, — +v, — + w — == 3y W
1 ox 1 3y 1 az ay ay
dw ow dw aw 3w,
2 1 3 2
Y1 8x TY2 o TYs ax Vi T2 5y
aw] a aw2

1x2 at2'yz + at1zz (A6)
az ax dy az

3. Inner layer

o(H
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0 = —
ay
aev}‘]
0= —
3y’
0cCe)
aA A aA
u2 s av2 . w2 - o
dx a oz
y
au
o=—a;[i‘1 +—-;?-]
oy xy dy
3p
0o=—2
dy
aw
0=2 o+ fl
ay yz ay
0(62)

+ + =0
ax 3y aZ

au.
0=2 | +=2
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Appendix B: Matching procedure
1. Formal matching of outer and middle layers
U(x.Y.2) is expanded by a Taylor series around Y = 0:

2

au s 2 3°U,
UX.Y.2) = U, (x.0.2) = €y (x.0.2) + ¢~ & (x.0.2)
1 ay 2 2
ay
2 89Uy
+ ... + € U2 (x,0.2) + € Y 3y (x.0,2) + ... +
Uy 0.2+ ... =
- 2
= u, (x,y.2) + € uy (x.y.2) + € ug (x.y.2) + ...; y =+ =
Thus
uy (X.y.2)7U,(x,0,2); y = = (B1)
au,
02 (x.y.2Z) "y w12 (x,0.2) + U2 (x.0,2). y§vy » o
2 azu1 au,
u, (x.y.2) "L (x,0.2) +y —= (x.0,2)
3 2,2 ay
U, (x.0,Z); y = o

3

and similar relationships hold for the crossflow component, w.

Following the same procedure as above. ylelds:
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V] (x.0.Z) =0 (B2)
[ av,
V2(x,0,2) = iim v (x.y.Z) -y 3y (x.0.2) (B3)
y -
[ av2
Va(x,O.Z) = 1im v2(x.y,Z) Y 3y (x.0.2) -
y - ®
2 32v
5 (x.0.2)
ay?
Py (x,Z) = P.l (x.0.2) (since ap]/ay = 0) (B4)
aP.‘
Py (x.2) Y 3y (x,0,2) + P2 (x.002); vy » o (B5)
2 82P ar

- ¥_
p3 (x.y.2)

2 o

(x.0.2) +y a_y2 (x.0.2) + Py (x.0.2): y »

tn (x.y.Z2) "0: y = o, forn =1,2.3,---
if

(since no freestream turbulence was assumed to exist)
2. Formal matching of middie and inner layers
Again, variables are expanded in Taylor serles around y = 0:

av

(x,0.2) + € 2;—1 (x.0.2) + ... +

Vix.y.2) = € v 3y

3
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2
dv
2 A A 2 3
+ € €y 3y (x.0.2) + ... + € Va (x.0.2) +
adv
3 3 _
€ €Y 3y (x,0.2) + =
A .
= € € v.| (x, y. 2) +
eV P, D+ eV, (x. 7. D +
2 3
J o
Hence
v1 (x.0,.2) = v2 (x.0.2) = v3 (x.0,2) = -+ =0 (B6)
a . dav
n (x.y.2) y-37 (x,0,Z); ¥y » oo, | =1,2,3,++-
. 9P
e 26 =2 (x,0,.2) + +++ =

P = p1(x,Z) t € py (x.2) + € ps(x.O,Z) + € 3y

2 A
P (x.y.2) + «--

P, (x.Z) + € Ps (x.2) + €
Thus

51(x.2) =p, x.2) = P, (x.0.2)

32 (x.2) = p, (x.2) (B7)
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Py (x.¥.Z) " pg (x,0.2):f » w

and similarly
?n (x.y.2) - t, (x.0.2): y ~®, n=1,2,3, -
i 1

The U and W components require a speclal treatment.

du

U (x.y.2) = u; (x.0.2) + €y a—y] (x.0.Z) + -+ +

€ u, (x.0,Z2) + - +

2

t € Uy (x.0.2) + --- = &‘1 (x.9.2) + € 6’2 (x.y.2) +

€2 by (X.§.2) + ~+vi y » o (B8)

From Eqn. (A7) and the boundary condition a?] (x.0.2) = 0.

it follows that 6‘] must be of the form

6‘] (x.9.Z) = f(x.2)y

which is unbounded as )"‘ =+ ®. Thus the first order terms in Eqn.

(B8) cannot be matched directly. Therefore Eqn. (B8) is differen—

tlated w.r.t. y. yielding:
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3 au R 2 du R
- |ftx.2) + € — (x,y.2Z) + € = (x.y.Z) t+ --- =
€ ay ay )4[\_.‘”
=&(x02)+€&(x02)+€2iu—§(x02)+---(89)
ay e ay ¢ Ve ay .V,

Since the leading term in the inner expansion Is of O[e_]]

and that in the middle expansion Is of 0(1). the only possibiiity for
a match is that both vanish identically. A similar argument holds

for the W-component. Thus

u,|=w.l==_0,

and from the continuity Eq. and B.C. 31 =08 f = 0 it also fol-

lows that 31 = 0. Also

u
3 (0
Y MJ)x.0.2y

u
and this combined with the B.C. {W]a = 0 uniquely determines
y =0
Uy and w, aty = 0:
u, cos¢w
{w ] = ing at a given (x.Z) location.
1Jy = 0 SiNPy

Since f= y/g. the only possibliity for a match in the remaining

part of Eqn. (B9) is
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du,/9y ~ b,/y. du

2 /3y bs/y,---:y-o

2

A

au2

3

/v, a{is/a;e‘ " bo/Y. iy =

/3y "~ b 3

2
which, after Iintegrating gives

u, " b, Iny + C

2 2 u b, Iny + C

o Ug 3 3.ttty =0 (BIO®

iy = (BID

b, Iny + CS.-“.

u b, iny + Ce,u3 3

2 2

where the b’s and C’s are functions of x and Z. Similar expres—

sions hold for the w and w components. This establishes the ex-
istence of a logarithmic overlap between the Inner and middie

layers. Inserting these results into (B8) vyields

2

[eb2 + e2b3 + ---]Inf = u, (x,0.2) + [eb2 + €b, + ---]Iny +

3

+ e[C2 - 62] + e2[03 - 63] + e

or

[eby + €5 + -+ Jind = u, x.0.2) + €[c, -
€

A 2 A
Cp) + ey - &) + oo
whence It follows that

-'I/e]

A A
—elne=0(1)-e=0[e as € - 0

This confirms the assumption that € = 0(en) which allowed a single

parameter asymptotic expansion approach.
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3. Results from the matching procedure

A. From the continuity Eqn. of (A4):

du aw
. 1 1 0 IEq. (B6)]
ve=-J [ax t ez Y */Vr};;

and using Eq. (81),

du aw
m v, = _[ [ fim [ax + aZ]]dy
y = o y —» o
PaL] -
ax 9Z lix.0.2)

1 ]
ax | T3z

sy aw
-y (B12)

(x.0.2)

Also, from the cont. eqn. of (A1),

av _ [BU.I aw1
ay

1
— (x.0.2) = ——+——]
dx 9Z 1y, 0.2)

Substituting this and (B12) into Eqn. (B3) yields

V2 (x.0.2) =0

This. together with the fact that the 1st order outer solution satisfies
all the B.C.'s at Y - =, so that the 2nd order equations must
satisfy homogeneous B.C.'s there as well as at Y = 0. dictate that

the solution to Eqn. (A2) be the trivial one:
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2 2 2 2
av1
B. From Eqn. (B2) and the fact that 3y (x.0.2) does not
necessarily vanish, it foliows that V., has the form
[a/ax }
v.' = Yf(x.Y.2), so that a/8z7 v] (x.0.2) = 0. The Y-mom.
aP.|
part of Eqn. (A1) thus dictates that 3y (x.0.Z) = 0. Combined
with the previous result P2 = 0, Eq. (BS) ylelds
P, =0
it then follows from Eqn. (B7) that
b, =0
p2 -
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Appendix C: Final form of the equations of motion and their

matching- and boundary- conditions
1. Outer layer

01
au1+av]+aw1=0
ax T oy Yt a3z
-
a 3 3 _
lu, > T Viay T W, az][“1'v1'w1] =
T
a a3 a
{a_x ay az} [P1]
0Ce)
Up =Vp =W, =Py =0
0(62)
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= - |8 38
ax’ ay’
2. Middie layer
o
au.I N av1 s aw]
ax dy ¥4
) au1 . au.I
T ox ady
’ aw1 . aw]
1 ax dy
0Ce)
au2 N av2 aw2
ax dy az
ad
> [ Y2) t
ow, ow
Yy ox tu ax
0(e2)
au3 . av3 aw3
ax dy az

68

at

dsu au 1
S . %y
£y 2 3z 3y

, at,

t 3z [”H"z] = 3y



3.

o

0(e)

3 du au3 au2 au1 au
B [ulus] Ty 3tV 3, T2 5y tV 3 T a7 +
at at at
. au2+w Buy —6p3+ 1,0(+ 2,0,+ L
2 az 3 az ax ax dy az
dat
’ av] .y av] . w av.| _ ap3 1[!
1 dx 1 dy aZ ay ady
ow aw aw aw aw. ow
3 2 1 3 2 1
Uy e tY2 ax tYs ax t1 ey T2y TYa Ty Y
ow
3 2 _
3z ("i%a] * %2 37
at at at
- - 3p3 + ‘xz + 2yz + 1zz
3z ax 3y 3z
inner layer
up =V, =w, = 0
p.l = P1(x,0,Z)
[]
au2 s av2 . awé -0
ax ar aZ
y ,
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au

0-2h +2
ay Ll xy dy
aw

0=-§;\t1 + f
dy L yz dy J

0(62)
au3 av3 aw3 _
ax T t37 =0
gy
aA
u
0o=21f 42
ay L “xy dy
0 = % —AS + ?1
oy yy |
aw,, |
0 = % ;\2 + —
ay\ “yz dy J

4. Outer- middie matching conditions

uy (x.y.2) ~ U.l (x.0,2):y = o

au

. 1 .
u2(x.y.Z) y 3y (x.0.2): y ©
2 a2u1
u(x.y.2) - L (x.0.Z) + U, (x,0.2): y
3 z2 2 3

with similar relationships for w.
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Vl(x.O.Z) =0
[au1 aw1]
v.(x,y.2) T - yl—/m/—t+ — Yy >
! O 8z liy 0.2)
2 a‘?v1
vo(x.y.2) " V.(x.0.Z) + & (x.0.2); y - o
2 3 2 2
aY
P4 (x.2) = P.l(x,O.Z)
aP1
0 ='a—Y- (x,0.2)
2 62P1
p, (x.y.2) - & (x.0.2) + P, (x.y.Z): y -
3 2 Y2 3
d
t (x.y.2Z) ~0:y » o, forn =1,2,8,---
n
if
Middle - inner matching conditions
v.' (x.0.2) = v2 (x.0.2) = v3 (x,0.2) =0
vy
=9
0=3 ("1
"I
(x,0,2)
dv
a A . A 2 0.
Vo (X.y.2Z) y —37 (x.0.Z): y oo

n



dv

V. (x.y.2) {"?y-(x,o.zn?-’m

3

51 (x.2) = P, (x.0.2)

£ (x.y.2) "t
n n,
u2 - b2 Iny + C

u, bzmy-rC

/

o

D¢

A - A
P3 (x.y.2Z) P3 (x,0.2) y =]

(x.0.Z); y = o, n

us"bslny+C

“b, iny + &

ug 3 ny

with similar relationships for w and w.

A A A
B.C.’s: un (x.0.2) = Vo (x,0.2) = wn (x.0.2)

12

32

3.'



Appendix D: Determination of the 3D logarithmic overiap

in vector form, we have

Law-of —-the -Wall : DLL =F (y+) (D)
T
Law -of —the ~Wake : [Ge - 0]/uT = F(p (D2)
- 2
au u'r f
From Egqn. (D1): — = > 1 (D3)
dy dy
a0 Y1 oF
and from Eqn. (D2): ay - B '31-; (D4)

Multiplying Eqns. (D3) and (D4). by Y/UT and equating. ylelds

d ~
y = - = = C (D5)
dy‘f' dan
N—— — N —

fFeyhy ()

-
where C Is a constant vector.

Rewriting Eqn. (D5&) in component form,
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x
— e+ — ¢ — 0, t+ — @ =
dyf X dy+ z an x an 2z
Cxex + Czez
Thus
f.=C.iny +8B
L 9 dF, x = y X
y —+ = -9 _dn = CX ' (D6)
dy Fx=—Cx|n'n+Ax
f.=C.iny" + 8
df dF z SNy z
+Z z
—+ = -7 ——d"7 = Cz - ' (D7)
dy Fz=—Cz|n1;+Az
comparing these results with Eqns. (B10) and (B11) yields
4+ _ - A _ _ A + = A
ux —Ix—u2. Cx—b2, Bx—Ce,y y (D8)

T
Fx=—u2. Ax=—C2,17=y

with simitar expressions for the z-components. Note that N =y dic-
tates the scale of the outer flow as | = \6.

Since the Law-of-the-Wall is 2D (in Tw—directlon), it follows

that

vt oyt v By 4w (D9)

whence
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uy, N cos¢w . cosgbw N
=u T K iny <+
u+ sln¢w sln¢w
z
cos¢ w
i 8: y+ -+ o
s n¢w

comparing this with Eqn. (D8) and Its z— counterpart, one gets

A A . 3
b2 Cx cos¢w 4
F = = K
d2 CZJ sln¢w 4
V- [ o ] [ )
62 Bx ccxse&w
= = B
A B sing
%2 | [ 2] [ Y

Eqns. (D6) and (D7) then imply that

- -1 Y
F cosy = Fx K cos¢w inmn + Ax /] 0 (D10

- -1 !
- Fsiny = Fz K sln¢w inn + Az

if one now assumes that

Ax , cos¢w cos¢w 0
{52 eing, | T lsme, | 2k
Az sing sing

then it follows from Eqn. (D10) that

15




F=\Ff+F§ - e k) [In'n—2II]:‘n-0
which establishes. together with (D9). the logarithmic overiap for

the 3D case. This was also established by the matched asymptotic

analysis. Eqns. (B10). (B11) and their crosswise counterparts.
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Appendix E: Details Pertaining to Profile Relations
El: Determination of the Wake Parameter, II
Since F20 ls the defect function of the streamwise component
of the skewed boundary layer. the following log. friction law applies

to it:

K\, = ln[Rea/xx] + kB + 21 (E1-1)

where

N, = N [cos¢w] 12

By using Coles’' [1] formulation of the 2D Law-of-the-Wake. subject

to his normalizing conditions, a further relationship involving Il is

xxxRe ,/Reb =1+ 1 (E1-2)

O

Combining Eqns. (E1-1) and (E1-2) then yields the equation for I

in the form

1+ 1
kRe ,

Oy

o1 - In +x[B—xx]=o

from which II is determinable. using a root finder aigorithm ([13].

7




E2: Determination of the function ¥ (%)

From the Law-of-the-Wall, Eq. (4). one gets

u2
au _ T af
v

ay dy’

From the Law-of-the-Wake. Eq. (7). one gets

Q |Q
‘<1|C|
1]
o':
(o L L

[F %:'- -\ [ad—;-cos'y - F sln'yg—% ]

Muitiplying both expressions by DZ_ and equating. yields

N
taf 1 [[E._ gF dyj_ 1 -
v U [[% - cosv )55 + F siny T =« (E2-1)

Since the LL.H.S. is a function of y+ only and the R.H.S. of 5 only

(these are Independent variables iIn the context of asymptotic

analysis) ., both are equal to the same constant. x_]. Integration of

the L.H.S. vyilelds

f =yt as

which Is the logarithmic overiap expressed in terms af wall varlables.

Substituting Eq. (6) Into the R.H.S. of Eq. (E2~1) ylelds

[ Fap ; ]dFeo Fgota’” dy -1
- -1 = x
dn

xC052'y )\cosa'y

from which

18



dy _ )\cosa'y U F2D dF2D
- 5 = | - -1 (9)
an (4]

F‘ZD tany

where U is given by Eq. (7) and on by Eq. (5). The Iinitial
condition required for the solution of Eq. (9) is determined as fol-
lows: according to the asymptotic analysis the hodograph (Fig. 7)
starts deviating from the ¢w— direction at the point in the logarithmic

overiap where the wall- and wake-velocity vectors are In the same

direction. This point is designated as Mo

From Fig. 7.

ut = A

[ sln¢w]
cosfy * Tany
combining this with Eqs. (6) and (8) ylelds

'slm)sw
tang(n) = (E2-2)

> - cos¢ [——L— - 1]
ut y+ w Fop (m

in the logarithmic overtap. Here

Re

and ut and on are given by Eqs. (4) and (5) respectively. Eq.

(E2-2) is solved iterativeiy for M, which is the largest 7 for which
p(n) = ¢w. %0 is then found from Eq. (8) with 7 = Mo and

o = ¢w‘ This determines the required Initlali conditions for Eq.
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(9). the solution of which provides ¥(%) in the logarithmic overlap
reglon. which Is the lower portion of the ¥(7) curve.
At the upper portion of the defect layer. ¥ = Ym {(Eq. (1D].

To complete the formulation of 7¥. it is necessary to devise a

curve—fit which smoothly connects the lower and upper portions of

the ¥(7) curve. To this end one defines the function

r = =1-8 [1-9]¢ (10

xX
Tm

The following requirements are necessary to be met by this function:

L =1
dr
2 250
ltm dT
» -0
2
4) 1—£<o
dn
2
5) ”_"“]"12" 0
7 an

(zero curvature as n - 1).

These requirements are met provided that @ > 2 and 8 > 0.
The latter two parameters are determined by matching I' 1o the
curve described by Eq. (9) at a matching point, My where the
velocity profile switches from the logarithmic overiap to the wake

(see Fig. 8):
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74
r=— 68q7=1
m 1
ar _ _-ldvy -
dn - "mdn 8n=n,

where ¥(7) is the function at the logarithmic overlap region. and 74

{s its value at n = 771' From this one gets:

g = gr
1-1‘1 an =0,
and
1-r
1
B =—
[ ]"

n, is generally a function of Reo and pressure gradient. Based on
experimental data. a typlcal value for it is 0.035. See Appendix E3

for an outline of an Iiterative procedure to determine My

E3: Procedure to Determine M,

4 Is a function of both Re number and pressure gradient,
for which a model does not seem to exist at the present time. In
this work, M4 is found by an Iterative procedure such that the
correct value produces a branch of T () where I' first becomes

unity at the correct value of 7 for the particular case under Investi-

)
gation. In the example of Fig. 11, the first guess. labeiled My
produces a branch such that I first becomes 1 at an 7 which is

lower than the correct value for this particular case (which would
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typically be taken from an actual experiment). The next guess.

[}
ny - leads to a branch in which I first attains unity at an 7 which

'
iIs higher than the true value. Ilterating between 7, and n, even-

tually produces the correct branch, shown in the figure as a soiid

line.
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Appendix F: Detailed Analysis of a Juncture Flow
F1: Preliminary form of juncture equations
introducing the normalized variables of Section 2.2.1. 2)

into the 3D Navier-Stokes equations. the juncture region equations

becaome
au , fret av  Mwh rer aw _
ax wa Y xba wa z
3 A A
Uy+refvau wrefwa_u_g_fg
ox A A ay A, B XA A aZ ax
w b
u 2
d )‘wA Vv U Tw
-a_; -~ - Tx'+ U XX
ref Uewa e
2
X Yr
ysref 2 w, | Twl ooty
A A 8Y] d - yx
w Ue)\wA Ue
2, = U,/0 = Brpll. T, = - d & /F
(),—UI e.P—/pUe. ij = u, u,u”
= X/xref‘ Y = Y/(wa), Z = 2/(xba)
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dax kwA ay )‘bb kwA aZz
- )‘wA ref 8P +
)\bb )\WA az
2
u
aM v aw _T_b] :
ay | - - . dx u
rel Ue)‘wA Tw
2
Yr
—| 1,0+
U
e
2
- UT
ref 8 aw . __b] .
A A 3Y |, ay u
w Uewa Tw
2
Yr
7] y
e
Ml ot 8 [)‘WA v aw
A8 N A3Z N0 - aZ
b w b e)‘wA

2 2
v v
Tw Ve

with the notation
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u -
v - Tww - ’ T XA ToaA T
Ue Ue)‘wA w w

u'r €

_b__b
u T e
Tw w

these equations become Eqns. (3) of Section 2.2.1.

Before treating these equations by an asymptotic analysis, It Is
of interest to relate { to the parameters €y and €pe

Both 8 and A increase with x. At the blade leading edge.
878 ~ 0. while at the tralling edge 6/A ~ 1. For the purpose of
scaling. the (1/n)th power law growth for turbulent flat plate flow is

n-1

used, according to which 0 ~ x n. Thus, for any streamwise lo-

cation along the blade,

_[ L.E.]n
N X — x
o«

blo

This relation may be expressed In terms of \’s. using another

relationship from the (1/n)th power law. namely

Yn

(K- a constant)

C =KRex

f

Thus
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Ug 2
8 _ | v [x - xL.E.] _
A u -
e
" [x &”]
Rox—x n-1
L.E. n _
Re,
X=X
o0
1-n
C 2(1-n) 2¢(1~-n)
Y [ﬁﬂ] )
Cr Ay €w
w
and hence

€p men 8 gn—;
¢=[e—w] = 17

Thus ¢ Is a measure of the streamwise development of the

cor;\er-ﬂow asymmetry. The case 8/4 = 1 formaily reduces Eqns.

X
(3) to Eqns. (1) and (2). since then also § = —;—OAL = 1. This
case corresponds to the symmetric corner fiow. In the present

work. both this and the asymmetrical situtation, which occurs in
large portions of turbomachinery blade/endwall juncture flows. are
investigated.

The analysis Is carried out for an arbitrary, but non-zero.
8/A ratio (or ¢). so that the leading edge region is exciuded from

the present discussion.

81



The following generalized expansions are defined:

Middie region

= 2

u = f[u] (x.y.z2) + €Uy €Ug t ]
- 2

V = g[v] (x.y.2) + €Vo t €y ]

_ 2
w = h[w1 (x.y.2) + €W, t €Wy t ]

P =p] (x.y.z2) + ecp2 + t-:ip3 + e

T,, = —_— +qg 0 t (x.y.2) + €.t + €t +]
i €, jz [1” 02” 03”

inner region

1 c2 3
v =é‘[\'r‘1 + ecv?2 + ec§3 + ]
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A A 24
P =Pyt €Pyp + €Pg t+ -

A A 2a

)+
Tr., = —_— +q 0 t + €.t + €t +]
ij €y iz [1” c2 cSH

Here the paramseters f. g. h. q. f. 6 h. 6 are In general

A A
functions of ec. ec. ew, €y ¢ and ¢ or of some of them:

ec and a'c are small perturbation parameters appropriate to the
Juncture., to be determined later from matching conditions: and
d. 3 ¥ and ¥ are stretching parameters whose purpose Is to

create symmetric Juncture equations regardless of whether the flow

itself is symmetric or not. These stretching parameters are also

A A
functions of € €or €y Ew ¢ and £. The above expansions are

inserted into Eqns. (3), yielding:

Middle region

r2 uy tee e%%m $ e +-§%§5<w] $004) =0

2oty e Sy e s e%cv] $ o) %(u1+--->+
%("’1 § o) %(u1 $eed) =S4 e
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2
- i e o @ L e & 0 -2 . e o
fg(u] + ) 3x (v.| + ) + ¢ 2 (v1 + )ay (v.l + ) +

£gh ceey S ey =-4£38
153 (w1 + ) 32 (v1 + )  dy (p1 + ) +
g 24 2
+3x- 3 ewewa(v] + ) + €. t + .- | +
xy
£d g 2~ a 2 [ ’
¢ 3y ¢€w€w§7(v1 + --)+ec t] t .. +
y LYY ]
£ 8 |g 22 3 2
-t-c1lr 3z |2¥ wéw 33 (v., + ) + €. [t]zy + ]
8 gh ey S
fh(u]+ )ax (w1+ )+ ¢ ; (v1+ )ay (w.‘-r )+
£h . 3 ¢t 3 |
I3 (w.l t --°) a—z(w1 + +ee) =~ c,é—z(p., + -+0) +

2
€
9 }h 2~ 3 20 2 c .
+ax£ewewax(w]+ ) + ¢ ew[[e] +q]
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3
(¥ 3z (¥ w w dz w €

2
€
£ L+ €2€ -Q-(w1 + ) +C2062[[—9-] +q]-
w

[t]zz ¥ ]}

imposing symmetry In Y and Z and in V and W on these

equations resuits in the following relations:

and
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Inner region

A A
fa%(31+---)+e%%(31+---)+5%aiz(v?,,-r---):o
$ 9y 4 4
2 a gf & 3
A A A "
I~ Wwoteey = (a +--3+¢ 2L (¢ tese) = (U, +--4) ¢+
1 ax 1 A 1 A 1
¢ dy
fh—j (wA] + -.0) %(6‘1 t e+e) =_aix(61 + c-) +
(¥ 8z

A
+$:%[i;eiéw%(ﬁ]+--o)+e§(?1 +---)]
(¥ 3z L az x

2
fg i+ 2 v gy 2 tee0) 4
1 ax "1 ; o 1
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+
rem—
R
+l
g
<
A
N O
w
+ +
o~ ~~
4 +
<> <>
~ A
<
o|ds o| ‘%
3
Aew Aew
N
2€W W
<o s <] <o
% <
+ Wi <6

i ]] '

o

N O

(Wytee) 4

a3
ay

_l+...)

w

AA
h
¢

.g.(s F o)+
A 1
az

A 2 A
c% ewew
(W tee) +¢

£ 2]
(¥ d
(ugt--2)

a
r4

JHe

4%

8

"

’

€e
€w

20 2
1+ ) +{ ew[[

A
(w

A 2. 3
§ wwox

e
T ax

eIk

Cus

93




'5'"92 [% eiew% (w.l t ++0) ¢+ c2o evzv'
¢ 9y ‘¢ ay
2
e A A
[SREIEESIE
w yz
L2 22 2 v 4 20 2
(¥ 3zY(¥ az
[ 2 ]
C} A A
—_— +q} |t + .- }
RS
Imposing symmetry again. one obtains
q =4q. f =1, g=h=ecec, ¢=c11'=£ecec
With the scales thus determined. the equations are rewritten
as follows:
Middle region

-a-a; [u1 +ecu2+---]+-§; [v1 +ecv2+---] t
-a%[w.' +ecw2+---]=0

[u] t e, u, t ] 3&’; [u1 t e, Uy t ] +
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= -2
aZ[u]-reuz-r ]- ax[p]+ep2+ ]+
d 24
e [ecec ax[u + €Uy + ] + € [t] t ety t ]]
xx XX
+aiy[€ca[" € Up * ]+ec t, toegty t ]+
4 yx yx

a |~ 3
taz [ec 3z [u1 t €l T ot ]'*ec[tla‘*ectzzx+ ]]

"ﬁ[[“ﬁec"e*"'] % ["1*%"2*"']*["1*%"2"'“]’

i(v + €V, + *-°) +
gy 1

c2
[w + €W, ]az[v t €V +-'-]]=
_ a
=" 3 [p1+ecp2+~- ] [ec €. ax[v teVpte: ]+
eg[hxy«r-f ]]+
+:y[ ic-:c-a—y(v1 + -)+e2[t1w+ ]] +
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-gaz-[p]+ecp2+e§p3+--oj t aix[ege 2

e: t, ot - ]-r
xz

A gd
+ [ececay(w ]+--~)+e

i U SRR

N
oOn

[t1 + ]] +
yz
3 [ 24

d 2
+az ececaz(w 1+---)+ec[t.‘ +]]
zz
inner region
2

aix [31 t e, + ] +-:—; [v.'r‘1 t eV, t ooee] ot

f;[fv\] + ecﬁz + ] =0

Py (A )a(A A a(A
€5 |d, + 35 (U7 -)+(v1+---)—a—y; Uy 4+ 4

A ) A

(w + ...) —(u + -.o) =

1 A 1
dz
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-€ = (51+-~-)+~% ei?zi-% (l?]'l--'-)'f

%-a-‘:(u1+...)+ec[?'l +--o]]+

dy Loy yx

*%_a;[‘? €ct?e+€§t73+---)+ec[t1 +
dztaz x

PN 2 A 3 A a 3 -
[Gcec] [[u1+~--]g;(v1+-~-)+(v]+--~)-a—;(v1+~--)+
Wy + =o0) %(é‘] + )] =
az
3 (2 A 24 3| 443 3 .~
a‘ [p'l+ecp2*€cp3+'”]+ax[€cec ax(v’l+ ce)
34 a
€c€c [tlxy+ ]] *
2l 2@ e Bl o] s
dy dy yy

97



2lee, 2 e ]
8z 9z zy

a 2 A 3 A - 3 N
[ecec] [(u.'+--°) B (w1+--')+(v1+-~) a; (w.|+---)+

A a A _
(W) + -=2) = (W, + )] =

az

3 24 3] 4.3 3
62[91 + ch2 + ecpa + -..] + ax[ecec 3 (w] 4 cee) +
3a A ]
€_€ t E +
cc['lxz ]
%eiéc%(§1+---)+e§[?] PN [
dy dy yz
%eiec'a-,(\a-,-t'--)-tei[?] +---W
azt az zz ]

Sorting the above equations according to orders of magnitude
resuits in the following equations:
Middle region
on

au1 av.' aw.,
ax ay 9z
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1 1
Ys ox YT ey Y™y 37 T T Tax
0 = .&
dy
il
az
O(ec)
au2 . av2 . 8w2 - o
ax ay az
du du du du
a3 1 2 1
ax Ui YV Byt Y By YW az T Y2 3
at at
3 1 1
- P2 + > . b2
ax ay dz
ap
0=—2
ay
ap2
0= az
2
O(ec)
au3 ' av3 . aw3 -
ax dy az
du du du du
d 2 3 2 1
ax (u.lus) + Us ax v ay TV, dy t Vs ay
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au du du
3 2 1 _
"1 3z YY2 "3z "% 3z T
at at at
_ap3+ 1“* gyx+ 2,
ox ax ay az
3t at
) av]+v av]-rw av1=~ap3+ 1111. 12y
1 ax 1 dy 1 dz dy ay az
aw aw aw ap, N at
Uy = tv 1w 1. 8, v, z
T ax 1 3y 1 az a9z dy a9z
inner region
o
3u, av, aw
a: + J + 3 =0
ay 9z
8217] 32[:‘]
0 = + (F1)
ay°  af
aA
p
0=—1
dy
3p
0=—
az
O(ec)
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du dv aw
ax2+ f+ f=0
ady d
au au
0=2 | 241 ]+%[ 24f, ]*
dy \ dy yx azl 9z x
ap.
0=—=2
dy
ap.
0=—=
8z
2
o (<]
au, av, ow
3,28,
ay az
au au
0=-% -—?—-H ]+% ——?-Ha ]*
dy L 3y yx) 93zl 3z x
A af. af.
ap 1 1
0=-—24 2
ay dy az
- a3t at.
dp 1 1
R
8z 3y 3z

F2: Matching procedure
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The following relationships exist between the juncture coordi-

nates and those of the endwall and blade:

y =—S < Y b Ap0 =;__Y_b
c Eec kwAeec Eecwa ¢ ec
, =ch=_§_ 7 L xbbebebzb=
(o] ece 3 )‘bbec ¢ xbbec
I4 €beb 2
¢ ec b
, = waewewyw ewew a
c waeec Eec w
, =M% Cw
c 3 kbbec €.

The first pair of relations indicates that for smooth matching

between the juncture and the blade.

%
m vy, =<
y oo b
A A % e, (blade matching) (F2-A)
lim 2 = €,2
blb
z-0

The second pair indicates the requirement for smooth match-

ing between juncture and endwall:
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lim Yo = €lw
y-0 ew
z ec - T (endwall matching) (F2-B)
w
lim z2 = —
c
Z - w
xref
Since ¢ = A and from Eqns. (F2) It follows that
w
im £ =1+ Ilim €_=¢€
Z oo Z —soo ¢ w
c
(F3)
yllr_r.\m E=¢ -~ y”Tm € = €p
c (o]
in a similar manner
“ A _ A “ A _ A
mec-—ew. mec—eb
A A
Z -0 y  -oo
c c

Eqns. (F3) are in agreement with the previously obtained

m>

€.'2
w

w
) .
c

resuit ¢ =

m>

€
c

Thus €, and Ec have the correct limiting values to guarantee

smooth matching with Reglons | on both endwall and blade. Hence.
one may define €. and ec in a similar manner to the corresponding

A A
definitions of €v' €w: b and €p- namely

103



u
r
—£

€ =
- " Tc u_ A
Ue

c

where u_ and Ac are, respectively, friction velocity and length
(o]

scale characteristic of the juncture reglon.

Since the equations of motion derived eariler are symmetric, It
suffices to perform the matching procedure for one half of the junc—
ture region. The matching will be done with the endwali, along the
following limiting iines:

1.  Juncture middle reglon and endwail middlie layer:
2. Juncture inner region and endwall inner layer;
3. Juncture middle region and endwall inner layer.

These lines are denoted by the numerals 1. 2 and 3 in Fig.
4, A completely analogous procedure applies for the blade-
matching. denoted by the numerals 4, 5 and 6 in the figure.

in the following. the subscript w is dropped from €’ since
both juncture- and endwall- expansions are using this same pertur—
bation parameter. as demonstrated earlier [Eqns. (F4)]. The ex-—
pansions for the endwall layers Incorporate the results found earlier

for the case of pressure-driven boundary layer (see Appendix C).

Yr

o
=
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auw 2 3 u

1 Cc

€2, S5— (x.y.00+te 5 —— (x.y.0)+-+-+¢€u (x.y.0) +
(o] azw 2 822 w2

du
2 v 2 .
€ zc azw (x.y.00+++-+¢ uw (x.y.00+--- u (x,y.zc)-r

3 ¢

2
eucz (x,y,zc)+e uca (x.y.zc)-r---. z, »®

uc] (x.y.zc) uw1 (x.y.0); z, »~ =

auw

uc2 (x,y.zc) zc 57 fx.y.0)+uw2 (x.y.0): zc - o

2
zﬁ d uw.I auw2
uc (x,y.zc) ?——2-(x.y,0)+zc azw (x.y.0+

3 azw

uws (x.y.0): zc -
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adv
2 Y,

= €v (x.y.00+e 2z (x.y.00 4+~
1 w2 w] c azw

2 .
W €v (x.y.zc)+e vc (x,y.zc)+o--. z, »
2 1 2
Ve (x.y.zc) v (x.y.0): zc -+ ™
1 1
avw
v (x.y.2) ~ 2z (x.y.00+v,_ . 2 -+ o
02 c (o] azw w2 c
Z -0
W =w_ t+tew,  tew, +-°-°- " ew +e2w toee-s
w w, v, w3 ¢, 02 zc-m
Differentiate w.r. t. Zw:
2 3
aww] a ww1 e2z§ d ww]
27 (x,y,O)-rezc 5 (x.y.0)+ 5 T3 (x.y,00+---¢
w aZ oz
w w
2
aww2 » 3 WW2 ” aww3
+ € (x.y.00)t+te 2z (x.y.0O0+---t+e€ (x.y.00+-+--
az c 2 azZ
w az w
w
aw c] awc2 » awcs
azc (x.y,zc)-re—a—zc— (x.y,zc)+e azc (x.y,0)+---zc - ©
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4
[+

-

¢, w,
(x,.y.2 ) ~ (x.y.0);, 2 = o
azc (o] azw c
2
awc d ww1 aww2
3z (x.y,zc) b4 > (x.y.0) + 37 (x.y.0):
c az w
w
3 2
E'iwc3 z‘2: a ww] d ww2
x.y.z) = — (x.y.0)+2 (x.y.0) +
azc (e} 2 823 (¢} azz
w w
aww
3 (x.y.0): 2z - o
azw c
aP1
Pw = P‘l (x,0.0)+ezc 32-; (x.0.0) +
2 Zﬁ 82P1
€ 55— x.0,0)0+--- +
2 622
w
2 -
te p, (x.y.00+--- P (x)-repc (x) +
3 1 2
62p (X.y.2)tere: 2 -+ o
c 7% * ‘e
3
pc (x,y.zc) = P.' (x.0,0)

1
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aP1

pc (x,y,zc) - zc 37 (x.0,0): zc - o (FS)
2 w
z§ aeP.l
pc (x,y.zc) > "3 (x.0.0)-rpw (x.y.0: zc - o
3 aZ 3
w
2
alw o d tw
7 2 % Y
T =t (x.y.0) +ez ~(x.y.0)0+e —H (x.y.0 +
w” w” c azw 2 622
w
atw
2 2
+ e+ tet (x.y.00+te 2 (x,y.00+-+-+4
w c dZ
2 w
i
ezt (x.y.0) + -+ ~ ¢ (x.y.z ) +et (x.y.z )+
Wy .Y. e Y.z, oy Y.z,
1] ii if
€2t (x Z )teee: Z = o
Cq ¥ c * %o
1
t‘_:1 (x,y,zc) tw'l (x.y.0: zc - o
i j
atw]
- if . -
tc (x.y.zc) zc 37 (x.y.0)+tw (x.y.0): Zc o
2, w 2
i ]
2
5 a tw atw
2 T, 2
l‘c3 (x,y,zc) ?—-—8?2— (x,y.0)+zc azw— (x.y.0)+tw3 (x.y.0):
i w i
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= el (x.§,0)+o<2)+e20w (X.y.00 4+ "4, x.¥.

2 3 1

(x A A) 2a ( A A) A
e s e - oo
Uc2 .Y. o + € ch x,y,zc + ; ZC

Y. c) 0. z,
y zc) uW2 (x.y.0): z, - oo

C Ws C
200 x.7. M40 1S, x.y. O 4--s
w w
2 3
2% x.p.Prtedev. (x.y.Z) 380 (x.y.z 0+
€€ c1 X,y.zc + € €c2 xX.Y. c + € €VCS ,y.zc
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vc (x,y.zc) s zc - o (F7)

A P 2 a A
Ww =ew, (x,y.Zw)+e v, (x,y.Zw)+-~-
2 3
AaA A A 24 a A A 3aa A A
“ €ew (x.y.Z2)+e e w (x.¥.Z)t+te ew x.y.Z )+
c c c c c c
1 2 3
Zw-oO
R M

Differentiate w.r.t. zw:

al\ aA
wwz A A 2 wws A
€ (x.y.00+0(€) +€” —=— (X.y.0) ++--
oz az
w w
aw aw
wc] A A wc2 A
- (X.¥.Z)+e€ (x.y.z )+
az ¢ az
c c
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c
62 63 (x,y,fc); zc - o
azc
awc
1 x.7.2) “0: 2 = (F8)
az Yt e
(o]
awc2 X awwa X X
(x.y.z2) ~ (x.y.00; 2z - =
a3 c az c
z w
c
aw aw
wc3 A wws A A
" (x.y. c) 37 (x.y.0): zc - o
oz w
(o]
A 2a PN oA
P =P, (x.0,0)+0(e)t€p (x.y 00 +--- p (x)+
w 1 w3 c]
eﬁ (x) +
o
2 A ( A A LA
+€ pc x.y.zc)+---. z, - o™
3
(FO)

(x.0.0)
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P =0 (F10)

A A A ) A
w” = tw] (x.y,0)+0(e)+etw2 (x.y.00 4+ «-- ¢
il if
& x50+
Y3
i
- ~N ( A A ) A ( ~ A )+
+ tc] x.y.z, +etc2 x.y.2z
i i
2 (x.y.2)
€ cq X.¥.z2)+-- z,
i}
A -~ ) - A A
tc1 (x y,zc) 'w.' (x.y.0) zc - o
i i
f (x.y.2) - x.y.00; 2
c, X.y.2, tw2 x.y z, ~
i] 7
t‘:3 (x.y zc) tws (x,y.0; zc -
if 1]
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c
3. ,.
Yw"*”
U =u (x.y.Z)+eu (xyz)+e2u (x.y.z)+---
c c ‘7% c 7% c 7%
] 2 3
y-0
A A 2 A A
“eu (x.y.Z Yt+te u (x.y.Z )+"”[,.
w, w wa w oI
Ditferentlate w.r.t. y:
auc‘l auc » aucs
3y (x,y.zc)+e 3y (x,y,zc)+e 3y (x,y.zc)+---
. auw i auws i
'7 " (x,y.Zw)+e " (x.y,Zw)-f
€ ay dy
auw y~0
2 4 A
€ = (x.y.Z )Y+---|:
w A
dy y oo

in analogy with the discussion in Appendix B.

euc1
3y (x.O,zc) =0
du au
Cp _ ¢2(x.zc) Cq _ ¢3(x.zc) iy =0
dy y ‘ 9y y ’ ’
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au du
Wo ¢2(x.2w) wa ) ¢3(x.zw) A
B R oo y - o0
A A A A
ay y dy y

ar

u, ¢I(x,zc) In y+\lrl (x.zc). I = 2.,8,+-+: y=0

i
" . A R (F1D)
uwi ¢,(x,zw) in y+?, (x,Zw), I = 2,3,+¢+; y=o
V. = ev (xyz)+e2v (x.y.z)+--- "e2?-:3 (xfz ) +
c c 7% c 7% w T Tw
1 2 2
A y=0
+ 632 v (x,f.Z ) IE IR {
w w A
3 y oo
Differentlate w.r.t. y:
3 3 av
ey 2 % 2 S W o
€ 35 (x.y.z)+te 3y (X.y.z)4--- € — (x.y.Z2 )+
oy
av
3 "3 . y=0
+ € — X,y Z Yt-o-:
w A
dy y ~o0
avc]
3y (x.O,zc) =0
avcz avw2 X X
3y (x,O,zc) ~ (x,y.Zw): y - o
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2 - a "
Wc = €w, (x.y.zc)-re w, (x.y,zc)+~-- €w, (x.y,Zw)-r
1 2 2
D A ~ y-‘o
t e w (x.y,Zw)-r---: a
3 y-ocn

- A A . A - _ e
W, (x.O.zc) w (x,y,Zw), y o, } =1,2,

i Y141
P =P, (x,0,0)+e€p (x)+e2p (x.y.2)+~"-
c " I . c c . . c
2 3
. 24 A y-0
P](x.O.Zw)+e Py (x.y.zw)-r---. N
3 y oo
p. =0 (F12)
o
p. (x.0.z) “p. (X.9.2.): Yy =
Cq c wq
T =t (x.y.z2)+et (xyz)+e2t (xX,.y.2 )t
c” c, 7% Cy 7% Cg 7%
i il if
- A A A A 2a A y-‘o
t‘”‘l (x.y.Zw)+e tw2 (x,y,Zw)-fe tw3 (x.y,Zw)-r-’-. -
i i i y
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A A A
t (x.O,zc) 'w (x.y.Zw). y *oo, p=1,2,¢--

Important results from matching procedure:

1. From Eqns. (F1). (F6) and the one equivalent to

(F6) for ;c - o plus the boundary conditions t?c =0 6
: 1

it follows that t?c Is described by Laplace’s equation with
1

homogeneous boundary conditions. By the Maximum and

Minimum Theoren. 30 = (.
1

2. From Eqns. (F4) and (F9). both P, and ';c are
1 1

piven by the external pressure evaluated at the corner.

Moreover. since both P and Sc vanish [ Eqns. (F10)
2 2

and (F12)], the above conclusion carries through order €.
3. By Eqns. (F5) and (F12), aP1/azw vanishes along
the corner. From symmetry, aP]/aYb also vanishes along
the corner.

4. From Eqns. (F11) and their equivalents on the blade.
the streamwise velocity has a common logarithmic overlap
between the corner middie reglon and the Inner layers on

both endwall and blade.
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Appendix G. Effects of Rotation

FLUID
PARTICLE
—*—*Z
RN
\
/)’;) \
R =R

If the (x.Y.Z) coordinate system is rigidly attached to a ro-

tor. rotating at a constant angular velocity 1 around the x-axis. the

inertla terms of the N-S equation will include centrifugal and Corlolis

accelerations and will assume the following form [14]:

g2 +v3, 43 _go2420
ax ay a3z ax

G
oY |m
x, I<a

+

<:
(oY) lm
~< i<

+

=

Icu

<i
|

N

o

=

{

:)l\)

I,
Q Im
< 1,
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After the usual normalization. these become

-2 = 12
W v way) Pl
G2 5
TZ[ua—;’+vg¥+w%Z¥]-2nuew-
[0, )
vl

|C.

[ )°
el

Muitipilying through by mxtjﬁ, as done before for the non-

rotating case, yields:

N R
au au au 0 3R
UaxtVar*t W3z [0 R ax
[
2
nf
b, v,y av_ o, [Pl e
ax Y Z g G 3y
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aw 3w aw maA ., _ 0 3R
uax+v—7+waz+20v 5 R 57
e e

In turbomachinery components,

nA
—2 -0
g

e

Also. F?o »A and hence ﬁo scales with the outer. Inviscid scale:

A =00 -840
o -
Ue

With these non-dimensional parameters thus established. it Is
now possible to determine the effect of rotation on the various sub-

layers and sub-regions found earlier. This is done by the usual

sorting out of terms In each sub-region to orders 1. € and e2.

The following momentum equations are thus found for the case

of a rotor., rotating at constant angular velocity about the x-

coordinate:

1. OQuter flow

U, , 3V, y 2 _p3R__3pP
Uax*vay+waz "ax' ax '

V., 3V, w3V _,w _p3R.__3P
UaxtVartWaz 2W-RG 3y
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aw aw aw 9R _ _ adP
UaxtVaytW3z+2V-hRg az
2. Middle layer (Region I):
own
u au]+v au]-rw iﬁ_néﬂ.:_ffl
1 ox 1 ay 1 a8z ax ox
p 28 _ 2P
dy dy
1 ox 1 3y 1 3z az az
O(e)
du du du du
3 2 1 2 1 _
3 Y TV Gt B T Wy 3 YW 33 T
at
3p 1
P2, _»
ax dy
ap
- -2
2 w, = 3y
ow 3w 3w aw
2 2 1 3 _
“17x T2 Tax Ty oy TVa By taz (MW t2v, =
at
ap 1
S 7
azZ ady
0(62)
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du du du du du
(2) 2 3 2 1 3
3 “'1"3) + u, Ix + v 3y + Yo 3y + Vg 3y + 37 +
Y au2 . w au.| _
2 a9z 3 az
at at, at
_ ap3 R ]xx . 2yx R 15(
ax dx ady aZ
at
dv av av ap 1
u-—]fv—1+w —]—2w SR S
1 ax 1 39y 1 a9z 2 ady ay
dw aw dw aw aw 3w
3 2 1 3 2 1
Uy ax tY2 3x YU 3x 3y Y2 5y YV oy f
dw
2 d
W, 37 + 37 (W'IWS) +
at at at
5y = - 9,3 + xz + 2yz + 2z
2 az ax dy aZ

3. Inner layer (Region I):

o

121



O (e)

O(e)

2a
a w.l
ay°
e
% ot _721
dy Ll ‘yx dy
332
3y
3w
% ?1 + '_‘2]
dyl 'yz dy
[ ao\
3 |a ug
Y ey
ay L "yx dy
2 -5+ f, ]
dy yy
3 |a a“’s]
alla  t—T
ay \ “yz dy

4. Middle region (Region i)

ow
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1 ox 1 oy 1 8z ax ax
q 2R . 8p,
dy ay
J-T: il
dz a8z
O(e)
du du du du
J 2 1 2 1 _
ax Yi¥2) t Yy Byt Ve gy W oz T2 e
at at
_ 3p, A ™ A 1
3x dy 9z
0 = -a—pg
ay
6. P 2
az
O(€2)
3u du du au 3u
a3 3 2 L 3
ax (N1¥8) U ity By T2 3y tYa oy T ez
3u au ap at] at2 at2
w —2 + w il R 3 + XX 4 x . x
2 9dz 3 az a3x ax a3y az
dv dv av
1 1 1 _
u.l ava.' ay*'laz 2w1—
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+

dy az

§. Inner reglon (Reglon II)

own

O(e)

3

=|—=+t
A

aauh]
a ]
dy  dy yx

332/69

a52/a£

o0ced

L)

2

+———.

azl az
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0=%-—?~+?2 +% ?f?z x
dy L dy yx dz\ 3z x

853 at‘1 at1
0=-—+—&,

ay dy dz

- 3t at

ap 1 1
0=- ? + rz + fz

4z dy a9z

From these equations. the following effects of rotation are ob-
served:
1. In the outer flow., there Is a centrifugal term in the
streamwlse component of momentum and both Coriolis and
centrifugal terms In the crosswise and normal components.
2. in the middle layer of Reglon I|. there are centrifugal
terms to O(1) Iin atl three momentum components, and

Coriolis terms In the normal- and crosswise— components to

orders € and €2. The streamwise momentum component is
not affected by rotation to these orders.

3. The Inner layer of Region | is unaffected by rotation
except for the O (1) normal momentum. where the pressure
gradient is balanced by a centrifugai acceleration.

4. In the middie region of Region |lI, there are centrifugal
terms in all three momentum components to O(1). In
particular. crosswise pressure gradlents' are balanced by

centrifugal accelerations. There are no rotational effects
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on the O(e€) equations, while Coriolis terms reappear In

the two crosswise momentum components of O(ea).

5. The only effect of rotation on the Inner region of Re-
glon il Is In the O(1) crosswise momentum components,
where pressure gradients and centrifugal accelerations bal-

ance each other.
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