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a acceleration of flow

SYMBOLS

A

B

c

variable used to define equation (3.29)

variable used to define equation (3.23)

speed of sound, c
2

yp/p=

speed of sound at x = 0, t = 0

characteristic line with dx/dt = u - c

c+ characteristic line with dx/dt = u + c

D variable used to define equation (2.32)

E variable used to define equation (2.33)

h enthalpy

k(n) acceleration of a characteristic line

m mass flow rate

M Mach number

OA head characteristic of the expansion fan

OB tail characteristic of the expansion fan

p pressure

q energy formation

Q flow properties

R universal gas constant RO divided by the effective molecular
weight of the particular gas

T temperature

u velocity of flow

v relative velocity

x displacement

a dimensionless heat of reaction, a = QP2/P2

iii



y ratio of specific heat, y = c /c
p "

n angular coordinate, n = x/cot

~ slope of the characteristic line near the origin

~1 slope of the tail characteristic line OB at origin

~2 slope of the head characteristic line OA at origin

'If dimensionless final pressure ratio, P1/P2

p density

" specific volume ratio, P2/ P1

Subscripts

d

p

s

t

x

1

2

3

4

5

reaction front

piston

shock

partial derivative with respect to time

'partial derivative with respect to space

region behind the shock wave or region behind the expansion fan

region ahead of the wave, i.e. , free stream

region inside the expansion fan

region between the Chapman-Jouguet detonation and expansion fan

region between precompression wave and Chapman-Jouguet deflagration
wave

Superscripts

(0) leading term

(1) first order term

normalized quantity

flow properties on higher pressure side

..

* Chapman-Jouguet reaction front
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CHAPTER 1

INTRODUCTION

1.1 Purpose of Paper

This paper presents derivations of canonical solutions for the initial

value problem of one-dimensional unsteady gas dynamics with discontinuous

nonuniform initial data. The canonical solutions are constructed by assuming

(i) regular power series expansions for regions ahead of and behind each

discontinuity wave t namelYt a shock wave (with or without chemical reaction)

or a contact line t and (ii) special expansions within a centered expansion

fan. The solutions define not only the speeds but also the accelerations of

the discontinuity waves and the expansion waves. These canonical solutions

are intended to be employed as the building blocks in a numerical scheme for

the solution of a general initial value problem. To understand the need fort

and the importance oft this work t a brief review of related methods is

included in the next section.

1.2 Review of Work

A number of fluid dynamics problems as well as other physical problems

are dominated by the presence of strong discontinuities. In order to compute
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the solutions to these problems accurately, the discontinuities have to be

understood and specific information about their generation and propagation

must be included in numerical solution schemes. Many computational methods

for gas flow are based on approximating the problem with a number of

elementary or canonical flow problems called Riemann problems. An example of

a Riemann problem is the simple shock tube problem for which initial data,

discontinuous but otherwise uniform, is given. The canonical problem provides

an explicit and elementary class of solutions which contain extensive

information about wave interaction. The existence and uniqueness of the

solution of the Riemann problem for gas dynamics, subject to an appropriate

formulation of the entropy condition, was established by Liu [1]. Glimm

recently developed a front tracking code with the aim of providing a general

and flexible method for obtaining accurate solutions to problems which are

piecewise smooth [2]. The Riemann problem provides the key input to this

method. Chorin introduced the random choice method as a numerical tool for

solving hyperbolic systems [3]. The method is based on a constructive

existence proof due to Glimm [4]. The solution is advanced in time by a

sequence of operations which includes the solution of Riemann problems and a

sampling procedure. Chorin further illustrated the usefulness of the method

in the analysis of reacting gas flow [5]. Examples were given of time

dependent detonation and deflagration waves, with infinite and finite reaction

rates.

For a steady supersonic flow, the flow quantities and their gradients

behind a shock can be related to the flow quantities ahead of the shock and to

the slope and the curvature of the shock [6]. These relationships can be used

in the numerical computation of steady flow fields with shock waves, 'and

because they explicitly account for nonuniformities on either side of the
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shocks, they are inherently superior to uniform flow relations. A more

extensive application of these ideas was carried out by Darden [7] in

conjunction with calculation of sonic boom in the vertical plane of symmetry

near a point of coalescence of two shocks. Near such a point, there exist

regions bounded by shocks or by a shock and a slip stream or an expansion

wave. To include asymmetric lifting effects, the second circumferential

derivatives of the flow quantities in each region in the vertical plane are

needed. Explicit relationships between the various derivatives of the flow

quantities at the point of coalescence and the slopes and curvatures of the

shocks, the slip streams, and the expansion fans were derived in reference 7.

In the current paper, canonical solutions for one-dimensional gas

dynamics problems with discontinuous and nonuniform initial data are

presented. They are valid in a small space-time region around the

discontinuities. The canonical solutions relate the first partial derivatives

of the flow quantities with respect to t and x to the velocities and

accelerations of the resulting discontinuity waves. These local solutions can

then be used to replace the Riemann problem as the building block in a

numerical scheme for a general initial value problem. The advantage of the

new local solutions is that they permit the use of a much larger step size

than methods which assume uniform flow in each mesh.

1.3 Outline of Discussion

The general initial value problem is treated by decomposing it into

elementary problems which involve a shock, an expansion fan, and a contact

line. Chapter 2 is devoted to the problem with one shock wave. A typical
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case is that in which a piston moves into x > 0 with given initial data for

x > O. The piston can later be replaced by a contact line in the initial

value problem. However, it is found that the system of equations for the

derivatives obtained by perturbing the shock conditions becomes singular when

the shock strength approaches zero and, therefore, they are unsuitable for use

with weak shocks. The system of equations can be regrouped such that a common

factor which vanishes for zero shock strength is cancelled analytically. For

shocks of zero strength, the curvature of the shock differs from that of the

characteristic ahead and behind the shock because of a jump in the curvature

of the streamline which remains continuous in slope. Solutions are

constructed by assuming regular power series expansions for regions ahead of

and behind each discontinuity wave.

Chapter 3 describes results for problems involving an expansion fan.

The typical problem is that of a piston at x = 0, t = 0, which moves away

from the gas lying in x > O. As before, regular power series are used for

the regions ahead of and behind the expansion fan, and a special expansion is

employed for the centered expansion fan region. In this region, the usual

governing equations for one-dimensional flow are rewritten in Riemann

invariant form in order to uncouple the variables.

For an arbitary initial value problem, a shock wave, a centered expansion

wave, and a contact line will exist simultaneously. The preceding two

solutions for shock waves and centered expansion waves can be combined by

regarding the piston path as a contact line. The results of this

generalization are presented in Chapter 4.

Elementary solutions are given in Chapter 5 which include flow with

chemical reactions. The cases of a strong detonation wave, a Chapman-Jouguet

detonation wave followed by an expansion fan, and a Chapman-Jouguet
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deflagration with a precompression shock wave are studied. These solutions

can be combined with the results in Chapters 2 and 3 to describe the complete

solution for initial value problems including chemical reactions.

Except for the material in Chapter 5, explicit formulas for the speed and

acceleration of the discontinuity waves and the spatial and time derivatives

of the flow properties behind the waves are obtained in each chapter. In the

cases including chemical reaction, the appropriate systems of equations are

established, but explicit evaluation of flow properties is omitted for

brevity •
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CHAPTER 2

RELATIONSHIP ACROSS ONE-DIMENSIONAL UNSTEADY SHOCK WAVES

Figure 1 shows the initial value problem induced by a forward moving

piston xp = F(t) with F(O) = up > 0 and F(O) = ape Initial data which

have continuous right-sided first derivatives at t = 0 for x > 0 are

prescribed. The problem here is to determine the flow field for small t

near x = 0; that is, to find the flow quantities and their first derivatives

behind the shock, region I, and the shock path. Quantities in region II ahead

of the shock wave are completely defined by the initial data and can be

determined independently of the motion of the piston.

Piston

/~
/Particle path

/

/
/

/

Region I
f Shock

o x

Figure 1.- Shock wave.
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2.1 Governing Equations

The differential equations governing one-dimensional, isentropic flow of

the medium, except at discontinuities, are as follows:

Pt + pu + up = 0 conservation of mass (2.1)
x x

p(u t + uUx ) + Px = 0 conservation of momentum (2.2)

1
uPx)Pt + uPx = - (p + conservation of energy (2.3)2 t

c

where P is the density, u is the velocity, p is the pressure, c is the

speed of sound, and where x, t are independent distance and time variables,

respectively. Subscripts denote partial derivatives with respect to x

or t.

2.2 Shock Conditions

Across a shock, the jump conditions are given as follows [8]:

(2.4)

(2.5)

(2.6)

where the subscripts 1 or 2 indicate the region behind or ahead of the shock.

The notation Vj' j = 2,1 stands for the velocity of the fluid relative to
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the shock in front of and behind the shock, respectively; that ls,

Vj • uj - us(t), j • 1,2. Enthalpy is denoted by hand m is the mass flow

rate.

Before perturbing the shock conditions, note that for weak shocks these

equations become linear equations for u2 - u1 ' P2 - PI' P2 - Pl. The

determinant of the system of linear equations vanishes as the shock strength

goes to zero. Therefore, for weak shocks the solution of these equations will

be in terms of ratios of small numbers and will induce inaccuracy in any

numerical scheme. In order to avoid this difficulty, the basic equations

should be recombined to cancel out a common factor which vanishes as the shock

strength goes to zero. With the ideal gas relationship h = yRT/(y - 1),

equation (2.6) becomes

V2 2 - v1 2 - 2yR (T1 - T2 )
y - 1

Rewriting equation (2.5) using p = pRT and equation (2.4) yields

(2.7)

where equation (2.7) has been used to substitute for T1• Now the factor

(V2 - vI) can be cancelled to obtain

8



Finally, the speed of sound relation is used to arrive at

(2.8)

Equations (2.4), (2.5), and (2.8) are regarded as the basic shock

conditions. They are, of course, valid for finite shocks, but the determinant

of the system of linearized equations will now remain finite as the shock

strength approaches zero.

2.3 Method of Solution

The flow quantities for small t behind the shock are related, not only

to the slope and curvature of the shock and to the initial velocity and

acceleration of the piston, but also to the flow properties ahead of the

shock. The following data are provided:

1. The flow properties for x) 0 at t = O. Therefore, the first

partial derivatives with respect to x of the properties are known

at t = O.

2. The velocity up and acceleration ap of the piston at t = O.

The piston path xp(t) is then, to second order in t,

x (t) = u t + ~ a t 2 (2.9)
p p 2 P

In regions I and II, the solutions are regular. Hence, their spatial and

time derivatives exist as x and t approach 0+ in each region. If Q

9



represents any flow quantity and j - 1,2 represents the regions, then the

power series expansion about (0,0) of any quantity is

+ higher order terms

or

(A)

where

speed of sound at (0,0) in region II is taken

1~
Qjt - Co at at (0,0).

as the reference speed

The

the shock front velocity and acceleration at time t - 0 be denoted by Us

and as' respectively. One has

and

The procedure used in the following derivation is outlined as follows:

(B)

1. Substitution of the regular power series expansion into the governing

equations (2.1) to (2.3) and use of the initial data

(0) (0) (0)
u 2 ' P2 ' P2 ,u2x ' P2x' and P2x ' to define the flow

properties in region II, the region ahead of the shock.

2. Substitution of the expansion series (A) and (B) into the shock

conditions (2.4), (2.5), and (2.8) and the governing equations (2.1)

to (2.3), and then comparison of the coefficients of like powers of

10



t to define the velocity and acceleration of the shock and the flow

properties behind the shock. The boundary condition on the piston

path which must be satisfied is

dx
u1(xp ,t) = dtP = up + apt (2.10)

The results obtained for the leading terms should be exactly the same as

those for a shock separating two uniform regions. The detailed results for

the acceleration of the shock and the derivatives of the flow properties are

derived in the next section.

2.4 Explicit Solutions

The spatial derivatives of the flow properties for x = 0+ at t = 0,

th t i Q2
(0)a s, and Q2x in the expansion series (A), are given.

Substituting the power series expansion (A) into equations (2.1) to (2.3)

defines the time derivatives in region II in the form

•

•

(2.11)

(2.12)

(2.13)
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Thus the flow properties and all their x- and t- derivatives in region II

are defined.

Now we proceed to the determination of quantities in region I. First,

the expansion series (A) are substituted into the shock conditions (2.4),

(2.5) and (2.8), and the results are evaluated on the shock path (B). Then

the constant terms and the coefficients of t are equated to zero in each

equation. If it is noted that the relative velocities are

(2.14)

(2.15)

then the constant terms yield the standard equations for a straight shock

front:

p (O)(u (0) _ u ) = p (O)(u (0) - u )
lIs 2 2 s (2.16)

(2.17)

(2.18)

The coefficients of t yield three more equations relating the derivatives of

the quantities ahead and behind the shock front to its initial acceleration:

12



(ul(O)- u + - as)(PlxU8 + PltCO) Us) + Pl x s UltCo

ffi (P2xU s + P2tCo)(U2 (0) - us) + p2 (0) (U2xUs + u2tc 0 - a s ) (2.19)

(PlxUs + PltCo ) + p2(O)(ul (0) - Us)(U2xU s + u2tc 0 - as)

+ p2(O)(u2 (0) - Us)(UlxU s + UltC 0 - as)

(ul(O) u )(u2(O) u )+ (P2xUs + P2tCO) - s - s

= (P2xUs + P2tCo )

+ 2p_O)(u_O)- Us)(U2xUs + u2tc 0 - a s )

+ (P2xUs + P2tCo)(U2 (0) - u8)2 (2.20)

(_ + 1)(ul(O) - u )(U2xU + - as)s s u2tCo

+ (y + 1)(u2(O) - Us)(UlxU s + u2tc 0 - as)

" - 2(y - l)(u2(O) - u )(U2xU + -as)s 8 u2tCO

m

: [.P + P2tCo _ P2xUs + P2tCo]= 2C2(0)2 2xUs (0) (0)

__ P2 P2 ] (2.21)

13



Now the boundary condition, equation (2.10), at t = 0, requires that

U (0) = u
1 p (2.22)

Then equation (2.18) defines the velocity of the shock as a function of the

piston velocity and flow properties at (0,0). This is the well-known result

for a shock separating two uniform regions. A quadratic equation on Us is

obtained in the form

(2.23)

from which Us is determined as

(2.24)(
4 (0»)2

(U2(0) _ U )2 + C2
P y + 1

In equation (2.24), the + sign is for a forward facing shock, that is, with

the gas on the right-hand side, x > 0, and the sign is for a backward

facing shock, with the gas on the left-hand side, x < O. Now using the shock

speed from equation (2.24) in equations (2.16) and (2.17) with c 2 = yp/p, the

leading terms of the flow properties behind the shock can be found. It is

easily seen that those results are exactly the same as the well-known results

for a shock separating two uniform regions and are given by:

14



(0)( (0) )
p u - u

2 2 s
(u - u )

p s
(2.25)

p (0) = p (0) + p (o)(U (0) _ u )(u (0) - u )
1 222 s 2 p

At this stage of the analysis all the leading terms Q1(0) are known.

(2.26)

To determine the first-order terms Q1x and Qlt' the expansion series

(A) are substituted into equations (2.1) to (2.3). The resulting three

equations are evaluated in region I using the fact that u (0) = u
1 P

(eq. 2.22). Similarly, the series (A) is sUbstituted into equation (2.10).

This yields

Plxup + PltCO =
_P (O)u (2.27)1 Ix

-p
lx

(2.28)ulxup + Ult CO = (0)
PI

2
Plxup + PltcO = -c (0) P (O)u (2.29)1 1 Ix

(2.30)

Equations (2.19) to (2.21) and (2.27) to (2.30) represent a system of seven

equations for the six derivatives of the flow quantities in region I at the

point (0,0) and the acceleration of the shock as.

To solve these seven equations, it is noted that equations (2.27) to

(2.30) can be used in equations (2.20) and (2.21) to derive a set of linear

equations on as and ulx as follows:

15



-(u (0) _ u )
2 P

-(u (0) _ u ) + _4_ (u (0) _ u )
2 P y+l 2 5

(0)

2a (U
2
(0) - u ) + D

P $

(u (0) _ u)a + E
2 5 P

(2.31)

The quantities D and E in equation (2.31) are defined as

Then the shock curvature as follows as

(2.32)

(2.33)

(2.34)

and ulx is

16



The denominator in these expressions is rewritten in the form

Now,

P1v1 = P2v2, up

cannot vanish.

and

- u s

Us = v2. Therefore, since

- u have the same sign, this denominator
s

Now use of equations (2.27) to (2.30) in equation (2.19) allows PIx to

be determined as

(2.36)

and the solution for PIx is directly expressed with equations (2.28) and

(2.30) as

P -a P (0)
Ix = P I (2.37)

Finally, equations (2.27) to (2.29) are used to define the time derivatives of

the flow properties at (0,0) in the form

a - u u
P Ix P

Ult = -.,;...---~

Co
(2.38)

-(p (o)u + PI u )
I Ix x P

Co

17
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PIt (2.40)

The shock problem with a piston moving into the flow has now been solved

completely for small t, near x = O. First, equations (2.11) to (2.13) give

the time derivatives for the region ahead of the shocks, which are

completely defined by the initial data, Q2(0) and Q2x' independent of the

piston motion. Next, equation (2.24) gives the velocity of the shock, and

then equations (2.22), (2.25), and (2.26) define the leading terms of the flow

properties behind the shock; they are exactly the same as the well-known

results for a shock separating two uniform regions. Equation (2.34) yields

the acceleration of the shock. The derivatives of the flow properties behind

the shock at the point (0,0), that is, u1x ' PIx' PIx' u1t , PIt' PIt' are

determined in equations (2.35) to (2.40), respectively. Thus, the velocity

and acceleration of the shock as well as the first three terms in the power

series expansion of all the flow quantities behind the shock have been defined

in this chapter.

18



CHAPTER 3

CENTERED EXPANSION WAVES

The typical problem involving a centered expansion wave is that in which

a piston starts to move at t = 0 away from a gas which lies in x > O. The

problem in this investigation is to determine the relation of the initial flow

properties in x > 0 and the velocity and acceleration of the piston to the

flow properties in the expansion fan, the boundary of the fan, and the flow

properties behind the fan.

3.1 Governing Equations

The governing equations for one-dimensional flow are equations (2.1) to

(2.3). These equations can be rewritten in order to uncouple the variables.

By using Riemann's invariant approach, the characteristics of the differential

equations of one-dimensional isentropic flow can be found. Combining equations

2(2.1), (2.3) and c = yp/p, yields

ypu + Pt + up ~ 0x x

Using equation (2.2) one has

c(puu + pu + P ) = 0
x t x

19



Adding and subtracting these two equations yields

(3.1)

(3.2)

Total differentiation of both sides of

of equation (2.3) gives

de Y - 1 dp
2c - = ---

dt p dt

2c = yp/p with respect to t and use

(3.3)

This relationship can be applied in equations (3.1) and (3.2), to rewrite the

system as

(~+ (u +c) :x)(u + 2
c) 0 (3.4)=at y - 1

(~+ (u - cj ~)(u _ 2 1 c) = 0 (3.5)
at ax y -

Equation (3.3), with the relationship 2 yp/p, can be written asc =

de Y - 1 dp
2p - = e-

dt y dt

or

2P(2..-. + u 2..-.)c y - 1 (e e) (3.6)= c-+ u-P
at ax y at ax

Now equations (3.4) and (3.5) express the relationship between u and c, and

equation (3.6) can be used to define the pressure p. These three equations

can then be used to replace the original system of equations (2.1) to (2.3).

20



3.2 Method of Solution

Define region I as the region behind the expansion fan. Region II is the

region ahead of the expansion fan where the flow properties are not affected

by the motion of the piston. The expansion fan itself is called region III

(Fig. 2).

x

II
I
I
I
f

.t>article

,.rath B Tail characteristic
\ \ x = t;cot

I \~ ~xc(t;,t) = t;cot + k(t;)(cot)2 + O(t 3)

~~ A Head characteristic
III 'I

o

Region

Piston path

"

Figure 2.- Expansion fan.

OA is the characteristic line that separates regions III and II, and OB is the

characteristic line that separates regions III and I. For a forward facing

expansion wave, OA and OB are forward characteristic lines C+, on which dx/dt

= u + c. For a backward-facing expansion wave, they are C- characteristic

lines with dx/dt = u - c.

Near the center of the expansion fan, the flow quantities must jump from

their values at OA to those at OB. Locally, they behave as a simple expansion

wave and are functions of the slope of the characteristic lines at the center

(in the x, cot plane). It is convenient to introduce the angular coordinate

21



n - x/cot as an independent variable to replace x. With nand t as

independent variables in region III, any flow quantity, Q3(x,t), can be

expressed as a power series in t with coefficients which are functions of

n:

Q3(x,t) - Q (O)(-!-) + Q (l)(-!-)c t + higher order terms
3 cot 3 cot 0

(C)

A characteristic curve will be specified by a parameter ~, where ~ is the

slope of the curve at the origin (see fig. 3).

~cot

~ xc(~,t)

~2cOt

/// --- A
/ ..._--

/"........'.~..~ .

Figure 3.- Geometry of the expansion.

Thus, the family of characteristics is given by

2 3
xc(~,t) = ~cot + k(~)(cOt) + O(t) in which

to be determined in the course of the analysis.

x - x (~,t) wherec

k(~) = d
2

Xc /2d(C ot)2It_O

If ~2 and ~l are the

is

slopes of the first (OA) and last (OB) characteristics at the origin, then the

family of characteristics is given by ~l ~ ~ ~ ~2. Note that, by definition,

22



the angular coordinate is related to the parameter ~ on a characteristic

through

x (~,t)
cn =~----- = ~ + k(~)cot + higher order terms
cot

3.3 Outline of the Steps

(3.7)

The mathematical procedure is to substitute expansions (A), (B) and (C)

into the governing equations and then to compare the coefficients of like

powers of t. The outline of the steps follows:

1. Determination the flow properties in region II by substituting series

(A) into equations (2.1) to (2.3). This will then determine the

first characteristic line in region III, OA, and its slope and

curvature, by use of the boundary condition which requires that the

flow properties are continuous across OA.

2. Determination of the flow properties in the expansion fan,

region III, by substitution of series (C) into the governing

equations (3.4) to (3.6).

3. Determination of the last characteristic line in III, OB, and its

slope and curvature.

4. Application of the continuity condition along OB and determination of

the first derivatives of the flow properties in region I, which must

be compatible with the velocity and acceleration of the piston.

The results for centered expansion waves, the velocity and acceleration

of the waves, and the gradients of the flow properties are derived in next

section.
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3.4 Explicit Solutions

The time derivatives for flow properties in region II are obtained the

same way as for the shock problem in Chapter II. The equation of the

characteristic OA is

The flow properties are required to be continuous across OA so that

(3.7a)

where from equation (3.7). Thus,

using Taylor series expansion, this equation becomes (up through linear terms

in t),

(3.8)

Now, comparing the coefficients of like powers of t in equation (3.8), it is

found that

Q (O)(~ ) = Q (0)
322
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and

(3.10)

Equations (3.9) and (3.10) represent boundary conditions on the functions

Q (O)(n)
3

and at the point n = ~2 and will be used in the

following steps.

By the definition of the characteristic lines, dx/dt = u + c for

forward-facing expansion waves, and dx/dt = u - c for backward-facing

expansion waves. Thus

Comparing coefficients of the same power of t, one obtains

(3.11)

~ IS

2

and

(3.12)

(3.13)

Hence, the slope and curvature of the head characteristic OA are defined.

To proceed with the second step in the analysis, the special expansion

(C) is used in region III. The spatial and time derivatives are as follows:

and

Q3t(n,t) .. -Q (0)' (n) ~ - Q (1)' (n)nc + Q (1)(n)c
3 t 3 030
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Q3x(n,t) - Q (0)' (n) __1__ + Q (1)' (n)
3 cot 3

(3.15)

Substituting these equations into the governing equations (3.4) and (3.5) and

then comparing the coefficients of the same power of t, one gets

[-COT) + U3(0)(T)) - C3(0)(T))][U3(l)'(T)) - y ~ 1 C3(l)'(T))] + U3(1)(T))[CO + U3(0)'(T))

- --!-l C3(Ol'(T))] - c3(l) (T))[_2_ Co + U3(0)'(T)) - _2_ C3(0)'(T))1 .. 0
y- y-I y-I J

[-COT) + U3(O)(T)) + C3(O)(T))][U3(l)'(T)) + y ~ I C3(l)'(T))] + U3(l)(T)l(Co + U3(O)'(T))

+ y ~ I C3(0)'(T))] + C3(l)(T){y ~ I Co + U3(0)'(T)) + y ~ I C3(O)'(T))] .. 0

From equations (3.16) and (3.17), two sets of results are obtained:

(3.16)

(3.17)

(3.18)

(3.19)

(0) (0)( )u
3

(n) ± c
3

n
(3.20)n =

Co

u3(0)'Cn) 2
1 c3(0)'Cn) (3.21)=1= = 0

Y -
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in which the upper signs correspond to forward-facing expansion waves and the

lower signs correspond to backward-facing expansion waves.

Integration of equation (3.21) and application of boundary condition

(3.9) at n = ~2 yields

If a constant B is defined by

(0) (0)
u

2 2
c

2
B = + +

Co y - 1 Co

(3.22)

(3.23)

then the terms c (O)(n) and u (O)(n)
3 3 can be written, using

equations (3.20) and (3.22) as

(3.24)

(3.25)

Equations (3.20) and (3.22) are now substituted into equations (3.18) and

(3.19), which yields

(3.26)

+2C 3(O)(rt)[U3(l)'(rt) + y = 1 C3(l) I (rt)] + [U3(l)(rt) + y =1 C3(l)(rt~Co = 0

(3.27)

Substitution of equations (3.24) and (3.25) into equation (3.26) results in

27



where

-2(3y - 1)
A ::s -----,---.,-

(y - 1)(y + 5)

It follows that

u (1)'(n) = ± Ac (1)'(n)
3 3

which can then be substituted into equation (3.27) to obtain

or

(3.28)

(3.29)

y + 1 1 c (1)(n) .. 0
2(y - 1) n ± B 3

The general solution for is given by

yH

= c (l}(l; >(11 ± B~2(y-l)
3 2 ~2 ± BJ

(3.30)

where, using the boundary condition (3.10),

(3.31)

and then u
3
(1)(n) is known from equation (3.28). Of course, from equation

(3.28) it follows that u (1)(~ ) = ± Ac (1)(~) and this must be consistent
3 2 32'

with the boundary condition (3.10) on u3(1)(~2) and c
3
(1)(~2). This has

been proved by the author by applying the characteristic equations (3.4) and

(3.5) in region II and using equation (3.12) for ~2. This yields a
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relationship between ~2u2x + u2t and ~2c2x + c2t , from which it follows

(1) (1)
that u3 (~2) = ± AC 3 (~2)·

Now equation (3.6) represents the relationship between u, c, and p.

Since u and c are already known, this equation can be used to calculate

pressure. Substituting the expansion series (C) into equation (3.6) and

comparing the coefficients of like powers of t yields two equations. The

first one is

(3.32)

and the second one is

(3.33)

Since the factor -n + u
3
(O)(n)/co = + c

3
(O)/c

O
is not zero, it can be

cancelled in equation (3.32) resulting in a first-order ordinary differential

equation for P3 (O)(n):

P3(O)'(n) - 2y 1 P3(O)(n). 0
y - 1 n ± B

Integrating this differential equation and using the boundary condition (3.9),

the solution for P3 (O)(n) can be obtained as
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(3.34)

A differential equation for can also be obtained by rewriting

equation (3.33) with the aid of equations (3.24), (3.28), (3.30) and (3.34)

in the form:

. (0) ~ .

(1)' ( ) _ h..!...!. _1_ (1)() _ y(y + 1)(1 + 5) u (1)(~ )~ 1 (Tl t BV(y-l) • 0
P3 Tl Y _ 1 Tl t B P3 Tl 2(y _ 1)2 3 2 Co (Tl t B)2 t 2 t BJ

The general solution of this inhomogeneous equation is

u (l)(t )
P3(1)(~) • -X(X +1)(y + 5) 3 2

(X • 1)(3y . 1) Co

3(y+l) 3 +1
2(y-l) -y-

p (0) (~t B) + G(~ t B) X-I
2 (5y+l)

(t
2

t B) 2(y-l )

The integration constant, G, can be written as

(1)
( ) 1 ( + 1)( + 5) _u3__(_t2_) p (0) 1

G • P3 1 (t2) ----::'3-yt"7"1 + I/- 1)(3~ - 1) Co 2 ~
X-I (t2 t B) Y·

(t
2

t B)

so that solution P3(1)(n) is represented by

{

(1)( ) (0) [ ~] } 3y+l
P (1)( ). y(y + l)(y + 5) U3 t 2~ (~\2(Y-l) + 1 + (l)(t) (~\Y-l
3 Tl (y - 1)(3y - 1) Co ~ t B ~ t BJ P3 2 t

2
t BJ

(3.35)

and p (l)U; )
3 2 is defined by the boundary condition (3.10) in terms of known

quantities as
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Proceeding further. the continuity equation (2.1) can be used to define

the density. The procedure is the same as before: substituting expansion

. series (C) and its derivatives with respect to x and t into equation (2.1)

and then comparing coefficients of like powers of t. Two equations are

obtained:

and

= 0 (3.36)

(3.37)

Now. solving for P3(0)(n) from equation (3.36). with the help of equation

(3.25) and the boundary condition (3.9). one obtains

2

=(0 ) (Tl ± B ~ y-l
P2 !; ± B

2
(3.38)

Similarily. solving equation (3.37) using equations (3.25). (3.28). (3.30).

and (3.38). the solution of P (1)(n) takes the form:
3

31



(3.39)

where is known from the boundary condition (3.10).

At this stage, all the flow properties in the fan region III are defined.

The next step is to define the tail of the fan OB; that is, its slope and

curvature at t· O. Since OB is also a characteristic line, with dx/dt

= u ± c on OB, the flow properties must be continuous across it. The

boundary conditions on OB are similar to those on OA. First denote the slope

of the OB at origin by ~1. The characteristic line OB can be written as

follows:

(3.40)

Now, the boundary condition along OB is expressed as before as

By comparing the coefficients of the same power of t, two equations are

derived:

Q (0) _Q (O)(~ )
1 3 1
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The first of these can be used to define the slope of OB; that is, if Q is

identified as u, than equations (3.41) and (3.25) define ~1' using the fact

that u
1

(0) = up (see eq. 2.22):

u
y + 1 p y - 1

~1· 2 - ± 2 BCo
(3.43)

The constant B is defined in equation (3.23). Substituting ~1' into equation

(3.20) and appling equation (3.41) yields

from which

=------ (3.43a)

(3.44)

By definition, on the characteristic line dx/dt = u ± c. This implies that

With equations (3.24), (3.25), (3.28), (3.30) and (3~43), every term in this

equation is known except k(~l)' Therefore

(3.45)

where u
3
(1)(~1) is defined in equation (3.28). This completes the third

step in the analysis as outlined previously.
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The final step consists in using the slope and curvature of OB and the

boundary conditions on the piston path to define the flow properties in

region I. First, substituting the expansion series (A) into the governing

equations (3.4) and (3.5) yields

and

Adding and subtracting equation (3.47) from (3.46), this system of equations

becomes

(3.48)

(3.49)

along with these, the boundary conditions on OB , equation (3.42), imply that

(3.50)

(3.51)

However, it is easily seen using equation (3.43a) that the determinant of the

system (3.48) to (3.51) vanishes. A fourth independent relation can be found
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a
- p

cl "" + -~-
x u ± Bc

P 0

{

4{y + 1)cO 2 1 1
U = U (l)(~ ) - a -~-
1x (3y - 1)( y - 1) 3 1 y - 1 P up oJ: Bc

O

and

f 4{y + l)u 2}
Ult = - p U3(l} (~l) - a ~l __1__

(3 y -l)(y-l) y-l P Up±BCo

(3.52)

(3.53)

(3.54)

(3.55)

Substituting expansion series (A) into equation (3.6) for region I,

yields

From the boundary condition on OB

and
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(3.58)

Therefore, equations (3.56) and (3.58) with equations (3.43) and (3.49) yield

for P1x the expression

(3.59)

Substitution of equation (3.59) back into equation (3.56) then defines P1t.

The procedure that defines the density P in this region is the same as

that which defines the pressure. The equations used are the continuity

equation and the boundary condition, equations (2.1) and (3.42), with Q

identified as p. They are as follows:

(3.60)

(3.61)

Then the spatial derivative of p can be determined as

(3.62)

Substitution of equation (3.62) back into equation (3.60) then defines PIt.

The problem involving a centered expansion wave, that is, in which a

piston moves at t = 0 away from the gas, has now been completely solved.
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The governing equations inside the fan are expressed in Riemann invariant

form, equations (3.4) and (3.5), in order to uncouple the variables. This

form relates u and c, and then the original differential equations are used

to define p and p. The regular power series (A and B) are used for the

regions ahead of and behind the expansion fan, and a special expansion (C) is

employed for the centered expansion fan region.

The flow properties in the region ahead of the fan depend only upon the

initial data of the flow and can be expressed in the same manner as for the

region ahead of a shock. The head characteristic, OA, its slope and

curvature, are defined by using the boundary conditions, equation (3.8), that

require the flow properties to be continuous across OA; they are given in

equations (3.12) and (3.13). The solutions for the flow properties inside the

fan are in two parts. The leading terms, c
3
(0)(n), u

3
(0)(n), P3(0)(n)

and P3(O)(n), are defined in equations (3.24), (3.25), (3.34), and (3.38),

respectively. These are the same as the solutions for a centered expansion

wave with uniform initial data, and they are functions only of the flow

properties ahead of the fan. The first order terms c
3
(1)(n), u

3
(1)(n),

P3 (l)(n), and P3(1)(n), are defined in equations (3.30), (3.28), (3.35)

and (3.39), respectively. They are also related only to the flow properties

ahead of the fan. The piston velocity at t = 0 first comes into the picture

when defining the slope of the tail characteristic in equation (3.43). The

curvature of the tail characteristic, equation (3.45), can be expressed after

its slope is defined. It is interesting to note that the acceleration of the

piston does not affect the solution anywhere ahead of and within the expansion

fan. The leading terms in the region behind the fan are defined by equation

(3.41), with Q identified as u, c, p, or p. Initial spatial and time

derivatives of c and u in region I are defined by equations (3.52) to
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(3.55), and the initial spatial and time derivatives of p and pare

defined by equations (3.59), (3.62), (3.56) and (3.60). Thus, the various

series expansions of the flow properties in the fan and behind the fan have

all been determined.
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CHAPTER 4

INITIAL VALUE PROBLEM

The initial value problem with discontinuous initial data joining two

uniform regions was studied by Riemann [9] and was used as the canonical

solution, or the building block, by Chorin [3] for the numerical solution of a

general initial value problem. In this section, an improved canonical

solution for the propagation of discontinuous initial data joining two

nonuniform regions is constructed by including the first order effects of the

nonuniformities.

For such an initial value problem, a shock wave, a centered expansion

wave, and a contact line all exist simultaneously. An expansion wave

propagates into the higher pressure side, a shock wave propagates into the

lower pressure side.

A contact line is a particle path separating the region behind the shock

from the region behind the expansion wave. Across it the temperatures and the

densities may be different, but it is necessary that the pressure and fluid

velocity be the same. The problem is to relate the velocity and acceleration

of each discontinuity wave (that is, the shock wave, the expansion fan, and

the contact line), to the initial flow properties and their gradients

(see fig. 4).
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Figure 4.- Shock wave, expansion fan, and contact line.

The (~) indicates the flow properties on the higher pressure side, that is,

the expansion wave side.

4.1 Method of Solution

The preceding two solutions for shock waves and for centered expansion

waves are to be combined by considering the piston path as a contact line, so

that the fluid velocity in the region behind the shock and in the region

behind the expansion fan are the same along this line. The condition for

continuity of the pressure across the contact line gives two equations, which

define and ap ' the speed and acceleration of the contact line.
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4.2 Explicit Formulas

The condition for continuity of the pressure across the contact line

gives

(4.l)

The constant term and the coefficient of t yield

(4.2)

and

By substituting equation (2.24), the solution for us' into equation (2.26),

P1(O) is related to from the shock solutions

where the upper sign applies for a forward-facing shock and the lower sign for

backward-facing shock.

Similarly, by substituting equations (3.12) and (3.43), the slopes of the

head and tail characteristics of the expansion fan, into the definition of

Pl(O) given by equation (3.34), and by the use of (3.23), the definition

- (0)
of B, results in a relation between Pl and up in the form
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= .. (0)( y - 1
P2 + 2 (4.5)

where the upper sign applies to a backward-facing expansion fan, and the lower

sign to ~ forward-facing expansion fan. Equating the expression in equations

(4.4) and (4.5) , results in a relation which determines up:

(4.6)

Equation (4.6) must be solved iteratively for up. Note that the upper sign

holds for the case of a right shock/left expansion fan; that is, with the

pressure in x < 0 higher than that in x > 0 at t = O. The lower sign is

for the case of a left shock/right expansion fan; that is, for the higher

pressure in x > O. The ("') indicates flow properties corresponding to the

higher pressure side. After up has been calculated, all the leading terms

in the expansions of the flow properties on either side of the contact line

can be determined by using the equations in Chapters 2 and 3.

The curvature of the contact line can be found using equation (4.3).

First, repeating equation (2.29), in the region behind the shock

(4.7)
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where Cl(O) can be determined by equaitons (3.25), (3.26), and with the

relation c 2 • yp/p, PI (0) and ulx are defined by equations (2.25) and

(2.35). Similarly in the region behind the expansion fan,

(4.8)

In consequence of equation (4.3), the right hand sides of equations (4.7) and

(4.8) must be equal. Subst~tution of the expressions (2.35) for ulx and

(3.53) for ulx then gives

{

(0)2 (0) ( )[( (0) ) 8 ((0»)1 ~ (0)2 ~ (0)}-1
c1 P1 up - Us u2 - up - y _ 1 u2 - Us 'J 2 c1 P1

a • ~ +-- ...::....----=--
p (0) (0)2 4 (0) [ 2 (0)2] y - 1 up =1= BcO

(u - u )c - -- (u - u) (u - u) + c
2 p 1 y+1 2 s p s 1

[

(0) ](0)2 (0) (u 2 - Up) 4

{

1 P1 - U

z

(0) _ Us (up - us)(O - E) + y+T O(up - us)

. (0) (0)2 4 (0) [ 2 (0)2 ]
(u • u )c • -- (u • u) (u - u) + c

2 p 1 y+1 2 s p s 1

This completes the required analysis of this chapter. The determination

of the contact line has been accomplished by joining the solutions for the

shock problem and the expansion wave problem together using the conditions of

continuity of pressure and velocity across the contact line. The initial

velocity and acceleration of the contact line are given by equations (4.6) and

(4.9). Thus, the solution of the initial value problem with discontinuous

initial data joining two uniform regions has been extended to the nonuniform
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case. The canonical solution for discontinuous initial data joining two

uniform regions has been used as the basic building block for the random

choice method and for front tracking. With the results of the present work.

it is now possible to explicitly include information about nonuniform initial

data in such a building block. This leads to a numerical procedure which can

utilize a much larger step size in the vicinity of discontinuities in the

initial data. The actual implementation of the current results into an

improved numerical scheme for general initial data is beyond the scope of the

present paper.
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CHAPTER 5

UNSTEADY FLOW PROBLEMS WITH CHEMICAL REACTION

Flow problems with chemical reactions are discussed in this chapter. The

problem is to relate the initial flow properties and their gradients to the

speed and acceleration of the reaction front and other discontinuities. The

piston moving into the combustible gas for x > 0 at taO is treated

first. These solutions can then be combined with the shock or expansion fan

solutions in the preceding chapters using exactly the same procedures as in

chapter 4 for the initial value problem without chemical reaction. The

algebra involved in this combination is extensive for the initial value

problem with chemical reaction; thus, it will not be carried out in the

present work, and only the separate elementary problems will be treated. In

addition, the elementary problems themse~ves will not be solved explicitly.

For brevity, the solutions will be considered complete where an appropriate

set of algebraic equations governing the un~nown quantities is established.

The shock conditions across a reaction front are [10].

(5.1)

(5.2)

(5.3)
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where p is the density, p is the pressure of the gas, v is the relative

velocity of the flow with respect to the shock, h is the enthalpy,

(h = y ~ is assumed) and q is the energy formation which can bey - 1 p

released through chemical reaction. The subscript 1 refers to burned gas and

the subscript 2 refers to unburned gas (i.e., gas which has not yet undergone

the chemical reaction). In the present section it is assumed that part of q

is released instantaneously in an infinitely thin reaction zone and the

unburned gas is on the right. For the sake of simplicity, it is assumed that

is more difficult only because of

additional algebra). When the reaction can be exothermic (i.e.,

can release energy) only if q2 > q1; that is, for the same pressure and

density, the total energy and enthalpy of the unburned gas is always greater

than that of the burned gas. In this model, viscous effects, heat conduction,

and radiative heat transfer are neglected.

5.1 Chapman-Jouguet Waves

For completeness, a brief summary is given in this section of the

elementary theory of one-dimensional detonation and deflagration waves, and a

derivation of relations between the variables on the two sides of such waves

is carried out for later use. The material presented here is essentially as

found in references 9 to 11. Chapman-Jouguet waves have a special

significance in many systems. It is therefore of interest to investigate the

properties of these waves first. With the aid of equations (5.1) and (5.2),

equation (5.3) can be written as
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(5.4)

where q = q2 - q1. A dimensionless final pressure ratio, a specific volume

ratio, and a dimensionless heat of reaction are defined as follows:

Multiplying equation (5.4) by P2/PZ yields

y ~ 1 (nv - 1) - ~ (v + 1)(n - 1) = a

the solution of which is

(2a + y + 1) - v
Y - 1n = ....;.-~---!~--.::...--

(~ : Dv - 1

The curve given by equation (5.5). is called a Hugoniot curve (Fig. 5).
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Figure 5.- Hugoniot curve for detonations and def1agrations.

The intersection between the Hugoniot curve and the straight line through the

point (1,1) establishes the final state of the system. Each Hugoniot curve is

therefore divided into two disconnected branches, an upper branch called the

detonation branch, and a lower branch called the def1agration branch.

Combustion waves are termed detonation waves or def1agration waves according

to the branch of the Hugoniot curve upon which the final condition falls. In

passing through a detonation wave, the gas is slowed down and its pressure and

density increase; conversely, in going through a def1agration the gas speeds

up and expands, and its pressure decreases.

There are two points on the Hugoniot curve at which the straight line

from (1,1) is tangent to the curve (points D and C on Fig. 5). These are

referred to as the Chapman-Jouguet points. The slope of the Hugoniot curves

is given by
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y + 1
1£ + 1

dl£ Y - 1
-= -
d\l Y + 1

1
\I - 1

y -

while a straight line through

y+ 1
1£ + 1

y - 1 1£ - 1
=

Y + 1 \I - 1
\I - 1

y - 1

or

yl£
\I = (y + 1)1£ - 1

(5.6)

the point (1,1) with this slope has the equation

(5.7)

(5.8)

Simultaneous solution of equations (5.5) and (5.8) yields the ordinates of the

Chapman-Jouguet points as

2y }
1 + -a:(-y~2>----1-) , (5.9)

and the abscissas of the points as

1 +
2y
2

a:ey - (5.10)

in which the upper signs correspond to the detonation branch and lower signs

correspond to the deflagration branch. A Chapman-Jouguet wave is defined as

one for which the pressure and density ratio ahead (region II) and behind

(region I) are given by equations (5.9) and (5.10).
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Using the continuity and momentum equations and the relation

c2 • yp/p, it can be shown [10] that the Mach number of the flow ahead of the

Chapman-Jouguet front (region II) relative to the front is given by

2
1 + a( y -

2y
1) ~
±~~ (5.11)

According to equation (5.11), the initial Mach number always exceeds unity for

Chapman-Jouguet detonations and lies between zero and unity for Chapman-

Jouguet deflagrations. In addition [9], it is known that Chapman-Jouguet

waves correspond to the minimum possible propagation speed for detonations and

the maximum possible propagation speed for deflagrations; therefore, all

detonations propagate at supersonic velocities, and all deflagrations

propagate at subsonic velocities.

5.2 Explicit Formulas for Chapman-Jouguet Waves

If the flow fields separated by the Chapman-Jouguet wave are nonuniform,

the wave will not propagate with a constant speed. To relate the initial

acceleration of the wave to the gradients of the initial data, we introduce

again the power series expansion (A) for flow properties Q near the wave front

which is taken at x = 0 for t = 0:
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Let ud and ad be the reaction front speed and acceleration at the origin,

respectively. The reaction front path, xd' is then defined as

(5.12)

Substituting (A) into equations (5.9) to (5.11), evaluating along the reaction

front, and then comparing the coefficients of like powers of t, the leading

terms of the flow properties behind the reaction front are all defined

explicitly:

= p (0) 1 + qy(y - 1)
2 (0)

C
2

(5.13)

(0)
PI

= (0) ~ + q(y - 1)
P2 2

(0)
c
2

(0)2 ~ -12c
2---:---

q( / 1)
(5.14)

(S.lS)

.. and the speed of the reaction front is found as
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1 + -..:..q(........;.y_2_--::1::--) ±
(0)2

2c
2

(5.16)

In equation (5.16) and elsewhere, the notation (*) is used to indicate the

direction of propagation of the reaction front. The upper sign corresponds to

a right-facing front, that is, with the unburned gas on the right, and the

lower sign corresponds to a left-facing front. The upper and lower signs

which appear without enclosing parentheses refer to the Chapman-Jouguet points

for detonation and deflagration, respectively.

The coefficients of the linear terms in t from the foregoing

substitution lead to a set of linear equations which couple the derivatives of

the flow quantities; they are

- (l)PI

- (l)PI
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(0)2
c

2
1 +----

I :+: -;::==.:q=(y::2=_=:::1)=

(0)2
2c

21 +,---
q(y2 _ 1)

(5.17)

(5.18)



and

1 +

(5.19)

In equations (5.17) to (5.19), the following definitions have been introduced:

P u + P c P2xud + P2tcO
P1(l) =

Ix d It 0
PZ(l) =

(0) (0)
PI Pz

- (1)
P1xud + PltcO

Pz (1) =
PZxud + PZtcO

PI =
(0) (0)

PI Pz

u u + u c u u + Uz Co

ul (l) = Ix d It 0 UZ (1) =
Zx d t

(0) (0)
u

1
Uz

Now it is known that a Chapman-Jouguet reaction front, when observed from the

burned gas behind it, moves with speed of sound [9,11]. This is the famous

conclusion made by Jouguet in 1905. This relation gives
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and

(5.21 )

Since ud and C1(0) are already defined, the leading term of the flow

velocity behind the Chapman-Jouguet reaction front u1(0) is determined. Note

that the region behind the reaction front (Fig. 6) is a regular region similar

to the region behind the shock treated in Chapter 2.

Piston Xp* = u *t + 1/2 a *t 2
p P

o

Burned
gas ~ Chapman-Jouguet

I / xd == udt +

/unburned
/ gas

Region II

---------.,...-..-----+x

reacti02 front
1/2 adt

Figure 6.- Wave pattern of Chapman-Jouguet detonation front.

Suppose the Chapman-Jouguet wave is initiated by a piston motion,with piston

and*initial velocity and acceleration up

* * 1*2path is then xp = up t + 1 2 ap t •

path, equation (2.10), requires that
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* (0)
u = u1p

* *
(5.22)

a = u u + ultcOp bp

To determine the first order terms of the flow properties behind the front,

substitute of the expansion series (A) into equations (2.1) to (2.3) and use

the relation This gives three equations identical to equations

(2.27) to (2.29) except that up is changed to Equations (5.17),

(5.18), (5.19), and (5.22) together with these three equations form a system

which can be shown to be redundant in a manner analogous to the behavior of

equations (3.48) to (3.51). Thus, equation (5.21), for example, can be

omitted. The remaining six equations form a linear system from which the six

spatial and time derivatives of the flow quantities behind the reaction front

can be calculated. The initial acceleration of the front is expressed

directly by equation (5.19); it is independent of the piston acceleration.

5.3 Solution of Flow Problems Involving a Detonation Process

The detonation is assumed to be initiated by moving a piston into a

nonuniform region (x > 0) with initial speed and acceleration up and ape

Depending on the initial velocity of the piston, two types of detonation can

occur •. First, if up is greater then or equal to the Chapman-Jouguet value

*up discussed in the previous paragraph, the detonation is termed a strong

detonation. (Fig. 7)
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Piston path

Strong detonation

Unburned
gas

x

Figure 7.- Piston problem with strong detonation.

The flow relative to the reaction front is supersonic ahead and subsonic

behind, which is the same as for an adiabatic shock. The differential

equations of the flow field except at the reaction front are equations (2.1)

to (2.3), and the jump conditions are equations (S.I) to (S.3). The only

equation that is different from those describing the shock problem is the

energy jump condition (5.3), which has an extra term to account for chemical

energy due to burning.

The procedure used in solving the problem is exactly the same as that

for the shock problem. First rewrite equation (5.3) using equations (S.I) and

(S.2)

Now, substitution of the expansion series (A) into equation (S.23) and

comparison of like powers of t gives, at the leading term

S6

(5.23)



Ud - (0). [l.....:-!. - q + .L!..l (u (0) _ U (0) ~
u2 2 (0) (0) 4 1 2

u1 - u2

•
t

[
.r...:..l - q. + 1.....!.....!. (u (0) _ U (0) )~2 + c (0)2

2 (0) (0) 4 1 2 2
u1 - u

2
(5.24)

which defines the initial speed of the reaction front. The first order term

in t yields

(5.25)

where E is defined by equation (2.33) with Us changed to ud. With equation

(2.21) replaced by equation (5.25), and by making use of equation (5.24) for

the initial velocity of the reaction front, the problem can be solved using

exactly the same procedure described in Chapter 2.

In the second case, in which up is less than or equal to

•

flow involving a Chapman-Jouguet detonation is possible. The flow immediately

behind the Chapman-Jouguet front need not be equal to the piston velocity

up. Adjustment in this case is effected by a centered expansion wave which

follows the detonation front immediately , since both the front and the first

wave in the expansion fan move with sound velocity relative to the gas behind

the front [9]. This expansion wave drops out only if
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problem is solved by combining the Chapman-Jouguet detonation and expansion

wave results. First define the region ahead the detonation front as

region II, the region behind the expansion fan as region I, and the fan itself

as region III (Fig. 8).

Piston p;~th

I Particle path
I

I

I B

I~ Expansion fan
I"

• Y"Burned
/'" L . A Chapman-Jouguet

-"IiI/f ---- detonation
. - Unburned

""--- -'-'--- -----+
Xo

Figure 8.- Chapman-Jouguet detonation with expansion fan.

The procedure used is to solve the Chapman-Jouguet detonation with

initial data in x) O. Then the flow properties immediately behind the front

are the initial conditions for the expansion fan problem. The solution in

region II is completely specified by the initial data in x) O. The

Chapman-Jouguet detonation is solved with the results outlined in

section 5.2. The leading terms of the flow properties immediately following

the Chapman-Jouguet detonation will be denoted, P4(0), P4(0), and u
4
(0). They

are all defined in equations (5.13) , (5.14), and (5.20) by replacing

subscript "1" by "4". The initial velocity of the front, ud' is defined by

equation (5.16). Since these solutions are the initial conditions for the

expansion fan problem, the leading terms of the flow properties inside the fan

and behind the fan can be worked out using the equations in Chapter 3.
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To determine the first order terms of the flow quantities behind the

front, we note that P4 (1), P4 (1), and ~4 (1) are now known from equations

(5.17), (5.18), and (5.21). Because the front coincides with the leading

characteristic of the expansion fan, xd of equation (5.12) is equal to

xc(~2,t) of equation (3.7a). Therefore

(5.26)

and

(5.27)

ad is defined in equation (5.19), so k(~2) is known. Now, rewriting the

boundary condition (3.10) using (5.26), yields

Q u + Q c ,
Q (1)(~ ) = 4x d 4t 0 _ k(~ )Q (0) (~ )

3 2 Co 2 3 2 (5.28)

The quantities Q4xud + Q4tCO are those known from equations (5.17), (5.18),

and (5.21). Using the expression (5.27) for k(~2) and taking (5.28) as the

•

,boundary condition on OA, the first order terms of all the flow properties

inside the fan and behind the fan can be calculated in the manner discussed in

Chapter 3.

5.4 Solution of Flow Problems Involving a Deflagration Process

In deflagration processes the situation is in many respects quite

different from that encountered with detonation processes~ Suppose a weak

deflagration wave begins at a piston at x = 0, t = O. Then the velocity u
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of the burned gas behind the deflagration front is negative, u < 0 [9]. This

is compatible with the conditions of the problem only if the piston is

withdrawn with a speed at least equal to u. What actually happens is that a

precompression shock is sent out into the explosive. It pushes the explosive

gas ahead with a velocity just sufficient to ensure that it may attain the

same velocity as the piston when it is swept over and burned by the

deflagration front. The occurrence of aprecompression shock is in complete

agreement with, or rather a consequence of, Jouguet's rule that the flow ahead

of a deflagration is subsonic. Consequently, the deflagration influences the

state of the gas ahead of it. Define the region ahead of the precompression

shock as region II, the region behind the shock as region V, and region

between the piston and the Chapman-Jouguet deflagration as region I (Fig. 9).

, x

II

Unburned

Chapman-Jouguet
defla~ration

\
\

\
\
\,
\

\
Unburned
~ Precompression
~ shock

/

Particle
path

I

Burned
gas

o

Particle cot
path

Figure 9.- Weak deflagration with precompression shock.

•

To determine the leading terms of the flow properties in region I and in

region V and the initial speed of the deflagration (ud) and of the shock (us),

the results of the Chapman-Jouguet wave problem and the shock problem are
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used. First, an equation which relates the initial velocity of the piston

(up) to the flow properties behind the shock is worked out. From

equation (2.24), two relations can be established for (u5(0) -us) and

(u2(0) - us) in terms of (u2(0) - u5(0»:

(u (0) _ u ) a~ (u (0) U (0)) -~s s 42 -S + 4

and

(
(0))2

(
(0) (0)) 2 4'2

U2 - Us + y + 1 (5.30)

Using c2 = yp/p from equation (2.25) and (2.26),

From equations (5.13) and (5.14),

(5.31)

(5.32)

(5.33)

Substituting equation (5.16) into (5.20) with the relation Ul(O). up'

results in
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u :t c (0) _ u (0) + c (0) [ 1 + q( / - 1) ~
P 1 5 5 (0)2

2c
6

(5.34)

Equation (5.34) expresses the desired relation. The so~ution for u5(0) can

be determined iteratively by using equations (5.30) to (5.34). Once u5(0)

is determined, the velocity of shock, the leading terms of the flow properties

behind the shock, the velocity of deflagration and the leading terms of the

flow properties behind the deflagration can be calculated successively using

the appropriate results from earlier chapters.

The first order terms of the flow properties in region V and region I,

and the initial accelerations of the Chapman-Jouguet reaction front (ad) and

of compression shock (as)' consist of 14 unknowns to be determined. The

equations to be used are (i) the three jump conditions across the compression

shock, equations (2.19), (2.20) (with region I there changed to region V), and

equation (5.25); (ii) the conditions across the Chapman-Jouguet reaction

front, equations (5.17), (5.18), and (5.19) (changing subscript 2 to 5 and and

using the lower sign for deflagration); (iii) equations (2.27) to (2.29) for

conditions inside region I; (iv) the counterparts of equations (2.27) to

(2.29) for region 5, which are

P u (0) + PStcO ... _P (O)u
Sx S S Sx

u u (0) + u5tcO ...
-PSx

5xS (0) .'Ps

P u (0) + PStcO ...
(0)2 (0)

5x 5 -c5 Ps uSx
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•

(v) the boundary condition ap • u1xup + U1tCO; and (vi) equation (5.21) which

follows from the fact that Mach number is unity behind the Chapman-Jouguet

reaction front. The 14 unknowns can be determined by solving these 14

algebraic equations •

It is of interest to note that since the Mach number behind the Chapman-

Jouguet reaction front is unity~ this front is a characteristic line.

It was concluded in Chapter 3 that the initial acceleration of the piston~ ap~

does not affect the flow properties ahead of the tail characteristic of an

expansion fan~ and does not affect the acceleration of the tail characteristic

line itself. Since the Chapman-Jouguet reaction front is a characteristic

line~ the same situation would be expected to be true here; that is~ the flow

properties in region V and as and ad should be determinable without

knowing ape It is not obvious from the above set of 14 equations that this

is so. It can be seen to be true by the following argument. Consider the 14

algebraic equations listed above~ omit iii (equations 2.27 to 2.29) and

v (ap • u1xup + U1tCo)~ and include the Riemann invariant relation (3.46) for

the Chapman-Jouguet deflagration front. This results in 11 equations~ which

can be used to solve for the 11 unknowns~ PSx~ PSt~ PSx~ PSt' uSx ' uSt ' as'
- (1)
u 1 • With these, all quantities in region V and

,

ad are known. Thus, the present case is consistent with previous result that

the piston acceleration only affects the flow properties behind the tail

characteristic, but not the initial acceleration of the tail characteristic,

or the flow properties ahead of the tail characteristic.

This completes the discussion of the elementary piston problems with

chemical reaction. First, the Chapman-Jouguet solution has been worked out in

detail in section 1. The strong detonation problem, which is similar to the

adiabatic shock problem, is discussed next. The Chapman-Jouguet detonation
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with an expansion fan following the detonation front and the Chapman-Jouguet

deflagration with a precompression shock are discussed in sections 3 and 4.

respectively. In these problems. explicit solutions are not worked out in

detail because each involves extensive algebra; however. they can be

determined numerically easily using the listed linear systems of equations.

Once the separate elementary problems have been solved. they can be combined

with the shock or expansion fan solutions in the preceeding chapters using

exactly the same procedure as in chapter 4 to solve initial value problems

with chemical reaction. Two examples of such problems are indicated in

figures 10 and 11. Figure 10 shows a typical wave pattern including chemical

reaction and an adiabatic expansion fan; Figure 11 illustrates a pattern with

chemical reaction and a shock wave.

Pressure at t • t 1

path

x

Contact
line

'0

Particle t
path

Chapman-Jouguet
--""o~~~~--:;:t--+-""7f7.c...:7'..c;...- detonation

Figure 10.- Wave pattern including chemical reaction and
adiabatic expansion fan.
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Pressure at t =

Chapman-Jouguet
.....,~,4-"7"~-::::;o..-.~- de tonation

Shock

Contact
line

---------....-~-------+o x

Figure 11.- Wave pattern with chemical reaction and shock wave.
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CHAPTER 6

CONCLUDING REMARKS

The purpose of this work is to discuss the initial value problem of one

dimensional gas-dynamics involving discontinuous, nonuniform initial data.

Canonical solutions which are valid in a small x, t region around a dis

continuity, and which include the first order effects of nonuniformities, have

been derived explicitly. Similar solutions corresponding to discontinuous but

otherwise uniform initial data have been used in the past as building blocks

for the numerical solution of general initial value problems. The results

presented in the present work, in which the nonuniformities in the data are

explicitly taken into account, are intended to be used as building blocks in

an improved numerical scheme which will permit the use of much larger mesh

sizes than do previous methods.

The theory has been derived by considering a group of elementary piston

problems. Solutions with a shock or with a centered expansion wave have been

worked out individually in order to relate initial flow properties and their

gradients to the speed and acceleration of the discontinuity waves. Then they

have been combined to represent the solution of an initial value problem by

regarding the piston path as a contact line. In addition, problems with

chemical reaction are discussed in terms of elementary piston problems which
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involve strong detonation waves, Chapman-Jouguet detonation waves, and

deflagration waves. These solutions can be combined with the shock or

expansion fan results to derive canonical solutions of the initial value

problem with chemical reaction.

The actual implementation of the current results into an improved

numerical scheme for general initial data is beyond the scope of the current

paper •
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