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Soon after the initiation of the grant, the national program for an ocean
satellite system was canceled. In consultation with Dr. M. Halem, Head of
the Global Modeling and Simulation Branch of the NASA/Goddard Laboratory for
Atmospheric Sciences, the decision was therefore made that the work under the
grant would be confined to the study of land surface influences on climate.

The accomplishments under the grant are contained in the following papers,
which are attached:

I. "Influence of Land-Surface Evapotranspiration on the Earth's Climate”,
by J. Shukla and Y. Mintz. Science, 1982, v. 215, pp 1498-1501.

II. "The Sensitivity of Numerically Simulated Climates to Land-Surface
Boundary Conditions™, by Y. Mintz. Chapter 6 in The Global Climate, (J. T. Hughton,
editor.) Cambridge University Press, Cambridge/London/New York, 1984, pp 79-105.

III. “Precipitation Measurement Requirements for General Circulation Model
Development and Applications”, by Y. Mintz. Report of the Workshop on Precipi-
tation Measurements from Space, (D. Atlas and O. W. Theile, editors.) NASA Goddard
Space Flight Center, Greenbelt MD, 1981, pp D.5-D.9.

1v. “"A Brief Review of the Present Status of Global Precipitation Estimates"”,
by Y. Mintz. Report of the Workshop on Precipitation Measurements from Space,
(D. Atlas and 0. W, Theile), editors. NASA Goddard Space Flight Center,
Greenbelt MD, 1981, pp D.1-D.4. :

V. "Global Fields of Monthly Normal Soil Moisture, as Derived from Observed
Precipitation and an Estimated Potential Evapotranspiration™, by Y. Mintz and
Y. Serafini. (Will be submitted for journal publication.)

VIi. “Climatology of the Terrestrial Seasonal Water Cycle”, by C. J. Willmott,
C. M. Rowe and Y. Mintz., (Will be submitted for journal publication.)

VII. "Influence of the Vegetation Structure on the Thermal Forcing of the
Atmosphere™, by Y. Mintz. Proceedings of the JSC Study Conference on the
Physical Basis for Climate Prediction on the Seasonal, Annual and Decadal
Time Scales, Leningrad, 13-17 September 1982, 11 pp.

VIII. "On the Design of an Interactive Bilosphere for the GLAS General Circu-
lation Model”, by Y. Mintz, P. J. Sellers and C. J. Willmott. NASA/Goddard
Space Flight Center, Technical Memorandum 84973, January 1983, 54 pp.
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Influence of Land-Surface Evapotranspiration on the

Earth’s Climate

Abstract. Calculations with a numerical model of the atmosphere show that the
global fields of rainfall, temperature, and motion strongly depend on the land-
surface evapotranspiration. This confirms the long-held idea that the surface
vegetation, which produces the evapotransporation, is an important factor in the

earth’s climate.

That vegetation influences climate—
and, especially, that the clearing of for-
ests reduces rainfall—is an old idea. For
example, the biography of Christopher
Columbus by his son Ferdinand (/)
states that ‘‘on Tuesday, July 22d [1494],
he departed for Jamaica. . . . The sky,
air, and climate were just the same as in
other places; every afternoon there was
a rain squall that lasted for about an
hour. The admiral writes that he attrib-
utes this to the great forests of that land;
he knew from experience that formerly
this also occurred in the Canary, Madei-
ra, and Azore Islands, but since the
removal of forests that once covered
those islands they do not have so much
mist and rain as before.”’

Averaged for the globe, and for the
year, the measured river water drainage

from the continents is about one-third as
large as the measured precipitation,
which means that the average land-sur-
face evapotranspiration is about two-
thirds as large as the precipitation (2). In
some regions, during some months of the
year, the land-surface evapotranspira-
tion is larger than the precipitation. For
example, averaged over the central and
eastern United States, in July, the pre-
cipitation is about 90 mm per month and
the evapotranspiration is about 120 mm
per month (3, 4). This is possible because
of the moisture that was stored in the
plant root zone of the soil during the
preceding months of the year.

But the fact that the land-surface
evapotranspiration, acting through the
vegetation, sometimes exceeds the pre-
cipitation does not necessarily mean that
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evapotranspiration will reduce or in-
crease the precipitation. The connection
between evapotranspiration and precipi-
tation is difficult to ascertain because it
depends on a large number of interacting
thermodynamic and dynamical process-
es, which must be taken into account ina
quantitative way.

Numerical models have been devel-
oped which quantitatively synthesize the
many physical processes that produce
the atmospheric general circulation and
global climate, including the precipita-
tion [for example, see (5)]. These models
fairly successfully simulate the principal
geographic and seasonal characteristics
of the observed precipitation: the inter-
tropical convergence rains over South
America and Africa and their seasonal
displacements; the summer monsoon
rains over India and southeast Asia; the
deserts in subtropical north and south
Africa, North America, South America,
Asia, and Australia; and, in the extratro-
pics, the rainstorms and snowstorms of
the wave cyclones in winter and the
airmass convective rains of summer (6).
By using one of these numerical models
of the atmosphere and prescribing the
land-surface evapotranspiration in a con-
trolled sensitivity experiment, we can
determine how this boundary condition
influences the model-produced climate.

For the present experiment, the cur-
rent version of the Goddard Laboratory
for Atmospheric Sciences (GLAS) atmo-
spheric general circulation model is
used. Starting from a given initial state,
the conservation equations for mass,
momentum, moisture, and energy, ex-
pressed in finite-difference form for a
spherical grid, are used to calculate the
evolution of the pressure field at the
earth’s surface and of the fields of wind,
temperature, and water vapor at nine
levels between the surface and an eleva-
tion of 20 km. The fields of the convec-
tive clouds and precipitation and the
large-scale upglide clouds and precipita-
tion are also calculated, with a horizontal
resolution of 4° of latitude and 5° of
longitude over the globe and a nearly
continuous variation in time. The pre-
scribed surface boundary conditions are
the ocean surface temperature, the large-
scale topography and surface roughness.
the surface albedo. and, in this experi-
ment, the amount of moisture in the soil
that is available for evapotranspiration.
(In other applications the model soil
moisture is a dependent variable. which
varies with time according 10 the calcu-
lated precipitation and evapotranspira-
tion.) Shukla er al. (7) have described the
current GLAS model and evaluated its

SCIENCE. VOL. 215. 19 MARCH 1982



ability to simulate the observed winter
and summer season mean atmospheric
fields and their intraseasonal variations.

We place two different constraints on
the land-surface evapotranspiration: in
one case the evapotranspiration is al-
ways sel equal to the potential evapo-
transpiration calculated by the model
(this is the evapotranspiration when the
soil is moist and completely covered by
vegetation); in the other case no evapo-
transpiration is allowed to take place. In
principle, the first of these conditions
would be physically realizable on an
earth that is completely covered with
vegetation and is irrigated where neces-
sary, whereas the second would be ap-
proached on an earth that is completely
and permanently devoid of vegetation.
We refer to the calculations made with
these two conditions as the wet-soil case
and the dry-soil case.

. Starting from an observed atmospher-
ic state on 15 June, the integrations for
the dry-soil and wet-soil cases were car-
ried forward for 60 days. The results
shown here are the time-averaged fields
for July, the month when the Northern
Hemisphere extratropics has the maxi-
mum potential evapotranspiration. An
examination of the subsequent 15 days of
integration, 1 to 15 August, showed that
in both cases the July results had almost
reached equilibrium with the prescribed
boundary conditions.

Figure 1 shows the precipitation in the
two cases. In the wet-soil case, the pre-
cipitation over Europe and over most of
Asia is about 4 mm/day and does not
differ much from the calculated potential
evapotranspiration. But in the dry-soil
case, Europe and most of Asia have
almost no precipitation. Only over
southeast Asia and India, in the dry-soil
case, is there transport of water vapor
from the ocean which produces heavy
rain and in this case the precipitation in
that region most closely resembles the
observed summer rainfall.

Over most of North America the pre-
cipitation in the wet-soil case is between
3 and 6 mm/day, and for the most part it
too is roughly equal to the local evapo-
transpiration. The exception is the
southwest-northeast band of maximum
rainfall across the eastern part of the
continent, where there is a water vapor
transport convergence of about 1 to 3
mm/day. But in the dry-soil case the
precipitation over most of the continent
is reduced to about ! mm/day or less.
Only the eastern part of the continent
has a band of rainfall of about 2 mm/day.
which consists of water transported from
the ocean.

Over South America, the rainfall near

19 MARCH 1982

the equator in the wet-soil case is about 6
mm/day, which is about 2 mm/day larger
than the evapotranspiration. In the dry-
soil case the rainfall is almost as large, all
of it being water transported from the
ocean.

Across Africa, at about 10°N, the pre-
cipitation in the wet-soil case is about 4
mm/day larger than the local evapotrans-
piration, but north and south of the rain
band the precipitation is about 2 to 3 mm/
day smaller than the evapotranspiration;
this means that there are substantial con-
vergences and divergences in the water
vapor transports. In the dry-soil case,
there is a band of rain of 3 to 4 mm/day
centered at about 14°N, and this precipi-
tation is about the same as the amount by
which the precipitation exceeded the
evapotranspiration in the wet-soil case;
this means that the convergence of the
water vapor transport by the atmospher-
ic circulation is about the same in the
two cases.

Figure 2 shows the calculated land-
surface temperature. North of about
20°S, the land-surface temperature is
about 15° to 25°C warmer in the dry-soil
case. There are two reasons for this: (i)
there is no evaporative cooling of the
land surface (which, in the wet-soil case,
amounts to 125 W/m? when averaged
between 20°S and 60°N) and (ii) there is a
large increase in the heating of the
ground by solar radiation (an increase
from 172 to 258 W/m? when averaged
between 20°S and 60°N). This is because
the calculated cloudiness is less when

there is no land-surface evapotranspira-
tion.

In the dry-soil case the net radiational
heating of the land surface is balanced
entirely by the conductive-convective
transfer of sensible heat to the atmo-
spheric planetary boundary layer, the
lowest 1 to 2 km of the atmosphere. (This
heat transfer to the atmosphere is 169 W/
m? in the dry-soil case, compared to only
21 W/m? in the wet-soil case, when aver-
aged for the land surface between 20°S
and 60°N.) As a result, strong *‘thermal
lows™’ develop over the land in the dry-
soil case. Figure 3b shows these strong
lows in the surface pressure reduced to
sea level. The difference in the surface
pressure, without reduction to sea level,
is shown in Fig. 3c, and here we see the
change in the geostrophic wind field at
the earth’s surface.

The decrease in surface pressure over
the continents, about 5 to 15 mbar, is
compensated by higher pressure over the
oceans. But the pressure rise is not uni-
formly spread over the oceans. There is
almost no change over the North Atlan-
tic Ocean, and there is a large pressure
rise over the mid-latitude North Pacific
Ocean. The changes over the Northern
Hemisphere continents and North Pacif-
ic Ocean greatly exceed the natural vari-
ability of the monthly mean July surface
pressures that are produced by this gen-
eral circulation model (the variability
when the surface boundary conditions
are held constant). In the extratropical
South Atlantic and South Pacific. the

Fig. 2. Simulated July
surface temperature

(degrees Celsius) in
(a) the wet-soil and
(b) the dry-soil case.
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differences in pressure between the two
cases are just within the range of the
natural variability of the monthly mean
surface pressures produced by the model
in those regions.

Examination of the vertical motion
fields shows that in the dry-soil case
there is an increased relative upward
motion over the continents and sinking
motion over the oceans. The accompa-
nying low-level horizonta! velocity con-

- vergence over the continents and diver-

gence over the oceans generate and
maintain the increased cyclonic vorticity
over the continents and increased anticy-
clonic vorticity over the oceans. At the
same time, the increased sinking motion
over the oceans reduces the oceanic
rainfall. But the increased rising motion
over the continents does not increase the
continental rainfall, because the land-
surface evapotranspiration has been cut
off.

There are three requirements for land-
surface evapotranspiration: moisture in

the soil; vegetation, to transfer the mois-
ture from the soil to the interface with
the atmosphere; and energy, to convert
that moisture (water) to water vapor.
Most of the energy comes from radia-
tional heating of the surface and there-
fore depends on surface albedo. In na-
ture the albedo depends on the vegeta-
tion, which in turn depends on the soil
moisture. But in numerical calculations
we can make these factors independent
of one another. Thus, in the present
experiment, we let the soil moisture
change but keep the albedo constant.
Charney et al. (8) (in their cases 2a, 3a,
and 4) keep the soil moisture constant
but let the albedo change, and that too
changes the evapotranspiration, precipi-
tation, and circulation.

Vegetation and clouds play comple-
mentary roles: the clouds convert atmo-
spheric water vapor into liquid water,
which is transferred to the soil; the vege-
tation converts soil water into water va-
por, which is transferred to the atmo-
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sphere. Ia the extratropics, with its large
seasonal changes, the soil plays a role
analogous to that of the ocean. The
ocean stores some of the radiational en-
ergy it receives in summer and uses it to
heat the atmosphere over the ocean in
winter. The soil stores some of the pre-
cipitation it receives in winter and uses it
to humidify the atmosphere in summer.

If our calculations are indeed applica-
ble to nature, the implication for fore-
casting extratropical summer rainfall is
clear. In about the month of May the
continental rainfall changes from the
large-scale upglide condensation type to
the cumulus convection type. If, after
this change takes place, there is a large
amount of moisture stored in the soil, the
summer months that follow can have a
large or small amount of rainfall, depend-
ing on the circulation conditions. But if
the soil is dry, so that there is little or no
evapotranspiration to keep the atmo-
spheric planetary boundary layer moist,
the remaining summer months will have
little rainfall. Surface evapotranspira-
tion, which requires moisture in the soil,
is a necessary (though not sufficient)
condition for extratropical summer pre-
cipitation. Observations of the soil mois-
ture are therefore necessary for the pre-
cipitation predictions.

Finally, on the questions of whether
the earth’s vegetation cover and its mod-
ification by man have a significant influ-
ence on climate, and whether deforesta-
tion and afforestation, soil destruction
and soil reclamation, or crop irrigation
appreciably affect rainfall; the answer
given by this study is that they do, if they
are of large magnitude and large horizon-
tal extent. But the exact response will
vary from region to region, depending on
how the large-scale circulation is modi-
fied.

J. SHUKLA
Laboratory for Atmospheric Sciences,
NASA/Goddard Space Flight Center,
Greenbelt, Maryland 20771

Y. MiNnTZ
Laboratory for Atmospheric Sciences,
NASA/Goddard Space Flight Center,
and Department of Meteorology,
University of Maryland,
College Park 20771
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Abstract

This review describes, interprets, and compares |1 sensitivity
experiments that have been made with general circulation models
to see how land-surface boundary conditions can influence the
rainfall, temperature, and motion fields of the atmosphere. In one
group of experiments, different soil moistures or albedos are
prescribed as time-invariant boundary conditions. In a second
group, different soil moistures or different albedos are initially
prescribed. and the soil moisture (but not the albedo) is allowed
to change with time according to the governing equations for soil
moisture. In a third group, the results of constant versus time-
dependent soil moistures are compared.

All of the experiments show that the atmosphere is sensitive
to the land-surface evapotranspiration: so that changes in the
available soil moisture or changes in the albedo (which affects the
cnergy available for evapotranspiration) produce large changes in
the numerically simulated climates.

The sensitivity of numerically
simulated climates to
land-surface boundary
conditionsT

6.1

Introduction

6.1.1

Some observational and theoretical considerations

Averaged for the globe and for the year, the measured river
water drainage from the continents is about a third as large as the
measured precipitation (Baumgartner & Reichel, 1975, Table 9;
Korzun, 1978, Table 150). This means that on the average the
land-surface evapotranspiration is about two-thirds as large as the
precipitation.

In some continental regions. during part of the year, the
evapotranspiration is larger than the precipitation. This cannot be
known (rom measurements of river flow, but can be derived from
measurements of the transport of water vapor by the atmosphere.
An example of this for the central and eastern United States, in
July, is shown in Fig. 6.1.

On the left in the diagram is the vertical distribution of the
water vapor transportdivergence, as given by twice daily rawinsonde
measurements for two July months, and averaged for the region
80-100°W, 30—47.5°N, which is an area of about (2000 km)®
(Rasmusson, 1968, Table | and Fig. 2). From the surface to the
930 mb level there is a water vapor transport convergence of
1.4 gm/cm?® per month: or 14 mm/month cquivalent water depth.
Above the 930 mb level there is divergence of 36 mm/month.
Integrated over the entire depth of the atmosphere there is a net
divergence (a2 net removal of water from the region) of
22 mm/month.

From the beginning to the end of July the change in the water
vapor content of the atmosphere is very small. Therefore, the
22 mm of water that are removed from the region must come from
the water storedin the soil, which means that the evapotranspiration

t Review paper presented ut the SSC Study Conference on Land Swrfoce
Proscesses in Atmospheric General Circulation Models, Greenbelt, USA, 5-10

January 1981
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is 22 mm/month larger than the precipitation. Inasmuch as the
measured average July precipitation in this region is about
94 mm/month, the average July evapotranspiration must be about
116 mm/month (3.7 mm/day). (A comparable analysis for the
central and eastern United States by Benton er af. (1953, Figs. 24,
26) gave a July ecvapotranspiration of 121 mm/month
(3.9 mm/day).) We can interpret this water budget as follows:

The net radiational heating of the ground in this region, in
July, is about 140 watt/m* (Budyko, 1963, Plate 21), which if used
entirely for evapotranspiration would put about 150 mm/month
(4.8 mm/day)of waterinto the air. Butif we accept the acrologically
derived evapotranspiration of 3.7 mm/day (LE = 107 watt/m?),
there will be a sensible heat transfer from the ground to the
atmosphere, H = (Ry—LE)=(140—-107) = 33 watt/m*; and a
Bowen ratio, (H/LE), equal to 0.31. Here, L = latent heat of
evapotranspiration, E = evapotranspiration ratc.

The 116 mm/month of water vapor, forced into the atmos-
pheric planetary boundary layer by the radiational heating of the
surface, combines with the 14 mm/month brought into the region
by the water vapor transport convergence in the boundary layer;
and the total of 130 mm/month of water vapor are transferred
from the boundary layer to the free atmosphere.

In July, the condensation and precipitation in this region is
predominantly of the convective type, withrelatively littlelarge-scale
upglide condensation and precipitation. Therefore, the transfer of
water vapor upward from the surface is predominantly by small-
scale turbulent mixing within the planetary boundary layer, with a
handover to cumulus convection which carries the water vapor
from the top of the boundary layer into the free atmosphere.

Of the 130 mm/month of moisture carried into the free
atmosphere by the cumulus cloud towers, 36 mm/month (in the
form of water vapor, liquid water droplets and ice crystals) are
detrained from the clouds into the cloud environment (where the
water droplets and ice crystals evaporate) and are removed from

Fig. 6.1. Water budget (mm/month) for central and castern
United States, in July. Divergence of the water vapor transport is
from Rasmusson (1968).
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the region by the divergence of the water vapor transport in the
free atmosphere. The remaining 94 mm/month return to the carth’s
surface as the convective precipitation. The excess of the evapo-
transpiration over the precipitation, 22 mm/month, is the moisture
withdrawn from the soil.

According to this analysis, the convective precipitation
draws all of its moisture from the water vapor in the planetary
boundary layer; and the amount of water vapor supplied to the
boundary layer by the surface evapotranspiration is an order of
magnitude larger than the amount supplied by the water vapor
transport convergence. This suggests that the surface evapotran-
spiration is the main determinant of the precipitation.

The winter season water budget over the central and castern
United Statesis very different from thatshown in Fig. 6.1. In winter
the water vapor transport convergence does not change sign with
height, but is convergent at all levels and produces a net import
of water vapor to the region (Rasmusson, 1968, Table | and Fig.
2). In winter, the condensation and precipitation is predominantly
of the large-scale upglide condensation type (frontal cloud and
precipitation) which draws from the water vapor at all levels in the
troposphere. Moreover, in winter the net radiational heating of the
ground is small (Budyko, 1963, Plate 15) and, consequently, over
the unforested part of this region the evapotranspiration is small.
In winter, therefore, the land-surface evapotranspiration cannot
have much influence on the precipitation or other fields. It is only
in the tropics and in the summer scason extratropics, where
evapotranspiration is large and where the precipitation is of the
type that draws its water vapor from the planetary boundary layer,
that the land-surface evapotranspiration can be of major
importance.

With respect to the tropics and the summer season extra-
tropics, two questions immediately come to mind:

() If the surface evapotranspiration, by some means, is
greatly reduced, can the boundary layer water vapor transport

Free
Atmoaphere

Pianetery
Boundary Leyer

Soll Moisture
Storage Ione
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cunvergence increase by a corresponding amount and, in that way,
maintain the precipitation?

(i1) If the surface evapotranspiration and the boundary layer
waler vapor transport convergence remain the same, can an
increased detrainment and water vapor transport divergence in the
free atmosphere stop the precipitation?

o To answer the first question, we write the water vapor
transport convergence as —V-qv = —v-Vq—qV-v, where g is the
waler vapor mixing ratio and v is the horizontal velocity of the air.

The quantity —v-Vq is positive when the air that leaves the
region is drier than the air that enters. But if this drying is duc to
the removal of water vapor from the boundary layer by cumulus
convection, then the convection will stop as soon as there is a small
reduction in the boundary layer water vapor content. The observed
rate of precipitation cannot be maintained by —v-Vq over a
distance which is greater than just a few cumulus convection cells,
say a total distance of a few kilometers.

The other term, — gV -v, can also maintain the observed rate
of precipitation only over a restricted domain in the extratropics.
The water vapor mixing ratio in the boundary layer of a maritime
tropical air mass over the extratropical continents in summer, is
of the order of ten parts per thousand. Therefore, a boundary layer
that is 100 mb (1 km) deep must have a horizontal velocity
convergence, —V-v, of 0.37/day (0.43 x 10~%/second) to produce
a water vapor transport convergence of 3-7 mm/day. The charac-
teristic velocity of the boundary layer air in the extratropics, in
summer, is 2-3 m/second; and the angle between this vector
velocity and the streamline of the non-divergent flow, integrated
over the depth of the boundary layer, is about 10°. Thus, if we
consider 2 circular region with radius r, we have —V-v = 0.43 x
10~® second = (3 m/second sin 10°) 2nr/nr; or r = 240 km, and
480 km is the limiting diameter of the region where water vapor
transport convergence in the boundary layer can produce the
observed rate of precipitation.

In the extratropics, therefore, there is a size limit, of the order
of a few hundred kilometers, beyond which boundary layer water
vapor transport convergence cannot compensate for diminished
cvapotranspiration. [tis only ncar the equator, where the divergent
component of the velocity field is larger and the planetary boundary
layer is deeper, that there can be appreciable water vapor transport
convergence over a much larger sized areca.

ee The answer to the second question: ‘Can an increased
detrainment and water vapor transport divergence in the free
atmosphere stop the precipitation?’, depends on whether the free
atmosphere is supplied with dry air into which the cumulus cloud
towers can detrain. That will happen only if, in addition to the
boundary layer mass (anG water vapor) convergence, there is also
a mass convergence in the uppermost troposphere. Then, the
cumulus cloud towers can detrain all of the water into the subsiding
and diverging dry air of the middle troposphere, and not produce
any precipitation at all. The best known example of extensive fields
of non-precipitating cumulus clouds of this kind are the Trade
Wind cumuli over the tropical oceans, where the subsiding air in
the middle troposphere has its origin in the high-level outflow
above the intertropical convergence zone. We also sec such fair-
weather cumulus clouds removing water vapor from the boundary
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layer, without producing precipitation, west of the trough lines and
cast of the ridge lines of the fast-transient and slow-transient waves
in the extratropical westerlies, where both the longitudinal and the
latitudinal scale can be as large as a few thousand kilometers. We
can say, therefore, that on a scale larger than a few hundred
kilometers, in the extratropics, land-surface evapotranspiration is
a necessary (but not sufficient) condition for convective precipita-
tion. The upper tropospheric circulation must also be favorable
for precipitation.

Because so many interactive thermodynamical and hydro-
dynamical processes are involved, the best way to determine the
overall influence of the land-surface boundary conditions on the
rainfall, temperature and circulation is through experiments with
atmospheric generalcirculation models. Existing generalcirculation
models have been fairly successful in simulating the observed
climate of the earth, including the principal geographical and
scasonal characteristics of the precipitation (WMO, 1979). By
making pairs of time-integrations, with all of the initial conditions
and boundary conditions the same except for those which can affect
the land-surface evapotranspiration, and comparing the two
solutions, we can ascertain what the land-surface influence is.

In the existing general circulation models, the two boundary
conditions that can affect the land-surface evapotranspiration are
the soil moisture and the surface albedo. The soil moisture
determines how large the evapotranspiration will be relative to the
model calculated potential evapotranspiration (the evapotranspir-
ation when soil moisture is fully available): the albedo is a major
factor in determining the potential evapotranspiration itself.

The experiments that are being reviewed are grouped as
follows:

(1) experiments with non-interactive soil moisture;
(1) experiments with interactive soil moisture;
(11) hybrid experiments.

In the first group, cither different soil-moisture availabilities
or different albedos are prescribed, and both of these parameters
are kept constant with time. Such experiments reveal the sensitivity
of the atmosphere to the boundary cenditions. (These experiments
are analogous to sensitivity experiments in which different non-
interactive ocean-surface temperatures are prescribed : the so-called
sea-surface temperature anomaly experiments).

In the second group, the soil moisture (but not the albedo)
is interactive and changes with time according to the model’s
governing equations for soil moisture. When the albedos are the
same in a pair of comparison runs, but the initial soil moistures
are different, the integrations will either produce time-series that
remain scparatc (intransitive) or converge to a common solution;
and, if transitive, they will show how long it takes for the two
initially different states to converge to a common state. When the
albedos are different, this will be another kind of sensitivity
experiment.

In the third group, the hybrid experiments, calculations with
non-interactive and interactive soil moistures are compared. To the
extent that the calculation with interactive soil moisture simulates
the observed rainfall, temperature and circulation of the earth's
atmosphere, the comparison will show how the earth’s climate
may be affected by such imposed changes in the land-surface
evapotranspiration as might be brought about by large-scale
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deforestation or afforestation, by soil erosion or reclamation, or
by large-scale irrigation.

6.2

List of the experiments

(1) Experiments with ron~interactive soil moisture
(A) Different soil moistures, with same albedo
(1) Shukla & Mintz (1981)
(2) Suarez & Arakawa (personal communication)
(3) Miyakoda & Strickler (1981)
(B) Different albedos, with same soil moisture
(4) Charney, Quirk, Chow & Kornfield (1977)
(5) Carson & Sangster (1981)
(11) Experiments with interactive soil moisture
(A) Different initial soil moistures, with same albedo
(6) Walker & Rowntree (1977)
(7) Rowntree & Bolton (1978)
(B) Different albedos, with same initial soil moisture
(8) Charney, Quirk, Chow & Kornfield (1977)
(9) Chervin (1979)
(I111) Hybrid experiments
Non-interactive v. interactive soil moistures
(10) Manabe (1975).
(11) Kurbatkin, Manabe & Hahn (1979)

6.3

(1) Experiments with non-interactive soil moisture

6.3.1

(A) Different soil moistures, with same albedo

6.3.1.1

Shukla and Mintz (1981)

The experiment of Shukla & Mintz (1981) used the general
circulation model of the NASA Goddard Space Flight Center,
Laboratory for Atmospheric Sciences. The propertics of the GLAS
model and its ability to simulate the regional and season charac-
teristics of the observed climate of the carth have been described
by Shukla er al. (1981). In the experiment, one climate simulation
is made in which the land-surface evapotranspiration, £, is every-
where made equal to the model calculated potential evapotran-
spiration, £,, which makes the evapotranspiration coefficient,
A = E/E, = l.Intheothercase, noland-surfaccevapotranspiration
is allowed to take place at all (§ = 0). The prescribed albedo is the
same in both cases, and is a very slightly modified version of the
one given by Posey & Clapp (1964). For convenience, the two
calculations are called the ‘wet-soil” case and the *dry-soil* case.
Both calculations were started from the same initial observed
atmospheric state on 1'5 June. The results that are shown here are
the averages for July.

In the wet-soil case, the calculated land-surface evapotran-
spiration is relatively constant (within about + | mm/day) between
latitudes 20°S and 60°N, with an average value of 4.3 mm/day,
corresponding to an evaporative cooling of the surface of
125 watt/m?, as shown in Fig. 6.2. Here, the sensible heat transfer
to the atmosphere is 21 watt/m?®. In the dry-soil case, however, the
land-surface evapotranspiration is zero and the sensible heat
transfer is 169 watt/m?®.

The dry-soil case gives rise to much less cloudiness over the
continents than the wet-soil case and, as a result, a larger amount
of solar radiation reaches and is absorbed by the ground, 258
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instcad of 172 watt/m?*. The increased solar heating of the ground,
as well as the elimination of the evaporative cooling, makes the
ground warmer; and the higher ground temperature produces a
greater long wave radiation emission from the ground, 550 instecad
of 419 watt/m®. The atmosphere also becomes warmer in the
dry-soil case, and there is an increase in the atmospheric long wave
*back radiation” to the ground; but because of the reduction in the
cloudiness, the increase in the back radiation, from 393 to
461 wati/m?®, is only about half as large as the increase in the
radiation emitted by the ground. The end result of all these large,
but partially compensating, changes in the radiation transfers, is
that thereis only a relatively small change in the net (all-wavelength)
radiational heating of the land surface: an increase of only
23 watt/m? from the wet-soil to the dry-soil case.

The top panel of Fig. 6.3 shows the global precipitation
distribution in the wet-soil case. Over most of North America and
most of Eurasia the precipitation is within about | mm/day of the
local evapotranspiration. Only over southeast China does the
precipitation exceed evapotranspiration by as much as 4 mm/day.
Over South America there is heavy rain near the equator, which
is about 2 mm/day greater than the land-surface evapotranspira-
tion. Across Africa, at about 10°N, there is a band of rain which
is about 4 mm/day greater than the local evapotranspiration. On
the other hand, across Africa at about 25°N, and across Africa and
South America at about 15°S, the precipitation is 2-3 mm/day
smaller than the evapotranspiration. Thus, although in the wet-soil
case there is a fairly uniform transfer of water vapor to the air by
the land-surface evapotranspiration, within the tropics and
subtropics there are convergences and divergences of the water
vapor transports by the large-scale atmospheric circulation, which
enhance or diminish the precipitation by substantial amounts.

The dry-soil case, shown in the bottom panel of Fig. 6.3,

Fig. 6.2. Surface energy transfers (watt/m?) averaged for the
continents between 20°S and 60°N, in experiment of Shukla and
Mintz (1981).
Ry solar raditional heating of the ground.
R,, long wave radiational cooling of the ground
(difference between radiation emitted by ground
and radiation absorbed by ground).
Ry = (Rs— Rp) net (all-wavelength) radiational heating of the
ground.
LE latent heat transfer from ground to atmosphere
(evaporative cooling of the ground).
H conductive-convective heat transfer from ground

to atmosphere.
Ory-soit case
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produces almost no precipitation at all over Europe and most of
Asia; and over most of North America the precipitation is only
about a quarter to & half of that of the wet-soil case. Over the
equatorial part of South America, on the other hand, the rainfall
in the dry-soil case is about the same as in the wet-soil case: i.c.,
about 6 mm/day; but, now, the water vapor which produces that
precipitation comes only from the ocean.

Across north Africa, the rainband is about 400 km (one
model grid interval) farther north in the dry-soil casc than in the
wet-soil case, and weaker by 34 mm/day. The precipitation in
the dry-soil case is about the same as the amount by which the
precipitation exceeded evapotranspiration in the wet-soil case:
which is to say that the convergence of the water vapor transport
by the atmospheric circulation is about the same in the two cases.

Perhaps the most surprisingdifference of all, when comparing
the dry-soil case with the wet-soil case, is the southward and
westward displacement of the region of maximum precipitation in
southeast Asia. Over Bangladesh, the convergence in the water
vapor transport from the ocean in the dry-soil case more than

Fig. 6.3. Precipitation (mm/day) in wet-soil case (top) and
dry-soil case (bottom), in experiment of Shukla & Mintz (1981).
(Precipitation greater than 2 mm/day is shaded.)
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compensates for the absence of surface evapotranspiration. It is in
the dry-soil casc that the calculated precipitation most closely
resembles the observed summer rainfall of southeast Asia.

Fig. 6.4 shows the ground-surface temperature. In the dry-soil
casc, in which there is no evaporative cooling of the ground and,
because of the reduced cloudiness, more solar radiation is absorbed
by the ground, the surface temperatures north of latitude 20°S arc
about 15°-30°C warmer than in the wet-soil case.

As shown in Fig. 6.2, the total non-radiational heat transfer
to the atmosphere (H + LE) is not greatly different in the two cases
(146 v. 169 watt/m?); but in the dry-soil case all of this is sensible
heat transfer, which is confined to the planetary boundary layer.
In the wet-soil case, by contrast, the larger part of the transfer is
in the form of latent heat which warms the free atmosphere and
not the boundary layer, whether immediately and locally realized-
by convective condensation and precipitation or realized at some
later time and distant place. Thus, there is a different vertical
distribution, and sometimes a different horizontal distribution, of
the diabatic heating. This can produce significant differences in the
thermally forced atmospheric circulation and, by the geostrophic
adjustment process, corresponding differences in the horizontal
pressure distribution.

Fig. 6.5 shows the surface pressure fields. The top and center
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panels show the surface pressures reduced to sea level, in the two
cases. The bottom panel shows the difference between the two
surface pressures, without reduction to sea level. Itis here that we
see the change in the surface geostrophic wind. Over most of the
land the surface pressures are about 5-15 mb lower in the dry-soil
case, which means enhanced cyclonic circulations over the
continents.

In the wet-soil case the trough of low pressure across Africa
coincides with the intertropical rainband, as may be seen by
comparing the top panels of Figs. 6.3 and 6.5. This is the same
relationship that we see over the tropical oceans. Butin the dry-soil
casc the trough of low pressure is about 400-800 km north of the
rainband; which is about the same relationship that is found over
north Affrica, in nature.

When the surface pressure is lower over the continents, it
must be higher over the oceans. Most of the increase is in the
mid-latitudes of the central and western North and South Pacific
Oceans. Examination of the vertical motion field (not reproduced

Fig. 6.4. Ground-surface temperature (°C) in wet-soil case (top)
and dry-soil case (bottom), in experiment of Shukla & Mintz
(1981).
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here) shows that in these occan regions there is an increased
subsiding motion in the dry-soil case. As Figs. 6.3 and 6.5 show,
not only does the increased sinking motion suppress the oceanic
precipitation, but the accompanying low-level horizontal velocity
divergence, by generating anticyclonic vorticity, increases the
anticyclonic circulation in these regions; and geostrophic adjust-
ment produces the corresponding rise in surface pressure.

Over the Atlantic Ocean, the vertical motion field in the
wet-soil case shows a band of rising motion and low-level velocity
convergence, which coincides with the band of oceanic precipitation
Just north of the equator (top panel of Fig. 6.3). But in the dry-soil
case there is sinking motion over all of the tropical Atlantic; and
there is no oceanic rainband near the equator at all. Over the
castern half of the tropical Pacific, the same kind of change takes
place, but it is not as pronounced. Thus, the change in the
land-surface boundary condition also produces large changes in the
circulation and rainfall over the oceans.
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6.
Suarez and Arakawa (personal communication)
At the reviewer’s suggestion, the same wet-soil (8=1) versus

dry-soil

: £
ORIGINAL PACGE
5

M.Suarez & A. Arakawa (personal communication). (For a
description of the model, sce Arakawa & Lamb, 1977; Arakawa
& Suarez, 1983; and Suarez ef al. 1983.) There are substantial
(#=0) sensitivity experiment was made with the University  differences between the UCLA and the GLAS models, of which the

3.1.2

of California, Los Angeles (UCLA) general circulation model by most important, insofar as the present sensitivity experiment is

concerned, may be the way in which the planetary boundary layer
and cumulus convection are parameterized. .

Fig. 6.5. Surface pressure reduced to sea level (mb minus 1000) in . . .
wet-soil case (top) and dry-soil casc (center), in experiment of In the UCLA experiment the integrations for the two cases
were started on the first day of July, with the initial state of the

Shukla & Mintz (1981). Bottom map show the difference between
the two surface pressures (mb).

atmospherc taken from a previous general circulation simulation.
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The results that are shown here are for the 31-day period starting
on 16 July. Again, the prescribed surface albedo follows Posey &
Clapp (1964).

In the wet-soil case, the calculated land-surface evapotran-
spiration was rclatively constant (within about +1 mm/day)
between 20°S and 60°N, with an average value of about 6 mm/day.
This is about 1.7 mm/day larger than in the wet-soil case of the
GLAS experiment, and is probably a consequence of the fact that
the UCLA model produces less cloud cover than does the scheme
used in the GLAS model and, thereby, a greater net radiational
heating of the ground.

Fig. 6.6 shows that the precipitation in the wet-soil case is
about 6 + | mm/day overalmost all of extratropical North America
and Eurasia and, therefore, does not differ from the local evapo-

Fig. 6.6. Precipitation (mm/day) in wet-soil case (top) and
dry-soil case (bottom), in the experiment of Suarez & Arakawa
(personal communication). Contour interval is 2 mm/day.
(Precipitation greater than 2 mm/day is shaded.)
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transpiration by more than about | mm/day. Within the tropics,
however, the precipitation exceeds the local evapotranspiration by
about 10 mm/day over the Indochina peninsula, by about
3-6 mm/day over a few small land areas that are close to the sea
(Guatemala, southern India, southeast China, Columbia, Venezuela
and northeast Brazil), and by a few mm/day over a large arca
adjacent to the Somali coast of north Africa. These are regions,
therefore, of substantial water vapor transport convergences.

In the dry-soil case, shown in the bottom panel of Fig. 6.6,
there is almost no continental precipitation at all. Only in an
cast-west band across north Africa is there a significant amount
of precipitation, 2-5 mm/day, produced by a convergence of the
water vapor transported from the oceans. The axis of this rainband,
at 10°N, is about 1000 km south of the axis of the low-pressure
trough which, in the dry-soil case, is at about 20°N.

The change in the precipitation over the oceans is very large
near some of the tropical and subtropical coastlines, and especially
where therc are embayments. In the wet-soil case there are
pronounced minima over the Gulf of Mexico and the Bay of Bengal
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(accompanied by pronounced maxima over the adjacent land
areas). But in the dry-soil case, the minima are replaced by maxima
over the ocean embayments. Similarly, along the coasts of central
America and northeast Brazil the land precipitation decreases and
the nearshore ocean precipitation increases in going {rom the
wet-soil to the dry-soil case.

The striking difference between the experiments with the
UCLA model and those with the GLAS model is that, except for
the Sahel region of Africa, the UCLA model produces almost no
continental precipitation in the dry-soil case.

Examination of the water vapor transport field by the
investigators showed that there are regions, such as northeast
Brazil, where within the planetary boundary layer there is a large
convergence of the water vapor transported from the ocean, in the
dry-soil case, but no rain. The interpretation they made (Suarez &
Arakawa, personal communication) is that with dry soil there is
a very large diurnal vanation of the ground-surface temperature,
which produces a very large diurnal variation in the depth of the
model’s planctary boundary layer, growing in thickness during the
day and collapsing at sunsct; and that it is this diurnal oscillation
which, without producing clouds, transfers the water vapor from

Fig. 6.7. Soil moisture availability, 8, in July, as derived from
antecedent 6 month precipitation. (From Miyakoda, ef af., 1979.)
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the boundary layer to the free atmosphere, where the transport is
divergent. This transfer of water vapor from the boundary layer
1o the frec atmosphere by diurnal * boundary layer—{free atmosphere
mixing’ is not unlike the transfer by detrainment from fair-weather,
non-precipitating cumulus clouds, described in the introduction.
The same condition of upper troposphere velocity convergence and
middle troposphere subsidence must be satisfied. Here it is the
result of upper-level outflow from the region of intense convective
precipitation over the adjacent ocean.

6.3.1.3

Miyakoda and Sirickler (1981)

Miyakoda & Strickler (1981) used an early version of the
general circulation model of the NOAA-Princeton Geophysical
Fluid Dynamics Laboratory (Smagorinsky et af., 1969) to make
and compare two different scts of 14-day numerical weather
predictions for the northern hemisphere, in July, when different
distributions of the soil moisture availability, 8. were prescribed.

The surface albedo was fixed and followed Posey & Clapp
(1964). The clouds were climatologically prescribed as a function
of latitude and height. The convective-adjustment scheme was
used, in which the moist convective heating of the atmosphere and
the convective precipitation depend only on the relative humidity
and on the temperature difference between adjacent levels in the
vertical. Thus there is no penetrative convection and, consequently,

SOIL MOISTURE
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and precipitation

cxperiment of Miyakoda & Strickler (1981). (Contours for 0

Fig. 6.8. Evapotranspiration difference (top)
difference (bottom), when g = 0.5 is replaced by (A, ¢),
¥25, 100, F200, ¥ 500 mm/mo. Negative values are shaded.)
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Fig. 6.9. Surface temperature difference (top) (contour interval

2.5°C) and difference in height of the 1000 mb surface (bottom)
(contour interval 10 m; negative values shaded), in experiment of

Miyakoda & Strickler (1981).
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the sensitivity of the convective heating and precipitation to the
amount of water vapor in the model's planetary boundary layer
is not as great as in the cumulus convection parameterization
schemes of the GLAS and the UCLA models.

In one case, § was everywhere set equal to 0.5. For the other
case, the authors sought a more realistic field of #; and for this they
took the observed normal distribution of precipitation for the
antecedent six-month period, February through July, and relabeled
the isohyets as lines of constant 8, according to the arbitrary
function shown in the top panel of Fig. 6.7 (Miyakoda ez al., 1979).
No account was taken of the antecedent evapotranspiration.
Consequently, as the bottom panel of the figure shows, over the
northern forests and the wet tundra regions of Canada and Siberia,
B was made as low as in the subtropical deserts (although, in
nature, it is near the maximum value of 1.0).

Figures 6.8 and 6.9 show the differences in the evapotran-
spiration, precipitation, surface temperature and height of the
1000 mb surface, for the case of § = #(A.¢) minus the case of
B = 0.5, when the ensemble average is taken of the last 12 days of
three sets of 14-day forecasts.

We see, in Fig. 6.8, that where § is reduced there is, in
general, a reduction in evapotranspiration and precipitation. The
largest reduction in evapotranspiration, of more than 7 mm/day,
is over the central part of the north African and Asian deserts, with
the axis of the maximum evapotranspiration reduction at about
latitude 20°N across Africa. But the axis of the largest reduction
in precipitation is at about 12°N across Africa (the Sahel), where
the precipitation decreases by about 12 mm/day. As shown in
Miyakoda & Strickler (1981, Fig. 7), therainband of theintertropical
convergence zone across north Africa does not change its position,
but its magnitude goes down from 20 to 8 mm/day when the
land-surface moisture source in the Sahara is eliminated. There is,
obviously, a large change that takes place in the water vapor
transport.

In thecase where theaverage land-surface evapotranspiration
became smaller, the average ocean evaporation became larger. In
spite of that, the average ocean precipitationdecreased, in agreement
with the experiments made with the GLAS and UCLA models.
Presumably it is, again, an enhancement of the sinking motion over
the oceans that suppresses the ocean precipitation.

If we compare the top panel of Fig. 6.9 with the top pancl
of Fig. 6.8, we sce that there is a negative correlation between the
change in the land-surface temperature and the change in
evapotranspiration.

When we compare the upper and lower panels of Fig. 6.9,
we scc that there is a negative correlation between the change in
surface temperature and the change in the height of the 1000 mb
surface. This is true even where the land-surface is not at a high
elevation.

This experiment shows two important things: (1) that it does
not require an extreme change in the soil moisture availability (8),
such as a change from | to 0, in order to produce large changes
in the precipitation, temperature and motion fields; and (2) that
the influence of the land-surface evapotranspiration on the atmos-
pherc operates very quickly. Miyakoda (personal communication)
reports that sizeable differences in the surface temperature and
precipitation appeared within a few days.

Y. Mint:
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(In an carlier study of the role of the surface transfers of
sensible and latent heat in numerical weather prediction, Gadd &
Keers (1970, Figs. 4, 5, 6) showed that even in a very short range
(18-hour) prediction for north-western Europe and the British
Isles, in August, the inclusion of evaporation and sensible heat
transfer from the land and the sea surfaces made a noticeable
improvement in the predicted rainfall over the land.)

6.3.2

(B) Different albedos, with same soél moisture

6.3.2.1

Charney, Quirk, Chow and Kornfield (1977)

This experiment was made by Charney er af. (1977) with the
NASA Goddard Institute for Space Studies general circulation
model, the propertiesand performance of which have been described
by Somerville et al. (1974) and Stone er al. (1977).

The three runs that are shown here usc the prescribed field
of non-interactive soil moisture availability, 8, from Stone e? al.
(1977), who assumed that 8 = 2 x (RH - 15)/8S, 8., = 1, where
RH is the observed normal monthly mean relative humidity of the
surface air. The observed relative humidities, for July, were taken
from the tabulation by Schutz & Gates (1972). In the above
formulation, # = 1 when the relative humidity is equal to or greater
than 57.5%. Consequently, # was made equal to or close to 1, and
the evapofranspiration therefore equal to or close to the potential
evapotranspiration over most of the land surface of the earth. Only
in a small region in the western United States and across the central
Sahara was the prescribed July £ smaller than 0.5.

In the run designated as case *2a°, the ice-free and snow-free
continents were assigned a surface albedo of 0.14; except that a
higher albedo, 0.35, was assigned to the regions of the observed
northern hemisphere deserts (sec Fig. 6.19, below).

In a comparison run, * 3a°, the albedo was changed from 0.14
to 0.35 in three additional regions, the ‘Sahel’, * Rajputana’, and
‘Western Great Plains’, which are adjacent to deserts (Fig. 6.19).
Otherwise everything was the same as in case 2a.

In a scparate comparison run, case *4°, everything was again
the same as in case 2a, except that the change of albedo, from 0.14
100.35, was made in three regions that are within the observed rainy

Fig. 6.10. Evapotranspiration (top) and precipitation (bottom)
(mm/day), in experiment with prescribed soil moisture
availability (case 3a), of Charney et al. (1977).
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and vegetation covered areas of the earth. The locations of these
regions, called *Central Africa’, ‘Bangladesh’, and *Mississippi
Valley® are given in the table.

The first numbered column of Table 6.1 shows the prescribed
soil moisture availabilities for the six regions. In the Sahel region
B8 = 0.51, and in the other regions £ is 0.78 or more.

Fig. 6.10 shows the evapotranspiration and precipitation in
the northern hemisphere, for case 3a. Over most of the continents
the evapotranspiration and precipitation do not differ by more than
about + 1 mm/day. It is only over southeast China and Indochina,
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and where the intertropical rainband crosses Africa, that the
precipitation exceeds the evapotraaspirstion by 34 mm/day.
Near the Mediterranean coast of Africa and in the Middle East the
precipitation is less than the evapotranspiration by about
2-4 mm/day.

Table 6.1 is a rearrangement of the data in Charney er al.
(1977, Tables 4.1-4.4) and shows the components of the energy and
water budgets at the earth's surface in the three desert-margin
regions (casc 2a v. 3a) and in the three humid regions (case 2a
v. 4).

Table 6.1 Components of the energy and water budgets, in experiment of Charney et al. (1977)

Energy balance

Water balance

Case (1) (2) 3 @ ® @@ O @ O 10} (1) (12) (13) (14)
. R A(-V-qv) AP
Region No. f (l-a) Ry R, Ry LE H N T, E (=T q P ==
(1) Sahel 22 051 08 169 S8 {11 107 4 070 260 3.7 3.7 7.4
(16-20°N, 3a 0SI 065 177 84 93 81 12 046 257 28 12 40
17.5°W-37.5°E)
~24% 45% +49% —18 —26 +8 —34%-03 -09 -25 —34 28 38
(2) Rajputana 2a 092 08 180 48 132 119 (3 077 249 4. 08 49 ‘
(24-32°N, 3a 092 065 (8 15 114 104 10 057 241 36 —13 2.3
61.5-77.5°E) _
—24% +SY% +56% —18 —15 -3 —26%-08 -05 -—21 —26 42 5.2
(3) Western Great 20 078 086 18 62 124 122 2 067 211 42 —05 37
Plains (32-48°N, 32 078 065 18 79 106 93 13 052 190 32 10 22
107.5-97.5°W)
—24% +1% +27% —18 -29 +11 —-22% <21 -10 -05 ~—1.5 0.5 1.5
(4) Central Africa 20 094 08 170 56 114 125 —11 072 222 43 0.7 5.0
(8-12°N, 4 094 065 171 69 102 104 -2 059 2.6 36 —L7 19
12.5°W-52.5°E)
—24% +1% +23% —12 —21 49 —18%-06 -07 -—24 3.1 34 4.4
(5) Bangladesh 22 100 086 149 38 111 {13 -2 085 242 39 41 8.0
(20-28°N, 4 100 065 140 44 9 107 —11 078 236 31 43 8.0
77.5-87.5°E)
~24% —6% +16% —15 -6 -9 -8% -06 -0 0.20 0 -10 0.0
(6) Mississippi 22 100 086 208 68 140 148 -8 057 221 S1 —07 44
Valley (32-48°N, 4 065 176 67 103 102 ! 086 226 35 -02 33
92.5-82.5°W)
—24% —18% —1% —37 —46 +9 —2% +05 —16 +05 -1l -0.3 07 -
Average for the 08 086 177 55 122 122 0 071 234 42 14 5.6
six regions 08 065 172 70 102 98 4 0S8 228 34 0.2 3.6
—24%, —3% +21% -20 -24 +4 —18%-06 -08 —12 -—20 1.5 2.5

average, for the region, of the prescribed soil moisture availability (ratio of evapotranspiration to potential evapotranspiration)
(1 —a) fraction of the incident solar radiation that is absorbed by the ground (a = land-surface albedo)

Rg solar radiational heating of the ground (watt/m?®)

R, long wave (infrared) radiational cooling of the ground (difference between long wave radiation emitted by the ground and atmospheric

‘back radiation’ absorbed by the ground) (watt/m?®)

Ry = (Ry— R) net (all-wavelength) radiational heating of the ground (watt/m?)
LE latent heat transfer from ground to atmosphere (cvaporative cooling of the ground)
H conductive-convective heat transfer from ground to atmosphere

N fraction of the sky covered by clouds of all types
T, surface air temperature (°C)
E; surface evapotranspiration (mm/day)

(~V-¢v) vertically intcgrated convergence of the water vapor transport (mm/day)

P precipitation (mm/day) .

AP/AE ratio of precipitation change to evapotranspiration change

For each region the third line shows cither the absolute change between the two cases or the percentage change, where the 9/ sign

indicates the latter.
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We see, in column (10), that in the Western Great Plains
(where g was assigned the value of 0.78) and in the Mississippi
Valley (where # was made 1.0), the evapotranspirations with albgdo
of 0.14, are, respectively, 4.2mm/day (130 mm/month) and
5.1 mm/day (158 mm/month). These arein fair agreement with the
aerologically derived evapotranspiration over the central and
castern United States in July, of 3.7 mm/day (116 mm/month),
shown in Fig. 6.1. More important, however, as an indication of
the reliability of the model, is the fact that the vertical integral of
the water vapor flux convergence (— V-gv), shown in column (11),
is negative in the two regions, with values, respectively, of
—0.5 mm/day (— 16 mm/month) and —0.7 mm/day (—22 mm/
month). This means that water vapor is being exported from these
regions at about the same rate as the observed transport divergence,
of 0.7 mm/day (22 mm/month), shown in Fig. 6.1.

In the other four regions, in the case with normal surface
albedo, 2a, the vertical integrals of the water vapor transport
convergence are positive, water vapor is being imported (so that
precipitation is larger than evapotranspiration), which is what one
would expect for these particular regions in the month of July.

Table 6.1 is replete with information about the performance
of the model and its complex, non-linear response to the change
in the surface albedo. But, for brevity, we will here examine only
what happens in the Sahel, the region of greatest interest.

We see, in Table 6.1 (column 3), and in Fig. 6.11, that when
the surface albedo is increased in the Sahel, from 0.14 to 0.35, the
solar radiational heating of the surface does not become smaller:
it becomes /arger. This is because of the large decrease in the cloud
cover, from 0.70 to 0.46 (column 8), which more than compensates
for the increased albedo.

The cloud cover is less because (1) there is less evapotran-
spiration (a change from 3.7 to 2.8 mm/day); and (2) there is less

Y. Mint:

Fig. 6.11. The Sahel region energy budgets (watt/m?®) (top) and
water budgets (mm/day) (bottom), in experiment with prescribed
soil moisture availability, of Chamey er al. (1977). Case 2a is on
the left, Case 3a is on the right. (For definitions of symbols, see
notes to Table 6.1.)

Low-albedo case

(a= 0.14)

High-albedo case

(a= 0.35)

RN’ Rs‘ RL
= 177 - 84 = 93
R = (R *- R J) =84

RN- Rs - RL
= 169 - 58 = 111
RLS (RL'- RL*) = 58
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convergence in the water vapor transport (a change from 3.7 to
1.2 mm/day).

The local evapotranspiration is reduced in the high-albedo
casc because there is more long wave radiational cooling of the
ground (an increase from 58 to 84 watt/m?®). Unfortunately, no
record was kept of the ground-surface temperature, nor of the long
wave emission by the ground; but it is most likely that it is the
decrease in the downward long wave *back radiation® from the
atmosphere, R |, as a consequence of the decreased cloudiness,
which increased the long wave cooling of the ground.

The sensible heat transfer from the ground to the atmosphere
is small, in both cases.

By using arrows to indicate when a change in one parameter
produces a change in another, we can describe what happens in the
Sahel, in this experiment, as the coupling between a sequence of
processes operating locally and a sequence that involves the
large-scale atmospheric circulation. The local sequence is:
albedo MY radiation ™" evapotranspiration Shankes)
precipitation. The larger-scale sequence is: precipitation~conden-
sation-heating %2222 |arge-scale circulation <22% water vapor
transport convergence P2 precipitation.

The second of these two sequences is similar (but not
identical) to the one in the Charney (1975) hypothesis on the
dynamics of deserts. In that hypothesis the sequence is: albedo
(change®) curface temperature ‘™% Jarge-scale circulation
(chaneed) water vapor transport convergence (chanaen precipitation.
Here, the change in evapotranspiration plays no role. (A direct
examination of the Charney hypothesis with a general circulation
model would consist of a comparison of two runs, in both of which
no evapotranspiration was allowed in the region of interest, but was
allowed clsewhere, and the albedo in the region of interest was
changed.) (See experiment in section 6.4.2.1.)

The relative importance of the two sequences of processes,
when surface evapotranspiration does take place, may be scen in
columns (13) and (14) of Table 6.1. We see, in column (13), that
in the Sahel, Rajputana and Centrat Africa, the reduction in the
water vapor flux convergence is between 2.8-4.2 times larger than
the reduction in the evapotranspiration. But in the Western Great
Plains, the reduction in the water vapor flux convergence is only
half as large as the reduction in evapotranspiration. In Bangladesh
and the Mississippi Valley, things go the other way: increasing the
surface albedo again decreases the evapotranspiration; but it
increases the water vapor flux convergence.

As indicated carlier, the response of the large-scale precipi-
tation, temperature and motion fields to a change in the surface
boundary conditions (whether soil moisture availability or albedo)
will depend on many factors. Of particular importance is the
horizontal scale and the latitude of the region in which the
boundary condition is changed. Through the geostrophic adjust-
mentprocess, thchorizontalscaleand thelatitudedetermine whether
the circulation change will be in the vertical plane (small-scale or
low-latitude) or in the horizontal plane (large-scale and high-
latitude). When the circulation change is in the vertical plane there
is a positive feedback on the condensation heating, through water
vapor transport convergence. But when the circulation change is
in the honizontal plane there is a negative feedback on the
condensation heating, because then the transport removes water
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vapor, as well as sensible heat, (rom the region of the condensation | Meteorological Office five-layer general circulation model (Corby
et al., 1977). In both runs, evapotranspiration was made equal to

heating.
6.3.2.2 the calculated potential evapotranspiration (4 = {). In one casc,
Carson and Sangster (1981) the albedo of the snow-free land was everywhere set equal to 0.1.

Another experiment in this category was made by Carson & In the other case, it was everywhere set equal t0 0.3. The remaining
Sangster (1981) with a low-resolution (N20) version of the British lower boundary conditions (sea-surface temperatures, sea ice, and

Fig. 6.12. Precipitation in the low-albedo case (top) and the high- The bottom panel is the difference in the precipitation: the
albedo case (center), of experiment by Carson & Sangster (1981). low-albedo case minus the high albedo case (unshaded area is
The contours are for 1, 2, 5, 10 and 20 mm/day. (Light shading, positive).

precip. < | mm/day; heavy shading, precip. > 5 mm/day). '

§,I gf
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land snow cover), as well as the climatologically determined long
wave radiational heating rates, were the observed July values.

Figure 6.12 shows the precipitation averaged over 90 days
(days 21-110 of integration), where the top panel is the low-albedo
case, the center panel is the high-albedo case, and the bottom panel
is the difference between the two.

We see that the high-albedo case has less rainfall over most
of the continental areas, but that over the oceans the rainfall is
increased.

The averages of the land precipitation, and of other para-
meters, are shown in Table 6.2.

Like the experiment by Charney e al., 6.3.2.1 above, this is
an albedo change experiment with permanently wet soil. Here, too,
the increase of albedo produces a decrease in evapotranspiration
(—0.9 mm/day) and an even larger decrease in precipitation
(—1.2 mm/day); but now the albedo is changed on the continental
scale, whereas in 6.3.2.1 it was changed only over a few hundred
kilometers in the widths of the various regions. It is not surprising,
therefore, that in this experiment the contribution to the change
in precipitation of the change in the water vapor transport
convergence is only about a third as large as is the contribution
by the change in the local evapotranspiration. Both experiments
have about the same average water vapor transport convergence,
0.8 mm/day v. 0.85 mm/day. But in (4), where the albedo was
changed from 0.14 to 0.35 over a number of small regions, the
average change in the transport convergence in those regions
was — 1.2 mm/day. In.(5), where the albedo is changed from 0.1
to 0.3 over all of the land, the change in the transport conver-
gence is only —0.3 mm/day; showing, again, that the larger the
horizontal scale the smaller is the role of the water vapor transport
convergence in compensating for a decrease in the land-surface
evapotranspiration.

64

(11) Experiments with interactive soil moisture

In all but one of the experiments that follow, the time-
dependent soil moisture is governed by the equations:

Y. Mintz

ow
5 = P—E, Wgq.=W*, ©.1H
E = BE,, (6.2)
w
B= kW Bmax =1, (6.3)
where W is the available moisture stored in the soil, W™ is the

available moisture étomge capacity of the soil, P is the rate of

94

precipitation, £ is the rate of evapotranspiration, E, is the rate of
potential evapotranspiration, £ is the soil moisture availability, and
k is a prescribed coefficient (sec Carson, 1981). In all of the models,
E, is evaporation calculated by an acrodynamic method, under the
assumption that the vapor pressure at the surface is the saturation
value for the cakulated ground lempcratun

6.4.1

(A) Different initial s0il moistures, with same albedo

6.4.1.1

Walker and Rowntree (1977)

Walker & Rowntree (1977) examined the interaction between
time-dependent soil moisture and the calculated precipitation,
temperature and circulation of the atmosphere, not in the global
domain, but in a zonal channel between latitudes 16°S and 36°N,
and extending over 32° of longitude with cyclic cast—west boundary
conditions. The land and sea distribution was made zonally
symmetric, with land to the north and ocean to the south of 6°N
latitude; this being an idealization of the western part of north
Africa and the Gulf of Guinea.

The model was an 1 I -layer primitive equations model with 2°
latitude-longitude resolution. The radiational part of the thermal
forcing was taken as a constant radiational cooling of the atmo-
sphere, of 1.2 K/day from the surface to the 200 mb level, with
radiative equilibrium at higher levels (which means a constant
radiational cooling of the atmosphere of 110 watt/m?®); and with
a constant net radiational heating of the land surface, Ry, of
150 watt/m®. Thus, over the land, these was a prescribed horizon-
tally uniform radiational heating (of 40 watt/m?®) of the
atmosphere— carth system; but over the ocean, the surface tem-
perature, and not the surface radiation flux, was the prescribed
boundary condition. The prescribed, zonally-symmetric ocean
temperatures, from 16°S to 6°N, were the observed August normals
at 0° longitude. The moist-convective adjustment scheme was used
to obtain the convective precipitation and moist-convective heating
of the air. ,

The available soil moisture and the land-surface evapotran-
spiration were calculated with the equations given at the beginning
of this section; with W* taken as 150 mm, and k taken as 0.333.
Therefore, # = | when W 2> 50 mm.

Two integrations were made in which everything was the
same, except that:

In case | (the initially dry-soil Sahara), # was initialized at
zero in the latitude zone 14-32°N; and at 100 mm in the land zones
6-14°N and 32-36°N.

Table 6.2. Albedo experiment of Carson & Sangster (1981) 90-day means (days 21-110), permanent July

Global Averages Over Land

U] 2 &) () )

Surface. albedo LE H £ (-V-qm) P
0.1 104 35 3.6 1.0 46
0.3 78 21 2.7 0.7 34
Difference -26 -4 -09 -03 -12

()] Y]
A(-V-gv) AP
AE AE
0.3 1.3

For definition of symbols, sce Table 6.1.
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Fig. 6.1). Variation with time of the zonally averaged

precipitation (top) and soil moisture (bottom) in the case where,
initially, the soil in the Sahars is completely dry. (Experiment of

Walker & Rowntree, 1977))
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Fig. 6.14. Variation with time of the zonally averaged
precipitation (top) and soit moisture (bottom) in the case where
the initial soil moisture in the Sahara is 100 mm. (Experiment of
Walker & Rowntree, 1977.)
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Incase 2, (the initially moist-soil Sahara), W was initialized
at 100 mm over all of the land region, 6-36°N.

Figures 6.13, 6.14 and 6.15 show the time-evolutions of the
soil moisture and precipitation in the two cases.

In case [ (Fig. 6.13), where the soil was initially dry between
14° and 32°N, it remains dry. There is almost no net water vapor
transport into that region and, therefore, there is no precipitation
and no water is added to the soil there. On the other hand, in the
land region 6-14°N the initial soil moisture, of 100 mm, goes down
to about 90 mm over the first seven days, showing an excess of
cvapotranspiration over precipitation which averages about
1.4 mm/day. The corresponding seven-day water vapor transport
divergence, of about 1.4 mm/day, is the difference between a large
northward transport of water vapor across the coastline by the
mean meridional circulation (Walker & Rowntree, 1977, Fig. 4(a))
and an even larger equatorward eddy-transport of water vapor by
the wave disturbance which developed and moved westward across
the region. By the end of the integration period, this part of the
system also appears to have reached a steady state, except for a
short-period and small-amplitude vanation produced by transient
waves in the flow.

In case 2, theinitially moist-soil Sahara, (Figs. 6.14and 6.15),
there is a rapid development of precipitation in the zone near the
coast, which, after about two days, exceeds the evapotranspiration
rate and the soil moisture starts to increase. The average precipi-
tation in this coastal zone reaches 18 mm/day on day 5; with a
maximum of 30 mm/day at 9°N. After that the precipitation rate

Fig. 6.15. Variation of the zonally averaged precipitation and soil
moisture with time, in sclected latitude zones across north Africa,
in the case where the initial soil moisture in the Sahara is

100 mm. (Experiment of Walker & Rowntree, 1977.)
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in this zone decreases rapidly and seems to be starting an oscillation
about an average rate of around 6 mm/day. The prescribed |
Ry = 150 watt/m* would provide enough energy for
E = E, = 5-2 mm/day; but the calculated evapotranspiration may
be smaller or larger than this, depending on whether the sensible
heat transfer at the surface is upward or downward.

Over the rest of the land region, 14-32°N, the evapotran-
spiration exceeds the precipitation until about day 12; and,
thereafter, except for an oscillation produced by the transient wave
disturbances, evapotranspiration equals precipitation and the soil
moisture remains constant.

From what we sce in these figures, it appears unlikely that
the solutions for the initially dry-soil Sahara and the initially
moist-soil Sahara will approach one another no matter how long
the integrations were to continue. It scems safe to say that this
highly simplified soil moisture-atmosphere system is intransitive.

64.1.2

Rowntree and Bolton (1978)

Rowntree & Bolton (1978) made an interactive soil moisture
experiment with the five-layer, 500 km grid size, version of the
British Meteorological Office general circulation model (described
by Corby er al., 1977).

For the calculation of the soil moisture and evapotranspira-

Y. Mintz

Fig. 6.16. Precipitation (mm/day) averaged for 15 June-15 July,
in experiment of Rowntree & Bolton (1978). Center panel:
control run, where the initial soil moisture, on 27 May, was

50 mm everywhere. Top panel: case where the European land
points within the indicated rectangular region had an initial soil
moisture of 150 mm. Bottom panel: case where the European
land points within the indicated rectangular region had zero soil
moisture initially
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tion, W* was taken as 200 mm and k as 0.5; so that £ = | when
W 2> 100 mm.

Three 50-day integrations were made, all starting from the
same initial atmospheric conditions on 27 May, but with different
initial distributions of soil moisture.

In one run, designated C (for control), the initial soil
moisture was set at SO mm at all land points over the globe.
Therefore, the initial soil moisture availability, 8, was 0.5
everywhere.

In the run designated W (for wet-soil case) the initial soil
moisture was set at 150 mm at all of the European land points that
are within the region enclosed by the rectangle in Fig. 6.16; but
with an initial value of 50 mm at all other land points over the
globe. Thus, the initial # was 1 in the European region but, again,
0.5 at all other land points over the globe.

Fig. 6.17. Distribution of precipitation along the 13°E meridian,
for the three fields shown in Fig. 6.16.

mm/day

60N 50N
Latitude

Fig. 6.18. Variation with time of ten-day averaged precipitation
(top) and soil moisture (bottom), averaged for the European land
points within the rectangular region shown in Fig. 6.16, for the
three cases in the experiment of Rowntree & Bolton (1978).
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In the run D (the dry-soil case) the soil moisture in the
European region was initialized at 0 mm (but, again, at 50 mm
clsewhere). Now, the initial g, and hence the initial evapotran-
spiration, was zero in the European region.

Fig. 6.16 shows maps of the three minfall distributions,
averaged for the 30-day period, 15 June-15 July; and Fig. 6.17
shows meridional profiles of those time-averaged rainfalls along
longitude 13°E, where the maximum rainfall occurs. In general the
differences between the 30-day rainfalls are comparable to what are
produced by the natural variability of a model atmosphere with
fixed surface boundary conditions. But within the European region
the time-averaged precipitation, for days 20-50 following initializ-
ation, was greatest in the case which initially had the most moisture
in the soil, and smallest when the soil was initially devoid of
moisture.

The changes in the precipitation and in the soil moisture with
time are shown in Fig. 6.18, where the values are ten-day averages
for the indicated European land region. We see that even after
onc-and-a-half months there are still large differences between the
precipitation rates and between the soil moistures, when we
compare the initially wet-soil case (W initially 100 mm) with the
other two cases (W initially 50 mm and 0 mm). The slopes of the
rainfall curve and soil moisture curve, for the initially wet-soil case,
suggest that the system is transitive, but that the time required for
convergence is several months.

Fig. 6.)9. Bottom panel: the assigned albedos in experimeats of
Chamey et al. (1977). Unshaded land areas have an albedo of
0.14 in all cases, and dot-shaded areas have an albedo of 0.35 in
all cases. In the cross-ruled areas the albedo was changed from
0.14 (in cases 2a and 2b) to 0.35 (in cases 3a and 3b). Top panel:
precipitation (mm/day) in case 3b.
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6.4.2

(B) Different aldedos, with same initial soif molsture,
6.4.2.1

Charney, Quirk, Chow and Kornfield (1977)

Chamey et al. (1977) performed an experiment in which they
compared two runs which had different albedo distributions, but
the same initial soil moistures which could interact with the
atmosphere.

The distribution of the land-surface albedo in the two cases
is shown in the bottom panel of Fig. 6.19. In their run designated
*2b’, the albedos of ‘permanent desert’ (the regions with dotted
shading) were assigned the value of 0.35; and everywhere else over
the ice-free and snow-free land surface of the globe the albedo was
taken as0.14. In the comparison run, designated  3b*, three regions
adjacent to the permanent deserts, the ‘Western Great Plains’,
‘Rajputana’ and ‘Sahel’ (shown by the cross-ruled shading) were
also assigned an albedo of 0.35. In both runs, the initial soil
moisture was taken to be zero cverywhere.

The change in the time-dependent soil moisture was
calculated, in half-hourly time steps, from Egqs. (6.1) and (6.2)
given at the beginning of this section, and with the function
B = (W, W*,E,) (Charney et al., 1977, p. 1368) which is shown
in Fig. 6.20. (Diagram by personal communication from Y. Sud.)
Over the range of E; between 1.4 and 6.4 mm/day, this for-
mulation for # was taken from Denmead & Shaw (1962), who
obtained it from measurements of daily (24 hr) evapotranspiration
and potential evapotranspiration, together with measured soil
moisture.

In the experiment, this formula for g was inadvertently
applied to the calculation of half-hourly values of evapotranspir-
ation, and this made the calculated daily cvapotranspiration an
order of magnitude too small (because during the mid-day hours,
when £, is about # times as large as its 24-hour average, the g
obtamed in this way is extremely small for almost all values of
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W/W*; and during the night, when £ can approach 1, £, is
negligible).

The top panel in Fig. 6.19 shows the calculated July pre-
cipitation in case 3b. At the beginning of the run, 18 June, almost
all of the precipitation that falls on the land must be from water
vapor transported from the ocean; and this situation must continue
(because evapotranspiration is negligible) until the accumulation
of the water in the soil brings W close to the soil storage capacity
W, at which point # becomes equal to 1 for all values of E,,. For
a precipitation of § mm/day, which is the mean July precipitation
across north Africa in case 3b, it takes about 20 days, or until about
8 July, for the soil moisture, W, to approach or reach W*, at which
point B approaches or reaches 1. Elsewhere, # remains negligible,
cven until the end of July. It is therefore not surprising that in this
experiment with interactive soil moisture, the precipitation, for
days 14-44 following initialization with zero soil moisture, should

Fig. 6.20. The soil moisture availability function, g = g (W, W*,
E,), used by Chamncy et al. (1977) in the albedo experiment with
interactive soil moisture.
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resemble the persistently dry-soil case shown in the lower panel of
Fig. 6.3.

Table 6.3 shows the energy and water balances of the three
regions, in the two runs, for July (days 14-44 of the integration).
We sce, by comparing columns (11) and (12), that during this
period (which, asindicated, is a transient stage for the soil moisture
and evapotranspiration) the dominant term in the supply of water
vapor for precipitation, in all cases, is the water vapor transport
convergence. In the Sahel, the evapotranspirations for the month
are 0.14 and 0.34 mm/day, which are only 4% and 129 of the
monthly averaged precipitation rates. But almost all of this must
be duc to the evapotranspiration near the end of July, at which
time, or shortly thereafter, the accumulated precipitation will make
W approach, or equal, W*.

With the small amounts of evapotranspiration, the cloud
cover (column 8) is not very different in the low- and high-albedo
cases. Consequently, unlike experiment 6.3.2.1 above, the change
in the net radiational heating of the ground, Ry, is almost entirely
due to the change in the solar radiational heating of the ground,
Ry; and this produces the large change in the sensible heat transfer,

1.0 r —=
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s\." N
&7 65
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06 w“ ,yq'
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o2} ¢
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Table 6.3. Components of the energy and water budgets, in experiment of Charney et al. (1977)

Enecrgy balance Water balance

2 3 @ o © O ® O (10 (1) (2

Region CaseNo. (l.a) Rs R. Ry LE H N 7. E Vg P
Sahel ' b 08 259 139 120 4 116 40 392 014 39 4.0
3 065 213 140 73 10 63 35 361 034 24 2.7

—-24%, -46 | ~47 6 -53 -12% -3.1 020 —-1.5 -13

Rajputana pi ] 08 269 134 135 3 132 4 351 010 20 2.1
3b 065 219 129 90 8 n 2 342 026 2.1 24

~-24%, S0 -5 ~45 s -—-60 =2% =09 0i6 0. 0.3

Western b 08 302 I72 130 0 130 21 318 000 08 0.8
Great Plains 3b 065 245 161 84 3 8i 20 314 010 03 04
-24%, -57 11 —46 3 -4 ~5% —6.1 010 -05 -04

For definition of symbols, sce Table 6.1
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H. [t is this change in the sensible heating of the planetary bound-
ary layer which produces the change in the vertical velocity showa
in the bottom panel of Fig. 6.21, the associated change in water
vapor transport convergence, shown in column (11) of Table 6.3,
and the change in precipitation shown in column (12) and in the
top panel of Fig. 6.21. As the experiment stands, it does illustrate
the mechanism of the Charncy (1975a) *dry-soil” desertification
hypothesis: but not if the integrations were to continue; for then
W will everywhere approach, or equal, W* and the processes
which depend on evapotranspiration will become important.

We note, furthermore, that this simple picture of the coupling
of the water vapor transport convergence to the surface albedo does
not hold for the Rajputana end Western Great Plains regions, even
when the evapotranspiration is negligibly small. In both of these
regions the changes in Rg, Ry, and # are about the same as the
changes in the Sahel; but, unlike the Sahel, there is almost no
change in the water vapor transport convergence. As already
indicated, the response of the atmospheric circulation to a change
in the boundary layer heating, H, will depend very much on the
horizontal scale and latitude of the heating perturbation, as well
as on the orientation of the region with respect to external moisture
sources and the way in which the altered flow encounters the
mountain barriers. .

6.4.2.2

Chervin (1979)

Chervin (1979) used the NCAR general circulation model
(described by Washington & Williamson, 1977) to examine the
cffect of a change in the land-surface albedo when the soil moisture

Fig. 6.21. Zonally averaged precipitation (top) and vertical
velocity in the middle troposphere (bottom), over Africa, when
the albedo in the Sahel (16-20°N) is increased from 0.14 to 0.35.
(Figure from Charney, 1975a.)
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is fully interactive. The change in 50il moisture was calculated with
the cquations given at the beginning of this section, with
W* = 150 mm and k = 0.75.

The control was the average of a master run, which started

from a state of rest and isothermalcy and was integrated for 120
days, plus four other runs, each of which started from day 30 of
the master and ran until day {20. All of these were perpetual July
integrations, in which the sun declination, the oocan-surface
temperatures, and the snow-free land albedo (which followed Posey
& Clapp, 1964) were held constant in time.

The run with a different albedo was also started from day
30 of the master and ran until day 120. The change in the albedo
consisted of replacing the Poscy & Clapp values by & constant
albedo of 0.45 within two regions: (1) a large region over north
Africa, extending from the Atlantic to the Red Sea and from
latitude 7.5°N to the Mediterranean, and therefore covering the
zone of the July intertropical convergence rain, as well as the
Sahara Desert; and (2) a smaller region over the US High Plains
(97.5-107.5°W, 27.5-52-5°N).

Over Africa, the control (Posey & Clapp) albedo varied from
about 0.35 in the northern Sahara to about 0.08 near the southern
boundary of the region where the albedo will be changed. Over the
US High Plains, the control albedo was between 0.07 and 0.17.

Fig. 6.22 shows the change over Africa in the precipitation,
soil moisture and ground temperature, and in the vertical velocity
at 3 km elevation. The values shown are the averages of the last
60 days of the modified albedo case, minus the ensemble average
of the last 60 days of the five control runs. The stippled areas in
the diagram show the regions of r = |Ag,|/04, = 3, where A, is the
prescribed change response (i.c., the difference between the 60-day
mean in the prescribed change case and the ensemble average of
the 60-day means of the five control runs); and o, is the standard
deviation of the 60-day means of the five control runs. According
to Chervin & Schneider (1976), r 2 3 implies an approximately 5%
significance level in rejecting the hypothesis that the prescribed
change response is the result of random fluctuations and not the
result of the prescribed surface albedo change.

The maps in Fig. 6.22 show that the changes are greatest at
and near the zone where the albedo is increased from 0.08 to 0.45.
In this zone there is a decrease in the average upward motion of
the air of about 2 mm/second (200 m/day), with r > 3; a decrease
in the average precipitation of about 4 mm/day, with r > 2,
[Aee P =~ (4—8) mm/day, o,, P = 2 mm/day}); and a decrease in
the average soil moisture storage of about 50 mm, with r > 3.
There is a decrease of the ground-surface temperature, with r > 3,
over almost all of the region of the albedo change, but not along
its southern edge. There, the ground-surface temperature increases,
by about 0.5°C, with r > 3.

The paradoxical rise in the ground-surface temperature, in
the region of the largest increase of albedo (the change from 0.08
to 0.45), can be attributed to the fact that in that zone, 7.5~12.5°N,
where there is the largest decreasc in precipitation, the soil
moisture, W, goes down from about |00 mm in the control to
50 mm in the high-albedo case. With W* = 150 mm and k = 0.75,
this reduces £ from 0.9 to 0.45 and, consequently, there is a large
reduction in the evapotranspiration and the evaporative cooling
of the surface in that zone. There is also a contribution to the
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temperature rise from the accompanying reduction of the cloudi-
ness in that zone (R. Chervin, personal communication).

Over the US Great Plain region there was almost no change
in the vertical velocity at 3 km elevation; an average decrease of
about 1 mm/day in the precipitation, with » > 3 over about half
of the region; almost no change in the soil moisture storage; and
a decrease, averaging about 2°C, with r > 3, in the ground-surface
temperature.

6.5

(1) Hybrid experiments

6.5.1

Non-interactive v. interactive soil moisture

These are experiments in which a calculation with interactive
soil moisture is compared with one in which the prescribed soil
moisture is held fixed for the duration of the experiment. If we
regard the interactive case as a simulation of nature, then the case
‘with the prescribed, fixed soil moisture can be thought of as
showing how the climate would be changed if the land-surface
cvapotranspiration were to be brought under man’s control: as, for
cxample, by large-scale irrigation or by a change or a complete
removal of the vegetation cover.

Fig. 6.22. The change in vertical velocity at 3 km clevation (top
left), precipitation (top right), ground temperature (bottom left),
and soil moisture (bottom right), in the albedo change experiment
of Chervin (1979).
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6.5.1.1

Manabe (1975)

A massive irrigation simulation experiment was made by
Manabe (1975) with one of the Geophysics Fluid Dynamics
Laboratory (GFDL) general circulation models. The mode] used
the moist-convective adjustment method for calculating the con-
vective precipitation and the moist-convective heating of the air;
solar and long wave radiation transfers calculated with a non-
interactive cloud distribution, prescribed as a function of latitude
and elevation; and an albedo for ice-free and snow-free land that
follows Posey & Clapp (1964).

In the ‘natural case’ (the interactive soil moisture case) the
soil moisture was governed by the equations given at the beginning
of Section 6.4, with W™ = 150 mm, and k = 0.75. In the *irrigation
case’ (the non-interactive soil moisture case) £ was everywhere

held equal to 1.
The natural case simulation produced a rainband across

north Africa in which, averaged between 15 and 30°E, there was
a rainfall maximum of about 6 mm/day at latitude 5°N. In the
irrigation case, the maximum rainfall was about 12 mm/day at
latitude 8°N (see Manabe, 1975, Fig. 3).

The solid line in Fig. 6.23 shows the change in the precipi-
tation, the irrigation case minus the natural case. The dashed line
shows the corresponding difference in the evapotranspiration. (The
reduction in evaporation, between 31 and 37°N, is over the
Mediterrancan Sea, presumably because the air was more humid
from the massive land irrigation.)

Between 18 and 30°N theincreasein precipitationis somewhat

A3KM VERTICAL VELOCITY (MM/SEC) A PRECIPITATION RATE (MM/DAY)

[ - ey
2TV VimP ¥

4 GROUND TEMPERATURE (°C) 4 SO MOISTURE (CM)
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less than the increase in evapotranspiration, while between 12 and
15°N, where the evapotranspiration increases by only about
1.5 mm/day, the precipitation goes up by about 5.5 mm/day. On
the other hand, at the equator, where there is an increase of

Fig. 6.23. Change in evapotranspiration (broken linc) and in
precipitation (solid line), averaged between 15 and 30°E, in the
hybrid experiment of Manabe (1975).
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evapotranspiration of 0.7 mm/day, the precipitation decreases by
3.5 mm/day. It is obvious, therefore, that there are farge changes
in the water vapor transport convergence.

Fig. 6.24 shows the circulation in the meridional plane,
(vi + wk), averaged between 15 and 30°E (where v is the northward
component of the horizontal velocity, w is the vertical velocity, j
is unit horizontal vector directed northward, and k is unit vertical
vector directed upward). Although the eastward component of the
horizontal velocity does not appear here, its divergence, du/dx,

AN, AL, AUG 18€ - 30€ .
. T 1 v T ] enters into the calculation of the vertical velocity, w.
oL |\ remanow oo We sce that at the equator there is a change from upward
A ' 1 - motion to downward motion in the frec atmosphere, which must
5 | tvaronanion cramar i, \; : : 'r‘\\» ] be accompanied by a change from horizontal velocity convergence
HEY S 5 ‘I\ : :" N to horizontal velocity divergence in the boundary layer. It therefore
1, , . .
£ ',' O\ _//?- is the decrease in the boundary layer water vapor transport
° /\7 v 7 ; X convergence (—V-qv =~ —¢V-v) which makes the precipitation
'r ) 1 R decrease by 3.5 mm/day (from 5 to 1.5 mm/day).
e : : ! - Between 12 and 15°N, on the other hand, weak ascending
= A 1 11 1 motion changes to very strong ascending motion; and the accom-
[ ] LE ) 0N 150 o %3 258 N . .
panying large increase in the boundary layer water vapor transport
) o o convergence, added to the small increase in evapotranspiration,
Fig. 6.24. Circulation in the meridional planc, averaged between makes the precipitation increase by 5.5 mm/day (from 0.7 to
15 and 30°E, in the hybrid experiment of Manabe (1975). Top: 6.2 /day)
interactive soil moisture case. Bottom: moist soil case. (Figure by -4 mm/cay).
personal communication.)
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6.5.1.2

Kurbatkin, Manabe and Hahn (1979)

The irrigation experiment (6.5.1.1) (which makes g=1
everywhere) is physically realizable in the rea! world. But it is not
s0 casy to make # = 0 everywhere in the real world. If the rainfall
were to be very constant in time, so that the surface of the ecarth
was always wet, then it would be very difficult (although possible)
to prevent evaporation. But where rainfall occurs in an intermittent
way, and most of the water infiltrates to a depth of more than a
few centimeters, then the removal of the vegetation would stop the
transpiration and, thereby, would greatly reduce the transfer of
water vapor to the air.

Kurbatkin, Manabe & Hahn (1979) made a hybrid expeni-
ment, in which a simulation with g = 0 everywhere was compared
with a simulation with interactive soil moisture. For this experiment

- they used the M-21 version of the GFDL spectral model (Manabe,
et al., 1979), with moist-convective adjustment, prognostic clouds,
and a prescribed albedo that follows Posey & Clapp (1964). In the

Fig. 6.25. Precipitation (cm/day) averaged for July and August,

in experiment of Kurbatkin er al. (1979). Top: interactive soil

moisture case. Middie: no land-surface evapotranspiration case
"(contours 0.05, 0.1, 0.2, 0.5, 1.0, 5.0 cm/day. Dotted shading:

102

interactive soil moisture case, the soil moisture and evapotran-
spiration were calculated with the equations given at the beginning
of Section 6.4, with W* = 150 mm, and k = 0.75.

The integration in the interactive case was over a period of
two years and cight months. The results that are shown here are
averages for the months of July and August at the end of the
integration period. The non-interactive case, with =0, was
initialized from the interactive case at the beginning of the last June
and run until the end of August.

The top panel in Fig. 6.25 shows the simulated precipitation
in the interactive soil moisture case, the center panel shows the
precipitation in the no-evapotranspiration case, and the bottom
panel shows the difference between the two (no-evapotranspiration
case minus interactive case). With no land-surface evapotranspira-
tion, there is less precipitation over the continents and also less
precipitation over most of the oceans, with the largest decreases,
of up to S mm/day, over India, the north Indian Ocean and over
the western part of the tropical North Pacific. Only over the

precip. < 0.1 cm/day; ruled shading: precip. > 0.5 cm/day):
Bottom: no-evapotranspiration case minus interactive case
(shaded area is negative).
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mid-latitude cast coast of Asia and the adjacent Pacific, and in some
longitudes along the equator (but not over the Atlantic Occan
sector), is the precipitation larger in the § = 0 case, and by as much

as 2 mm/day.

Fig. 6.26 shows the sca-level pressure ficlds. We sec that in
the no-evapotranspiration case the pressure is lower over most of
the continental arcas. But over north-central Asia, over the
northeast Atlantic, and especially over the extratropical central and
western North and South Pacific Oceans, the pressures are higher
in the no-cvapotranspiration case. Although only the § = 0 case
has the same evapotranspiration boundary condition that was used
in the experiment with the GLAS model (in 6.3.1.1 above),
there are many correspondences, as can be seen by comparing the
bottom panels of Fig. 6.5 and Fig. 6.26, especially over the central

and western North and South Pacific and over the South
Atlantic.

The authors show (Kurbatkin et al., 1979, Fig. 4) that in the
£ = 0 case there is, on the average, an increase in the large-scale

Fig. 6.26. Sca-level pressure (mb), averaged for July and August,
in experiment of Kurbatkin et al. (1979). Top: interactive soil
moisture case. Middle: no land-surface cvapotranspiration case.
Bottom: no-cvapotranspiration case minus interactive case
(shaded area is negative).
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ascending motion in the (ree atmosphere over the continents; and
they remark that in spite of this increased ascending motion there
is less cloudiness over the continents, and therefore a greater
absorption of sofar radiation by the ground and a higher surface
temperature than in the interactive soif moisture case. The decrease
in the precipitation over the occans, they point out, is produced
by the increase in descending motion (or weakeaing of ascending
motion) over the oceans.

6.6

Summary and conclusions

Ali of the experiments show that the model simulated
climates are sensitive to the land-surface boundary conditions
which affect evapotranspiration. When soil moisture availability or
surface albedo are changed regionally (or globatly), changes in
the precipitation, the temperaturc and the motion ficld of the
atmosphere take place over the corresponding region (or over the
globe), which are clearly above the level of the natural variability
of the model simulated climates (those which are caused by the
shear-flow instabilities of the atmosphere).

(Whcther a change in the boundary condition of a given
region has a significant effect on the climate of some distant region
is not known. Such atmospheric *teleconnections’ are not self-
evident in these experiments: and, like other kinds of forcing from
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a distance, they require some kind of statistical analysis to separate
the signal from the background noise.)

Not only are the regional (local) influences large and con-
sistent from one experiment to another; they are also easily under-
stood, in physical terms, after the analysis has untangled the
non-lincar interactions. Thus we find, for example, that under some
circumstances an increase in the surface albedo reduces the
cloudiness and, in that way, increases (not decreases) the ground
temperature. Or, as another example, cutting off the evapotran-
spiration over Asia increases (not decreases) the Indian monsoon
rainfall, because it changes the orientation, with respect to the
Himalayan mountain barrier, of the moist boundary layer air
stream from the ocean. It is this kind of behavior, easily understood
after the fact, which is very difficult to anticipate beforechand.

Themagnitudes of thechangesin climate, which are produced
by modifying the soil moisture availability or the surface albedo,
as shown in these experiments, are about as large as the changes
produced by the seasonal change in the declination of the sun (and,
the author hazards the guess, larger than the changes produced by
the observed scasonal changes in occan-surface temperatures and
extent of the sea-ice). Itis very likely, therefore, that the land-surface
evapotranspiration process, whose time scale depends on the
magnitude of the soil moisture storage relative to the difference
between the precipitation and evapotranspiration rates, is the most
important boundary process that can produce anomalies in the
time-averaged state of the atmosphere (changes in climate) on the
monthly, seasonal and annual time scales.

A shortcoming of all existing general circulation models is
that they calculate the potential evapotranspiration with a formu-
lation which is appropriate for evaporation from an open water
bucket, but not from a vegetated surface (and, especially, not from
tall (forest) vegetation). (See, for example, Shuttleworth & Calder,
1979; and Sellers & Lockwood, 1981.) But, hopefully, this will be
corrected and future models will take into account the vegetation
influence on the water and energy transfers to the atmosphere in
a realistic way.
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Since this article was written, four additional papers have
appeared, all of which show that the atmosphere is sensitive to the
land-surface evapotranspiration.

Rind, D., 1982. ‘The influence of ground moisture conditions in
North America on summer climate as modeled in the
GISS GCM*. Mon. Wea. Rev., 110, 1487-94.

Rowntree, P. R. & J. A. Bolton, 1983. ‘Simulation of the atmos-
pheric response to soil moisture anomalies over Europe’.
Quart. J. R. Met. Soc., 109, 501-26.

Sud, Y.C. & M. Fennessy, 1982. ‘A study of the influence of
surface albedo on July circulation in semi-arid regions using
the GLAS GCM". J. Climatology, 2, 105-25.
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Yeh, T. C., R. T. Wetherald & S. Manabe, 1984. * The effect of soil
moisture on the short-term climateand hydrology change - a
numerical experiment’. Mon. Wea. Rev. (in press).
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Introduction

This is a brief review of what is now known about the
global distribution of precipitation: both the *“normal™ distn-
bution (i.c., the precipitation averaged over 3 number of years)
and time-series of the precipitation. Only the most recent
studies are explicitly covered. An historical account of earlier
studies can be found in Jaeger (1976).

1. Jaeger (1976) produced global maps, and a corres-
ponding machine-readable grided data set, which is the only
estimate we have of the normal monthly precipitation over
the entire globe.

Over the continents, the inputs were the published na-
tional and regional maps of normal monthly precipitation
(Jaeger, 1976, Table 3); supplemented, where there were no
maps, by station data from the World Weather Records (U.S.
Dept. Commerce) and other sources. In so far as the data al-
lowed, the thirty-year period, 1931-1960, was used: but
where this was not possible, other time intervals were ised.
The globe was divided into grid areas of 5° longitude by 5°
latitude and, reading from the various sources, the monthly
values of the continental precipitation, sveraged over the grid
areas, were recorded. From these averaged values, plotted in
the centers of the squares, the global maps of precipitation
were drawn by hand (Jaeger, 1976, Figs. 9-21).

Over the occans, Jaeger simply took the annual precipi-
tation, as given in the map by Geiger (1965), and distributed
that precipitation over the twelve months of the year in pro-
portion to the monthly percentage (requency of observations
reporting precipitation, as given, for each 5° by 5° square, in
the Marine Climatic Atlas of the World (U.S. Navy, 1955-65).
Thus, over the oceans, the annual precipitation is
the one given by Geiger (with the exception of some small
regions of the oceans adjacent to Indonesia, where Jaeger in-
creased the annual precipitation from about 2000 to 3000
mm/year.)

Geiger's distribution of the annual precipitation over the
oceans can be traced back to Schott. For the Atlantic Ocean,
Schott (1926) reworked the earlier analysis of Supan (1898)
in which the annual frequency of precipitation (the number
of days in the year with precipitation), as reported in the
logs of a large number of ships crossing the North and South
Atlantic and the Indian oceans, was multiplied by an average
precipitation intentity (the average amount of precipitation
per rainy day) as a function of latitude, as obtained from
measurements of rainfall made on s small number of ships.

For the annual precipitation in the Pacific and Indian
Oceans, Schott (1933, 1935) used not only the above des-
cribed frequency of precipitation muitiplied by the latitude-
dependent intensity of precipitation, but also extrapolated
directly to thc occans the observed annual amount of precipi-
tation at the necarest coastal and island stations.

Table 1
Present Status of Global Precipitation Estimates
Notmal Lime Scrict.
Monthly Secasonal Annual Weekly Monthly Seasonal Annual
| 1
1.3 contipents 1
(1976) <~ h |
Entire oceans 1
Globe: 2.
Baumgartner &
Reichel (1975)
3. Konzua, ed.
(1974
4. Korzun, ed.-.—l
. (1974) . Free Univ.
Continents 5. Bertin
only: Hsu & Wallace (1963-1981 |
(1976)
6. Reod & e g o ke 1 - L
Elliot: - Rao et al. o >t gt |
9 (1976)
Oceans (1979) (1972-1975
only: 7. Dorman ‘,—-—_ﬂ
Bourke
(1979,1981)
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{Jacger used the same method to divide the annual ocean-
ic precipitation into monthly amounts that Madller (1951) had
carlier used to obtain the seasonal (three-monthly) precipitation
amounts. Moller had available, at that time, only the seasonal
frequencics of oceanic precipitation, as given in the Atlas of
Qlimatic Charts of the Oceans, by MacDonald (1938).]

2. Baumgartner and Reichel (1975) show only the normal
annual precipitation over the globe. Over the continents they

used about the same input data sources as Jaeger (1976), but
they retained in their map much more of the spacial detail of
the original sources.

Over the occans some unspecified combination of the
global maps of Albrecht (1960), Knoch (1961) and Drosdov
(1964) was used; with an adjustment of the total ocean pre-
cipitation to 385 X 10% km3/year. This adjustment was
made on the assumption that the total continental precipita-
tion is correct, and the further assumption that the estimate
they had made of the total global evaporation is more reli-
able than any estimate that can be made of the total oceanic
precipitation.

3. Korzun (ed., 1974) presents the normal annual pre-
cipitation over the continents after correcting for three sys-
tematic mcasurement emors: wind-effect error (which entails
the largest correction), rain gauge wetting error, and rain
gauge evaporation error. (See, also, Rodda, 1971.) The total
correction varies with location, from about 10 mm to 200 mm/
year in absolute value, and from sbout 3% to 70% in relative val-
ue (Korzun, ed., 1974, Figs. 192, 19b.) The mean continental
precipitation without the correction was 725 mm/year; and
with the correction 800 mm/year. The input data sources
were national and regional maps, derived from observations at
sbout 42,000 stations; supplemented by about 18,000 addi-
tional stations. Thus, data from about 60,000 land stations
entered into the compilation of the global map. Where pos-
sible, the data was taken from, or reduced to the 80-year
period 1891-1970. The continental precipitation is shown
with somewhat less detail than that given by Baumgartner and
Reichel (1975). [At the present time, precipitation is mea-
sured at about 120,000 (unevenly distributed) land stations
over the globe.)

Over the vceans, the annual precipitation was calculated
from a new compilation of mean monthly precipitation fre-
quencies, in 5° latitude by 5° longitude squares, taken from
records in ships logs (for the period 1900-1964 in the Pacific
Ocean, and 1900-1969 in the Atlantic and Indian oceans),
multiplied by the mean annual intensity of precipitation (the
ratio of the total amount of precipitation to the total dura-
tion of precipitation. This field of the mean precipitation
intensity, which is shown on a global map (Korzun, ed., 1974,
Fig. 121), was made by extrapolsting to the ocean from the
measured duration and measured (and corrected) amount of
precipitation at the nearest of 426 island and coastal stations.
[This is essentially the same method that was used by Supan
(1898). It implicitly takes into account not only the effect

of the spatial variation of the air temperature, but also the ef-
fect of the different predominant weather types: giving differ-
ent weights to the convective showers in the intertropical con-
vergence zone and the western subtropical oceans, drizzle in
the eastern subtropical oceans, and rain from the cyclones that
move across the middle and high latitude oceans.] In addition
to this product of precipitation frequency and precipitation in-
tensity, Korzun (ed. 1974) extrapolated to the ocean directly
the measured (and comrected) precipitation amounts at 173
stations on small, low isiands. (See, also, Samoilenko, 1966).

4. Korzun (ed. 1974, Figs. 26, 35, 54, 66, 19, 88), us-
ing only 523 stations for afl of the continents (mostly stations
with long-term records), constructed maps of the percentages
of the normal annual continental precipitation that occur in
the four secasons of the year. Because of the small number of
stations used (65 for North America, 133 for Asia), only large
scale space variations are shown. Thus, whether it is so in
nature or not, according to this analysis the small scale features
which are seen on the annual precipitation map are features
that persist throughout the year.

5. Hsu and Wallace (1976) have produced an analysis of
the normal precipitation over the continents (and many islands
of the globe), which shows the normalized amplitude and phase
of the first two annual harmonics in the precipitation. They
used the precipitation data, for the period 1951-70, at about
700 of the 2000 stations in the World Monthly Surface Clima-
tological Data Set (which they obtained on tape from the Na-
tional Center for Atmospheric Research, Boulder.)

No information is given by the maps of the two annual
harmonics which is not implicit in the maps of monthly pre-
cipitation, as given, for example, by Jacger (1976). But some
characteristics of the time-space variation of the precipitation
are easier to sce (although others are more difficult to see)
when the normalized harmonics are displayed in this way.

6. Reed and Elliott (1979) produced maps of the normal
seasonal and annual precipitation for the Atlantic and Pacific
Oceans north of the equator, using as their input data the
monthly precipitation frequencies given in the revised volumes
of the Marine Qlimatic Atlas of the World (U.S. Navy, 1974,
1977). They divided the two oceans into tropical and extra-
tropical domains, with the dividing line at 20°N in the eastern
two-thirds, and at 30°N in the western one-third of each ocean.
North of this boundary (in the extratropical domain) they used
a conversion from monthly precipitation frequency to monthly
precipitation amount that changed from 0.31 (cm month™ ' %71)
in July and August to 0.36 (¢cm month™%1) in December
and January; and south of this boundary (in the tropical do-
main) they used a constant conversion of 1.0 (cm month~'%"!).
These conversion factors were derived by Reed and Elliott
(1977) and by Reed (1979) mainly from the work of Tucker
(1961) on ruinfall at land stations in Great Britain, and from
measurements of precipitation that were made in the castern
Pacific, between 60°N and 40°N and between 20°N and 2°S,
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in 1975-1976, by the ship *“Oceanographer™. Because of the
discontinuity in the conversion factor, the precipitation maps
show large discontinuities at the boundaries that separate the
two domains.

{When compared with the measured precipitation on ships
during GATE, in the summer of 1974, the calculated intertrop-
ical precipitation maximum in the eastern Atlantic is about
half as large as the measured maximum.]

7. Dorman and Bourke (1979, 1981) give the normal

scasonal and annual distributions of precipitation over the At-
lantic and Pacific Oceans, from 30°S to 60/70°N, as obtained
by the method of Tucker (1961) and a latitudederived cor-
rection for the sir temperature.

Tucker's method consists of assigning a given amount of
precipitation to the different present weather types (clear sky,
drizzle, showers, heavy continuous rain, etc.) that are listed in
the synoptic weather code. Tucker derived the precipitation
amount, for each category of the synoptic code that is assoc-
iated with precipitation occurring at the time of observation,
by correlating that synoptic code report with the measured
precipitation at some stations on the periphery of the British
Isles. Dorman and Bourke (1978a) examined the universal-
ity of Tucker's coefficients by using also coastal station data
along the periphery of the Atlantic and Pacific Oceans, from
south of the equator to about 75°N. They found that there
was a latitudinal bias related to the local air temperature:

i.c., rainfall was increasingly underestimated as air temperature
increased. They found that this effect was systematic and
could be corrected by empirical formulas for the annual, sea-
sonal and monthly averages. Dorman and Bourke (1979,
1981) use the Tucker method and those correction coeffic-
ients to obtain the scasonal and annual precipitation, for 2°
latitude by $° longitude rectangles, over the Pacific and Atlan-
tic oceans. The input data, for “present weather’” and air
temperature, were the synoptic observations taken by a wide
variety of ships of opportunity, for the period 1950-72 in the
Pacific and 1950-74 in the Atlantic, as provided by the mag-
netic tape data file maintained by the North Pacific Experi-
ment (NORPAX) group at Scripps Institution of Oceanography,
La Jolla. They also present maps of the normalized amplitude
and phase of the first two annual harmonics of the precipita-
tion, as derived from monthly mean precipitation estimates
(which are given, for the Pacific Ocean, in Dorman and Bourke,
1978b.) For the Pacific Ocean, some information is also given
about the diurnal variation of precipitation.

A detailed intercomparison and critical evaluation of these
various estimates of the normal annual and secasonal precipita-
tion distributions, though desirable, is beyond the assigned
scope of this review. We should, nonetheless, note that there
are large differences in these estimates, over the continents as
well a3 over the occans. Over large areas of the oceans some
of the estimates differ by a factor of two.

N\
8. The Free Univenity of Berlin (1963-198]), Institute of

Meteorology, has published an analysis of the precipitation distri-
bution over the northern hemisphere continents (and extending,
over Africa, to about 15°S) for each month since the summer
of 1963. The field is represented by isolines for scven cate-
gories of precipitation derived from a 30-year base period,
1931-1960. (Category 1 denotes that the precipitation for the
month is within the range of the amount that fell in the six
driest years of the base period; and § denotes that it is within
the range of the six wettest years of the base period. 0 de-
notes that it is less, and 6 that it is more than any precipita-
tion that fell during the 30-year base period.)

9. Rao et al. (1976) derived weekly (and also monthly,
seasonally and annually) averaged maps of precipitation over
the oceans, for the period 11 Dec. 1972 to 28 Feb. 1975,
from measurements with the Electrically Scanning Microwave
Radiometer on the polar-orbiting Nimbus-5 satellite. The theo-
retically derived calibration of the precipitation rate as 2 func-
tion of the measured microwave brightness temperature, for
different freezing levels, was verified in a ground-based experi-
ment in which upwardviewing microwave brightness tempera-
tures were compared with measured rainfall rates. In calculat-
ing the precipitation from the measured brightness temperatures,
they used one of three prescribed heights of the 273°K iso-
therm over the globe.

[The overall pattern and general magnitudes of the seasonal
and annual precipitation, as shown in these maps, conform
fairly well with the normal seasonal and annual precipitation
distributions given by Dorman and Bourke (1979, 1981).)
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Introduction

A general circulation model is a set of finite-difference ana-
logues of the equations that govern the changes in the state of the
atmosphere over the global domain. With given initial state and
boundary conditions, these conservation equations (for mass,
morentum, encrgy and water substance) are integrated numer-
ically to obtain the ficlds of the physical state variables: pressure,
velocity, temperature, water vapor and clouds. While doing this,
the calculations reveal the mass and momentum transfers, the
energy productions and energy conversions, and the compositional
change processes that control the distributions of the state vari-
ables. [For examples of such general circulation climate models,
and of climate simulations made with these models, see, respec-
tively, Chang (ed.), 1977, and WMO/ICSU, 1979].

Precipitation is not one of the physical state variables of the
atmosphere. Unlike water vapor and clouds (or snow on the
ground and moisture in the soil), it is not part of the atmospheric
(or ground) composition field. Precipitation is a process that
changes the composition field.

There are two ways in which global precipitation measure-
ments can aid in the development and use of general circulation
climate models:

(1) precipitation measurements can verify the calculated
precipitation and, thereby, help improve the calculation of the
thermal forcing that produces the large scale atmospheric circu-
lation; and

(2) precipitation measurements can be used to initialize one
of the very important physical state variables of a climate model,
the soil moisture.

1. Global Measurements of Precipitation for Verifying and
Improving the Thermal Forcing of the Atmosphere

The large scale motions of the atmosphere are produced by
horizontal differences in the heating of the atmosphere. It is the
horizontal gradient of heating that generates available potential
energy, which adiabatic processes convert into the kinetic energy
of the large-scale motions (Lorenz, 1955).

Figure 1 shows an example of the time-averaged and zonally-
sveraged heating in a climate simulation with a general circulation
model. The top three panels show, respectively, the heating pro-
duced by solar and long wave radiation, by large scale condensa-
tion, and by cumulus condensation and convection. The bottom

panel shows the heating by all of these processes, together with the
sensible heat transfer from the underlying land and ocean.

We see that radiation produces much smaller horizontal gra-
dients of heating than the two kinds of condensation heating.
It is especially the strong horizontal gradient of the heating by
cumulus condensation and convection in the tropics that forces a
strong divergent motion field within the tropics and subtropics.
This motion field, by subsidence and horizontal advection of heat
into the subtropics, produces the mid-latitude baroclinic zones;
and, in turn, these bardclinic zones supply the available potential
energy for generating the extratropical wave—cyclones. (What the
figure does not show is the very large longitudinal variation of the
cumulus condensation heating in the tropics, which also affects the
circulation.)

The ability of a general circulation model to simulate (and
predict) climate will, therefore, greatly depend on how well the
model simulates the heating of the atmosphere; and especially, on
how well it simulates the heating by cumulus condensation and
convection.

It would be ideal if measurements could reveal how the hori-
zontal distribution of the release of the latent heat of condensation
varies with elevation. But even if we can only measure the hori-
zontal distribution of the total latent heat release, as evidenced by
the precipitation that reaches the earth’s surface, that would be
very useful. It would be sufficient to know the precipitation aver-
aged over a day; averaged over areas comparable to the grid-areas
of the general circulation models [which presently are about (200
km)? to (400 km)2, but by the end of this decade will probably be
(50 km)2 to (100 km)? ] ; and with an accuracy, in this time- and
space-average, of about 0.5 mm/day (which, for the regions of
above average precipitation, is an accuracy of about 10%).

It would be helpful if, concurrent with the precipitation mea-
surements, there were also measurements of the distribution of the
cloud top heights (and, especially, of the cumuliform clouds,
which convect the released heat upwards.)

2.  Global Measurements of Precipitation for the Initialization
of Soil Moisture

A review and intercomparison of a number of climate sensi-
tivity experiments, made with different general circulation models,
shows that the simulated fields of temperature, motion and pre-
cipitation greatly depend on the soil moisture, and that this de-
pendence has a time scale of several months (Mintz, 1981.) It is,
therefore, of utmost importance for climate simulations and
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Fig. | Zonally-averaged heating of the atmosphere, in January, as calculated
in a numerical simulation experiment (Schlesinger and Mintz, 1979). Solid

line contour interval is 0.5°C day’l . Top panel: Solar plus longwave radia-
tional heating. Second panel: Large scale condensation heating. Third pane] :
Heating by cumulus condensation and convection. Bottom panel: Total heat-
ing (sum of the first three panels, plus sensible heat transfer from the under-

lying land and ocean.)
climate predictions to know the amount of moisture in the g = (W, W®) 3
soil. ’
and
One way of determining the amount of moisture in the soil
is by integration of the s0il moisture continuity equation. In its Ep = Ep (). 4)
most simple, but non-trivial form, this can be written !
% =P—-E, Wiax = W° (1)  Here, W is the amount of evapotranspiration-available moisture in
the soil, W* is the maximum available moisture that the oil can
where hold, P is the precipitation rate, E is the rate of evapotranspiration,
B is the evapotranspiration coefTicient, Ep is the rate of potential
E = fE, (2)  evapotranspiration, and T is the temperature of air near the surface.
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Figure 2 shows an example of the calculated soil moisture
obtained by cyclic integration of equation (1) over the year, when
P is the normal observed precipitation; W® is 1§ sm/cmz; g =
1- exp“‘wlw.) when P< Ep,and §= | when P> Epiand
Ep is obtained from the empirical formula of Thomthwaite, using
the norma) observed surface air temperature. (See Mintz and Sera-
fini, 1981).

One can also use this method to initialize the soil moisture
distribution in real time. [See, for example, Louic and Pugsley,
1981.] The global precipitation measurements that are required
are a continuous time series of the measured daily (or weekly)
precipitation, averaged over the computational grid areas, and
with about 10% accuracy in the time and space averages. This
precipitation, together with the calculated potential evapotrans-
piration, will produce a real-time distribution of the soil moisture.

3. Global Measurements of Detained Surface Water, for the
Initialization of Soil Moisture

In the preceding section, the measured precipitation was
used to obtain the infiltration of water into the soil. But there
may be a better way of determining the infiltration.

Consider the water balance for the small horizontal region
shown in Figure 3, where z, denotes a level that is a few centi-
meters below the surface of the soil. Then we can write,

P-1

4

d
a'(w>z°) = 20~ Rozg ~ E>zg -

where Wy, 20 is the amount of moisture in the soil above the level

2o, together with any water that is on the surface; P is the rate of
precipitation; 'lo is the rate of infiltration at the level z,; R>To

is the rate of runoff above the level 25; and E,,  is the rate of
evaporation of the soil moisture and water that are above the level
Zo- ( Ezzo is the rate of evapotranspiration of the soil moisture
that is below the level 29; and which, for the most part, is removed
by the vegetation.) R>lo is the surface runoff into rills whose
horizontal spacing is several times larger than the depth of the
plant root zone. This is water which will not be available for eva-
potranspiration.

We will cal! W>,0 the “detained surface water™. (It is the
water that gets your shoes wet when you walk across a field after
the rain has stopped.) It is, perhaps, the water that can be mea-
sured from space by microwave radiometry (Schmugge, 1980).

Although R> and F’>zo are functionsof W, . for the
purpose at hand we need only be concerned with the dependence
of |zo on W> . For example, if the measured W>l° is less than
the ficld capacity of the soil above level 2, there will be no infil-
tration. If the measured Wy, ,  is larger than ficld capacity, there
will be infiltration. The task will be to measure W>l° and to
know the function

Izg = lag Wozge--9 s 5)
as 1, will depend not only on \V>,o but also on the propertics
of the soil and its antecedent wetting.

In other words, the surface of the earth and the top few centi-
meters of the soil would be used as a remotely-sensed “leaky rain
gauge”. There will be a discontinuity in the “leakage rate” when
W>lo changes from being less than to being greater than the field

i |
I I |
e
| |

Fig. 2 Soil moisture available for evapotranspiration, in mid-July, as calculated from the observed antecedent rainfall and
estimated potential evapotranspiration (Mintz and Serafini, 1981). Units: gm/cm? . Maximums= ISg'nlcm2 (=150mm depth

of water.)
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Fig. 3 Concept of the remote sensing of the earth’s surface,
treated as a “leaky rain gauge”. Measurement of the transient
water within the top few centimeters of the soil is used to calcu-
late the infiltration into the underlying soil.

capacity of the soil above level z,,. In addition, if we measure the
time rate of change of W>,o ,aswell asW,,,  itself, on some
occasions immediately subsequent to rainfall events, but at times
of the day when the evaporation is negligibly small, and under
various conditions for the ratio (l>z°/R>,°), we may be able to
determine the function l,o (W>,° A X

The requirement will be to measure W, ;| accurately
enough, and frequently enough, to determine the total daily area-
averaged infiltration with an accuracy of about 10%. In this re-
spect, there may be a practical advantage in measuring the detained
surface water, W>,o , instead of measuring the precipitation, P.
To obtain the daily precipitation to an accuracy of 10% may re-~
quire measurements of the precipitation every few minutes. But
to obtain the daily infiltration to an accuracy of 10% may require-
measurements of \V>,_° only every few hours.

Addendum

The above discussion was addressed to general circulation
model development and the use of such models for climate simu-
lations and climate predictions. It was not addressed to the use
of general circulation models for short and medium range weather
predictions, where the accuracy of the initial state of the motion
field is important.

Dr. Norman Phillips has pointed out that global measure-
ments of the precipitation, which would provide information
about the horizontal distribution of the condensation heating,
may make it possible to use the method of nonlinear normal
mode initialization to obtain the motion field in the tropics,
where there is 2 strong interaction between the low level velo-
city convergence and the heating by cumulus condensation and
convection. This, in tum, will influence the prediction of the
motion and weather fields in the extratropics.

It may also be possible to do this when the initialization
method is fourdimensional data assimilation. (See, for exam-
ple, Miyakoda et al., 1976; Ghil, et al., 1979). At present,
because of inadequate wind observations in the tropics, it is
largely the model predicted heat of condensation that forces
the circulation and is the main factor in initializing the motion
field in the tropics. With measurements of precipitation, we
would replace the model produced condensation heating with
the true condensation heating and, thereby, obtain a better
initialization of the tropical motion field.

Whichever initialization method is used, the requirements
are not less than 12-hourly (and preferably 3-hourly) measure-
ments of the precipitation, averaged over the computational
grid areas, and with an accuracy of about 10%. If there must
be a choice (as in the satellite orbit) between 12-hourly global
coverage and 3-hourly tropical coverage, it is the latter that is
to be preferred for the motion field initialization.
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ABSTRACT

Monthly normal soil moisture is obtained from the time integral of

% w p_E, W _ =W |
dt mx

E = 8E,

where ¥ is soil moisture and E is evapotranspiration. P is observed monthly
normel precipitation; Ep is the botential evapotranspiration rate as eétimted
from observed monthly normal surface air temperature, using the method of
Thornthwaite (1948); and W* is the maximum available mlstur_e that the soil
can hold, taken as 150 mm (in equivalent water depth.) 8 is an empirical func-
tion which relates the evapotranspiration ratio (E/Ep) to the soil moisture
ratio (W/W*), and is taken as 8 = 1 exp~6-8(W/¥*} ag adapted from Nappo (1975.)

Starting from an initial state in which W is zero on an arbitrary calendar

day of the year, the governing equation is integrated forward in time until a

steadily seasonally varying state is reached. The calculation is made at

intervals of 5; of longitude and 4° of latitude; and the resulting field of
soil moisture is shown on global maps, and in tables, for the middle of each
calendar month. (The values of W and E at the beginning and in the middle of

each month, as well as the input parameters, monthly mean P and Ep, are available

on magnetic tape.)
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1.1 Governing equation for soil moisture.

The calculation of soil moisture from observed precipitation and an
estimated potential evapotranspiration was first proposed and carried out by
Thornthwaite (1948). Expressed in our present notation, he did this by taking

the time integral of

W

31:=s1’-13,wmax=w"c , (1)
where

E = E; x B (W, W) , : (2)
and

Ep = Ep (TA9 h) , (3

where W is the available moisture in the root zone of the soil (the moisture in
excess of the amount at the wilting point of the vegetation); W* is the differ—
rence betwen the soil moisture at field capacify and at the wilting point; P is
the rate of precipitation; E 1is the rate of evapotranspiration; Ep is the
potential evapotranspiration (the evapotranspiration when the vegetation is not
under any water stress); B is the function which relates the ratio (E/Ep) to

W and W*; T, is the surface air temperature, averaged for a day or more; and

h is the duration of daylight.

1.2 Potential evapotranspiration, E,.

Thornthwaite knew that the potential evapotranspiration is principally
dependent on the net radiational heating of the vegetation and, to a lesser
extent, on the drying power of the air (its wind speed, temperature and relative
humidity.) He beliéved, however, that it would be a very long time before either
measurements or dependable calculations of the radiational heating would be

available from more than just a few experimental sites and, therefore, that the



\

required information on the radiational heating would simply not be available
for a climatology of the terrestrial water cycle.

25 years later, De Jong (1973) made a comprehensive review of what is known
about the net radiational heating of the earth's éurface and reached the same
conclusion: namely, that the existing radiation measurements and radiation
calculations were insufficient for calculating the surface water balance over
the global (or even single continental) domain(s).

Priestley and Taylor (1972) made a strong recommendation that the mapping
of daily net radiation at the surface of the earth, on a space scale of several
hundred kilometers, be made part of the Global Atmospheric Research Program éGARP).
This would not be difficult, they said, because “"the problem of sampling and
representativeness of net radiation is notAdifferent in kind from those encountered
with the accepted basic elements near the surface (temperature, wind, rainfall,
etc.) and the typical accuracy of a good net radiometer, about 5 percent for
daily totals, is more than adequate.” But, unfortunately, this was not included
in the First GARP Global Experiment (FGGE).

As a substitute for making the potential evapotranspiration depend on the
net radiation at the surface, Thornthwaite (1948) proposed that Ep be made a
function of the surface air temperature, which is a widely available measurement,
and the duration of daylight. To this end, he compared the measured monthly
evapotranspiration with the measured monthiy mean surface air temperature at
a number of well-watered drainage basins and grass-covered lysimeters in the

central and eastern U.S., and obtained as the regresion of Ep upon Ty,
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= 0, when Ty < 0°C
a o
Ep = 16 L (10 T,/D? 0 < Ty < 26.5°C  (4)
-1
(ma/month™=) = - 415.85 + 32.25 T, - 0.43 T, , T, > 26.5°C
12

where 1 ): (TA/5)1.514 ,
1

a = (6.75 x 107 13) - (7.71 x 1075 12)
+ (1.79 x 1002 1) + 0.49 ,

and L = (D/30)(h/12) ,

where D is the number of days in the month and h 15 the number of hours of day-
light. (When used to evaluate I, Tp is the mean temperature in each month
of the year.)

This way of determining the potential evapotranspiration, wrote Thornthwaite
and Hare (1965), is "... only an approximation, to be replaced whenever a fully
rational predictor of Ep becomes available. 1Its success depends on the fact
that the mean air temperature does, to a considerable extent, serve as a parameter
of the net radiation ...".

Comparison field studies,;;s reported by Makkink (1957), Pelton, King and
Tanner (1960), Stanhill (1961), Stephens and Stewart (1963), Smith (1964), Stern
and Fizpatrick (1965), Jensen (1966), Jones (1966), Omar (1968), and McGuiness
and Bordne (1972), show that the monthly potential evapotranspiration calculated
with Eq. (4) does not greatly differ from the potential evapotranspiration which

is calculated from a local radiation measurement, or which is obtained from a

lysimeter measurement.



1.3 Evapotranspiration coefficient, B.

Thornthwaite (1948) initially assumed that the evapotranspiration rate
would be the same as the potential rate as long as there is any extractable

moisture in the soil, at which point the evapotranspiration would abruptly

= 1, when W > 0,
B (5)
= (), when W = 0.

stop, or

Later, Thornthwaite and Mather (1955) assumed that the ratio of E to Ep

varies linearly with the amount soil moisture, or

g = ¥W_ (6)

For the present study, we will use the relationship between (E/Ep) and
(W,W*) which we have taken from the analysis -by Nappo (1975) of field measure-
ments made by Davies and Allen (1973). In the field study, during a summer in
southernmost Ontario (44°N), the energy balance/Bowen ratio method was used to
obtain the rates of evapotranspiration from two adjacent (122 m x 67 m) plots
of perennial rye grass, growing in a sandy loam soil. One of the plots was
irrigated and, therefore, the moisture in its soil taken to be at field capacity.
Nappo let the ratio of the evapotranspiration from the nonirrigated field to
that from the irrigated field, both taking place under the same atmospheric
conditions, be (E/Ep), and plotted this ratio against n, the measured volumetric
soil moisture content in the upper 5 cm of the non-irrigated field. This is
shown by the data points, and with his exponential curve of best fit, in Fig. 1.
What we have done is to assume that the grass cover, by shielding the soil from
the sun, has made the soil moisture density constant with depth over the root
zone and, therefore, that (W/W*) = (n/npax), as shown along the upper abscissa

of the figure, which gives us
B=1- e6B(H/NK) )

-4~
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Fig. 1 Evapotranspiration ratio, E/Ep, as a function of

the soil moisture ratio, W/W*,

Data points and exponential curve of best fit, !Z/IZp -1 exp-56'6“,

from Nappo (1975), was obtained from measurements of E, Ey and n by
Davies and Allen (1973). Relationship assumed for the present study
is E/Ep =-1- exp-6'8(w/"*).

Measurements were made in adjacent nonmirrigated and irrigated
fields of perennial rye grass, in southern Ontario (42°N), in June—
September 1971. )E of the non-irrigated fleld and By (= XEP) of
the irrigated field were obtained from the measured radiation, air
temperatures and humidities, using the energy balance/Bowen ratio method.

n is the volumetric soil moisture content of the non~irrigated field

and was obtained by weighing samples form the upper 5 cm of the soil.

(Figure after Nappo 1975.)



Fig. 2 Fig. 2 shows that the evapotranspiration coefficient, B, given by Eq. (7),
is closer to Thornthwaite's initial (1948) assumption than to his later assump—
tion, That evapotranspiration remains close.to the potential rate over some
broad range of the soil wetness, W/W*, is now generally accepted (see, for example,

Miller, 1977, 1981; Shuttleworth, 1979; Brutsaert, 1982).

1.4 Soil moisture storage capacity, Wk,

a. W* from the soil properties and depth of the plant roots.

The soil moisture storage capacity, W*, can be obtained by taking the ver-
tical integral of the volumetric soil moisture storage capacity, w*, over the
effective depth of the roots of the plants.

Table 1 Table I shows the volumetric field capacity, wg.; volumetric wilting point,
Wyp, and volumetric soil moisture storage capacity, w* (= wge - wwp), of the
different soil types, arranged in order of decreasing soil particle sizes (from
Smith and Ruhe, 1955.) We see that w* is about (0.15 + 0.03) gn/cm3 for all
soil types except fine sand (which, in any event, rarely is found with naturally
growing vegetation.)

What has a larger variation with space (and, in the case of the annual
plants, also a large variation with time) is the effective depth of the plant
roots.,

Fig. 3 Figure 3 shows the soil moisture sampled across a line of oak trees in a
fallow field (from Miller, 1977; after Rode, 1969.) Away from the trees, the
soil moisture is depleted to a depth of about 30 cm. Under the trees, the mois-
ture is depleted to a depth of about 150 cm. Therefore, if w* = 0.15 gm/cm3,

W* will be about 45 mm (in water depth equivalent) away from the trees, and
225 um under the trees. These are also characteristic of the values of W* for

very short (herbacious) vegetation and for tall (woody) vegetation, generally.

-5-



A N

ORIGINAL DAl o=
OF POOR GUALITY

wiw*

Fig. 2 Evapotranspiration ratio, E/Ep (= B), as a function of
the soil moisture ratio, W/W*:
A: Thornthwaite (1948.)

B: Thornthwaite and Mather (1955.)
C: Present study.



TABLE I

Water Holding Properties of the Soils (gm/cm3)

Soil type VEe Vup wr = (vge = wyp)
fine sand 0.125 | 0.033 0.092
fine sandy loan 0.217 | 0.067 0.150
loam 0.267 | 0.100 0.167
silt loam 0.292 | 0.117 0.175
clay loam 0.317 | 0.150 0.167
clay 0.333 | 0.208 0.125

Average w* for all soil types = 0.146

Wfe: volumetric field capacity. (Maximum amount of moisture that can be held
in the soil against the force of gravity.)

Wyp: Volumetric wilting point. (Value below which moisture cannot be extracted
from the soil by the roots of plants.)

wk = wg.o - wwp): volumetric soil moisture storage capacity. (Maximum available
soil moisture.)

from Smith and Ruhe (1955)
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Fig. 3 Soil moisture (percent) sampled across a line of oak trees

in a fallow field. (From Miller, 1977; after Rode, 1969.)



"Depletion of soil moisture by woody vegetation, which usually is deep rooted,
reaches a large total over a year because the trees or shrubs experience fewer
days of limited moisture supply than does herbacious vegetation. Green trees
amid an expanse of baked, sundried grass are a familiar sight, representing
continued availability of soil moisture at depth greater than grass roots can
reach”. (Miller, 1977, p 224).

The depth to which roots extract soil moisture is greater than what one might
think by just looking at the vertical profile of the root length density. This
can be seen in Fig. 4, which shows the results of a numerical simulation of the
extraction of soil moisture by roots (Hillel, 1977, pp 168-189.) In the simula-
tion, the transpiration rate was prescribed as 10 mm/day, with a sinusoidal
diurnal variation; the surface evaporation rate as 2 percent of the transpira-
tion rate; the initial volumetric soil miosture as equal to 0.25 gm/cm3 at
all depths (which is the volumetric field capacity of a loam soil): the total
root length as 10,000 m of roots per m? of field, with the vertical distribution
as shown on the left in Fig. 4; and a state of stress on the hypothetical
plant, producing wilting, when the crown potential falls to -30 bars.

The curves on the right, in Fig. 4, show the depletion of the soil moisture
from O to the end of the 10th day. On the 1llth day, wilting began. We see that
about 95% of the roots are less than 30 cm deep, but about half of the moilsture
extracted by the roots is from below 30 cm; which is to say that the "effective
depth™ of the roots is about twice as large as their apparent depth. W* is

about 100 mm, even though most of the roots are less than 30 cm cm deep.

b. W* from the drawdown to the wilting point.

There have been a few field studies where the soil moisture budget equation,
Eq. (1),was used. to obtain Wk,
When we take the integral of Eq. (1) from a time t,, when W = W*, until a

-7
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Fig. 4 Numerical simulation of the extraction of soill moisture by

the roots of a field crop.

Panel on the left: prescribed root length density as a function
of depth.,

Panel on the right: cumulative extraction of soil moisture as
a function of depth, at intervals of 2 days. Wilting phase

started on the 1l1lth day.
(From Hillel, 1977.)



Fig. 5

time t;, when E = 0 (and, therefore, W = 0), we obtain
t1
o-wt=[ (P-E) 6t . (6)
to

The starting time, t,, must be one preceeding which there has been sufficient
rainfall (or irrigation) to assure us that W = W*, and there must be reliable
measurements of P and E. |

An example of this kind of running budget of soill moisture is shown in
Fig. 5 (from Miller, 1977; after Chang, 1963.) For example, on 14 September
the field of sugarcane was irrigated, making W = W*, and on 7 October the
measured evapotranspiration became zero. Over that time period, therefore,

t1
W= [ (E-P) 6t ~62 mm,
to

as also over the other periods shown in the figure. 1In this example, the
measured rate of evapotranspiration (of 4 to 5 mm/day) remains almost constant
while approaching the zero value of W. This means that the evapotranspiration
coefficient, B, is more like curve A than curve C of Fig. 2. é

Priestley and Taylor (1972) give other examples of W* obtained in this
way with field crops; with W* varying from about 95 mm to 230 mm (all of the
values being larger than what one would expect from the apparent depth of
the roots of those crops.)

W* has not been obtained for tall (forest) vegetation in this way because

there have been no realiable measurements of the evapotranspiration from a forest

over a drawdown to the wilting point.

For the present study, we will use W* = constant = 150 mm; this being
about the average value for all kinds of vegetation. It is also the value of
W* that 18 used in many atmospheric general circulation models with interactive

s0il moisture (Carson, 1981.) Initially, Thornthwaite (1948) used W* = 100 mm;
_8_
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Fig. 5 Drawdown of soil moisture at Waipio, Oahu.

Daily rainfall is shown on the lower graph. Replenishment of
soil moisture, by irrigation, is shown by the vertical dashed lines
on the upper graph. Days of moisture stress (in October and November)
indicate zero available soil moisture.

(From Miller, 1977; after Chang, 1963.)



Fig. 6

later, Thornthwaite and Mather (1955) used 300 mm. Louie and Pugsley (1981),
who have been producing time-series of weekly soil moisture maps for Canada,
let W* vary with location. Their values of W* range from 100 mm to 280 mm;

which they make depend not on the type of vegetation, but on the type of soil.

1.5 Calculation procedure.

In our calculation of the evapotranspiration and the soil moisture, we
use the monthly mean values of P and Ej (expressed in units of mm/day) in the

following finite-difference analog of Eq. (1),
Wg = Wg-1 + P~ Ed) . Wa S_W* 7
Eg = E, (1 - e 68Ny 1 /W)y (8)

where Wy is the soil moisture at the end of day d, Wq.; is the soil moisture at
the end of the preceding day; Eq is the evapotramspiration during day d, and P
and E até the monthly means ofzﬁgéerved precipitation and estimated potential
evapotranspiration (expressed in units of mm/day.)

If at the end of day d Wy exceeds W*, then Wy is set equal to W* and the
surplus is set aside as that days contribution to the annual runoff. Fig. 6 is
a schematic of how W and E depend on P and Ep, and on each other.

The soil moisture was initialized by assuming that,at every gridpoint, W3-
was equal to zero on 1 January of an arbitrary year. Using the fields of P and
Ep described in the next seétion, the calculation with Eqs. (7) and (8) was
carried forward, in one day time steps, until at every gridpoint the difference
between Wy on the same calendar day of two successive years was smaller than

0.01 mm. The convergence of the solution was acheived when the calculation had

gone through seven annual cycles.
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SOIL MOISTURE EVAPOTRANSPIRATION
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Fig. 6 Schematic of the relationships between the governing equations

and the parameters

P: precipitation,

EP(TA,I,h): potential evapotranspiration ,
E: evapotranspiration,
W: soil moisture.



Fig. 8

1.6 The prescribed forcing fields, P and E,.
~—F

a) Precipitation, P.

For precipitation we used the normal monthly mean precipitation given
by Jaegger (1976). From each of his monthly maps he obtained, and has kindly
made available in machine readable form, the average precipitation for each 5°
latitude by 5° longitude square. We have interpolated the precipitation values
from the 5° by 5° grid to the 4° latitude by 5° longitude grid, which is the
grid used by the GLAS atmospheric general circulation model. The precipitation
fields for January, April, July and October, as machine analyzed from the 4°

by 5° data set, are shown in Fig. 7.

b. Potential evapotranspiration, E,.

Ep wa§ derived from the normal monthly mean surface air temperatures, using
Eq. (4). The temperatdtes were obtained by interpolation from the NCAR (197))
global data set of monthly normal surface air temperatures, averaged for 5°
latitude by 5° longitude areas. The potential evapotranspiration fields for

January, April, July and October are shown in Fig. 8.

1.7 The calculated fields, E and W,

a. Evapotranspiration, E.

The calculated evapotranspiration fields for mid-January, -April, -July

and -October are shown in Fig. 9.

b. Soil moisture, W.

The calculated fields of soil moisture, expressed as the soil wetness ratio,
(W/Wx), are shown for mid-January, —-April, -July, and -October in Fig. 10. The
mid-monthly fields of (W/W*), for all months of the year, are given in numerical

form in the Appendix, Tables A.I through A.XII.

-10-
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(W/W*), at the beginning of each month and at the middle of each month,
has also been recorded on magnetic tape; together with the evapotranspiration
rate, E, at the beginning and at the middle of each month. Also on the tape are
the monthly mean forcing fields: P, T,, and Ep (Tp, I, h). Copies of the tape
can be obtained from the Branch Head, Global Modelling and Simulation Branch
(Code 911), Laboratory for Atmoshperic Sciences, NASA Goddard Space Flight

Center, Greenbelt, MD, 20771. Tel: (301) 344-7482.
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ABSTRACT

The spacial and seasonal variations of the continental fields of
snowcover, soll moisture and evapotranspiration are presented and
interpreted. The fields were obtained from a water budget analysis
that is based on observed monthly normal precipitation and an éstimate
of potential evapotranspiration derived from observed monthly normal
surface alr temperature, following the method of Thorntgwaite. The
month-by-month local water budget analysis was made for 13,332 station
records over the globe, and then spacially interpolated to regular
grids at 1° by 1° and at 4° by 5° latitude-longitude intervals. From
the monthly fields in the 4° by 5° grid the annual mean and the first
and second annual harmonics were extracted and are displayed on global
maps. df the three filelds, the soil moisture has the largest space-time
variation; the snowcover depth the most coherent distribution; and

the evapotranspiration an intermediate level of variation.
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I. THEORY, CALCULATION PROCEDURE, AND INPUT DATA

1.1 Soil moisture budget, and potential evapotranspiration as a function of

surface air temperature, following Thornthwaite.

Almost four decades ago, Thornthwaite (1948) formulated a fairly simple
way of estimating the soil moisture and evapotranspiration from observed preci-
pltation and a potential evapotranspiration which depen&s on observed surface
ailr temperature; and, a few years later, he began the colléction of a global
data set of observed normal monthly precipitation and surface air temperature
from which the terrestrial seasonal water cycle could be calculated.

When expressed in the notation we use today, Thornthwaite's governing

equations for the soil moisture and evapotranspiration were

W _ - -

= - P-E, Woax = W% (1)
E = Ep;xB (W, W*) . (2)
E, = Ep (Ta, h) , (3

where W is the available moisture in the root zone of the soil (the moisture
in excess of the amount at the wilting point of the vegetation); W* is the
difference between the soil moisture at field capacity and at the vegetati&n
wilting point; P 1is the rate of precipitation; E is the rate of evapotrans-
piration; Ep is the potential evapotranspiration (the evapotranspiration when
the vegetation éover_is not under any water stress); B8 is the function which
relates the ratio (E/Ep) to W and W*; T, is the surface air temperature,

averaged for a day or more; and h is the duration of daylight.



Thornthwaite proposed that Ep be made a function of the surface air
temperature, which 1s a widely available meterological measurement, and the
duration of daylight. To this end, he compared the measured monthly evapotrans-
piration with the measured monthly mean surface air temperature at a number of
well-watered drainage basins and grass—covered lysimeters in the central and

eastern U.S., and obtained as the regression of Ep upon Ty,

r~ = 0, when Tp < 0°C
E, { = 16L@10T1,/D? , 0 < T, < 26.5°C (&)
(mm month~l) -
1 = - - 2 0
| = - 415.85+ 32.25 T, - 0.43 7T, , T, > 26.5°C
12
where 1= ) (/5314
1
a= (6.75 x 1077 13) - (7.71 x 1075 12)
+ (1.79 x 1072 1) + 0.49 ,
and L = (D/30)(h/12) ,

where D is the number of days in the month; h is the number of hours of daylight;
and, when used to evaluate I, Tp is the monthly mean temperature of each month

of the year.

1.2 Evapotranspiration coefficient, 8, and soil moisture storage capacity, WX,

Thornthwaite (1948) initially assumed that g = 1, (E = Ep), as long as
there is any available soil moisture, and that 8 = 0, (E = 0), when the soil
moisture is at the vegetation wilting point. He also assumed, initially, that
W*, the maximum moisture storage capacity of the soil, was effectively constant
with respect to the various plant and soil type combinations, with W* = 100 mm

of equivalent water depth.



Later, Thornwaite and Mather (1957) assumed that E = Ep (W/W*); and they
let W* vary from 50 to 400 mm, depending on soil and vegetation.
In the present study, we will follow Mintz and Serafini (1984), and let
E=E, (1- e 6-8(Wp_ ) /W¥)y (5)

where the subscript D denotes the day of the month, and W* = 150 mm.

1.3. Snowcover budget, and rate of snowmelting.

Thornthwaite treated all precipitation as if it were 1mﬁed1ate1y available
for storage in the soil and, therefore, he did not keep a separate budget for
snowcover. In the present study, we maintain a separate budget for the snowcover
in thé~follow1ng simple way.

When the monthly mean surface air temperature, T, is equal to or warmer
than -1°C, the precipitation for the month is taken as rainfall, P = Pf, When
T, is colder than -1°C, the precipitation for the month is taken as snowfall,

P = Pg. Because our’ records are of monthly precipitation and monthly mean
temperature, we take PT and PS as constant over the month; and for the day-to-
day calculation of the snowcover and the soil moisture, we let Pgnand P be
the monthly mean precipitation rates (in units of mm/day.)
We take the daily snowmelt, in mm/day, as
Mp = 2.63+ 2.55 T, + 0.0912 T, Pg, My min = O

(6)

= (uS s
MD,max B (wd-l + Pa) ’

where Ty is in °C.

Comparison of Eq. (6) with the data from which it was derived -—- data
from three dissimilar drainage basins and 113 sets of observations, Anderson
(1973), Pysklywec et al. (1968), and Storr (1978) -- shows a moderately good

fit: RMS error = 6.62 mm/day and r2 = 0.59.

-3



The snowcover depth at the end of day D (in equivalent depth of liquid water)

is

wg = wg_l + Pg - My (am), (7

where wg_l is the snowcover depth at the end of the previous day.

1.4 Calculation procedure,

The calculation begins with Eqs. (6) and (7), the calculation of the
snowmelt and snowcover depth. Then, the finite difference form of Eq.'(l) is

used, with P§ plus My replacing P, to obtain the soil moisture,
- *
Wp o= Wp o+ (BR 4 My - By (1 - e 6By g w8

Whenever Wp exceeds W*, the excess is set aside as the surplus (Sp) for
day D.

The soil moisture was initialized as being zero, everywhere, on 1 January,
and the calculation, with Eqs. (6), (7), and (8), carried forward in time, by
iteration, until the change from year to year (from one January lst to the next
January 1lst) became negligibly small, The snowcover and the soil moisture
values that are recorded are those at the end of the fifteenth day of each
month. The evapotranspiration, Ep, that is recorded (the last term in Eq.

8) is the total for the month.

1.5 Global records of monthly normal precipitation and surface air temperature.

The collection of records of observed monthly precipitation and monthly
mean surface air temperature that was begun by Thornthwaite, was continued by
Mather and Willmott. This data set provides the normal monthly values of preci-
pitation and surface air temperature at 13,332 locations over the globe (Willmott

- Fig. 1 et al., 1981). The station locations are shown in Fig. 1.

/-
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Fig. 2

II. SEASONAL WATER CYCLE

From the solutions at each of the 13,332 station locations, wg, Wp, and
Ep were spacially interpolated to the nodes of the 1° latitude by 1° longitude
grid. The interpolation was made using the method described by Willmott et al.
(1984), except that the number of stations which influenced a grid point was
held constant at 10. This damps the spatial variance where the stations are
widely separated, and accentuates the variance where the stations are close
together. Here, to preserve map clarity, we show the fields only for the subset

of the interpolations at the nodes of the 4° latitude by 5° longitude grid.

2.1 Snowcover depth.

As seen in Fig. 2.A, the annual mean snowcover depth ;E (given in mm water
depth equivalent), shows a general increase with latitude. Over eastern North
America, there is a greater than average depth for the latitude as a consequence
of its large precipitation_and low monthly mean air temperature in winter. Over
the Rocky and Ural mountains, one sees the effect of the enhanced orographic
precipitation combined with low air temperature.

The root—meamsquare of the deviation of the monthly mean snowcover depth
from the annual mean in shown in Fig. 2.B. Over most of the northern hemisphere,
the snowcover completely melts in summer and, therefore, 33 is roughly colinear
with‘ag, because WSD is bounded on the low end by zero. Along the east coast
of North Ametica; the seasonal variance increases with latitude to about 50°N,
and then oS5 begins to lessen with the latitudinal decrease in the winter
precipitation and the shortening in the length of the melting season. The
northern hemisphere mountain regions also show large seasonal variances in g s.

Most of the seasonal variation in the snowcover depth is accounted for by
the first two annual harmonics, which are shown in Figs. 2.C and 2.D. Over

-5-
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Fig. 2.A Annual mean snowcover depth (in mm equivalent water.)
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Fig. 2.B Root-mean-square of the deviations of mid-monthly
snowcover depth from the annual depth (in mm equivalent water.)
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almost all of the continents, the root mean square of the monthly residuals
is no more than about 10 mm.

The phase angle (the time of maximum) of the first annual harmonic, repre-
sents the end of the accumulation season and the onset of melting. A clockwise
shift, from January and February near the snowline, to March and April in the
higher latitudes, is evident over North America and Eurasia. Eastern North
America, shows an extended accumulation season. Increases in the length of
the accumulation season also appear in the mountain regions (;.g., the Sierra
Nevada, the Pyrenees and the Himalayas). Over Antarctica, the phase is shifted
by four to five months.

‘Fig. 2.D shows the phase and amplitude of the second annual harmonic of the
snowcover depth. Near the equatorial limit of the snowcover, the phase of the
second annual harmonic is about the same as the that of the first harmonic;
but with increasing latitude the phase shifts clockwise with respect to that
of the first harmonic. When comparing the amplitudes of the first and second
annual harmoﬁics, note that the scales in the tw§ representations differ by a

factor of five. ([Note, also, that ay and (ay + 180°) are equivalent.]

2.2 Soil moisture.

The soil moisture is spatially more variable than the snowcover. As we
see in Fig. 3.A, for example, eastern North America, has large soil moisture
throughout the year, as manifested by annual averages that are only a little
less than the assumed soil moisture storage capacit& oé 150 mm. By contrast,
the mountain states and the southwest U.S. have annual means of only about 25 mm.
The year round onshore orographic precipitation along the northwest coast is
the reason for its soil moisture being larger than in the plateau region to

the east.



Fig. 3.A Annual mean soil moisture (in mm.)

Fig. 3.B Root-mean-square of the deviations of mid-monthly
soil moisture from the annual mean moisture (in mm.)
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Fig. 3.D Second annual harmonic of soil moisture (in mm.)

Note that the amplitude scale differs from that of the first
harmonic by a factor of two.




South America, too, shows large variations. In the tropical eastwind zone
very dry soil (W < 25 mm) extends along the west coast from northern Peru to
central Chile. But in the extratropical westwind zone, the dry soil region
crosses into Patagonia, which is in the rainshadow of the southern Andes. On
the windward side of the southern Andes the soil is very moist. Within the
tropics, east of the Andes, there is large annual mean soil moisture.

The annual mean so0il moisture is high over most of Europe. But from Ural
mountains and the Caspian Sea, and extending eastward over mo;t of Asia, the soil
is very dry. Only along the east coast of Asia and over southeast Asia is the
soil moisture high (W > 125 mm).

In Africa, what is most conspicuous is the vast subtropical expanse of the
dry soil of the Sahara, with a smaller, corresponding dry soil region in south
Africa. Over most of central Africa and the Ivory coast the average annual
soll moisture is high.

Australia has dry soil over most of its interior (W < 25 mm) and only a
narrow band along the northern, eastern and southern coasts has moist soil.

The west coast, like the interior, has dry soil.

Fig. 3.B shows the RMS of the monthly deviétions from the annual mean soil
moisture. The deviations are large, as we expect, in the regions where there 1is
a large seasonal variation in precipitation. There, the RMS deviations can exceed
50 mm. This is true in Brazil, north and south Africa, the Mediteranean region,
the southwest coastal area of U.S., and the monsoon regions of Asia. But,
overall, there is a general decrease in the magnitude of &(W) with latitude.

Figs. 3.C and 3.D show the first two annual harmonics of the soil moisture.
These two harmonics represent most of the seasonal soil miosture variation, with

the RMS of the residuals being generally less than about 10 mm.



Although the scale of the vectors for the two harmonics differ by a factor
of two, we can see that both harmonics are significant. From the middle to the
high latitudes of the Northern Hemisphere there is a general clockwise rotation
of the phase angles with increasing latitude. Over mid-latitude North America
and Eurasia, the soll moisture maximum is in March or April, and over northern
North America and northern Eurasia, it is in May or June. This shows the increasing
time lag in the snowmelting, as the latitude increases. Mountain and inland
regions also have an enhanced delay in the time of maximum soil moisture,
relative to other regions in the same latitude, and we see this in the northern
Rocky Mountains and northern Great Plains. In the high latitudes, the effect
of the late springtime snowmelting is reinforced by the lag 1§ the springtime
potential evapotranspiration after the snow has gone.

Equatorward of the snow line, the time of the soil moisture maxima will
not depend on snowmelting. There, the maxima are at the end of the seasons during
which precipitation éxceeds evapotranspiration. Thus, where the source of the
soil moisture is the migrating belt of intertropical convergence rain, in north-
ern South America, the Sahel of Africa, India, and southeast Asia, the maxima
in the first annual harmonic of the soil moisture is August—September; and in
Argentina, south~central Africa, and Indonesia it is February-March. In the
Mediterranean region and southwestern U.S., the time of maximum soil moisture
i§ also February-March, which is when their seasonal rains end.

In the higher latitudes of the northern hemisphere, the second harmonic
of the soil moistuie has about the same phase as the first harmonic, as we see
in Fig. 3.D. This again shows the dominance of the snowmelting effect. But
in the middle latutudes of the northern hemisphere, the phase of the second
harmonic is rotated clockwise with respect to the first harmonic. This repre-
sents a lag in the accumulation of soil moisture because the potential evapo-
transpiration i{s smaller in the spring than in the fall.

-8-



2.3 Evapotranspiration.

Where there 1s sufficient soll moisture, the evapotranspiration follows
the potential evapotranspiration, which covaries with the air temperature.

Fig. 4 Therefore, as Fig. 4.A shows, there is a general decrease of the annual mean
evapotranspiration with latitude; upon which is superposed the variation
caused by the soll moisture deficits.

Where there is ample soil moisture, the annual mean evapotranspiration is
about 100 mm/month near the equator and 25 mm/month in the poiar region. But E
is also 25 mm/month and less over the subtropical west coasts and across the
Sahara, Arabia, and central Asia. |

The RMS of the deviation of the monthly evapotranspiration from the annual
mean, shown in Fig. 4.B, is comparable in magnitude to the apnual mean wherever
the annual mean 18 small: 1in the high latitudes, where the available energy
for evapotranspiration changes by a large amount during the year; and in
those low latitude regions where the precipitation, and therefore the soil
moisture, has a large annual variation.

Most of the seasonal variation in evapotranspiration is in the first two
annual harmonics, shown in Figs. 4.C and 4.D. In these figures the two amplitude
scales are the same. The RMS residuals from the first two harmonics are only
about 5 to 10 mm/month.

As Fig. 4.C shows, in the high and middle latitudes the phase of the first
annual evapotranspiration harmonic coincides with the time of temperature maxi-
mum: July in the northern hemisphere and January in the southern hemisphere.
Thus, the evapotranspiration phase coincides with the soil moisture phase in
the high latitudes. But it is about three months later than the phase of the
soil moisture maximum in the middle latitudes. Within the tropics, in Mexico,

Central Ametica,lAfrica, and South-southeast Asia, where there is no large
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Fig. 4.A Annual mean evapotranspiration rate (in mm/month.)

Fig. 4.B Root-mean-square of the deviations of monthly
evapotranspiration from the annual mean (in mm/month.)
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.seasonal temperature change, the evapotranspiration maximum occurs near the
time of the soil moisture maximum, in August-September.
The phase of the second annual harmonic of the evapotranspiration is almost

everywhere about the same as that of the soil moisture,
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I. Influence of land-surface evapotranspiration on the atmosphere.

Many sensitivity experiments have been made, with numerical general
circulation models, which show that the simulated precipitation, temperature

and motion fields of the atmosphere are greatly influenced by the land-surface

evapotranspiration. The review paper by Mintz (1982) describes and compares

eleven such experiments.

These experiments show that not only does the available soil moisture
and the surface albedo (which affects the-energy used for evapotranspiration)
influence the local precipitation; but that, by changing the ratio of the sen—-
sible heat transfer to the latent heat transfer to the atmosphere (changing
the Bowen ratio, H/LE), large changes are produced in the circulation of the
atmosphere. The reason for this is that the sensible heat transfer immediately
and locally Qarms the atmospheric planetary boundary layer; whereas the latent
heat transfer, LE, (whether it is realized immediately and locally, or, by
transport of the water vapor, is realized at some later time and distant place),
heats the free atmosphere, from the top of the boundary layer to the tropopause.
It 1s this difference in the vertical distribution of the diabatic heating (as
well the possible difference in the horizontal distribution of the realized
heating) which makes the circulation sensitive to the Bowen ratio.

However, it is not only the soil moisture availability and the surface
albedo which are important. Given the same soil moisture and albedo, the
different kinds of vegetation structures can produce large differences in

evapotranspiration and Bowen ratio.



I1. Evapotranspiration from low (herbacious) vegetation versus

evapotranspiration from tall (forest) vegetation.

e The general experience with measurements of evapotranspiration from a
grass~cover and from other low—growing vegetation which is not under water stress
is that the evapotranspiration depends almost entirely on the radiational energy
absorbed by the surface. This finds expression, for example, in the widespread

and growing practical use of the equation of Priestly and Taylor (1972),

“pr " By 9
where Ry 1s the net radiational heating of the surface, G is the heat flux into
the soil, A {s the gradient of saturation vapor pressure with temperature (which
is a function of temperature), L is the latent heat coefficient, Y is the psy-
chrometric constant, and a = 1.26 is an empirical constant. (Averaged over
24 hours, G 1s much smaller than Ry and is usually neglected). An example of
_Fig. 1 how well this works is given in Fig. 1 (from Davis and Davies, 1981).

The reason why the Priestly-Taylor equation works so well, for this kind
of surface, 1s that with léw-gtoﬁing vegetation which is not under water stress
the aerodynamic resistance.to the transfer of water vapor is as large as the
blological (stomatal) resistance; and hence the vapor pressure gradient near
the surface of plants has the same sign as the temperature gradient. It is
this which makes the Bowen ratio a function of temperature only. (see Davies
and Allen, 1973, Fig. 5).

A good field example, which shows that close to the surface of short
vegetation the vapor pressure gradient has the same sign as the temperature

Fig. 2 gradient, is given in Fig. 2 (from Penman and Long, 1976). The arrows added

to the figure show that the down-gradient transfers of water vapor and sensible
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Fig. 1. Measured daily evapotranspiration from a grass—cover,
compared with evapotranspiration calculated with the
Priestley-Taylor equation. (Davis and Davies, 1981)
(1 MJ m™ day™l = 0.4 mm/day evapotranspiration)

(The weasuved, latent heat: transfer and sensible heat transfer were obtained by the Baven ratio/
energy balance imethod, inwhich:l) H/LE & 4T/se,and 2) H + LE = (Ry + G), where AT was the
measured temperature diffrerice between 75 cm and 175 cm above the ground, ae was the measured
vapor pressure difference between 75 cm and 175 cm (obtained from the measured wet bulb temp~
eratures), Ry was the smeasured net dovnward radiation flux at 100 cm above the ground, and G
was the measured net conductive heat flux into the ground. The measurements were made at 15
inute intervals, and the Priestley-Taylor calculations were made at 30 minute intervals, and
sunmed foc the day: ‘between sunrise and sunset. (The Boven ratio/energy balance results were
also checked against,and gave good agreement with, lysimeter measurements.) The location was at
Sunset Prarie, British Colurbia (56°N); and the period was mid-Miy to late August in the wet
sumer of 1977. The surface was a grazed pasture Of grasses and clover, covering the ground

and- freely transpiring. .The weasyred: volumetric soil moistire content of the root zone aleays

exceedéd 0.32, thus ensuring transpiration’ at the potential rate. The large range in evapo-
transpiration that we see in the figure was caused by variations in the cloud cover.}
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Bottom: average of the hour in each of the five

days which had the minimum temperature lapse rate
(the maximum temperature- inversion) between 85 cm
and 270 cm. :

{Measurements made with wet-bulb and dry-bulb resistance thermometers, and with hot-bulb anemo-

metecs,

at the indicated elevations. Rothamstead Experimental Station, Harpenden, U.K.}]
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Fig. &4

heat are in phase and, therefore, that the sensible heat transfer is not a
source of energy for the evapotranspiration.

Furthermore, and of considerable importance for the modeling and simulation
of evapotranspiration, is the fact that the wetting of the surface of a grass-—
cover, (which reduces the surface resistance to zero and shuts off the transpira-
tion), has little or no effect on the evapotranspiration rate. The field
evidence for this is shown in Fig. 3 (from McMillan and Burgy, 1960). It tells
us that with a grass cover it i{s only the radiational heating, and not the state
of the surface of the vegetation, which determines the evapotranspiration.

As a con;equence, with this type of vegetation and moisture available in
the root zone, one does not need to know whether the surface of the vegetation
is wet or dry in order to calculate the evapotranspiration. Because the moisture
storage capacity in the root zone is of the order of 150 mm, and evapotrans-
piration is of the order of a few Qm/day, it follows that the GCM grid-area
averaged rainfall (even {f it is daily, weekly or monthly time—averaged) will

suffice to calculate the evapotranspiration and soil moisture storage.

ee Tall (fofest) vegetation behaves differently. The canopy has about the
same total leaf area (three to five times the ground area) as lower vegetation;
but £t is spread over a layer which is several meters, not-a few centimeters,
thick; and 1t 18 {n an elevated position. Both the large volume occupied by
the leaves and its elevated position make for good ventilation; and, as a con-
sequence (unlike the low. vegetation, where the areodynamic resistance and the
stomatal resistance have about the same magnitude), the aerodynamic resistance
to the transfer of w#tét vapor is one to two orders of magnitude smaller than
the biological resistance. An example of this is shown in Fig. 4 (from Szeicz

et al., 1969).

As a consequence of the small aerodynamic resistance, which affects the

-3-
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Fig. 3. Comparison of measured evapotranspiration, from
groving rye—grass, when the surface of the grass is
wet and when it is dry. Averages of cumulative
amounts during 1, 2, 3 and 4 hours subsequent to
mid-day wetting. (McMillan and Burgy, 1960)

[Measurements made with vigorously growing ryegrass in a pair of floating lysimeters, By
sprinkling, the surface of the grass was alternately wetted on one of the lysimeters and not
on the other. The nutbered points show the averages for 25 runs, between 1 September and 31
January, at Davis, California.]
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Fig. 5

sensible heat transfer as well as the water vapor transfer, with tall vegetation
the radiational heating i{s not the only important source of energy for evapotran-—
spiration. Depending on the wind speed and the vapor pressure deficit ia the

alr, water vapor can be transferred from the vegetation to the air while at the
same time sensible heat is transferred in the opposite direction (thg temperature
gradient and the vapor pressure gradient thén having opposite signs), so that the
Bowen ratio is negative. Moreover, unlike a grass cover, where the rates are the
same, the rate of evaporation from a wet forest canopy can be several times larger
than the rate of transpiration of water removed from the root zone.

A good example of this is shown in Fig. 5 (from Shuttleworth and Calder,
1979), where the evapotranspiration measured with a "natural” lysimeter in the
Severn forest in Plynlimon, Wales, U.K., is compared with the evapotranspiration
calculated with the Priestly-Taylor equation. The measurements and the calcula-
tions were done separately.for the times when the surfaces of the trees were wet
(upper left panel) and for when they were dry (upper right panel).

We see that when the surface of the forest canopy was wet the measured water

loss, Ey, was about eight times larger than the Priestly-Taylor calculatiom, EpT.

On the other hand, when the surface was dry Ey was about 40X smaller than
Epr. This is because of the large biological resistance to transpiration of
spruce trees, and not because of soil moisture stress. (Even for the summer of
1976, which was the driest period on record, and when the soil moisture in the
forest as measured by neutron probe was 200 mm below field capacity (Calder,
1978), the curve in the upper right panel has the same slope as at other times.)

The bottom panel of Fig. 5 shows that the total measured evapotranspiration
from the forest is about l.4 times larger than the Priestly-Taylor calculation.
In the mid-winter months, the ratio of Ey to Epr i{s more than 10 to l. It {is

obvious that the forest removes large amounts of sensible heat from the air and
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the Severn forest as measured with a “natural® lysi-
meter, Ey and as calculated with the PriestIy-Taylor
formula, EPT. (Shuttlesorth and Calder, 1979)

(The "natural® lysimeter consisted of 26 spruce,trees about 10 m in height, growing in a peat
80{1 over an impervious layet of clay, vhich were cut off from lateral water exchange with the
rest.of the forest by .a dug~fn wall. of ‘corrugated fron"sheets grouted into the clay. Ep wvas
obtained .by measuring the rainfall beneath the canopy. (measucing the throughfall and stemflow),
subtracting the water: .draining from the peat soil plus the surface runoff at the downslope
end of the.pen, and subtracting the water stored in (or removed from) the soil as measured with
2 Reutron probe. Ep was obtained by measuring the rainfall above the canopy and subtracting

the measured rainfall beneath the canopy. Ey = Ep + Ep.

{For calculating Epp, Ry was obtained in the early part of the experiment from the measured
net radiatfon over a small grassland clearing, 400 m. from the lysimeter, multiplied by 1l.1.
In the latter part of the experiment, Ry was measured above the forest canopy. The soil heat
flux, G, was assumed to be negligible. The calculation of Epp was carried out, on an hourly
basis, for only the daylight hours (net radiation positive), as this reduces the difference
with the measured evapotranspiration. If the night-time hours were to be included, Epp would
be diminished by 10 to 15%, which vould fncrease the difference with the measured evapotrans-

plration.

(For the separate accumilations shown-in the two upper panels, the determinations of the wet
and dry canopy periods were made acoording to whether or not there was rainfall in the preceding

3 hours.]



uses that energy for evapotranspiration.

Shuttleworth and Calder (1979, p. 642) remark that ". . . meteorologists
unfamiliar with forest micrometeorology . . . might be surprised by the . . .
observation of sensible heat [transfer] to a wet forest. The conventional
attitude, that evaporation is largely a radiation-controlled process, is of
course easily justified for short vegetation from more fundamental descriptions
such as those provided by Monteith (1965) or Shuttleworth (1976, 1978). At the
same time and on the same basis, it is also fairly easy to understand why
evaporation from tall vegetation, with large atmospheric exchange coefficients,
is more intimately related to the atmospheric vapor pressure deficit (e.g.,
Stewart and Thom, 1973; Thom and Oliver, 1977). Indeed, for basic theoretical
reasons, the simple experimental observation of a finite atmospheric humidity
deficit near the surface of forest vegetation in wet canopy conditions very

often implies the presence of sensible heat (transfer), since the incident

radiation is often low at such times.”

eee A good ffeld example, which compares evapotranspiration from a forest
with eyapotfanspiration from a grass—cover, under the same climatic conditionms,
is given 1nAfig. 6. This shows the water budgets, averaged over eight years
(l968f1975), for the Severn catchment and for the adjacent Wye catchment in
Plynlimon, Wales (Calder and Newson, 1979). The Severn catchment (2.9 km)2
has a mixed coniferous forest over two—thirds of its area. The Wye catchment
(3.2 km)2 s comﬁlecely grass covered. Averaged over the eight year period,
the measured precipitation rates were, respectively, 6.1 and 6.4 mm/day (a dif-
ference of only 0.3 mﬁ/day, or 5%). Subtracting the respective measured runoffs
of 3.7 and 5.3 mm/day, gives us an evapotranspiration of 2.4 mm/day from the
forest catchment and 1.1 mm/day from the grass—covered catchment (a difference
of 1.3 mm/day, which is more than a factor of 2). If we assume that the ratio
of Ef to ET in the Severn catchment, for the efght year period (1968-1975), was

-5~
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Fig. 6. -Comparison.of the water budgets in the Severn (forest)

catchment and the Wye (grass-—covered) catchment,
Plynlimon, Walés, U.K. (Calden and Newson, 1979).

(For definitions of symbols, see legend to Fig. 7.)
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Fig. 7

the same as the ratio of the measured interception loss, 1580 mm (1.63 mm/day ),
to the measured transpiration loss, 901 mm (0.93 mm/day), as given by the “natural”
lysimeter in the Severn forest for the three years (1974-1976), we obtain the
values of Ey and E7 that are shown in Fig. 6.

In the Wye (grass—covered) catchment, 17Z of the precipitation is returned
to the air by evapotranspiration. In the Severn forest catchment, 40X {g returned.
Of this, 62X 1s given to the air by evaporation of intercepted precipitation and
38Z by transpiration of water taken from the root zone of the soil.

[As we expect for neighboring regions of such small size, the one with the
smaller evapotranspiration has the larger atmospheric water vapor traasport
convergence. As discussed in Attachment A (Mintz, 1982, pp. 4-5), it 1is only

in large regions that a reduction in evapotranspiration diminishes precipitation.]

eeee Figure 7 compares the water and energy budgets of a forested and a
grass—covered region, when the atmospheric forcing parameters of precipitation
and radiational heating are like the average conditions in England and Europe.

Here the mean annual precipitation is taken as 2.5 mm/day (Jaeger, 1976,
Fig. 21) and the net radiational heating of the surface as So.watt/m2 (Budyko,
1963, Plate 1l4). The ratio of Ey to P-is taken as 0.40, which 1s an average
value for the English forests (Calder and Newson, 1979, Fig. 1). The Bowen
ratio for the.grass—cover is taken as 0.25.

The two regimes shown in Fig. 7 differ not only in that the evapotranspir-—
ation from the forest i{s greater than from the grass—cover, but that the grass-
cover adds sensible heat to the boundary layer of the atmosphere, whereas the
forest removes sensible heat from the boundary layer. In effect, the forest

cools the. boundary layer of the atmosphere and (either at the same location and

at the same time, or in some distant place at a later time) uses that energy to

warm the free atmosphere. Because of this, the vertical structure of the

vegetation can have a large influence on the atmospheric circulation.

-6-
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III. A sgtrategy for incorporating vegetation into numerical general

circulation models.

A practical strategy for incorporating the different kinds of vegetation
into numerical general circulation models is to separate the vegetation prop-
erties which change on a time scale of the order of a year and less, such as
leaf area density, albedo, stomatal resistance and root structure (of herba-
cious vegetation), {.e., the phenological changes (those which depend on the
seasonal changes in climate), from those properties which change on a time
scale of the order of 10l years and more, such as the gross vertical structure
(the morphology) of the vegetation, and the vegetation and climate influenced
properties of the soil.

If this separation is made, then, when the general circulation model is
used for simulations and predictions of climate (the time-averaged weather)
on the time scales of a season or a year, only the phenologically changing
vegetation properties will need to be modeled as interactive components of
the system. The gross vertical structure of the vegetation (and the soil
properciés) can then be prescribed.

It 1s only when we shall make integrations over the order of 101 or 102
years or more (as we can now do with models that have a high degree of space
truncation), that we will need to specify the physical-physiological laws
which govern the slowly changing vegetation structure and soil properties.
Within the biological—ecological sciences there already exists the background
knowledge that we need to model the interacdtive properties.of the vegetation
on these two different time scales; and, indeed, a good deal of vegetation
modeling, especially phenological modeling, has already been done. (See, for

example, Leith, ed., 1974).

For the modeling of the momentum, heat and water transfers between the

-7-



atmosphere, vegetation and soil, there are many studies to draw upon, in
particular: Cowan (1965), Waggoner et al. (1969), Vowinckel and Orvig (1972),

Shuttleworth (1976, 1978), Goudrian (1977), Hillel (1977), Federer (1979) and

Sellers (1981).

In order to calculate the interception storage and the evaporation of the
intercepted water, it will be necessary to modify the precipitation output of
the existing general circulation models. This follows from the relative
magnitudes of the different water storage and water transfer terms in the
vegetation—soil system.

As shown, schematically,in Fig. 8 (from Rutter, 1975), the available
water storage capacities on the surface of the plants, within the plants and
within the piant root zone of the soil, are of the order of 1, 10 and 100 mm,
respectively. But, although the interception storage capacity on the plant
surface is two orders of magnitude smaller than the soil storage capacity, the
interception loss by evaporation is comparable in magnitude to the transpir-
ation of water taken from the root zone of the soil. It follows, therefore;
that to calculate the interception storage and interception loss (which must
be done with tall vegetation), the precipitation rate must'ﬁe known at about
half-hourly to hourly intervals.

The existing general circulation models calculate precipitation about
every half hout;.but it is precipitation averaged over the model grid-area,
which is of the order of (100 km)2 to (400 km)2. This area—averaging so
reduces the preéipitation intensity that, if intercepted by vegetation,none
of it may get through to the soifl. It will therefore be necessary either to
parameterize the half—-hourly grid-point precipitation, such that a time-average

of the grid-point precipitation will equal the time-average of -the calculated

-8-
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grid—area precipitation; or else to subdivide the half-hourly calculated grid-
area averaged precipitation into a number of representative subdivisions of
the grid-area, with each subdivision having its own water and energy budget
calculation. In the former case the time—spectrum of the precipitation, and,
in the latter case, the space-spectrum of the precipitation will need to be
related to the parameters which control the convective part of the precipita-

tion in the general circulation model.
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Abstract

The purpose of adding an interactive biosphere to the GLAS general
circulation model is to make the calculation of land-surface evapotranspir-
ation- and sensible heat flux more realistic and, therefore, more accurate.
This is important because sensitivity experiments with general circulation
models have shown that the large scale fields of rainfall, temperature and
motion of the atmosphere are highly sensitive to the transfers of latent
and sensible heat at the land surface.

Water and energy transfers at the land surface depend on vegetation
morphology and physiology. In the proposed model biosphere, the vegetation
morphology will control these transfers through the leaf area density as a
function of height, Lp(Z), and through the root length density as a
function of depth, RTp(Z), as expressed in a discretized form for each
of the model grid areas. LD(Z) will influence (a) the aerodynamic resistance
to the latent and sensible heat transfers; (b) the transmission, absorption
and emission of radiation energy by the canopy and underlying ground; and
(c) the interception, evaporation and throughfall of rain and snow. The
vegetation physiology will control the transfers of water and energy through
the stomatal resistance, the xylem resistance of the stems, and the root
cortex resistance. The stomatal resistance will be a function of the leaf
water potential, short-wave radiation intensity, leaf temperature, and
humidity of the air.

In the initial formulation, Lp(Z) and RTp(Z) will be prescribed as
functions of latitude and longitude and the season of the year, as known
from ecological observations in the various vegetation formations. Later,
the phenological changes of Lp(Z) and RTp(Z) in the deciduous forests
and grasslands will be made interactive with the -atmospheric variables
and the soill moisture as calculated by the GCM. Finally, the vegetation
formations themselves will be made interactive with the atmospheric and
s0ll moisture conditions.

The realism of the model biosphere will be evaluated (1) through
short period one-dimensional comparisons with measured values of the local
atmospheric forcing and measured values of the vertical fluxes of water
and energy; (2) through long period comparisons of simulated and observed
catchment water budgets; and (3) through comparisons of the simulated and
observed surface temperatures, surface albedos, snow cover, live biomass,
and the water balances of the large river basins, when the model biosphere
is forced with atmospheric variables taken from the FGGE level 3-B and

2~C data sets.
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Introduction: The need for an Interactive Biosphere

in General Circulation Models.

Importance of Evapotranspiration.

The sensitivity of weather and climate to land-surface evapotranspira-
tion is difficult to determine from observations, but has been revealed in
experiments with numerical general circulation models. (See Shukla and
Mintz, 1982; and the paper by Mintz, 1982, in which eleven such experiments
are reviewed.) In each experiment two calculations were made, which started
from the same initial atmospheric state and had the same sea surface tempera-
tures and sea-ice extent, but with land-surface conditions that produced
different evapotranspirations. In every case the result was a large differ-~
ence in the calculated precipitation, temperature and motion field of the
atmosphere.

A decrease in latent heat transfer from the land to the atmosphere
1s approximately balanced bf an increase in the sensible heat transfer.

The sensible heat transfer, however, warms the air within.the relatively
shallow planetary boundary layer, and it does so locally in space and

time. The latent transfer, by contrast -- 1f realized as heating through
the convective condensation process —— warms the air in the free atmosphere
up to the tropopause level. Moreover, because of water vapor advection,

the realizatioh of the heating may be at some distant place and a later time.
It is the difference in the vertical distribution of the two kinds of
heating, as well as the possible shift in their horizontal distributiomns,
which makes the general circulation (the thermally-forced large scale

atmospheric circulation) sensitive to land-surface evapotranspiration.



Importance of Vegetation.

Because numerical weather predictions and predictions of climate
anomalies with general circulation models will be sensitive to the land-
surface evapotranspiration, great care must be used in the way in which
the evapotranspiration is calculated.

In almost all existing general circulation models (see the review
by Carson, 1982), an "open bucket” formulation is used to calculate the
transfer of water vapor from the land to the atmosphere. The level of the
water In the bucket is lowered when evaporation is larger than precipi-
tation; and the level is raised when precipitation isrlarger, up to the
point at which the bucket overflows and produces "runoff”. Over some
broad range in the level of the water in the bucket (which varies somewhat
from model to model), the rate of evaporation is taken as equal to (or
nearly equal to) the evaporation from a free water surface; and only when
the water level is low is the evaporation rate made less than that from a
free water surface. But this is hardly the way in which water vapor is
transferred from the land to the atmosphere in the real worl&.

A more realistic representation of how water is exchanged between
the land and atmosphere is shown in Fig. 1 (from Rutter, 1975). Here
the atmosphere is insulated from the water in the soil by a vegetation
layer; and the largest part of the water transfer to the atmosphere 1is the
transpiration of water which the roots of the plants take up from the
soll. Another large part of the precipitation (and under some vegetation
and precipitation conditions the largest part) never enters the soil at
all, but is intercepted by and stored on the surface of the plants and

from there evaporated into the air. The third transfer process, the
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evaporation of water from the pores of the soil, is generally much smaller
than the other two transfers.

The water storage capacities on the surface of the plants, within the
plants and within the plant root zone of the soil, are of the order of 1,
10 and 100 mm, respectively. Inasmuch as both the interception loss and
the transpiration are of the order of a few mm per day, the characteristic
recycling time for the intercepted water is of the order of a few hours,
and for the soil moisture store it is of the order of a month.

The 100 mm of water which the vegetation can remove from the soil is
only a small fraction of the total water in the ground. Similarly, of the
total of about 30 mm of water vapor held in an atmospheric column, only
about 3 mm, out of about the 10 mm in the planetary boundary layer, can be
removed from the atmosphere by the convective precipitation process.
(Reducing the relative humidity in the PBL by more than about 30% shuts
off the convection.) Thus, if not renewed, water vapor in the atmosphere
can provide only about 1 day's worth of space-averaged convective precipi-
tation. Soil moisture, however, even when not renewed, can maintain the
average rate of evapotranspiration for about a month., It is this which
makes the soill moisture store more important than the atmospheric water
vapor store for numerical weather predictions and predictions of monthly
and seasonal anomalies of climate.

Vegetatioﬁ exerts physiological and morphological controls over evapo-
transpiration. Because transpiration is associated with photosynthesis,
it 1s usually confined to the daylight hours; unlike the open bucket formu-
lation, which can produce appreciable evaporation at night. Moreover,

when water is available, the rate of the bucket evaporation 1s limited only



by the atmospheric factors of radiation, wind speed and air humidity; and
the daytime rate, especilally in semi-arid regions, can be very large. But
with plants there is also a daytime limit to the transpiration rate, because
there is a constraint on the rate at which water can flow through the plants.

The morphology (the vertical structure) of the vegetation has a large
influence on the rate of interception loss. With tall (forest) vegeta-
tion, the elevated and dispersed surfaces of the leaves are more strongly
ventilated than are the surfaces of the leaves in short (herbacious) vegeta-
tion. When the leaf surfaces are wet, therefore, the interception loss
from tall vegetation is much greater than that from short vegetation. But
.when the leaf surfaces are dry, the greater ventilation of tall vegetation
is generally compensated by its larger stomatal resistance; so that (under
the same atmospheric conditions) the transpiration losses for tall and
short vegetation are not very different.

The interception loss rate from short vegetation is not much larger
than its transpiratiop rate; but with tall vegetation, the interception
loss rate can be 5 to 10 times larger than the transpiration rate. Even
though the vegetation surface storage capacity is small, the time-integrated
interception loss from tall vegetation can be very large.

Fig. 2 1s an example of the mean annual water and energy balances of
short and tall vegetation, as derived from measurements in two adjacent
catchments which have nearly the same atmospheric conditions. The total
evapotranspiration loss from the forest catchment is more than twice as
large as that from the grass—covered catchment. With the grass—cover, 58%
of the net radiational heating of the surface is used for evapotranspiration,

and 42% for the sensible heating of the atmospheric boundary layer. But



with the forest cover, the energy used for evapotranspiration exceeds the
radiational heating by 15%, and this results in a removal of sensible

heat from the boundary layer (there is a negative Bowen ratio, -0.13). 1In
the forest case it was possible to measure the two components of the evapo-
transpiration separately, and the interception loss was 1.7 times larger
than the transpiration. Although the atmospheric conditions are about the
same for the two catchments, the net radiational heating, Ry, is about

10% larger with the forest-cover than with the grass-cover. This is not
only because the forest is darker and absorbs more of the incident solar
radiation, but also because, as a consequence of the larger evapotrans-—
piration rate, the surface temperature of the forest is lower and emits
less infrared radiation. It is clear, from numerous examples of this
kind, that vegetation exerts a large control over the water and energy

exchange between the land-surface and the atmosphere.
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A. Goals of the Proposed Research.

The objective of the proposed research is to construct a model biosphere
which will produce realistic simulations of the water and energy transfers
at the earth's surface. This will be done by constructing a numerical model
of the earth's vegetation cover which embodies the principal morphological

and physiological factors that control the water and energy transfers.,
Morphology

The morphological factors (those which depend on the form and structure
of the plants) will be the leaf area density (the tot;l area of the leaf
surfaces per unit volume of space) as a function of height, Lp[Z]; and
the root length density (the total léhgth of live roots per unit volume of
space) as a function of depth, RTp(2).

In the initial version of the model biosphere, Lp[Z] and RTp{Z] will
be prescribed for each grid area of the GCM as a function of the time of
the year, as obtained from phenological observations.

In the second stage, Lp[Z] and RTp{Z] will be made interactive with
the model calculated atmospheric conditions (and soil moisture), so that
aperiodic drought and extremes of heat and cold will also affect these two
parameters on the phenological time scale.

In the final stage, the different vegetation formations themselves
(i.e., rainforest, seasonal forest, woodland, desert; grassland) and not
just their phenological changes will be made interactive with the atmospheric

conditions (and soil moisture.)

PRECEDING PAGE BLANK NOT FILMED
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Physiology

The principal physiological factor will be the stomatal resistance,
rge (the impedence to water vapor transfer from the saturated cavities
within the leaves to the air outside.) rgzy will depend not only upon
the atmospheric variables, but also upon other internal resistanées whicﬁ

affect the water flow from the soll to the leaves via the roots and stems.
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B. Overview of the Proposed Biosphere.

As describeé in Section B.2, the vegetation of the model biosphere
will have two or more discrete canopy layers and two root layers. The two
important vertically continuous vegetation properties that will be dis-
cretized are Lp[Z], the leaf area density as a function of height, and

RTp[Z], the root length density as a function of depth.

B.l1.1i Governing equations for transpiration and water uptake by roots.

For the purpose of illustration, we show here the governing equations
for the simple case where there is one canopy layer and one root layer.

For the definitions of the symbols, see Section C, Page 51,



Transpiration:

If the vegetation 1s represented as a single, continuous, transpiring
surface of unit area per unit ground area, the governing equations for the
energy transfers can be written:

(eg = e3) pCp

AEp = — (1)
(rge + t3) ¥

ey = e [T,] (2)
(Tz - Ta) -
— pCp = H (3)
Ta
H = (S; (1-a) + Ry — oTg") = AET - G (4)
Ta = Tallp(Zl, ua, (Tg - Ta)] ' (5)
rst = Tselrst,os Sa,0s ¥2,mins RHa, Ty, Lgl (6)

Given ey, Ty, uy, S5 and Ry, from the output of the atmospheric part of
the general circulation model; G from the heat budget of the soll (see
section iv); and Yy from the solution for the water uptake from the soil,

as described below, we can solve these six equations for the six unknowns:

Er, eg, Ty, H, ry, rge.
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(1) As shown schematically in Fig. 3, the main part of the transpira-
tion loss 1is water which evaporates from the walls of the mesophyll cells
that surround the sub-stomatal cavities in the leaves of the plant and then
diffuses to the atmosphere through the stomatal openings. [The rate of
water vapor transfer across the cuticle surface of the leaves, or across
other parts of the plant surfaces, 1s usually one to two orders of magnitude
smaller.] The rate of the water vapor transfer, from its origin in the
sub-stomatal cavities to a given reference level in the atmosphere, is
given by Eq. 1, where ey is the vapor pressure in the sub-stomatal cavity,
and ey is the vapor pressure at the reference level in the atmospheric
boundary layer. rgy 1s the bulk resistance to the diffusion of water
vapor through the stomatal opening, and r, is the resistance to the
diffusion of water vapor from the vegetation surface to the reference
level. With e, given, Eq. (1) has 4 unknowns: Er, ey, rge, ra.

(2) eg can be taken as the saturation vapor pressure, e*, as given
by the Clausius-Clapyron equation for the temperature of the leaf, Tg.

Ty is assumed to be constant throughout the leaf (whose thickness is
typically about 1 mm) and represents an additional unknown.

(3) Ty is obtained from the diffusion equation for the sensible
heat transfer from the surface of the leaf, at temperature Ty, to the
'reference level in the atmosphere, at temperature, Ty, where it is
assumed that fa is the same for the sensible heat diffusion as for the
water vapor diffusion; which adds the unknown, H.

(4) H, the sensible heat transfer, is obtained from the total vertical
energy transfer, where the sum of the three terms within the parentheses

on the right, in Eq. 4, is the net radiation flux, Ry. Sz and Ry,
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are the downward components of the solar and longwave radiation, as given
by the atmospheric part of the GCM, a is the albedo of the vegetation
surface, and ng“ is the upward longwave radiation, which depends on the
temperature-of that surface. G is the sensible heat transfer through the
vegetation and into the soil, as given by the heat budget for the soil
(section iv).

- (5) The aerodynamic resistance, r,, depends on the vertical distri-
bution of the leaf area density, on the wind speed at the atmospheric
reference level, and on the thermal stability of the air, (Ty -Ty), (see,
for example, Goudriaan, 1977). Typically, with wind speeds in the atmos-
pheric boundary layer of a few meters per second and mid-day unstable lapse
rates, r, is of the order of 0.5 s em! for herbacious vegetation (0.1 to
1 m high) and of the order of 0.05 s cem~l for forests (10 to 20 m high),

(6) rgt, the bulk stomatal resistance reaches the minimum value for
the plant species, Tst,o» when the stomates are fully open. Typically,

1

when the leaf area index is about four, r is of the order of 0.5 s cm

st,o
for herbacious plants, and somewhat larger, of the order of 1.0 s cm‘l,
for trees.

The stomates close when the solar radiation, S,, drops below a
critical value Sa,o03 they close when the relative humidity of the air,
RH, = RH[e,, EE]’ falls below a critical value, RHa crits and they
close under e#tremes in the leaf temperature, Tg. In addition, the
stomates close when the water potential in the guard cells (yy) that
surround the stomates, falls to a limiting value, Vg crit. (What

controls the magnitude of Yy is discussed below.) When the stomates

are closed, the transpiration is only through the cuticle of the leaf,
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Chloroplosts

Fig. 3 Schematic representation of tranmspiration through the stomates
and cuticle of a single leaf (after Hillel, 1971).
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whose resistance to the water vapor transfer is typically about two orders

of magnitude larger than rg,, or about 50 to 100 s cem !

when Ly equals
four.

All these responses are interpreted as the evolutionary result of the
plant's effort to maximize photosynthetic production (which requires the
simultaneous presence of shortwave radiation, water, carbon dioxide, and
solutes in the leaf chloroplast cells), to maintain a solute transport sys—
tem, to avoid heat death, and to conserve water in the soll moisture store
for future use. The first three demands are in direct conflict with the

last, the conservation of water, which gives rise to the need for physio-—

logically regulating the flow of water through the plant.
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Water Uptake by the Roots:

The conservation of mass requires that the water vapor which moves
away from the cell walls of the sub-stomatal cavities be replaced by a
flow of liquid water toward the walls on the other side.

If, for the purpose of illustration, we neglect the small time rate of

change of the water stored in the plant, we have
Er = Fp = Up R

where Er is the rate of transpiration, Fp is the rate of liquid water flow
through the plant, and Ug is the rate of water uptake by the roots.
When there is no divergence in the water flow through the plant (no

change in the plant water storage), we can write the governing equations

for the rate of water flow as

(ws - Wz)
Fp = )
glrg + ro + 1ry)
Vs = ¥glO] (8)
rg = rgl8, RTpl[Z]] (9)
e = tc[rc’o’ RTD[Z]] . (10)
rx = Ixlrx,o» Fp,critl - ) (11)

Given the boundary condition, F, = Er, where Ep is obtained from the solu-

tion of equations (1, 2....6) above; and given © from the solution for
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the soil water budget (section iv), we can solve these five equations for
the five unknowns: Yy, Vg, rg, re and rye.

. There is an upper limit to Fp, which 1s believed to be the rate at
which the water movement through the fine channeig in the xylem (the water
conducting elements of the stem) changes from laminar to turbulent flow.
This limit, Fp crit, 15 typically of the order of 1.5 wm/hr (when expressed
as the area averaged flow). When F, orit is reached, there is an abrupt
and large increase in the xylem resistance, ry; and, as Eq. (7) shows,
for a given soil water potential, Y5, this will produce an abrupt and large
fall in the leaf water potential, Y. Yy itself has-a critical value (of
the order of =25 bars) which is when the water pressure in the stomatal
guard cells can no longer maintain their turgor. When the cells collapse
they constrict the stomatal opening, and Ep = Fp is then limited to the
value Fp,erite

Fig. 4 is an electrical analog of the water transfer pathway through
the soil-plant-atmosphere system (when Er = Fp = Ug). The figure shows

how the flow is controlled by the fixed resistance, r., and the four

variable resistances, rg, ry, rgy and ry.
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i1. Rainfall Interception and Interception Loss.

For the single layer vegetation model, the governing equations for
the interception loss and interception gain, when the canopy is completely

wet, can be written:

[eg - eg] pCp
( . + f(Wp), When Wy >0

AE] = < 0, when Wy =0 (12)

° »  when Wy > Wy pay

W1 max is the maximum amount of water that can be held on all the

upper leaf surfaces.

dwy .
=P (1-p)-E-D (W] . (13)

dt

The interception loss and the interception gain are highly dependent

on the vegetation morphology for two reasons:

i) The aerodynamic interaction between plant and atmosphere: As

indicated in section B.l.i, tall, 'rough,' surfaces, like pine forests,
maintain a relatively turbulent aerodynamic regime in and around their
upper crowns. Within this well ventilated volume, the transfers of vapor
and sensible heat are typicall; an order of magnitude faster than at an

equivalent height above 'smoother' surfaces, like a grass cover, under the
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1

same meteorological conditions. (ra ~ 0.05 s cm ~ as against 0.5 s cm-l)

i1) The geometry and extent of intercepting surfaces: Vegetated

reglions commonly present 3 to 8 m2 of surface area to the atmosphere for
every square meter of ground area (Ly; = 3-8). Obviously, the larger

the surface area the greater the amount of rainfall that may be held on
the surface for later re-evaporation, and the smaller the amount that
drains off to reach the soil moisture store. Typically, the interception
capacity of vegetation i1s of the order of 1 to 3 mm depth of water. The
geometrical arrangement of the canopy is important too - some coniferous
trees maintain a large intercepting surface well above the level of the
theoretical momentum sink.

The rate of interception loss depends very greatly on the rainfall
regime. For a given time-averaged rainfall which is made up of high in-
tensity, short duration episodes, there will be a comparatively low rate
of interception loss. This 1s because the interception capacity is quickly
reached after the onset of storms, allowing tﬁe remaining rainfall to be
transmitted to the soll surface. Conversely, if the same time-averaged
rainfall is made up of long-duration, low intensity storms, the interception
loss will be larger, reaching its maximum if the interception capacity is
not reached (i.e. if the water does not accumulate on the leaf surfaces to
a level sufficient to initiate significant leaf drainage).

As indicéted in section B.2, our intention is to model the water and
heat transfer processes for the several observed vegetation formation types
in a realistic fashion. This, however, will produce correct values of
the interception loss only if the space-time variation of the rainfall is

correctly represented. General circulation models produce half-hourly to
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hourly amounts of rainfall as output; but as this is the average over a

large grid area (of the order of (300 km)2), if used in an unadjusted

form it will almost always produce an excéssively high and unrealistic

interception loss. It will be necessary, therefore, to relate the GCM

produced grid area average rainfall to a realdstic space variation of the
rainfall on the sub-grid scale, using parameters extracted from the GCM
simulation (which indicates, for example, whether the rainfall is of con-
vective or large-scale upglide origin) and also climatology. Satellite
based observations of regional surface temperature and soil mdisture varia-
tions (Atlas and Thiele, 1981) may be able to provide information about
typical time-area-intensity distributions in the different regions and
seasons, from which we would construct the area-intensity functions for
the GCM rainfall calculation. A possible solution lies in representing
the spatial variation of the amount of water held on the vegetation surface
by wave functions. A similar wave representation of the rainfall intensity
would be superimposed to obtain the spatial variation of the rate of change
of the water held on the surface. Another possibility would be to assume
that the rainfall at a representative point within the grid area will be
equal to the grid-area averaged rainfall when both are averaged over a
time interval of the order of, say, 12 to 24 hours; and then to let the
half-hourly values of the rainfall intensity at that point vary within the

chosen time interval as a function of the GCM parameters and climatology.



i1i. Snowfall Interception and Disposal.

The partition of snow into surface evaporation and melt water, which
contributes towards soil moisture recharge and runoff, is of great imporfance
for the surface energy balance and hydrology of a large part of the Northern
Hemisphere continents. The energy balance at the snow surface can be
modelled using derivations from the equation set outlined in section B.l.1i.
Major differences between the fluxes of latent and sensible heat with and
without snow, under the same atmospheric conditions, arise from variations
in the surface albedo and hence in the net radiation, and from the value
of the aerodynamic resistance, rz. [A review paper b& Male and Granger,
1981, discusses these and other facets of snow surface processes in detail.]
The energy availlable for evaporation and/or snowmelt in forested regions
is characteristically much greater than that over bare or grass covered
areas (Leonard and Eschner, 1968) due to the smaller albedo of the exposed
parts of the forest canopy. This produces an appreclable transfer of
heat, 1n radiative and sensible form, from the exposed parts of the tree
canopy to the snow covered surfaces. This effect is enhanced in areas
with evergreen vegetation. The use of a multilayer vegetation model
coupled with a layered soil model is the most realistic way to simulate

the energy exchange processes involving snow cover.
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iv. Water and Heat Budget of the Soil.

For simulating the water and heat budgets of the soil, we shall follow
one of the more physically realistic treatments (see, for example, the reports
of Gurney and Camillo, 1982, Camillo and Schmugge, 1982). In these treatments,
the fluxes of heat and moisture are coupled as both depend on the gradients
of temperature and moisture. This requires the simultaneous solution of

the equations:

Dy (fﬂi) - DT(QZ) - Ke
dz dz

9 = RfdT)- AD de

h T T 8,vap o

where qg and qp, are, respectively, the fluxes of moisture and heat;

£
]

(14)

Dr,6,vap is the diffusivity of heat, water, or water vapo%;and KT,8
is the thermal or hydraulic conductivity of soil. It should be noted
that Dg and Dt have both liquid and vapor contributions:
Dg = Dg,11q *+ Do,vap
’ ’ (15)

Dy = Dr,1iq + DT,vap -

Equation (14) describes the dependence of the heat fluxes on the vertical
gradients of 6 and T. The time dependence of 6 and T is given by the

continuity equations:

46 = -/dqg
dt dz
aT = - _1(dap
de ¢s \dz

where cg is the specific heat of the soil.

(16)



Various numerical techniques may be applied to solve the equation set
over finite time steps. It is usual practice to prescribe a deep soil
temperature and moisture content as lower boundary conditions and an energy
balance model at the soil surface to calculate qe, qh’ 6 and T at the air-
s0il interface. The soil is then divided into a number of strata, which
are taken as internally homogenous with uniform values of Dg, T and Kg,T-
The values of T and 6 for each stratum are used to calculate the depth
dependent derivatives at each time step.

The soil moisture store will be represented by three zones: a small
near-surface store, from which not only root uptake but also direct evapora-
tion can take place; an intermediate bulk soil moisture store, which is.
mainly drawn on by the root uptake; and a deep store, from which only
capillary rise can bring water toward the surface. The last term can be
significant on the seasonal time scale.

The hydraulic and thermal properties of the soil will be taken from
the global data set prepared for the GLAS GCM by Lin and Alfano (Alfano,
1981).

It is impossible to model overland flow and soil interflow, in a
direct way, without resort to an exceedingly fine grid size. Instead, we
will use the 'lumped' catchment analytical model of Beven and Kirkby (1976).
This makes use of functions which relate the total soil moisture storage
to the size éf the catchment contributing area, (which is the saturated
area bordering stream channels), thus allowing a direct calculation of the
different components of runoff: overland flow, interflow and base flow.

It may be possible to use the geographical data relating to grid square
soil type, topography and stream density to parameterize the necessary

functions.



28

N\

B.2 The Multilayer Vegetation Model.

1) Definition and Advantages of a Multilevel Model.

Definition:

In general, a multilayer model can be thought of as an elaborate
extension of the short set of equations given in Section B.l.i. The vege-
tation canopy 1s represented by a vertical series of discrete plates,
each of which exchanges sensible and latent heat with the immediately
surrounding air and througﬁ which the fluxes must paés on the way to the
free atmosphere (see Fig. 5). At the same time, the temperature of each
plate depends on the net radiation it absorbs (which is a function of the
temperatures of all the plates and the soil surface), and on the temperature
and vapor pressure of the air in tpe surrounding (canopy) air space. It
is apparent from Figure 5 thdt, given: (1) the air temperature (T,)
and vapor pressure (e,) above the canopy, and their equivalentg below
the soil surface; (2) thelvalues of the intermediate resistances and (3) a
means of distgibuting the shortwave and downward longwave radiation among

the plates, the equation set representing the energy budgets of all plates

will reduce to n expressions with n unknowns, (where n is the number of

‘leaf layer plates and the unknowns are the leaf temperatures.) A similar

model will represent the layers of the soil. The combined system will
represent the steady state energy balance of the vegetation and soil, and
may be further extended to include non-steady state processes - such as
the drying out of intercepted water which involve a dependence on thé

time variation of canopy and soll temperatures and water contents.
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Fig. 5 Schematic representation of sensible and latent heat transfer
using a multilayer model. The flow of water from soil to leaf layers has
been omitted for clarity.
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Ts soil surface temperature.
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Advantages:

The multilayer model is more realistic and is easier to validate than

a unilayer model. The principal points to note are:

a)

b)

c)

d)

e)

Vegétation morphology: A multilayer model can be constructed in such a
way that the leaf area density, Lp[Z], and the leaf area index, L,,
are directly represented by the size and spacing of the leaf layer

'plates’.

Energy exchange processes: The exchanges of energy (in radiative,
sensible and latent form) between the different léyers of canopy, and
between those layers and the soil, can be modelled. It need not be
assumed that the multiple latent and sensible heat sources correspond

to the momentum sink, as with a unilayer model.

Parameter correspondence with nature: The parameters of the model can
be made to correspond directly to the physical and physiological proper-

ties of each vegetation type.

Interception loss and snowmelt: These processes cannot be modeled
realistically using a unilayer treatment. Sellers (1981) demonstrated
that a single-layer model consistently underestimates the rate of

interception loss.

Validation: A multilayer model not only generates the latent and
sensible heat fluxes, but also profiles of leaf temperature, air
temperature, vapor pressure, soil temperature, and soil moisture
potential. By comparison, the unilayer model outputs a single value of

‘surface' temperature — a rather nebulous quantity when considering
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\
that a tropical rainforest has been observed to have a mid-afternoon

temperature difference of as much as 7° C between the top of the canopy

and the soil surface (Pinker, 1980; and personal communication, 1982).

i1. Distribution of the Observed Vegetation Formations.

de Laubenfels (1975) has made the following classification of the

earth's vegetation formations, whose distributions are shown in Fig. 6:

Region with tall trees whose crowns form a continuous canopy, and
below which there is a continuous understory of shorter trees: designated

Rainforest.

Region with trees whose crowns form a continuous canopy, but below

which there is a discontinuous understory: designated Seasonal Forest.

Region with trees whose crowns do not form a continuous canopy, but

where the total vegetation cover is continuous: designated Woodland.

Region where there 1s a discontinuous cover of plant growth, so that

large areas of bare ground are exposed: designated Desert.

Region of continuous ground cover of herbacious plants (of which

grass 1is the predominant form): designated Grassland.

Rainforest, Seasonal Forest, Woodland, and Desert are "undisturbed”
vegetation formations. Grassland is the existing formation type where
seasonal forest and woodland have been disturbed by fire and by grazing

(which inhibits recovery after fire.)
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In the initial version of the proposed biosphere, the prescribed
distribution of the vegetation formations will not change with time.
Eventually, we would like to have the vegetation formations change in
response to forcing by the atmospheric part of the GCM. But inasmuch as
the time scale of natural succession is of the order of 10l to 103 years
(see, for example, Loucks, et. al., 1981) this will be an essential require-
ment for the biosphere only when a fully interactive ocean is made part of

the general circulation model.
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111) Specification of the Multilayer Model.

There are two distinct requirements for the specification of the
multilayer model. Firstly; the morphology of the vegetation community
must be realistically represented by the size and spacing of the discretized
leaf plates (see Fig. 5), and by the values of the boundary layer resistances,
canopy air space resistances and root cortex resistances. The above canopy
aerodynamic resistance, ry, must also be properly related to the gross
morphology of the vegetation community. Secondly; the physiology of the
plant must be correctly reflected in the functional model of stomatal
response and its interaction with the leaf water poténtial, xylem resistance,
stem flow, and soil moisture potential.

Taking the morphology of the vegetation community first: Figs. 74,
B, C illustrate the\Process whereby measurable characteristics of the
vegetation are transformed to model parameters. Fig. 7A shows the structure
of a tropical rain forest in its natural state. Fig. 7B shows the corres-
ponding leaf area density and root length density as functions of height.
In the first version of the model, the seasonal variations in these vegeta-
tion parameters will be prescribed as functions of the time of the year.
Later, the phenolgical changes in Lp(Z) and RTp(Z) will be made dependent
upon the model derived atmospheric variables and soil moisture.

To obtain the areas of the two plates that will represent the vegeta-
tion (see figure 7C), the leaf area density is integrated with height:

Ly = ?T Lp(2) - dz , : (17)

Zs

where L, is the leaf area index (mz/mz), and Zg and ZT'are the heights of

the bottom and top of the storey.
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The height of the plate is taken as the center of gravity of the plate,
Z,, where:
Iy Zr
[ Lp(2) < dz= [ " Lp(2) - dz (18)
ip lp
Following the work of Goudriaan (1977), the bulk aerodynamic parametérs
of roughness length (Z,) and zero plane displacement (d) may be determined
from a numerical analysis of the reduction in shear stress with depﬁh in
the canopy; parameters which depend on the leaf area density and drag
coefficient of leaf elements. The parameters 2z, and .d are used to determine

the value of r,, the above canopy resistance, by

d 2 Zq
a In
h z [ Zo ] (19)

where k is von Karman's constant, h is the height of the crop and z4q is the
reference height (This equation holds for neutral conditions only; but Thom
and Oliver (1977) describe a version which accounts for the effect of non-
neutrality). A further analysis by Goudriaan (1977) provides the extinction -
of wind speed as a function of leaf area density.

The conductivity of mass, heat and momentum in the canopy air space

is given as:

= e I . (20)
fmvahey = ey T RGN

where Ly is the local mixing length of the canopy air space (a function of

the size and spacing of shoot elements) and I, is the relative turbulence
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intensity — a factor that increases from 0.3 at the top of plant canopies to
0.8 at the base, and appears to be invariant with wind speed.
rcz, the canopy ailr space resistance between one leaf layer and the next

is given by:

g1

1 . dz (21)
% Zy Km,v,h

(z)
The leaf laminar boundary layer resistance, ry , will be taken as a

L
function of leaf area index, local wind speed, and a shape/shelter factor,

Xs?

rbz = f(Lo(z) . u(z) * Xg) (22)

Several researchers, notably Goudriaan (1977) and Allen and Lemon (1976),
have proposed different mathematical analyses to determine xg as a function
of leaf size, shape and orientation.

The radiation absorption and transfer characteristics of the vegetation
are determined by the canopy structure. A simple model of radiative transfer

was proposed by Ross and Nilson (1971):

= f -f .
Sa(Lo) 83[0][ (w) + exp(-£(B) * Lg)] (23)

where S, is the shortwave radiation flux emerging from.under a cumulative
o

leaf area index Lg, 88[0] is the radiation intensity above the canopy,

f(w) 1is a scattering function, and £(8) is an extinction coefficient that

varies with the solar angle, B.
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The root water uptake models of Cowan (1965), Hillel (1977) and others
describe the movement of water from soil to root cortex as a radial flow
towards individual root elements across a gradient of moisture potential -
the difference between yg, the soil water potential, and y,., the root
water potential. The plant parameter of importance is RTp[Z], the root length
density (m m‘3), as a function of depth. Cowan (1965) originally proposed

the expression:

3¢s
at

s|o

3 (r g (24)

or ar

where D is the value of soll moisture diffusivity, and r is the distance
from the root. Given that the roots have a typical radius of r; and that a

root extracts water from a cylindrical volume of soil of radius rj, where

ry = [1/ ﬂ.RTD[Z]]I/Z, equation (24) can be solved with the boundary condi-

tions of
de [rz2 - r12] ‘
—_— ———— at r = r,
dt 2r,
SYg =
ér
0 at r = 19

where dWg/dt is the rate of reduction of soil water concentration.

The transfer of water from root cortex to leaf mesophyll involves
aspects of plant morphology and physiology. The xylem elements, which
conduct water up the stem are serially linked, elongated plant cells with
narrow apertures at their end-to—end junctions. Poiseuille analyses of the

flow in such elements (see, for example, Denmead, 1976) predicts a critical
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flow velocity above which the flow regime changes from laminar to turbulent.
This greatly increases the resistance imposed by the xylem and has the
effect of lowering wz.

The end of the liquid transfer pathway is the leaf mesophyll cell. The

leaf water content, Wy, is determined by:

dwy 1| Ve~ ¥r
_ = —_ - ET
dt g | rc + rg

Leaf water potential, wz, a critical variable in the calculation of

stomatal resistance, is a function of Wy,

wl = f(wk) .
The particular form of stomatal response is dependent upon plant

species, where each species can be thought of as being near perfectly

adapted to survive in its natural environment. In the main, stomatal response

is a function of shortwave radiation intensity, leaf water potential,
vapor pressure, temperature and leaf age. Closure of the guard cells is
brought about by a reduction in their turgor; this may be induced by a slow
hydropassive process, whereby water is abstracted from the guard cells by
strictly physical processes - such as evaporation or osmotic flow - or by a
fast hydroactive process. It is believed that the latter, which can cause
complete stomatal closure within seconds, is controlled by the transport
and metabolism of ions into and out of the guard cells under the control
of a plant hormone, Abscissic acid (ABA). The local concentration of ABA
is determined by wz (see figure 8).

It is not proposed to model the biochemical and detailed biophysical

responses of the leaf, although this has been done by some researchers
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(see, for example the report of Penning de Vries; 1971); but rather to

make the stomatal resistance a function of the leaf water potential and
atmospheric forcing. Thus:

r S
r., = st(%) (25)

L fe) - flea) ¢+ £(Ta)

Examples of the individual functions in equation (25) are given below.
Light

rgt(Sa) = A1/(Ag - A3 » S,) (26)
Denmead and Millar (1976)

where A, is a species dependent constant.

Leaf water potential

£ (¥g) = 1 - exp(-A4 = S¥y)
S = Vg - Vg crit (27)
0 < f(pgy <1 Turner (1974).
where Yo orit 1s the value of Yy below which the stomata close completely.

Vapor pressure

£ =1/01 - Ag (e*[T,] - ep)]
(ea - -
= (28)
0< £ <1

Jarvis (1976)
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Temperature
£(T,) = A(T, - T,)(T, - T,)47
-a 6 a b u "a

Ag = 1/(T, - T, (T, - T )Y

0 < £(Ty) < 1

Jarvis (1976)

where, Ty and T, are the temperatures above which and below which the

stomata open, and T, is the temperature at which f(T;) = 1.
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B.3 Comparisons of the Model Performance with Observations.

The checking of the model's performance will be done in three phases,
each of which corresponds to a further level of horizontal integration.

These are briefly stated below, starting at the lowest level of integration.

1) Field Measurements.

The complete vegetation—-soil model for each vegetation type will be
driven offline using local micrometeorological data. There are a number of
case studies reported in the literature where a short time series of simul-
taneous observations were made of heat and vapor fluies, temperature and
humidity profiles, and micrometeorological conditions above the canopy.

Use of these data sets should ensure that the characteristics of the various
vegetation types are transformed to the model in a physically reasonable

way.

ii) Water Balances in Catchments.

Here, the comparisons are made over a time period of a year or more
for an area where long records of meteorological and streamflow observations
exist. This will allow a checking of the simulated water balance components.
against the observations for the different vegetation types. It should
be noted that in both (1) and (ii), no allowance is made for horizontal
differences in meteorological conditions: the tests are essentially one-

dimensional.
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{ii) FGGE Observations for the Globe.

Using a 4-dimensional dynamic assimilatfion of ground based and satellite
based observations of the atmosphere during the FGGE year (1979), the GLAS
GCM is producing a time series of the atmospheric state variables, T,,

e, and u,; and of the radiation transfers S, and Rj,, averaged

for the model grid areas and at half-hourly time intervals. 1In addition,

the GLAS model generates grid-area averaged rainfall, (P]; which will be
converted into representative hourly local rainfall intensities, as indi-
cated in section B.l.ii. The observed daily precipitation at 30,000 stations
are available on tape for the FGGE year, and can alss be used for input
(10,000 of these are in the U.S. and have hourly records.)

This information will be used to force the model biosphere and, thereby,
obtain a time series of the global fields of Ey, Ep, H, and oTs"; Wi and Wg;
and of the drainage, Dg; for the FGGE year.

The model derived oTs“, and its spatial and témporal variation as a
function of Wy, snow cover, etc., (where Tg is the radiation temperture
of the earth's surface) can be compared with satellite measurements of Tg.
This will provide a quantitative evaluation.

ET can be compared with the observed distribution of actively growing
vegetation. C. J. Tucker has shown that growing and dying herbacious
vegetation can be determined from Landsat observations. This, however, can
only be a qualitative evaluation.

Ey, H and Wy will be difficult to evaluate. ws,l» the moisture in the
upper root zone, whose depth is of the order of 10 cm, may perhaps be
compared with satellite microwave measurements of the moisture in the

uppermost 5-15 cm of the soil in the desert and grassland regions (Schmugge,

et.al., 1980).
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Dg can be compared with the measured river flows during 1979, which

are now being documented, on tape, as part of the FGGE Level 2-B data set.

ee It is the above (phenologically interactive) version of the biosphere
that should be used when making weather predictions and predictions of monthly

and seasonal climate anomalies with the general circulation model.



B.4 Numerical Simulation of the Vegetation Formations.

In the biosphere described above, the phenological changes of the
vegetation formations will be interactive with the atmosphere and soil
moisture, but the vegetation formations themselves will be prescribed (as in

Figs. 6 A-E).

If the above goal of biosphere modeling is successfully accomplished by

the beginning or early part of tﬁe third year, we shall undertake the next
step: which is to model and simulate interactive vegetation .formations.
Here we will use empirical'expressions thch relate thg climax vegetation
type to the atmospheric and soil moisture conditions and thereby (starting
from some initial state of the earth's vegetation cover) derive the distribu-
tion of the "undisturbed” vegetation formations: the forests, woodlands and
deserts. Replacement by grassland would occur wherever atmospheric and
soill moisture conditions make the foresc and woodland vegetation tinder-dry:
the assumption being that some mechanism for setfing the dry vegetation on
fire (lightning, dewdrops acting as burning lenses, or incendiary man) is
always present.

A substantial extension of the above procedure would be to make use of
the ecological processes which govern the growth, aging and succession of
vegetation types. Starting from a given initial state, we would calculate

the lodg term changes in the vegetation formation parameters.
Validation

Validation can be made, on the simplest non-trivial level, by forcing
the biosphere with the non-interactive FGGE atmospheric data set. Here, we
would assume that this one year data set represents the climate that produced

the observed vegetation formations.
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A higher level of validation would be to initalize the vegetation
formations with the FGGE data set and then letvthe model atmosphere and
bilosphere operate in the intergctive mode (with some large compression of the
successional time scale.) 1In doing this, the presently observed ocean
surface temperatures would be prescribeq. Where the simulated and observed
vegetation formations agreed, the model would be taken as being correct:
where they disagree, we would conclude that either the model was not
correctly formulated or that the presently observed vegetation formation

is not in its natural equilibrium state.

Applications.

Atmosphere-biosphere fully interactive: ocean surface temperatures

prescribed.
Besides the second level of validation indicated above, there will be
relatively few uses for a fully interactive atmosphere-biosphere GCM when

the ocean surface temperatures are prescribed (or when the ocean temperature

is prognostic only in its thin boundary layer.) With given ocean temperatures,

we are limited to the CLIMAP type of calculation. For example, we can
prescribe the paleontologically derived global ocean surface temperatures
of 18,000 years ago, and derive both the atmospheric state and the vegetation

formations ofll8,000 years ago.

Ocean—atmosphere-biosphere fully interactive.

Eventually we shall have a global ocean model which is fully interactive
with the atmosphere and which correctly simulates the heat transport and heat
storage in the deep ocean. (For a review of the near-current state of the

art of ocean modelling, see Mintz, 1979.) When that is in hand, there will
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be many interesting and important climate simulation and sensitivity experiments
that can be made with the fully interactive ocean-atmosphere-biosphere GCM;

somé concerning natural variations in climate, others concerning ;nthropomorphic
influences on climate.

An example, in the first category, would be the simulation of climate
when the orbital parameters of the earth with respect to the sun are changed
(i.e., a numerical test of the Milankovitch hypothesis on the ice ages.)

In the second category, which concerns man's influence on climate, per-
haps the most important use of the fully interactive ocean-atmosphere-biosphere
model would be to study the changes in the entire climate system (including
the changes in the stores of carbon in the ocean, atmosphere and biosphere)
as a result of the burning of fossil hydrocarbons, or of man's modification

of the living biomass (through desertification and deforestation, or conserva-

tion and afforestation.)



C. Notation

species dependent constants

specific heat of air (J kg_1 oc~ly
(= 1.01 at s.t.p.)

specific heat of soil (J a3 °c7ly

zero plane displacement (m)

diffusivity of heat, water or vapor in the soil (m s”2) -
drainage rate (Kg n? g7l

vapor pregsure (mb)

saturation vapor pressure (mb)

vapor pressure in the substomatal cavity (mb)

interception loss rate (Kg w2 g7l

transpiration rate (kg n? sy

vapor pressure component of stomatal resistance

air temperature component of stomatal resistance

scattering coefficient of canopy

radiation extinction coefficient as a function of solar angle
leaf water potential component of stomatal resistance

flow of water through the plant stem (Kg w2 sl or wm hr 71)
limiting value of Fp (Kg n2 s—l)

acceleration due to gravity (m s'z)

heaf flux to ground (W m~2)

height of the crop (m)

sensible heat flux to atmosphere (W m‘z)

relative turbulence intensity

von Karman's constant
(= 0.41)

PRECEDING PAGE BLANK NOT FILMED
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Km,v,h( ) conductivity of momentum, vapor and heat in the air (m s
z

Kp thermal conductivity of soil (W o2 ¢l

Kg hydraulic conductivity of soil (m sl

Lp(2) leaf area density (mz'm-3)

Ly local mixing length (m)

Ly leaf area index (m’ m 2)
. n number of leaf layers

P throughfall coefficiént

P rainfall rate (kg m2 g7l)

T radius (m)

r, aerodynamic resistance (s o 1)

rb2 leaf laminar boundary layer resistance (s m—l)
rcz canopy air space resistance (s m-l)

1 root cortex resistance (s)

Teoo root cortex resistance per unit length of root (s m-l)
rg soil resistance (s)

r stomatal resistance (s m 1)

rgr(Sa)  component of stomatal resistance dependent on shortwave

radiative intensity only (s m~l)

Ty xylem resistance (s)
SN xylem resistance per unit height (s m 1)
?
RLa longwave radiation incident on the surface (W m~

Ry net radiation (W m-z)

RTp(Z) root length density (m m-3)

solar radiation incident on surface (W m~2)
solar radiation incident above canopy (W m-z)

air temperature (°C)

2y



Zb
Z4

2y

bs

Yr
s

Xs

temperature below which stomates close (°C)

deep soil

temperature (°C)

leaf temperature (°C)

temperature at which stomatal resistance factor, f(T,) = 1, (°C)

surface temperature (°C)

temperature above which stomates close (°C)

wind speed (m s~1)

flow of water through the plant root system (kg m
leaf water content (kg m

water held on canopy surface (kg m

height or
height of
reference
height of
height of
roughness
height of

albedo

psychrometric constant (mb °C~l) = 0.646 at s.t.p.

latent heat of vaporization (J kg'l) = 2,501 at s.t.p.

2 or mm)

2
depth (m)

bottom of canopy (m)
height (m)

Lth layer above ground (m)
leaf 'plate' (m)

length (m)

top of canopy (m)

leaf water potential (bars)

root water potential (bars)

soil water potential (bars)

density of air (kg m=3)
(= 1.292 at s.t.p.)

soil water content (kg m™3 or m3m~3)

leaf shape/shelter factor

or mm hr_l)
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