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Contract No. .NAS9-16785

Area Estimation Using Multiyear Designs and Partial Crop Identification

Final Report

This final report refers to project number 4821 entitled "area Estimation

Using Multiyear Designs and Partial Crop Identification". This project spanned 	 a

i

the period from November 1, 1983, to March 31, 1984.

1. INTRODUCTION

d

Agriculture and other renewable resources can be economically inventoried

over large areas using aerospace remote sensing techniques. In particular, the

surface arr- devoted to a specific resource in a large region is especially 	 j

amenable tL. aerospace estimation. Such resources could be as broadly defined

+	 r	 s pec ificallyas agriculture, fores t , water, snow cover, etc. o as 	 defined as

summer crops or corn. These area estimates can be combined with other measures
I

such as estimated yield per acre to obtain production estimates. Once the 	 s

appropriate estimation methodology has been successfLlly implemented, the

successive estimates are very economical, so that frequent inventories are	 K

realistically obtainable.

During 1975-1977 NASA in conjunction with the USDA conducted the Large t

Area Crop Inventory Experiment (LACIE) to illustrate the potential capabilities
k

of aerospace remote sensing techniques. This pioneering effort also served to

r

•	 remove many of the obstacles for future applications. A summary of the experi-

ment is given in the proceedings of the LACIE Symposium (1976). The target

i
resource in LACIE was the wheat acreage and production in the U.' S. Great

Plains.
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During the transition years 1977-1979 and during 1979-1983 under the

recently-terminated AgRISTARS (Agriculture and Resources Inventory Surveys

through Aerospace Remote Sensing) program several advances were made in

satellite imagery technology, data processing, and statistical methodologies.

In addition, target resources were expanded to include other crops and other

countries, as well as non-crop resources.

The research under, Contract No. NAS9-16785 has focused on the statistical

methodology for estimating a particular resource's acreage proportion in a

large region at a specified point in time using the estimated resource

acreage proportion in a sample of smaller areas. In describing this research

it will be assumed that

(i) the resource is a crop,

{ii) the specified time point of interest is the harvest ti ►,ie for the

crop,

(iii) the sample areas are all the same size (a 5x6 nautical mile

rectangle called a segment), and

(iv) the sample segments are relativel y "small" compared to the

homogeneous region (stratum) of interest.

Also, it is assumed that in each year of a multiyear period a sample of

segments is selected. The composition of the sample may vary year to year.

In each year eacli sample segment's at-harvest crop acreage proportion is

estimated at one or more times during the crop growing season. The number

of estimates is not necessarily the same for all sample segments in a year

and is n9t necessarily the same for each year. Obviously, the contract

research has focused on only one part of a much larger problem. The region
i

of concern herein is really just one stratum in a stratified sample survey
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of a country or the world (see, for example, Chhikara and Feiveson (1982)).

The size of the sample segment is assumed to be predetermined (see Chhikara

and Feiveson (1982) and Chhikara et al. (1984)). Also, since the same

segments do not have to be in the sample every year, there is an interesting

associated problem of determining an optimal multi-year sampling design

(see Chhikara et al. (1984), Gbur and Sielken (1980a), Gbur and Sielken (1980b),

Gbur and Sielken (1981) and the discussion in Section 4). The papers by

Heydorn (1984) and }fall and Houston (1984), for example, discuss the

determination of the sample segment's estimated at-harvest crop acreage

proportion. Finally, the estimates arising from the statistical methodology

developed under this research contract and the preceding contract (No. NAS9-

13894) can be input to procedures for aggregating acreage over several

regions and combining acreage estimates with yield estimates to obtain

production estimates. The paper by Feiveson (1984) is a good example of the

research addressing these latter needs.

2. OVERVIEW OF RESEARCH ACTIVITY

The two major tasks under Contract No. NAS9-16785 were

1) the development . and refinement of sampling and modeling techniques, and

2) the development and refinement of aggregation techniques.

The principle research activities associated with the development and

refinement of the sampling and modeling techiques were

1) the extension of multiyear models and estimation procedures to include

partial ground cover identification, and

2) the development of a procedure to determine the optimal current year

sampling design as a function of previous years' results.

4
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The major activities concerning the development and refinement of aggregation

techniques were

1) the identification of statistical methodology for utilizing different

weighting factors which cotild be assigned to the observations, and

2) the derivation of approximate variances for ground cover estimators

which incorporate partially identified sampled units.

These four major activities are discussed in the next four sections respectively

(Sections 3-6). Section 7 indicates some additional research results. Section

8 concludes this final report and makes a suggestion for future research.

3. EFFICIENT ACREAGE ESTIMATION USING MULTIYEAR DATA

H
WITH BOTH PARTIALLY AND COMPLETELY IDENTIFIED SAMPLING UNITS

FacK stratum at-harvest crop acreage proportion could be modeled using a

regression approach with explanatory variables such as the past, present, and

anticipated economic and meteorological conditions. However, the unknown form

of the regression model, the larg, number of possible explanatory variables,

and the difficulty in obtaining reasonable values for these variables makes

this approach unattractive. Nevertheless, the combined effect of all of these

variables is reflected in the crop acreage proportions for the stratum

segments. Although it is not economical to

acreage proportion for every segment in the

them for a sample of segments using Landsat

Houston (1984) and Heydorn (1984)). Hence,

model the estimated at-harvest crop acreage

of

(i) the stratum at-harvest crop acreage proportion,

(ii) stratum-wide influences which vary from year to year,

I
R

if
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(iii) characteristics of the segment itself,

(iv) yearly influences which affect different segments differently, and

(v) the proportion of the growing season which has passed at the time

the estimate is determined.

These factors may only contribute roughly additively to a transformation of

the segment at-harvest crop acreage proportion and may not contribute addi-

tively to the segment- proportion itself.

One specific model which is compatible with these ideas is

y(pts.e) = at + bs + d.e + etse	
t = 'I, ..•, T,

f

1	
#

t	 1, ..., L

where
i

ptsZ -

a

the estimated proportion of the s -th segment's acreage that will
l

contain the crop at harvest time in the t-th year when the

estimate is made at crop calendar time t (for example, Z = 1
I

could denote early season, k = 2 mid-season, and Z = 3 harvest

time);

y(ptse ) °
a transformation of pste ;

A

the stratum's transformed crop acreage proportion for the t-th	 f.a t =

year;

b s the s-th sampled segment's departure from the stratum's transformed

crop acreage proportion; the b s
 's are independent random variables

each with mean zero and variance a ;

a^ = the systematic difference between the estimates of the crop's

transformed at-harvest acreage proportion made at the Z-th crop

` calendar time and the corresponding estimate made at harvest time;

U	 = 0);

.
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'	 ets^ = the aggregate of sampling and classification errors in the

transformed data; the etst 's are independent random variables

each with mean zero.

This model is, of course, not the most general model possible. In particular,

the segment effects b s are assumed to be independent of the crop calendar

time and the year. Also the departures of the transformed observations ytPtst

on the same segment from their fixed year effects a t and their fixed estimation

time effects 
6  

are assumed to be positively correlated. The error terms etst

are the composite effect of many components and need not have homogeneous

variances; in particular see Heydorn (1984) for a detailed discussion of the

classification error components.

The prinary objective is to estimate the crop's at-harvest proportion of

the stratum acreage in the current year, T; that is, estivate PT	 y-1(aT)'

Secondary objectives could be improved estimates of at-harvest acreages in

previous years or estimates of changes in the stratum at-harvest crop acreage

proportion from year to year.

Estimates of the stratum at-harvest crop acreage proportion are also

of-ten desired throughout the current year as well as at harvest time. For

example, an early season estimate of P T based on observations for e = 1,

L for t = 1, ..., T-1 and only e = 1 for t = T is frequently desired.

Even though the estimate P T = y- ^(aT ) of the stratum at-harvest crop

acreage proportion for the current year involves only « T , this es*'mate depends

on the entire mulityear data set and not just the data from year T since the

segment effects (bs 's) and systematic estimation time biases (d,'s)are assumed

to be constant fro g+a year to year.
f

Special cases of model (1) have also been considered. For example, Chhikara

et al. (1984) consider at-harvest estimates made only at harvest time, so that

^.	 ,. .,. _r • ..	 !.,ww.,.^L^}`ii •: ate.„' "^ 
a__ -. -^ ^.' - ---"-`	 *^':rrsr

T
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their model is

pts G t + bs + e
ts '	 t = 1, ..., T and s = 1, ..., S.

For simplicity Feiveson (1984) considers only estimates of the stratum at-harvest 	 fi

crop acreage proportion made at harvest time during the current year; i.e.,

pTs = aT + eTs ,	 s = 1, ..., S.

When such data is not available, Feiveson (1984) utilizes historical data from

agricultural reports even though previous Landsat data could also be incorporated.

The methodology in both of these papers can be extended to incorporate the more

general model (1).

Multiyear estimation models provide the ability to make estimates of the

current year's acreage on the basis of not only the current year's sampled data,

but also the previous years' sampled data. In the past such multiyear models

have been developed and used when the sampled data is the proportional acreage
hi

of a sin gle crop of interest. In such cases the use of multiyear models can

easily reduce the variation in the current year's estimate to one half of

what it would have been if the previous years' sampled data were ignored.

In Sielken (1981) techniques were developed and tested for estimating the

acreage for a particular crop when there is only sampled data from a single year

and some of the segments have been only partially identified. A segment is said

to only be partially identified as opposed to completely identified if only the

proportion of the segment containing some unknown percentage mixture of two or

more ground covers (including the specified crop of interest) is estimated.

In developing these estimations techniques consideration has been given to the

following approaches;

r

t;

d

s o
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a) maximum likelihood estimation,

b) least squares methods,

c) weighted least squares methods, and

d) a bombination of a least squares ratio estimator of the specified

crop's acreage percentage, say R, within the combined acreage of all

crops in the mixture and a maximum likelihood estimator of the mixture

acreage.

The empirical b„havior of approach (d) based on the combination of the

least squares ratio estimator, denoted by R say, of the specified crop's

acreage percentage within the combined acreage of all crops in the mixture

and a maximum likelihood estimator of the mixture acreage has been usually

as good as, if not better than, approaches (a) - (c).

The following procedure is recommended for estimating a crop's current

year acreage within a stratum based on both the current year's data and

previous year's data wt, jn these data involve both partially and completely

identified sampling units:

i) Determine the least squares ratio estimator, R, for the crop of

interest using the current year's partially and completely

identified sampling units.

ii) Transform each multivariate segment observation into a univariate

observation by combining all of the acreages for the crops involved

in the mixture of crops creating the partial identification. Call

this combination of crop acreages the mixture acreage.

iii) Apply the multiyear modeling and estimation procedures to the multiyear

data set consisting of the observed segment mixture acreages. Let

PM denote the corresponding estimated proportion of the stratum's

a

i

a

^o
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current year acreage containing crops in the mixture.

iv) Estimate the stratum t s current year acreage proportion for the crop
A	 A

of interest by the product P. * PM*
	 q

Time series or regression models can be used to augme,t step (i) in the

above procedure if trends over time in the specified crop's ratio R are anticipated

or if covariates for R can be identified.

4. Optimal Current Year Sampling Designs

Based on Previous Years' Data

Here a sampling design is a plan which defines the way in which the sample

of segments is to be chosen from a stratum's population of segments. An optimal

des gn yields estimates which have optimal properties. In the past, sampling

designs in support of ground cover proportion estimation have specified at the

outset of the study how the sampling is to be done in each year of the study.

As these designs are being implemented considerable information is gathered.

For example, cloud cover may have eliminated particular observations and improved

estimates of relevant variances may have become available. Such information is

not incorporated in the original non-sequential des'9n. However, a sequentially

determined sampling design which allows information from previous years to

influence the current year's design should produce sampling designs leading to

better estimates.

The use of a multiyear mixed model weighted analysis of variance to estimate

a stratum's at-harvest crop acreage proportion based on estimated proportions

from sampled segments has been described in Dahm and Sielken (1980). The

selection of multiyear sampling designs as described in Gbur and Sielken (1980a,

1980b, and 1981) was based on two simplifying assumptions. First, the design

selection procedure did not take into account any previous sampling information
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on the stratum nor did it allow sampling information obtained during the early

periods of the design to affect sampling in subsequent periods. Second, 'tl an

attempt to reduce the number of competing designs to a manageable level, it was

assumed that the number of segments to be sampled in each future year was the

same.

Yearly changes in economic conditions, measurement techniques, equipment

characteristics, and reliability requirements suggest th , t a more realistic

approach would be to sequentially select each year's sampling pattern. Such a
t

sequential approach would utilize the information collected from all previous

years' sampling of the stratum. It would allow for the selection of a sampling

pattern for eac'i year which reflects the effects of missing observations in
D

previous years' samples as well as changes in factors such as those mentioned

above.

In a new technical report (Gbur and Sielken (1983)) a computer program
l

called OPTDESIGN is documented which enables the user to obtain a list of the

best sampling patterns for a stratum for the current year based on the segment

proportion information from all previous years. Two criteria for design

selection have been implemented. These are the minimization of the variance
I

of the current year's estimated stratum transformed proportion and the

minimization of the variance of the estimated change from the previous year's

stratum transformed proportion.

Since the variances of the y(ptsZ)'s in model (1) are not necessarily equal,

a weighted form of the model(1) has been used. In matrix notation this model

can be expressed as

WY = WX['j + WIJb + Ic	 (2)

where	
L 
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Y	 CY111 1 Y112 0 ..., 
YTSL31 '

a	 TI

[d 1 , ..., ¢ L ., 1 ]'	 (^^ = O`1

b = [b	 ... , b ]'
1	 S

W = weight matrix	 [wtst ] ,

X = design matrix for the fixed effects (a t 's and 6t's),

U = design matrix for the random effect (bsIs),

C = Ce l l l' c 
112' , . . , 

e TSL ]
 1 = We

vector of transformed errors.

In the weighted model (2), the estimates of a t are obtained from the appropriate

entries of (X't'V -l WX) -1 X 1 W 1 V -1 Y and the covariance matrix of the vector a is

the upper left block of the matrix

_ (X,W,V-1WX)-1 Q2
	 1

where

V = I + W'U'UWY ,

Y = a2 /Q2
b	 e	 }

The stratum at-harvest crop acreage proportion is estimated by P t = y-1(at).

In dete mining the optimal sampling design, it is assumed that information

from years t = 1, 2, ..., T is available for the stratum under consideration. Since

within season segment proportion estimates are often not available and are not

particularly important in design selection, our procedure only utilizes the

at-harvest segment proportion estimates made at harvest time. Therefore, the

within season biases 6 ,e in model (2) are eliminated.

The required information for OPTDESIGN for each stratum consists of

i) segment identification numbers for tech segment sampled in each previous

year,

I

t

I
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ii) the final estimated weight, 
wtsP 

associated with each estimated

transformed acreage proportion, y(p tse ), and

iii) an estimate of ^ha variance component ratio Y..	 e

The estimated segment proportions pts^ are not required for design selection,
t

except insofar as they may be needed to calculate the estimated wieghts wtsL'

Since the covariance matrix for each design contains the same (unknown) multiplier

4 E, the particular value of ce does not need to be considered in the design

selection process,	 k

The optimality measures implemented in OPTUESIGN are 	 t

i) minimize var(aT+1 ), the variance of the estimated stratum transformed

at-harvest crop acreage proportion for the current year,

ii) minimize var(«T+l " °`T)' the variance of the estimated change in the

stratum transformed at-harvest crop acreage proportion from the previous
r

year.

The minimizations in (i) and (ii) are determined over the set of all possible

T+1 year designs containing the specified number of segments to be sampled in
0

the current Ta+l
th
 year and for which the parent T year design is given by the

sampling history of the stratum.
A

Y

OPTDESIGN is a self-contained computer program for determining the best

designs according to the optimality criteria described above. It is written i
1	 in Fortran and contains numerous comment cards which provide extensive internal

documentation. A listing of OPTDESIGN and a flowchart of the program logic,

as well as sample inputs and corresponding outputs for OPTDESIGN are given in

Gbur and Sielken (1983).

For each stratum the following information is printed in the output from	 f

OPTDESIGN:

1BBj
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(1) Initial Information including

(a) stratum number,

(b) number of years of prior information,

(c) number of segments sampled in each previous year,

(d) number of segments to be sampled in the current year,

(e) estimate of the variance component ratio -y,

(f) weight to be assigned to all current year segments for the purpose

of computing the optimality measures.

(2) For each previously sampled segment,

(a) segment label,

(b) year the segment was sampled,

r
(c) weight attached to that observation.

(3) A list of the NOPT best designs for the stratum for each optimization	 t'

above, along with the value of the criterion for each design.

The program OPTDESIGN has been written to allow for as much flexibility

as possible in the sampling history of the stratum. The only unchangeable
E

restriction is that at least one year of.prior information is required. The

program will accept any positive numbers as weights and arbitrary samples sizes

c
for each previous year in which the stratum has been sampled.

i
Since the weights assigned to each previously sampled segment are, from

the program's viewpoint, arbitrary positive numbers, they can be used to 	 i

reflect man different factors. The weights need not be computed solelyY 	 9	 P	 Y as

functions of the estimated segment proportions. They could be used to account

for such factors as changes in measurement techniques, classification algorithms,

and equipment characteristics as well as factors such as differences in the

level of difficulty of classification for the AI, number and quality of the

t1

O
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set of "photographs" used to obtain the estimate, and differences in AI

personnel.

The current version of the program assumes that the weight matrix is

diagonal. However, the data input format can be easily modified to allow for

arbitrary nonnenative weight matrices.

The sample sizes for previous years sampling are arbitrary positive

integers. This allows for differences in sample sizes caused by factors such

as missing observation in one or more years, budgetary changes, and the tar-

geting of selected strata for more intensive sampling in certain years.

It is conceivable that the sampling history of a stratum contains T* years

in which no sampling occurred. Since OPTDESIGN requires the previous years to

be labeled as 1, 2, ..., T, the years in which the stratum was sampled could

be numbered consecutively as 1, 2, ..., T-T* and all years' information

utilized.

"Ground truth" data could be combined with the stratum's sampling history.

The weights for such "ground truth" estimates should reflect any differences
K
4

in their quality and variability as compared to the remotely sensed segment

estimates.

The multiyear model (2) on which the program OPTDESIGN is based on

relatively simple. Additional

ated to improve the estimates.

expanded model can be achieved

a new subroutine for computing

of additional random effects ii

tion of the program, but could

fixed effects and covariates could be incorpor-

Modification of OPTDESIGN to reflect the
r

in a straightforward manner by substitution of

the fixed effects design matrix X. The inclusion

i the model would require more extensive modifica-

also be accomplished.

4
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S. INCORPORATING WEIGHTING FACTORS INTO THE

STATISTICAL METHODLOGY FOR MULTIYEAR DATA

Current multiyear estimation methodology uses observations as if their

variability was only dependent upon the true underlying proportion being

estimated. In practice, however, the variability of an observation is

dependent upon many other factors; for example, the season in which the

observation is made, the amount of previous satellite imagery available, the

quality of that imagery, the satellite being used, the "closeness" of the

spatial-spectoral-temporal patterns observed in the sampled units to their

classical prototypes (say for corn, soybeans, pasture, forest, etc.). Better

use of the observations can be made in aggregation if greater weight can be

given to the more precise observations and lesser weight given to less precise

observations. Bence, better aggregation estimates should be obtainable if

the precision of the observations is more accurately assessed and then

incorporated into the multiyear area estimation techniques. This is

particularly important in the multiyear environment :;Mere satellite technology,

analyst and computer methodologies, etc. are hopefully improving from year to

year.	 p

The suggested approach is to characterize precision or confidence in

the observations in terms of their variances and weight the observations
A

proportionately to the inverse of their variances. The Var (ptsd can be
approximated on the basis of information such as

(i) the type of satellite being used,

(ii) the sharpness of the satellite imagery,

(iii) the season during which the estimate is being made,

(iv) the number of satellite images successfully obtained by the time

the segment proportion is estimated.
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(v) the nearness of the segment's observed behavior to classical

crop profiles,

(vi) the weather conditions during the crop's growing season, and

(vii) the physical characteristics of the segment.

In addition, recognizable segment characteristics which make it either easier

or harder to estimate the segment's crop proportion can be incorporated.

Obvious differences in the aRiount of information going into the p tsZ 's can

also be reflected. These latter differences can be due to the estimation

times themselves as well as due to loss of satellite imagery from cloud cover,

machine failure, etc.

The statistical procedures for area estimation documented in Dahm and

Sielken (1981) can easily incorporate as input both the observation and its

weight (confidence measure). The weighted form of the multiyear model

(1) is the model (2) discussed in Section 4. Detailed procedures for

implementing the statistical analyses associated with model (2) are given in

Dahm and Sielken (1981).

The advantages and disadvantages of doing weighted analyses of linear

models as opposed to unweighted analyses when the observations have unequal

reliability or variances is well documented in the statistical literature

(see, for example, Draper and Smith (1981), Kleijnen (1981), and Scheffe (1959)).

6. VARIANCES FOR GROUND COVER ESTIMATORS

INCORPORATING PARTIALLY IDENTIFIED SAMPLED UNITS

In the past, large scale ground cover area estimation techniques have

been developed for a single year's data which may include partially identified
i

sampled units. In order for these techniques to support aggregation activities

some statement of the uncertainty of the estimate must be conveyed. This is

w
x

ZE)



17

4

best handled by providing an estimate of the variance of the ground cover area

estimator. Within a large homogeneous arsz (called a stratum) a sample of
w

segments (currently 5 by 6 nautical mile rectangles) is observed. These

observations are collected as satellite imagery and are available for a period 	 r

of a few years and at several times during the crop growing seasons. Using

these segment acreages segment proportions for several crops are estimated.

Difficulties in distinquishing between crops leads to partially identified

segments as opposed to completely identified segments. Herein, a segment will

be considered to be planted in two major crops, crop 1 and crop 2, the remainder
E^

of the segment will be pooled under crop 3, "other". When crop l and crop 2

are distinguishable the segment is completely identified. If it is not 	 t

possible to distinguish them, the segment is partially identified. Both types
f
i

of segments can be combined to estimate a crop's proportional acreage in the 	 1

stratum.

Methods of estimating individual crop acreage using a mixture of completely

and partially identified segments have been discussed in Sielken (1981) and

(1982).

The assumption used in Sielken (1982) is that the number of acreage units

harvested in a segment follows a multinomial distribution. An acreage unit,

s will be hereafter referred to as a block. The number of blocks within a 	 f

segment planted in crop i is denoted by Y i , and the total number of blocks in

a segment is denoted by N. Under the multinomial assumption the Y i 's have the

distribution

P(Y l	yl, Y2 = Y2 ) = ( N !/(Y l 1y2 ! Y3 1
)) Pyl Py2 Py3

".	 1	 2	 3

r_LO
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N= yl
+Y2+Y3

and p i is the at-harvest proportion of the stratum planted in crop i. This

assumption is correct if every decision maker acts independently and allocates

each block independently to crop 1, crop 2, or "other" with probabilities

p l , p2 , and p 3 = (1 - p l - p 2 ) respectively.

A random sample of J segments is to be observed. Let Y ij = number of

blocks in segment j containing crop i i = 1, 2, 3 and j = 1, ..., J. Assume
the segments j = 1, ..., J C are completely identified and segments j = J C + 1,

..., J C + JP are partially identified. Therefore, J = J C + J P . Let

0

when

Z	 = E C Yi = 1, 2, 3,
Ci =1	 ii,

J
P

ZP12 -j=jC+1 (Y U + Y2j),

J
P

ZP3 = 3 _ z	 Y3j'

Thus, ZCi is the total number, of blocks containing crop i in the completely

identified segments. The total number of blocks containing either crop 1 or

crop 2 in the partially identified segments is 
ZP12' 

The total number of blocks

containing crop 3 in the partially identified segments is Z P3 . The total

number of blocks completely (partially) identified is N C (Np). Thus, if N is

the number of blocks in one segment,

}	 NC	 J C N,
+.

NP =J P N.

k

u	 ^

If
	 i
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As noted in Vidart and Sielken (1984) the results from Hocking and axspring

(1971) can be used to show that the maximum likelihood estimators are

p l - [ZC1 /(ZC1 + ZC2 )J 1 (ZC1 + ZC2 + ZP12)1(NC + NO].

P2 = [ZC2/(ZC1 + ZC2 )11(ZC1 + ZC2 + ZP12)/(NC + Np)].

and

P3 = 1-p 1 -p 2 = 1 -P 1 -P2 = (ZC3 + ZP3 )/(NC + NP).

The form of these estimates is fairly intuitive since

p l = [ Estimated proportion of crop 1 and 2 that is crop 1 in the completely

identified segments ] x

[ Estimated proportion of crop 1 and 2 in all the segments ].

The asymptotic variances (AV) of these estimates are

AV (Pl) = P l (1-P l )/N C -CP^P3N P J/[NC (NC + Np)(P 1 + P 2 )11 and

AV(P2 ) = P2 ( 1 -P 2 )/ NC -CPZP3NP J/CN
C (PJ C + NP ) j p l + P2)1•

The second term of these expressions shows the improvement obtained by using

the partially identified segment. After some simplification, the asymptotic

variances can b rewritten as

AV(p l ) = P l ( 1 -P l )/( NC+N P ) + CNPPIP2J/[NC(NC+Np)(P1 +P2)1,

AV(P 2 ) = P 2 (1-P 2 )/(NC+NP ) + CNpplP2J/[NC(NC+Np)(P1 +P2)J,

and for P3	 1-P1-P2

w

AV(p3 ) = P3(1-P3)/(NC+NP).

N

i

I

x

I

I

i

A

E

4

_^ t
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A computer program has been implemented to test the accuracy of these

asymptotic variances when N C and NP are not both arbitrarily large. Samples

with the prescribed number of partially and completely identified segments

were simulated following a multinomial distribution. For each sample the

maximum likelihoo-3 (ML) estimates of the p's were computed. Finally the sample

variance of these ML estimates were compared to the asymptotic variances.

The details of the evaluation of the applicability of the asymptotic variance

formulas to small sample sizes are given in Vidart and Sielken (1984). The

conclusion was that the asymptotic variance can be used as a good approxima-

tion of the actual variance ender the multinomial decision process even for

relatively small sample sizes.

One Monte Carlo study of the empirical behavior of the crop acreage

estimation procedure utilizing partially identified data was already

available in Sielken (1982). The sample variances of the maximum likelihood

estimates of the p i 's in Sielken (1932) can be compared to the asymptotic

variances under the multinomial assumption. In order to computer the

asymptotic variances of the maximum likelihood estimators of the p's, the

number of blocks N contained in a segment must be determined. This information

is not available since the CAMS estimates are given in percentages rather

than blocks. Therefore, N was estimated separately for i = 1, 2,-and 3 and

for different combinations of J  and J P . For a particular crop the estimates

value of N is nearly the same for the different combinations of J  and JP.

However the value of N seems to vary with the crop. In other words, the

theoretical variances under the multinomial decision process differed markedly

from the observed sampled variances. Consequently, the multinomial decision

process is not applicable.

4

s

k'

x

4 O
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Since the multinomial assumption does not hold, another decision process

must be considered. The estimated N values suggest that some crops are	 q

planted in a larger "standard area" than others. The standard area of a

"large" crop has more blocks than a "small" crop does. Crop 3 "other"

appeared to be a "large" crop and crop 1 a "small" crop. This suggested the

following approach. A block will now denote a particular fixed number of

acres corresponding to the smallest decision possible. Let K i denote the

theoretical number of blocks in a standard area of crop i. This conceptual-

ization envisions crop i being planted only in integer multiples of K i blocks.

If p i is equal to the overall proportion of the stratum planted with	

x
crop i, then this alternative decision process independently allocates each

K3 blocks of acreage according to the following sequential procedure:

1. Allocate K3 blocks to crop 3 with probability p3.

2. If the K3 blocks are not allocated to crop 3, then allocate those K3

blocks to crops 1 and 2 as follows:	
e

2-1. Allocate K2 blocks to crop 2 with probability

P2' 	 P2/(1-P3)•

2-2. If these K2 blocks are

then allocate these K2

Obviously, it is assumed that K1

K3 is an integer multiple of K1.

be 1 block and K 3 is renamed K.

summarized as

not allocated to crop 2 during step 2-1,

blocks to crop I.

= K2 , N is an integer multiple of K 3 , and

For simplicity K 1 and K2 are defined to

The resulting decision process can be

1. Allocate K blocks to crop 3 with probability p3.

^I
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I

2. If these K blocks are not allocated to crop 3 during step 1, allocate

those K blocks to crop 1 and 2 using a binomial decision process with

probabilities pi and p2 = l- pi where

Pi = pl/(l-p3).

3. Repeat steps 1 and 2 until ail N blocks are allocated.

This alternative decision process will be referred to as the KDP. A group of

K blocks will be called a superblock. The particular case where K = l is the

multinomia decision process, 1DP.

The parameters in KDP include N, the number of blocks in a segment, and

K, the number of blocks in a superblock, as well as p l , p 2 , and p 3 . In Vidart

and Sielken (1984) it is shown that the maximum likelihood estimates for the

p i 's under the KDP are the same as under UP and do not depend upon N or K.

However, the a.;ymptotic variances of the p i 's do depend upon N and K which are

both unknown. In Vidart and Sielken (1984) estimators for N, K, and

Aapproximations for the variances of the p i 's are derived. Also a simulation

check on the approximate expressions for the variances of the p i 's is reported

there. The sample variances of the P's were very close to their approximating

expre,si ons .

In Vidart and Sielken (1984) the KDP is also extended to the situation

where the sampling units have variable sizes instead of the constant size

typified by 5x6 nautical mile segments. Such a situation could easily occur

if the sampling units were political subdivisions such as counties.

One objective of the contract research was to determine the improvement

brought about through the use of the KDP instead of the IDP when CAMS estimates

are studied. Some improvement in the prediction of the variance of the crop

acreage estimators is achieved by considering the new decision process. For.

a
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fairly large samples, typically 54 segments, the use of the KDP as opposed

to the 1DP leads to an improvement; in the prediction of the variances of the

ML estimators of the crop proportions based on CAMS data. For smaller, more

realistic size samples, typically 5 segments, the variance estimation

techniques were not very accurate. However, the empirical results indicate

a better performance under the KDP, than under the IDP. The variance

estimates under KDP have a distribution with more spread but centered much

closer to the sample variance than the corresponding distribution under 10P.

The greatest overall improvement is associated with the estimated variance for the

smallest crop (i.e,, the crap planted in the smallest size blocks) while the

other estimated variances in,prove just slightly overall.

7. ADDITIONAL RESEARCH RESULTS

A special issue of Communications in Statistics concerning statistical
i^

applications at NASA is being prepared under the coordination of Dr. Raj

Chhikara, Lockheed Engineering and Management Services Company, Inc. R. L.
w

Sielken, Jr. and E. E. Gbur have prepared a contribution entitled "Multiyear,

Through the Season Crop Acreage Estimation Using Estimated Acreage in Sample

Segments" for that special issue. That contribution has been refereed and

accepted. A copy of that paper is attached to this final report.

Some additional research has been done on the empirical bQhavior of the

transformations y(p) used in conjunction with model (1) and (2). The simplest

transformation y(p) of the estimated segment crop acreage proportion p to use

in (1) or (2) is the identity transformation

Y(P) = P.

x
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However, it is very doubtful that the additive model (1) would hold for y(p) = p

particularly if the P's exhibit a large variation within the stratum. On the

other hand a multiplicative model for p may be more reasonable. For instance, if 	 w

(i) 300 of the stratum contains wheat at the time wheat is harvested in

year t;

(ii) the s-th segment's wheat acreage proportion averages only 80 010' of

the stratum's wheat acreage proportion at harvest time;

(iii) the at-harvest acreage estimate made at mid-season is only 70,E

of the at-harvest estimate made at harvest time;

and

(iv) the sampling and classification erre ,^s cause the estimated at-harvest

acreage to be 110% of what it would be without these errors,

then

pysk = (.30) (.80) (.70) (1.10).

Here a logarithmic transformation, y(p) = kn(p), would be appropriate and

y(Pts2) = a t + bs + d k + etsk	
f

= kn(.30) + W.80) + kn(.70) + kn(1.10).

The logit transformation,

y (P) = (1/2) Zn{ p/(1 -0 1 ,

is another useful transformation which approximately converts a multiplicative

model for p into an additive model for y(p), A small advantage of the logit

transformation is that it guarantees that

0 ^<, PT = y
_l

aT) < 1 ,

whereas the logarithmic transformation only guarantees

If
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PT=Y_'(AT);^0

and the identity transformation makes no guarantees.

All three of the above transformations are considered in Dahm and Sielken

(1981) wh;.re approximate expressions are derived for

(i) the bias of Y -1 (aT ) ,

(ii) the mean squared error of y (aT )	 and

(iii) confidence intervals on P T .

These derivations are all similar and are based upon Taylor series approximations

(statistical differentials). For instance, if y(p) = kn(p), then

	

PT = Y
-1 ( aT) = Y-1 ( aT) 

+ (aT _ aT)	

dY_1(aT )

daT	
a 
	

a 

= PT + (aT aT)pT

so that

MSE (PT) s E [(PT - PT ) 2 ] = PT Var(aT)

A small simulation study was conducted in order to observe the empirical

behavior of the estimators of the components of models (1) and (2) (namely,

ob, v2 Y = ab/^ 2 ) and the estimators of the stratum's crop acreage proportions

over the years t = 1, ..., T (namely, y-l ( a l ), ..., Y -1 (aT )). In this simulation

study each of the three transformations (identity, log, and logit) were used

to generate a random data set corresponding to each of four underlying situations.

Each of the twelve data sets was analyzed three times: once using the identity

^ransfo%^^,,:±ion, once using the log transformation, and once using the logit

transformation. Thus each data set was analyzed once using the "correct"

transformation and twice using an "incorrect" transformation. Since the 9'c;trrert"

,AM

4 r .

n

c

iF
1

fi
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transformation is unknown in practice-, the simulation study provided a limited

evaluation of the sensitivity of the estimators to the "correctness" of the

transformation being used in the statistical analysis. All underlying simulated

situations involved

i) 3 years with the stratum crop acreage proportions being 0.6, 0.6, and

0.4 for years 1, 2, and 3 respectively;

ii) 3 seasons with the seasonal biasoes being 6 1 = -0.3, -0.1, and 6 3 = 0

respectively;

iii) 10 segments observed in each season in each year; and 	
E

iv) no partial identification.

The variance among segments a b, variance within segments oE, and Y = ob/0e

took on different values in each data set; the four combinations were (ab = 0.0004,

aE = 0.001, Y = 0.4), (ab = 0.0004, oe = 0.0001, Y = 4), ( o 2b = 0.004, ae = 0.001,	
}

Y = 4), and (ab = 0.004, ce = 0.0001, Y = 40). The estimators of ab, cE, and Y

are shown in Tables 1-4 for each of the four data sets. Also in these tables

are the estimators and approximate 90/ confidence intervals for the stratum's

crop acreage proportions P 1 , P 2 , and P 3 for the three years.

In the simulation study the estimators of a 2, ae,  and Y were not precise.

Howeve , , these estimators are usually of only secondary importance. The primary

conclusion from the simulation studies was that the estimators and 90% confidence

intervals for the stratum's crop acreage proportion which are of primary

importance behaved quite well and were relatively robust with respect to the

transformation used.
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8. Concluding Remarks

The primary purpose of this research effort has been to identify and develop

statistical procedures for large area assessments using both satellite and

conventional data. Crop acreages, other ground cover indices, and measures of

change have been the principal characteristics of interest. The characteristics

are capable of being estimated from samples collected possibly from several

sources (different satellites, aerial surveys, ground measurements, etc.) at

varying times (different years, seasons, crop calendar days, etc.) witn different

levels of identification (for example, vegetation, crops, summer crops, corn),
a

The overall objective has been to be able to obtain the most precise large area
1
5

estimates fi°om multiyear samples including possibly partially identified sample
i

units. Included in this research have been	 i

a) extensions of multiyear analysis techniques to include partially
-

identified samples, and

b) the determination of the best current year sampling design corresponding

to a given sampling history,

c) determination and utilization of observation weights reflecting the

precision or confidence in each observation, and 	 4

d) quantification of the variation in estimates incorporating partially

identified samples.n

The development and utilization of observation weights reflecting the observation's

precision may be a very fruitful area for additional research.
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ABSTRACT

Large scale crop surveys can be made frequently and inex-

pensively during a crop growing season using Landsat data. A

crop's estimated at-harvest acreage in a stratum can be esti-

mated from the crop's estimated at-harvest acreage in a small

sample of the stratum's ^agments. The stratum estimate can

utilize Landsat imagery obtained during the current crop grow-

ing season and in previous years. A mixed effects analysis of

variance model is used to generate a weighted least squares es-

timate of the stratum at-harvest acreage proportion for the cur-

rent year. Similar Landsat based stratum crop proportion esti-

mates can be combined with historical information on non-

sampled (or unsuccessfully sampled) strata to provide crop

acreage estimates for large regions. These regional estimates

of the at-harvest acreage can be determined early in the crop

growing season, at different intermediate points, and at har-

vest time.
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1. INTRODUCTION

Agriculture and other renewable resources can be economically
inventoried over large areas using aerospace remote sensing tech-

niques. In particular, the surface area devoted to a specific

resource in a large region is especially amenable to aerospace

estimation. Such resources could be as broadly defined as agri-

culture, forest, water, snow cover, etc. or as specifically defined

as summer crops;or corn. These area estimates can be combined with

other measures such as estimated yield per acre to obtain produc-

tion estimates. Once the appropriate estimation methodology has

been successfully implemented, the successive estimates are very

economical, so that frequent inventories are realistically

obtainable.

During 1975-1977 NASA in conjunction with the USDA conducted

the Large Area Crop Inventory Experiment (LACIE) to illustrate the

potential capabilities of aerospace remote sensing techniques.

This pioneering effort also served to remove many of the obstacles

for future applications. A summiary of the experiment is given in

the proceedings of the LACIE Symposium (1979). The target re-

source in LACIE was the wheat acreage and production in the U. S.

Great Plains.

During the transition years 1977-1979 ar,d during 1979-1983

under the recently-terminated AgRISTARS (Agriculture and Resources

Inventory Surveys through Aerospace Remote Sensing) program

several advances were made in satellite imagery technology, data

processing, and statistical methodologies. In addition, target

resources were expanded to include other crops and other countries,

as well as non-crop resources.

This paper focuses on the statistical methodology for estimat-

ing a particular resource's acreage proportion in a "Large region

at a specified point in time using the estimated resource acreage

proportion in a sample of smaller areas. It will be assumed that

(i) the resource is a crop,

(ii) the specified time point of interest is the harvest
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time for the crop,

(iii,) the sample areas are all the same size (a 5x6

nautical mile rectangle called a segment), and

(iv) the sample segments are relatively "small" compared	
3

to the homogeneous region (stratum) of interest.

Also, it is assumed that in each year of a multiyear period a

sample of segments is selected. The composition of the sample

may vary year to year. In each year each sample segment's at-

harvest crop acreage proportion is estimated at one or more

times during the crop growing season. The number of estimates

is not necessarily the same for all sample segments in a year

and is not necessarily the same for each year. Obviously, this

paper is focusing on only one part of a much larger problem.

The region of concern herein is really just one stratum in a

stratified sample survey of a country or the world (see, for

example, Chhikara and Feiveson (1982)). The size of the sam-

ple segment is assumed to be predetermined (see Chhikara and

Feiveson (1982) and in this issue Chhikara et al. (1984)).

Also, since the same segments do not have to be in the sample

every year, there is an interesting associated problem of

determining an optimal multi-year sampling design (see Chhikara

et al. (1,984) and the technical reports listed in the biblio-

graphy). The papers by Heydorn (1984) and Hall and Houston

(1984) in this issue discuss the determination of the sample

segment's estimated at-harvest crop acreage proportion.

Finally, the estimates arising from the statistical method-

{	 ology in this paper can be input to procedures for aggregating
x	

acreage over several regions and combining acreage estimates

with yield estimates to obtain production estimates. The

paper by Feiveson (1984) in this issue addresses these latter

needs.

H. 0. Hartley during 'his years (1963-1979) as Distin-

guished Professor of Statistics at the Institute of Statis-

ties, Texas A&M University, contributed greatly to NASA's

0
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research efforts pertaining to crap acreage estimation, and

his ideas have frequent::y stimulated his co-workers' efforts.

The seeds for many of the sampling and modeling techniques

utilized in several of the papers in this issue were sown by

him.

2. BASIC MODEL FOR MULTIYEAR ESTIMATION

Each stratum at-harvest crop acreage proportion could

be modeled using a regression approach with explanatory vari-

ables such as the past, present, and anticipated economic and

meteorological conditions. However, the unknown form of the

regression model, the large number of possible explanatory

variables, and the difficulty in obtaining reasonable values
for these variables makes this approach unattractive. Never-

theless, the combined effect of all of these variables is

reflected in the crop acreage proportions for the stratum

segments. Although it is not economical to estimate the at-

harvest crop acreage proportion for every segment in the
stratum, it is feasible to estimate them for a sample of seg-
ments using Landsat data (see, for example Hall and Houston

(1984) and Heydorn (1984), both in this issue). Hence, an

alternative app-oach is to model the estimated at-harvest crop

acreage proportion for a sample segment in terms of

(i) the stratum at-harvest crop acreage proportion,

(ii) stratum-wide influences which vary from year to

year,

(iii) characteristics of the segment itself,

(iv) yearly influences which affect different segments

differently, and

(v) the proportion of the growing season which has

passed at the time the estimate is determined.

These factors may only contribute roughly additively to a trans-

formation of the segment at-harvest crop acreage proportion and

may not contribute additively to the segment proportion itself,

One specific model which is compatible with these ideas is

.
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A

y(.ptst) R at + b
s + It + etst	

t	 1, P. f T, (1)

S " 1, 	 S,

t	 1, ,.., L
where

A

pts,e " 
the estimated proportion of the s-th segment's

acreage that will contain the crop at harvest

time in the t-th year when the estimate is made

at crop calendar time t (for example, t = 1 could

denote early season, t = 2 mid-season, and t = 3

harvest time);
A	 A

y(pts,e	 a transformation of 
ptsz;

at = the stratum's transformed crop acreage proportion

For the t--th year;

b  = the s-th sampled segment's departure from the

stratum ' s transformed crop acreage proportion;

the b s ' s are independent random variables each

with mean zero and variance ab'

&t = the systematic difference between the estimates of

the crop's *.,ransformed at-harvest acreage propor-

tion made at the . -th crop calendar time and the

corresponding estimate made at harvest time;

(dL -° 0);

etst the aggregate of sampling and classification errors

in the transformed data; the etsels are independent

random variables each with mean zero.

This model is, of course, not the most general model possible.

In particular, the segment effects b  are assumed to be inde-

pendent of the crop calendar time and the year. Also the

departures of the transformed observations y(pt tat ) on the same

segment from their fixed year effects a, , and their fi*ed

estimation time effects It are assumed to be positively corre-

lated. The error terms etst 
are the composite effect of many

components and need not have homogeneous variances; in parti-

cular see Heydorn (1984) for a detailed discussion of the

i
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classification error components.

The.primary objective is to estimate the crop's at-

harvest proportion of the stratum acreage in the current

year, T; that is, estimate FT = y (a T). Secondary objet-

tives could be improved estimates of at-harvest acreages in

previous years or estimates of changes in the stratum at-

harvest crop acreage proportion from year to year.

Estimates of the stratum at-harvest crop acreage propor-

tion are also often desired throughout the current year as

well as at harvest time. For example, an early season esti-

mate of PT based on observations for r 1, ..., L for t = 1,	 f

..., T-1 and only e - 1 for t 	 T is frequently desired.

Even though the estimate FT = y (a T) of the stratum at-

harvest crop acreage proportion for the current year involves

only aT , this estimate depends on the entire multiyear data

set and not Just the data from year T since the segment effects

(bs 's) and systematic estimation time biases (d l 's) are assumed

to be constant from year to year.

Special cases of model (1) have also been considered. For

example, Chhikara et al. (1984) consider at-harvest estimates

made only at harvest time, so that their model is	
B

pts :o at + b  + ets ,	 t = 1, ..., T and s =1, ..., S.

For simplicity Feiveson (1984) considers only estimates of the

stratum at-harvest crop acreage proportion made at harvest time

during the current year; i.e.,

pTs = a  + eTs ,	 s = l, ... , S.	 n

When such data is not available, Feiveson (1984) utilizes his,

torical data from agricultural reports even though previous

Landsat data could also be incorporated. The methodology in

both of these papers can be extended to incorporate the more

general model (1).

Y
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3. TRANSFORMATIONS OF THE ESTIMATED SEGMENT PROPORTIONS

The ,;amplest transformation y(p) of the estimated segment crop

acreage proportion p to use in (1) is the identity transformation

Y(P) = PO

However, it is very doubtful that the additive model (1) would hold

for y(p) = p particularly if the p  exhibit a large variation within

the stratum, On the other hand a multiplicative model for p may be
i

more reasonable. For instance, if

(1) 30% of the stratum contains wheat at the time wheat is

harvested in year t;

(ii) the s-th segment's wheat acreage proportion averages only 	 j

80% of the stratum's wheat acreage proportion at harvest	 P

time;

(iii) the at-harvest acreage estimate made at mid-season is

only 70% of the at-harvest estimate made at harvest time;
i

and

(iv) the sampling and classification errors cause the estimat-

ed at-harvest acreage to be 110% of what it would be

without these errors,

then

Pts.e = (.30) (.80) (.70) (1.10) .

Here a logarithmic transformation, y(p) = tn(p), would be appropriate

and

Y(Ptsz	
at + b  + 61 + etsz

.en(.30) + tn(.80) + kn(.70) + tn(1.10).

The logic transformation,

Y(P) = (1/2) tnfp/(1-p)7

is another useful transformation which approximately converts a mul-

tiplicative model for P into an additive model for y(p). A small

advantage of the logit transformation is that it guarantees that

0 < PT = y- x 
GT) 

l

whereas the logarithmic transformation only guarantees

PT = y-1 (aT) > 0

,.r ...	 .A^,•.^IR'^,r!^^► '.^r^	 ._-ter..
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and the identity transformation makes no guarantees.

All three of the above transformations are considered in Dahm

and Sielken (1981) where approximate expressions are derived for
^

(i) the bias of y - 1 (& ) ,

(ii) the mean squared error of y -1 (aT , and

(iii) confidence intervals on PT

These Jerivations are all similar and are based upon Taylor series

approximations (statistical differentials). For instance if y(p)

,en (p) , then

PT = 
Y
- 1 (aT) _ 

Y
- 1 (aT) + 

(aT aT)	
dy-1(aT)._

A	 A

daT	a  = a 

= PT + (aT - aT)PT

so that

MSE (PT) E E [(PT - PT )2 ]= PT Var(aT) .

4. THE WEIGHTED LEAST SQUARES ANALYSIS OF THE SEGMENT ESTIMATES

The probable heteroscedasticity of the y(p tst) I s suggests that

the mixed effects model (1) should be analyzed in the form

wts e Y (Pts e) - wts.eat + wts a b s + wtsp 6 .e + etsZ	 (2)

where wtst:is proportional to {Var Cy(ptse)])

In matrix notation (2) can be written as

Wy = WX(a) + WU b + le	 (3)

where

Y = (Y1119 Y112r • • • P YTSL)' '

a	 (a l, ..., aT)' ,

8 = (E 1 , 62, ..., 6L-1 )' , (since dL = 0) .

b = (b l, b2p ..., bS )' ,

W = matrix containing the wtst's ,

X = design matrix of 0's and 1's corresponding to the

fixed effects -at and d-e ,

i

n
I

I

,?'.	 ^lL^	 __^^.^_^_.	 ,--	 ---'"-•..ax ^_^=--=—'_,err.•.,.—_
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U - sampling design matrix of 0's and 1's corresponding

to the sampling pattern for the distinct segments,

and

I - identity matrix.

In (3) the random portion of Wy is WLTb + Ic which has covariance

Va t Ia e + WW'W'ab

(I + WW'W'Y)ae

where aE - Var(e tsp) and Y = ab/a 2 	 Hence, the usual weighted least

squares estimator of (a, 6)' is

(^) _ (X1W'V:1k'X)- 1X
1W.V1Wy 	 (4)

and

Var[(S)] _ (X'W'V 1WX)-1ag .

In particular

Var (aT) _ (X'W'V 
1WX)"1T 

T ae'	 (5)

where ( ) T 1 T denotes the T-th element on the diagonal. of the matrix

inverse.

Although the formulas in (4) and (5) are fairly standard, there

are several obstacles to be overcome before they can be applied. The

detailed procedures for overcoming them are given in Dahm and Sielken

(1981). Only the nature of obstacles and the basic approach to over-

coming them are discussed here.

An initial obstacle is that the y vector is not computable if

any y (ptse) corresponds to either the logarithmic transformation with

ptsk = 0 or the logit transformation with pts^ = 0 or 1. Although

ptsQ 1 would be highly unexpected, pt,Z = 0 is quite common. This

obstacle can be overcome through the use of "working y's" as in

Finney (1964); that is, by

(i) estimating the parameters in (3) using only the data for

which y is calculable;

(ii) substituting the estimated parameters from (i) into (1)

along with 
etsC 

0 to obtain approximate ytst's,*say

Y tszl and approximate ptst 's , say p tst 
y-1(y 

tse)'
and finally

0
1



411) creating working values for y(p tst ) using a first order

Taylor series expansion of y(p) about p P*tst

These working y's can then be used in (4).

A second obstacle to using both (4) and (5) is that V-1 contains
the unknown variance component ratio Y a2

b
/a2 c	If y is replaced

by an independent consistent estimator y , then (5) is asymptotically

correct. When such a y is unavailable, a reasonable alternative is

to treat (3) as if it were a fixed effects model and obtain estimates

of a lb and a 2 (and h. , 1--e their ratio y) by equating certain sums of

squares from the fixed effects model analysis with their expectations

under the mixed model. This is basically Henderson's Method 3 (see,

for example, Searle (1971)).
^

Finally, the weight matrix W is unknown since Var [y(ptst )] is

unknown. A first ,order Taylor series approximation can be used to

relate Var [y(p tst)] to Var (p tsf-
). For example, if y(p) = tn(p)

and p is distributed with mean p and variance ap , then

y (P) = tn(P) + (P-P) [Adp) 	 ^ I P-P
= tn(P) + (P-P)/ p s

so that

E [ y (P)] = tn(P)

and

Var [ y (P)] = E [(P - P)
2 
/P2

ap/p2 .

In this manner the form of W can be identified.	 Replacing p by p

would yield an estimate of W if a2 could be estimated. 	 One approach

to estimating a? is to
p

assume that Np is binomially distributed forp

some unknown value of N which is constant for all segments.	 Then
r` a2 

is proportional to p(1 - p) and
n

in the above example Var [y(p)]p

.. is proportional to (1 - p)/p which can be estimated by (1 - p)/p.

An, A slight improvement can sometimes be obtained by iterating on the

estimates of W and the p's.	 An alternative method of obtaining an

w
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estimate of W is currently under investigation. Here Var (ptsd

is approximated primarily on the basis of information such as

(i) the type of satellite being used,

(ii) the sharpness of the satellite imagery,

(iii) the season during which the estimate is being made,

(iv) the number of satellite images successfully obtained

by the time the segment proportion is estimated,

(v) the nearness of the segment's observed behavior to

classical crop profiles,

(vi) the weather conditions during the crop's growing sea-

son, and

(vii) the physical characteristics of the segment.

This alternative approach may be particularly appropriate for mul-
	 P

tiyear data sets where the remote sensing technology and segment

proportion estimation methodology is changing from year to year.

In addition, recognizable segment characteristics which make it

either easier or harder to estimate the segment crop porportion

can be incorporated. Obvious differences in the amount of infor-

mation going into the p ts.'s can also be reflected. These latter

differences can be due to the estimation times themselves as well

as due to loss of satellite imagery from cloud cover, machine

failure, etc.
a

5. AN EXAMPLE

The technical reports cited in the bibliography as well as

the paper by Chhikara et al. (1984) in this issue indicate the

theoretical advantages of basing estimators on the full multiyear

data set as opposed to only the data from a single year. Even when

there are only 2 or 3 years' data available, the accuracy of the

current year's at-harvest crop proportion estimate can often be

improved by as much as 50% by utilizing the multiyear estimation

procedures. Of course, the improvement depends on the multiyear

sampling design and the underlying value of 'ya2 /0'e.

Some of the potential benefits of the multiyear estimation

procedure in a real-world setting are seen in the following

0



example ,, The Landsat based estS •.ces of the at-harvest wheat acre-

ages computed at harvest times during each of 1976, 1977, and 1978

for 108 sample segments in the Great Plains states were available

to the authors. Although these sample segment estimates were

determined for other purposes, they can aso be used to evaluate

proposeu statistical procedures. In an experiment the following

procedure was repeated 200 times:

(a) Randomly select (without replacement) 40 segments from

the 108 available.

(b) Treat this sample of 40 segments with their 3 years

of estimated at-harvest wheat acreages as the simu-

lated "stratum" whose at-harvest wheat acreage pro-

portion is to be estimated. Determine the true at-

harvest wheat acreage proportion for 1978 for this

"stratum". This proportion is the estimation target

for this repetition.

(c) Assume the following multiyear rotation sampling de-

sign. In 1976 a random sample of 5 segments from

the stratum of 40 segments is observed. In 1977

three of these f1.ve are observed again along with

two new randomly selected segments. Finally in

1978 one of the three segments observed in both 1976

and 1977 is observed a third time, the two new seg-

ments in 1977 are observed a second time in 1978,

and finally two totally new randomly selected seg-

ments are observed. Schematically the sampling de-

sign of 5 segments per year is as follows:

Segment Number	 1976	 1977	 1978

1	 x
2	 x
3	 x	 x
4	 x	 x
5	 x	 x	 x
6	 x	 x
7	 x	 x
8	 x
9	 x

•.	 ^...^,=- a ^.; .._. ^ .

i

i
,

i

0
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(d) The multiyear estimation procedure described in sec-

tion 4 is carried out using y(p) = ln(p). The multi-

year estimate, y-1 (a3 ), of the stratum's at-harvest

wheat acreage proportion in 1978 is computed. The

corresponding single-year estimate is also computed

using only the 1978 sample data.

(e) The corresponding estimation errors are the differ-

ences between the simulated stratum's 1978 at-harvest

wheat acreage proportion and the multiyear and single-

year estimates.

The average absolute value of the errors was 0.046 for the multi-

year estimator and 0.072 for the single-year estimator. Thus, the

average absolute error for the single-year estimator was approxi-

mately 1.6 (0.072/0.046 =1.57) times as great as the average ab-

solute error for the multiyear estimator. All of the other mea-

sures of empirical behavior considered also favored the multiyear

estimator. The average squared errors for the multiyear and single

year estimators were 0.0033 and 0.0073, respectively. The average

biases relative to the average 1978 at-harvest wheat acreage pro-

portion for the entire 108 segments were 0.002 and -0.047. The

sample standard deviations of the multiyear and single-year pro-

cedures were 0.061 and 0.076, respectively. Thus, the multiyear

estimation procedure provided a substantial percentage improvement

over the single-year estimator.
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