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Contract No. NAS9-16785
Area Estimation Using Multiyear Designs and Partial Crop Identification

Final Report

This final report refers to project number 4821 entitled "Area Estimation
Using Multiyear Designs and Partial Crop Identification". This project spanned .

the period from November 1, 1983, to March 31, 1984,

1. INTRODUCTION

Agriculture and other renewable resources can be economically inventoried
over large areas using aerospace remote sensing techniques. In particular, the
surface ar-~ devoted to a specific resource in a large region is especially
amenable ti. aerospace estimation. Such resources could be as broadly defined
as agriculture, forest, water, snow cover, etc. or as specifically defined as
summer crops or corn. These area estimates can be combined with other measures
such as estimated yield per acre to obtain production estimates. Once the
appropriate estimation methodology has been successfully impiemented, the :
successive estimates are very economical, so that frequent inventories are \
realistically obtainable.

During 1975-1977 NASA in conjunction with the USDA conducted the Large
Area Crop Inventory Experiment (LACIE) to illustrate the potential capabilities
of aerospace remote sensing techniques. This pioneering effort also served to
remove many of the obstacles for future applications. A summary of the experi-
ment is given in the proceedings of the LACIE Symposium (1976). The target
resource in LACIE was the wheat acreage and production in the U. S. Great

Plains.
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During the transition years 1977-1979 and during 1979-1983 under the
recently-terminated AgRISTARS (Agriculture ard Resources Inventory Surveys
through Aerospace Remote Sensing) program several advances were made in
satellite imagery technology, data processing, and statistical methodologies.
In addition, target resources were expanded to include other crops and other
countries, as well as non-crop resources.

The research under Contract No. NAS9-16785 has focused un the statistical Y
methodology for estimating a particular resource's acreage proportion in a
large region at a specified point in time using the estimated resource
acreage proportion in a sample of smaller areas. In describing this research
it will be assumed that

(i) the resource is a crop, .
(ii) the specified time point of interest is the harvest tine for the
crop,
(iii) the sample areas are all the same size (a 5x6 nautical mile
rectangle called a segment), and ?
(iv) the sample segments are relatively "small" compared to the
honiogeneous region (stratum) of interest. g
Also, it is assumed that in each year of a multiyear period a sample of
segments is selected. The composition of the sample may vary year to year.
In each year each sample segment's at-harvest crop acreage proportion is
estimated at one or more times during the crop growing season. The number
of estimatcs is not necessarily the same for all sample segments in a year
and is nugt necessarily the same for each year. Obviously, the contract
research has focused on only one part of a much larger problem. The region

of concern herein is really just one stratum in a stratified sample survey



of a country or the world (see, for example, Chhikara and Feiveson (1982)).
The size of the sample segment is assumed to be predetermined (see Chhikara
and Feiveson (1982) and Chhikara et al. (1984)). Also, since the same
segments do not have to be in the sample every year, there is an interesting
associated problem of determining an optimal muliti-year sampling design

(see Chhikara et al. (1984), Gbur and Sielken (1980a), Gbur and Sielken (1980b),
Gbur and Sielken (1981) and the discussion in Section 4). The papers by
Heydorn (1984) and Hall and Houston (1984), for example, discuss the
determination of the sample segment's estimated at-harvest crop acreage
proportion. Finally, the estimates arising from the statistical methodology
developed under this research contract and the preceding contract (No. NAS9-
13894) can be input to procedures for aggregating acreage over several
regions and combining acreage estimates with yield estimates to obtain
production estimates. The paper by Feiveson (1984) is a good example of the

research addressing these latter needs.

2. OVERVIEW OF RESEARCH ACTIVITY

The two major tasks under Contract No. NAS9-16785 were

1) the development and refinement of samplinig and modeling techniques, and

2) the development and refinement of aggregation techniques.

The principle research activities associated with the development and
refinement of the sampling and modeling techiques were

1) the extension of multiyear models and estimation procedures to include

partial ground cover identification, and
2) the development of a procedure to determine the optimal current year

sampling design as a function of previous years' results.



The major activities concerning the development and refinement of aggregation
techniques were
1) the identification of statistical methodology for utilizing different
weighting factors which could be assigned to the observations, and
2) the derivation of approximate variances for ground cover estimators
which incorporate partially identified sampled units.
These four major activities are discussed in the next four sections respectively
(Sections 3-6). Section 7 indicates some additional research results. Section

8 concludes this final report and makes a suggestion for future research.

3. EFFICIENT ACREAGE ESTIMATION USING MULTIYEAR DATA
WITH BOTH PARTIALLY AND COMPLETELY IDENTIFIED SAMPLING UNITS

Fack. stratum at-harvest crop acreage proportion could be modeled using a
regression approach with explanatory variables such as the past, present, and
anticipated economic and meteorological conditions. However, the unknown form
of the regression model, the larg» number of possible explanatory variables, %
and the difficulty in obtaining reasonable values for these variables makes
this approach unattractive. Nevertheless, the combined effect of all of these
variables is reflected in the crop acreage proportions for the stratum
segments. Although it is not economical to estimate the at-harvest crop
acreage proportion for every segment in the stratum, it is feasible to estimate
them for a sample of segments using Landsat data (see, for example Hall and .
Houston (1984) and Heydorn (1984)). Hence, an alternative approach is to
model the estimated at-harvest crop acreage proportion for a sampie in terms
of

(i) the stratum at-harvest crop acreage proportion,

(ii) stratum-wide influences which vary from year to year,
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(ii4)
(iv)
(v)

characteristics of the segment itself,
yearly influences which affect differeni segments differently, and
the proportion of the growing season which has passed at the time

the estimate is determined.

These factors may only contribute roughly additively to a transformation of

the segment at-harvest crop acreage proportion and may not cuntribute addi-

tively to the segmen® proportion itself.

One specific model which is compatible with these ideas is

YiPegg) = op * bg ¥ 8y + epgy E=hoen T
s=1, ...y S, (M)
£=1, ..., L
where
5ts£ = the estimated proportion of the s-th segment's acreage that will

contain the crop at harvest time in the t-th year when the

estimate is made at crop calendar time £ (for example, £ = 1

could denote early season, £ = 2 mid-season, and £ = 3 harvest

time);

y(ﬁtsz) = a transformation of Bstﬁ;

the stratum's transformed crop acreage proportion for the t-th
year;

the s-th sampled segment's departure from the stratum's transformed
crop acreage proportion; the bs's are independent random variables
each with mean zero and variance of;

the systematic difference between the estimates of the crop's
transformed at-harvest acreage proportion made at the £-th crop
calendar time and the corresponding estimate made at harvest time;

(6, = 0)3



€isp = the aggregate of sampling and classification errors in the

transformed data; the € 's are independent random variables

£
each with mean zero.

This model is, of course, not the most general model possible. In particular,

the segment effects bs are assumed to be independent of the crop calendar

time and the year. Also the departures of the transformed observations y(ﬁtsg)

on the same segment from their fixed year effects ay and their fixed estimation

time effects 8, are assumed to be positively correlated. The error terms €tsp

are the composite effect of many components and need not have homogeneous

variances; in particular see Heydorn (1984) for a detailed discussion of the

classification error components.

The primary objective is to estimate the crop's at-harvest proportion of
the stratum acreage in the current year, T; that is, estimate PT z y'l(aT).
Secondary objectives could be improved estimates of at-harvest acreages in
previous years or estimates of changes in the stratum at-harvest crop acreage
proportion from year to year.

Estimates of the stratum at-harvest crop acreage proportion are also
often desired throughout the current year as well as at harvest time. For
example, an early season estimate of PT based on observations for £ =1, ...,
Lfort=1, ..., T-1 and only £ = 1 for t = T is frequently desired.

Even though the estimate ﬁT = y'l(&T) of the stratum at-harvest crop
acreage proportion for the current year involves only &T’ this es*'mate depends
on the entire mulitvear data set and not just the data from year T since the
segment effects (bs's) and systematic estimation time biases (dﬂ's)are assumed
to be constant from year to year.

Special cases of model (1) have also been considered. For example, Chhikara

et al. (1984) consider at-harvest estimates made only at harvest time, so that

-
+



their model is

~

Prs = ag ¥ b * ey t=1,...,Tands =1, ..., S,

For simplicity Feiveson (1984) considers only estimates of the stratum at-harvest

crop acreage proportion made at harvest time during the current year; i.e.,

BTS=GT+QTS’ S=], L) Su

When such data is not available, Feiveson (1984) utilizes historical data from
agricultural reports even though previous Landsat data could also be incorporated.
The methodology in both of these papers can be extended to incorporate the more
general model (1).

Multiyear estimation models provide the ability to make estimates of the
current year's acreage on the basis of not only the current year's sampled data,
but also the previous years' sampled data. In the past such multiyear models
have been developed and used when the sampied data is the proporiional acreage
of a single crop of interest. In such cases the use of multiyear models can
easily reduce the variation in the current year's estimate to one half of
what it would have been if the previous years' sampled data were ignored.

In Sielken (1981) techniques were developed and tested for estimating the
acreage for a particular crop when there is only sampled data from a single year
and some of the segments have been only partially identified. A segment is said
to only be partially identified as opposed to completely identified if only the
proportion of the segment containing some unknown percentage mixture of two or
more ground covers (including the specified crop of interest) is estimated.

In developing these estimations techniques consideration has been given to the

following approaches:

I ETTETT "



) maximum 1ikelihood estimation,
b) least squares methods,
) weighted least squares methods, and

d) a iombination of a least squares ratio estimator of the specified

crop's acreage percentage, say R, within the combined acreage of all
crops in the mixture and a maximum likelihood estimator of the mixture
acreage.

The empirical bshavior of approach (d) based on the combination of the
least squares ratijo estimator, denoted by R say, of the specified crop's
acreage percentage within the combined acreage of all crops in the mixture
and a maximum 1ikelihood estimator of the mixture acreage has been usually
as good as, if not better than, approaches (a) - (c).

The following procedure is recommended for estimating a crop's current
year acreage within a stratum based on both the current year's data and
previous year's data when these data involve both partially and completely

identified sampling units:

i) Determine the least squares ratio estimator, ﬁ, for the crop of
interest using the current year's partially and completely
jdentified sampling units. | :

ii) Transform each multivariate segment observation into a unjvariate
observation by combining all of the acreages for the érops involved
in the mixture of crops creating the partial identification. Call
this combination of crop acrzages the mixture acreage.
iii) Apply the multiyear modeling and estimation procedures to the multiyear
data set consisting of the observed segment mixture acreages. Let

ﬁM denote the corresponding estimated proportion of the stratum's



current year acreage containing crops in the mixture.
iv) Estimate the stratum's current year acreage proportion for the crop
of interest by the product ﬁ * §M'
Time series or regression models can be used to augmeit step (i) in the
above procedure if trends over time in the specified crop's ratio R are anticipated

or if covariates for R can be identified,

4. Optimal Current Year Sampling Designs
Based on Previous Years' Data

Here a sampling design is a plan which defines the way in which the sampie
of segments is to be chosen from a stratum's population of segments. An optimal
design yields estimates which have optimal properties. In the past, sampling
designs in suppert of ground cover proportion estimation have specified at the
outset of the study how the sampling is to be done in each year of the study.

As these designs are being implemented considerable information is gathered.

For exaiple, cloud cover may have eliminated particular observations and improved
estimates of relevant variances may have become available. Such information is
not incorporated in the original non-sequential des’gn. However, a sequentially
determined sampling design which allows information from previous years to
influence the current year's design should produce sampling designs leading to
better estimates.

The use of a multiyear mixed model weighted analysis of variance to estimate
a stratum's at-harvest crop acreage proportion based on estimated proportions
from sampled segments has been described in Dahm and Sielken (1980). The
selection of multiyear sampling designs as described in Gbur and Sielken (1980a,
1980b, and 1981) was based on two simplifying assumptions. First, the design

selection procedure did not take into account any previous sampling information '

o
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on the stratum nor did it allow sampling information obtained during the early
periods of the design to affect sampling in subsequent periods, Second, " an
attempt to reduce the number of competing designs to a manageable level, it was
assumed that the number of segments to be sampled in each future year was the
same.

Yearly changes in economic conditions, measurement techniques, equipment
characteristics, and reliability requirements suggest that a more realistic
approach would be to sequentially select each year's sampling pattern. Such a
sequential approach would utilize the information collected from ali previous
years' sampling of the stratum. It would allow for the selection of a sampling
pattern for eacii year which reflects the effects of missing observations in
previous years' samples as well as changes in factors such as those mentioned
above,

In a new technical report (Gbur and Sielkern (1983)) a computer program
called OPTDESIGN is documented which enables the user to obtain a 1ist of the
best sampling patterns for a stratum for the current year based on the segment
proportion information from a1l previous years. Two criteria for design
selection have been implemented. These are the minimization of the variance
of the current year's estimated stratum transformed proportion and the
minimization of the variance of the estimated change from the previous year's

stratum transformed proportion.

Since the variances of the y(ﬁtsz)'s in model (1) are not necessarily equal,

a weighted form of the model (1) has been used. In matrix notation this model

can be expressed as

WY = wx[‘;] + Wb + Ie , (2)

where



V= D g oo Yrsld'

a = fays ceenagl'

= [61. e 8103 (6, = 0n)
b

u

1* e bs]' ’

weight matrix = [Wtsa] ,

il

8
b
W
X = decign matrix for the fixed effects (at's and dz's).
U

L]

design matrix for the random effect (bs‘s).

£

[E"‘]]’ E'l"zp veey ETSL]' = We

vector of transformed errors.

n

In the weighted model (2), the estimates of oy are obtained from the appropriate

entries of (x'w'v'1wx)“ X"W'V"1Y and the covariance matrix of the vector ¢ is

the upoer left block of the matrix
I = (xwv i)t o2

e
where

V=1+Wuuuw ,

u

Y og /og .
The stratum at-harvest crop acreage proportion is estimated by ﬁt = y'1(&t).

In determining the optimal sampling dasign, it is assumed that information
from years t = 1, 2, ..., T is available for the stratum under consideration. Since
within season segment proportion estimates are often not available and are not
particularly important in design selection, our procedure only utilizes the
at-harvest segment proportion estimates made at harvest time. Therefore, the
within season biases Sp in model (2) are eliminated.

The required information for OPTDESIGN for each stratum consists of

i) segment identification numbers for wach segment sampled in each previous

year,
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ii) the fina) estimated weight, WtsL’ associated with each estimated
transformed acreage proportion, Y(ﬁﬁsﬂ)-and
iii) an estimate of tie variance component ratio Y.
The estimated segment proportions 5ts£ are not required for design selection,
except insofar as they may be needed to calculate the estimated wieghts WtsL'
Since the covariance matrix for each design contains the same (unknown) multiplier
Qi, the particular value of cg does not need to be considered in the design
selection process.
The optimality measures implemented in OPTDESIGN are
i) minimize var(§T+]), the variance of the estimated stratum transformed
at-harvest crop acreage proportion for the current year,

ii) minimize var(&T+] - &T). the variance of the estimated change in the
stratum transformed at-harvest crop acreage proportion from the previous
year.

The minimizations in (i) and (ii) are determined over the set of all possible
T+1 year designs containing the specified number of segments to be sampled in
the current T+1£b-year and for which the parent T year design is given by the
sampling history of the stratum.

OPTDESIGN is a self-contained computer program for determining the best
designs according to the optimality criteria described above. It is written
in Fortran and contains numerous comment cards which provide extensive internal
documentation. A listing of OPTDESIGN and a flowchart of the prdgram logic,
as vell as sample inputs and corresponding outputs for OPTDESIGN are given in
Gbur and Sielken (1983).

For each stratum the following information is printed in the output from

OPTDESIGN:
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(1) Initial Information including
(a) stratum number,
(b
(c

) number of years of prior information,
)

(d) number of segments to be sampled in the current year,
)
)

number of segments sampled in each previous year,

(e) estimate of the variance component ratio v,
(f) weight to be assigned to all current year segments for the purpose
of computing the optimality measures.
(2) For each previously sampled segment,
(a) segment label,
(b) year the segment was sampled,
(c) weight attached to that observation.
(3) A list of the NOPT best designs for the stratum for each optimization
above, along with the value of the criterion for each design. ‘
The program OPTDESIGN has been written to allow for as much flexibility g
as possible in the sampling history of the stratum. The only unchangeable
restriction is that at least one year of prior information is required. The
program will accept any positive numbers as weights and arbitrary samples sizes
for each previous year in which the stratum has been sampled.
Since the weights assigned to each previously sampled segment are, from
the program's viewpoint, arbitrary positive numbers, they can be used to _ '
reflect many different factors. The weights need not be computed solely as
functions of the estimated segment proportions. They could be used to account
for such factors as changes in measurement techniques, classification algorithms,
and equipment characteristics as well as factors such as differences in the

level of difficulty of classification for the AI, number and quality of the



14

set of "photographs" used to obtain the estimate, and differences in Al
personnel,

The current version of the program assumes that the weight matrix is
diagonal. However, the data input format can be easily modified to allow for
arbitrary nonnegative weight matrices.

The sample sizes for previous years sampling are arbitrary positive
integers. This allows for differences in sample sizes caused by factors such
as missing observation in one or more years, budgetary changes, and the tar-
geting of selected strata for more intensive sampiing in certain years.

It is conceivable that the se7pling history of a stratum contains T* years f
in which no sampling occurred. Since OPTDESIGN requires the previous years to
be jabeled as 1, 2, ..., T, the years in which the stratum was sampled could
be numbered consecutively as 1, 2, ..., T=-T* and all years' information
utilized.

"Ground truth" data could be combined with the stratum's sampling history.

The weights for such "ground truth" estimates should reflect any differences
in their quality and variability as compared to the remotely sensed segment !
estimates.

The multiyear model (2) on which the program OPTDESIGN is based on
relatively simple. Additional fixed effects and covariates could be incorpor-
ated to improve the estimates. Modification of OPTDESIGN to reflect the
expanded model can be achieved in a straigﬁtforward manner by substitution of
a new subroutine for computing the fixed effects design matrix X. The inclusion ?I
of additional random effects in the model would require more extensive modifica-

tion of the program, but could also be accomplished.
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5. INCORPORATING WEIGHTING FACTORS INTO THE
STATISTICAL METHODLOGY FOR MULTIYEAR DATA

Current multiyear estimation methodology uses observations as if their
variability was only dependent upon the true underlying proportion being
estimated. In practice, however, the variability of an observation is
dependent upon many other factors; for example, the season in which the
observation is made, the amount of previous satellite imagery available, the
quality of that imagery, the satellite being used, the "closeness" of the
spatial-spectoral-temporal patterns observed in the sampled units to their i
classical prototypes (say for corn, soybeans, pasture, forest, etc,). Better |
use of the observations can be made in aggregation if greater weight can be
given to the more precise observations and lesser weight given to less precise
observations. Hence, better aggregation estimates shou’id be obtainable if
the precision of the observations is more accurately assessed and then
incorporated into the muitiyear area estimation techniques. This is
particularly important in the multiyear environment where satellite technology,
analyst and computer methodologies, etc. are hopefully improving from year to ;

year.

The suggested approach is to characterize precision or confidence in
the observations in terms of their variances and weight the observations
proportionately to the inverse of their variances. The Var (Bisz) can be
approximated on the basis of infﬁrmation such as

(1) the type of satellite being used,
(ii) the sharpness of the satellite imagery, %‘

(iii) the season during which the estimate is being made, |

(iv) the number of sateilite images successfully obtained by the time §

the segment proportion is estimated.

v
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(v) the nearness of the segment's observed behavior to classical
crop profiles,

(vi) the weather conditions during the crop's growing season, and

(vii) the physical characteristics of the segment.
In addition, recognizable segment characteristics which make it either easier
or harder to estimate the segment's crop proportion can be incorporated.
Obvious differences in the amount of information going into the Btsﬂ's can
also be reflected. These latter differences can be due to the estimation
times themselves as well as due to loss of satellite imagery from cloud cover,
machine failure, etc.

The statistical procedures for area estimation documented in Dahm and
Sielken (1981) can easily incorporate as input both the observation and its
weight (confidence measure). The weighted form of the multiyear model
(1) is the model (2) discussed in Section 4. Detailed procedures for
implementing the statistical analyses associated with model (2) are given in
Dahm and Sielken (1981).

The advantages and disadvantages of doing weighted analyses of linear

models as opposed to unweighted analyses when the observations have unequal

v oemmsowenym -

reliability or variances is well documented in the statistical literature

(see, for example, Draper and Smith (1981), Kleijnen (1981), and Scheffe (1959)).

6. VARIANCES FOR GROUND COVER ESTIMATORS
INCORPORATING PARTIALLY IDENTIFIED SAMPLED UNITS

In the past, large scale ground cover area estimation techniques have
been developed for a single year's data which may include partially identified
sampled units. In order for these techniques to support aggregation activities é

some statement of the uncertainty of the estimate must be conveyed. This is

-
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best handled by providing an estimate of the variance of the ground cover area
estimator. Within a large homogeneous arza (called a stratum) a sample of
segments (currently 5 by 6 nautical mile rectangles) is observed. These
observations are collected as satellite imagery and are available for a period
of a few years and at several times during the crop growing seasons. Using
these segment acreages segment proportions for several crops are estimated.
Difficulties in distinquishing between crops leads to partially identified
segments as opposed to completely identified segments. llerein, a segment will
be considered to be planted in two major crops, crop 1 and crop 2, the remainder
of the segment will be pocled under crop 3, "other". When crop 1 and crop 2
are distinguishable the segment is completely identified. If it is not
possible to distinguish them, the segment is partially identified. Both types
of segments can be combined to estimate a crop's proportional acreage in the
stratum.

Methods of estimating individual crop acreage using a mixture of completely
and partially identified segments have been discussed in Sielken (1981) and
(1982).

The assumption used in Sielken (1982) is that the number of acreage units
harvested in a segment follows a multinomial distribution. An acreage unit
will be hereafter referred to as a block. The number of blocks within a
segment planted in crop i is denoted by Yi’ and the total number of blocks in
a segment.is denoted by N. Under the multinomial assumption the Yi's have the
distribution

Y1 Yo Y3

P(Y,l = y,', Y2 = ‘y2) = (N!/(y]!.Yz!.V3!)) P] p2 P3 ’
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when
N=yy+tY¥ty,

and Py is the at-harvest proportion of the stratum planted in crop i. This
assumption js correct if every decision maker acts independently and allocates
each block independently to crop 1, crop 2, or "other" with probabilities
P1s Poo and py = (1 - Py - pz) respectively.

A random sample of J segments is to be observed. let Yij = number of
blocks in segment j containing crop i i =1,2,3and j=1, ..., J. Assume
the segments j = 1, ..., JC are completely identified and segments j = JC + 1,

c+os Jg + Jp are partially identified. Therefore, J = J, + Jp. Let

ZC v y
: = z Y- 29 .i .' 2 3
1 J'_'l 1\] ! i ?

P )
Z = I You + Y,
J
P
Z = z Y L )
P3 mgen ¥
Thus, ZCi is the total number of blocks containing crop i in the completely
identified segments. The total number of blocks containing either crop 1 or
crop 2 in the partially identified segments is ZP]Z' The total number of blocks
containing crop 3 in the partially identified segments is ZP3" The total
number of blocks completely (partially) identified is NC(NP)' Thus, if N is

the number of blocks in one segment,

N

{1}
s

c
Np = Jp N.
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As noted in Vidart and Sielken (1984) the results from Hocking and Oxspring

(1971) can be used to show that the maximum likelihood estimators are

Py = L2/ (2gy + Zp)1L(2gy + Zg + Zpyp)/ (N + tp)).

Py = [Zep/(Zgy + Zep)1(Zgy + 2oy + Zpy,)/ (N + Np) 1.

and

“»

N\ -~ A
P3 = 1=Py=Pp = 1=Py=Pp = (Zgg + Zpg)/(Ng + Np).
The form of these estimates is fairly intuitive since

5] = [ Estimated proportion of crop 1 and 2 that is crop 1 in the completely
identified segments ] x

[ Estimated proportion of crop 1 and 2 in all the segments ].

The asymptotic variances (AV) of these estimates are

AY(py) p](l'p])/NC'[P$p3Np]/[NC(NC t Np)(py + py)], and

N

n"

AV(Bz) pZ(]'pZ)/NC'[pngNP]/[NC(NC + NP)(p] + Pz)]-

The second term of these expressions shows the improvement obtained by using
the partially identified segment. After some simplification, the asymptotic

variances can b rewritten as
AV(a]) = P}(1'P])/(NC+NP) + [Npp]Pz]/[NC(NC+NP)(P]+p2)],
AV(Bz) = P2(1'P2)/(NC+NP) + [Npp1p2]/[NC(NC+Np)(p1+p2)],
and for Py = 1-p]-p2

AV(63) = p3(]'p3)/(NC+NP).

¢

y
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A computer program has been implemented to test the accuracy of these
asymptotic variances wnen N. and NP are not both arbitrarily large. Samples
with the prescribed number of partially and completely identified segments
were simulated following a multinomial distribution. For each sample the
maximum 1ikelihoci (ML) estimates of the p's were computed. Finally the sample
variance of these ML estimates were compared to the asymptotic variances.

The details of the evaluation of the applicability of the asymptotic variance
formulas to small sample sizes are given in Vidart and Sielken (1984). The
conclusion was that the asymptotic variance can be used as a good approxima-
tion of the actual variance under the multinomial decision process even for
relatively small sample sizes.

One Monte Carlo study of the empirical behavior of the crop acreage
estimation procedure utilizing partially identified data was already
available in Sielken (1982). The sample variances of the maximum likelihood
estimates of the pi's in Sielken (1982) can be compared to the asymptotic
variances under the multinomial assumption. In order to computer the
asymptotic variances of the maximum 1ikelihood estimators of the p's, the
number of blocks N contained in a segment must be determined. This information
is not available since the CAMS estimates are given in percentages rather
than blocks. Therefore, N was estimated separately for i = 1, 2, and 3 and
for different combinations of JC and JP’ For a particular crop the estimateé
value of N is nearly the same for the different combinations of JC and JP.
However the value of N seems to vary with the crop. In other words, the
theoretical variances under the multinomial decision process differed markedly
from the observed sampled variances. Consequently, the multinomial decision

process is not applicable.
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Since the multinomial assumption does not hold, another decision process
must be considered. The estimated N values suggest that some crops are
planted in a larger "standard area" than others. The standard area of a
"Jarge" crop has more biocks than a "small" crop does. Crop 3 "other"
appeared to be a "large" crop and crop 1 a "small" crop. This suggested the
following approach. A block will now denote a particular fixed number of
acres corresponding to the smallest decision possible. Let Ki denote the

theoretical number of blocks in a standard area of crop i. This conceptual-

ization envisions crop i being planted only in integer multiples of Ki blocks.

If oF is ecual to the overall proportion of the stratum planted with
crop i, then this alternative decision process independently allocates each
K3 blocks of acreage according to the following sequential procedure:

1. Allocate K3 blocks to crop 3 with probability P3-
2. If the K3 blocks are not allocated to crop 3, then allocate those K3

blocks to crops 1 and 2 as follows:

2-1. Allocate K2 blocks to crop 2 with probability

Py = Pp/(1-p3).
2-2. If these K2 blocks are not allocated to c¢rop 2 during step 2-1,
then allocate these K, blocks to crop 1.

Obviously, it is assumed that K] = K2. N is an integer mu]tip]g of K3, and
K3 is an integer multiplie of K]. For simplicity K] and K2 are defined to
be 1 block and K3 is renamed K. The resulting decision process can be
summarized as

1. Allocate K blocks to crop 3 witn probability P3-
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2. If these K blocks are not allocated to crop 3 during step 1, allocate
those K blocks to crop 1 and 2 using & binomial decision process with
probabilities pi and pé = l-pi where

P} = Py/(1-p3).

3. Repeat steps 1 and 2 until ail N blocks are allocated.

This alternative decision process will be referred to as the KDP, A group of

K blocks will be called a superblock. The particular case where K = 1 is the

multinomia decision process, 1DP.

The parameters in KDP include N, the number of blocks in a segment, and
K, the number of blocks in a superblock, as well as Pys Pps and P3e In Vidart
and Sielken (1984) it is shown that the maximum likelihood estimates for the
pi's under the KDF are the same as under 1DP and do not depend upon N or K.
However, the aiymptotic variances of the Bi's do depend upon N and K which are
both unknown. In Vidart and Sielken (1984) estimators for N, K, and
approximations for the variances of the 51'5 are derived., Also a simulation
check on the approximate expressions for the variances of the Bi's is reported
there, The sample variances of the 5'5 were very close to their approximating
expreusions.

In Vidart and Sielken (1984) the KDP is also extended to the situation
where the sampling units have variable sizes instead of the cqnstant size
typified by 5x6 nautical mile segments. Such a situation could easily occur
if “he sampling units were political subdivisions such as counties.

One objective of the contract research was to determine the improvement
brought about through the use of the KDP instead of the 1DP when CAMS estimates
are studied. Some improvement in the prediction of the variance of the crop

acreage estimators is achieved by considering the new decision process. For,
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fairly large samples, typically 50 segments, the use of the KDP as opposed

to the 1DP leads to an improvement in the prediction of the variances of the

ML estimators of the croo proportions based on CAMS data. For smaller, more
realistic size samples, typically 5 segments, the variance estimation

techniques were not very accurate., However, the empirical results indicate

a better performance under the KDP, than under the 1DP, The variarce

estimates under KDP have a distribution with more spread but centered much

closer to the sample variance than the corresponding distribution under 1DP.

The greatest overall improvement is associated with the estimated variance for the
smallest crop (i.e., the crop planted in the smailest size blocks) while the

other estimated variances inprove just slightly overall.

7. ADDITIONAL RESEARCH RESULTS

A special issue of Communications in Statistics concerning statistical

applications at NASA is being prepared under the coordination of Dr. Raj
Chhikara, Lockheed Engineering and Management Services Company, Inc. R. L,
Sielken, Jr, and E. E. Gbur have prepared a contribution entitied "Multiyear,
Through the Season Crop Acreage Estimation Using Estimated Acreage in Sample
Segments” for that special issue. That contribution has been refereed and
accepted. A copy of that paper is attached to this final report.

Some additional research has been done on the empirical behavior of the
transformations y(ﬁ) used in conjunction with model (1) and (2). The simplest '
transformation y(p) of the estimated segment crop acreage proportion p to use

in (1) or (2) is the identity transformation

o>
')

y(p) =
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However, it is very doubtful that the additive model (1) would hold for y(p) = p
particularly if the P's exhibit a large variation within the stratum. On the
other hand a multiplicative medel for 6 may be more reasonable, For instance, if
(i) 30% of the stratum contains wheat at the time wheat is harvested in
year t;
(ii) the s-th segment's wheat acreage proportion averages only 80% of
the stratum's wheat acreage proporiion at harvast time;
(ii1) the at-harvest acreage estimate made at mid-season is only 70%
of the at-harvest estimate made at harvest time;
and
(iv) the sampling and classification errcs cause the estimated at-harvest
acreage to be 110% of what it would be without these errors,
then
Pegp = (.30) (.80) (.70) (1.10).

Here a logarithmic transformation, y(p) = £n(p), would be appropriate and
y(ﬁtsﬁ) =apt bot by tery

= £n(.30) + £n(.80) + £n(.70) + £&n(1.10).

The logit transformation,
y(p) = (1/2) enlp/(1-p)] ,

is another useful transformation which approximately converts a multiplicative
model for ﬁ into an additive model for y(ﬁ). A small advantage of the logit

transformation is that it guarantees that

O<§T=y-]{&T)<] ’

whereas the logarithmic transformation only guarantees

'



PT = y-](:l-r) 0,
and the identity transformation makes no guarantees,

A1l three of the above transformations are considered in Dahm and Sielken

(1981) wh.re approximate expressions are derived for
(i) the bias of y'](&T) ,
(ii) the mean squared error of y'](;T) , and

(iii) confidence intervals on Pr .
These derivations are all similar and are based upon Taylor series approximations

(statistical differentials)., For instance, if y(p) = &n(p), then

~
A "~ ~

21 ,a i s
Pr=y ) =y o) ¢ (G - [0
docp TS

2>
n
Q

Pr+ (8 = ag)Py
so that

~ ~

MSE (P;) = E [(Py - Pr)?] 2 P2 Var(ar) .

A small simulation study was conducted in order to observe the empirical
behavior of the estimators of the components of models (1) and (2) (namely,
Sg, 02, ¥ = Sb/ég) and the estimators of the stratum's crop acreage proportions
over the years t =1, ..., T (namely, y"(&1), cees y'1(&T)). In this simulation
study each of the three transformations (identity, log, and logit) were used
to generate a random data set corresponding to each of four underlying situations.
Each of the twelve data sets was analyzed three times: orce using the identity
transformation, once using the log transformation, and once using the logit

transformation. Thus each data set was analyzed onte using the "correct®

transformation and twice using an "incorrect" transformation. Since the "gorrect"
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transformation is unknown in practice, the simulation study provided a 1imited
evaluation of the sensitivity of the estimators to the "correctness” of the
transformation being used in the statistical analysis. A1l underlying simulated
situations involved
i) 3 years with the stratum crop acreage proportions being 0.6, 0.6, and
0.4 for years 1, 2, and 3 respectively;
ii) 3 seasons with the seasonal kiases being 6] = -0.3, -0.1, and §q = 0
respectively;
ii1) 10 segments observed in each season in each year; and
iv) nec partial identification.
The variance among segments og. variance within segments o2, and v = cg/cg
took on different values in each data set; the four combinations were (og = 0.0004,
o2 = 0.001, vy = 0.4), (oé = 0.0004, cg = 0,0001, v = 4), (v2 = 0.004, o% = 0.001,

b
vy = 4), and (of = 0.004, o2 = 0.0001, y = 40). The estimators of oty oc, and

are shown in Tables 1-4 for each of the four data sets. Also in these tables
are the estimators and approximate 90% confidence intervals for the stratum's

crop acreage proportions P1. P2, and P3 for the three years.

2

In the simulation study the estimators of cé, or,

and vy were not precise.
Howevei, these estimators are usually of only secondary importance. The primary
conclusion from the simulation studies was that the estimators and 90% confidence
intervals for the stratum's crop acreage proportion which are of primary
importance behaved quite well and were relatively robust with respect to the

transformation used.
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8. Concluding Remarks

The primary purpose of this research effort has been to identify and develop
statistical procedures for large area assessments using both satellite and
conventional data. Crop acreages, other ground cover indices, and measures of
change have been the principal characteristics of interest. The characteristics
are capable of being estimated from samples collected possibly from several
sources (different satellites, aerial surveys, ground measurements, etc.) at
varying times (different years, seasons, crop calendar days, etc.) witn different
levels of identification (for example, vegetation, crops, summer crops, corn).
The overall objective has been to be able to obtain the most precise large area
estimates firom multiyear samples including possibly partially identified sample
units. Included in this research have been

a) extensions of multiyear analysis techniques fo include partially

identified samples, and

b) the determination of the best current year sampling design corresponding

to a given sampling history,

¢) determination and utilization of observation weights reflecting the

precision or confidence in each observation, and

d) quantification of the variation in estimates incorporating partially

identified samples. _
The development and utilization of observation weights reflecting the observation's

precision may be a very fruitful area for additional research.

a3
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ABSTRACT

Large scale crop surveys can be made frequently and inex-
pensively during a crop growing season using Landsat data. A
crop's estimated at-harvest acreage in a stratum can be esti-
mated from the crop's estimated at-harvest acreage in a small
sample of the stratum's .egments. The stratum estimate can
utilize Landsat imagery obtained during the current crop grow-
ing season and in previous years. A mixed effects analysis of
variance model is used to generate a weighted least squares es-
timate of the stratum at-harvest acreage proportion for the cur-
rent year. Similar Landsat based stratum crop proportion esti-
mates can be combined with historical information on non-
sampled (or unsuccessfully sampled) strata to provide crop
acreage estimates for large regions. These regional estimates
of the at-harvest acreage can be determined early in the crop
growing season, at different intermediate points, and at har-

vest time.
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1. INTRODUCTION

Agriculture and other renewable resources can be economically
inventoried over large areas using aerospace remote sensing tech-
niques. In particular, the surface area devoted to a specific
resource in a large region is espacially amenable to aerospace
estimation. Such resources could be as broadly defined as agri-
culture, forest, water, snow cover, etc. or as specifically defined
as summer crops .or corn. These area estimates can be combined with
other measures such as estimated yileld per acre to obtain produc~
tion estimates. Once the appropriate estimation methodology has
been successfully implemented, the successive estimates are very
economical, so that frequent inventories are realistically
obtainable.

During 1975-1977 NASA in conjunction with the USDA conducted
the Large Area Crop Inventory Experiment (LACIE) to illustrate the
potential capabilities of aerospace remote sensing techniques,

This pioneering effort also served to remove many of the obstacles
for future applications. A summary of the experiment is given in
the proceedings of the LACIE Symposium (1979). The targei re~
source in LACIE was the wheat acreage and production in the U. S.
Sreat Plains,

During the transition years 1977-1979 ard during 1979-1983
under the recently-terminated AgRISTARS (Agriculture and Resources
Inventory Surveys through Aerospace Remote Sensing) program
several advances were made in satellite imzgery technology, data
processing, and statistical methodologies. In addition, target
resources were expanded to include other crops and other countries,
as well as non-crop resources.

This paper focuses on the statistical methodology for estimat-
ing a particular resource's acreage proportion in a large region
at a specified point in time using the estimated resource acreage
proportion in a sample of smaller areas. It will be assumed that

(1) the resource is a crop,
(11) the specified time point of interest is the harvest

Y



time for the crop,
(i11) the sample areas are all the same size (a 5x6
nautical mile rectangle called a segment), and
(iv) the sample segments are relatively "small" compared
to the homogeneous region (stratum) of interest.
Also, it is assumed that in each year of a multiyear period a
sample of segments is selected. The composition of the sample
may vary year to year. In each year each sample segment's at-
harvest crop acfeagé proportion is estimated at one or more
times during the crop growing season. The number of estimates
is not necessarily the same for all sample segments in a year
and 1s not necessarily the same for each year., Obviously, this
paper 1s focusing on only one part of a much larger problem. .
The region of concern herein is really just one stratum in a
stratified sample survey of a country or the world (see, for
example, Chhikara and Feiveson (1982)). The size of the sam-
ple segment 15 assumed to be predetermined (see Chhikara and
Feiveson (1982) and in this issue Chhikara et al. (1984)).
Also, since the same segments do not have to be in the sample
every year, there is an interesting assoclated problem of
determining an optimal multi-year sampling design (see Chhikara
et al. (2984) and the technical reports listed in the biblio-
graphy) . _The papers by Heydorn (1984) and Hall and Houston
(1984) in this issue discuss the determination of the sample
segment's estimated at-harvest crop acreage proportion.
Finally, the estimates arising from the statistical method-
ology in this papeér can be input to procedures for aggregating
acreage over several regions and combining acreage estimates
with yleld estimates to obtain production estimates. The
paper by Feiveson (1984) in this issue addresses these latter
needs.
H. 0. Hartley during his years (1963-1979) as Dictin-
guished Professor of Statistics at the Institute of Statis-
tics, Texas A&M University, contributed greatly to NASA's



research efforts pertaining to crop acreage estimation, and
his ideas have frequent.y stimulated his co-workers' efforts.
The seeds for many of the sampling and modeling techniques
utilized in several of the papers in this issue were sown by
him,

2, BASIC MODEL FOR MULTIYEAR ESTIMATION

Each stratum at-harvest crop acreage proportion could
be modeled using a regression approach with explanatory vari-
ables such as the past, present, and anticipated economic and
meteorological conditions. However, the unknown form of the
regression model, the large number of possible explanatory
variables, and the difficulty in obtaining reasonable values
for these variables makes this approach unattractive. Never-
theless, the combined effect of all of these variables is
reflected in the crop acreage proportions for the stratum
segments., Although it is not economical to estimate the at-
harvest crop acreage proportioa for every segment in the
stratum, it is feasible to estimate them for a sample of seg-
ments using Landsat data (see, for example Hall and Houston
(1984) and Heydorn (1984), both in this issue). Hence, an
alternative app~oach is to model the estimated at-harvest crop
acreage proportion for a sample segment in terms of
(1) the stratum at-harvest crop acreage proportion,
(11) stratum-wide influences which vary from year to
year,
(111) characteristics of the segment itself,
(iv) vyearly influences which affect different segments
differently, and
(v) the proportion of the growing season which has
passed at the time the estimate is determined.
These factors may only contribute roughly additively to a trans-
formation of the segment at-harvest crop acreage proportion and
may not contribute additively to the segment proportion itself.
One specific model which is compatible with these ideas is

;)



s=1, ..., S,
L“ 1’ 'l., L
where

;tsﬂ = the estimated proportion of the s~th segment's
acreage that will contain the crop at harvest
time in the t-th year when the estimate is made
at crop calendar time £ (for example, £ = 1 could
denote early season, £ = 2 mid~season, and £ = 3
harvest time);

y(5t$£> = a transformation of Stsz;

a, = the stratum's transformed crop acreage proportion
for the t~th year;

b = the s-th sampled segment's departure from the
stratum's transformed crop acreage proportion;
the bs's are independent random variable¢ each
with mean zero and variance 02;

6£ = the systematic difference between the estimates of
the crop's transformed at~harvest acreage propor-
tion made at the £~-th crop calendar time and the
corresponding estimate made at harvest time;

(GL £ 0);

e = the aggregate of sampling and classification errors

st in the transformed data; the etsz's are independent
random variables each with mean zero.

This model is, of course, not the most general model possible.
In particular, the segment effects bs are assumed to be inde-
pendent of the crop calendar time and the year. Also the
departures of the transformed observations Y(ﬁtsl) on the same
segment from their fixed year effects a_ and their fixed
estimation time effects GZ are assumed Eo be positively corre-
lated. The error terms e.cp are the composite effect of many
components and need not have homogeneous variances; in parti-

cular see Heydorn (1984) for a detailed discussion of the



classification error components,

The primary objective is to estimate the crop's at-
harvest proportion of the stratum acreage in the current
year, T; that 1s, estimate PT = y-](aT). Secondary objec~
tives could be improved estimates of at~harvest acreages in
previous years or estimates of changes in the stratum at-
harvest crop acrezge proportion from year to year.

Estimates qf the stratum at-harvest crop acreage propor-
tion are also oftenddesired throughout the current year as
well as at harvest time. For example, an early season esti~
mate of PT based on observations for £ =1, ..., L for t = 1,
veoy T=1 and only £ = 1 for t = T is frequently desired.

Even though the estimate ﬁT = y—l(&T) of the stratum at-
harvest crop acreage proportion for the current year involves
only ;T’ this estimate depends on the entiri multiyear data
set and not just the data from year T since the segment effects
(bs’s) and systematic estimation time tiases (Gl's) are assumed
to be constant from year to year.

Special cases of model (1) have also been considered. For
example, Chhikara et al. (1984) consider at-harvest estimates
made only at harvest time, so that their model is

Sts =a +b_ +e t=1, ..., Tand s =1, ..., S.
For simplicity Feiveson (1984) considers only estimates of the
stratum at-harvest crop acreage proportion made at harvest time
during the current year; i.e.,

= o + e , e=1, ..., S.

Prg Ts
When such data is not aviiilable, Feiveson (1984) utilizes his~
torical data from agricultural reports even though previous
Landsat data could also be incorporated. The methodology in
both of these papers can be extended to incorporate the more

general model (1).

e N



3. TRANSFORMATIONS OF THE ESTIMATED SEGMENT PROPORTIONS

The uimplest transformation y(ﬁ) of the estimated segment crop
acreage proportion p to use in (1) is the identity transformation
y() = B.
However, it is very doubtful that the additive model (1) would hold
for y(ﬁ) = ﬁ particularly if the ﬁ's exhibit a large variation within
the stratum. On the other hand a multiplicative model for p may be
more reasonable. For instance, if
(1) 30% of the stratum contains wheat at the time wheat is
harvested in year t;
(ii) the s-th segment's wheat acreage proportion averages only
807% of the stratum's wheat acreage proportion at harvest
time;
(iii) the at-harvest acreage estimate made at mid-season is
only 70% of the at-harvest estimate made at harvest time;
and
iv) the sampling and classification errors cause the estimat-
ed at-harvest acreage to be 1107 of what it would be
without these errors,
then

Pegp = (:30) (.80) (.70) (1.10).
Here a logarithmic transformation, y(p) = Ln(p), would be appropriate
and

y(ﬁtsl) =a * L Sp + €esl

= £n(.30) + £n(.80) + £n(.70) + £n(1.10).

The logit transformation,

y(p) = (1/2) &nl$/(1-p)] ,
is another useful transformation which approximately converts a mul-
tiplicative model for p into an additive model for y(p). A small
advantage of the logit transformation is that it guarantees that

0

1A

whereas the logarithmic transformation only guarantees

~] A
PT =y (aT) >0,
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and the identity transformation makes no guarantees.
All three of the above transformations are considered in Dahm
and Sielken (198l1) where approximate expressions are derived for
(1) the bias of y ' (G) ,
(i1) the mean esquared error of y-l(&T} , and
(11i) confidence intervals on PT .
These Jderivations are all similar and are based upon Taylor series
approximations (statistical differentials). For instance if y(p) =
In(p), then ' ’

~ -1

-1,
z ot A dy “(a.)
= = —a)
p =Y (ap) =y “(ap) + (ag-an) T

da

2
1

Q>
n

123

{

T T T

PT + (aT - aT)PT ,
so that

5y = P 3212 p2 -
MSE (PT) = E [(PT PT) ] PT Var(aT) .

4, THE WEIGHTED LEAST SQUARES ANALYSIS OF THE SEGMENT ESTIMATES

The probable heteroscedasticity of the y(ptsz)'s suggests that ‘
the mixed effects model () should be analyzed in the form

Vel Y(Prgp) = Vigh% t Vesh Do T Veep 8ot Ergp (D
S -l
where wtsztis proportional to {Var EY(pts£>J} I

In matrix notation (2) can be written as

Wy = WK(5) + WU b + Te 3)
where

Y = (1115 Y1125 oees Ypgp) s -

a = (al, see g GT)f ’ |

6 = (61’ 62' so ey SL_J)’ ’ (Since 6L = 0) ’

b =

= (b1, bz, «uvy bS)‘ ’
= ]
W = matrix containing the Wegl S 0

X = design matrix of 0's and 1's corresponding to the

fixed effects o and 6[ ,



U = sampling design matrix of 0O's and 1l's corresponding
to the sampling pattern for the distinct segments,
and

I = identity matrix.

In (3) the random portion of Wy is WUb + Ie which has covariance

Vo? = I02 + WUU"W’0?

€ £ b
= (I + WUU'W’y)o2
where 02 = Var(e,,) and v = o%/og . Hence, the usual weighted least
squares estimator of (a, 8)° 1is
- ~1

(g) = @y v T ixewv ey (4)

and

x-w-v tux) o2

Var[(g)l
In particuiar

Var (a) xwv tux) T

T,T oz, (5)

where ( );:T denotes the T-th element on the diagonal of the matrix
inverse.

Although the formulas in (4) and (5) are fairly standard, there
are several obstacles to be overcome before they can be applied. The
detailed procedures for overcoming them are given in Dahm and Sielken
(1981). Only the nature of obstacles and the basic approach to over-
coming them are discussed here.

An initial obstacle is that the y vector is not computable if
any y(ﬁtsﬂ) corresponds to either the logarithmic transformation with
pt L= 0 or the logit transformation with pt L= = 0 or 1. Although
pt 2= = 1 would be highly unexpected, pt L= 0 is quite common. This
obstacle can be overcome through the use of '"working y's" as in
Finney (1964);:; that is, by

(1) estimating the parameters in (3) using only the data for
which vy is calculable;

(1i) substituting the estimated parameters from (i) into (1)
along with e.sp © = 0 to obtain approximate Ve 2 's, say

ok *
y rep® 2nd approximate pt 2 's , say p tsl = (y tsﬂ)’

and finally



(1i1) creating working values for y(ﬁcs£> using a first order
Taylor series expansion of y(p) about p = 6*t5£ .

These working y's can then be used in (4).

A second obstacle to using both (4) and (5) is that V"1 contains
the unknown variance component ratio y f o%/cze . If v 1s replaced
by an independent consistent estimator y , then (5) is asymptotically
correct. When such a § is unavailable, a reasonable alternative is
to treat (3) as if it were a fixed effects model and obtain estimates
of og and oi (and ii;ce their ratio Y) by equating certain sums of
squares from the fixed effects model analysis with their expectations
under the mixed model. This is basically Henderson's Method 3 (see,
for example, Searle (1971)).

Finally, the weight matrix W is unknown since Var [y(p, o)1 is
unknown. A first order Taylor series approximation can be used to
relaEe Var EY(stSL)J to Var (Btst)' For example, 1if y(p) = £n(p)
and p is distribu}ed with mean p and variance 0; » then

y() < fn(p) + G-p) —ﬂiénl— - ;
= fn(p) + (p-pP)/p ,
so that ;

E [y(p)] = £n(p)

and

Var [y(»] = E [(p - p)/p°]
oA/t .
P

In this manner the form of W can be identified. Replacing p by ;
would yield an estimate of W if 0; could be estimated. One approach
to estimating 0; is to assume that Np is binomially distributed for
some unknown value of N which is constant for all segments. Then

0; is proportional to p(l - p) and in the above example Var [y(;)]
is proportional to (1 - p)/p which can be estimated by (1 -~ p)/p.

A slight improvement can sometimes be obtained by iterating on the

estimates of W and the p's. An alternative method of obtaining an

)



estimate of W is currently under investigation. Here Var (ﬁtsf)
is approximated primarily on the basis of information such as
(3) the type of satellite being used,
(ii) the sharpness of the satellite imagery,
(iii) the season during which the estimate is being made,
(iv) the number of satellite images successfully obtained
by the time the segment proportion is estimated,
(v) the nearness of the segment's observed behavior to
classical crop profiles,
(vi) the weather conditions during the crop's growing sea-
son, and
(vii) the physical characteristics of the segment.
This alternative approach may be particularly appropriate for mul-
tiyear data sets where the remote sensing technology and segment
proportion estimation methodology is changing from year to year.
In addition, recognizable segment characteristics which make it
either easier or harder to estimate the segment crop porportion
can be incorporated. Obvious differences in the amount of infor-
mation going into the ﬁtsﬁ's can also be reflected. These latter
differences can be due to the estimation times themselves as well
as due to loss of satellite imagery from cloud cover, machine

failure, etc.

5. AN EXAMPLE

The technical reports cited in the bibliography as well as
the paper by Chhikara et al. (1984) in this issue indicate the
theoretical advantages of basing estimators on the full multiyear
data set as opposed to only the data from a single year. Even when
there are only 2 or 3 years' data available, the accuracy of the
current year's at-harvest crop proportion estimate can often be
improved by as much as 507% by utilizing the multiyear estimation
procedures. Of course, the improvement depends on the multiyear
sampling design and the underlying value of Yy = 05/02.

Some of the potential benefits of the multiyear estimation

procedure in a real-world setting are seen in the following



R

3
|
)
i

example.

The Landsat based esti ..cee of the at-harvest wheat acre-

ages computed at harvest times during each of 1976, 1977, and 1978

for 108 sample segments in the Great Plains states were available

to the authors. Although these sample segment estimates were

determined for other purposes, they can also be used to evaluate

proposeu statistical procedures. In an experiment the following

procedure was repeated 200 times:

(a)

(b)

(c)

Randomly select (without replacement) 40 segments from
the 108 available.

Treat this sample of 40 segments with their 3 years
of estimated at-harvest wheat acreages as the simu-
lated '"stratum" whose at-harvest wheat acreage pro-
portion is to be estimated. Determine the true av~
harvest wheat acreage proportion for 1978 for this
"stratum''. This proportion is the estimation target
for this repetition.

Assume the following multiyear rotation sampling de-
sign, In 1976 a random sample of 5 segments from
the stratum of 40 segments is observed. In 1977
three of these five are observed again along with
two new randomly selected segments. Finally in

1978 one of the three segments observed in both 1976
and 1977 is observed a third time, the two new seg-
ments in 1977 are observed a second time in 1978,
and finally two totally new randomly selected seg-
ments are observed. Schematically the sampling de-

sign of 5 segments per year is as follows:

Segment Number 1976 1977 1978

1 X

2 X

3 X x

4 X X

5 X X X

6 X X

7 X X

8 X

9 X

p)
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(d) The multiyear estimation procedure described in sec-
tion 4 is carried out using y(p) = 1n(p). The multi-
year estimate, y-l(a3), of the stratum's at-harvest
wheat acreage proportion in 1978 is computed. The
corresponding single-year estimate is also computed
using only the 1978 sample data.

(e) The corresponding estimation errors are the differ-
ences between the simulated stratum's 1978 at-harvest
wheat acreage proportion and the multiyear and single-
year estimates.

The average absolute value of the errors was 0.046 for the multi-
year estimator and 0.072 for the single-year estimator. Thus, the
average absolute error for the single-year estimator was approxi-
mately 1.6 (0.072/0.046 =1.57) times as great as the average ab-
solute error for the multiyear estimator. All of the other mea-
sures of empirical behavior considered also favored the multiyear
estimator. The average squared errors for the multiyear and single
year estimators were 0.0033 and 0.0073, respectively. The average
biases relative to the average 1978 at-harvest wheat acreage pro-
portion for the entire 108 segments were 0.002 and -0.047. The
sample standard deviations of the multiyear and single-year pro-
cedures were 0.061 and 0.076, respectively. Thus, the multiyear
estimation procedure provided a substantial percentage improvement

over the single-year estimator.
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