DEVELOPMENT OF LIMB VOLUME MEASURING SYSTEM

by

Pramode K. Bhagat
Principal Investigator

Prasad K. Kadaba
Co-Investigator

Project Number - NAS9-15452 - Final Report
Project Period - November 1, 1977 - September 30, 1983

University of Kentucky
Wenner-Gren Biomedical Research Laboratory
Department of Mechanical Engineering
Lexington, Kentucky

October 1983
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Plethysmography</td>
<td>1</td>
</tr>
<tr>
<td>Relationship of Orthostatic Tolerance to Limb volume changes</td>
<td>3</td>
</tr>
<tr>
<td>Requirements for a Space Qualified Plethysmograph</td>
<td>5</td>
</tr>
<tr>
<td>Ultrasonic Plethysmography</td>
<td>6</td>
</tr>
<tr>
<td>Single Chord Ultrasonic Plethysmograph</td>
<td>8</td>
</tr>
<tr>
<td>Two Chord Ultrasonic Limb Volume System</td>
<td>31</td>
</tr>
<tr>
<td>Ambulatory Ultrasonic Plethysmography</td>
<td>44</td>
</tr>
<tr>
<td>Transducer Development</td>
<td>50</td>
</tr>
<tr>
<td>Summary and Conclusions</td>
<td>66</td>
</tr>
<tr>
<td>Theses, Dissertations and Publications</td>
<td>67</td>
</tr>
<tr>
<td>Appendix A - Background Data on Transducers</td>
<td>70</td>
</tr>
<tr>
<td>Appendix B - Test Procedure and Results Using Prototype ULP</td>
<td>81</td>
</tr>
<tr>
<td>Appendix C - Description of Individual Circuit Blocks of Two Transmitter ULVS</td>
<td>108</td>
</tr>
<tr>
<td>References</td>
<td>142</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

The development of ultrasonic plethysmography from a technical concept to a flight certified unit capable of measurements in space (zero G) environment has been the result of long term collaborative between the principal investigator and his associates with the National Aeronautic and Space Administration (NASA) personnel. This project was interdisciplinary in nature and required contributions from a variety of individuals.

NASA personnel with direct responsibility for technical monitoring of the project are gratefully acknowledged. In particular, Drs. Wayland Hull and Carter Alexander supported the initial development of the instrumentation detailed here. The continuous encouragement and long term support of Mr. Cletis Booher and his associates are sincerely appreciated.

The principal investigator is indebted to Dr. J. F. Lafferty, Director, Wenner-Gren Research Laboratory, for his continued support in terms of personnel, equipment and facilities for this project. The efforts of Mr. Tom Patrick, in the redesign and implementation of his pinger and receiver circuit electronics are gratefully acknowledged. It is a pleasure to acknowledge the assistance of Don Bowman, Charles Lewis, Dr. M. P. Kadaba, and Ms. Vicky Ruszcyzk in the development and evaluation of the single transmitter ULVS. Ms. Cindy Green assisted in the development of two transmitter transducer holder.

Also acknowledged is the support of Dr. W. T. Nickell, Mark Shafer, Dave Brewer and Ms. Julie Skidmore in the development and evaluation of two transmitter ULVS.
The principal investigator is deeply indebted to the chief project engineer, Mr. V. C. Wu, for his participation in all phases of the reported work and his abilities to carry out all the needed tasks in a timely manner.

The assistance and support of the technical group at Denver Research Institute led by Whitney Patten towards the development of prototype flight-certified ULVS is sincerely acknowledged.
LIST OF FIGURES

Figure 1 - Schematic of Single Transmitter ULVS
Figure 2 - System Timing and D/A Converter Schematic
Figure 3 - Avalanche Pulse Generator (Pinger) Circuit
Figure 4 - Ultrasonic Receiver Amplifier and Comparator
Figure 5 - Static Measurements of Dimensional Changes on the Lower Leg Using ULVS
Figure 6 - Cross Section View of Lower Limb at the Level of Plethysmograph Application
Figure 7 - Schema of System for Inducing Venous Occlusion in Lower Limbs
Figure 8 - Relative Placement of Ultrasonic Transducer and Whitney Strain Gauge
Figure 9 - Photograph Showing Actual Locations of Ultrasonic Transducers and Whitney Strain Gauge
Figure 10 - Calibration Curve for Whitney Strain Gage as Recorded on Chart Recorder
Figure 11 - Dynamic Comparison of Whitney Gauge and ULVS Measurements
Figure 12 - Computation of Arterial Flow and Compliance Level
Figure 13 - Correlation Between Initial Slope of Ultrasonic and Whitney Strain Gage Plethysmograph
Figure 14 - Average Initial Slopes (Ultrasound and Strain Gage) as a Function of Cuff Pressure
Figure 15 - Compliance Time Versus Cuff Pressure
Figure 16 - Computation of Cross-Sectional Area from Two Chord Length Measurements
Figure 17 - Two Transmitter ULVS
Figure 18 - Block Diagram of ULVS Electronics
Figure 19 - System Electrode Placement
Figure 20 - Comparison of ULVS and Whitney Dimension Measurement Under Venous Occlusion
Figure 21 - Design of Flat and Hemispherical Transducers
Figure 22 - Construction of Receiver and Transmitter Elements

Figure 23 - The Developed Ultrasonic Transducers

Figure 24 - Off Axis Performance of Transducers

Figure 25 - Directional Characteristics of Ultrasonic Transducers

Figure 26 - Comparison of Performance of Different Transducer Combinations

Figure 27 - Domain Alignment in Ferroelectric Materials

Figure 28 - The Ultrasonic Field of Circular Disk Transducer

Figure 29 - Data Collection and Analysis Block Diagram

Figure 30 - Mechanical System

Figure 31 - ULP Transducer Output Pulse Shape

Figure 32 - Digital Output in EDI Mode (2400 Baud)

Figure 33 - Output Pulse with 50 Ω Termination

Figure 34 - Amplitude Spectrum of the Output Pulse

Figure 35 - Pulse Shape with Transducer Load

Figure 36 - Tape Recorded Signal Played Back with 1K Load and Captured by Biomation A/D Converter

Figure 37 - Time Course of Dimension Changes Under 50 mm Hg Venous Occlusion Procedure

Figure 38 - Time Course of Limb Dimension Changes Under 50° Head Up Tilt

Figure 39 - ULP Data Played Back From the Recorded Venous Occlusion (50 mm Hg) Data

Figure 40 - Passive Monitoring of Data Through a Tilt Table Experiment

Figure 41 - Schematic of Processor and Memory for the Two Transmitter ULVS

Figure 42 - Schematic of Controller Logic, Transmitter Select and Counter for Two Transmitter ULVS

Figure 43 - Schematic of Power Supply Circuits Used in Two Transmitter ULVS

Figure 44 - Flow Graph of Software Implementation

Figure 45 - Subroutine "NOTYET"
ABSTRACT

The mechanisms underlying the reductions in orthostatic tolerance associated with weightlessness are not well established. Contradictory results from measurements of leg volume changes suggest that altered venomotor tone and reduced blood flow may not be the only contributors to orthostatic intolerance. It is felt that a more accurate limb volume system which is insensitive to environmental factors will aid in better quantification of the hemodynamics of the leg. Of the various limb volume techniques presently available, the ultrasonic limb volume system has proven to be the best choice. The system as described herein is free from environmental effects, safe, simple to operate and causes negligible radio frequency interference problems. The segmental ultrasonic plethysmograph is expected to provide a better measurement of limb volume change since it is based on cross sectional area measurements. Limb volume change is computed from the two cross-sectional areas measured at different sites (fixed length apart) using an equivalent right circular cylinder geometry. A space qualified version of our device has been built by Denver Research Institute and is expected to be used in a future space shuttle mission.
I. INTRODUCTION

The study and evaluation of cardiovascular deconditioning during space flight impose unique requirements on the limb volume measuring system (LVMS). The LVMS must operate, in both earth and zero gravity environments, be simple to calibrate and respond to both small and large changes in limb volume and be largely insensitive to humidity, ambient temperature and pressure variations.

The objective of this project was to develop a new technique for real time measurement of lower limb volume changes in space. The technique developed in this study, the ultrasonic plethysmograph, is based on transit time measurement of an acoustic pulse propagating through tissue. A microprocessor based ultrasonic lower limb volume measuring system was developed as a prototype system for use in space flight applications. It is based on the assumption that the cross section of the lower limb can be approximated by a circle. On this basis two independent chord length measurements using ultrasonic through transmission technique are made at a given site on the lower limb. This data is used by the microprocessor to compute the area of a circle passing through the measured chord lengths.

This report details the development of the ultrasonic limb volume measuring system in to a flight certified unit which is expected to be used in a future space flight mission.

II. Background

A. Plethysmography

Plethysmography is the recording of variations in the volume of a liquid or undissolved gas in biological tissue. Studies of
peripheral circulation have been carried out through a variety of methods which record/measure the volume of blood content in a limb (plethysmography).

The principle of plethysmography was first introduced by Glissonio (1677) who used water displacement for limb volume measurement (1). Variations of this method, some using air as the displaced fluid, are still used for the measurement of arterial flow into segments or distal portions of limbs. Another frequently used plethysmograph is the Whitney strain gage, introduced in 1953 (2). The Whitney, or mercury-in-rubber, strain gage is attached around the limb segment in question and any relative change in the electrical resistance of the strain gage is used as a measure of a change in circumference of that limb segment. The accuracy of this method of plethysmography was compared to that of water displacement plethysmography by Paulev, et al. (1). They found that "the accuracy of the water and strain-gage plethysmograph is identical, and the two instruments closely follow random variations in blood flow." However, they further state that "The results of the strain-gage plethysmograph are dependent on the actual location of the strain gage."

Other methods of plethysmography include impedance and capacitance plethysmography. Impedance plethysmography (rheography) makes use of the fact that the electrical impedance of a limb segment varies with its blood content. Capacitance plethysmography involves the use of the skin as one plate of a capacitor. An electrode attached to a band around the limb segment completes the capacitor. Assuming a purely radial expansion with increased limb volume, the change in capacitance between the skin and the electrode is proportional to the change in volume of the limb segment. These and
other currently used methods of plethysmography are discussed more thoroughly by Sigdell (3). A comparative analysis of their feasibility for space flight applications may be found in an earlier report from this laboratory (4).

B. Relationship of Orthostatic Tolerance to Limb Volume Changes

Reductions in orthostatic tolerance due to exposure to zero G environment were first reported during the late flights of Merucry when tilt table tests conducted post-flight revealed moderate orthostatic hypotension. These findings were also observed during the Gemini program (flight duration 3-14 days). However, responses to the 70 degree upright tilt usually returned to normal within fifty hours after splash down (5,6).

During the Apollo program (7), a new test procedure, lower body negative pressure (LBNP) was used to study orthostatic tolerance. LBNP has several advantages over tilt table testing, some of which are:

1. No movement of subject is required which leads to simplified instrumentation and stable physiological signals.
2. Ease of application of controlled stress (magnitude and duration) to the cardiovascular system.

LBNP studies were performed for most Apollo crews, and the response of cardiovascular system during weightlessness was inferred from pre-flight and post-flight data. The results demonstrated reduced orthostatic tolerance, which returned to normal within 48 hours. Supine measurements of maximal calf circumference were also performed, before and after flight, of 24 crewmen. During post-flight evaluation 67% of crewmembers showed significantly reduced calf circumference, and this was not totally regained approximately 120
hours after splash down (7,8).

During the Skylab Program, the LBNP experiments were performed during missions 2, 3 and 4 to determine the extent and time course of changes in orthostatic tolerance during weightlessness (9). An additional objective was to determine whether the inflight data can be used for prediction of post-flight orthostatic tolerance status. LBNP produced exaggerated blood pressure and heart rate responses during the first inflight test of Skylab 2 crew, but did not show a trend towards the pre-flight levels during the 28-day flight. It was observed that cardiovascular responses to LBNP tended to become more stable after six to eight weeks of flights, but no trend toward pre-flight levels could be seen. Johnson et al (9) suggest that total blood volume may already have been reduced by the time first inflight LBNP tests were performed, and that a significant fraction of fluids previously located in the legs was now accommodated by veins and interstitial tissues of the upper part of the body. Thornton and Hoffler (10) conducted studies of lower limb during the Skylab 4 mission to test the hypotheses that changes in hemodynamics of legs with increased blood pooling and reduction in cardiac output is the most probable cause of orthostatic intolerance following spaceflight. In spite of the individual variability, the data showed increased blood flow above pre-flight and post-flight levels. Vascular compliance changes were high for both the scientist pilot and pilot whereas for the commander there was little change, and post-flight data showed return to pre-flight values of compliance. Based on scant data from three crew members, the authors were unable to further prove their hypothesis. However, their findings support the need for
careful assessment of pressure flow relationship in the lower limb.

Measurement techniques used in these redistribution studies include estimates of leg volume using multiple tape measurements of limb circumference, standard and infrared photography, and center of mass measurement (7,8). During the Skylab 3 and 4 missions, limb volume measurements were made using a space qualified version of the capacitance limb volume system developed by Barnett et al (11). This system represented the best available at that time for measurement of limb volume, although it is affected by environmental factors, such as humidity and temperature variations. In addition, all of these techniques suffer from the difficulty that considerable crew effort is required to obtain data, or that the transducers are bulky and cannot be used during launch or normal activities. For this reason, no experiments could be performed during the first hours and days of zero-gravity.

C. Requirements for a Space Flight Qualified Plethysmograph

Based on previous research (4) it is felt that an ideal space flight plethysmograph should have the following characteristics:

1. Operation in both zero and earth gravity environment.
2. Insensitive to humidity.
3. Insensitive to ambient temperature and pressure variation.
4. Compatible in size and operation with LBNP test procedures.
5. Simplicity of operation and calibration.
6. Reliable and safe.
7. Nonconfining and non-restrictive of limb dimensional changes.
8. Insensitive to limb movement.
9. Must respond to both small and large changes in limb volume.
III. ULTRASONIC PLETHYSMOGRAPHY

Ultrasonic plethysmography is based on measurement of transit time required for an ultrasonic pulse to propagate from one given point to another. If the velocity of the propagating sound wave in the medium under study is known, then measurement of transit time leads to computation of the pulse traversed distance, \(d \):

\[
d = c \cdot t
\]

where \(c \) = velocity of sound in the medium (m/sec)

\(t \) = measured transit time (sec)

Velocity of propagation of acoustic waves have been measured and reported in selected animal tissues using pulse echo techniques. Goss et al. (12) provide a comprehensive listing of published results on acoustic properties of mammalian tissues. For a given frequency, and temperature, the velocity of propagation appears to be constant and the range of variation is quite small for soft tissues. The average velocity of sound in soft tissues (excluding fat tissue) is \(1560 \pm 20 \) m/sec at 2.25 MHz (Bhagat et al. (12), Kadaba (13)). The temperature dependence of sound velocity in the range of 20–40 degrees C shows a variation of less than 2m/sec/degree C. Since the temperature within the living tissue is maintained constant by the body within very narrow limits, temperature related errors can be safely ignored.

The use of ultrasonic transit time measurements for biological studies was first reported by Rushmer et al. (14) who monitored left ventricular dimensions in open chested laboratory animals. Stegall and colleagues (15, 16) have reported the instrumentation and results associated with implementation of the transit time principles.

Stegall et al. (17) in an abstract dealing with noninvasive diagnosis of peripheral vascular disease suggested the use of an
ultrasonic dimension gauge to measure changes in lower limb dimensions. However, we have been unable to find any details on its actual implementation. We were the first to demonstrate the feasibility of ultrasonic dimension gauge for noninvasive monitoring of lower limb dimensions (18). In this approach, two ultrasonic transducers (resonant at 2.25 MHz) are placed across the limb segment under study. One of the transducers is shock excited which causes it to vibrate at its natural frequency. This ultrasonic vibration is transmitted through the limb and is converted into an electrical signal by the receiving transducer. The time period between initiation of the shock pulse and its reception by the receiving transducer can, therefore, be accurately measured. With the knowledge of acoustic velocity in the lower limb, the segment dimension is easily obtained.

The most critical choice for ultrasonic plethysmography of lower limb segment is that of transducers' natural frequency. Ultrasonic waves are attenuated when propagating through biologic media. The amplitude of the propagating wave decreases by an exponential factor given by

\[P_0(f) = e^{-2a(f)x} P_i(f) \] \hspace{1cm} (2)

where \(P_0(f) \) is the amplitude at a distance \(x \) in the medium
\(a(f) \) is the attenuation coefficient of the medium (dB/cm)
\(P_i(f) \) is the input wave

and \(f \) is the frequency of the wave.

Measurements in our laboratory (19) indicate that the attenuation coefficient \(a(f) \) is approximately linearly related to ultrasonic frequency \((a(f) = af^b; \ b = 1.06) \) for excised muscle tissue in
Experimental animals. In light of this it is imperative that the ultrasonic frequency be kept as low as possible.

As the ultrasonic frequency is lowered two constraints come into play. In most transit time measurement systems arrival of the ultrasonic pulse is threshold detected with an amplitude comparator. Thus the maximum error due to threshold adjustment can be $\lambda/4$, where λ is the wavelength of ultrasound. Assuming an average velocity of 1,560 m/sec, and calf length of 15 cms, in the range of 2-3 MHz the maximum threshold error is approximately 0.2 mm.

Further as ultrasonic frequency is lowered the thickness of crystal increases. Higher shock voltages are required at lower frequencies to set the transducer into vibration, due to its increased inertia. While this is not critical in most applications since the excitation voltages are usually in the range of 100-200v and are of short duration (4 ns), the authors feel that from a safety viewpoint every attempt should be made to keep these voltages lower.

We, therefore, chose frequency range of 2-3 MHz for the plethysmographic applications.

SINGLE CHORD ULTRASONIC PLETHYSMOGRAPH

The single chord ultrasonic plethysmograph is schematically shown in Figure 1. The major components of this instrument are a pulse generator (Pinger) and receiver amplifier, a voltage comparator, a sync pulse generator and an elapsed time counter. The system is housed in a single unit, with the exception of the transmitting and receiving piezo-electric crystals. The crystals are cut from 1" square LZT-5 stock, resonant at 2 MHz, with approximately 3 mm diameter, and then wires are attached. The crystals are dipped in
FIGURE 1
SCHEMATIC OF SINGLE TRANSMITTER ULVS
clear epoxy to maintain the integrity of the transducer material over a period of time. The crystals are positioned on a limb such that the ultrasonic pulse will travel from the transmit crystal to the receiver crystal. The wave propagation time between crystals is measured by counting the number of cycles generated by a time base oscillator. Output from the system is available as a 12-bit binary number or an analog signal derived from the binary number through a digital-to-analog converter (DAC).

The measurement cycle begins on the leading edge of a 40 ns wide negative-going pulse. This pulse is generated by a monostable multivibrator (IC6, Fig. 2) triggered by a crystal controlled oscillator and frequency divider at a repetition rate of 1 KHz. This pulse induces a 150-V signal across a piezoelectric crystal. Due to this shock excitation, the crystal vibrates at its natural frequency, 2 MHz, resulting in the transmission of an ultrasonic signal across the limb.

The pinger circuit (Figure 3) works as follows:

When the trigger level is high (+15V) the base to emitter junction in transistor Q_1, is non conductive, therefore, no current flows through it. This also implies that transistor Q_2 will also be off and no signal is available across the transformer to the ultrasonic crystal. However, when the trigger level is lowered to zero, Q_1 and therefore Q_2 are turned on. With Q_2 in the operating mode a 200V signal is induced through the 1:1 transformer to excite the transmitting transducer. The transformer is included in the pinger circuit to provide isolation of 200V source from the test media (usually human subjects). The 200V signal is derived from a commercially available module (ERG) which is a dc to dc inverter with
FIGURE 3

AVALANCHE PULSE GENERATOR (PINGER) CIRCUIT
input of 15V.

Simultaneous to the triggering of the transmitter circuit, the elapsed time counter (IC's 10-13, Fig. 2) is cleared and the time base signal (32 MHz) is gated to the input (IC 10) of the counter. The count accumulates until the voltage comparator senses a signal from the ultrasonic receiver which exceeds the operator controlled threshold voltage.

The input signal to the ultrasonic receiver (Fig. 4) comes from a piezoelectric receiving crystal attached to the limb. The receiving crystal is connected to the primary winding to T_2 which is balanced by a 1 kohm potentiometer and a 220 µf capacitor to provide common mode rejection. Transformer T_2 also provides electrical isolation for the subject. The signal induced in the secondary of T_2 is then amplified by a factor of 1,000 with two cascaded RF amplifier (LM371). The resulting signal serves as input to the voltage comparator (LM306).

Once the comparator senses the received signal, the time base signal being input to the counter is halted. After a short delay, allowing for propagation delays in the counter, the final count is latched in a separate register. The digital-to-analog converter changes the 12-bit register output to a proportional voltage which is recorded by an analog recorder. The register output can also be input into a computer system for data storage and analysis. A portion of the output can be suppressed by dialing in a number on a set of thumbwheel switches. The negative value of this number is loaded into the counter at the beginning of each measurement cycle thereby subtracting the number from every measurement. This feature allows
ULTRASONIC RECEIVER AMPLIFIER AND COMPARATOR

FIGURE 4

+12V

REC

LM306

Q3

-15V

COMPARE DISABLE

VIDEO MONITOR

Q4

1.5μ

Q5

5.6K

27

TRIGGER IN

THRESHOLD

2.7K

3.9K

+12V

300

0.01

220P T2

TRANSDUCER INPUT

INPUT BALANCE

LM371

LM371

680P

300

1.5K

1.5K

3.3K

3.3K

113x169
the operator to record only the variations from a baseline reading. The distance resolution of this system using a 32 MHz clock is given by resolution = \(\frac{\text{sound velocity}}{\text{clock frequency}} \) = 0.049 mm. This system has been described in literature (18).

Extensive experimentation was carried out using human subjects to investigate the reliability, accuracy and repeatability of the developed instrument. Experimental protocols are defined below:

a) Static tests

With the subject in a supine position on a tilt-table, the instrument was tested by inducing a small precise changes in leg diameter. A 2 MHz transducer was mounted on each tip of a 5 in. micrometer. With the micrometer rigidly clamped, the leg of the subject was positioned so the micrometer spanned the major chord length from near the crest of the tibia to the back of the gastroenemius. The micrometer head was advanced until the crystals made firm contact with the skin. The chord length was then varied by advancing the micrometer head in steps of 0.025 in (0.635 mm). The change in the chord length as measured by the ultrasonic system is shown in Figure 5. As can be seen from the figure the system response to discrete step changes from 11.74 cm diameter to 11.30 cm diameter is repeatable as well as accurate.

b) Dynamic tests

A comparative study using Whitney Strain Gauge, (WSG), "Mercury in rubber" plethysmograph, was carried out to establish the dynamic performance of the system. If the limb segment involved in the plethysmographic measurement is assumed to be circular and the path between the ultrasonic transducers is assumed to be its diameter, then the cross-section area or volume per unit length of the limb
FIGURE 5

STATIC MEASUREMENTS OF DIMENSIONAL CHANGES ON THE LOWER LEG USING ULVS
segment is directly proportional to the measured distance. Any change in volume is, therefore, reflected in a change in travel time of the ultrasonic pulse. The Whitney Strain Gauge measures changes in circumference of the limb. Based on this hypothesis the plethysmographic measurements by the WSG and the ultrasonic plethysmograph, placed over the same limb segment, should be linearly related.

A typical cross-section of the lower leg in a healthy adult, at the level of limb segment normally involved plethysmography studies, is shown in Fig. 6 with approximate transducer locations. As can be seen from the figure, the ultrasonic distance measured is more like a chord of the limb segment. However, the ultrasonic output and the Whitney Strain Gauge output should still be related by a constant.

In this experiment, venous occlusion was used to produce a discrete change in limb volume. A pressure cuff was applied to the proximal portion of the limb and the pressure in the cuff was increased above the venous pressure but below the diastolic arterial pressure (usually between 20-60 mm Hg). Because the arterial inflow of blood was not stopped, there would be a net increase in the volume of the limb below the cuff due to a pooling of blood in the segment. The rate of volume change with respect to time immediately after occlusion can be used to determine the rate of blood flow in the arteries. The volume will stabilize when the pressure in the veins reaches the cuff pressure. This is known as the compliance level and, along with the initial rate of volume change, is one of the important parameters in venous occlusion plethysmography. A more thorough discussion of the mechanisms of venous occlusion plethysmography is
Approximate position of transducers

1. Tibia
2. M. flexor digitorum longus
3. V. saphena magna et n. saphenus
4. V. et a. tibialis posterio
5. N. tibialis
6. M. soleus
7. Tendo m. plantaris
8. M. gastrocnemius
9. N. cutaneus surae medialis
10. V. saphena parva
11. N. cutaneus surae lateralis
12. M. gastrocnemius
13. A. et v. peronaea
14. Fibula
15. N peronaeus superficialis
16. Mm. peronaei longus et brevis
17. N. peronaeus profundus
 a. et v. tibialis anterior
18. Mm. extensores longi digitorum et hallucis
19. Membrana interossea cruris
20. M. tibialis anterior

FIGURE 6
Cross sectional view of lower limb at the level of plethysmograph application.
given by Sigdell (3).

The apparatus used for this study includes two ultrasonic transducers, a Whitney strain gauge, a system for obtaining venous occlusion of the lower limbs, and the single chord ultrasonic plethysmograph.

The venous occlusion system, shown in Figure 7, consists of a twelve gallon fixed displacement air compressor (a), a pressure attenuator (b) for limiting the pressure in a small pressurized tank (c), two normally closed solenoids (d), and standard thigh cuffs equipped with sphygmomanometers. Upon activation of the first solenoid in the system, the pressure in the thigh cuffs is increased in approximately a stepwise matter. The amount of pressure in each cuff is determined from the sphygmomanometers. Once the first solenoid is deactivated the pressure in the thigh cuffs remains constant until the second, release, solenoid is activated.

With the subject relaxed in a supine position, the ultrasonic transducers are positioned on the lower leg at the level shown in Figure 6, using the oscilloscope to determine the position corresponding to maximum signal. Once the optimum position is determined, the transducers are taped in place using the smallest piece of tape necessary for secure placement. The Whitney strain gauge is then placed over the same limb segment as shown in Fig. 8 schematically and a photograph is shown in Fig. 9. The leg is, then, elevated slightly to eliminate pressure on the calf muscle and to prevent drag on the strain gauge. The thigh cuffs are applied to both legs above the knee.

After a stable base line is obtained on both channels of the chart recorder, the initial readings of the ultrasonic digital display
a) 12 gallon fixed displacement air compressor
b) Pressure attenuator
c) Small pressure tank
d) Normally closed ASCO solenoids electrically controlled by a two-way switch
e) Standard thigh cuffs with sphygmomanometers

FIGURE 7
Schema of system for inducing venous occlusion in lower limbs.
a. Ultrasonic transducer taped in place

b. Whitney strain gage

c. Ultrasound connection wires— to oscilloscope, digital display, and chart recorder

d. Strain gage connection wires— to gage display and chart recorder

FIGURE 8

Relative placement of ultrasonic transducer and Whitney strain gage
PHOTOGRAPH SHOWING ACTUAL LOCATIONS OF ULTRASONIC TRANSDUCERS AND WHITNEY STRAIN GAUGE
and the strain gauge display are recorded. The thigh cuff pressure is then increased to 20 mm Hg and held constant until the chart recorder graph reaches a maximum (compliance level). Readings are again recorded for the strain gauge display and the ultrasonic digital display. The pressure is then released and the system allowed to stabilize. This procedure is repeated for pressures of 30, 40 and 50 mm Hg. In this project at least three complete sets of data (i.e. pressures of 20-50 mm Hg) were taken during each session. Data sets were taken for each leg under the conditions of bilateral and unilateral venous occlusion. However, the equipment did not permit collection of data from both legs simultaneously.

To facilitate the interpretation of chart recorder data in terms of physical parameters (i.e. change in length per unit time and percent change in length at compliance), it was necessary to perform calibration experiments for the Whitney strain gauge and the ultrasonic system. The calibration of the ultrasonic system has been described under static test.

The calibration procedure for the Whitney strain gauge was as follows: One end of the strain gauge was fixed and the other end attached to a vernier device. The system was adjusted to an initial position with the strain gauge straight but not extended. The strain on the strain gauge was then incremented in 1 mm steps to a total of 10 mm strain. The gauge reading was recorded at each increment to check the linearity of the readings. The strain gauge was then returned to its initial length in steps of 1 mm and the readings were again recorded. Figure 10 shows the static data for Whitney strain gauge.

A typical venous occlusion record is shown in Figure 11. Cuff
L incremented by 1 mm
Gain = 5 volts full scale

FIGURE 10
Calibration curve for Whitney strain gage
as recorded on chart recorder
FIGURE 11: DYNAMIC COMPARISON OF WHITNEY GAUGE AND ULVS MEASUREMENTS
occluding pressure of 50 mm Hg was applied to the subject identified by pressure on arrow on the graph. The occlusion was maintained for a time period of approximately 2 minutes when the ultrasonic plethysmograph output reached steady state. The occluding pressure was released then and the record indicates a rapid emptying of the pooled blood followed by a slower decline to baseline values. Calculations of maximal blood flow and compliance levels can be made and the procedure is illustrated in Figure 12.

Figure 13 shows initial slope of the ultrasonic plethysmograph plotted against initial slope obtained using the Whitney strain gauge. The equation of the line shown in this figure, as determined by the least square error method, is

\[W = 2.235 u + 0.176 \]

The above equation was derived using data from 30 independent experiment runs. The correlation is quite good (r = 0.9077).

Figure 14 shows the average initial slope as a function of cuff pressure. As can be seen, the initial slope remains approximately constant for pressures of 20-40 mm Hg and drops off slightly when the cuff pressure is 50 mm Hg. One possible explanation is that 50 mm Hg occluding pressure may have caused occlusion of some arterial vessels and thus decreasing the inflow rate.

The compliance level showed a direct dependence on the applied cuff pressure. Both the ultrasonic plethysmograph and the Whitney strain gauge outputs leveled off around the same time frame. Figure 15 shows a plot of compliance time versus cuff pressure for two subjects. As expected time to reach final compliance level increased with the applied occluding pressures.
Arterial inflow = $\frac{dv}{dt}$

Compliance level = V_c

Figure 12 Computation of arterial flow and compliance level
Δw = 2.235 Δu + 0.176

FIGURE 13: Correlation between initial slope of ultrasonic and Whitney strain gage plethysmographs
FIGURE 14: Average initial slopes (ultrasound and strain gage) as a function of cuff pressure
FIGURE 15: Compliance time versus cuff pressure
A single dimension measurement is not a true indicator of the volume change in the lower limb. It was felt that a more accurate measure of limb volume could be obtained through computation of a cross-sectional area from two independent chord length measurements. The independent chord lengths are measured ultrasonically through placement of ultrasonic transducers around the circumference of the limb. We exploit the well known concept from analytic geometry that three points in a plane can define a unique circle. Our implementation of this concept uses three transducers, located on the limb. Two of these transducers, kept a fixed distance apart and located on one side of the limb act as transmitters of ultrasonic energy. This energy is received by the third transducer which is located on the opposite side of the limb. Thus, two independent transit time measurements can be made at any given site on the limb. With the knowledge of ultrasonic propagation velocity, the chord lengths can be computed as described earlier in this report. It may be noted that this computation also provides a sort of "averaging" of the ultrasonic chord length measurements, whenever the tissue expansion is approximately isotropic even when the cross-section is noncircular. A microprocessor was incorporated into the system to provide real time computations of limb cross-section, as well as to control the entire measurement process. Further the use of a microprocessor makes it easy to change the computational and control routines thus facilitating subsequent refinements of the design.

Theoretical details:

The following mathematical scheme defines the procedure for computation of the cross-sectional area from chord length
measurements:
Consider Figure 16 where OA and OB are the chord length obtained from the measured transit times using transmitters (located at A and B respectively) and receiver transducer (located at O). The distance, AB, between the transmitters is fixed and known = D cm and

\[
\begin{align*}
OA &= t_{OA} \\
OB &= t_{OB}
\end{align*}
\]

Where \(t_{OA} \) and \(t_{OB} \) are times required for the ultrasonic pulse to be received at O from the sites at A and B respectively.

Without any loss of generality we can assumed that OA defines the x axis. Hence the x-coordinate of the center

\[
x_c = \frac{D_1}{2}
\]

(1)

The equation of the circle passing through O, A and B with center \((x_c, y_c)\) is given by:

\[
(x-x_c)^2 + (y-y_c)^2 = r^2
\]

(2)

Where 'r' is the radius of the circle.

At the point O(0,0) the equation is

\[
\left(\frac{D_1}{2}\right)^2 + y_c^2 = r^2
\]

(3)

and at the point B \((x_2, y_2)\)

\[
(x_2-D_1/2)^2 + (y_2-y_c)^2 = r^2
\]

(4)

also

\[
D_3^2 = D_1^2 + D_2^2 - 2D_1D_2 \cos \theta
\]

(5)

solving equations 3, 4 and 5 for radius, r, we obtain
FIGURE 16. Computation of cross-sectional area from two chord length measurements
\[r^2 = x_c^2 + y_c^2 \]
\[= \frac{D_1^2 D_2^2 D_3^2 (D_1 + D_2 + D_3) (D_1 + D_2 - D_3) (D_1 - D_2 - D_3)}{(D_1 + D_2 + D_3)(D_1 + D_3 - D_2)(D_1 - D_2 - D_3)} \quad (6) \]

Area of the circle passing through O, A and B is
\[\pi r^2 \]
which can be easily computed with knowledge of radius, \(r \).

Equation 6 was simulated on both a minicomputer and a microcomputer for computational accuracy using several chord length sizes. All calculations were carried out in floating point arithmetic. The program, written in assembly language using Intel 8080 microprocessor chip, took approximately 1.5 k memory space. The accuracy of microprocessor computations was compared with that obtained using a DEC PDP-11/10 minicomputer and the results were in excellent agreement with each other. The truncation error in area computations using \(D_1 = 6.54 \text{ cm}; \ D_2 = 7.55 \text{ cm and } D_3 = 1.85 \text{ cm} \) was \(5 \times 10^{-3}\% \), an insignificant error. It should be noted that these computations are affected by accuracy in measurement of \(D_3 \) (which must be accurate to within 0.1 mm). A large \(D_3 \) provides very accurate computations but leads to practical problems in implementation of the concept since the bony tissue, tibia, must not be in path of ultrasonic transmission. In addition, operational difficulties with actual placement of transducers dictate the transmitters be mounted on the same assembly. We have determined that \(D_3 \) of the order of 2.5 cm provides a good compromise between computational accuracy requirements and operational ease. (21).
Details of the developed instrument:

A. **Hardware Description:**

The developed instrument (Fig. 17) is housed in a Tektronix TM 515 Mainframe. An SC 502 oscilloscope is included to monitor the quality of received signals. The instrument is modular with transmitters, receiver, and processor circuits housed in separate compartments. Transmitter and receiver circuits are identical to those described earlier for the single chord ultrasonic plethysmograph. Two separate transmitter (pinger) circuits are provided. Either of these pinger circuits can be selected by the processor, providing independent measurement of the two chord lengths. The piezoelectric transducer elements, which are mounted in specially-molded housings for attachment to the limb, are connected to the instrument by unshielded twisted pair cables.

Processor and Memory: A block diagram of the implemented circuits is shown on Figure 18. The system uses one Intel 8080 CPU with a clock generator (8224), which provides 18 MHz for the counter and the timing frequency of 2 MHz for the CPU. 256 byte random access memory (RAM) is used for storage of generated data and a 2kb read only memory (ROM) is available for storage of software codes and constants needed for computation of cross-sectional area. The data lines from CPU are latched through a data bus and control status bus driver in order to increase the drive capacity of the CPU. Two peripheral interface adapters (PIA) are used: one connects the data bus to LED display through four BCD to seven segment decoder/drivers while the other interfaces the counter to the CPU. Due to the available number of lines on the PIA chosen the output display is limited to less than 200 cm2 (The 5th digit of the display is wired so that it will show
FIGURE 17: Two transmitter ULVS
FIGURE 18. BLOCK DIAGRAM OF ULVS ELECTRONICS.
blank or "1" only). This restricts the maximum calf diameter to less than 16.5 cms. For the normal adult population this is not a serious limitation. The power for all the units is derived from the TM 515 power module with suitable regulators to obtain ±12 V and ±5 V.

Transmitter Select and Counter Control Logic: The 12-bit binary counter is interfaced with the CPU through PIA as shown. The 18-MHz clock frequency provides 56 ns resolution for time measurements. Following transmitter activation, the comparator output is inhibited for 10 µs to allow electrical interference from the transmitting pulse to decay. This block also contains transmitter select and level conversion circuitry necessary for producing a pulse from one of the two transmitters. The command pulse which fires the selected transmitter also starts the counter. The counter continues to count until it is stopped by a level change signal from comparator.

A three-position switch (mode switch) is used to select the modes of operation of the unit. Each of the first two positions causes one of the two transmitters to be "pinged" at a 2-KHz rate. The receiver amplifier and comparator outputs are displayed on the oscilloscope so that the quality of the received signal can be assessed. The pinger and receiver amplifier circuits are shown in Figures 3 and 4 of this report.

Transducer Assembly: The two transmitting crystals are mounted in a plexiglass assembly which is curved to fit the shape of the leg. The distance between the two crystals is set at approximately 2.5 cm. This spacing was selected as a compromise between computational accuracy and ease of fabrication. Crystals are cut from sheets of lead zirconium titanate transducer material (LTZ-2), with a resonant
frequency of approximately 2 MHz. The transmitting crystals are relatively large (5 mm diameter), in order to ensure an adequate signal level at the receiver. The receiving crystal is smaller (2 mm). Use of a small crystal makes the receiver less directional, but does not seriously reduce signal amplitude. All the crystals are fitted with lenses which produce a wider beam width than would be provided by the crystal alone.

B. **Software Description**

The instructions necessary to operate the instrument are contained within the 2K ROM. This ROM contains, in addition to operating instructions, subroutines for floating point arithmetic and for conversion of floating point numbers into a code suitable for output to the LED display. Computations are carried to five significant figures.

The operating routines are designed to make use of the instrument as simple as possible. When the three-position selector switch is in the OPERATE position, pushing RESET causes the instrument to output a series of voltage levels on the analog output. These voltage levels produce a calibration record for the strip chart recorder.

The instrument next measures two chords and computes a baseline value for the cross-sectional area. Chords are then measured at a rate of about 10/s. Simultaneous with the analog output, the computed cross-sectional area is sent to the display. The analog output is scaled so that full scale deflection of the recorder represents +6% to -2% volume change.

Two digital filters are used to improve the appearance of the analog output. A slew rate filter serves to limit the effect of
occasional false comparator triggers. This filter functions by limiting to three steps the maximum change allowed in the 8-bit D/A converter in one sampling interval. Thus, very large and sudden deviations are not passed to the output.

A one pole low-pass filter is used to reduce the effect of digitization and other noise on the analog output. This filter requires storage of one previous value of the output and one multiplication. Implementation, therefore, requires only a minimum of processor time and memory. In the current version of the software, the time constant of the filter is set at about 3 s.

Additional details regarding actual hardware and software implementation can be found in Appendix C.

C. Operation of the Instrument:

To use the instrument, ultrasonic transducers must be properly attached to the subject's leg. Transducers are mounted using exercise EKG adhesive collars (Beckman). The transducers are attached first at midcalf level in such a way as to avoid passing the ultrasonic pulse through the bones of the leg. This is conveniently accomplished by placing the received transducer just to the inside of the tibia. The transmitter assembly is then moved around the rear half of the calf until adequate signals are obtained. By use of the three-position selector switch, the signal from either of the two transmitting crystals can be displayed on the oscilloscope screen. The position of the receiving transducer is adjusted until an acceptable signal is obtained from both transmitters. When such a position is found, the selector switch is set to the OPERATE position. Pushing RESET causes the instrument to produce a series of calibration levels before beginning to measure and output fractional changes in leg volume. The
The analog output of the ULVS should be connected to a strip-chart recorder with ±2.5 V full scale sensitivity.

Comparison of ULVS with other plethysmographic techniques:

The developed two transmitter ULVS was used in a study by NASA (22) to compare the sensitivity and accuracy of our methodology. A population of thirty subjects (50% male) was used. These subjects were non-paid volunteers (age 18-45), in good health with no evidence of varicosity. Tests were carried out in an environmental chamber with controlled temperature and humidity. The Whitney Strain Gauge was used as a standard and compared against our ULVS and an impedance plethysmograph. Figure 19 shows the system electrode placements and the results of a 50 mm Hg venous occlusion are shown in Figures 20. The correlation coefficient between the WSG and ULVS for the computed limb volume was 0.996. The maximum volume indicated by the ULVS was consistently higher than the corresponding WGS output. The impedance plethysmograph gave similar results when compared against WSG (22).
CURRENT-SUPPLYING ELECTRODES

SENSING ELECTRODES

THIGH PRESSURE CUFF

ULTRASOUND ELECTRODE

SITE OF ONE ULTRASOUND ELECTRODE IN WHITNEY/ULTRASOUND TESTING, SECOND ELECTRODE APPROXIMATELY 135° AROUND BELLY OF GASTROCNEMIUS MUSCLE.

* = SITE OF IMPEDANCE ELECTRODES IN WHITNEY/IMPEDEANCE TESTING.

FIGURE 19. SYSTEM ELECTRODE PLACEMENT
FIGURE 20. COMPARISON OF ULVS AND WHITNEY DIMENSION MEASUREMENT UNDER VENOUS OCCLUSION
AMBULATORY ULTRASONIC PLETHYSMOGRAPHY:

The following technical requirements were developed in consultation with responsible NASA personnel for fabrication of an ambulatory ultrasonic limb plethysmograph, ULP.

Overall System Requirement:

The contractor (equipment fabricator) shall be required to produce a flight qualified, portable four transmitter ultrasonic plethysmograph capable of measuring two limb cross sections simultaneously based on the designed two transmitter ultrasonic plethysmograph. The following additional constraints were also incorporated:

1. The ULP shall be capable of being attached to the crewmembers during launch and re-entry.
2. The ULP shall be capable of interfacing with the Experiment Data Interface (EDI) as specified.
3. The built-in Data Recording System (DRS) shall be capable of intermittently recording ULP data during launch and re-entry.
4. The ULP shall operate on battery power.
5. The ULP shall be capable of operation from a DC power supply through an umbilical from the EDI.
6. The ULP shall be capable of operating continuously for 30 hours. One sample per second should be taken during this period.
7. The built-in DRS shall be capable of:
 (a) Recording chord length sets determined at rates between one and ten times per second.
 (b) Storing 1 to 4 megabits of data.
 (c) Recording quiet period indications.
 (d) Recording the 12 bit chord lengths generated by the ULP and the time associated with that data.
 (e) Remotely turning on, taking data and then turning off.
General Design Requirements:

The total package for STS ULP shall be a portable, battery powered unit with dimensions not to exceed 2.5" x 5" x 8" including the batteries. The ULP shall not exceed .8 Kgs weight. The outputs of the ULP shall interface with the EDI. An on-off switch with an indicator light shall be provided on the ULP.

Data outputs from the ULP include:

1. An output of chord length D_1 digitally coded. This output interfaces the EDI.
2. An output of chord length D_2 digitally coded. Interfaces EDI and DRS.
3. Outputs of chord lengths D_1' and D_2' representing second leg cross-section, each digitally coded. These outputs interface the EDI and DRS.
4. Several outputs which can be accessed allowing internal parameters to be monitored. These outputs are defined under hardware test points (additional requirements).
5. Timing output and quiet period indications. These interface the EDI.

The ULP is made up of several subsystems which each perform a specified function. The subsystems should follow the specifications of the two transmitter ULVS developed at University of Kentucky and use minimization techniques to reduce size. Exceptions to these specifications are noted in the following:

Transducers

The ULP shall incorporate six piezoelectric crystals which are used as ultrasonic transducers. These transducers will be placed across the lower limb of the subject in two sets of three. Two of the transducers in each set act as transmitters of ultrasonic pulses, and the third transducer of each set acts as a receiver. The resonant frequency of these transducers is about 2.25 MHz.
Pinger Circuit

The pinger circuit shall provide the capability to excite a preselected ultrasonic transmitter by inducing a 100 to 150 volt, 10 nanosecond positive pulse. Modifications shall be made to eliminate the need for a -15V power supply.

Controller Logic, Transmitter Select and Counter

The function of this subsystem is to control the flow of information throughout the system, to select a transmitter for chord length measurement and to provide a count proportional to the measured ultrasonic transit time. The basic counter frequency shall be 18 MHz for this subsystem. This system supplies the following functions:

1. Provides interfacing to processor.
2. Provides mode selection for transducer placement and ultrasonic signal visualization.
3. Starts and stops counter.
4. Inhibits receiver section for an adjustable period of time to reduce the possibility of false output.
5. Selects the transmitter that is to be activated.

Receiver Circuit and Comparator

The ultrasonic signal receiving amplifier shall have a gain of 60 dB (min) and have standard wide band video capabilities. The receiver shall be transformer coupled to the ultrasonic transducer to provide high common mode rejection. The signal to noise ratio (SNR) shall be at least 40 dB. The comparator shall be a level detector at 0.2 ± 0.02 V measured at the output of the receiver amplifier.

Processor and Memory

This subsystem provides a timing signal for operation of the ULP. The timing signal shall be derived from a 18.0 MHz clock which will also be used for the binary count. A microprocessor, equivalent to
the 8080, shall be used for all command and store operations. The computational constants and instructions should be stored on permanent memory. Data output shall be interfaced through the processor. This subsystem shall drive a display on the ULP. The processor shall also provide command operations to the DRS.

Additional Requirements:

Hardware Tests Points

A connector shall be accessible which allows the following phenomena to be monitored:

1. The analog signals of the transmitters.
2. The analog signals of the receivers.
3. The comparator output. (digital)
4. The calculated cross sectional area measurement.
5. The 18 MHz time base. (digital)
6. The Pinger voltage

Self-Test Button

This button should be available to activate programmed inputs into the processor for calibration and check-out.

Quiet Period Indicator

An indicator for quiescent periods and sleep period shall be incorporated into the design of the ULP. These indications are to be imposed on the data.

Physical Configuration

Throughout the design phase of the program, weight, volume and power consumption minimization shall be a prime consideration within the measurement, operational and environmental constraints imposed herein. The ULP electronics shall be configured in one package. An
on-off switch shall be supplied on the electronics package. This package shall be two output connectors. One output shall provide chord transit time data, timing outputs and quiet period indications. The other output connector shall be able to provide all internal information which is required herein. The package shall be easily attached to the crewmembers and be comfortable to wear.

Range

The ULP shall have the capability to demonstrate the following characteristics:

1. Provide reliable measurements on calf lengths up to 18 cms corresponding to limb circumference of approximately 57 cms.

2. Duration of a single cross sectional area measurement shall not exceed 50 mseconds.

3. The chord length measurement must be accurate to within ± 0.6 mm for a nominal chord length of 14 cms.

4. The digital counter shall be 12 bits.

Calibration

The capability to inject appropriate calibration and test signals into the STS ultrasonic plethysmograph just prior to initiation of a data gathering sequence should be provided. This will be initiated whenever the self-test button is depressed.

Display

A four digit display shall be provided on the ULP which displays instantaneously to the crewmembers the measured chord length of the limb cross-sectional area. The display shall be visible to the crewmembers at all time during operation.

Battery Monitor

The ULP system shall have a battery check system and a warning if the battery power is low.
Optimum Signal Locator

A method of detecting transducer placement for the optimum signal without using an oscilloscope shall be incorporated. This method can be an envelope detector. A blinking display can be used to show that the optimum signal is not being received.

Ground Support Equipment

The Ground Support Equipment (GSE) to be developed in support of this program shall include as a minimum the following:

1. Playback equipment to allow playback of tapes recorded by the DRS.

2. ULP Data Interface Simulator (DIS). The DIS will be designed to emulate the ULP Data Interface with the EDI in amplitude, impedance, and format content to allow development and verification of hardware and software in, and down-stream of, the EDI. DIS electrical connectors need not be flight type.

The tape playback equipment should be supplied at the time of delivery of the first ULP prototype system containing a built-in DRS.

Delivery of the DIS will be required at least two months prior to delivery of the ULP prototype in order to allow timely development of the EDI and associated hardware and software.

Denver Research Institute, DRI, fabricated a prototype test unit for our evaluations in accordance with a test plan developed by us. Results of these tests are detailed in the "Appendix B".
TRANSDUCER DEVELOPMENT

The use of an ultrasonic micrometer in limb plethysmography has been described in this report (page 6). This technique, ultrasonic pulses are created through shock excitation of a piezo-electric transducer. After transit through the coupling medium, a second piezo-electric transducer converts the acoustic energy into an electrical signal. If the sound velocity in the medium is known and constant, the propagation time between the two crystals is an accurate measure of the separation distance. Arrival of the pulse at the receiver crystal is detected by the triggering of a comparator set just above the noise level of the receiver amplifier. In the usual situation the received signal level is very much larger than the noise level; changes in comparator firing time can then be confidently interpreted as changes in tissue dimension. If pulse amplitude is not much higher than the comparator level, however, small changes in signal amplitude or pulse shape will cause changes in comparator firing time. This will be falsely interpreted as a change in tissue dimension. Although these considerations are important in all applications of sonomicrometry, they are especially critical in plethysmographic applications, where very small dimension changes are measured.

To routinely obtain good signals, it is essential that well-designed transducers be available. The most critical requirement is that the beam pattern of the transducers must be sufficiently wide. Adequate signal amplitude can then be obtained with minimum care in placement of the transducers. In addition, small rotations of the transducers, which may occur during a limb expansion, will not affect
pulse shape substantially.

Two basic types of transducers for ultrasonic dimension measurements have been described in the literature, chiefly for use in cardiac dimension measurements. One type is constructed from a disk cut from flat stock piezo-electric ceramic. Size of the disk may vary from 2 mm to 5 mm in diameter, with the smaller diameters having the wider beamwidth. A convex plastic lens is added to diverge the beam [14,15,16]. This type of transducer has the advantage that it is inexpensive and simple to construct. The beamwidth of the transducers, however, is quite narrow, even with the addition of a diverging lens. Thus, careful orientation of the transducers is required. Small rotations of the transducers may produce relatively large changes in pulse amplitude and shape even after careful placement of the transducers on the tissue.

A second type of transducer has been more recently described [27]. This transducer uses a hemispherically shaped piezo-electric element which produces a broad beam pattern. A quarter wavelength matching layer between the ceramic and the tissue was used to maximize signal amplitude. With this approach, much less care in placement of the transducers is required. The hemispherical transducers are, however, quite expensive, and construction of the matching layer is somewhat difficult.

Although the problems encountered are similar, the transducers used in cardiometry are not ideal for use in plethysmography. In particular, transducers used for plethysmography require a rugged housing and a convenient means of attaching the housing to the skin. In this report we describe the design and construction of transducers specifically designed for plethysmographic applications, and provide
Design Considerations

For attaching the ultrasonic transducers to the skin, it is convenient to use a housing of the same size and shape as that used with exercise EKG electrodes. The transducers may then be very simply attached with double-sided adhesive collars. With the size of the external housing determined, it is necessary to consider the optimum design of the transducer mounting within the housing. Both the hemispherical and the flat plate transducer designs have been mounted within the housing. We will first consider the flat transducer.

Small flat-plate ultrasonic transducers produce a wider beam, and the electrical impedance of ceramic transducers is reasonably low even for small transducers. Thus, for this application flat plate transducers should be as small as possible. For measurements across the calf, a transducer frequency of 2 MHz offers a convenient compromise between signal attenuation, which increases with frequency, and transducer thickness, which decreases with frequency. At 2 MHz the ceramic material is approximately 1 mm thick; the smallest disc which can be reproducibly cut from this material is about 3 mm in diameter. These considerations determine the size of the transducer element.

Because addition of a convex lens will diverge the beam pattern somewhat, it is desirable to include a lens in the design. If the lens is allowed to protrude into the tissue slightly, it will also serve to provide good acoustic coupling between the transducer and the tissue. The implementation of this concept is shown in Fig. 21A, where a 3 mm diameter transducer is shown mounted behind a lens which
FIGURE 21. Design of Flat and Hemispherical Transducers
a 3 mm diameter transducer is shown mounted behind a lens which protrudes 3 mm into the tissue. The lens is mounted within the EKG housing to provide a space for attachment of the adhesive collars.

Hemispherical transducers may be mounted similarly within a housing of the same external shape as that used for the flat transducers. Because the hemisphere radiates in all directions, no lens is necessary; however, it is convenient to allow the transducer to protrude into the tissue to provide good acoustic coupling. Although hemispherical transducers are available in several diameters, there is no reason to expect significant differences in performance for different diameters. A more critical question is the design of the coupling layer between the crystal and the tissue.

Signal amplitude produced by an ultrasonic transducer may be increased somewhat by placing a quarter wavelength thick matching layer between the ceramic and the tissue [27]. This approach is routinely used in design of transducers for imaging applications [28]. In dimension gauges, however, signal levels are normally very high compared with those encountered in imaging; the wide beam pattern produced by hemispherical transducers enable strong signals to be obtained even when the crystals are badly misaligned. Thus, increasing the signal strength by several dB is of marginal value. The quarter wavelength matching layer is very thin (<0.3 mm) and, thus, is difficult to fabricate and is subject to damage from abrasion. The capacitive coupling between the outer conductive coating of the crystal and the subject is large when a thin dielectric layer is used. The coupling can introduce high frequency noise into the system. For these reasons, the developed transducers use a coupling layer with a minimum thickness of 1 mm. Because this layer is more than one
wavelength thick, the second half-cycle of the received signal is not affected by reflections within the matching layer. Yet the layer is sufficiently thin so that attenuation within the layer is negligible. The implementation of this concept with a hemisphere of 12 mm diameter is shown in Fig. 21B.

Transducer Construction

Construction of the hemispherical receiver transducers is illustrated in Fig. 22. Three major elements are used to assemble the finished transducer. The plastic lens is molded from epoxy resin (STYCAST LN 78058, Emerson and Cuming, Canton, Mass.) in a machined teflon mold. After casting and curing, the back of this lens is machined with a ball mill to fit the hemispherical transducer. The transducer element is obtained commercially (Channel Industries, Santa Barbara, California) as a complete hemisphere. Teflon-insulated stainless steel leads (33 gauge, Cooner, Chatsworth, California) are carefully soldered to the inner and outer conductive coating of the crystal using a zinc chloride flux and ordinary solder. The crystal is then cemented into the plastic lens. A silastic tube is slipped over the leads. This assembly is mounted inside the pre-cast plastic exercise EKG electrode housing (Blackwell Plastics, Houston, Texas). The space between the plastic lens and the housing is sealed with non-corrosive silastic sealant (3140 RTV, Dow Corning Corp., Midland Mich).

Hemispherical transducers are available in several sizes, with the smallest being 6 mm in diameter with a resonant frequency of 3.8 MHz. Crystals resonant 2 MHz are available with a diameter of 12 mm and 9 mm. Any of these elements can be mounted within the lens
FIGURE 22. Construction of Receiver and Transmitter Elements
The housing of the flat transmitter transducer is accomplished in a similar manner. A 3 mm diameter disc is cut from a plate of LTZ-2 transducer material resonant at 2 MHz (Transducer Products, Inc., Gophen, Conn.). Leads are attached as before and the transducer is cemented into a cavity machined into the cast plastic lens. The assembly is then cemented into the plastic housing as before.

Transducer Performance

The external appearance of the developed transducers is depicted in Figure 23A. Fig. 23B shows the appearance of the transducers after attachment of the calf. Transducers are attached at two sites to allow simultaneous measurement of two chords. The adhesive collars provide a firm attachment which can be maintained for several days. Use of a very small quantity of acoustic coupling gel provides improved signal transmission in short-term attachment. For long-term experiments, gel is not necessary because normal skin secretions provide adequate coupling after several minutes attachment.

The most important characteristic of the transducer is the extent to which rotation off-axis reduces signal amplitude. Measured performance of the two transducer types is shown in Fig. 24. Two transducers were suspended in an acoustic test range, separated by 10 cm. In all tests a 3 mm diameter transducer was excited using a standard pulser to produce a constant acoustic signal. The transducer under test was connected to an amplifier having an input impedance of 50 ohms. The tested transducer was rotated in 5 degree increments and beam strength was determined by adjusting a calibrated attenuator to return the amplitude of the second half-cycle to the level obtained at
FIGURE 23. The Developed Ultrasonic Transducers
FIGURE 24. Off Axis Performance of Transducers
0 degrees. As expected the flat transducer is quite directional. The response of the hemispherical transducer is unaffected by rotation over the range of +40 to -40 degrees. Fall off of the response beyond this angle is probably due to interference within the plastic lens. The beam width of the hemisphere could be improved by protruding the lens further, but this would cause unnecessary distortion of the tissue and possible discomfort to the subject.

The directional characteristics of the transducers is further demonstrated in Fig. 25, where recorded pulses are shown. With the flat transducer the pulse shape remains unaltered with rotation, but the amplitude decreases sharply. The pulse shape of the hemispherical transducer is more complex, and changes with rotation; however, the amplitude and shape of the first cycle of the received pulse are almost unaffected by rotation. Because pulse arrival is determined by triggering a comparator on the second half-cycle of the received pulse, the remainder of the pulse is unimportant for plethysmographic applications.

In design of associated electrical circuitry, knowledge of the electrical behavior of the mounted transducers is necessary. Impedances of the two transducer types were measured in air, using an impedance meter (HP model 4815A). The flat transducer, because of its smaller size, presents a relatively large impedance (approximately 800 ohms at resonance) and behaves as a much more reactive (capacitive) load. The hemispherical transducer displays an impedance of only 80 ohms and behaves as a nearly resistive load at resonance. At very high frequencies the impedance of both transducers decreases sharply due to the parallel capacitance of the crystal.
FIGURE 25. Directional Characteristics of Ultrasonic Transducers
Use of the Transducers

Although these transducers may be used interchangeably as receiver and transmitter, when the two are used in combination it is often convenient to use the flat transducer as a transmitter and the hemisphere as a receiver. Because of the high voltage and current required, changing impedance and voltage levels in the pulser requires extensive redesign of the circuit. The low impedance of the hemispherical transducer at high frequencies may load the pulser of some dimension gauges excessively. The flat transducer, however, will produce negligible loading. On the other hand, when the hemisphere is used as a receiver, the low impedance of the hemisphere can easily be matched to the higher impedance of the RF amplifier by use of the step-up transformer, producing a higher voltage input. The low impedance of the hemisphere allows use of the relatively long cable without significant capacitive loading of the transducer.

The use of two hemispheres provides most freedom in placement of transducers when a sufficiently low-impedance pulser is used. This is illustrated in Fig. 26A, where signals passed through a calf of 38 cm girth are reproduced. To provide a reference for location of the transducer, the zero point of a cloth tape measure was attached to the leg at the sharp point of the tibia with the numbers increasing toward the inside of the leg. The tape was then wrapped loosely about the calf, and attached with adhesive tape. Positions of transducers were determined by recording the tape number nearest the transducer. Positions were then computed as angular deflections as if the cross-section of the calf were circular.

A hemispherical transducer was attached to the calf at 76 degrees
FIGURE 26. Comparison of Performance of Different Transducer Combinations
the lower edge of the tibia by palpation and then moving several cm down the calf. This location is optimum for the plethysmographic measurement: Placing the transducer further down the calf forces passage of the signal through the fibula; placing the transducer nearer to the tibia causes transducer movement to be restricted by the bone. The transmitting transducer was then placed at selected locations, as indicated in the Figure 26. Excellent signal quality was obtained as one of the transducers was moved over an 85 degree arc on the calf. The receiver amplifier is saturated on the second half-cycle of the received signal in each photograph.

In most situations the combination of a hemisphere as receiver with a flat crystal as transmitter provides very good results, although the range from which adequate signals can be obtained is smaller (Fig. 26B). Performance of this combination is due to the anatomy of the calf and the attachment procedure used. The receiver crystal (hemisphere) is first attached; the transmitter (flat) crystal is then placed against the opposite side of the leg and adjusted until maximum signal level is obtained. Thus, the directional transducer is adjusted until it is aimed at the receiver. This procedure is far simpler than would be the simultaneous adjustment of two directional transducers.

When flat transducers are used as both receiver and transmitter, signal quality is found to vary dramatically with small changes in transducer location. Small rotations of the transducer will also produce significant changes in the shape of the received pulse. These pulse shape changes are due to the narrow beam width of the flat transducers.
Both the combinations illustrated in Fig. 26 have been tested extensively both in short term physiological experiments and in long term attachment tests. Good signal quality is routinely obtained with minimal training of operators. In long-term attachment tests of up to 7 days no discomfort has been noted; signal quality is maintained so long as the transducers are firmly attached.
Summary and Conclusions:

The development of ultrasonic dimension measurement principles into a laboratory instrument providing plethysmographic data has been detailed in this report. The developed instrument has been compared with the Whitney strain gauge and on impedance measuring device and shown to yield consistent and reliable results.

In human subjects undergoing provocative maneuvers such as venous occlusion and tilt experiments the results have been shown to be repeatable and reliable. The major aim of this project was to develop instrumentation which freed the investigator from the transducer related problems of the capacitance plethysmograph and this was achieved. Since the developed plethysmograph uses transducers on opposite sides of the limbs, the integrity of movement is not compromised and also individualized transducer configurations are not required.

The transformation of the above instrument into a flight certified unit was carried out by Denver Research Institute. This unit has been fabricated and tested in accordance with the procedures developed in the report and is a part of NASA supplied LSLE item.
Theses, Dissertations and Publications:

The following theses, dissertations and publications resulted from the support derived from this research contract.

i. Murali P. Kadaba

x. Significance of phase of an ultrasonic pulse in tissue characterization, V. N. Gupta, P. K. Bhagat and A. M. Fried, Fifth Midwest Biomedical Engineering Conference and Workshop, Columbus, Ohio, May 30-31, 1980.

xiii. Vic C. Wu
"A microprocessor based ultrasonic limb volume measurement system." MSEE, 1980, Co-advisor with Dr. T. L. Henderson.

xiv. Vaikunth N. Gupta
"Ultrasonic tissue characterization via homomorphic transform." Ph.D., 1980.

xv. Ruth A. G. Dyer
"Classification and characterization of tissue pathology through ultrasonic signal analysis." Ph.D., 1980.

xvii. Ultrasonic properties of normal and functionally impaired renal tissue, V. N. Gupta and P. K. Bhagat. Sixth International Symposium on Ultrasonic Imaging and Tissue Characterization, Gaithersburg, Maryland, June 1-4, 1981.

xix. Mark Shafer
"The application of homomorphic processing to ultrasonic signals." MSEE, 1981, Co-director, Dr. B. J. Leon.

xxii. Ultrasonic quantification of skin and muscle hemodynamics, P. K. Bhagat, W. T. Nickell, and V. C. Wu, First Southern Biomedical Engineering Conference, Shreveport, Louisiana,

APPENDIX A

Background Data on Transducers

A. Piezoelectric material properties

Ferroelectric crystals are among the ceramic materials which do not have identical centers of positive and negative charges. A necessary but not sufficient condition for a solid to be ferroelectric is the absence of a center of symmetry of electrical charges. This type of material such as quartz, either elongates or contracts upon the application of an electric field. This dimensional change is due to the effect of the applied electric field on the dipole length. Such behavior in the ferroelectric material provides a means of converting electrical energy into mechanical energy. The crystal vibrates with the frequency of applied alternating field and in proportion to the voltage differential. This property of ferroelectric materials of dimensional changes upon the application of an electric field has led to the electro-mechanical transducer devices, which are commonly used for the production of high frequency sound waves.

In piezoelectric material the converse effect exists, i.e., upon the application of mechanical stress to the crystal, an electric potential is produced which is proportional to the applied stress. There are 21 classes of crystals which can be classified as ferroelectric material (24). Twenty of these materials are piezoelectric, i.e., they exhibit the converse effect too. Some commonly used piezoelectric ceramics are barium titanate (BaTiO₃) and lead zirconate (PbZrO₃).

Ferroelectric ceramics are spontaneously polarized material.
This polarization is dependent on the temperature at which the material exists. The transition from ferroelectric to nonferroelectric occurs at a temperature called the "Curie point". Barium titanate (BaTiO₃) has a stable cubic structure above 120°C. At room temperature it changes to a tetragonal structure, thus producing a polarization due to the movement of the titanium ion (Ti⁺⁴). Such movement of the titanium ion (Ti⁺⁴) introduces an electrical charge imbalance into the unit cell. There is the probability that the titanium ion would be located in one of two locations along one of the major axis (x, y, or z). Since neither location is at the center of the unit cell the center of negative and positive charges are not coincidental and an electrical dipole must exist. The movement of the titanium ion to the second location by a neighboring polarized unit cell is possible, since the energy barrier between the two possible sites along one axis is low. This is known as the cooperative alignment of unit cells, which gives rise to electrical domain in the ferroelectric material as shown in Figure 27.

Upon application of an external electrical field the ferroelectric material domain, will follow the polarization of the applied field, and dimensional changes in the material will occur due to a change in the dipole orientation in the unit cell. Therefore, if an alternating electrical field was applied, vibration of the crystal will take place and ultrasound waves will be generated.

Mason (25) noted that dimensional changes in piezoelectric crystals are dependent on the polarity of the applied electric field and the crystal orientation. He deduced that the piezoelectric properties of a crystal are anisotropic and depend on its orientation.

Piezoelectric properties of a crystal are usually described by
a) Schematic Representation of Cooperative Alignment of Unit Cells

b) The Domain in Ferroelectric Materials

FIGURE 27. Domain Alignment in Ferroelectric Materials
certain parameters. Since these properties are direction-dependent, indices are usually used to specify each individual parameters. Some of the important parameters which pertain to the selection of a piezoelectric crystal for a specific application are listed below:

1. Transmitting Constant d_{ij}
 Defined as the strain produced in a transducer by the application of a unit electric field, and has the unit of coulomb/newton.

2. Receiving Constant g_{ij}
 Defined as the electromotive force produced in a crystal upon the application of a unit pressure input, and has the unit of volt/meter. newton/(meter)^2.

3. Deformation Coefficient h_{ij}
 Obtained by multiplying the receiving coefficient by Young's Modulus of the crystal for a specified direction. It has the unit of newton/coulomb.

4. Coupling Factor k_{ij}
 Provides a measure of the crystal as a energy converter.
 $$h = (h_{ij}d_{ij})^{1/2}$$

5. Permittivity Constant $\varepsilon_T S$
 The dielectric constant representing the permittivity of the material, and how much current is flowing through for each volt. The units of $\varepsilon_T S$ are farad/meter. For this constant, the value of ε for the crystal is different in the clamped (ε_S) than the free (ε_T) state (25).

6. The Mechanical Factor Q_m
 Determines the frequency characteristic of the crystal. This factor is independent of the geometry of the crystal, and is a
measure of the frequency band width:

\[Q_m = \frac{f_0}{f_2 - f_1} \]

- \(f_0 \) = Resonance frequency
- \(f_1 \) = frequency below resonance for a reduction in amplitude of 3 db.
- \(f_2 \) = frequency above resonance for a reduction in amplitude of 3 db.

B. Ultrasonic Field

When an ultrasonic transducer is excited, waves are generated and travel in the immediate medium surrounding the transducer. A pressure distribution with maxima and minima is created in the medium. This is called an ultrasonic field. Fig. 28 is a schematic representation of the field for a circular disk transducer. Positions and amplitudes of the extrema in the ultrasonic field depend greatly upon the ratio of the surface dimensions of the source to the wave length produced.

There are two distinctive regions in the ultrasonic field which are of importance in the design of the transducer. The two regions are: The Fresnel Region (nearfield) and Fraunhofer Region (farfield).

1. The Fresnel Region

The Fresnel Region is also known as the near field. Its depth for circular transducer is given by:

\[x = \frac{d^2}{4 \lambda} \]

where:

- \(d \): disk diameter
- \(\lambda \): wave length.

\(x \) corresponds to the last axial maximum pressure which is the end of Fresnel zone and the beginning of Fraunhofer zone. For a complete mathematical treatment of this region, see Hueter and Bolt (26).
Distance from the Transducer

Equation for the Nearfield: \(\frac{I}{I_0} = \sin^2 \left[\frac{\pi}{\lambda} \left(\sqrt{r^2 + x^2} - x \right) \right] \)

FIGURE 28. The Ultrasonic Field of Circular Disk Transducer
2. The Fraunhofer Region

The ultrasonic field generated by a circular disk transducer had the shape of a cylinder in the nearfield region. At the beginning of the farfield region the ultrasonic beam starts diverging from a uniform cylinder shape. The angle of the beam divergence from a cylindrical shape is given by:

$$\sin \theta = 0.61(2\lambda)$$

And for a square transducer is given by:

$$\sin \theta = \lambda/t$$

Where (d) is the disk diameter and (t) is the width of the crystal. In this region the intensity of the wave is reduced sharply due to the divergence effect, and this will affect the attenuation measurement in the far field region.

C. Measurement System

We have developed a microprocessor based ultrasonic data acquisition and analysis system for measurement of acoustic parameters of a given sample (19,23). This system was used for measurement of transducer beam profile and central axis intensity as a function of distance.

Instrumentation details:

The main components of the developed pulse-echo system are shown in a block diagram in Fig 29. The system consists of a pulse generator, radio frequency (RF) receiver amplifier, calibrated attenuator, and a peak detector. A range gate enables the selection of a particular segment of the reflected signals for processing. All
Figure 29. Data collection and analysis block diagram
of the above are housed in a single unit (Aerotech Labs,1 UTA-3). The
input receiver sensitivity is 5 mV with a frequency bandwidth of 24.6
MHz and a lower frequency cutoff at 400kHz. The receiver gain is 40dB
with an output impedance of 50 Ω. A second set of pulser, receiver,
and range gate (Metrotek, Inc.2) was utilized in some experiments
primarily due to the higher value of excitation (adjustable up to
230V) delivered by the pulser. Acquisition of a microprocessor (Altair
8800), a high speed A/D convertor (Biomation 8100) and an off line
minicomputer (PDP 11/34) facilitates digitization and storage of rf
signals on a disk for further processing. Accurate transit time
measurements can be accomplished using a 225 MHz universal counter
timer (Textronix 7B15). Spectral analysis of data can be performed in
analog fashion using spectrum analyzer (Tektronix 7L13) or digitally
using standard Fast Fourier Transform (FFT) routines available on the
DEC LAB applications package.

Mechanical Apparatus

The mechanical apparatus used in this project, shown in Figure 30,
was designed and assembled in our laboratory. The acoustic test tank
is made of clear, 1.25-cm thick plexiglass, and is lined with a sound-
absorbing Styrofoam sheet to prevent any extraneous reverberations
caused by multiple reflections. The test tank is filled with degassed
distilled water, which acts as the coupling medium between the ultra-
sonic transducer and the specimen. The transducer holders are made
out of plexiglass and are mounted on a sterotaxic positioning device,
which provides several degrees of freedom for accurate positioning of
the transducer. Thick plexiglass slabs of various geometries were

1Subsidiary of KB-Aerotech, Lewistown, PA.
2Metrotek, Inc., Richland, WA
used as reflectors. A 1-rpm synchronous motor is used to control the angular orientation of the transducer with respect to tissue sample.

The mechanical scanner consists of two motor-driven slide assemblies capable of movement in a longitudinal direction, as well as in a transverse direction. The linear velocity of the slides may be separately controlled. The slides have a maximum displacement of 30 cm in the longitudinal direction and 5 cm in the transverse direction. Analog position indicators were incorporated to indicate the position of the scanning transducer with respect to a reference coordinate frame. The whole assembly is made of Duralmin. A calibrated hydrophone (Mediscan, Inc.) with a crystal diameter of 0.7 mm is used as receiver to scan the beam. The scanning is carried out at various axial distances from the transmitting transducer and covers the entire transmitting cross section.

D. Piezoelectric transducer material used in this study.

The transducers used in this project were made from two types of piezoelectric material, LTZ-2 and LTZ-5. (Transducer Products, Inc.). The material is available in form of squares (l", l", t) where t is the thickness which varies to yield different resonance frequencies. The specification for the material are as follows:

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>LTZ-2</th>
<th>LTZ-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{33}</td>
<td>25.5×10^3</td>
<td>35.2</td>
</tr>
<tr>
<td>volt/m/N/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_{33}</td>
<td>405×10^{12}</td>
<td>155×10^{12}</td>
</tr>
<tr>
<td>Q_m</td>
<td>75</td>
<td>500</td>
</tr>
</tbody>
</table>

For application in ultrasonic plethysmography either material type has been observed to be suitable.
APPENDIX B

Test Procedure and Results Using Prototype ULP

Introduction

The Ultrasonic Limb Plethysmograph, fabricated by Denver Research Institute, was received by the Wenner-Gren Research Laboratory (WGRL) on May 20, 1981. Tests were carried out in accordance with the test plan developed by WGRL in consultation with Clete Booher of NASA. Personnel involved in the testing program were: P. K. Bhagat, V. C. Wu, W. T. Nickell, Dave Brewer, Mark Shafer, and WGRL support personnel. Results of these tests are presented in the following pages.
A. PHYSICAL EXAMINATION

I. External Dimensions (LxWxH): 18.2 cm x 11.4 cm x 5.08 cm
 Weight (kg): 1.173 kg Batteries (kg): 0.114 kg

II. Connectors. Are all external connectors:
 a. Sufficiently secure to ensure reliable electrical contact? Yes
 Comment:
 A marker is needed on the female connector to facilitate correct insertion.

 b. Rapidly disconnected in an emergency? X
 Comment:
 Connection appears to be tight. It should be verified by NASA.

III. Are there sharp edges on the case? X
 Comment:
 When cassette door is opened, sharp edges are exposed on the door and the locking mechanism.

IV. Check rigidity and security of indicated parts:
 a. Case O.K.
 b. Batteries X
 Comment:
 1. Banana jack needed tightening.
 2. Not easy to change batteries.
 3. Needs a cover to prevent accidental operation of the switch on the cartridge. Recommend a supply of spare cartridges be provided with the unit.

 c. LCD Assembly O.K.
 d. Electronic Cards X
Comments:

1. PC board need cleaning.
2. Unused switch on the tape recorder needs to be covered.
3. Battery and tape recorder power supply wires need to be harnessed or secured.
4. The real time clock battery holder spring needs to be modified so as to prevent short circuit of the battery.

V. Shake the unit. Are any unusual sounds produced? Yes

Comment:

Cassette is not securely mounted. Cassette strap ring should be removed.

VI. Is the LCD display readable? Yes

VII. Tape Drive

a. Does the tape drive motor produce an abnormal noise level? No

b. Operate the tape removal and insertion mechanism. Is performance satisfactory? Yes

c. Is 'rewind' switch operation satisfactory? See comments

Comments:

1. The door does not provide easy access to the rewind switch. Suggest additional clearance when door is opened (modify hinges).
2. When the door is closed, movement of the recorder switch to "Stop" position should be prevented.
3. Operation of door closing mechanism is difficult.

IX. Check materials included in prototype against materials list.

Mechanical Listing

1. Toggle switch movement shown in drawing ED-14843 is 90° off prototype position - Change the drawing.
2. Prototype fitted with Phillip screws. Drawing ED-14843 shows straight screws.
3. Items in the drawings should specify all parts. For example, Item 7 in ED-14843 should specify both push button switches.

Needs electrical parts listing and materials used list.

IX. Can all indicator lights be seen under normal ambient light levels? Yes
When the tape is full, there is a warning sound. This sound should be approved by NASA for operational convenience. Audibility of this sound under Spacelab condition should be checked by NASA.
B. ELECTRONIC TESTS

I. Circuit diagram review. Carefully review the unit's circuit diagram.

a. Is item complete? Yes
b. Is circuit satisfactory? See comments

Comments:

i. Symbols not consistent - example LED
ii. Core and size of transmit transformer not defined.
iii. Receiver transformer ratio not defined. Suggest using the receiver transformer for impedance matching between transducer and amplifier input stage.
iv. Pin 16 of hybrid ED-15236-2 is not defined.
v. The signal quality test light is amber instead of red as shown in drawing.
vi. In EC-15033 and ED14401, a bigger DIP package than needed is used.

vii. Size and type of plug should be defined for DRS power control jack and DRS "MIC" jack (EC-14402).
viii. Capacitor on pin 7 of power supply hybrid not labeled (EC-14402).
ix. Pin 17 test point not identified in the drawing EC15019.

II. Functional Test. Place a transducer set in a water bath. Verify that instrument works, using LCD display as output.

a. Stability O.K.
b. Accuracy O.K.

Comments:

a. Up to 1 mm fluctuation in display.
b. 24 ±1 counts/2 mm

III. Quality of output signals. Conduct these measurements with power supply voltage at lowest specified value. Photograph signals using oscilloscope and camera.

a. Output pulse. Measure with 50 ohm termination.

Amplitude? 5V_P-P

Rise Time? 35 ns
b. Frequency content. Determine power spectrum of pulse.

See Attached Drawing

Amplitude? ______

Rise Time? ______

c. Output pulse. With transducer attached.

Amplitude? 67V.P-P

Rise Time? 50 ns

d. Digital output. Measure using expected logic termination.

Amplitude? 5V.P-P

Pulse Shape? O.K.

Noise? O.K.

See next pages for graphs and pictures.
Transmit Transformer output with 50Ω (using Biomation)

With Transmitter (Captured on Biomation)

FIGURE 31: ULP Transducer Output Pulse Shape
FIGURE 32. Digital Output in EDI Mode (2400 Baud)
OUTPUT PULSE WITH 50 OHM TERMINATION

X TIC INTERVAL = 1μS

X TIC INTERVAL = 0.01μS

FIGURE 33. Output Pulse with 50 Ω Termination
FIGURE 34. Amplitude Spectrum of the Output Pulse
OUTPUT PULSE WITH TRANSUDER ATTACHED

FIGURE 35. Pulse Shape with Transducer Load
IV. Receiver and Trigger. Conduct these tests with lowest permitted supply voltage.

a. Receiver amplifier Gain
 Acceptable? 53db

b. Noise level of receiver.
 Acceptable? 50mVRms

c. CMRR of Receiver
 Acceptable? >20dB

d. Threshold stability of trigger.
 Acceptable? Yes

e. Input Impedance of receiver. Measure input impedance of receiver between 450 kHz and 10MHz.
 Data enclosed. Resonance occurs between 1.5 and 2 MHz (Phase Change) - Measured using vector impedance meter.

 50kHz and -5.5MHz
 Comment:
 Measured using differential sine wave input.

g. Determine range of transmitter - receiver combination, as compared with original ULVS unit.
 Minimum - 6.1 cms, Maximum - 24 cms
 Comparable? Yes, but the minimum is higher than the original ULVS unit.
<table>
<thead>
<tr>
<th>FREQ. (MHz)</th>
<th>IMPEDANCE (Ohms)</th>
<th>PHASE ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT 1</td>
<td>INPUT 2</td>
<td>INPUT 1</td>
</tr>
<tr>
<td>0.5</td>
<td>370</td>
<td>380</td>
</tr>
<tr>
<td>1.0</td>
<td>1.05K</td>
<td>1.05K</td>
</tr>
<tr>
<td>1.5</td>
<td>3.0K</td>
<td>4.3K</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0K</td>
<td>2.9K</td>
</tr>
<tr>
<td>2.5</td>
<td>1.4K</td>
<td>1.35K</td>
</tr>
<tr>
<td>3.0</td>
<td>950</td>
<td>920</td>
</tr>
<tr>
<td>3.5</td>
<td>720</td>
<td>710</td>
</tr>
<tr>
<td>4.0</td>
<td>600</td>
<td>580</td>
</tr>
<tr>
<td>4.5</td>
<td>500</td>
<td>480</td>
</tr>
<tr>
<td>5.0</td>
<td>430</td>
<td>420</td>
</tr>
<tr>
<td>5.5</td>
<td>380</td>
<td>370</td>
</tr>
<tr>
<td>6.0</td>
<td>340</td>
<td>335</td>
</tr>
<tr>
<td>6.5</td>
<td>310</td>
<td>300</td>
</tr>
<tr>
<td>7.0</td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td>7.5</td>
<td>260</td>
<td>260</td>
</tr>
<tr>
<td>8.0</td>
<td>240</td>
<td>235</td>
</tr>
<tr>
<td>8.5</td>
<td>220</td>
<td>215</td>
</tr>
<tr>
<td>9.0</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>9.5</td>
<td>195</td>
<td>195</td>
</tr>
<tr>
<td>10.0</td>
<td>185</td>
<td>180</td>
</tr>
</tbody>
</table>
Comment:

1. Due to the design of the testing pad additional noise is introduced into the receiver output. For this reason, the numbers listed above do not reflect actual values.

2. The actual receiver gain is lower than that specified in the end item specification. However, operation appears to be satisfactory.

V. Function switches. Check function of switches.

a. Time Set
 O.K.

b. Time on/off
 O.K.

c. Fast/slow
 O.K.

d. Self-test/Reset
 O.K.

e. Power
 O.K.

Comment:

i. Operation of 2 or 4 chord switch has no effect until 'Reset' is operated.

ii. Access to function switches is difficult due to their location under the tape recorder. Suggest vertical mounting of the switches for ease of operation.

VI. Automatic signal quality check.

Does automatic signal quality check system perform properly? Yes

Describe measurements made to verify operation of this function:

Transducers 100 mm apart were placed in a water bath.

a. One of the transducers was rotated until poor signal quality was apparent. The warning light indicated this condition correctly.

b. Keeping one of the transducers fixed, the other was given sinusoidal displacement at varying rates. When the amplitudes and frequencies of 5 mm, 0.5Hz; 2.5 mm, 0.7Hz and 1.0 mm, 1.6 Hz were exceeded the warning light was 'ON' even though the signal quality was good.
The warning light sometimes is on during physiological tests even though the quality of signal is good. Suggest changing the test range of signal quality.

VII. Power Consumption. Measure average steady state power consumption using series ammeter and volt meter.

a. Slow Mode
 179-182 ma, 7V 2 chord
 182-186 ma, 7V 4 chord

b. Fast Mode
 172 ma, 7V 2 chord
 176-180 ma, 7V 4 chord

c. Recorder Running
 167 ma, 7V 2 chord
 120 ma, 3.5V 2 chord

For 4 chords, the numbers are essentially the same.

d. Battery Life Under Normal Operation from full charge.
 33 hrs.

Comment:

Out of spec conditions on voltage were observed on two occasions. Suggest recheck of power supply hybrid.

IX. Time Base Accuracy

a. Clock Frequency
 18.0042 MHz, 60.0014 Hz

b. Determine clock Accuracy by test against official standard.

 Drift was 6 seconds for four days and 37 seconds for twenty days when tested against WWV.

<table>
<thead>
<tr>
<th>Initial Readings</th>
<th>Standard</th>
<th>ULP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 month</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IX. Tape Operation

a. Quality of Recorded Signal

 Amplitude
 O.K.

 Noise Level
 O.K.
Stability
O.K.

See attached data on page .

b. Interface to LSLE computer. Comment on any problems encountered:

Interference between EDI data output and receiver input was observed, however, rearrangement of external wire eliminated this problem. We feel that EDI output sometimes feeds signals to the receiver amplifier during data transmission.

c. Data Reliability. Record a string of at least 5,000 data points. Play recorded data into LSLE computer. Determine number of transmission errors which occur.

Slow Mode Error Rate 1 error

Fast Mode Error Rate NONE

Comments:
FIGURE 36. Tape Recorded Signal Played Back with 1K Load and Capture by Biomation A/D Converter.
C. USE TESTS

I. Ease of use. Attach the unit to an experimental subject. Instruct subject to operate controls, change tapes, conduct simple exercises, and remove and reattach the unit.

a. Accessibility of Controls O.K.
b. Visibility of Indicator Lights O.K.
c. Ease of Changing Tape and Battery

See section A, IV b of this report.
d. Difficulty in detaching or reattaching cables and connectors

See section A, II of this report.
e. Comfort

Comments:
Need 'pouch' to comment on comfort.

II. Provocative Tests. Conduct Venous Occlusion and tilt-table tests to produce changes in limb volume.

a. Transmit data directly into LSLE microcomputer

Quality of Data O.K.
Interpretation of Data O.K.

Comments:
More noise spikes on 2nd chord. Does not seem to be on transducer. The problem is intermittent. Data enclosed.

b. Record data on tape.

Quality of Data O.K.
Interpretation of Data O.K.

Comments:
Data enclosed on pages 99, 100 and 101.
FIGURE 37. Time Course of Dimension Changes Under 50 mm Hg Venous Occlusion Procedure
FIGURE 38: Time Course of Limb Dimension Changes Under 50° Head Up Tilt
FIGURE 39. ULP Data Played Back From the Recorded Venous Occlusion (50 mmHg) Data
III. Routine Monitoring. Use tilt-table to produce leg volume data over a 30 minute period.

 Quality of Data O.K.
 Ease of Interpretation O.K.

Comments:

Data enclosed on page 103.

IV. Automatic signal check. Use automatic signal check feature to place transducers on subjects leg. Verify quality of signal using oscilloscope.

 # trials/# correct O.K.

Comments:
FIGURE 40. Passive Monitoring of Data Through a Tilt Table Experiment
ULP ROUTINE MONITORING TEST
X TIC INTERVAL = 1 MIN.
Y TIC INTERVAL = 5 COUNT
TEST EQUIPMENT USED IN EVALUATION OF ULP

1. Biomation, Model 8100, Transient Recorder
2. Tektronix, 604, Monitor
3. Tektronix, SC 502, Oscilloscope
4. Hewlett-Packard, 7402A, Strip Chart Recorder
5. Fluke, D802 Multimeter
6. Fluke, 8020A Multimeter
7. ULVS, Wenner-Gren Research Laboratory
8. OHAUS, Harvard Trip Balance
9. Wavetek, HF Sweep Generator, Model 144
10. Tektronix, 7633 Multimode Storage Oscilloscope, with plug-in units, 7A26 Dual Time Trace Amplifier, 7D15 225 MHz Universal Counter/Timer and 7B53A Dual Time Base
11. Hewlett-Packard, 4815A RF Vector Impedance Meter
12. Tektronix, 4051 Graphics System With 4051E01 Rom Expander
13. Tektronix, 4662 Interactive Digital Plotter
14. Tektronix, P6202 Probe
15. Tektronix, C-5B Oscilloscope Camera
16. Hewlett-Packard, 5303B Frequency Counter
17. Velmex, Series B2500, Positioning System
18. Velmex, Model 311, Control Unit
19. La Berne Tilt Table
20. MTS 442 Controller
21. Cromemco, System Three, Computer
22. MTS Servoram
23. LAMBDA LH-124 FM, D.C. Power Supply
24. RCA WP-702A, Dual D.C. Power Supply
Conclusions and Recommendations

The basic design of the ULP unit is sound. Most problems encountered in our testing program were operational difficulties which can be fixed by either modifications of software and/or development of proper procedures. The following specific recommendations are made:

1. RF signal cannot be seen on a conventional oscilloscope because of the low repetition rate. This makes transducer placement very difficult without the original ULVS. Software fix is needed to provide at least 100 sweeps/sec.

2. We have had some problems with the automatic signal quality check. It is sometimes 'ON' when the signal is good and 'OFF' when the signal is bad. Resetting the levels might cure the problem. We suggest calculation of power requirement of the Automatic Signal check. The signal quality check could be made only once every 10 sec., for example if this would save power. In addition, the maximum sampling rate could be increased.

3. Polarity of the leads is a problem. The first 1/2 cycle of a "good" signal is normally small. It is desirable to trigger on the the 2nd half cycle. With the ULVS this problem is handling by reversing polarity. The leads should be designed so that the polarity can be set using an oscilloscope and recovered when leads are reattached.

4. The receiver transformer needs further work. The turns ratio should be set to match transducer impedance to receiver impedance. The transformer does not behave in an ideal manner over the important frequency range. There is a resonance between 1.5 and 2.0 MHz. We suggest consultation with WGRL or purchase of
commercial units. Improvement of the transformer design will probably improve the receiver gain significantly.

5. Transmitter pulse width is long compared with the natural period of the transducer; the pulse is bipolar. This might cause problems if a higher frequency transducer were to be used.

6. The size and weight of the unit are slightly above specifications. We offer the following suggestions for reducing these values:
 a. The present case is made of very thick material. Size and weight could be reduced significantly by using a less substantial case.
 b. The tape recorder case, the replay electronics, and the speaker are superfluous. Space and weight could be saved by removing these components.
 c. A more compact shape might be produced by careful arrangements of parts. Unfortunately, the length and width of the unit are set by the size of the PC board. Placement of the circuit on two PC boards would allow a more compact shape to be produced.

7. The gain of the receive amplifiers is slightly lower than that of the original ULVS. Increasing the gain by a factor of two would improve device performance.

8. Turning the unit 'OFF' causes loss of data back to the last tape recorder dump. This will be an operational inconvenience in some cases. The software should be written so that the ULP stops recording data when the transducers are disconnected. This would allow the power switch to remain 'ON' for long periods without draining the batteries significantly.
APPENDIX C

Description of Individual Circuit Blocks of Two Transmitter ULVS

A. Processor, Memory and Display

This block (Fig. 41) consists of one Intel 8080 CPU, two 2708 EPROMs for storage of instruction codes and constants, two 2111 RAM chips for storage of generated data, one 8228 data bus and status controller, and an 8224 clock generator which provides the working clock at 2 MHz for the CPU and also supplies the clock frequency for the counter at 18 MHz. It also contains a 6820 Motorola PIA which drives four BCD to seven segment decoders/drivers 7448, which in turn drive 4 DL-704 common cathode LED's where the results are displayed. The 5th digit of the LED display is wired so that it will show blank or "1" only; this digit is driven by an npn-transistor which is controlled by line CB2 of the 6820 PIA. Two 7400 NAND and one 7402 NOR gates are used to provide the required address decoding. They also provide suitable enabling signals. Because the 8080 has both memory reference and I/O reference instructions, the circuit is arranged so that the 6820 occupies I/O addresses 04 to 07 of the CPD (address 00 to 03 is reserved for the use of the other 6820 which will be discussed later). The two 2708 ROM chips use memory addresses from 000 to 7FF Hex. Two 2111 RAM chips then occupy memory addresses from 800 Hex to 8FF Hex. The decoding and enabling logic of each peripheral chip is implemented as follows:

\[
\begin{align*}
\text{Chip Select of 2708 (1)} &= \text{All} + \text{MEMR} \cdot \text{A10} \\
\text{Chip Select of 2708 (2)} &= \text{All} + \text{MEMR} \cdot \text{A10} \\
\text{Chip disable of 2111 (1), 2111 (2)} &= \text{All} \\
\text{Output disable of 2111 (1), 2111 (2)} &= \text{MEMR}
\end{align*}
\]
FIGURE 41 - Schematic of processor and memory for the two transmitter ULVS
Read/Write of 2111 (1), 2111 (2) = MEMW
Chip Select 0 and 1 (CS0 and CS1) of 6820's = 1
Chip Select 2 (CS2) of 6820 (2) = A2
Chip Select 2 (CS2) of 6801 (1) = A2
Enable of 6820's = IOW + IOR
Read/Write of 6820's = IOR

Where AO to All are address lines from the CPU, and MEMR, MEMW, IOR, and IOW are signals from the 8228. These signals represent memory-read, memory-write, input/output read, and input/output write respectively. Note that in order to simplify the decoding circuit, non-fully-decoded addressing is used.

The Intel 8080 microprocessor serves as the CPU of the system. The two clocks, \(\varphi_1 \) and \(\varphi_2 \), the reset, ready, and synchronizing signals are all provided by the 8224 clock, which controls the timing for the entire system. An 18 MHz crystal is connected at pins 14 and 15 of the clock and the resulting oscillatory output is available at pin 12 to run the counter in the next block (see Figure 42). An external reset button is connected between the Reset Input (Resin), Ready Input (Rdyin), and ground to allow manual reset of the system. The status strobe (STSTB) is connected to the 8228 Data Bus (Pin 1, STSTB) to synchronize its operation.

The 8228 Data Bus and Status Controller is used to increase the driving capacity of the CPU. It generates all signals required to directly interface RAM, ROM, and I/O components. It also provides isolation of the 8080 data bus from memory and I/O which allows for the optimization of control signals. The isolation of the bus driver also provides for enhanced system noise immunity. Data lines D0 to D7 of the 8080 are tied to D0 to D7 respectively of the 8228. The Write
FIGURE 42 - Schematic of controller logic, transmitter select and counter for two transmitter ULVS
(WR), Data Bus in (DBIN) and the Hold Acknowledge (HLDA) lines of the 8080 are tied to the corresponding lines, WR, DBIN, and HLDA of the 8228. The DBIN signal indicates to external circuits that the data bus is in the input mode. The HLDA appears in response to the Hold signal and indicates that the data and address bus will go to the high impedance state. Line 22, BUSEN, is the bus enable input. It is tied to ground to keep the data bus always enabled. The output of the 8228 are lines DBO to DB7, the extension of 8080's data lines. These data lines are then available to the peripheral components. This provides a two-way data path with high fan-out between CPU and external components. Four other output lines of the 8228, Memory Read (MEMR), Memory Write (MEMW), I/O Read (IOR), and I/O Write (IOW) are available to control read/write operations in other components.

Memory capabilities of the system include two 256 x 4 RAM and two 1k x 8 ROM chips. Input/output data lines of the two RAMs (pins 11-14 of both chips) are tied to the Data lines DBO-DB7 of the 8228 to allow data transfer between the CPU and RAM. Each RAM has its address line AO-A7 tied to AO-A7 of the 8080 to enable the CPU to store and read data at specific addresses in RAM. Read and Write enabling signals come from the MEMR and MEMW lines of the 8228. Input/output data lines of each ROM (pins 9-11, 13-17 of each chip) are also tied to the Data lines DBO-DB7 of the 8228 to allow data transfer between the CPU and ROM. Each ROM has its address lines AO-A9 tied to AO-A9 of the 8080 to enable the CPU to read data from specific addresses in the ROM. Each memory chip is located at the addressable location stated above.

A 6820 Peripheral Interface Adaptor (PIA) is included to
facilitate efficient data transfer of the computed limb cross-sectional area to the display. Data lines of the 8228 are tied to the corresponding data lines to the PIA and when the area has been computed, the PIA reads in the data. The data is then output from lines PA0-PA7 to the 7448 BCD-to-seven segment decoders, whose output goes to the seven segment displays. Read and write signals for the PIA are supplied by the IOR and IOW lines of the 8228 respectively. A Reset signal is supplied by by 8224 clock. The PIA is located at the addressable memory locations stated above. Switching in all circuits is controlled by the program in 8080.

B. Controller Logic, Transmitter Select, and Counter

The function of this block (Fig. 42) is to control the flow of information throughout the system, to select a transmitter for chord length measurement and to provide a count proportional to measured ultrasonic transit time for further computation. It contains a 6820 PIA which drives three cascaded 4-bit 7493 binary counters, a CD4052 analog switch, a 7474 D-type flip-flop, a 74121 one shot, and 7400 NAND chip for logic level converting and gating between the binary counters, flip-flop, one shot and the analog switch.

The PIA in this block is used to interface the binary counters with the CPU, and it is connected almost in an identical manner to the previous PIA (Fig. 41). Data line DO-D7 (pins 26-33) as well as reset, enable, read/write, RSO, and RSI (pins 34, 25, 21, 36, and 35) are all connected as described earlier. The only difference is the chip select 2 (CS2) pin. This allows the CPU to select one or the other of the PIA's. Lines PA0-PA7 and PBO-PB3 are connected to the output of the 7493 binary counters as shown in Fig. 42, in order to allow the CPU access the binary count. The three counters are
connected in cascade such that the least significant bit of the count is output at pin 12 of the 7493 #1 and the most significant bit is output at pin 11 of the 7493 #3. The counting frequency is supplied of by the 8224 clock (Fig. 41) and is connected to pin 14 of the 7493 #1. Counting frequency is 18 MHz, hence the accuracy of time measurements is 55 nsec. The counters are enabled by a 7474 D-type flip-flop.

The 7474 is set by the transmitter enabling pulse from the CPU through the PIA at line PB7. Pin 4 of the flip-flop is the reset. Initialization of the counters is provided by the output, Q, of the flip-flop. Q and the 18 MHz pulse from the 8224 clock are input to a 7400 NAND gate, and the output is used to enable the counter and control its counting frequency. Pin 1 of 7474 is the clear input, and it is connected to the receiver's comparator output in order to stop the counters when the signal is received.

Since the receiver amplifier has high gain, the possibility of false output from the comparator due to the presence of low level interference may exist during the activation phase of the transmitted signal. This possibility is avoided through use of a 74121 one shot which inhibits the receiver comparator output during this period. This one shot is enabled by the transmitter enabling pulse from the CPU through the 6820 at line PB7. The output of the 74121 is set at about 10 usec. This time period is of sufficient length to prevent false firing of the comparator (set as a threshold detector).

A CD4052 analog switch is used for selection of either one of the two transmitters for activation. The transmitter enabling pulse from line PB7 of the 6820 (1) is input to the 4052 where it is multiplexed
to output at either X_0 (pin 12) or X_1 (pin 14). Two transistors (2N222) at the output are used to convert the logic levels from the analog switch to a 15 V pulse to activate the ultrasonic transmitting circuit (pinger). S_1 (pin 9) and S_O (pin 10) of the 4052 are the multiplexer select lines. S_1 is grounded (Logic Level "0") since only two of the outputs are used and S_O is connected to the mode switch.

A two-pole three position slide switch is used as a mode selector. In the first two positions a ground level is sensed by line PB4 of the 6820 and notifies the CPU to send out approximately a 2 Khz pulse test signal to either one of the transducer enabling inputs of the transmitting "pinger", depending on the position of the switch. This in turn will provide a continuous pulsed ultrasound output so that the operator can place the receiver transducer at a proper position. In position 3, the run mode, the CPU takes over and selection of the transmitter is controlled by the stored program.

Power Supply Circuits

Power for all clocks of the system is supplied by the TM515 power module. Fig. 43 shows the designed voltage regulator circuits to convert this power source into the required 5V, 12V, and 15V required by the system. The three circuits operate as follows:

Figure 43A produces +15V and +12V. A regulated voltage source provided by a 15V Zener diode and a pnp power transistor produces the -15V supply. A second similar voltage source using a npn transistor produces the +15V supply. The +15V supply is also used as the input to an LM 7812 +12V precision voltage regulator which produces the 12V supply. Capacitors are used to filter out any AC ripple.

Since the LED displays do not require a precise voltage source, a simple voltage dividing network, shown in Fig. 43B, is used to
FIGURE 43- Schematic of power supply circuits used in two transmitter ULVS
produce its 5V supply. Line voltage is stepped down to 25V through a transformer. A pnp power transistor and three resistors are used to produce the voltage divider which produces 5V at the output of Fig. 43B. In order to prevent the 100 nf capacitor from discharging back into the transformer, a diode is included at the input. Capacitors are used at the input and output to filter out any AC ripple.

Two +5V precision voltage regulators (LM 7805) and one -5V precision voltage regulator (LM 7905) are used in Fig. 43B to produce the 5V supplied. Line voltage is stepped down to 15V through a center tapped transformer. The center tap is grounded. Full wave rectification of the secondary voltage across the end terminals of the top portion of Fig. 43C is accomplished by two diodes. A regulated voltage source, provided by an npn transistor and a 9V Zener diode with input and output capacitors for filtering out AC ripple, is used as an input to the two 7805's. Half wave rectification of the secondary voltage across the end terminals of the lower portion of Fig. 43C is accomplished by one reverse-biased diode to allow only negative voltages to pass. This is used as the input to 7905, which produces the -5V supply. Transistors Q1 through Q2 are power transistors supplied by the TM 515 power module. All resistors are 1 watt.
SOFTWARE IMPLEMENTATION

The operation of the Ultrasonic Plethysmograph is controlled by the 8080 microprocessor and the program implemented in the 8080 provides the process for determining limb cross-sectional area. To fully understand the operation of this device it is necessary to understand the software implementation. A flow graph of the program is shown in Fig. 44.

The program counter within the 8080 microprocessor chip is initialized through a SPST pushbutton switch located on the front panel. Automatic power-on-reset of the program counter is provided through an R-C charging network. The program begins with initialization of the 6820 PIA. The stack pointer is then set up followed by the choice of operating mode. In the testing mode a 2 KHz pulse repetition frequency (prf) is used to excite one of the transducers based on the position of the selector switch. This feature enables one to observe the received signals on the oscilloscope screen and adjust the transducer locations for optimum results. Once the optimum transducer sites have been located, the selector switch is moved to position 3, run mode, indicating that limb area computations may now be carried out. It begins by resetting the binary counters upon activation of transducer 1. The program then calls subroutine "NOTYET" shown in Fig. 45. This subroutine takes the binary count, which is the time required for the ultrasonic pulse to traverse from transmitter to receiver, and converts it into a corresponding chord length, d1. This information is stored in the RAM. In a similar manner the second chord length data, d2, is obtained and stored. The limb cross-sectional area is computed and
FIGURE 44. Flow Graph of Software Implementation
"NOTYET"

NO

COMPUTER
STOP

YES

TAKE BINARY COUNT
DATA FROM COUNTER

CONVERT INTO FLOATING
POINT FORMAT

NORMALIZE

RETURN

FIGURE 45. Subroutine "NOTYET"
displayed on the front panel LED readout. After a delay (firmware adjustable, normally set a 1 sec), the program returns to the testing mode and a second sequence of events begins, unless the selector switch is moved to positions 1 or 2.

A complete listing of software is included in the following pages.
SOFTWARE PROGRAM LISTING

; **
; ULTRASONIC LOWER LIMB AREA COMPUTATION.
; **
;
; THIS IS A PROGRAM TO COMPUTE AREA OF
; A SEGMENT OF THE LOWER LIMB UNDER MEASUREMENT.
; COMPUTATIONS ARE DONE BY UTILIZING FLOATING
; POINT ROUTINES WHICH ARE ADOPTED AND
; MODIFIED FROM THE INITIAL VERSION OF IMSAI
; 8K BASIC SOURCE LISTING. THESE ROUTINES ARE
; LISTED FOR REFERENCE.
;
; PARAMETERS ARE DEFINED AS FOLLOWS:
; D1 = DISTANCE BETWEEN 1ST TRANSMITING TRANSUDER
; AND THE RECEIVING TRANSUDER.
; D2 = DISTANCE BETWEEN 2ND TRANSMITING TRANSUDER
; AND THE RECEIVING TRANSUDER.
; D = DISTANCE BETWEEN TWO TRANSMITTING TRANSUDERS.
; WHICH IS PRESETED AS 2.5 (CM).
; PROGRAM IS STORED IN TWO 2708 EPROMS AND
; START AT LOCATION 0.
; GENERATED AND TEMPORARY DATAS ARE STORED IN
; TWO 4 BY 25A RAM WHICH ARE LOCATED AT 800H.
; FLOATING POINT DATAS ARE STORED IN 4 CONSECUITVE
; BYTES WITH THE 1ST BIT OF THE 1ST BYTE
; BE THE SIGN OF THE MANTISA AND 2ND BIT OF THE 1ST
; BYTE BE THE SIGN OF EXPONENT. THE REST
; OF THE 1ST BYTE IS EXPONENT AND THE FOLLOWED
; 3 BYTES ARE MANTISA.
;
; **
; ORG 0
;
; **
; SET THE STACK POINTER AT 43000H (980H).
; LOCATIONS 800H TO 97FH ARE SAVED TO
; STORE GENERATED AND TEMPORARY DATAS.
; LXI SP, 43000
;
; **
; INITIALIZE PIAS (MOTOROLA 6820).
; PIA(1) CHANNEL A IS SET AS INPUT.
; PIA(1) FIRST 2 BITS OF CHANNEL B
; IS SET AS OUTPUT OTHERS AS INPUT.
INPUT ARE FROM BINARY COUNTER, OUT.
PUT ARE TO THE CONTROLLING LOGIC.
PIA(2) CHANNEL A AND B ARE SET AS
OUTPUT ONLY.
REFER TO CHAPTER 4 FOR DETAILS.

XRA A ;CLEAR A.
OUT 1 ;ACCESS DATA DIRECTION

0003 AF
0004 D301
0005 OUT 1
0006 D303
0007 OUT 3
0008 D305
0009 OUT 5
000A D307
000B OUT 7
000C D300
000D OUT 0 ;SET AS INPUT.
000E 3EC0
000F MVI A,3000
0010 D302
0011 OUT 2
0012 3EFF
0013 MVI A,3770
0014 D304
0015 OUT 4 ;SET AS OUTPUT.
0016 D306
0017 OUT 6
0018 3E34
0019 MVI A,640
001A D301
001B OUT 1 ;ACCESS DATA REGISTERS.
001C D301
001D OUT 1
001E D303
001F OUT 3
0020 D305
0021 OUT 5
0022 D307
0023 OUT 7

IN THE FOLLOWING THE STATUS OF THE
THE MODE SELECTION SWITCH IS DETECTED.
IF THE MODE IS SELECTED AS TESTING, A
2KHZ PULSE IS SENT TO EITHER ONE OF THE
TRANSMITTING TRANSDUCERS. OTHERWISE
COMPUTATION SEQUENCE IS RESUMED.

0024 DB02
0025 SNP
0026 E610
0027 IN 2
0028 C24000
0029 JNZ FREE
002A 3E80
002B MVI A,2000
002C D302
002D OUT 2
002E 3E00
002F MVI A,0 ;TURN OFF PULSE.
0030 D302
0031 OUT 2
0032 210000
0033 LXI H,0
0034 7D
0035 DL MOV A,L ;DELAY FOR 1/2 MSEC.
0036 23
0037 INX H
0038 FE22
0039 CPI 420
003A C23600
003B JNZ DL
003C C32400
003D JMP SNP

START COMPUTATION SEQUENCE.
Routines ARE SPECIFIED AS FOLLOWING,
J RST6= STORE (A) INTO <H,L>
J RST5= RESTORE <H,L> INTO (A)
J FACC= FLOATING POINT ACCUMULATOR.
J FMUL= FLOATING POINT MULTIPLICATION.
J FSUB= FLOATING POINT SUBTRACTION
J FDIV= FLOATING POINT DIVISION.
J FADD= FLOATING POINT ADDITION.
J FOUT= CONVERT FLOATING POINT NUMBERS INTO BCD.
WHERE (A) IS CONTENTS OF A REGISTER.
<H,L> IS LOCATION DEFINED BY REGISTER H AND L.

0040 3E3C FREE MVI A,740 ; CLEAR COUNTER.
0042 D303 OUT 3
0044 3E34 MVI A,640
0046 D303 OUT 3
0048 3E80 MVI A,200Q ; SEND PULSE TO
004A D302 OUT 2 ; ULTRASONIC PINGER.
004C AF XRA A
004D D302 OUT 2
004F CD8205 CALL NOTYET ; GO CONVERTING ROUTINE.
0052 210A08 LXI H,D1 ; STORE 1ST CHORD.
0055 CDCF03 CALL RST6
0058 3E3C MVI A,740 ; CLEAR COUNTER.
005A D303 OUT 3
005C 3E34 MVI A,640
005E D303 OUT 3
0060 3EC0 MVI A,300Q ; SEND 2ND PULSE.
0062 D302 OUT 2
0064 AF XRA A
0065 D302 OUT 2
0067 CD8205 CALL NOTYET
006A 210E08 LXI H,D2 ; STORE 2ND CHORD.
006D CDCF03 CALL RST6
0070 210A08 LXI H,D1 ; RESTORE D1.
0073 CD8803 CALL RST5
0076 213108 LXI H,FACC
0079 CD8001 CALL FMUL ; GET D1 SQUARE.
007C 210A08 LXI H,D1
007F CDCF03 CALL RST6 ; STORE D1 SQUARE.
0082 210E08 LXI H,D2
0085 CD8803 CALL RST5
0088 213108 LXI H,FACC
008B CD8001 CALL FMUL ; GET D2 SQUARE.
008E 210E08 LXI H,D2
0091 CDCF03 CALL RST6 ; STORE D2 SQUARE.
0094 210A08 LXI H,D1
0097 CD9C04 CALL FADD ; ADD D1^2 AND D2^2.
009A 218004 LXI H,DC
009D CD6005 CALL FSUB ; SUBTRACT BY D^2.
00A0 211908 LXI H,VA
00A3 CDCF03 CALL RST6 ; STORE IT.
00A6 213108 LXI H,FACC
CALL FMUL ; SQUARE IT.
LXI H,F4 ; SET 4.
CALL FDIV ; DIVIDED BY 4.
LXI H,D1
CALL FDIV ; DIVIDED BY D1^2.
LXI H,D2
CALL FDIV ; DIVIDED BY D2^2.
LXI H,VASQ
CALL RST6 ; STORE IT.
LXI H,F1
CALL RST5 ; 1 TO FACC
LXI H,VASQ
CALL FSUB ; GET 1-VASQ.
LXI H,D2
CALL RST5 ; RESTORE D2^2.
LXI H,VAHF
RST6
CALL RST5 ; RESTORE D2^2.
LXI H,VAHF
RST5
CALL FADD ; GET VA/2.
LXI H,VAHF
RST5
CALL FMUL ; SQUARE IT.
LXI H,F2 ; GET 2.
CALL FDIV ; GET VA/2.
LXI H,Y2SQ
CALL FSUB ; GET D2^2-VAHF.
LXI H,FACC
CALL RST6 ; STORE IT.
LXI H,F4
CALL FDIV ; DIVIDED BY 4.
LXI H,Y2SQ
CALL FDIV ; DIVIDED BY Y2SQ.
LXI H,YCSQ
CALL RST6 ; STORE IT.
LXI H,D1
CALL RST5 ; RESTORE D1^2.
LXI H,F4
CALL FDIV ; DIVIDED BY 4.
LXI H,YCSQ
CALL RST6 ; STORE IT.
LXI H,D1
CALL RST5 ; RESTORE D1^2.
LXI H,F4
CALL FDIV ; DIVIDED BY 4.
LXI H,YCSQ
CALL FADD ; ADD IT WITH YCSQ.
LXI H,PHI
CALL FMUL ; MULTIPLIED BY PHI.
LXI H,STRIN
CALL FOUT ; CONVERT RESULT INTO BCD.
LXI H,STRIN
CALL FOUT ; CONVERT RESULT INTO BCD.
LXI H,STRIN
CALL FOUT ; CONVERT RESULT INTO BCD.
CALL DISP ; DISPLAY RESULT ON LEDS.
LXI H,STRIN
CALL DISP ; DISPLAY RESULT ON LEDS.
JMP SNP ; GO BACK FOR NEXT.

; THIS SUBROUTINE DISPLAYS THE BCD RESULTS
; FROM FOUT ROUTINE ONTO FRONT PANEL LED DISPLAY.
; THE RESULTS FROM FOUT IS ASSUMED TO BE LESS THAN
; 200 CM SQUARE AND GREATER THAN 20 CM SQUARE.

0136 =
0136 3E34 DISP EQU $136
0138 D307 MVI A,640
013A 0E05 OUT 7 ;CLEAR 1ST DIGIT.
013C 111208 MVI C,5 ;NUMBER OF DIGIT INTO C.
013E 214508 LXI D,OUTSTR ;SET DISPLAY BUFFER.
013F 214508 LXI H,STRIN ;LOCATE BCD RESULT.
0142 7E REPT MOV A,M
0143 23 INX H
0144 FEOA CPI 10 ;CHECK IF IS A BCD.
0146 F24201 JP REPT IF NOT SKIP IT.
0149 12 STAX D ;OTHERWISE INTO BUFFER.
014A 13 INX D ;INCREMENT BUFFER.
014B 0D DCR C ;LESS ONE DIGIT.
014C 24201 JNZ REPT ;GO REPEAT IF MORE DIGIT.

014F 211208 LXI H,OUTSTR ;LOCATE BUFFER.
0152 7E MOV A,M
0153 FE02 CPI 2 ;CHECK IF >100.0
0155 F25E01 JP SKIP ;SKIP IF NOT.
0158 3E3C MVI A,740 ;OTHERWISE 60 LIT
015A D307 OUT 7 ;1ST DIGIT TO 1.
015C 23 INX H
015D 7E MOV A,M ;SET NEXT.
015E 23 SKIP INX H ;ROTATE TO LEFT.
0160 07 RLC
0161 07 RLC
0162 07 RLC
0163 E6F0 ANI OFOH ;STRIP TO 4 BITS.
0165 86 ADD H ;MERGE WITH NEXT BCD.
0166 D306 OUT 6 ;DISPLAY IT(2 DIGITS).
0168 23 INX H
0169 7E MOV A,M ;GET 3RD BCD.
016A 07 RLC ;ROTATE IT.
016B 07 RLC
016C 07 RLC
016D 07 RLC
016E 07 RLC
016F E6F0 ANI OFOH
0171 23 INX H
0172 86 ADD H ;MERGE WITH LAST BCD.
0173 D304 OUT 4 ;DISPLAY AT LAST 2 DIGITS.
0175 210000 LXI H,0 ;DELAY FOR 1 SEC.
0178 7C DL1 MOV A,H
0179 23 INX H
017A FE7F CPI 177Q
017C C27801 JWZ DL1
017F C9 RET ;RETURN.
FLOATING POINT MULTIPLICATION SUBROUTINE.

FLOATING POINT MULTIPLY THE NUMBER AT (H,L) TO THE FACC.

```assembly
0180   FMUL EQU $  
0180   CD6303 CALL FTEST  
0183   CB RZ  
0184   23 INX H  
0185   7E MOV A,M  
0186   2B DCX H  
0187   B7 ORA A  
0188   CA8803 JZ RST5  
0189   113108 FMUL1 LXI D,FACC  
018E   1A LDAX D  
018F   CD7103 CALL FEXP  
0192   47 MOV B,A  
0193   7E MOV A,M  
0194   CD7103 CALL FEXP  
0197   80 ADD B  
0198   CDD703 CALL FOUVN  
019B   E67F ANI 127  
019D   47 MOV B,A  
019E   1A LDAX D  
019F   AE XRA M  
01A0   E680 ANI 128  
01A2   B0 ORA B  
01A3   12 STAX D  
01A4   113E08 LXI D,FTEMP+9  
01A7   0603 MVI B,3  
01A9   23 INX H  
01AA   CD7803 CALL COPYH  
01AD   213508 LXI H,FTEMP  
01B0   0606 MVI B,6  
01B2   CDE703 CALL ZEROM  
01B5   113208 LXI D,FACC+1  
01BB   0603 MVI B,3  
01BA   1A FMUL5 LDAX D  
01BB   77 MOV M,A  
01BC   AF XRA A  
01BD   12 STAX D  
01BE   13 INX D  
01BF   23 INX H  
01C0   05 DCR B  
01C1   C2BA01 JMZ FMUL5  
01C4   0E18 MVI C,24  
01C6   0603 FMUL6 MVI B,3  
01CB   213E08 LXI H,FTEMP+9  
01CC   AF XRA A  
01CD   7E FMUL7 MOV A,M  
01CE   1F RAR  
01CE   77 MOV M,A  
```
01CF 23 INX H
01D0 05 DCR B
01D1 C2CC01 JNZ FMUL7
01D4 02E201 JNC FMUL8
01D7 113708 LXI D,FTEMP+2
01DA 213D08 LXI H,FTEMP+8
01DD 0606 MVI B,6
01DF CD7D03 CALL FADDT
01E2 0606 FMUL8 MVI B,6
01E4 213D08 LXI H,FTEMP+8
01E7 AF XRA A
01E8 7E FMUL9 MOV A,M
01E9 17 RAL
01EA 77 MOV M,A
01EB 28 DCX H
01EC 05 DCR B
01ED C2E801 JNZ FMUL9
01F0 0D DCR C
01F1 C2C601 JNZ FMUL6
01F4 C39003 JMP FNORM

;**
; FLOATING POINT OUTPUT ROUTINE.
;
; THIS SUBROUTINE CONVERTS A NUMBERS IN THE FLOATING
; POINT ACCUMULATOR TO A BCD STRING SUITABLE FOR DISPLAY.

01F7 =
01F7 113408 LXI D,FACC+3
01FA 1A LDAX D
01FB F607 ORI 7
01FD 12 STAX D
01FE CD6303 CALL FTEST
0201 3620 MVI M,'0'
0203 E20802 JP FOUT6
0206 362D MVI M,'0' RET
0208 23 FOUT0 INX H
0209 C21D02 JNZ FOUT2
020C 3630 MVI M,'0'
020E 23 INX H
020F 3620 FOUT1 MVI M,'0' RET
0211 C9 FOUT2 LDA FACC
0215 CD7103 CALL FEXP
0218 C21D02 JNZ FOUTV
021B 3E80 MVI A,128
021D E680 FOUTV ANI 128
021F 320908 STA DEXP
0222 E5 PUSH H
0223 3A3108 FOUT3 LDA FACC
0226 CD7103 CALL FEXP
0229 FE01 CPI 1
022B F24402 JP FOUT6

128
<table>
<thead>
<tr>
<th>Address</th>
<th>Opcode</th>
<th>Instruction</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>02AC 0D</td>
<td>DCR</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>02AD E9</td>
<td>PCHL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02AE 5F</td>
<td>FOUTB</td>
<td>MOV E, A</td>
<td></td>
</tr>
<tr>
<td>02AF AF</td>
<td>XRA</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>02B0 323108</td>
<td>STA</td>
<td>FACC</td>
<td></td>
</tr>
<tr>
<td>02B3 213408</td>
<td>FOUTC</td>
<td>LI H,FACC+3</td>
<td></td>
</tr>
<tr>
<td>02B6 0604</td>
<td>KVI</td>
<td>B, A</td>
<td></td>
</tr>
<tr>
<td>02B8 7E</td>
<td>FOUTD</td>
<td>MOV A, M</td>
<td></td>
</tr>
<tr>
<td>02B9 17</td>
<td>RAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02BA 77</td>
<td>MOV</td>
<td>M, A</td>
<td></td>
</tr>
<tr>
<td>02BB 2B</td>
<td>DCX</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>02BC 05</td>
<td>DCR</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>02BD C2802</td>
<td>JNZ</td>
<td>FOUTD</td>
<td></td>
</tr>
<tr>
<td>02C0 1D</td>
<td>DCR</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>02C1 C2302</td>
<td>JNZ</td>
<td>FOUTC</td>
<td></td>
</tr>
<tr>
<td>02C4 C9</td>
<td>RET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02C5 E1</td>
<td>FOUTH</td>
<td>POP H</td>
<td></td>
</tr>
<tr>
<td>02C6 3645</td>
<td>MVI</td>
<td>M, 'E'</td>
<td></td>
</tr>
<tr>
<td>02C8 23</td>
<td>INX</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>02C9 3A0908</td>
<td>LDA</td>
<td>DEXP</td>
<td></td>
</tr>
<tr>
<td>02CC 3628</td>
<td>MVI</td>
<td>M, 'E'</td>
<td></td>
</tr>
<tr>
<td>02CE 57</td>
<td>MOV</td>
<td>D, A</td>
<td></td>
</tr>
<tr>
<td>02CF B7</td>
<td>ORA</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>02D0 F2DC02</td>
<td>JP</td>
<td>FOUTI</td>
<td></td>
</tr>
<tr>
<td>02D3 362D</td>
<td>MVI</td>
<td>H, 'E'</td>
<td></td>
</tr>
<tr>
<td>02D5 E67F</td>
<td>ANI</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>02D7 2F</td>
<td>CHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02D8 3C</td>
<td>INR</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>02DA 57</td>
<td>MOV</td>
<td>D, A</td>
<td></td>
</tr>
<tr>
<td>02DB 2F</td>
<td>CHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02DC 23</td>
<td>FOUTI</td>
<td>INX H</td>
<td></td>
</tr>
<tr>
<td>02DD E5</td>
<td>PUSH</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>02DE 1EFF</td>
<td>MVI</td>
<td>E, 'OFFH'</td>
<td></td>
</tr>
<tr>
<td>02E0 1C</td>
<td>FOUTJ</td>
<td>INR E</td>
<td></td>
</tr>
<tr>
<td>02E1 D60A</td>
<td>SUI</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>02E3 F2E002</td>
<td>JP</td>
<td>FOUTJ</td>
<td></td>
</tr>
<tr>
<td>02E6 C60A</td>
<td>ADI</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>02EB 47</td>
<td>MOV</td>
<td>B, A</td>
<td></td>
</tr>
<tr>
<td>02E9 7B</td>
<td>MOV</td>
<td>A, E</td>
<td></td>
</tr>
<tr>
<td>02EA CD9C02</td>
<td>CALL</td>
<td>FOUT9</td>
<td></td>
</tr>
<tr>
<td>02ED 78</td>
<td>MOV</td>
<td>A, B</td>
<td></td>
</tr>
<tr>
<td>02EE CD9C02</td>
<td>CALL</td>
<td>FOUT9</td>
<td></td>
</tr>
<tr>
<td>02F1 E1</td>
<td>POP</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>02F2 3620</td>
<td>MVI</td>
<td>H, 'E'</td>
<td></td>
</tr>
<tr>
<td>02F4 7A</td>
<td>MOV</td>
<td>A, D</td>
<td></td>
</tr>
<tr>
<td>02F5 B7</td>
<td>ORA</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>02F6 F2FF02</td>
<td>JP</td>
<td>FOUTK</td>
<td></td>
</tr>
<tr>
<td>02F9 FEFE</td>
<td>CPI</td>
<td>OFEH ;-2</td>
<td></td>
</tr>
<tr>
<td>02FB DB</td>
<td>RC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02FC C30203</td>
<td>JMP</td>
<td>FOUTL</td>
<td></td>
</tr>
</tbody>
</table>
FOR
INX H
MOV M,A
MOV H,D
MOV L,E
MVI B,4
FOUTT DCX H
MOV A,N
MOV H,A
DCX H
JNZ FOUTT
JNZ FOUTT
MOV M,'.'
JHP FOUTO
TEST THE SIGN OF THE NUMBER IN THE FACC.

FTEST EQU »
LDA FACC+1
ORA A
RZ
LDA FACC
ORI 127
LDA FACC
RET

FEXP EQU $
ANI 127
ADI 64
XRI 64
RET

COPYH EQU $
XCHG
CALL COPYD
EXH6
RET

FADDT EQU $
XRA A
LDA X
ADC N
STAX D
DCX D
DCX H

; ADD TWO MULTIPRECISION NUMBERS (D,E) & (H,L).
0383 05 DCR B
0384 C27E03 JNZ FAD
0387 C9 RET

; LOAD THE FLOATING POINT ACCUMULATOR WITH THE 4 BYTES
; AT (H,L).
0388 =
RST5 EQU $
0388 13108 LXI D,FACC
0389 0604 MVI B,4
038D C37803 JMP COPYH

; NORMALIZE THE FLOATING ACCUMULATOR. THAT IS,
; THE FIRST BIT MUST BE SIGNIFICANT.
0390 =
FNORM EQU $
0390 213408 LXI H,FACC+3
0393 7E MOV A,M
0394 2B DCX H
0395 B6 ORA H
0396 2B DCX H
0397 B6 ORA H
0398 C29E03 JNZ FNRM1
039B 2B DCX H
039C 77 MOV M,A
039D C9 RET
039E 7E FNRM1 MOV A,M
039F B7 ORA A
03A0 FA6303 JM FTEST
03A3 23 INX H
03A4 23 INX H
03A5 0603 MVI B,3
03A7 AF XRA A
03A8 7E FNRM2 MOV A,M
03A9 17 RAL
03AA 77 MOV M,A
03AB 2B DCX H
03AC 05 DCR B
03AD C2A803 JNZ FNRM2
03B0 7E MOV A,M
03B1 CD7103 CALL FEXP
03B4 39 DCR A
03B5 FE80 CPI 128
03B7 CA0000 JZ OVERR
03BA E67F ANI 127
03BB 47 MOV B,A
03BD 7E MOV A,M
03BE E680 ANI 128
03C0 30 ORA B
03C1 77 MOV M,A
03C2 23 INX H

133
; MOVE THE STRING FROM (D,E) TO (H,L) COUNT IN B.
03C6 =
 COPYD EQU $
03C6 1A
03C7 77
03C8 23
03C9 13
03CA 05
03CB C2C603
03CE C9
03E0 =
 OVERR EQU 0

; STORE THE FLOATING POINT ACCUMULATOR AT (H,L)
03CF =
 RST6 EQU $
03CF 11310B
03D2 0604
03D4 C3C603
03D7 =
 FOVUN EQU $
03D7 B7
03DB F2E103
03DB FEC1
03DD D0
03DE C30000
03E2 FE40
03E3 D8
03E4 C30000
03E7 =
 ZEROM EQU $
03E7 3600
03E9 23
03EA 05
03EB C2E703
03EE C9

; FLOATING POINT DIVISION SUBROUTINE.
03EF =
 FDIV EQU $
03EF CD6303
03F2 08
03F3 23
03F4 7E

; MOVES A STRING OF BINARY N ZEROS, COUNT IN B.

; FTEST EXPONENT FOR OVERFLOW OR UNDERFLOW.

; FLOATING POINT DIVIDE THE NUMBER AT (H,L) INTO THE FAC.
03F5 2B DCX H
03F6 B7 ORA A
03F7 CA0000 JZ OVERR
03FA 7E MOV A,M
03FB CD7103 CALL FEXP
03FE 47 MOV B,A
03FF 113108 LXI D,FACC
0402 1A LDAX D
0403 CD7103 CALL FEXP
0406 90 SUB B
0407 3C INR A
0408 CDD703 CALL FOVUN
040B E67F ANI 127
040D 47 MOV B,A
040E 1A LDAX D
040F AE XRA H
0410 E680 ANI 128
0412 B0 ORA B
0413 12 STAX D
0414 E5 PUSH H
0415 13 INX D
0416 213508 LII H,FTEMP
0419 3600 MVI M,0
041B 23 INX H
041C 0603 MVI B,3
041E 1A FDIV3 LDAX D
041F 77 MOV M,A
0420 AF XRA A
0421 12 STAX D
0422 23 INX H
0423 13 INX D
0424 05 DCP. B
0425 C21E04 JNZ FDIV3
0428 D1 POP D
0429 0603 MVI B,3
042B 13 INX D
042C 3600 MVI M,0
042E 23 INX H
042F CDC603 CALL COPYD
0432 0E18 MVI C,24
0434 113808 FDIV5 LXI D,FTEMP+3
0437 213C08 LXI H,FTEMP+7
043A 0604 MVI B,4
043C CD7104 CALL FSUBT
043F D24E04 JNC FDIV6
0442 113808 LXI D,FTEMP+3
0445 213C08 LXI H,FTEMP+7
0448 0604 MVI B,4
044A CD7D03 CALL FADDT
044D 37 STC
044E 3F FDIV6 CMC
; Subtract the two multiprecision numbers (D,E) & (H,L)

0471 = FSBT EQU $
0471 AF XRA A
0472 1A FSB1 LDAX D
0473 9E SBB H
0474 12 STAX D
0475 1B DCX D
0476 2D DCX H
0477 05 DCR B
0478 C7204 JNZ FSB1
047B C9 RET

; Following are constants to be used in the computation sequences. All the constants are arranged in floating point format.

047C 04 TEN DB 04H ;Integer 10.
047D A0 DB 0A0H
047E 00 DB 0H
047F 00 DB 0H
0480 03 DC DB 03H ;Square of 2.5(CM).
0481 C8 DB 0CBH
0482 00 DB 00H
0483 00 DB 00H
0484 02 TWO DB 02H ;Integer 2.
0485 80 DB 80H
0486 00 DB 0H
0487 00 DB 0H
0488 03 F4 DB 03H ;Integer 4.
0489 80 DB 80H

<赞赏>
048A 90 DB 0
048B 00 DB 0
048C 01 F1 DB 1 ;INTEGER 1.
048D 80 DB 80H
048E 00 DB 00
048F 00 DB 00
0490 02 F2 DB 2 ;2.
0491 80 DB 80H
0492 00 DB 0
0493 00 DB 0
0494 02 PHI DB 2 ;PHI=3.1415926
0495 0F DB 0FH
0496 0F DB 0FH
0497 D7 DB 0D7H
0498 7A SPEED DB 7AH ;SPEED OF ULTRASOUND.
0499 8C DB 8CH ;=0.15CH/USEC.
049A 44 DB 0A4H
049B 9C DB 9CH

;*************
; FLOATING POINT ADDITION SUBROUTINE.
;
; FLOATING POINT ADD THE NUMBER AT (H,L) TO FACC
FADD EQU $
049C 23 INX H
049D 7E MOV A,H
049E B7 ORA A
049F CA6303 JZ FTEST
04A2 2B DCX H
04A3 CD6303 CALL FTEST
04A6 CA8803 JZ RST5
04A9 113108 LXI D,FACC
04AC 1A LDAX D
04AD CD7103 CALL FEXP
04B0 47 MOV B,A
04B1 7E MOV A,H
04B2 CD7103 CALL FEXP
04B5 4F MOV C,A
04B6 90 SUB B
04B7 CACC04 JZ FADD4
04BA F2BE04 JP FADD3
04BD 2F CMA
04BE 3C INR A
04BF FE18 FADD3 CPI 24
04C1 DACC04 JC FADD4
04C4 78 MOV A,B
04C5 91 SUB C
04C6 F26303 JP FTEST
04C9 C38803 JMP RST5
04CC F5 FADD4 PUSH PSW
04CD C5 PUSH B
04CE 113508 LXI D,FTEST
0401 0604 MVI B, 4
0403 CD7803 CALL C0PYH
0406 C1 POP B
0407 F1 POP PSW
0408 CAFF04 JZ FADD9
040B 213608 LXX H, FTEMP+1
040E F5 PUSH PSW
040F 78 MOV A, B
0410 91 SUB C
0411 F2F104 JP FADD6
0414 213108 LXI H, FAC
0417 79 MOV A, C
0418 E67F ANI 127
041A 4F MOV C, A
041B 7E MOV A, M
041C E680 ANI 128
041E B1 ORA C
041F 77 MOV M, A
0420 23 INX H
0421 F1 FADD6 POP PSW
0422 4F MOV C, A
0423 0603 FADD7 MVI B, 3
0425 AF XRA A
0426 E5 PUSH H
0427 CD7905 CALL FSHFT
0429 E1 POP H
042A 0D DCR C
042B C2F304 JNZ FADD7
042C FF FADD FADD2 EQU 5
042D 113108 LXI D, FAC
042F 213508 LXI H, FTEMP
0431 1A LDAX D
0433 AE XRA M
0435 FA3205 JM FADD A
0437 113408 LXI D, FAC+3
0439 213808 LXI H, FTEMP+3
043B 0603 MVI B, 3
043C CD7003 CALL FADD T
043E D26303 JNC FTEST
0440 213108 LXI H, FAC
0442 7E MOV A, N
0443 E680 ANI 128
0445 47 MOV B, A
0447 7E MOV A, R
0449 CD7103 CALL FEXP
044B 3C INR A
044C E67F ANI 127
044E B0 ORA B
0450 77 MOV M, A
0452 23 INX H
0529 37 STC
052A 0603 MVI B,3
052C CD7905 CALL FSHFT
052F C36303 JMP FTST
0532 = FADDA EQU $
0532 213908 LXI H,FTEMP+4
0535 0604 MVI B,4
0537 CD6603 CALL COPYD
053A 113408 FADDB LXI D,FACC+3
053D 213808 LXI H,FTEMP+3
0540 0603 MVI B,3
0542 CD7104 CALL FSUBT
0545 D29003 JNC FNRNM
0548 113108 LXI D,FACC
054B 213508 LXI H,FTEMP
054E 0608 MVI B,8
0550 CD7803 CALL COPYH
0553 113108 LXI D,FACC
0556 213508 LXI H,FTEMP
0559 7E MOV A,M
055A EE80 XRI 128
055C 12 STAX D
055D C33A05 JMP FADDB

;FLOATING POINT SUBTRACTION SUBROUTINE.
;FLOATING POINT SUBTRACT THE NUMBER AT (H,L)
;FROM THE FACC.

0560 = FSUB EQU $
0560 23 INX H
0561 7E MOV A,M
0562 BD ORA A
0563 CA6303 JZ FTST
0566 2B DCX H
0567 113508 LXI D,FTEMP
056A 0605 MVI B,5
056C CD7803 CALL COPYH
056F 213508 LXI H,FTEMP
0572 7E MOV A,M
0573 EE80 XRI 128
0575 77 MOV M,A
0576 C39C04 JMP FADDB

;INCREMENTING SHIFT RIGHT.

0579 = FSHFT EQU $
0579 7E MOV A,M
057A 1F RAR
057B 77 MOV M,A

139
; SUBROUTINE "NOTYET".
; THIS ROUTINE TAKES A BINARY NUMBER
; FROM THE COUNTER (THE COUNTER WHICH
; HAS THE TRAVEL TIME INFORMATION)
; AND CONVERT IT INTO CORRESPONDING
; CHORD LENGTH.
; THE RESULT IS IN FLOATING POINT
; FORMAT AND IS NORMALIZED.

NOTYET EQU $582

0582 DB02 IN 2
0584 E620 ANI 0400 ; CHECK IF COUNTER READY?
0586 28205 JNZ NOTYET ; GO BACK IF NOT.
0589 DB00 IN 0 ; OTHERWISE TAKE 1ST BYTE.
058B 5F MOV E,A ; STORE IT.
058C 07 RLC ; ROTATE IT.
058D 07 RLC
058E 07 RLC
058F 07 RLC
0590 E6F0 ANI 0FOH ; STRIP INTO 4 BITS.
0592 323308 STA FACC+2 ; STORE INTO 3RD BYTE OF FACC.
0595 7B MOV A,E ; RESTORE 1ST BYTE.
0596 0F RRC ; ROTATE IT.
0597 0F RRC
0598 0F RRC
0599 0F RRC
059A E60F ANI 0FH ; STRIP TO 4 BITS.
059C 5F MOV E,A ; STORE IN E.
059D DB02 IN 2 ; GET NEXT HIGHER BYTE.
059F 07 RLC ; ROTATE.
05A0 07 RLC
05A1 07 RLC
05A2 07 RLC
05A3 E6F0 ANI 0FOH ; STRIP TO 4.
05A5 83 ABD E ; MERGE.
05A6 323208 STA FACC+1 ; STORE INTO FACC.
05A9 3E0C MVI A,0CH ; MOVE '12' INTO EXPONENT
05AB 323108 STA FACC ; OF FACC.
05AE 3E00 MVI A,0 ; CLEAR LAST BYTE OF
05B0 323408 STA FACC+3 ; FACC.
05B3 CD9003 CALL FNORM ; NORMALIZED IT.
05B6 219804 LXI H,SPEED ; MULTIPLIED COUNTS BY SPEED
05B9 CD8001 CALL FMUL ; TO GET CHORD LENGTH.
05BC C9 RET ; RETURN.
;**FOLLOWING ARE DEFINED RAM AREAS.**

<table>
<thead>
<tr>
<th>Address</th>
<th>ORG</th>
<th>TEMP1</th>
<th>DS</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0800</td>
<td></td>
<td>TEMP2</td>
<td>DS</td>
<td>4</td>
</tr>
<tr>
<td>0808</td>
<td></td>
<td>TEMP</td>
<td>DS</td>
<td>1</td>
</tr>
<tr>
<td>0809</td>
<td>DEXP</td>
<td>DS</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>080A</td>
<td>D1</td>
<td>DS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>080E</td>
<td>D2</td>
<td>DS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0812</td>
<td>OUTSTR</td>
<td>DS</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>0819</td>
<td>VA</td>
<td>DS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>081D</td>
<td>VASQ</td>
<td>DS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0821</td>
<td>VAHF</td>
<td>DS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0825</td>
<td>Y2SQ</td>
<td>DS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0829</td>
<td>TCSQ</td>
<td>DS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>082D</td>
<td>VB</td>
<td>DS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0831</td>
<td>FACCP</td>
<td>DS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0835</td>
<td>FTEMP</td>
<td>DS</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>0841</td>
<td>MULPR</td>
<td>DS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0845</td>
<td>STRIN</td>
<td>DS</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>0859</td>
<td>END</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>4000Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>END</td>
<td></td>
</tr>
</tbody>
</table>

141
REFERENCES:

