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PREFACE

This report summarizes the work performed for NASA Langley
Research Center under Contract No. NAS1-16982 by Bolt Beranek and
Newman Inc. (BBN). Dr. Greqg L., Z%acharias was the initial
Principal Investigator for BBN and was responsible for
development and implementation of the VERRUN and VERNAL software
systems at BBN and at LRC. Upon Dr. Zacharias' departure from
BBN, Dr. William H., Levison became Principal Investigator and
assumed responsibility for completion of the program
documentation and final technical report. Ms. Regis Donovan and
Mr. Adrian Ho served as programmers for BBN. Dr. Alan Pope

served as Technical Monitor for NASA.



SUMMARY

Two digital computer programs have been developed for use in
experiments involving steady-state visual evoked response (VER) :
VERRUN, whose primary functions are to generate a suh—of—sines
(S0Ss) stimulus and to digitize and store electro-cortical
responses; and VERNAL, which provides both time- and
frequency-domain metrics of the evoked response. These programs
have been codéd in FORTRAN for operation on the Digital Equipment-
" Corporation PDP-11/34, using the RSX-1ll Operating System, and the
PDP-11/23, using the RT-11 Operating System. Users' and
programmers'’ guides to these programs are provided, and

avidelines for model analysis of VER data are suggested.
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l. INTRODUCTION

Considerable effort has been devoted in recent years to the
development of reliable metrics for pilot workload. Assessment
of workload (more generally, operator cognitive state), would
allow the identification of workload "bottlenecks", provide
useful data for the evaluation of the crew/system interface and,
in general, provide information necessary for maintaining task
workload within desired 1limits throughout a given mission.
Reliable measures of workload could also be useful in assessing
the state of operator training in situations where objective

measures of man/machine system performance alone are inadequate.

Numerous efforts have been undertaken to
develop reliable metrics of pilot workload, including subjective
estimates, prima;y and secondary task measures, and physiologic
measures. Exploration of physiologic measures has been motivated
by the desire to obtain one or more measures that are
non-interfering with the primary task mission, and are not likely
to be biased by the operator's preference for a given man/machine
interface or by his unwillingness to admit that a particular task

is difficult.

Cortical evoked response -- electrical potentials recorded
from the scalp obtained in response to a visual or auditory
stimulus -- is being explored as a workload metric. The bulk of
such efforts has dealt with the transient response to a

pulse-like stimulus. Typically, responses to multiple stimuli



are averaged on a point-by-point basis so that the specific
response to the test stimulus can be extracted from the

background electro-cortical activity.

Research has also been conducted with steady-state visual
stimuli. In this arrangement, the amplitude of a stimulus 1light
source is driven by an electrical signal consisting of one or
more sinusoids;' and the recorded scalp potentials are
subsequently analyzed to quantify siuusoidal response components
at the specific frequencies contained in the stimulus, Use of
steady-state inputs of this sort allows the application of
systems analysis techniques that have received widespread success
in the characterization of non-biological electrical and

mechanical dynamically-responding systems.

This report contains descriptions of two digital computer
programs intended for use in experiments involving steady-state
visual evoked response (VER): VERRUN, whose primary functions are
to generate a sum-of-sines (sos) stimulus and to digitize and
store electro-cortical responses; and VERNAL, which provides both
time- and frequency-domain metrics of the evoked response, These
programs have been coded in FORTRAN for operation on the Digital
Equipment Corporation PDP-11/34, using the RSX-1l1 operating

system, and the PDP-11/23, using the RT-11 operating system.

The report is organized as follows. In the remainder of
this introductory section we present some preliminary data that

suggest the feasibility of a VER-based workload metric. Chapter



2 provides a theoretical background regarding sum-of-sines input
generation and frequency-response analysis via fast-Fourier
transform techniques, Guidelines for performing model analysis

on the frequency-response data are also provided.

Chapter 3 provides a user's guide to the VERRUN runtime
program, Major functions of this program are summarized, and
instructions for generating and operating VERRUN are given.
Chapter 4, similarly structured, provides a user's guide to the

VERNAL analysis program.

A set of five appendices contains information of interest to
the programmer. Appendices A and B describe the VERRUN and
VERNAL main programs, respectively, along with the major FORTRAN
subprograms used'by these programs. Major FORTRAN subprograms

used by both main programs are described in Appendix C.

Appendix D contains descriptions of FORTRAN input/output
library routines, and assembly-language routines are described in
Appendix E.

1
Figure 1 presents some (very) preliminary data that

suggest the feasibility of a VER-based workload metric.
Frequency-response metrics from a single subject are shown for

three experimental conditions: (a) SOS visual stimulus only; (b)

1
Provided by Mr. Andrew M. Junker of the Air Force Aerospace
Medical Research Laboratory. :



S0S visual stimulus plus manﬁal tracking task, and (c¢) SOS visual
stimulus plus a laboratory-type decision-making task. (The
particular metrics shown -- gain, phase, and remnant -- are
described in Chapter 2 for the benefit of readers unfamiliar with

control systems analysis).

Task-related effects are greatest at the stimulus frequency
of 9.5 Hz, which is within the normal range of the EEG alpha
component, A consistent progression from 1lights-only, to
tracking, ;o decision making is observed at this frequency: (a) a
decrease in the describing-function "gain" (amplitude ratio), (b)
a decrease in the phase lag, and (c) a decrease in the remnant.
These results are cohsistent with the expectation that, as the
subject is required to attend to a mofor or cognitive task (and
thus attend less to the visual stimulus), the overall strength of
the VER should be reduced. These results are thus consistent
with results that have been obtained with the transient VER, in
which certain response components (eépecially the P3060 component)

diminish in amplitude as external task loading is imposed.

This trend also suggests that the tracking task provides a
lower workload than the decision task, or, more precisely, that
the combined tasks of attending to the VER stimulus and making
decisions draw more heavily upon common "resource pools" than do
the combined tasks of attending to the 1lights and manual

tracking.

Because of the small data base reflected in Figure 1 (1
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subject, 2 trials/condition), we cannot assess the statistical

significance of the apparent task-related changes in response,

nor can we perform a reliable model analysis of these data.

Nevertheless, these results are sufficiently encouraging to

warrant further development and testing of the VER-based workload

metric.



4. NBTHODOLOGY

The VERRUN and VERNAL computer programs are tools to
facilitate application, to the study of visual evoked response,
of an experimental methodology that has been successfully applied
over the years to the study of manual control behavior., The use
of sum-of-sines (S0S) inputs has peen driven by efforts to
construct linear models of the controller's response behavior.
To construct these models, it is necessary to distinguish between
(a) the portion of the controller's response linearly cérrelated
with the external input, and (b) the "noisy" portion of the
response not linearly correlated with the input. In the Jjargon
of manual control, the noisy response component is known as
"remnant", as it contains the portion of the response power ‘that
remains when we remove the response compénent that can be
accounted for by a linear response strategy having time-invariant
parameters. In this report we shall apply the term "remnant" to
the portion of the VER not linearly related to the stimulus. The
SOS input  capitalizes on the property of a linear system that a
continuous sinewave input will vyield, in the steady-state, a
sinewave output having the same £requency. Because of the
property of superposition, a sum of sinewaves input will yield a
steady-state sum of sinewaves output having identical frequency
composition, The SOS input, then, enhances post-experiment
analysis in thé following ways:

a. Response power at non-input frequencies is by
definition remnant, as input-correlated power can occur



only at input frequencies. Thus, it is relatively easy
to distinguish remnant from input-correlated response
components,

b. By concentrating input power at a few seleéted
frequencies, signal/noise ratios (i.e.,, ratio of
input-correlated to remnant-related power) can be
enhanced, thereby increasing the reliability of
performance metrics based on input-correlated response
components, v

Three topics are discussed individually in the remainder of
this chapter: (a) generation of the SOS input, (b) quasi-linear
analysis of systems driven by the SOS input, and (c) guidelinés
for linear model analysis. Thue VERRUN and VERNAL programs
reflect implementations of the techniques discussed under items

(a) and (b), respectively.

2.1 Generation of Sum-of-Sines Inputs

The VERRUN program is intended to allow modulation of a
visual stimulus intensity by a sum-of-sines electrical signal of
the form: N

I(t) = ) a.sin(w.t + 4.)
-1 J J J (1)

which is a summation over N sinewaves, where the jth wave has

c
associated with it an amplitude a , a relative phase g , and a
3 3
frequency w , where
J
w . = h. j=1l,...,N
j 5% (3=1se..,N.) (2)

where, in turn, h is the associated integer harmonic multiplier,

J
and w is the "base frequency". By choosing a desired period T
o : o



for the SOS signal, so that I(t) repeats itself every T seconds

o
(i.e., I(t)=I(t+T )), then the base frequency will be specified
o)
by:
W = 2“/To rad/sec

(3)

The harmonics, amplitudes, and phases are generally free
parameters which can be chosen to “"shape" the S0S signal as
required. By choosing the harmonics (h') as positive integers,
we can ensure, for each sinewave componen% of the signal, that an
integral number of cycles appear in one period of the stimulus
I(t). The amplitudes (a.) can then be chosen to distribute the
stimulus power over frequegcy in a manner deemed appropriate. for
the measurement situation. Finally, the phases (¢.) can be

J
changed to vary the temporal pattern of the signal I(t), while

leaving unchanged its power spectral characteristics.

The SOS stimulus generation is done digitally, with one time

sample of the signal generated every T seconds (the sample
S
period). Thus, the kth sample is given by:

I = I(t=kT) (k=0,1,2,...) (4)

where k ranges from zero up to some upper limit determined by the

overall run time. The I values can be computed in an efficient
k
manner if we choose to quantize the allowable choices of the SO0S

phases g , according to
j

¢j = pj¢o (j=l,...,Nc) (5)



where p is an integer "phase multiplier" (analogous to the
J
harmonic multiplier for the frequency) and § is a "base phase"
o

given by

¢O = wOTS

(6)

where w is the base frequency and T 1is the sample'period.
‘ o S
Direct substitution of (2) through (6) into the continuous-time
version of the S0S equation (1) then yields the following
sampled-time version:
: N
— ZC

I, = ajsin [¢o(khj+Pj)]

. (7)
j=1
which conveniently defines the SOS signal at the kth sample

insc¢2nt,

Although this relation can be used to directly compute the
SCS signal at each sample time, computational efficiency can be
gained by use of an intermediate sinusoidal "look-up" table.

This can be created by first recognizing that the SOS period T

v o
and the sample period T must be related by N , the number of
S o
samples in one period of the signal, according to:
T, = N,Tg : (8)
This then allows us to reexpress the base phase as follows:
& =(§1 T = 2m/N -9
o T, s o

which, in turn, allows us to define the following tabular

sinusoidal function S :
n

10



S, = sin(ng) ; sin[én(%;ﬂ (19)

where n is the table index, which ranges from 1 to N , the total
o

length (period) of the table. The sampled-time version of (7).

may then be expressed as:

C
I,= ) a.s (k =0,1,2,...) (11)
S R P
where the table index n is given by
ik
n. = kh. + . V=
i, k j * Py (3=1,...,N) (12)

With a new computation each kth sample, this reduces to the

following "incremental"™ form:

Pk T Pyk-r TRy 35Lee N (13)

with n_ equalling P . Additional (storage) efficiencies are
obtaingéo by use ofJa "quarter-wave" lookup table for S , and a
simple logic for determining index quadrant. "

As noted above, three quantities must be defined for each of
the N sinewave components in order to generate a sample
wavefogm: the harmonic index, the amplitude, and the initial
relative phasing. The harmonic indices are usually selected to
span the frequency range of interest -- often, the range over -
which the system is expected to exhibit significant response.
Component phase indices are typically selected randomly so that

the stimulus has the appearance of a random process, Note that a

selection of, say, zero for all component phase indices would

11



provide a highly-structured input that may well induce a response

different from that to a random-appearing input,

There are a number of bases for selecting component
amplitudes., One may select SOS amplitudes to approximate the
power distribution of some underlying theoretical power spectral
density function. This approach is often adopted in  manual
.control studies to facilitate certain types of post-experiment
model analysis or to reflect a lincar representative of' some
real-world disturbance (e.g., & wind gust). Alternatively, one
may simply assign the same amplitude to all components; this
approach is commonly adopted when one does not have a basis for
"shaping™ the input spectrum, Still another approach 1is to
"pre-whiten" the input: that is, attempt to compensate for the
filtering effects of the system to yield an SOS response having a

uniform set of amplitudes,

At present, VER applications seem to be employing components
of like amplitudes, Nevertheless, hefe we describe a procedure
for constructing an SOS input to approximate a known spectral
density function, since the VERNAL analysis program allows for

approximate reconstruction of a theoretical power spectral density

function.

Figure 2 shows a sketch of a continuous power spectral

density function, approximated by a sum of four sinusoids.

12



2
Frequency is divided into "windows" defined by the geometric

midpoints of adjacent SOS frequencies. The power contained in a
given SOS component is the integral of the theoretical power
. spectral density function within the corresponding window, as

indicated in the figure. Thus:

- . 1/2
Wy = [wj wj_l]
+ _ . 1/2 (14)
wj [wj wj+l]
+ ~1/2
ay = [2/“’;1 Q(w)dw]
mj (15)

where ¢ (w) is the continuous power spectral density function.

The first and 1last SOS components are special cases. For
the first component, the minimum frequency is set to 8; for the

last component, the maximum frequency is computed as

+ 2
= w./w, (16
w mj/wj_l 2 )

2.2 Quasi-linear Analysis

The primary function of program VERNAL is to allow a

quasi-linear analysis of the VER. Certain frequency-response

2

The use of geometric, rather than arithmetic, means stems from
the tradition in manual control experimentation to locate input
frequencies at approximately equal logarithmic intervals.

13
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metrics are computed to facilitate ‘linear modeling of the
relationship between the "system input" (the visual stimulus) and
the "system output™ (evoked electro-cortical response). Other
frequency-response metrics are computed to allow characterization
of the portion of the evoked response that cannot be characterx-

ized by a time-invariant linear transformation of the stimulus.

standard time-domain statistics of mean, standard deviation,

and rms are also computed. If we let x(k) (k=1l,...,N ) Dbe the
o]

sampled time history of some variable of interest, these

statistics are computed as follows:

1 No
mean = E: x (k)
o =

N 1/2

rms = Nl-o 3 x? (k)
k=1 9 5. 1/2 (17)
standard deviation = [(rms)” - (mean)“]

Two frequency-response metrics are of primary interest: the
"describing function", which relates the evoked response to the
visual stimulus; and the spectrum of the evoked response. For
this discussion we define the describing function empirically as
the Fourier transform of the response divided by the Fourier
transform of the stimulus, measured at input frequencies only.
Because the Fourier transforms are complex quantities, each
describing function estimate may be charactgrized by its
magnitude (which we call the "gain" or "amplitude ratio") and by
its relative phase shift. Describing-function measures are often
used in a model-matching procedure to derive analytic
representations of system input/output characteristics.

15



The power spectrum .is partitioned into input-corrclated and
remnant components. The remnant is of particular interest, as it

serves two functions:

l. It provides a test of the reliability of the describing
function estimates. :

2. In the case of the VER experiment, it provides an
indication of the background electro-cortical activity
3
not linearly related to the visual stimulus.

'Frequency-response analysis requires Fourier transforms of
the desired response signal (or "channel") and the visual
stimulus, VERNAL, along with many other programs that perform
this type of analysis, uses a "fast-Fourier transform"™ (FFT) to
periorm this operation efficiently. The particular algorithm
used in VERNAL requires that the time-history sample length
contain N =2n poinﬁs, where n 1is a postive integer. The
experimengal- run length is typically 1longer (N points =T
seconds) to allow the system to reach steady-state. rThe intervai
used for analysis, then, is of length N and usually begins a
number of sample points beyond the starg of the run,

In order that the FFT of a sum-of-sines time history contain

significant response at S0S frequencies only (i.e., no "side

3

Even though remnant is, by definition, not linearly correlated
w%th t@e external stimulus, there may be a functional rela-
tionship between the two. One of the questions for VER research

ig, in fact, to determine whether or not such a functional rela-
tionship exists.

16



bands"), the sample period N used in constructing the SOS input
o

signal must be the same as the number of samples processed by the

FFT routine. (The VERNAL and VERRUN programs are configured S0

that N is the same for both.)
o

Assume that the FFT routine processes the sampled time
history x(k) (k=i,...,N +i), where "i" is the "start point"™ for
analysis, and returns tge Fourier transform X(k), (k=l,...,N /2).
(The FFT returns independent transforms for N/2 frequegcies
only.) Since the transform is a complex quantity, the transform
X(k) may be considered to be two vectors XR(k) and XI(k)
containing the real and imaginary parts, respectively. Each
frequency index "k" represents a frequency "bin" of 2WT . Thus,
the bin width of each FFT result is identical toothe base

frequency @ used in constructing the stimulus SOS.
o

Once the FFT's have been computed for the signals of
interest, we can then proceed to estimate spectral and describing

function quantities as discussed below.
2.2.1 Computation of Signal Spectra
The signal spectrum is defined at each FFT index as

P(k) = [XR(k)2 + XI(k)2]/2 (18)

Because the signal being analyzed is an SOS input, or the
response to an SOS input, partitioning the spectrum into

input-correlated and remnant components is relatively

17



straigntforward. By definition, all power estimates at indices
not corresponding to SOS frequencies constitute the "remnant
power™"™ and, to a first approximation, all power estimates at

input frequencies constitute the "correlated power". Thus:

P(k), k#h
3

C(k), k=h
J

remnant power

correlated power

where h is the jth sOS frequency, and’ N is the number of
j c
sinusoidal components in the SOS input, as defined earlier.
The fractional remnant power -- the fraction of total signal

power contained at non-input frequencies -- is often of interest.

This computation is performed as follows:

N/2
‘P (k)

k=1

N, .

FRREM = (TOTPOW-CORPOW)/TOTPOW

TOTPOW

CORPOW (19)

where TOTPOW is the total signal power contained in the N/2
independent FFT frequencies, CORPOW is the total correlated power
summed over all SOS frequencies, and FRREM is the fractional

remnant power.

The estimates of correlated power must be considered

18



approximations because of possible "contamination" by remnant.
(Correlated power can exist only at input frequencies, but
remnant power is assumed to be distributed smoothly with
frequency.) To determine the reliability of a given
correlated-power estimate, we must estimate the level of remnant
power contained at that SO0S frequency. Since we cannot
distinguish remnant from input-correlated power in a single FFT
measurement, we adopt the following strategy: (1) assume remnant
to vary smoothly with £frequency, (2) average the remnant
estimates in the vicinity of the SOS frequency, and (3) use this
average as the estimate of remnant power contained at the S80S

frequency.

To elaborate, let us define the (estimated) input-correlated
power for the jth SOS frequency as

C =P(h) - (29)

J J
Consider the diagram of Figure 3, which shows a hypothetical
signal spectrum in the vicinity of the jth SOS frequency. In the
VERNAL program (and in other similar programs created by BBN),
averaging is performed over a window 1/4 octave wide centered

about the input frequency.

Let the upper and lower boundaries of the averaging window
- +
be designated as k and k , respectively. For a window extending
J 3 :
1/8 octave above and below the SOS frequency, these quantities

are computed as

19
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Ky = h,/2 (1/8)

(21)
kt =n, .2 (/8
J J
where the computed indices are rounded to the nearest integer.
: + -

The total number of frequency bins spanned is k - Kk + 1, and

J J :
the number of "remnant frequencies" (total number of bins minus

+ -
one for the jth SOS frequency) is k - k . Thus, the estimate of
3 3
remnant power associated with the jth SOS frequency is
kT
J
R, = —= EE:P(k)- C.
I ktexd J (22)
) k=K

The measures C and R are pure spectral (rather ‘than spectral
J J
density) measures and have units of signal power. We may refer

to these measures as "power per bin".

These measures are usually expressed in terms of dB:

20



Cdb

18*log(C )
j i
_ lﬂ*log(R.)
] ]

(23)
Rbd

where the logarithm is to base ten. To determine the reliability
of measures based on correlated power (C(k) plus describing
function estimates), we compute the following signal/noise ratio
(in dB):
P. = Cdb. - Rdb_ (24)
J J J
A criterion value p=6 dB is typically assumed for determining
measurement reliability. That is, estimates of correlated power
or describing functions at frequencies for which o is less than 6
dB are considered "unreliable"™ and are not used in subsequent
analysis (e.g., computation of within- and across—-subject

statistics).

It is useful to convert spectral measures to units of power
pér rad/sec (or power/Hz) when the SOS has been constructed to
approximate the power distribution of some theoretical continuous
power spectral density function, or when one wishes to normalize
the data to allow comparison with results obtained using
different experimental run lengths (and hence, different
frequency bin widths). Remnant is converted by simply dividing

the remnant estimate (power/bin) by the bin frequency w . Thus,
o

R' = R./w

j i o
Rdb' = Rdb - 18*log(y ) (25)
)| ] o

21



conversion of correlated power, on the other hand, is not as
simple. Recall the discussion in section 2.1 concerning
calculation of SOS amplitudes so as to approximate a continuous
power spectral density function., Frequency windows were defined
by the geometric midpoints of adjacent SOS frequencies w— and w+

in equations 14-16, and each amplitude was chosen to contain the

power within its corresponding window.

To convert input-correlated power tO units of power per
rad/sec, we approximate the j.verse process by a "box-car”

representation. That is, we transform C into a uniform power

]
+ -
spectral density over the frequency region w - W, If we let W
J J J
i -
= 0 - w o, the power per rad/sec is
J J
¢! =C./u
J J 3
"Cdb' = Cdb =~ 1@*log(W )
] J J

2.2.2 Computation of Describing Functions

Analysis of steady—state VER is expected to involve
computation of one or more describing functions relating selected
pairs ot signals. For two transformed signals X 'and Y, the
describing function estimate at the jth s0s frequency index is
computed as

~ ¥Y(h,)
J X(h.) (26)
J
where h is the FFT index corresponding to the jth SOS frequency
J

22



(consistent with the definition of h in Section 2.1), X(h ) and
Y(h_) are the corresponding Fourier cgefficieﬁts of the "gnput"
(degominator) and "output" (numerator) signals defined for this
computation, and G is the describing function at that frequency,

expressed as a complex number.

For analysis of VER data, the signal X will typically be the
SOs visual stimulus I, and Y will be a particular response signal
of interest. One may, however, compute the descfibing function
between two VER response channels as well, To keep the
discussion general, we shall make no assumptions here as to ‘the

specific variables used in the describing function computation.

The complex gquantity G 1is usually transformed into a pair

J
of real quantities for presentation. The "gain" (more properly,

the "amplitude ratio”) is the magnitude of G , expressed in dB.

J
Thus,
a = 20*log(|G |)
J 3 _
= 28*log(|¥(h )[) - 28*log(IX(h )I) (27)
J J
= ay = a
lj Xj
where ay and a, are the magnitudes of Y and X, expressed
J J

in dsB.

The phase shift is computed as the difference between the

relative phase angles of X and I, expressed in degrees. Thus,

g = L¥(h) - (X(h) (28)
J J J :

where the "angle" of X, for example, is computed as
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LX(h ) = 360*tan (XI(h )/XR(h ))
j J J

Because ‘phase is a circular function, repeating every 368
degrees, the inverse tangent operation yields a phase estimate
within a 360-degree range (typically, 8 to 360, or -180 to +188.)
Now, dynamically responding systems that contain a large number
of inﬁegrating elements and/q; significant delays may exhibit a
phase-shift change of moréAthan 360 degrees over the frequency
range of interest. Therefore, a.method df "unwrapping” the phase
shift may be requiied to obtain a true picture of the

f requency—-dependency of the phase response.

The VERNAL program unwraps the phase by requiring the
phase-shift estate at a given SOS index to vary no more than plus
or minus 180 degrees from the phase estimate at the preceding

index, where a reference phase of @ degrees is adopted for the

S0S index. Thus, the following mathematical constraint is
satisfied:
[ - 180 < ¢_ £ ¢. + 180 (29)
i-1 j j=1

This algorithm has worked well for analysis of ménual'
control data, where the phase-producing aspects of the
man/machine system and the spacing of SOS frequencies usually
guarantee a phase change mégnitude of less than 180 degrees from
one SOS index to the next. Whether or not this algorithm works

as well for VER data remains to be seen.
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Since the objective of computing the describing function is
to provide a characterization of the linear relationship between
two signals, the describing function estimates are valid only to
the extent that the Fourier coefficients X(h.) and Y(h_) reflect
response activity linearly correlated wigh the eiternal S0S
stimulus. Therefore, the spectra of X and Y are checked to
verify that the signal/noise ratios p are greater than some
criterion value (say, 6 dB) for both signals. If either spectrum
fails this test at a given SOS frequency, the gain and phase
shift estimates at that specific frequency are considered invalid

and are omitted from further consideration,

2.3 Guidelines for Model Analysis

Studies of manual control research often involve a
post-analysis modeling effort in which the time- and
frequency-domain measures described above are used to derive
parameters of an analytic model. This analysis typically serves
two purposes: (a) data compression, in which the measures
derived during the primary data reduction are further reduced to
a small number of model parameters, and (b) development and
validation of theoretical models for operator response behavior.
We ahticipate the application of analytic model analysis to VER
results as well, primarily to achieve an efficient
characterization of stimulus/response relationships (or, more
precisely, to achieve a parsimonious characterization of the
effects of experimental variables on stimulus/response
relationships).
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oncé the £frequency-response metrics have been derived from
the VER .data, three ingredients are needed to allow model
analysis:
1. An analytic model that has a well-defined (and,
ideally, small) set of independent model parameters and
the capability of yielding predicted performance

metrics of the type extracted from the data.

2. A scalar metric ("matching error") that defines how
well the data are matched by the model predictions.

3. One or more algorithms to identify the set of parameter
values that provides the 1least discrepancy between
"predicted" and experimenta. measurements.

It.is important to note that the model parameters identified
from a given data set are functions not only of the model
struc:ure, but of the definition Qf the matching error, the
search procedure empioyed in the idehtification,'and possibly the
way in which the~ search procedure is initialized. Unless the
model is capaﬁle of an exact match to the- data -- not likely
- unless the model itself has been used to generate "data" for test
purposes -~ the resuits of the model analysis will be specific to
the details of the analysis procedure. Therefore, a consistent
model-matching procedure should be used when exploring the

effects of experimental variables on the VER, or when exploring

inter-subject differences.
2.3.1 Parameter Identification

In this discussion we review a particular scheme for

identifying model parameters. This scheme has been extensively
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applied to the identification of pilot model parameters from
manual tracking data, with apparent success; it is, nevertheless,

quite general and can handle a number of model structures.

We recommend that, at least initially, linear model
structures be tested, and that parameter identification be based
on the describing function (gain and phase) and remnant measures
described above in Section 2.2, For reasons that will be clear
shortly, we further recommend that model analysis be performed on
ensemble statistics of these metrics, rather than measures

obtained from a single experimental trial.

Assume for this discussion that some model, having a
parameter set ©p, is capable of generating predictions for these
metrics and is to be tested against VER data. (A specific
candidate model structure for VER analysis 1is considered in

Section 2.3.2),

We suggest the following scalar matching criterion, which is

similar to that used for manual control analysis:

2
N N ~
1 - =~
g2=1 1)1 [a a (E)] 1 ¢57¢4(R)
3 N1 l Z o
j=1 j=1 *5
N? — ~ 2 7]
1 3 -
+ 5 Rdb Rdb.(g)
2 &
j=1
R
db,
] _
(39)
where:
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1. a ., b', and Rdb. are the gain, phase, and remnant

i) J 3 .
estimates for the 3jth S0S frequency as defined in
Equatlons 27, 28, and 23, respectively. These

quantities represent mean estimates determined by
ensemble  (point-by-point) averaging across experlmental
repllcatlons and/or across subjects.

2, a p, etc., 1is the model prediction for a particular
J _ '
choice of values for parameter set p;

3. 0 , etc., is the standard deviation of the
a

experimental measurement determined from ensemble
averaging;

4., N is the number of frequency components for which
l .
reliable gain and phase estimates have been obtained,
and N is the number of frequencies yielding reliable
_ 2 :
remnant estimates. Except for the SOS visual stimulus
(which is theoretically remnant-free), N will equal
2

the number of SOS frequencies N . N will be equal to
or less than N , ‘depending' gn %he signal/noise
environment at thg varioas SOSs frequencies.

Inciusion of the experimental standard deviations in the
scalar matching error allows each error component to be weighted
'inversely by the reliability of the data. 1In this way, "matching
power™ is concentrated on the data points that are (presumably)
the most reéeatable. On the othér hand, to prevent the matching
scheme from giving excessivé weight to data points having
unusually low variability, we suggest that the gollowing minimum

standard deviations be imposed for computing E : 8.5 dB for gain

and remnant, 3 degrees for phase shift.
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Weighting inversely by standard deviation also converts each
error term into a dimensionless number, thereby allowing the
accumulation of matching errors across different metrics. The
quantity E (the square root of the criterion defined in Equation
38) reflects the average number of standard deviations of
mismatch, That is, if every model prediction differed from its
corresponding data point by "n" standard deviations, E would have
a value of "n". |

2
The matching error E may be expressed as

E = eg'We ' - (31)

where each element e of the column vector e 1is the difference
J
between the jth experimental data point and the corresponding

model prediction, and each element w of the diagonal matrix W is
i

a weighting coefficient. For the criterion of Equation 38, e

1
8 . 2
a-a (p), e =g -$ (p), etc., and W =1/3N 0 , W =
1 1 (N +1) 1 1 1 1 al (N1+1)
2 1
1/3N 9 , etc.
1 ¢
1 2

In a given application, the matching error E will depend on
the particular choice of parameter values p. The objective of
the gradient search scheme is to find the p that minimizes Ez.
To implement the search scheme, we initially assume that _model
predictions (and therefore prediction error) vary linearly with
model parameters. Thus, a change in parameter values yields a

change in modeling error characterized as Ae = Q'Ap, where

29



q(i,J) = Se-/ap : ‘ (32)

j i

That is, the matrix Q contains entries quantifying the
sensitiyity of each §rediction error. to each model parameter.
This matrix is determined empirically using the specific déta and

parameter sets at hand.
SolVing for minimum J as a function of Ap, we obtain

A -1 v

Ap = -[QWQ'] QWe (33)
If modeling errors were truly related 1linearly to model
parameters, the desired best-matching parameter set would be
obtained by the following three-step procedure:

a. Select an initial parameter set p ;

o _

b, Compute the sensitivity matrix Q and the parameter

increment Ap as defined in Equations 32 and 33;

c. Compute the desired parameter set as p=p +4p
’ (o]

Now, since the relationship between model parameters and
model predictions is seldom totally 1linear, two or more
iterations of the above probedure are required until some
convergence criterion is satisfied. Because the parameter change
computed as per Equation_'33 will sometimes yield a scalar
matching error greater than the starting value, it is often

‘useful to augment the minimization procedure with a line-search

to optimize the magnitude of Ap.

A full discussion of the techniques of implementing the
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quasi-Newton gradient search scheme, and of the ramifications of
adopting such a procedure, is beyond the scope of this report.
Further implementational details may be found in Levison

(198la,b, 1982).

One point to mention here, however, is that the uniqueness
of the identified parameters is not guaranteed for any numerical
search scheme, including the quasi-Newton procedure.
Specifically, a change in the initial gquess p may result in
different values for the identified parameters forothe same data
base. The severity of this potential problem in a given
application depends on a number of factors, including:

a. the degree to which the model structure is capable of

matching the data;

b. the existence of one or more parameters to which the
scalar matching error is relatively insensitive;

c. the degree to which the relation between model
parameters and predictions is nonlinear; and

d. the vector "distance" of the initial guess p from the
value of p that would provide a global minimu;.

To minimize the non-uniqueness problem, therefore, one
wishes to test a model that has a structure capable of matching
the experimental data with a set of nearly-orthogonal parameters,
and to initialize the search scheme with parametef values that
are close to optimal. This approach has been quite successful in
identifying "pilot-related"™ parameters of the optimal control

model from manual tracking data.
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2.3.2 A cCandidate Model Structure

As indicated earlier, we have not included model results in
this report for two reason: (a) lack of a sufficient data base,
and (b) ambiguities in "unwrapping" the phase-shift component’ of
the VER. Nevertheless, we discuss a candidate model structure
here for readers who might wish to conduct model analysis‘of VER

once the above constraints have been overcome.

If we had a theoretical quasi-linear model for the VER (as
we have, for example, for manual control behavior), we would
offer this model for initial testing. Given the lack of such a
model, we must examine the experimental data and, relying on our
knce.siedge of control systems, postulate a model structure that is

likely to mimic the VER.

We must also decide whether we wish to match describing
function and remnant data simultaneously with a single model
structurz, or to match these quantities independently with either
similar or different model structures. Again, given the lack of
a firm theoretical basis for deciding whether or not the VER and
the background electro-cortical activity are functionally
related, we suggest the general approach (i.e., independent
models) at this time. 1If strong correlations are subsequently
found between the describiﬁg function and remnant models, one can
re—-analyze the data wusing a more highly constrained modeling

philosophy.
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For convenience, the preliminary results shown previously in
Figure 1 are repeated here in Figure 4. The following overall
trends in the frequency-response measures can be ascertained:

1. Gain appears to reach a maximum in the region of 9-15
Hz, then fall off with increasing frequency.

2. Phase lag (i.e., negative phase shift) increases
monotonically, and relatively strongly, with increasing
frequency.

3. Remnant peaks in the region of 9-~12 Hz, then decreases
with increasing frequency.

These trends suggest that one consider a resonant
second-order filter with pure delay as a model for the describing
function response, and a second-order filter for the remnant
response. (Since remnant 1is a power spectrum and therefore
contains no phase or timing information, a delay parameter is not

identifiable from the remnant data.)

A second-order model to the describing function might take

the form:

. Ke“ij
F(Juw) = 27w w_\2
14— +<79
2w jw (34)

where 3jw 1is radian frequency, expressed as an imaginary number;
F(jw) is the filter transfer function that will be matched to the
experimental describing function; K is the asymptotic
low-frequency filter gain; T is a pure delay; w® is the natural
frequency (approximately the resonant frequency) gf the filter,

and % is the filter damping ratio.
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F(jw) 1is a theoretical transfer function and therefore is a
continuous function of frequency. When used in a scheme for
identifying model parameters, however, it will be evaluated only
at frequencies corresponding to the experimental describing
function measurements -- i.e., the SOS stimulus frequencies. At
each such frequency, the complex quantity F(jw) will be converted
to gain (dB) and phase (deg) to facilitate computation of
model/data differences. Since F(w) represents a model for the
VER describing function only, the scalar matching error will be

based on the first two summations contained in Equation 34.

The objective of the gradient search procedure is to
identify values for the four independent @odel parameters -- K,
T, w , and % -~ that minimize the scalar matching error. if we
assumg a VER experiment employing 18 frequencies (yielding 140
gain and 1@ phase estimates), a 5:1 data compression results if

the data can be reasonably well matched by the model.

As noted above, success of the identification procedure is
contingent on the selection of a suitable initializing set of
parameter values. For a low-order model of the type suggested
here, selecting a reasonable initial parameter set is relatively

straightforward. Once the issue of unwrapping the experimental

phase shift has been resolved, the following procedure should

yield satisfactory results:

1. Determine K from the asymptotic low-frequency gain
exhibited by the data. (Be sure to convert dB to
absolute units.)
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2. Estimate time delay T from the phase shift at the
higher frequencies. Note that the phase shift due ¢to
delay is a linear function of frequency: phase in
degrees is given by 57.3*T, or 57.3*27fT, where "f" is
frequency in Hz. High-frequency phase will thus be
equal to the asymptotic high~frequency phase shift due
to the dynamics response of the filter (exclusive of
delay), plus the effects of delay. For a second-order
filter, maximum phase shift due to dynamic elements is
-180 degrees. Thus, for a given SOS index "j",
representing a frequency beyond the filter bypass,

¢ ~ -188 - 57.3*21f T (35)
] o .

Accordingly, we select the initial delay parameter

B +180

57.3%2mf,
1
(36)

3. Let the initial guess for the natural frequency w be
n

the frequency at which the experimental describing
function gain is a maximum.

4. De“ermine the initial value for damping ratio ¢ from
the ratio of the maximum VER describing function gain
to the asymptotic low-frequency gain. For systems with

a distinct resonance, the damping ratio is
approximately
[}
1/2 F
© % or (37)

where F' is the ratio of maximum to low-frequency asymptotic gain

computed from absolute values, and Fdb' is the same ratio in dB.

Guidelines 3 and 4 apply only when a resonance phenomenon - is

apparent in the data. Otherwise, set the initial w to the
: n
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frequency at which the describing function gain has decreased by
about 3 dB from its asymptotic low-frequency value, and set

C between 0.7 and 1.

Selection of initial parameter values for a remnant model
woﬁld proceed in the same fashion, except this model would have
only three parameters (K, w , and ), and step 2 would be
omitted, "

To demonstrate application of these guidelines, we use the
data of Figure 4 (the tracking case) as an example. Taking the
gain at the first SOS frequency as the asymptotic low-frequency
gain, we set K=0.1 (equivalent to -20 dB). Selecting the
second-highest frequency of about 22 Hz as the basis for the time
delay computation, we use equation 36 to compute a delay of about

.12 seconds from the phase shift (about -1200) measured at that

frequency. The gain curve seems to peak at around 16-12 Hz, so
we let w = 12 Hz. Finally, we note a maximum gain increase of
n

about 1¢ dB, which, from Equation 37, yields a damping ratio t of

about @g.16.

Model "predictions" obtained with this initial parameter‘set
are compared to the experimental describing function estimates in
Figure 5. Model results are plotted as a continuous function of
frequency; data are represented by discrete symbols at S80S
frequencies, While not providing a particularly close match to
the data, the model results do reflect important frequency trends

and, in general, provide a reasonable "ballpark" approximation.
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on the basis of our past experience in applying this approach to
modeling of manual tracking response, we would expect this
initial guess to allow the search procedure to reach a global

minimum,

success of model analysis will be contingent, of course, on
the ability to properly unwrap the phase reéponse. The phase
curve shown in Figure 5 (not produced by the VERNAL program)
conforms to the assumption tha£ che VER phase shift should
monotonically. decrease with increasing frequency. On the other
hand, the VERNAL program as currently configured would have
placed the phase measurement at the fourth SOS frequency at a
value slightly more positive than the phase at the third
frequency, rather than nearly 360 degrees more negative as shown
in the Figure. ‘It is not clear at this stage which is the

"right" way to unwrap the phase.

In addition, the sign of the VER is arbitrary in terms of
theoretical modeling and depends experimentally on the polarity
convention adopted in recording the electro-cortical potentials.
Thus, one could adopt an analytic model with a negative gain and
thereby translate all predicted phase values by plus or minus 180

degrees.

Note that no phase ambiguity exists for an analytic linear
model of given structure and parameterization: each
differentiation represented in the numerator of the transfer

function asymptotically adds 9@ degrees phase lead, each
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differehtiation represented in'_the denominator asymptotically
adds 90 degrees phasé lag, a negative sign adds +180 degrees, and
pure time delay contributes a phase, lag that is 1linear with

frequency.

Because linear model predictions are unambiguous, we suggest
that ‘a linear modél -- rather than some arbitrary criterion of
"reasonableness" -- be used to guide the analysis of phase-shift
‘characteristics. Initially,‘ this approach will require a
Closely-coupled iterative probedure, where the model is used to
guide the analysis} and the experimental data are used to define
model parameters, " As the experimentall data base expands,
however, we suspect that one or mbre baseline model structures
-- either theoretical or determiﬁed.empirically-—— will emerge to
guide this ﬁype of - analysis. In any case, development of
reliable and efficient techniques to perform codpled data and

model analysis are suggested as an area for further research.
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3. USER'S GUIDE TO VERRUN

3.1 Major Functions

VERRUN is a sof tware system designed to support
electroencephalographic (EEG) visual evoked response (VER)
experimentation using sum~of-sines (SOS) stimulation as described
in Section 2.1. The system is designed to operate 1in a
single-user real-time mini computer-based environment, with
modular software to facilitate transportability across systems.
Currently, the system is implemented on the Digital Equipment
Corporation (DEC) PDP-11/34, using the RSX-11 operating system,
and on the PDP-11/23, using the RT-11 operating system. The
primary source language is FORTRAN, with some support code

written in the MACRO assembly language.

VERRUN is intended for use in the closed-loop
stimulus/response environment sketched in Figure 6. The stimulus
generator is driven by the software, through a digital-to-analog
(D/A) converter, via a commanded SOS signal I . The generator,
in turn, provides . an intensity-modulated vgsual stimulus I for
"driving" the human subject's "steady-state" VER (ssVER). The
resulting scalp voltages (B through E ) are transduced and
amplified Ey the EEG ~recoréing hardwarg, and the measured

voltages (E through E ) are sampled through a multi-channel
1 N

analog-to-digital (A/D) converter. A stimulus intensity signal

(I) is likewise transduced and sampled, through an additional A/D
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channel. VERRUN implements four major functidns as diagramméd in
Figure 7: (i) initial setup and parameter specification, (2)
pre-trial initialization,. (3) real-time SOS generation and data
recording, and (4) post-trial file maintenance. Typically,
initial setup and parameter specification is pefformed only at
the start of a multi-trial expe;imental session, and the
remaining three functions are performed in order during each

experimental trial.

A user will generally want to use the same time-base and SOS
parameters throughout an entire experiment (except for

re-randomization of the SO0S phases). Since VERRUN can be
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initialized with values stored on a previously-created data file,
an- entire experiment can be run with a minimum of wuser

interaction with the program.
3.1.1 1Initial Setup and Parameter Specification

Both time-based and SOS parameters are specified during this
initialization phase. Parameters may be specified in one of four
ways:

a. Read all parameter values from a previously-created
file.

b. Request "nominal" (pre-stored) values for all
parameters.

c. Specify all parameters interactively.

d. Request nominal values for time-base (or S08S)
parameters and specify SOS (or time-base) parameters
interactively.

1f parameters are specified interactively, or if nominal
values are requested individually for the time-base and SOS
parameter sets, the user is provided an opportunity to review and
modify parameter values before continuing on.‘ This
review/modification option is omitted if the parametefs are read

from file, or if nominal values have been requested for all

parameters,

The user is then asked if he wishes to perform a run. If
80, VERRUN executes pre-trial initialization. If not, the
parameters are stored on a file specified by the user, and VERRUN
provides the options of (a) specifying another parameter set, (b)
performing an experimental trial, or (c) terminating the program.
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With direct user specification'of the time-base parameters,

the user 1is prompted to enter the sample interval in

milliseconds, I , and the overall run 1length in seconds T ,
S R
defining the duration of an experimental trial. Both entries are

checked against minimum and maximum limits; nominal as well as

limiting values are shown in Table 1. VERRUN then computes.the

sample interval in seconds, T , and the number of samples per

S
trials, N , as follows:
R

T I /1000 (38)

S S

N (39)

T /T +1
R R S

and T are checked again to make sure
S R
that N does not exceed the system's preset upper storage
R

nominal values are given in Table 1.

Values specified for I

limits;

TABLE 1. TIME-BASE PARAMETER VALUES AND LIMITS

Parameter

units

nominal

minimum

maximum

note

note:
limits on N

T msec

R

5
5.2

1040

(1) both parameters are also check

(2) computed via (2.14)
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' Ggiven the total number of sample points N comprising a run,
: R
VERRUN specifies the total number of sample points N for one
o]
period of the SOS signal. For compatibility with the FFT routine

to be used later for signal analysis, the value for N is chosen

o]
to be the largest power of 2 less than or equal to N . VERRUN
_ R
also computes the overall SOS period in seconds T, the base
' o
frequency in Hz £ , and the base phase in degrees g , as
o o

. described in Section 2.1. Time-base parameters are then listed

for user verification and respecification if not satisfactory.

With direct user specification of the SOS parameters, the
user is first prompted to specify the number of sinewave
cor»nhnents, N . This may be done by spécifying the "nominal"
value option, gr by direct entry, in which case limit checks are

provided. Limiting-and nominal values are given in Table 2.

The user is then prompted to specify a desired SOS frequency

set, £', where j ranges from 1 to N, and £' is in Hz. This can
J c J

be done by specifying the "nominal" frequency set option (if N

o . c

is nominally specified), in which case the first N components of

the nominal frequency set are selected. If tge user chooses
inétead to specify the N frequencies directly, VERRUN allows for
corrections to be hade dsring data entry, and provides checks to
ensure that the chosen frequencies are consistent with the
previously-chosen sample and run times. Limiting and nominal

values are given in Table 2.

once the desired frequency set has been specified, VERRUN
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TABLE 2.

SOS PARAMETER VALUES AND LIMITS

Parameter | units nominal minimum | maximum| note
Nc - 6 1 15
f; Hz | 5,10,..,75 £ £/2| (1)
éj - 1,1,1,... 0 100
4. deg - 0 360 | (2)
IRMS volts 1 0 5
notes:

(1) £, = 1/T and f_ = 1/T,

(2) nominal values set by random number generator

then computes, for each component, the nearest corresponding

integer multiplier according to:

h. = [ft/f | (J=1l,...,N)
J 1 o c

(40)

This then yields the harmonically related SOS frequencies £ ,

3
where
f = h f (j=1'oto’N ) (41)
i jJ o c
Naturally, progressively smaller values of £ allow for

o}
progressively closer matches between the desired drive frequency

sets £ ,

and the actual harmonically derived set, £ . Smaller

J
can, in turn, be obtained by increasing T .
o o

J
values of £

Once the SOS frequency set has been specified in this

fashion, the wuser is provided the opportunity of listing both
desired and actual frequencies, along with the corresponding
harmonics. If not satisfactory, VERRUN allows for
respecification.
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Foliowing - s08 frequency specification, VERRUN prompts the
user for the distribution of SOS amplitudes with frequency. This

is done by specifying normalized (dimensionless) amplitudes a ,

A J
which are related to the SOS (dimensioned) amplitudes a , by a
J
scale factor £, or: :
a = fa (3=1se0e N ) | ; (42)
J J c _

so that, with £ free, the user can specify the ghape of the a
. : 3
distribution, independent of the signal RMS level.

‘The normalized ampiitudes a may be set by spscifying the
"nominal" amplitode set option (if % is nominally specified), or
by direct entry of the N normalizedcamplitudes. If the user
chooses the latter, VERRUN allows for corrections to be made
during data entry, and provides checks to ensure that the chosen
amplitudes ‘are within prespecified limits; Limiting and nominal

values are given in Table 2,

Oonce the normalized amplitude set has been specified, VERSOS
| then prompts the user for the desired RMS signal level of the SOS
signal, I . This may be done by'speoifying the "nominal" value
option, o?ng direct entry, ‘in which case 1limit checks are

provided (limiting and nominal values are given in Table 2).

VERRUN then computes the amplitude scale factor f according to:

N \ -1/2

= ~2 .

=7 Ipyg | I° 3] > (43)
3=1
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By then computing the SOS amplitudes according to (42), VERRUN
ensures that the S0S signal I(t) will have the desired RMS level,

since

2
(e = , RMS (44)
Following SOS amplitude specification, VERRUN prompts - the
user for a desired SOS phase set, ¢., where j ranges from 1 to
N . Phases can be selected in oneJ of three ways (1) the
"gominal" selection procedure, (2) specification of a "seed" for
picking a set of random phases, or (3) direct specification of
phases. If the user chooses the nominal option, VERRUN uses a
random number generator to select uniformly distributed values
between @ and 360 deg; the "seed" of the random number generator
is automatically changed from run to run’ to allow for a
consistent means of randomizing the phase sets each run (and thus
the SOS time history). If the user specifies the seed for phase
randomization, or specifies phases directly, VERRUN allows for
corrections to be made during data entry, and provides checks to

ensure that the chosen phases are within prespecified 1limits

(given in Table 2),

Once the desired phase set has been specified, VERRUN then
computes, for each component, the nearest corresponding integer

phase multiplier, p , according to:
i

P = [8'/8 ] (351,000, N ) - (45)
J J o c
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The SOS phases can then be computed as integral multiples of the

base phase as
g =p .8 | (46)

This, of course, quantizes the phase choices, but progressively

smaller ~values of g allow for progressively closer matches

o
between the desired phase set g' and the actual set g . Smaller
75 . j
values for $ can, in turn, be obtained by reducing the ratio of
o
S o

3.1.2 Pre-Trial Initialization

Pre-trial initialization consists of four basic steps.
First, if an experimental trial has just been completed, and the
user has requested another run, the user is provided the option
to change all, some, or none of the time-base and SOS parameters.
If the user requests no changes, SOS component phases are
automatically re-randomized. (This step is omitted on the first

trial following initial setup and parameter specification.)

Next VERRUN displays the date, time, and run number selected
for the upcoming trial. (The run number is set to 1 during
initial setup and is automaticaliy incremented by 1 for
successive trials.) The user either accepts or modifies the run

number and then specifies up to 6 lines of commentary.

VERRUN then prompts the user for a filename for parameter

and data storage. After some simple legality checks on the
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entered name, VERSOS opens a file and writes out the "header":
that portion of the data file comprised of the (previously-
def ined) run parameter values, along with miscellaneous
"housekeeping™ parameters and tags to aid in later data file

maintenance.

Finally, VERRUN generates a "pre-stored" version of the
entire SOS signal to be used. This is done by first generating
and storing a "quarterwave" sine table associated with the sample
and base periods, T and T , of the SOS signal, using the tabular
sinusoidal functioﬁ s , gs described in Section 2.1. With this
table, the sampled—timen version of the SOS signals is then
computed for all N samples which comprise a complete run. Each
sample value is theﬁ scaled for eventual conversion by the D/A
hardware, and then stored in a linear data array. With the SOS
signal generated and stored, VERSOS prompts the user for a "run

start” signal, and waits for the user's response.
3.1.3 Real-Time Control

Once a start signal is received from the user, VERRUN zeros
the D/A channels and starts the digital clock "ticking" at a
pre-specified rate (nominal «clock rate is 1060 kHz). After the
clock has counted down the number of ticks corresponding to the

desired sample interval T , D/A and A/D conversions are

S
performed. This cycle is repeated N times to generate an
R
experimental trial of the desired length T seqonds, after which

R
the clock is stopped and the D/A channels zeroed,

51



Two signals are generated each sample interval: (a) a
~ square wave alternating between maximum positive and negative
values on D/A channel 6, to be used for test purposes, and (b)

the SOS signal on channel 1, obtained by table lookup.

Three signals are recorded by A/D channels 1-3 and are
stored in the same 1linear array containing the SOS stimﬁlus
signal. The data sequences recorded from the three A/D channels
are interleaved with each other and with the SOS stimulus. That
is, the first element of the linear data array contains the first
SO0S sample, £he second through fourth elements contain the £first
samples recorded from A/D channels 1-3, respectively, the fifth
elear nt contains the second SOS sample, and so forth. The linear
data array will therefore contain 4*N samples at the end of the

R
experimental trial.

3.1.4 Post-Run File Maintenance and Multi-Run Control

VERRUN "closes-out" a run by first writing the recorded data
strings onto the file opened at the beginning of the run, thus
appending the data to the parameter set used to specify the run.
The file is then cloéed, and the user is provided the options of
(a) performing another_run, (b) setting up a parameter file, or
(c) terminating the program. If another run is requested, the
run number is incremented, and VERRUN proceeds with pre-trial
initialization as described in Section 3.1.2. Request for a new
parameter file returns the program to the initialization mode

described in Section 3.1l.1.
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3.2 Program Generationfand Operation

VERRUN was designed to run efficiently under DEC's RT-11
operating system, but program development can be cqhvenieﬁtly

done under the RSX-11l operating system in a time—sharedvmode.

|
i

3.2.1 Program Generation

An  executable file of the VERRUN software system is

generated within the RSX-11 Operating System by the co@mand:
TKB @VERRUN.CMD
where the file VERRUN.CMD contains the following text:'|

VERRUN=VERRUN
PARSET
TIMPAR
SOSPAR
SOSNCP
SOSHMC
SOSAMP
SOSPHS
SOSGEN
LOOP |
RWHEAD
RWDATA
TITLER
UTLLIB/LB
IOLIB/LB

/

RESLIB=(1,54) DEVCOM/RW=7

//
The last three lines of the CMD file exercises the :pption to
access a specific file in the resident library. This file is

required to allow real-time operations by the RSX system.
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‘3.2.2 Program Operation

Two - examples of VERRUN operation are shown iﬁ this section.
. First, we illustréte the procedure one might follow when defining
parametefs for a new experiment., The second example illustrates
the moré typical operating mode in which minimal trial-to-trial
changes are made. For expository purposes, the user input 1is

circled in these examples,

Figure @8 illustrates a sample dialog for an initial
experimehtai.trial, User entries are circled; other text is
generated by the program. Section A shows that the user has
refused to accept nominal time-base parameters and has
~ interactively specified thé sample- period and run time (trial
duration). Upon request, VERRUN lists the specified and computed

time-base parameters, along with the base frequency.

Section B illustrates interactive specification of component
s0S frequencies, followed by  a listing of the final set of-
harmonic indices and frequencies. Note that the actual
frequencies differ slightly from the desired (user-specified)
frequencies4because of the requiremeht for VERRUN to usé integral
harmonics of the Dbase frequency; In Section C, the user
specifies component amplitudes énd overall signal rms level, and
VERRUN 1lists both the relative amplitudes specified by the user
as well as the adjusted_amplitudes that will 'be used later to

generate an SOS signal of the specified rms level.
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- fruN VERRUN)

FARAMETERS FROM A FILE? (N)

NOMINAL PARANETERS?(N)

HHARRRAKIIIKTIME BASE PARAME TERSHRAKKKRA KKK
NOMINAL TIME BASE?

SAMFLE PERTOD (MSEC) =(8)

RUN TIME (SEC) =

LIST TIME RASE PARAMETERS?(:)

SAMFLE FERIOD = S (MSEC)

RUN LENGTH 6.00 (SEC) WITH 1201 SAMFLES
$08 FERIOD Ge12 (SEC) WITH 1024 SAMFLES
BASE FREQ = - 0420 (HZ)y BASE FHASE =

OK? Y

o

0.35

(DEG)

FIG. 8. SAMPLE DIALOG FOR INITIAL OPERATION OF VERRUN
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KKKKKKXKKKXXSOS FARAMETERSXXKKKKKKKKKX

NOMINAL 5057 (N)

NOMINAL NUMBER OF SINES? ()

NUMEER OF SINES=(?)

NOMINAL FREGUENCIES’?@

ENTER DESIKED FREQUENCIES (HZ):

FC 1)6
F¢ 2)H7.
X4

FC 3)=
F( 4=

4

!005

Fe So=12
F( 6)=13.5:
FC 7)=15

'Y CHANGES? (N)

WANT FREQUENCIES LISTED?(Y)

COMF

NO DR -

HARM

31
38
46
54
61
69
77

=)
=
-3

FIG.

8. (Cont'd)

FRQ

6405
7.42
8.98
10.55
11.91
13.48

15.04

56

FRQ(DES)

6.00
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?.00
10.50
12.00
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NOMINAL AMPLITUDES? ()

ENTER (RELATIVE) AMFPLITUDES?

" A(
A
A
A(
Al
Al
A

ANY CHANGES? (N)

NOMINAL RMS LEVEL? )

RMS LEVEL (VOLT) =
LIST AMFLITUDES? (V)

COMF AMF AMF (REL)

1 1,30 1,00

2 1,30 . 1,00

3 0,65 0.50

4 0,65 0,50

5 0,65 0,50

6 1,30 1,00

7 1.30 1,00
ok?(¥)

NOMINAL PHASES? (Y)

LIST FHASES? (V)

came FHUL FHS
1 1018 357.89
2 563 197.93
3 101 35.51
4 322 113420
S 197 69.26
6 680 239.06
7 714 251.02

=)
=
=

FIG. 8. (Cont'd)

1t

FHSC(DES)

357.87
197.90
359.34
113,04
69.39
239.10

251.02
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LIST S0S FARAMETERS? (Y)

COMF 'HARM FREQ AMF
1 31 6405 1,30
2 38 7.42 1,30
3 46 8.98 0.65
4 54 10,55 0,65
5 61 11.91 0,65
6 69 13,48 1.30
7 77 15,04 1,30

ok? (¥

DOING A RUN Now? ()

RUN NUMEER! 1 DATE: 15-DEC-83

CHANGING THE RUN NUMBER? (N)

NUMRER OF COMMENT LINES?
ITEST OF VERRUN FROGRAM

ENTER FILENAME FOR OUTPUT: TEST1.VER

GENERATING S0S SIGNAL NOW..s.
TYFPE S TO START?
STORING DATA NOW...

DOING ANDTHER RUN? ()

SET UF A FARAMETER FILET(N)

TT0 =-- STOP

FIG. 8. (Concl'd)
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35.51
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239.06

251.02
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Section D shows the user selecting nominal phases (i.e.,
VERRUN selects a random phase set). Direct user specification of
phases would be highly unlikely even in the initial setup mode
and would most likely be employed only for program testing and
debugging. Note that, after each set of parameters has been
specified, VERRUN asks the user if he is satisfied with the
results. If the user responds with "N", the particular set is

re-specified.

In Section E the user requests a review of the entire set of
SOS parameters and accepts the results. If the user were to
respond "N" to the query, VERRUN would repeat Sections B through
E, affording the user an opportunity to modify any or all SOS

parameter subsets.

Section F illustrates the following sequence of events:

1. The user decides to conduct an experimental trial.

(The alternative would be to save only the parameters
on file.)

2. The user accepts the run number, which is automatically
initialized to "1".

3. The user specifies one line of comment and names the
output file.

4. Real-time S0S generation and data recording are
initialized by responding "S" to the prompt.

5. The user terminates VERRUN by declining to perform
another run or another problem initialization.

Figure 9 shows the type of terminal interaction that might

occur in a "production-run" mode where the user performs a
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sequence of experimental trials with a statistically invariant
SOS stimulus. Section A assumes that the user initializes the
first such itrial from the data file created in the sample case
discussed above. After specifying the pamé for the new data
- file, the user changes the ruﬁ number to "2", as this is the
second trial to be performed the same  day. The user then
provides a single line for commentary, initiates real-time

operation, and requests another run.

The type of interaction that will occur for most
experimental trials is shown in Section B. The user requests no
changes from the previous run, causing VERRUN to retain all
prcvious parameter values except for re-randomization of the
phases. The user then accepts the new run number, types a
comment line, initiates real—time operations, and requests

another run,




v

( RUN_VERRUN )
PARAMETERS FROM A FILE?(Y)

ENTER FILENAME FOR INFUT! TEST1.VER

DOING A RUN Now? (Y)

RUN NUMEER? 1 DATE! 15-DEC-83 TIME: 11:11:43

CHANGING THE RUN NUMBER?(Y)

NEW RUN NUMEER: (@)
RUN NUMBER: 2 DATE: 15-DEC-83  TIME: 11311350

CHANGING THE RUN NUMBER? ()

-

NUMBER OF COMMENT LINES: (1)

o

(IEM0 OF VERRUN. .. TEST &2 .

i)
ENTER FILENAME FOR OUTFUT:
GENERATING SOS SIGNAL NOW...

TYFE § TO START: (B)
STORING DIATA NOW. ..

FIG. 9. SAMPLE DIALOG FOR CONTINUING OPERATION OF VERRUN
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DOING ANOTHER RUN? (D)

ANY CHANGES? )

RUN NUMBER? 3 DATE?! 15-DEC-83 TIME: 11212155

CHANGING THE RUN NUMBER? @

NUMEER _OF COMMENT LINES: (@)
[DEMO OF VERRUN|
IFRODUCTION RUN|
ITEST #3 -
ENTER FILENAME FOR OUTFUT:(TEST3.VER)
GENERATING SOS SIGNAL NOW...

TYFE S TO START?
STORING DATA NOW. ..

NOING ANOTHER RUN? ()

FIG. 9. (Concl'd) '
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4. USER'S GUIDE TO VERNAL

VERNAL is a digital computer program for performing
post-experiment analysis of VER data obtained wusing the VERRUN
program described in Chapter 3. VERNAL js written entirely in
FORTRAN and is implemented on the PDP-11/34, using the RSX-1ll
operating system, and the PDP-11/23, using the RT-11 operating

system,

4.1 HMajor Functions

VERNAL performs the five major operations shown in Figure
10. This program is "menu-driven" in that the user specifies
interactively, via a "part" number, the operation VERNAL is to
perform, Upon completion of a given operation, the user
specifies the next operation to be performed. A part number of 0
displays the options shown in Figure 9, and a part number _ofb -1

terminates the program.

Part 1 (read header) must be performed first; otherwise,
prograﬁ parts may be executed in any order. Figure 10 shows the
typical order in which program functions are executed. These

functions are described individually below.
4.1.1 Part 1: Read Header

Once the user has specified the name of the data file,
VERNAL opens the file, reads the header information, and leaves

the file open for subsequent reading of the experimental data.
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READ HEADER

LIST HEADER

Y

COMPUTE
TIME-COMAIN
STATISTICS

Y

COMPUTE
SIGNAL SPECTRA

y

COMPUTE
DESCRIBING FUNCTIONS

FIG. 10. MAJOR VERNAL FUNCTIONS
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4.1.2 Part 2: List Header

Header information consisting of run identification, problem
parameters, and user commentary, is displayed on the user's
terminal. 1If the user then discovers he has not requested a file
of interest, he may next request re-execution of Part 1, in which
case the current file is closed, and a new file is requested and

opened,

4.1.3 Part 3: Time-Domain Statistics

When a statistical computation (either time- or frequency-
domain) is first requested for a given data file, VERNAL reads
the experimental data from the current file, stores the data in}a
linear array, and closes the file. The user is informed of the
currently specified starting point for calculations, and is given
the option to change the start point, which must lie within the

range of 1 to N -N +1, vhere N is the number of samples/channel

R o R
in the experimental trial, and N is the number of samples in the
o
S0S period. This restriction guarantees that N samples will be
o]
available for computation. The user will typically request a

start point greater than 1 to minimize the influence of the
transients that most 1likely followed the onset of the S0OS

stimulus.

Before computing time-domain statistics, VERNAL provides the
option to list the entire data base stored in the array IDATA, or

to list an array XDATA of data from a single channel of the

65



user's choosing., Unless the user is debugging the program, or
suspects unusual response behavior, this option will typically

not be exercised.,

The primary function of this part is to compute mean,
standard deviation, and rms amplitude as defined in Section 2.2,
Equation 17. These quantities are computed for all data channels

and displayed on the user's terminal.
4.1.4 Part 4: Spectra

Part 4 computes the spectra of one or more signals of the
user's choosing, using fast-Fourier transform (FFT) techniques as
de.cribed in Section 2.2. Once the spectrum has been computed
for a specified data channel, the user has the option of listing
either the entire spectrum (i.e., at all FFT frequencies) or the
spectral components at SOS frequencies., Again, unless the user
is debugging the program or looking for some specific spectral
feature (say, evidence of significant nonlinear response

behavior), this option will typically not be exercised.

Whether or not the listing option isyexercised, VERNAL will
list, for each input frequency: (1) correlated power per
measurement bin, (2) remnant power per bin, (3) the ratio of the
correlated to remnant power, (4) correlated power per rad/sec,
(5) remnant power per rad/sec, (6) the ratio for correlated power
to remnant power (rad/sec), and (7) the number of frequency bins

included in the remnant averaging window. These spectral
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quantities are given in dB. Conversion of povwer per bin to power

per rad/sec is discussed in Section 2.2.1.)

The following overall statistics (in problem units) are then
listed: - (1) correlated power summed err all input frequencies,
(2) rate of correlated to total signal power, (3) remnant power
summed over all non-input frequencies, (4) rate of remnant to
total power, and (5) total signal power(i.e., sum of all spectral
computations over all frequencies). The user is then given the
option to perform another spectral analysis or to specify another

program part.
4,1.5 Part 5: Describing Functions

Part 5 performs a describing function analysis as defined in
Section 2.2.2. When execution is begun, VERNAL prompts the user
for indices corresponding to the numerator and denominator
channels. After the requested describing function h as been
computed, gain (in dB) and phase (in degrees) are printed out at
each S0S frequency, except that computations failing the 6 dB
signal/noise ratio test (Section 2.2.1) are flagged by a printout
of the string (***¥*), The user then has the option of computing

another describing function or specifying another program part.

4.2 Program Generation and Operation

VERNAL has been implemented to run under the DEC RT-11 and
RSX-11 operating systems. This program performs post-experiment

analysis with no requirement for real-time operation.
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4.2.1 Program Generation

An executable file of the VERNAL software system is

generated within the RSX-11 Operating System by the command:

TKB @VERNAL.CMD
where the file VERNAL.CMD contains the following text:

VERNAL=VERNAL
PART
SIGNAL
STATS
SPECT
DFCN
REMPWR
FFT
RWHEAD
RWDATA
1TITLER
FFTPKG
IOLIB/LB

4,2.2 Program Operation

A sample dialog with VEﬁNAL is shown in Figure 11. Section
A shows that the user has requested the file "TEST3" and, by
requesting execution of Part-2, has caused VERNAL to display the
parameter values and other descriptive information for this data

file,

In Section B, the user requests execution of Part 3 to
obtain time-domain statistics. The start point (initialized to
unity when VERRUN is first started) is changed to 150 to allow
statistical analysis to begin @#.75 seconds into the run. After

the options to list time histories are waived, VERNAL displays
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{RUN VERNAL)

TO PART (0-6)3 .

ENTER FILENAME FOR INPUT:(TEST3.VER)
TO PART (0-6): @
VERSION NUMEBER: 2

¥XXRUN IDENTIFICATIONYXX
FILE: TEST3.VER RUN NO? 3 DATE: 15-DEC-83 TIME: 113112255
DEMO OF VERRUN

FRODUCTION RUN

TEST $#3
XXXTIME RASE FPARAMETERSX%¥ <:>___,1
SAMFLE FERIOD? 9 MSEC
BASE FREQUENCY? 1.953E~01 HZ BASE PHASE: 3.,516E-01 DEG
606 PERIODS S.120E4+00 SEC WITH: 1024 PTS
RUN LENGTH? 6.000E+00 SEC WITH? 1201 PTS

*%%508 SIGNAL FARAMETERSXX%
# OF S0S COMFONENTS? 7

COMF HARM FREQ AMF FMUL FHS

1 31 6,05 1.298 500 175.8

2 38 7.42 1.298 614 215,.9

3 46 8.98 0,649 713 250,7

4 54 10,55 0.649 131 46.1

5 61 11,91 0.649 907 318,9

6 69 13,48 1.298 848 298,2
N 77 15,04 1,298 9164 322,1 o
TO PART (0-6): (@) .
READING IN DATA NOW. ... ]
SCORING STARTS AT FOINT 1 WaNT TO cHance? (¥)

ENTER START POINT IN RANGE 1 THRU 178:{150)

KXTEST CODE: WANT IDATA LISTEDR)

XXTEST CODE: WANT XDATa LISTED? (V)

DOING STATS NOW...

FILE: TEST3.VER RUN NO? 3 DATE?: 15-DIEC-83 TIMES: 113112355
CHAN AVG Sel. RMS
2 =0.002 4,001 4,001
3 1.998 2,000 2,827
4 0.004 2,061 2,061
.

FIG. 1ll. SAMPLE DIALOG FOR OPERATION OF VERNAL
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TO FART (0-6): (3)
SPECTRUM FOR CHANNEL #: (D)
DOING FFT..,
¥XTEST CODE: WANT SFECTRUM LISTOUT? (N)
FILE: TEST3,VER RUN NO: 3 DATE: 15-DEC-83  TIME: 11:12:55
SFECTRUM FOR CHANNEL # 1
FWR/BIN PUR/HZ <:>_“
COMF  FREQ %  COR REM C/k % COR REM C/K % NREH
X | X X
1 6,05 x =0.74 -89.83  89.08 ¥ -9,01 -82.73  73.73 % &
2 7.42 % -0.75  -90.37 89,62 X -2,40 -83.27  80.88 ¥ 6
3 B.9B X  -6,77 -91,23  B4.46 x -8,72 -84.14  75.42 x 8
4 10,55 X  -6.77 -91.55 84,79 X  ~-8.45 -84.46  76.01 X 9
S 11,91 % -6,77 -89.84  83.07 X -8.41 -82.75  74.33 % 11
6 13,48 x  -0.75 -89.81 89,07 x ~-2,69 -82.,72  B80.03 % 12
7 15,04 % =0.75 - -90.45 = 89.70 x -2,92 -83,35  80.43 % 13
COR FWR = 4.00 COR/TOT FWR = 1.00
REM FWR = 0.00 REM/TOT FUR = 0.00
TOT FWR = 4,00
ANOTHER SFECTRUMT (N) -
TO FART (0-6): (%) ]
CHANNEL # FOR DFCN  NUMS (2
CHANNEL # FOR DFCN DENOM? |1
DOING FFT...
DOING FFT,..
FILE: TEST3.VER RUN NO: 3 DATES 1S-DEC-83  TIME: 11:12:55
IFCN FOR (CHAN 2)/(CHAN 1)
COMF FREQ GAIN PHASE (:)—-
1 6+05 6.0 0.0
2 7.42 6.0 0.0
3 8.98 6.0 0.0
4 10.55 6.0 0.0
5  11.91 6.0 10,0
6  13.48 6.0 0.0
7 15.04 6.0 0.0
ANOTHER TFCN? )
FIG. 11. (Concl'd)
TO PART (0-6)¢ €))
TT0 -- sTOP 70
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the average, standard deviation, and rms levels for all four data

channels.

The user then requests that VERNAL compute the spectrum of
data channel No. 1 (Section C). VERNAL performs the required FFT
analysis, computes input-correlated and remnant spectral
components, and displays the results, The user declines the

option to compute another spectrum.

In Section D the describing function computation is
initialized by specification of the data channels corresponding
to the numerator and denominator variables. After FFT's have
been computed for both channels, gain and phase shift are
computed and displayed. The user then declines to compute

another describing function and terminates VERNAL by Specifying

execution of Part No. -1.
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PROGRAMMER'S GUIDE TO VERRUN AND VERNAL

The software system described in this Programmer's Guide consists
of two main programs, several major FORTRAN subprograms, 5 FORTRAN
library of input/dutput support routines, and a MACRO library of
programs used - for real-time operations and for random number
generation. Description of the various software elements is organized
into five sections as follows: (A) the VERRUN main program and the
major 4FORTRAN subprograms called by VERRUN; (B) the VERNAL main
program and the major FORTRAN subprograms called by VERNAL; (C)
additional major FORTRAN subprograms called by both VERRUN and VERNAL;

(D) the I/0 FORTRAN library, and (E) the MACRO library.
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APPENDIX A
THE VERRUN SOFTWARE SYSTEM

A.l Program Structure

The organization of the VERRUN software system is shown in Figure
A.l. The main program VERRUN will, in the normal course of events,
call the six main subprograms PARSET, TITLER, RWHEAD, SOSGEN, LOOP,
and RWDATA., They, in turn, call the routines indicated by the line
connections made to their respective blocks. In general, the calling
sequence at any given level corresponds to the top-to-bottom ordering
shown in the diagram. Thus, PARSET calls TIMPAR, SOSPAR, and RWHEAD

in that order.

Subprograms belonging to the assembly-language MACRO library are
indicated by cross-hatching. All other subprograms are written in
FORTRAN, and most of these programs use one or more routines in the
1/0 library. 1In the interest of minimizing clutter, calls to the 1I1/0
library are not shown explicitly in this and in the ehSuing flow

diagrams.

A.2 Software Description

Table A.l1 contains brief descriptions of each of the FORTRAN
routines contained in the VERRUN software system. The remainder of
this Appendix provides documentation for each of the routines 1listed

in the Table except for TITLER, RWHEAD, and RWDATA (which are common



VERRUN

TIMPAR | SOSNCP
PARSET SOSPAR _ SOSHMC
3| RWHEAD |— 3! TITLER SOSAMP

.Lx» SOSPHS

———>»1 RWHEAD —»1 TITLER

——>1 SOSGEN TABGEN

SOSVAL [—»] SINFCN

[——>{_L00P |—m{ CLSTOP 3
g RRER
\\\\\\\\\\\
\ \\\\\\\}
t—>1 RWDATA

AR RARRRARRSEN

->§ DTOA 3

s

AN AR

ATOD 3

LR N

Y

0656-709
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to both VERRUN and VERNAL and are described separately in Appendix C).
The documentation for each item consists of (1) a brief written
description, a flow diagram, and a program listing. Except as noted

above, program descriptions are provided in the order shown in Table

A.l.

The written description consists of sections as follows:
FUNCTION: a brief statement of the routine's function.
OPERATION: - a more detailed description of the routine's

operation, and how the function is carried out.

INPUTS/OUTPUTS: lists of the input and output variable which are
passed by the routine's own argument 1list, or by
COMMONs accessed by this routine.

LOCAL: important variables not included in the argument list
or in common blocks, especially variables passed to
other routines.

CALLER/CALLS: the name of the calling routine, and the names of any
routines called.

In the case of the main programs VERRUN and VERNAL, only the
calls are indicated; there are no inputs or outputs to a superior

callihg routine, and all variables are "local",

In the following program descriptions, variable names written
entirely in capital letters indicate FORTRAN variables, whereas
variable names written in lower case (or upper case with subscripts)
refer to problem variables discussed in Chapter 2. The "=" symbol
indicates either identity or replacement, as will be c¢lear from the

context. For example, the phrase "t =TSAMP" appearing in the
‘ s



TABLE A.l

ROUTINE

VERRUN

PARSET
TIMPAR
SOSPAR

SOSNCP
SOSHi."
SOSAMP
SOSPHS
RWHEAD
TITLER

SOSGEN
TABGEN
SOSVAL
SINFCN

LOOP

FUNCTIONS OF THE VERRUN ROUTINES

FUNCTION

Main .Program. Controls pre-run parameter setup,
real-time SOS stimulus generation and response
recording, and post-run file maintenance.

Sets problem parameters interactively or by reading
from existing file,

Defines the time-base parameters during interactive
user setup.

Defines the S80S parameters during interactive user
setup.

Specifies the number of SOS components.
Specifies the SOS harmonics.

Specifies the SOS amplitudes.

Specifies the SOS phase multipliers.
Reads and writes header information.
Reads and writes title information.

Computes, scales and stores the SO0S signal time
history, before the start of each run.

Generates the basic quarter-wave sine table used for
SOS generation,

Generates a new SOS value for each call and increments
the phase multiplier. '

Generates one value of the tabular sinusoidal function
for each call. :

Control real-time operation of the program, including
(a) maintenance of the timing loop, (b) generation of
the SOS stimulus signal, and (c) sampling and storing
of data.



discussion of the routine TIMPAR signifies that the problem variable
t is represented by the program variable TSAMP, whereas the phrase
s

"TSAMP=1ISAMP/1000.08" indicates a replacement operation executed within

the routine.

The general format for a flow diagram is shown in Figure A.2.
The routine of immediate interest is indicated by the block drawn with
thick lines; the calling routine is shown above, and any routines
called are shown below. The connecting "flow lines" are used to
-indicate the flow of information between routines via the argument
list, where one routine's output becomes the other routine's input.
Labels on these lines indicate the particular variables involved.
Information flow via COMMON are indicated by flow 1ines circled and
labelled with the name of the specific COMMON 1list in brackets.
Because of their complexity, and because they have no calling
- routines, the main program VERRUN and VERNAL deviate somewhat from

this format.
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FUNCTION:

OPERATION:

CALLS:

program VERRUN

Controls pre-run parameter setup, realétime S0Ss
stimulus generation and response recording, and
post-run file maintenance.

Operation begins with a call to PARSET to allow the
user to specify problem parameters interactively or
from a previously stored data file. ~If the user
indicates he is pot ready to complete a run, the
parameters are stored on a new file, and pre-run
parameter setup is again initiated by a call to
PARSET.

Once the header is ready to run, header information is
stored in the output file by a call to RWHEAD, and the
entire SOS time history is computed and stored by a
call to SOSGEN. VERRUN then waits for .a run start
signal from the user. Upon this signal, the routine
LOOP is called to provide real-time stimulus
generation, response recording, and in-memory storage
of the data in the array IDATA.

Upon completion of the run, VERRUN writes out the data
array IDATA via a call to RWDATA, closes the data
file, and returns to the pre-run parameter setup
portion of the program.

PARSET, TITLER, RWHEAD, SOSGEN, LOOP, RWDATA



program VERRUN

ICHNGE, LUNFIL, IRUN
™ pARSET -
®—TRON, ISAMP, NPER, NRUN, NCOMP, HARM
AMP, PMUL .
v IRW, LUNIT, MODE, IRUN
c > TITLER
= IRUN
R
R IRW, LUNIT, ICLOSE
P! RWHEAD
U la
IRUN, ISAMP, NPER, NRUN, NCOMP, HARM,
N AMP, PMUL
[Ta)
NPER, NRUN, NCHAN, NCOMP, HARM, AMP, PMUL| ~
SOSGEN b
-t °
PMUL, 1DATA S
ISAMP, NRUN, NCHAN
—T
LOOP
B IDATA
IRW, LUNIT, NCHAN
1 RWDATA
€ RWDATA
TRAX O <LENGTH>
O <TMPCOM>
| TMPVEC
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PROGRAM VERRUN

CHANGES BY W.H. LEVISON, 12/9/83
l. DEFINE LUNFIL AS UNIT 3

COMMON /LENGTH/NRMAX
COMMON /TMPCOM/TMPVEC

LOGICAL*1 LASK, LANS, ICHNGE, MODE, FILNAM(ll), TITLE (200)
INTEGER HARM(15), PMUL(15)

DIMENSION TMPVEC(20), AMP(15)

DIMENSION IDATA (9000)

DATA IDIM/9600/ IDIMENSION OF IDATA
DATA LUNFIL/3/ " ILUN FOR DATA FILE
DATA LUNTTY/5/ - ILUN FOR TTY
DATA NCHAN /4/
DATA MODE /'U‘'/ ISTART WITH UNDEFINED MODE
SET UP PARAMETERS...
100 NRMAX = IDIM/NCHAN
ICHNGE = 'Y'
IRUN = 1
119 CALL PARSET (ICHNGE,LUNFIL,IRUN,ISAMP,NPER,
1 - NRUN, NCOMP,HARM, AMP, PMUL)
IF (MODE .NE. 'U') GO TO 120 ISET MODE TO P OR R
MODE = 'p! o
IF (LASK ('DOING A RUN NOW? ') .EQ. 'Y') MODE = 'R’
120 IF (MODE .EQ. 'P') GOTQ 300 1GO SET PARAMETERS
NORMAL RUN MODE
DO 156 I = 1,IDIM 1ZERO OUT IDATA
150 IDATA(I) = @ -
200 IRW =1 - IREAD TITLE FROM TTY
CALL TITLER (IRW, LUNTTY, MODE, IRUN)
IRW = 2 IWRITE HEADER ONTO FILE
ICLOSE = 2 IAND LEAVE OPEN
CALL RWHEAD (IRW,LUNFIL,ICLOSE,IRUN,ISAMP,NPER,
1 NRUN,NCOMP,HARM,AMP,PMUL) .

CALL TTYOUT ('GENERATING SOS SIGNAL NOW...')

CALL SOSGEN (NPER, NRUN, NCHAN, NCOMP, HARM, AMP, PMUL, IDATA)
CALL TTYOUT ('TYPE S TQ START: §')

CALL LANS ('sS', 'S')

CALL LOOP (ISAMP, NRUN, NCHAN, IDATA)

CALL TTYOUT ('STORING DATA NOW...')

IRW = 2 IWRITE DATA TO FILE & CLOSE IT



o000

ann

219

309

CALL RWDATA (IRW, LUNFIL, NRUN, NCHAN, IDATA)

CALL TTYOUT (' ')

IF (LASK ('DOING ANOTHER RUN? ') .EQ. 'N') GOTO 210
ICHNGE = LASK ('ANY CHANGES? ') :
IRUN = IRUN + 1 IINCREMENT RUN NUMBER

GOTO 110
IF (LASK ('SET UP A PARAMETER FILE? ') .EQ. 'N') STOP

MODE = .'P'
GOTO 100

PARAMETER FILE SET UP MODE

IRW = 1 IREAD TITLE FROM TTY
CALL TITLER (IRW, LUNTTY, MODE, IRUN)

IRW = 2 IWRITE HEADER ONTO FILE
ICLOSE = 1 IAND CLOSE IT

CALL RWHEAD (IRW,LUNFIL,ICLOSE,IRUN,ISAMP,NPER,
NRUN, NCOMP,HARM, AMP, PMUL)

USER SPECIFIES WHAT'S NEXT
CALL TTYOUT ('-')
IF (LASK ('ANOTHER PARAMETER FILE? ') .EQ. 'Y') GOTO 1180
IF (LASK ('DOING A RUN NOW? ') .EQ. 'N') STOP
MODE = 'R’

GCTO 108
END
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FUNCTION:

OPERATION:

INPUTS:

OUTPUTS

LOCAL:
CALLER:
CALLS:

subroutine PARSET

Sets problem parameters interactively or by reading
from an existing file

If PARSET is called with the flag ICHNGE set to 'N',
indicating no changes to previously-defined problem
parameters, a call is made to the routine SOSPHS (via
the routine SOSPAR) for re-randomization of phase
multiplers PMUL(J). If ICHNGE indicates changes are
to be made, the user has the option of initializing
problem parameters from an existing £ile through a
call to RWHEAD., If the user selects to define
parameters directly, the flag NOMPAR is set to
indicate whether or not parameters are to be selected
interactively or selected from a stored set of nominal
values, Time base and SOS parameters are then
specified through calls to TIMPAR and SOSPAR,
respectively, and control is returned to the main
program VERRUN,

ARGLST: ICHNGE, LUNFIL, IRUN

ARGLST: IRUN, ISAMP, NPER, NRUN, NCOMP, HARM,
- AMP, PMUL :

NOMPAR, IRW, ICLOSE
VERRUN
TIMPAR, SOSPAR, RWHEAD

A-11



subroutine PARSET

NOMPAR

VERRUN
A
ICHNGE IRUN, ISAMP
LUNFIL NPER, NRUN
IRUN NCOMP, HARM
AMP, PMUL
PARSET
A A A
NOMPAR IRW
ICHNGE LUNFIL
IRUN ICLOSE
NPER IRUN
ISAMP NCOMP IRUN, ISAMP
NPER HARM NPER, NRUN
NRUN AMP ¢ NCOMP, HARM
+ Y PMUL AMP, PMUL
TIMPAR SOSPAR RWHEAD

A-12
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SUBROUTINE PARSET(ICHNGE,LUNFIL,IRUN,ISAMP,NPER,
NRUN, NCOMP, HARM, AMP, PMUL)

SETS THE PROBLEM PARAMETERS BY USER-SPECIFIED INPUTS,
OR...BY READING FROM AN OLD FILE

INPUTS: (VIA ARGLST) ICHNGE, LUNFIL, IRUN

OUTPUTS: (VIA ARGLST) ISAMP :
( " ) NPER, NRUN, NCOMP

( " ) HARM, AMP, PMUL

LOGICAL*1 LASK, NOMPAR, ICHNGE
INTEGER HARM(1l), PMUL(1l)
DIMENSION AMP(1)

IF (ICHNGE .EQ. 'N') GOTO 200
CALL TTYOUT (' ')
IF (LASK ('PARAMETERS FROM A FILE? ') .EQ. 'Y') GOTO 300

GET PARAMETERS DIRECTLY FROM USER

NOMPAR = LASK('NOMINAL PARAMETERS? ')

CALL TIMPAR(NOMPAR, ISAMP, NPER, NRUN)

CALL SOSPAR (NOMPAR,ICHNGE, IRUN, NPER, NCOMP, HARM, AMP,
PMUL)

RETURN

GET PARAMETERS FROM AN OLD FILE

IRW = 1 {READ HEADER FROM FILE

ICLOSE =1 IAND CLOSE IT

CALL RWHEAD (IRW,LUNFIL,ICLOSE,IRUN, ISAMP,NPER,
NRUN, NCOMP, HARM, AMP, PMUL)

CALL TTYOUT (' ')

RETURN

END
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subroutine TIMPAR

FUNCTION: Defines the time-base parameters during interactive
user setup

OPERATION: The following parameters are defined:

a. Intersample interval (msec) ISAMP

b. Intersample interval (seconds) t =TSAMP
. c. Run length in seconds t =TRUN °
d. Number of sample intervgls in run N =NRUN
e. Number of sample intervals in me;surement
interval N =NPER

o
f. Minimum phase increment g =PZERO
o
g. Minimum frequency increment f =FZERO

(o]

If the flag NOMPAR indicates selection of nominal
parameters, ISAMP and TRUN are set to pre-stored
values, remaining parameters are calculated as
described below, and control is returned to the
calling routine PARSET. Otherwise, the user specifies
ISAMP and TROUN. Entered values are checked against
nominal (stored) limits; if exceeded, the user |is
prompted to reenter. :

TIMPAR computes timebase parameters as follows:

a. TSAMP=ISAMP/1000.0

b. NRUN=(TRUN/TSAMP)+1l, rounded to the nearest
integer. If NRUN exceeds a nominal (stored)
limit NRMAX, the user is requested to
re~-specify the time base parameters.

k

c. NPER is set to the largest 2 contained in
NRUN, where k is an integer
d. PZERO=3608.8/NPER

e. FZERO=1.0/TPER

A-14



INPUTS:
OUTPUTS :

CALLER:

CALLS:

If ISAMP and TRUN have been specified by the user, the
user is allowed to review the entire set of time base
parameters and to re-specify ISAMP and TRUN if desired
before control is returned to PARSET.

ARGLST: NOMPAR
<LENGTH>: NRMAX

ARGLST: ISAMP, NPER, NRUN
<TIMCOM>: PZERO, FZERO, TSAMP, TRUN

PARSET
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subroutine TIMPAR

PARSET

L)

NOMPAR

IsaMp
NPER
NRUN

%.

NRMAX
O— _ T

\

PZERO, FZERO

I TSAMP, TRUN
IMPAR l

<LENGTH>

A-16
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<TIMCOM>
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SUBROUTINE TIMPAR (NOMPAR, ISAMP, NPER, NRUN)

TIMPAR SETS UP THE TIME BASE PARAMETERS FOR VERRUN
TIME PARAMETERS ARE EITHER USER SPECIFIED, OR
: SET TO NOMINAL VALUES
"INPUTS: (VIA ARGLST) NOMPAR
(VIA LENGTH) NRMAX
OUTPUTS: (VIA ARGLST) ISAMP, NPER, NRUN
(VIA TIMCOM) PZERO, FZERO, TSAMP, TRUN

COMMON /LENGTH/NRMAX
COMMON /TIMCOM/PZERO, FZERO, TSAMP, TRUN

LOGICAL*1 LASK, NOMPAR

DATA ISMIN, ISNOM, ISMAX /1, 5, 108/
DATA IMAX /32767/
DATA TRNOM, TRMAX /5.2, 100.08/

IF (NOMPAR .EQ. 'Y') GOTO 110
CALL TTYOUT ('*******PIME BASE PARAMETERS****#%*!)

100 IF (LASK ('NOMINAL TIME BASE? ') .EQ. '¥Y') GOTO 110

CALL TTYOUT ('S$SAMPLE PERIOD (MSEC) = §$')
ISAMP = IANS (ISMIN, ISMAX)
TSAMP = ISAMP/10006.0
CALL TTYOUT ('RUN TIME (SEC)
TRUN = RANS (TSAMP, TRMAX)
CALL TTYOUT (' ')
GOTO 129

119 ISAMP = ISNOM
TSAMP = ISAMP/1000.0
TRUN = TRNOM

120 TEMP = TRUN/TSAMP + 1.5
IF (TEMP .LE. IMAX) GOTO 125
WRITE (5, 200) IMAX

200 FORMAT (' SAMPLE COUNT EXCEEDS INTEGER LIMIT OF ',I6
1 '; TRY AGAIN') »
GOTO 126

125 NRUN = TEMP
IF (NRUN .LE. NRMAX) GOTO 1390
WRITE (5, 2@01) NRUN, NRMAX

201 FORMAT (' SAMPLE COUNT',16,' EXCEEDS FRAME LIMIT OF',I6
1 '; TRY AGAIN')

126 TNEED = (NRMAX - 1) * TSAMP
WRITE (5, 202) ISAMP, TNEED

202 FORMAT (' WITH SAMPLE PERIOD =', I4,

1 ' (MSEC), NEED RUN TIME .LE, ',F6.3,' (SEC)',/)

GOTO 1600 '

$')
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140
150

205
206
207

208

NPER = 1
DO 140 J = 1, 20
NPER = 2 * NPER

IF (NPER .GT. NRUN) GOTO 154

NPER = NPER/2

TPER = NPER * TSAMP

TRUN = (NRUN - 1) * TSAMP
PZERO = 360.8/NPER

FZERO = 1.8/TPER

IF (NOMPAR .EQ. 'Y') RETURN
IF (LASK ('LIST TIME BASE PiRAMETERS? 'y .EQ. 'N')

WRITE (5, 285) ISAMP

FORMAT (' SAMPLE PERIOD =', I4,

WRITE (5, 206) TRUN, NRUN

FORMAT (' RUN LENGTH =', F10.2,

WRITE (5, 287) TPER, NPER

FORMAT (' SOS PERIOD =', Fl0.2,

WRITE(5, 208) FZERO,PZERO

FORMAT (' BASE FREQ = ', F10.2,
F16.2,' (DEG)',/)
IF (LASK ('OK? ') .EQ. 'N') GOTO 188

RETURN
END

A-18
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FUNCTION:

OPERATION:

INPUTS:

OUTPUTS:

subroutine SOSPAR

Defines the SO0S parameters during interactive user
setup

SOSPAR specifies the following parameter sets:

a; the number of sinusoidal components N =NCOMP
c
through a call to SOSNCP

b. the SOS harmonic indices h =HARM(J) through
J
a call to SOSHMC

c. the S0s amplitudes a =AMP(J) through a call

3
to SOSAMP

d. the SOS phase multipliers p =PMUL(J) through

J
a call to SOSPHS

SOSPAR is called with the argument ICHNGE to indicate
whether any parameter changes are to be made, and (if
changes are to be made) the argument NOMPAR to
indicate whether or not nominal parameter values are
to be selected. If ICHNGE is set to 'N', phase
multipliers are re-randomized, and control returns to
the calling routine PARSET. ’

1f both ICHNGE and NOMPAR are set to '¥Y', all SOS
parameters are (re)set to nominal values, and control
returns to PARSET. If SOSPAR is called with
NOMPAR='N', the user has the option to (a) request
nominal values for all parameters (set NOMSOS='Y'), or
(b) interactively specify values for all parameter
sets (set NOMSOS='N'). If parameters are specified
interactively, the user is allowed to review the
parameter settings and re-specify the entire set if
desired. Upon completion of this operation, control
returns to PARSET.,

ARGLST: NOMPAR, ICHNGE, IRUN, NPER
<TIMCOM>: PZERO, FZERO, TSAMP

ARGLST: NCOMP, HARM, AMP, PMUL
<TIMCOM>: PZERO, FZERO, TSAMP
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LOCAL: NOMSOS
CALLER: PARSET
CALLS: SOSNCP, SOSHMC, SOSAMP, SOSPHS
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subroptine SOSPAR

PARSET

<TIMCOM>
} 6)
NOMPAR NCOMP
ICHNGE HARM
IRUN AMP PZERO
NPER PMUL FZERO
TSAMP
i Y
SOSPAR
* ‘ ﬁ :
NOMSOS NOMSOS AMP PMUL
NPER
NCOMP
NOMSOS
NOMSOS ICHNGE
# NCOMP HARM NCOMP ; IRUN
Y y NCOMP
SOSHCP SOSHMC SOSAMP SOSPHS

A-21
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SUBROUTINE SOSPAR(NOMPAR, ICHNGE,IRUN,NPER,NCOMP,HARM,AMP,
PMUL)

SOSPAR SETS UP THE SOS PARAMETERS FOR SOSGEN

SOS PARAMETERS ARE EITHER USER SPECIFIED, OR
SET TO NOMINAL VALUES

INPUTS: (VIA ARGLST) NOMPAR, ICHNGE, IRUN, NPER
OUTPUTS: (VIA ARGLST) NCOMP, HARM, AMP, PMUL

COMMON /TIMCOM/ PZERO, FZERO, TSAMP

LOGICAL*1 LASK, NOMPAR, NOMSOS, ICHNGE
INTEGER HARM (1), PMUL (1)
DIMENSION AMP (1)

IF (ICHNGE .EQ. 'N') GOTO 308

NOMSOS = 'y! ,

IF (NOMPAR .EQ. 'Y') GOTO 119

CALL TTYOUT (l************sos PARAMETERS************')
NOMSOS = LASK ('NOMINAL SO0S? ')

CALL SOSNCP (NOMSOS, NCOMP)

CALL SOSHMC (NOMSOS, NCOMP, NPER, HARM)

CALL SOSAMP (NOMSOS, NCOMP, AMP) i

CALL SOSPHS (NOMSOS, ICHNGE, IRUN, NCOMP, PMUL)

IF (NOMPAR .EQ. 'Y') RETURN

IF (LASK ('LIST SOS PARAMETERS? ') .EQ. 'N') RETURN
WRITE (5, 1000) |

FORMAT (1X,'COMP',5X,'HARM',7X,'FREQ',7X,'AMP',8X, 'PHASE',/)
WRITE (5, 16061) (J, HARM(J), FZERO * HARM(J), AMP(J),
1l PZERO * PMUL(J), J = 1, NCOMP)

FORMAT (15’ SX, 14, 5X, FG.Z' 5X, F6.2’ 5X, F8¢2)
CALL TTYOUT (' ')

IF (LASK ('OK? ') .EQ. 'N') GOTO 100

RETURN

CALL SOSPHS(NOMSOS, ICHNGE, IRUN, NCOMP, PMUL)

RETURN
END
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FUNCTION:

OPERATION:

INPUTS:
OUTPUTS:
CALLER:

CALLS:

subroutine SOSNCP

Specifies the number of SOS components N =NCOMP
c

If the user has specified that all SOS parameters take
on their nominal (stored) values (via the flag
NOMSOS), NCOMP is set to its nominal value, and
control is returned to SOSPAR. Otherwise,
specification of NCOMP can be either by choosing a
nominal (stored) value or by entering a value from the
terminal. The entered value 1is checked against
nominal (stored) limits; if exceeded, the user is
prompted to reenter.

ARGLST: NOMSOS
ARGLST: NCOMP
SOSPAR
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subroutine SOSNCP

SOSPAPR

NOMSOS

L4

;i

NCOMP

SOSNCP
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SUBROUTINE SOSNCP (NOMSOS, NCOMP)

INPUTS: (VIA ARGLST) NOMSOS
OUTPUTS: (VIA ARGLST) NCOMP

LOGICAL*1 LASK, NOMSOS
DATA NCPMIN, NCPNOM, NCPMAX /1,6,15/

IF (NOMSOS .EQ. 'Y') GOTO 200 o
IF (LASK ('NOMINAL NUMBER OF SINES? ') .EQ. 'Y') GOTO 209

CALL TTYOUT ('NUMBER OF SINES= §')
NCOMP = IANS (NCPMIN, NCPMAX)

CALL TTYOUT (' ')

RETURN

NCOMP = NCPNOM
RETURN
END
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FUNCTION:

OPERATION:

INPULS:

OUTPUTS:
LOCAL:
CALLER:

CALLS:

subroutine SOSHMC

Specifies the SOS harmonics h =HARM(J)

J
If the user has specified that all SOS parameters take
on their nominal values (via the flag NOMSOS), the
desired frequencies f'=FRQTMP(J) are set to their

J
nominal values, which range in 5 Hz increments from 5
to 75 Hz. Harmonic indices are computed as

HARM (J) =FRQTMP (J) /FZERO J=1, NCOMP)

where FZERO is the minimum frequency increment f

* o
computed in TIMPAR. The HARM(J) are rounded to the
nearest integer.

Control is then returned to the calling routine,
SOSPAR.

If the user has not specified that all SOS take on
their nominal values, the user is given the option to
choose the nominal frequency set. If he so chooses,
then SOSHMC operates as described above. If the user
does not choose this option, he is then allowed to
enter the desired SOS frequencies. Each entered value
is checked against nominal (calculated) limits; if
exceeded, the user is prompted to reenter. Once all
frequencies are entered, the harmonic indices are
calculated as above.

SOSHMC then allows the user to review/change the
chosen parameter set; if satisfactory, control is
returned to the calling routine SOSPAR.

ARGLST: NOMSOS, NCOMP, NPER
<TIMCOM>: PZERO, FZERO, TSAMP

ARGLST: HARM
<TMPCOM>: FRQTMP

SOSPAR
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subroutine SOSHMC

SOSPAR
A

NOMSO0S
NCOMP HARM
NPER

Y

PZERO, FZERO, TSAMP
SOSHMC i ZERO, F2E Lo
’ <TIMCOM>
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SUBROUTINE SOSHMC (NOMSOS, NCOMP, NPER, HARM)

INPUTS (VIA ARGLST) NOMSOS, NCOMP, NPER
(VIA TIMCOM) FZERO, TSAMP
OUPUTS (VIA ARGLST) HARM

COMMON /TMPCOM/ FRQTMP
COMMON /TIMCOM/ PZERO, FZERO, TSAMP

LOGICAL*]1 LANS, LASK, NOMSOS
INTEGER HARM (1)
DIMENSION FRQNOM (15), FRQTMP (.5)

DATA FRQNOM /5., 10., 15., ?60., 25., 36., 35., 40., 45.,
1 56., 55., 68., 65., 78., 75./

FMIN FZERO

FMAX 1.0/(2.8 * TSAMP)

IF (NOMSOS .EQ. 'Y') GOTO 120

IF (LASK ('NOMINAL FREQUENCIES? ') .EQ. 'Y') GOTO 120

CALL TTYOUT ('ENTER DESIRED FREQUENCIES (HZ): ')
CALL VECTIN (1, 'FREQ', NCOMP, FRQTMP, FMIN, FMAX)
GOTO 1480

DO 138 J = 1, NCOMP

FRQTMP (J) = FRQNOM (J)

IERR = @ {CHECK FOR LIMIT EXCEEDANCE

DO 156 J = 1, NCOMP

FTEMP = FRQTMP (J)

IF ((FTEMP .LT. FMIN) .OR. (FTEMP .GT. FMAX)) IERR =1
CONTINUE ‘

IF (IERR .EQ. @) GOTO 169 ISKIP BELOW IF WITHIN
LIMITS CALL TTYOUT ('ONE OR MORE FREQUNCIES EXCEED
LIMITS') WRITE (5, 151) FMIN, FMAX

FORMAT (' FMIN=', F7.2, 3X, 'FMAX=', F7.2)

CALL TTYOUT ('S ')

IF (LASK ('WANT FREQUENCIES LISTED? ') .EQ. 'N') GOTO 153
WRITE (5, 152) (J, FRQTMP (J), J = 1, NCOMP)

CALL TTYOUT ('S ')

CALL TTYOUT ('CHANGE FREQENCIES OR TIME BASE? (F/T) §$')
IF (LANS (‘'F', 'T') .EQ. 'F') GOTO 110

CALL TTYOUT ('TIME BASE CHANGE OPTION NOT IMPLEMENTED )
GOTO 153

1, NCOMP
FRQTMP (J)/FZERO + 0.5

DO 170 J
HARM (J)
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201

IF (NOMSOS .EQ. 'Y') RETURN
IF (LASK ('WANT FREQUENCIES LISTED? ') .EQ. 'N') RETURN

WRITE (5, 200) _

FORMAT (1X, 'COMP', 7X, 'HARM', 8X, 'FRQ', 8X, 'FRQ(DES)', /)
WRITE (5, 201) (J,HARM(J),FZERO*HARM(J),FRQTMP(J), J=1,NCOMP)
FORMAT (14, 5X, I6, 6X, F7.2, 6X, F7.2) '

CALL TTYOUT (' ')

IF (LASK ('OK? ') .EQ. 'N') GOTO 100

RETURN ‘

END
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FUNCTION:

OPERATION:

INPUTS:
OUTPUTS:
CALLER:
CALLS:

LOCAL:

subroutine SOSAMP

Specifies the SOS amplitudes a =AMP(J)

J
If the user has specified that all SOS parameters take
on their nominal values (via the flag NOMSOS), the

normalized amplitudes, a , are set to their nominal

: J
values. Otherwise, the user has the option to enter
the values from the TTY. Entered values are checked
against nominal (stored, limits; if exceeded, the user
is prompted to reenter, Next specified is the RMS SOS
level, RMSLVL. Thls can be done either by choosing a
nominal (stored) vaiue, or by entering a value from

the terminal. The entered value is checked against
nominal (stored) limits; if exceeded, the user is
prompted to reenter, SOSAMP then scales the

normalized amplitudes, a , to obtain  the SOsS
]
amplitudes, a , which yield the desired RMS level
J
according to:
- N 1/2

RMSLVL = Z % a®
j:l : J

SOSAMP then allows the user to review/change the
chosen parameter set; if satisfactory, control is
returned to the calling routine, SOSPAR

ARGLST: NONSOS, NCOMP

ARGLST: AMP

SOSPAR

<TMPCOM>: AMPTMP
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subroutine SOSAMP

SOSPAR

NOMSOS
NCOMP

A

AMP

Y

SOSAMP
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110

120
139

149

159
1690

170

200
201

SUBROUTINE SOSAMP (NOMSOS, NCOMP, AMP)

INPUTS: (VIA ARGLST) NOMSOS, NCOMP
OUTPUTS: (VIA ARGLST) AMP

COMMON /TMPCOM/AMPTMP

LOGICAL*1 LASK, NOMSOS
DIMENSION AMP(1), AMPNOM(15), AMPTMP(15)

DATA AMPNOM /15 * 1./
DATA RMSMIN, RMSNOM, RMSMAX /0., 1., 5./
DATA AMIN, AMAX /6., 100./

IF (NOMSOS .EQ. 'Y') GOTO 149 .
IF (LASK ('NOMINAL AMPLITUDES? ') .EQ. 'Y') GOTO 120

CALL TTYOUT ('ENTER (RELATIVE) AMPLITUDES: ")
CALL VECTIN (1, 'AMP', NCOMP, AMPTMP, AMIN, AMAX)
GOTO 149

D70 136 J = 1, NCOMP
AMPTMP (J) = AMPNOM(J)

RMSLVL = RMSNOM

IF (NOMSOS .EQ. 'Y') GOTO 150

IF (LASK ('NOMINAL RMS LEVEL? ')
CALL TTYOUT ('RMS LEVEL (VOLT) =
RMSLVL = RANS(RMSMIN, RMSMAX)

.EQ. 'Y') GOTO 150
$')

SUMsSD = 0.9
DO 168 J = 1, NCOMP
SUMSQ = SUMSQ + AMPTMP(J) * AMPTMP (J)

SCALE = RMSLVL * SQRT(2.8/SUMSQ)

DO 178 J = 1, NCOMP
AMP(J) = SCALE * AMPTMP(J)

IF (NOMSOS .EQ. 'Y') RETURN
CALL TTYOUT ('S ')
IF (LASK ('LIST AMPLITUDES? ') .EQ. 'N') RETURN

WRITE (5, 200) ’
FORMAT (1X, 'COMP', 7X, 'AMP', 7X, 'AMP (REL)', /)

~ WRITE (5, 201) (J, AMP (J), AMPTMP (J), J = 1, NCOMP)

FORMAT (I4, 5X, F7.2, 5X, F7.2)

CALL TTYOUT (' ')

IF (LASK ('OK? ') .EQ. 'N') GOTO 100
RETURN
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FUNCTION:

OPERATION:

INPUTS:

OUTPUTS
LOCAL:

CALLER:

subroutine SOSPHS

Specifies the SOS phase multipliers p =PMUL(J)

J
If the user has specified that all SOS parameters take
on their nominal values (via the f£lag NOMSOS), or the
program is updating automatically for a new run
(indicated by the flag NOMPAR), then the desired
phases @'=PHSTMP(J) are generated via a uniform random
. J

number generator which operates over the range # to
3680 degrees, and which is started by a nominal
(stored) integer "seed", incremented by the . run
number. The corresponding phase multipliers are then
calculated as:

PMUL(J)=PHSTMP/PZERO (j=1, NCOMP)

where PZERO is the minimum phase increment, in
degrees, computed in TIMPAR. The PMUL(J) are rounded
to the nearest integer.

Control is then returned to the calling routine
SOSPAR.

If the user has pnot specified a nominal selection of
all SOS parameter, then the user is given the option
of choosing either randomized phases, or specified
phases. If randomized, the user enters an integer
"seed" value, and the desired phases are generated as
above. If specified, the user enters the individual
phases. Each entered value is checked against nominal
(stored) 1limits; if exceeded, the user is prompted to
reenter. with phases then specified, the phase
multipliers PMUL(J) are calculated as above. SOSPHS
then allows the user to review/change the chosen
parameter set; if satisfactory, control is returned to
the calling routine, SOSPAR.

ARGLST: NOMSOS, ICHNGE, IRUN, NCOMP
CTIMCOM>: PZERO

ARGLST: PMUL
<TMPCOM>: PHSTMP

SOSPAR
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subroutine SOSPHS

SOSPAR
I
A
NOMSOS
ICHNGE PMUL
IRUN :
NCOMP
I PZERO
SOSPHS I /73
<TIMCOM>
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110

120

130
140

145

150

160
170

SUBROUTINE SOSPHS (NOMSOS, ICHNGE, IRUN, NCOMP, PMUL)

INPUTS: (VIA ARGLST) NOMSOS, ICHNGE
(VIA ARGLST) IRUN, NCOMP
(VIA TIMCOM) PZERO

OUTPUTS: (VIA ARGLST) PMUL

COMMON /TMPCOM/PHSTMP
COMMON /TIMCOM/ PZERO

LOGICAL*1 LASK, NOMSOS, ICHNGE
INTEGER PMUL (1)
DIMENSION PHSTMP(15)

DATA PMIN, PMAX /6., 360./
DATA IMAX,TMAX /32767,32767./

IF (ICHNGE .EQ. 'N') GOTO 130
IF (NOMSOS .EQ. 'Y') GOTO 1380
IF (LASK ('NOMINAL PHASES? ') .EQ. 'Y') GOTO 138

IF (LASK ('RANDOM PHASES? ') .EQ. 'Y') GOTO 120

CALL TTYOUT ('ENTER (DESIRED) PHASES (DEG): ')
CALL VECTIN- (1, 'PHASE', NCOMP, PHSTMP, PMIN, PMAX)
GOTO 1680

CALL TTYOUT ('S$SRANDOM PHASE SEED (POS INT) = $')
ISEED = IANS (@, IMAX)
CALL TTYOUT (' ')

GOTO 148
ISEED = IRUN + 1 INORMAL SEED = RUN # + 1
CALL RNSEED (@, ISEED) ISET GENERATOR

DO 145 1 =1, 160 I{WARM UP GENERATOR

CALL RNUM (ITEMP,1)

DO 156 J = 1, NCOMP

CALL RNUM (ITEMP, 1)

TEMP ITEMP

TEMP (TEMP + TMAX)/(2.*TMAX)
PHSTMP (J) = PMAX * TEMP

DO 176 J
PMUL (J)

1, NCOMP
(PHSTMP (J) / PZERO) + 6.5

IF (ICHNGE .EQ. 'N') RETURN
IF (NOMSOS .EQ. 'Y') RETURN
IF (LASK ('LIST PHASES? ') .EQ. 'N') RETURN
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WRITE (5, 200)

200 FORMAT (1X, 'COMP', 6X, 'PMUL', 8X, 'PHS', 8X, 'PHS(DES)', /)
WRITE (5, 201) (J, PMUL(J), PZERO*PMUL(J), PHSTMP(J),
J=1,NCOMP) ’

201 FORMAT (14, 5X, 16, 6X, F7.2, 6X, F7.2)

.CALL TTYOUT (' ') '

IF (LASK ('OK? ') .EQ. 'N') GOTO 1040
RETURN

END
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FUNCTION:

OPERATION:

INPUTS:

QUTPUTS:

" LOCAL:

CALLER:

CALLS:

subroutine SOSGEN

Computes, scales and stores the §S0S signal time
history, before the start of each run.

SOSGEN first sets up the basic quarter-wave sine table
SINTAB, via a call to TABGEN :

SOSGEN then "loops" for NRUN times, where NRUN is the
number of samples in the entire run, and is set by
TIMPAR. For each kth sample, SOSGEN:

a. calculates a new SOS value via a call to
SOSVAL
b. scales it for later D/A conversion

c. stores it in the scaled indexed array IDNTA

ARGLST: NPER, NRUN, NCHAN, NCOMP, HARM, AMP, PMUL
ARGLST: PMUL, IDATA

SOS-

VERRUN

TABGEN, SOSVAL
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subroytine SOSGEN

VERRUN
NPER %
NRUN
NCHAN PMUL
NCOMP ZDATA
HARM
AMP
PMUL
) Y
I SOSGEN
NPER A
| NPER
NCOMP
HARM PMUL
AMP
PMUL
TABGEN

SOSVAL
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SUBROUTINE SOSGEN(NPER,NRUN, NCHAN, NCOMP,HARM,AMP,PMUL, IDATA)

SOSGEN GENERATES SOS SIGNAL & LOADS IT INTO FIRST CHANNEL OF
IDATA

INPUTS: (VIA ARGLST) NPER,NRUN,NCHAN,NCOMP,HARM,AMP,

PMUL
OUTPUTS: (VIA ARGLST) PMUL, IDATA

NOTES: 1)SOSGEN KEEPS HARMONIC COUNTER IN PMUL,OVERWRITING IT
2)SOS SCALING ASSUMES PLUS/MINUS 5 VOLT D/A

INTEGER HARM(1l) ,PMUL(1)
DIMENSION AMP(1)
DIMENSION IDATA (1)

DATA IMAX,VMAX/2048,5./

I =1

SCALE=IMAX/VMAX

CALL TABGEN(NPER)

DO 10 IFRAME = 1, NRUN

CALL SOSVAL (NPER,NCOMP,HARM,AMP,PMUL,SOS)
IDATA(I)=SCALE*SOS + IMAX

I = I + NCHAN

RETURN

END
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FUNCTION:

OPERATION:

INPUTS:
OUTPUTS:
CALLER:

CALLS:

subroutine TABGEN

Generates the basic quarter-wave sine table S =SINTAB
n

used for SOS generation,
TABGEN first calculates the half-wave counter NHALF
and quarter-wave counter NQUART, according to:

NHALF=NPER/2 ; NQUATT=NHALF/2

where NPER is the SOS period set by TIMPAR. The

quarter-wave table S is then calculated according to:
n

én = sin [Zw(% )] 3 (n=0,.,.,NQ)

o
and stored with an index sgift of 1 so - that
SINTAB(N+1) is associated with S , assuring unity (and
non-zero) indexing for the firstnarray element.
ARGLST: NPER

<TABCOM>: NHALF, NQUART, SINTAB .

SOSGEN
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subroutine TABGEN

SOSGEN

A

NPER

Y

TABGEN

NHALF
NQUART
SINTAB
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SUBROUTINE TABGEN(NPER)

TABGEN CALCULATES HALF & QUARTER WAVE INDICES NHALF
& NQUART AND SETS UP QUARTER WAVE SINE TABLE
SINTAB

WHERE SINTAB (N+1)=SIN (2 * PI * (N/NPER))
FOR @ .LE. N .LE. (NPER / 4) :

INPUT: (VIA ARGLST) NPER

OUTPUT: (VIA TABCOM) NHALF,NQUART,SINTAB

NOTE: CURRENTLY ASSUMES NPER .LE. 2048
DIMENSION SINTAB(513)

COMMON/TABCOM/NHALF, NQUART, SINTAB

IF (NPER.LE.20848)GO TO 18
CALL TTYOUT ('******TABGEN: NPER TOO BIG')

STOP

IF (NPER .NE. @) GOTO 15

STOP Tkkkkkk*kx*x*TABGEN ZERO DIVIDE**********'
TWOPI=2,%3,14159

NHALF=NPER/2

NQUART=NHALF/2

TEMP=TWOPI/NPER

DO 20 N=0@,NQUART
SINTAB (N+1)=SIN(N*TEMP)

RETURN
END
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FUNCTION:

OPERATION:

subroutine SOSVAL

Generates a new SOS value I =S0S for each call and
k _
increments the phase multiplier PMUL

SOSVAL first sets the sine table index N equal to the
phase multiplier PMUL (J) . This index is then
adjusted, modulo NPER, to lie between @ and NPER-1.

SOSVAL calculates a new SOS value according to

I, = 3% ass) (3=1,...,N )
J/k

where a are the SOS amplitudes AMP(J) (set by the

J
routine SOSAMP) and S is the tabular sinusoidal
n
function defined by

Sn = sin [2ﬂ(§o)J (n=0,...,No)

This calculation of § is done via a direct call to
n .

SINFCN. The following operations are performed during

each increment of the component index J:

a. The sine table index N 1is set to the
corresponding phase multiplier PMUL(J).

b. This index is adjusted modulo NPER to 1lie
between # and NPER-1.

c. The quantity I is incremented as defined
k .

above.

d. A new value for PMUL(J), to be used during
the subsequent sample interval, is computed
as
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PMUL(J) = N+HARM(J)

where HARM(J) are the harmonic indices set
by the routine SOSHMC.

INPUTS: ARGLST: NPER, NCOMP, HARM, AMP, PMUL
OUTPUTS: ARGLST: PMUL, SOS

LOCAL: N

CALLER: SOSGEN

CALLS: SINFCN
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subroutine SOSVAL

SOSGEN
NPER PMUL
. NCOMP S0s
HARM -
AMP
PMUL
. | i
l SOSVAL |
1 :
N SINFCN
NPER
Y
SINFCN
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SUBROUTINE SOSVAL (NPER, NCOMP,HARM,AMP,PMUL,SOS)

CALCULATES NEW SOS VALUE FOR EACH CALL
AND INCREMENTS PMUL BY HARM

INPUT: (VIA ARGLST) NPER,NCOMP,HARM,AMP,PMUL
OUTPUT: (VIA ARGLST) PMUL,SOS

INTEGER HARM(1) ,PMUL(1)

DIMENSION AMP(1)

DO 19 J=1,NCOMP
N=PMUL (J)

IF (N.GE.NPER) N=MOD (N, NPER)
'S0S=S0S + AMP(J) *SINFCN(N,NPER)

N=N +HARM(J)
PMUL(J)=N
CONTINUE

RETU RN

END
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FUNCTION:

OPERATION:

INPUTS:

OUTPUTS:
CALLER:

CALLS:

function SINFCN

Generates one value of the tabular sinusoidal function
SINFCN, for each call

SINFCN generates the sinusoidal function S =SINFCN,
n

where

b= J=]

)] (n=0,...,NO)

Sn = sin [Zw(
o

where N =NPER 1is the S80S period, set by TIMPAR.
o .
SINFCN does this by "reflecting"” n into the first
quadrant (module N ), and then using the precalculated
o _

~

quarter-wave table S =SINTAB, generated by TABGEN, to
n
assign the appropriate sinusoidal value.

ARGLST: N, NPER
<TABCOM>: NHALF, NQUART, SINTAB

ARGLST: SINFCN

SOSVAL

A-49



subroutine SINFCN

SOSVAL

A ;
N - SINFCN
NPER .
o
™~
>
wy
O
o
NHALF, NQUAR INTAB
SINFCN i « NOUART, S —©

- <TABCOM~>
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FUNCTION SINFCN(N,NPER)

CALCULATES SINFCN (N) = SIN (2 * PI (N / NPER))
FOR # .LE. N .LE. (NPER-1)
USES QUARTER WAVE SINE TABLE SINTAB

INPUT: (VIA ARGLST) N,NPER
(VIA TABCOM) NHALF,NQUART,SINTAB

OUTPUT: . SINFCN
DIMENSION SINTAB(1)
COMMON/TABCOM/NHALF , NQUART, SINTAB

NTEMP=N
IF (NTEMP.GT. NHALF) NTEMP=NPER-NTEMP
IF (NTEMP.GT.NQUART) NTEMP=NHALF-NTEMP'

SINFCN=SINTAB (NTEMP+1)
IF (N.GT.NHALF) SINFCN=-SINFCN
RETURN

END
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FUNCTION:

OPERATION:

INPUTS:
OUTPUTS :

LOCAL:

subroutine LOOP

Control real-time operation of the program, . including
(a) maintenance of the timing loop, (b) generation of
the S0S stimulus signal, and (c) sampling and storing
of data.

LOOP selects a clock rate of 160 kHz by setting the
variable IRATE to 2. The number of clock "ticks" NTIC
in a sample interval is determined by multiplying the
number of clock ticks per msec (in this case, 100) by
the number of msec pe. sample interval (ISAMP). The
clock is first stopped via a call to CLSTOP; D/A
channels @ and 1 are initialized to IZERO=2048, the
integer corresponding to zero volts; and the clock is
started with a count of NTIC via a call to CLSTRT.

LOOP "loops" for NRUN sample intervals and, for ‘each
interval, performs the following operations:

1. A call to CLWAIT checks the clock count., 1If
the count has reached =zero, a message
indicating a "bad interval" is typed and the
program is stopped. Otherwise, the program
waits until the clock count reaches zero,

2. D/A conversions are performed by D/A units 0
and 1 which contain, respectively, a test
signal ITEST which alternates between # and
4095, and the SOS input signal IDATA(I).

3. a/D conversions are performed via A/D
devices 1 through 3, and the converted data
are stored in the array IDATA,

4. The test signal is "flipped".

Upon completion of NRUN cycles, the clock is stopped,
and D/A channels @ and 1 are again initialized to
2048.

ARGLST: ISAMP, NRUN, NCHAN, IDATA

ARGLST: IDATA

IRATE, NTICKS
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CALLER: VERRUN
CALLS: CLSTOP, CLSTRT, CLWAIT, DTOA, ATOD
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subroutine LOOP

VERRUN

|

ISAMP
NRUN IDATA
NCHAN
IDATA

Y

l LOOP

IRATE
NTICKS
(channel) IDATA
(data)

A

v

(REALTIME
OPERATIONS
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SUBROUTINE LOOP (ISAMP, NRUN, NCHAN, IDATA)

INPUTS: (VIA ARGLST) ISAMP,
OUTPUTS: (VIA ARGLST) IDATA

LOGICAL CLWAIT
DIMENSION IDATA (1)

DATA IRATE /2/

DATA IZERO /2048/
DATA IFLIP,ITEST/1,8/
DATA TMAX/32767./

NTEMP = 10.**(4-IRATE) + 0.1
NTICKS = NTEMP * ISAMP
I =1

NRUN, NCHAN,

IDATA

ISET CLOCK 1@0KHZ

{TEST CODE
ITEST CODE

IGET TICK COUNT

ISET IDATA INDEX

CALL CLSTOP ISTOP CLOCK & ZERO D/A'S

CALL DTOA (8, IZERO)
CALL DTOA (1, IZERO)

CALL CLSTRT (IRATE, NTICKS) ITHEN START CLOCK

DO 108 IFRAME = 1, NRUN
IF (CLWAIT()) GOTO 190 :

CALL TTYOUT ('*****LOOP: BAD TIME INTERVAL*****!)

STOP
CONTINUE

CALL DTOA (8, ITEST)

CALL DTOA (1, IDATA (I))
CALL ATOD (1, IDATA (I+l))
CALL ATOD (2, IDATA (I+2))
CALL ATOD (3, IDATA (I+3))

SCALE=5./1ZERO

XSIG=SCALE* (IDATA(I)-IZERO)
IDATA(I+1)= (2.*XSIG) /SCALE + IZERO
IDATA(I+2)= (XSIG+2.)/SCALE + IZERO
CALL RNUM(ITEMP,1)

TEMP = ITEMP

TEMP = TEMP/TMAX

IDATA (I+3)= (XSIG+TEMP)/SCALE + IZERO

I = I + NCHAN
IFLIP = -IFLIP

IF(IFLIP .EQ. 1) ITEST
IF(IFLIP .EQ.-1) ITEST

4095
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ITEST

ITEST
ITEST
ITEST
ITEST
ITEST
ITEST
{TEST
{TEST

ITEST
ITEST
ITEST

CODE

CODE

CODE
CODE
CODE
CODE
CODE
CODE
CODE

CODE
CODE
CODE

FOR D/A @



100 CONTINUE

CALL CLSTOP ISTOP CLOCK & ZERO D/A'S
CALL DTOA (8, IZERO)

CALL DTOA (1, IZERO)

RETURN

END
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APPENDIX B
THE VERNAL SOFTWARE SYSTEM

B.l Program Structure

The organization of the VERNAL software system is shown in Figufe
B.1. The main program VERNAL will, in general, call the eight main
subprograms PART, RWHEAD, RWDATA, SIGNAL, STATS, TITLER, SPECT, DFCN.
They, in‘ turn, call the routines indicated by the line connections
made to their respective blocks. All programs afe written in FORTRAN.
In order to minimize clutter, calls to the FORTRAN I/0 library are not

shown explicitly in the flow diagrams contained in this Appendix.

B.2 Software Description

Table B.l contains brief descriptions of each of the routines
contained in the VERNAL software system. The remainder of this
Appendix provides documentation for eachvof the routines listed in the
Table (and in that order), except for TITLER, RWHEAD, and RWDATA
(which are common to both VERRUN and VERNAL and are described
separately in Appendix C). Documentation is of the same format as

that used in Appendix A (see Section A.2).
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FIG. B.1

ORGANIZATION OF THE VERNAL SOFTWARE SYSTEM
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TABLE B.l
VERNAL
PART

RWHEAD
TITLER
RWDATA

SIGNAL
STATS
SPECT
FFT

FAST

REMPWR

LIMIT

DFCN

FUNCTIONS OF THE VERNAL ROUTINES

Controls time-domain and frequency-domain analysis of
VER time histories.

Allows user to specify the section of code to be
executed by the program VERNAL.

Reads and writes header information.
Reads and writes title information.
Reads and writes time history data.

Extracts and scales a single channel of data for
subsequent processing.

Calculates mean, standard deviation, and rms value for
a time history.

Computes frequency-response statistics for a single
data channel,

Returns N-point fast-Fourier transform of a time
history.

Computes discrete fast-Fourier transform.

Computes remnant power over a specific frequency
"window". : :

Maintain variable within limits.

Compute the describing function between two channels.



FUNCTION:

OPERATION:

program VERNAL

Controls time-domain and frequency-domain analysis of
VER time histories

VERNAL is "menu-driven" in that the user specifies
interactively, via a "part" number, the operation he
wishes VERNAL to perform. Upon completion of a given
operation, the user specifies the next operation to be
performed. A part number of @ displays the program
options, and a part number of -1 causes VERNAL to
terminate.

The program parts ase:

Part 1l: Read header from data file
Part 2: List header on the terminal
Part 3: Compute time-domain statistics
Part 4: Compute signal spectra

Part 5: Compute describing funcfions
Part 6: (not currently implemented)
Part 7: Read data from file '

Part 1 must be performed first, and Part 7 must be
performed before data analysis can be undertaken.
Otherwise, the parts may be requested in any order.

VERNAL is initialized with the flag INFILE set to 'N'.
Operation then proceeds with activation of Part 1,
wherein a call to RWHEAD causes a data file to be
specified by the operator, header information to be
read from the requested file, and the file to be
left open for possible subsequent read-in of data.
The £lag LIDATA is set to 8 to signify that
time-history data have not been read from this file,
and INFILE is set to "Y".

Execution of Part 2 writes the header information of
the currently opened data file to the terminal. 1If
the user decides he would rather analyze a different
file, he again executes Part 1 to close the current
file and open a new one,



Whenever Parts 3, 4, or 5, are specified, the flag
LIDATA is checked to determine whether or not data
have been read from the current file. If not, data
are read via a call to RWDATA, the data file is
closed, and LIDATA set to 1. The user then specifies
the sample index NSTART at which analysis is to begin.
This index is constrained to allow analysis of NPER
samples, Subsequent execution of Parts 3-5 will
operate on the same data base. 1In order to analyze a
new data file, or to redefine the start point, the
user must execute Part 1 followed by Part 3, 4, or 5.

Execution of Part 3 (time-domain statistics) begins
with an option for the user to list on the terminal
the entire data base stored in the array IDATA, or to
list data from a single channel, which is stored in
the temporary array XDATA., Via successive calls to
SIGNAL and STATS, VERNAL computes the mean, standard
deviation, and rms for each time history (NPER points
beginning at NSTART) and lists the results on the
terminal.

To compute a signal spectrum, the user requests Part 4
and then specifies the channel to be analyzed.
Successive calls to SIGNAL and SPECT yield the desired

spectrum, The user then has the option to list the
spectrum (typically exercised to test the program on a
short test signal). If the 1listing option is

exercised, the user has the further option ot listing
either the entire signal or only the signal components
at input frequencies.

VERNAL then lists, for each input frequency: (1)
correlated power per measurement bin, (2) remnant
power per bin, (3) the ratio of the correlated to
remnant power, (4) correlated power per rad/sec, (5)
remnant power per rad/sec, (6) the ratio of correlated
power to remnant power (rad/sec), and (7) the number
of frequency bins included in the remnant averaging
window. These spectral quantities are given in dB.
The following overall statistics (in problem units)
are then listed: (1) correlated power summed over all
input frequencies, (2) ratio of correlated to total
signal power, (3) remnant power summed over all
non-input frequencies, (4) ratio of remnant to total
power, and (5) total signal power (i.e., sum of all
spectral computations overall frequencies). The user
is then given the option to perform another spectral
analysis or to specify another program part.



CALLS:

When execution of Part 5 (describing function
analysis) is begun, VERNAL prompts the user. for
indices corresponding to the numerator and denominator
channels. Calls to SIGNAL and SPECT provide the gain
and phase information subsequently used by the routine
DFCN to compute the specified describing function.
Gain and phase at each frequency are printed out, and
computations failing the signal/noise test within DFCN
are flagged by a printout of the string (****),

PART, RWHEAD, RWDATA, SIGNAL, TITLER, SPECT, DFCN



program yERNAL

TOTCOR, TOTREM, NREM

B=-7

— INFILE
.
PART
—
IPART
IRW, LUNIT, ICLOSE
-
e RWHEAD
IRUN, ISAMP, NPER, NRUN, NCOMP, HARM
AMP, PMUL
IRW, LUNIT, NFRAME, NCHAN
—
RWDATA
< IDATA
Vv
E
JCHAN, NSTART, NPER, NCHAN, IDATA, LSIGNL,
R < SIGNAL
N LSIGNL, XDATA
A JSIG, NPER, XDATA
L
STATS
- ¥
AVG, SIG, RMS
IRW, LUNTTY, MODE, IRUN
-3
TITLER
el —
IRUN
JCHAN, NCOMP, HARM, NPER, LSPECT, XDATA
"
SPECT
< LSPECT, XDATA
JDFCN, NCOMP
— |
DFCN
- GAIN, PHASE, CRFLAG
PZERO, FZERO, TSAMP, TRUN
. © <TIMCOM>
FNAME, IDATE, ITIME, NLINE, TITLE S <oTICOM>
AMPCOR, PHSCOR, CDIVR, PWRCOR, PWRREnf:9 <SPCCOMS

0656-713
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PROGRAM VERNAL

CHANGES BY W.H. LEVISON, 12/15/83
1. REVISE STATEMENT 30080.

2. REVISE STATEMENT 4611 (PWR/HZ).
3. ADD COMPUTATION OF PWR/HZ.

4. GOTO 401 INSTEAD OF 4180.

5. CORRECT COMPUTATION OF TOTPWR

COMMON /TIMCOM/ PZERO, FZERO, TSAMP, TRUN

COMMON /TTLCOM/ FNAME, IDATE, ITIME, NLINE, TITLE

COMMON /SPCCOM/ AMPCOR, PHSCOR, CDIVR, PWRCOR, PWRREM,
TOTCOR, TOTREM, NREM

LOGICAL*1 LANS,LASK,LSOS
LOGICAL*1 MODE, INFILE, TITLE (208), IDATE(9), FNAME(1l)

INTEGER HARM (15), PMUL (15), HOURS, SECONS

DIMENSION AMP(15), IDATA(5000), XDATA(1250)

DIMENSION AVG(4) ,SIG(4) ,RMS(4)

DIMENSION AMPCOR(15,4) ,PHSCOR(15,4) ,CDIVR(15,4),
PWRCOR(15,4) ,PWRREM(15,4) ,TOTCOR(4) ,TOTREM(4) ,
NREM(15)

DIMENSION JDFCN(2) ,GAIN(15) ,PHASE(15) ,CRFLAG(15)

DATA LUNFIL, LUNTTY /3, 5/

DATA INFILE /'N'/

DATA RTD /57.296/

DATA NSTART/1/ ITEMP CODE
DATA NCHAN/4/ ITEMP CODE

CALI. PART (INFILE, IPART)
IF (IPART .LT. @) STOP

GOTO (100, 200, 300, 400, 500, 600) IPART

PART1: READ HEADER FROM DATA FILE

CONTINUE
IRW = 1 IREAD HEADER FROM FILE
ICLOSE = 2 IAND LEAVE OPEN

CALL RWHEAD (IRW,LUNFIL,ICLOSE,IRUN,ISAMP,NPER,
NRUN, NCOMP, HARM, AMP, PMUL)

INFILE = 'Y' 1INDICATE WE HAVE AN INPUT FILE
LIDATA = 0 1 IDATA NOT LOADED
LSIGNL = @ { XDATA NOT COMPUTED
LSTATS = @ ! STATS NOT COMPUTED
LSPECT = 0@ ! SPECTRA NOT COMPUTED
GOTO 10

PART2: LIST HEADER



200

C

C

C
300

C

CONTINUE

IRW = 2 IWRITE HEADER TO TTY

CALL RWHEAD (IRW,LUNTTY,ICLOSE,IRUN,ISAMP,NPER,
NRUN, NCOMP, HARM, AMP, PMU L)

GOTO 10

PART3: COMPUTE SIGNAL STATISTICS

CONTINUE :
IF (LIDATA .EQ. @) GOTO 700

Chrakkkhkhkkhkhkkkhhhk Xk kXX *START TEST CODER**kkkkkhrkhhkhhhhhkhhhdhsd

C

391

1010
382
C

CALL TTYOUT(' ')

IF(LASK('**TEST CODE: WANT IDATA LISTED?').EQ.'N')GOTO 301
IRW=2 IWRITE DATA ONTO TTY

CALL RWDATA (IRW,LUNTTY,NRUN,NCHAN,IDATA)

CALL TTYOUT(' ')

IF(LASK('**TEST CODE: WANT XDATA LISTED? ').EQ.'N')GOTO 382
CALL TTYOUT('ENTER JCHAN §$')

JCHAN=IANS (1, NCHAN)

CALL SIGNAL (JCHAN,NSTART,NPER,NCHAN,IDATA,LSIGNL,XDATA)
WRITE(5,1610) (I,XDATA(I),I=1,NRUN)

FORMAT(15,1PEl12.4)

CONTINUE

ChkhkhkkkkkkkhkkkkkkkkkkkkkEND TEST CODE***kkhkkhkkkkhkkkhhhhkkhkhkhdhk

C
C

310

320

3000

3810
3920

IF (LSTATS .EQ. 1) GOTO 328

CALL TTYOUT('DOING STATS NOW...')

DO 310 JCHAN = 1, NCHAN :
CALL SIGNAL (JCHAN,NSTART,NPER,NCHAN,IDATA,LSIGNL,XDATA)
CALL STATS (JCHAN, NPER,XDATA,AVG,SIG,RMS)

CONTINUE

LSTATS = 1 IINDICATE STATS COMPUTED
IRW = 2 IWRITE TITLE ONTO TTY
MODE = 's! IBUT SUPPRESS COMMENTS

CALL TITLER (IRW, LUNTTY, MODE, IRUN)

WRITE (5,30800)

FORMAT(//,5X, 'CHAN',8X,'AVG',10X,'S.D.',10X, 'RMS"')
FORMAT (2X,I15,4X,F10.3,3X,F10.3,4X,F108.3)

WRITE (5,3020)

FORMAT(//)

GOTO 10



Cc

C

c

400

401

402

403

4990
404
405

PART4: COMPUTE SIGNAL SPECTRA

CONTINUE
BINLOG=10.08*ALOG10@ (FZERO)
IF (LIDATA .EQ. 8) GOTO 700

CALL TTYOUT ('SPECTRUM FOR CHANNEL $: S' )
JCHAN = IANS (1,NCHAN)

CALL SIGNAL (JCHAN,NSTART,NPER,NCHAN, IDATA,LSIGNL, XDATA)
CALL SPECT (JCHAN,NCOMP,HARM,NPER,LSPECT,XDATA)

CRAARKKAKRKKKKKKKXXXk***START TEST CODE**# A *kkhkhhhhkhkhhhhhkhkhkhh k&

IF(LASK('**TEST CODE: WANT APECTRUM LISTOUT? ').EQ.'N')
GOTO 405 :
LSOS = LASK('**TEST CODE: ALL FREQS? ')

NHALF = NPER/2

DO 484 K=0,NHALF

IF (LSOS .EQ. 'Y') GOTO 483
DO 462 L = 1,NCOMP

IF (K .EQ. HARM(L)) GOTO 4@3
GOTO 404

INDEX = 2*K + 1

WRITE(5,4008) K,XDATA(INDEX),RTD*XDATA(INDEX+1l)
FORMAT (15,2F10.3)

CONTINUE

CONTINUE

C************x*********END TEST CODE******************************

Cc

4010
4011
4012

4013

CALL TTYOUT(' ')

IRW = 2 IWRITE TITLE ONTO TTY
MODE = 'S' IBUT SUPPRESS COMMENTS
CALL TITLER (IRW,LUNTTY,MODE,IRUN)

WRITE (5,4010) JCHAN

FORMAT (/,32X, 'SPECTRUM FOR CHANNEL % ', I2, /)
WRITE (5,4011)

FORMAT (27X, 'PWR/BIN', 18X, 'PWR/HZ')

WRITE (5,4012)

FORMAT (/,1X,'COMP FREQ * COR REM C/R',
vo% COR REM C/R',
' * NREM')

WRITE (5,4013)
FORMAT(lBX,‘*‘,27X,‘*‘,27X,'*')
AD=0

DO 420 J = 1,NCOMP

B-10
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420

4020

4031
4032
4033

580

516

AFREQ=FLOAT (HARM (J))

IF(J.EQ.NCOMP) GO TO 418

Al=SQRT (AFREQ*FLOAT (HARM (J+1)))

GO TO 415

Al=(AFREQ**2) /Af

WIDTH=10.0*ALOG10 (Al-AD)

Ag=Al

AFREQ=AFREQ*FZERO :

TEMP1=PWRCOR(J,JCHAN) ~WIDTH-BINLOG

TEMP2=PWRREM (J, JCHAN) -BINLOG

TEMP3=TEMP1-TEMP2

WRITE (5,4020) J,AFREQ,PWRCOR(J,JCHAN) ,PWRREM(J,JCHAN),
CDIVR(J,JCHAN) ,TEMPl, TEMP2,TEMP3,NREM(J)

CONTINUE

FORMAT (I14,F8.2,' *',F8,2,2F9.2,' *',F8.2,2F9.2,' *',I4)

TOTPWR=TOTCOR (JCHAN) +TOTREM (JCHAN)

WRITE (5,4031) TOTCOR(JCHAN), TOTCOR(JCHAN)/TOTPWR

WRITE (5,4032) TOTREM(JCHAN), TOTREM(JCHAN)/TOTPWR

WRITE (5,4033) TOTPWR

FORMAT(//,5X, 'COR PWR = ', F9.2, 5X, 'COR/TOT PWR = ', F9.2)
FORMAT ( 5X, 'REM PWR=', F9.2, 5X, 'REM/TOT PWR= ', F9.2,/)
FORMAT ( 5X, 'TOT PWR = ', F9.2,//) ‘

CALL TTYOUT(' ')
IF (LASK ('ANOTHER SPECTRUM? ') .EQ. '¥Y') GOTO 461

GOTO 10
PART5: COMPUTE TRANSFER FUNCTIONS

CONTINUE '
IF (LIDATA .EQ. 6) GOTO 700

CALL TTYOUT ('CHANNEL # FOR DFCN NUM: §$')
JDFCN(1) = IANS(1,NCHAN)
CALL TTYOUT ('CHANNEL # FOR DFCN DENOM: §')

. JDFCN(2) = IANS(1,NCHAN)

DO 520 I = 1,2 IGET SPECTRA FOR NUM & DENOM
JCHAN = JDFCN(I)

CALL SIGNAL (JCHAN,NSTART,NPER,NCHAN,IDATA,LSIGNL,XDATA)
CALL SPECT (JCHAN,NCOMP,HARM,NPER,LSPECT,XDATA)

CONTINUE

_CALL DFCN (JDFCN, NCOMP, GAIN, PHASE, CRFLAG)
IRW = 2 IWRITE TITLE ONTO TTY

MODE = 'S’ !BUT SUPPRESS COMMENTS
CALL TITLER (IRW, LUNTTY, MODE, IRUN)

B-11
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5010
5015
530

5020

600

700

165

WRITE (5, 5010) JDFCN

FORMAT (/,25X,'DFCN FOR (CHAN ',I1,')/(CHAN ',I1,')',//)

WRITE (5,5815)

FORMAT (20X, 'COMP FREQ GAIN PHASE')

DO 5306 J = 1, NCOMP

WRITE (5, 5028) J, FZERO*HARM(J), GAIN(J), RTD*PHASE(J),
CRFLAG (J) .

FORMAT (20X, I4, F9.2, Fl10.1, Fl10.1, A8)

CALL TTYOUT(' ')

IF (LASK ('ANOTHER DFCN? ') .EQ. 'Y') GOTO 510

GOTO 19

PART6: SUMMARY
CONTINUE
IF (LIDATA .EQ. 6) GOTO 7060
GOTO 19

PART7: READ DATA FROM FILE; SET START POINT
CONTINUE
CALL TTYOUT ('READING IN DATA NOW....')
IRW = 1 IREAD DATA FROM FILE & CLOSE IT
CALL RWDATA (IRW,LUNFIL,NRUN,NCHAN,IDATA)
LIDATA = 1 IINDICATE IDATA IS LOADED

CALL TTYOUT ('SCORING STARTS AT POINT $') ISET UP START
PGINT

WRITE (5,165) NSTART

FORMAT (1H+,I58$)

IF (LASK(' WANT TO CHANGE? ') .EQ. 'N') GOTO 28
NTEMP = NRUN - NPER + 1

CALL TTYOUT ('ENTER START POINT IN RANGE 1 THRU §')
WRITE (5,105) NTEMP

CALL TTYOUT ('$:$')

NSTART = IANS(1l,NTEMP)

GOTO 20

END

B-12
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FUNCTION:

OPERATION:

INPUTS:
OUTPUTS:
CALLER:

CALLS:

subroutine PART

Allows user to specify the section of code to be
executed by the program VERNAL

PART first prompts the user to specify a program part
within the range -1 to 6. A value of -1 causes the
routine to return to the calling program; a value of
zero causes a printout of the part definitions,

followed by another prompt for a program part.

If the user specifies a number between 1 and 6, PART
checks the flag INFILE to determine whether or not a
data file has been specified for input. If such an
input has been specified, PART returns with the part
number specified by the user; otherwise, the part

number 1is set to 1, and the user is informed of the
need to specify a data file,

ARGLST: INFILE

ARGLST: IPART

VERNAL
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subroutine PART

VERNAL

INFILE

-

IPART

v -

PART
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FUNCTION:

OPERATION:

INPUTS:

OUTPUTS:

LOCAL:

. CALLER:

" CALLS:

subroutine SIGNAL

Extracts and scales a single channel of data for
subsequent processing

On the first call to SIGNAL, the (uniform) scale
factors 5 = SCALE (J) are defined:
J

S' = VMAX/IDATA
J .

where VMAX is the maximum A/D and D/A voltage (defined
as 5 volts), and IMAX is one half the maximum
peak—-to-peak variations allowed in the stored integer

data (defined as 2048). This operation is bypassed on
subsequent calls to SIGNAL.

Data for the signal channel JCHAN,_startihg at time
frame NSTART, are extracted from the interleaved data
vector d =IDATA(I) and stored in x =XDATA(K) for

i k
further processing. The following conversion is
performed for each x :
: k
x =8 ., (d-d)
k j i o
where d = IZERO (defined as 2048) is the zero offset
o

of the data stored in IDATA.

ARGLST: JCHAN, NSTART, NPER, NCHAN, IDATA, LSIGNL
ARGLIST: LSIGNL, XDATA

SCALE, IZERO

VERNAL
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subroutine SIGNAL

VERNAL

i

, A
JCHAN
NSTART
NPER
NCHAN
IDATA

LSIGNL

Y

LSIGNL
XDATA

SIGNAL
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SUBROUTINE SIGNAL (JCHAN,NSTART,NPER,NCHAN,IDATA,LSIGNL
XDATA)

SIGNAL LOADS XDATA WITH DATA CHANNEL JCHAN, TAKEN
FROM IDATA, STARTING AT POINT NSTART IN THE IDATA ARRAY

INPUTS: (VIA ARGLST) JCHAN, NSTART, NPER, NCHAN, IDATA
(VIA ARGLST) LSIGNL (f=INIT PASS, 1=0THERS)
OUTPUTS: (VIA ARGLST) LSIGNL,XDATA _

DIMENSION IDATA(l) ,XDATA(1l) ,SCALE (4)

DATA IMAX,VMAX/2048,5./
DATA IZERO/2848/

IF (LSIGNL .EQ. 1) GOTO 20

DO 16 J = 1,NCHAN IINIT SCALES FIRST TIME THRU
SCALE (J) = VMAX/IMAX
LSIGNL = 1 !& INDICATE DONE

SFACT = SCALE (JCHAN)
I = (NSTART-1) *NCHAN + JCHAN

DO 30 K = 1,NPER

. XDATA(K) = SFACT*(IDATA(I)-IZERO)

I = I + NCHAN

RETURN
END

B-17



FUNCTION:

OPERATION:

INPUTS:
OUTPUTS :
CALLER:

CALLS:

subroutine STATS

Calculates mean, standard deviation, and rms value for
a time history

Statistics are computed for the data vector XDATA, of
length NPER, defined in a preceding call to SIGNAL.

Mean, standard deviation, and rms are stored in the
vectors AVG(J), SIG(J), and RMS(J), respectively.
ARGLST: JSIG, NPER, XDATA

ARGLST: AVG, SIG, RMS

VERNAL
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subroutine STATS

VERNAL

JSIG
NPER
XDATA

% AVG

SIG
RMS

STATS
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SUBROUTINE STATS (JSIG, NPER, XDATA, AVG, SIG, RMS)
STATS CALCULATES TIME-AVERAGED MEAN, SD, & RMS VALUES
FOR THE DATA STRING CONTAINED IN XDATA _
CALCULATIONS ARE DONE FOR THE FIRST NPER POINTS IN XDATA
RESULTS ARE LOADED IN JSIG COMPONENTS OF AVG,SIG,&RMS

INPUTS: (VIA ARGLST) JSIG,NPER, XDATA
OUTPUTS: (VIA ARGLST) AVG,SIG,RMS

DIMENSION XDATA(l), AVG(l), SIG(l), RMS(1)

SUM = 0.

. SUMSQ = 0.

DO 19 I =1, NPER
TEMP = XDATA(I)
SUM = SUM + TEMP

SUMSQ = SUMSQ + TEMP**2

CONTINUE

WG (JSIG) = SUM/NPER

RMS (JSIG) = SQRT (SUMSQ/NPER)

SIG(JSIG) = SQRT (ABS (RMS(JSIG)**2 - AVG(JSIG)**2))
RETURN

END
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FUNCTION:

- OPERATION:

subroutine SPECT

- Computes frequency-response statistics for a single

data channel

SPECT computes the following statistics for the
Fourier-transformed data contained in the array XDATA:

a. Amplitude and phase shift for each SOS
frequency index defined by HARM(J).

b. The input-correlated power at each SO0Ss
frequency, the average remnant power in the
vicinity of each such frequency, and the
ratio of correlated to remnant power,

c. Total power, total correlated power, and
total remnant power contained in the signal,
plus the ratios of correlated and remnant
power to total power. ' '

When first called by VERNAL, certain constants are
computed, and the flag LSPECT is set to unity so . that
these computations are bypassed on subsequent calls.
SPECT then calls the routine FFT to compute the
discrete fast Fourier transform of the time-history
data contained in the array XDATA. The results of
this transformation are returned in the array XDATA as
alternate estimates of magnitude and phase, The
following computations are then performed:

a = 26.LOG(x )
3 k
g =X
j k+1
2
P. = 18.LOG(x /2)
J k

where a = AMPCOR(J) is the amplitude, in dB, of the
]
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INPUTS:

OUTPUTS:

LOCAL:
CALLER:

CALLS:

signal at the jth SOS harmonic index, ¢ = PHSCOR(J)

J
is the phase shift at that frequency, and P =
, 3
PWRCOR(J) is the signal power in dB. x represents
k
the values of XDATA at index "k", where, because of
the interleaving of magnitude and phase results,

k=2h;+1. The variable SUMCOR is incremented by the
jth “correlated power computation (in experimental
units, not dB) in order to determine the total amount
of input-correlated power contained in the signal.

To compute the remnant power PWRREM(J) for the jth SOS
index, the indices KLOW and KHIGH (for array XDATA)
are computed to be approximately 1/8 octave below and
above the jth SOS harmonic index. The routine REMPOW
is then called to yield the accumulated remnant SUMREM
and to determine the number of £frequency "bins"
NREM(J) utilized in the (local) remnant computation.
The remnant estimate PWRREM(J) 1is determined by
dividing SUMREM by NCOUNT and converting to dB. The
ratio of correlated remnant power CDIVR(J), in dB, is
computed by subtracting the remnant power (in dB) from
the correlated power (in dB). Correlated and remnant
powers are limited to a minimum of -99.99 dB, and a
call to LIMIT maintains the signal/noise ratio between
-99,99 and +99.99 dB.

After completing the above calculations for each SOS
index, SPECT computes the total remnant power via. a
call to REMPOW, with indices KLOW and KHIGH set to
include the entire spectrum. Total correlated and
remnant power for the signal are stored as TOTCOR and
TOTREM, respectively.

ARGLST: JCHAN, NCOMP, BARM, NPER, LSPECT, XDATA
ARGLST: LSPECT, XDATA

{SPCCOM>: AMPCOR, PHSCOR, CDIVR, PWRCOR, PWRREM,
TOTCOR, TOTREM, NREM

KLOW, KHIGH, NCOUNT

VERNAL

FFT, REMPWR, LIMIT

B-22



subroutine SPECT
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VERNAL
A
JCHAN
NCOMP
HARM LSPECT
NPER XDATA
LSPECT
XDATA
‘ ]
SPECT l
NPER NCOMP DBZERO
XDATA i HARM DBINF
XDATA TMPCDR
KLOW
KHIGH
XDATA NCOUNT TMPCDR
SUMREM
% Y Y
FFT REMPWR LIMIT
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SUBROUTINE SPECT (JCHAN, NCOMP, HARM, NPER, LSPECT, XDATA)

FOR THE SIGNAL IN XDATA, SPECT CALCULATES, AT EACH SOS FREQ:
1) THE CORRELATED AMP AND PHS
2) THE CORRELATED & REMNANT POWER (PER MSMT BIN)
3) THE COR-TO-REM POWER RATIO (PER MSMT BIN)
SPECT ALSO CALCULATES THE TOTAL CORRELATED AND REMNANT POWER

INPUTS: (VIA ARGLST) JCHAN
( " ) NCOMP, HARM, NPER
( " ) LSPECT (@=INIT PASS, 1=0THERS)
( " ) XDATA
OUTPUTS: (VIA ARGLST) LSPECT, XDATA
(VIA SCRCOM) AMPCOR, PHSCOR,CDIVR
(VIA SCRCOM) PWRCOR, PWRREM, TOTCOR, TOTREM,
NREM

COMMON /SPCCOM/ AMPCOR,PHSCOR,CDIVR,PWRCOR,PWRREM,
TOTCOR, TOTREM, NREM

INTEGER HARM(1)

DIMENSION XDATA(l)

DIMENSION AMPCOR(15,4),PHSCOR(15,4),CDIVR(15,4),
PWRCOR(15,4) ,PNRREM(15,4) ,TOTCOR(4) ,TOTREM(4),

NREM(15)
DATA HALF /90.58/
DATA WINDOW /8.25/ 11/4 OCTAVE REM WINDOW
DATA DBZERO, DBINF /-99.99,+99.99/ 1ZERO & INF IN DB UNITS
IF (LSPECT .EQ. 1) GOTO 10
NHALF = NPER/2 !DO FIRST PASS CALCS
DBTWO = 10.*ALOG10(2.)
RATIO = 2,.**(HALF*WINDOW) -
LSPECT = 1 1& INDICATE DONE

CALL TTYOUT ('DOING FFT...')
CALL FFT (NPER, XDATA)

SUMCOR = 0. IZERO THE COR PWR SUM
DO 380 J =1,NCOMP

KHARM = HARM(J) IGET JTH HARMONIC
INDEX = 2*KHARM + 1 l& ITS XDATA INDEX

DO AMP, PHS, PWR CALCULATIONS FOR SOS FREQS (CORRELATED)

AMPTMP = XDATA (INDEX) IGET AMP & ITS SQUARE
AMPSQR = AMPTMP*AMPTMP
AMPTMP = 20.*ALOG10 (AMPTMP) IGET AMP & PWR IN DB
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PWRTMP = AMPTMP - DBTWO ‘
PHSTMP = XDATA (INDEX+1) IGET PHASE IN RAD
AMPCOR (J,JCHAN) = AMPTMP ILOAD COR AMP,PHS,PWR
PHSCOR (J,JCHAN) = PHSTMP

PWRCOR (J,JCHAN) = PWRTMP

SUMCOR = SUMCOR + AMPSQR IACCUMULATE 2*PWR

DO PWR CALCULATIONS FOR NON-SOS FREQS (REMNANT)

KLOW = KHARM/RATIO + HALF IGET LOW & HIGH HARMS
KHIGH= KHARM*RATIO + HALF IWHICH DEFINE REM WINDOW
IF ( KLOW .LT. 1) KLOW = 1 !& LIMIT THEM

IF (KHIGH .GT. NHALF) KHIGH = NHALF
CALL REMPWR (NCOMP,HARM,XDATA,KLOW,KHIGH, NCOUNT SUMREM)

PWRTMP = DBZERO ICALC AVG REM PWR IN WINDOW
IF ( (NCOUNT .GT. @) .AND. (SUMREM .GT. 9.) )
PWRTMP = 10.*ALOG1@ (SUMREM/NCOUNT)

PWRREM (J,JCHAN) = PWRTMP
NREM (J) = NCOUNT _ ILOAD # OF REM FREQS IN AVG

DO CALCULATIONS FOR COR-TO-REM POWER RATIO

TMPCOR = PWRCOR (J,JCHAN) IGET COR & REM PWR
TMPREM = PWRREM (J,JCHAN)

IF (TMPCOR .GT. DBZERO) GOTO 18 ISET C/R TO ZERO WHEN
TMPCDR = DBZERO ICOR PWR IS ZERO

GOTO 20

IF (TMPREM .GT. DBZERO) GOTO 19 ISET C/R TO INF WHEN
TMPCDR = DBINF IREM PWR IS ZERO

GOTO 20 ,
TMPCDR = TMPCOR - TMPREM ISET C/R TO DIF IN DB
CALL LIMIT (DBZERO,DBINF,TMPCDR) IAND LIMIT

CDIVR (J,JCHAN) = TMPCDR ' ILOAD C/R VECTOR
CONTINUE

DO TOTAL POWER CALCS

SUMCOR = SUMCOR/2. IGET TOTAL COR PWR

KLOW = 0 IGET TOTAL REM PWR (INCL DC)
KHIGH = NHALF

CALL REMPWR (NCOMP,HARM,XDATA,KLOW,KHIGH, NCOUNT, SUMREM)

SUMCOR ILOAD TOTAL PWR FIGURES
SUMREM

TOTCOR (JCHAN)
TOTREM (JCHAN)



RETURN
END
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FUNCTION:

OPERATION:

INPUTS:
OUTPUTS:
CALLER:

CALLS:

subroutine FFT

Returns N-point fast-Fourier transform of a time
history

A time history of length N, stored in the array X, is
processed by the routine FAST, which overwrites the
time history and returns (to FFT) its discrete Fourier
transform in the array X. _

The first element of X contains the absolute value of
the mean of the time history. The second element
contains @ if the signal mean is positive; otherwise,
it contains T, The remaining elements contain
magnitude and phase information as follows:
x(1) = 2 [£2(1) + £2(1+1) 12

o i=3,5,...

x(itl)=tan L (=£(i+1)/£(i))

where "i" is the index in the array X, F signifies the
real and imaginary components of the Fourier transform
returned by the routine FAST, and x(i) signifies the
resulting gain and phase data placed in the array X
before returning control to the calling routine.
ARGLST: N, X

ARGLST: X

SPECT

FAST
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subroutine FFT

SPECT

FAST
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Q O 0O 000000000 nN

1006

SUBROUTINE FFT (N,X)

RETURNS N-POINT FFT OF X, IN X, WHERE N IS A PWR OF 2

(AMP,PHS) FOR JTH HARMONIC STORED IN (X(2Jd+l),X(2J+2)),
FOR J = 1 THRU N/2-1

(AMP, PHS) FOR fTH HARMONIC STORED IN (X(1), X(2))

N/2TH (X (N+1) ,X (N+2))
INPUTS: (VIA ARGLST) N, X
OUTPUTS: (VIA ARGLST) X

DIMENSION X (2)
DATA PI /3.14159/
CALL FAST (N,X)

NHALF = N/2

TWODN = 1./NHALF

TEMP = X(1)/N | IDO ZEROTH HARMONIC (DC)
X(1) = ABS(TEMP)

X(2) = 0.

IF (TEMP .LT. 0.) X(2) = PI

DO 168 I = 1, (NHALF-1) {DO HARMONICS FROM 1 TO (NHALF-1)
JODD = 2*I + 1

JEVEN = JODD + 1

TEMP1 = X( JODD) :

TEMP2 = X (JEVEN) B

X( JODD) = TWODN*SQRT (TEMP1*TEMP1 + TEMP2*TEMP2)

X (JEVEN) = ATAN2 (TEMP1,-TEMP2)

CONTINUE

TEMP = X (N+1) IDO N/2 HARMONIC (NYQUIST)
X(N+1) = TWODN*ABS (TEMP) | -
X(N+2) = 0.

RETURN

END
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FUNCTION:

OPERATION:

INPUTS:
- OUTPUTS:
CALLER:

CALLS:

subroutine FAST

computes discrete fast-Fourier transform.

A discrete Fourier transform is performed on the
N-point time history provided in the array B where N
must be 2 raised to an integral power. The mean value
of the time history is returned in element B(l), and
B(2) is set to zero. The Jth Fourier harmonic is
returned as a complex number, with the real part in
element B(2*J+l) and the imaginary part in B(2*J+2).
The N/2 harmonic is returned in B(N+l) with B(N+2) set
to zero. Thus, the array B must have a minimum
dimension of N+2.

N, B
B

FFT

B-30



subroutine FAST

FFT

FAST

i}
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C SUBROUTINE: FAST
C REPLACES THE REAL VECTOR B(K), FOR K=1,2,...,N,’
C WITH ITS FINITE DISCRETE FOURIER TRANSFORM

SUBROUTINE FAST(N,B)

THE DC TERM IS RETURNED IN LOCATION B(l) WITH B(2) SET TO 0.
THEREAFTER THE JTH HARMONIC IS RETURNED AS A COMPLEX

NUMBER STORED AS B(2*J+l) + I B(2*J+2).

THE N/2 HARMONIC IS RETURNED IN B(N+l) WITH B(N+2) SET TO 0.
HENCE, B MUST BE DIMENSIONED TO SIZE N+2.

THE SUBROUTINE IS CALLED AS FAST(N,B) WHERE N=2**M AND

B IS THE REAL ARRAY DESCRIBED ABOVE.

OO0 00

DIMENSION B(2)
COMMON /CONS/ PII, P7, P7TWO, C22, S22, PI2

IW IS A MACHINE DEPENDENT WRITE DEVICE NUMBER

IWw =5

QO OO0

PII 4.*ATAN(l.)
PI8 PII/8. ,
P7 = 1./SQRT(2.)

P7TWO = 2.*P7 )

C22 = COS(PI8)
522 = SIN(PIS8)
PI2 = 2.*PII
DO 18 I=1,15
M=1
NT = 2%*]

IF (N.EQ.NT) GO TO 20
10 CONTINUE
WRITE (IW,9999)
9999 FORMAT (33H'N IS NOT A POWER OF TWO FOR FAST)
STOP :
20 N4APOW = M/2

C DO A RADIX 2 ITERATION FIRST IF ONE IS REQUIRED.
C
IF (M-N4APOW*2) 40, 40, 30
30 NN = 2
INT = N/NN
CALL FR2TR(INT, B(l), B(INT+1l))
GO TO 540
40 NN =1
C
C PERFORM RADIX 4 ITERATIONS.
C
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50 IF (N4POW.EQ.8) GO TO 70
DO 60 IT=1,N4POW
NN = NN*4
INT = N/NN
CALL FR4TR(INT, NN, B(l), B(INT+l), B(2*INT+l), B(3*INT+l),
* B(1), B(INT+1l), B(2*INT+l), B(3*INT+1l))
60 CONTINUE

'PERFORM IN~-PLACE REORDERING.

eNoXe]

76 CALL FORD1 (M, B)
CALL FORD2(M, B)
T = B(2)
B(2) = 0.
B(N+1)
B(N+2)

B(IT) =
80 CONTINUE
RETURN
END

C SUBROUTINE: FR2TR
C RADIX 2 ITERATION SUBROUTINE

C __________________________________________________________________
C
SUBROUTINE FRZTR(INT, B, Bl)
DIMENSION B8 (2), Bl(2)
DO 18 K=1,INT
T = BO(K) + Bl(K)
Bl(K) = BO(K) - Bl(K)
BO(K) = T
10 CONTINUE
" RETURN
END
C
C __________________________________________________________________

C SUBROUTINE: FRA4TR
C RADIX 4 ITERATION SUBROUTINE

SUBROUTINE FR4TR(INT, NN, BO, Bl, B2, B3, B4, B5, B6, B7)
DIMENSION L(15), B8(2), Bl(2), B2(2), B3(2), B4(2), 55(2),
B6(2),

* B7(2)

COMMON /CONS/ PI1I, P7, P7TWO, C22, S22, PI2

EQUIVALENCE (L15,L(l)), (L14,L(2)), (L13,L(3)), (L12,L(4)),

* (L11,L(5)), (L1O,L(6)), (L9,L(7)), (L8,L(8)), (L7,L(9)),

* (L6,L(19)), (L5,L(11)), (L4,L(12)), (L3,L(13)), (L2,L(14)),
* (L1,L(15)) |
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JTHET IS A REVERSED BINARY COUNTER, JR STEPS TWO AT A TIME TO
LOCATE THE REAL PARTS OF INTERMEDIATE RESULTS, AND JI LOCATES
THE IMAGINARY PART CORRESPONDING TO JR. :

L(1) = NN/4
DO 40 K=2,15
IF (L(K-1)-2) 196, 20, 390
10 L(K-1l) = 2
20 L(K) = 2
GO TO 49
30 L(K) = L(K-1)/2
40 CONTINUE

PIOVN = PII/FLOAT(NN)

JiI = 3
JL = 2
= 2

JR

DO 126 Jl=2,L1,2
DO 120 J2=J1,L2,L1
DO 120 J3=J32,L3,L2
DO 120 J4=33,L4,L3
DO 1280 J5=J4,L5,L4
DO 1206 J6=J5,L6,L5
DO 120 J7=J36,L7,L6
DO 120 J8=J37,L8,L7
DO 1206 J9=J8,L9,L8
DO 128 J16=J9,L16,L9
DO 120 J11=J16,L11,L1PD
‘DO 126 J12=J11,L12,L11
DO 120 J13=J12,L13,L12
DO 120 J14=J13,L14,L13
DO 120 JTHET=J14,Ll15,L14
TH2 = JTHET - 2
IF (TH2) 56, 50, 990
50 DO 66 K=1,INT
T@ = BO(K) + B2(K)
Tl = B1(K) + B3(K)

B2 (K) = BO(K) - B2(K)
B3(K) = Bl1(K) - B3(K)
BB(K) = T8 + Tl
Bl1(K) = T9 - Tl

60 CONTINUE

IF (NN-4) 120, 1206, 70
70 K@ = INT*4 + 1
KL = K@ + INT - 1
DO 80 K=K@,KL
PR = P7*(Bl(K)-B3(K))

B-34



PI =
B3 (K)
Bl (K)
B2 (K)
B9 (K)
CONTINUE
GO TO 120

P7%* (Bl (K)+B3(K))
B2 (K) + PI
PI - B2(K)
BA(K) - PR
B8 (K) + PR

80

TH2*PIOVN
COS (ARG)
SIN(ARG)
Cl**2 ~ S1**2
Cl*sl + Cl*sl
Cl*C2 - S1*s2
C2%g51 + S2*Cl

9¢ ARG =
Cl
Sl
Cc2
S2
C3

s3

= INT*4
JR*INT4 + 1
Ko = JI*INT4 + 1
JLAST = J@8 + INT - 1
DO 100 J=J0,JLAST
K=K@8 +J - J0
R1 B1(J)*Cl1 -

INT4
Jg =

B5 (K) *S1
R5

100

110

T2
T6
T3
T7
TO
T4
T2
T6
T1
T5
T3
T7
B0 (J)
B7 (K)
B6 (K)
Bl (J)
B2 (J)
B5 (K)
B4 (K)
B3 (J)
CONTINU

e}
(8§,

B1(J) *S1
B2 (J) *C2
B2(J) *S2
B3(J) *C3
B3 (J) *S3
B@(J) +
B4 (K) +
BA(J) -
B4 (K) -
Rl1 + T3
RS
Rl

3
w
SO I I s

mw o iannu
<
N

E

JR = JR + 2

JI = JI

- 2

T+ 1+

+
T2
T6
T2
Té

Tl
T5

T4
T7
T3
T7
T6

B5 (K) *C1
B6 (K) *S2
B6 (K) *C2
B7 (K) *S3
B7 (K) *C3

IF (JI-JL) 116, 110, 1290

JI = 2%

JR - 1
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'JL = JR

126 CONTINUE

RETURN
END

SUBROUTINE: FR4SYN
RADIX 4 SYNTHESIS

10
20

30
. 40

*

*
*
*

SUBROUTINE FR4SYN(INT, NN, B@, Bl, B2, B3, B4, B5, B6, B7)
DIMENSION L(15), B#8(2), Bl(2), 82(2), B3(2), B4(2), B5(2),

B6(2),
B7(2)

COMMON /CONST/ P11, P7, P7TWO, C22, S22, PI2
(L13,L(3)), (L12,L(4)),
(L11,L(5)), (L18,L(6)), (L9,L(7)): (L8:L(8)), (L7,L(9)),
(L6,L(18)), (L5,L(11)), (L4,L(12)), (L3,L(13)),

EQUIVALENCE (L15,L(1l)), (L1l4,L(2)),

(L1,L(15))

L(1l) = NN/4
DO 49 K=2,15
IF (L(K-1)-2) 10, 20, 30

L(K-1) = 2

L(K) = 2 )

GO TO 490

L(K) = L(K-1)/2
CONTINUE
PIOVN = PII/FLOAT(NN)
JI = 3
JL = 2
JR = 2

DO 126 J1=2,L1,2

DO 124 J2=J1,L2,L1

DO 128 J3=J2,L3,L2

DO 128 J4=J3,L4,L3

DO 128 J5=J4,L5,L4

DO 128 J6=J5,L6,L5

DO 128 J7=J6,L7,L6

DO 120 J8=J7,L8,L7

DO 120 J9=J8,L9,L8

DO 120 J10=J9,L16,L9
DO 126 J11=J160,L11,L10
DO 126 J12=J11,L12,Lll
DO 128 J13=J12,L13,Ll12
DO 120 J14=J13,L14,L13
DO 12¢ JTHET=J14,L15,L14

B~36

(L2,L(14)),



TH2 = JTHET - 2
IF (TH2) 56, 508, 990
DO 60 K=1,INT
TO B8 (K) + Bl (K)
Tl B@ (K) - Bl (K)
T2 B2(K)*2.0
T3 B3(K)*2.0
BO (K) T0 + T2
B2 (K) T8 - T2
Bl (K) Tl + T3
B3 (K) Tl - T3
CONTINUE

nonnan

nuwunun

IF (NN-4) 120, 126, 70
K@ = INT*4 + 1
KL = K@ + INT - 1
DO 80 K=K@,KL
T2 = BO(K) - B2(K)
T3 = B1(K) + B3(K)
B0 (K) (BG (K)+B2(K)) *2.0
B2 (K) (B3 (K)-B1(K))*2.0
Bl (K) (T2+T3) *P7TWO
B3 (K) (T3-T2) *P7TWO
CONTINUE
GO TO 120
ARG = TH2*PIOVN
Cl COS (ARG)
Sl =SIN(ARG)
C2 Cl**2 - S1l**2
S2 Cl*sl + Cl*sl
C3 Cl*C2 - S1*s2
S3 C2*S1 + S2*Cl

INT4 = INT*4 -

J@ = JR*INT4 + 1

K@ = JI*INT4 + 1

JLAST = J@ + INT - 1
DO 166 J=J0,JLAST

' K=K0 +J - J@

T¢ = BO(J) + B6(K)
T1 = B7(K) - Bl(J)
T2 = BB(J) - B6(K)
T3 = B7(K) + Bl(J)
T4 = B2(J) + B4(K)
TS5 = B5(K) - B3(J)
T6 = BS5(K) + B3(J)
T7 = B4(K) - B2(J)
BO(J) = TO + T4

B4(K) = Tl + T5

= (T2+T6)*Cl - (T3+T7)*s1l

Bl (J)
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B5(K) = (T2+T6)*S1 + (T3+T7)*Cl
B2(J) = (TO-T4)*C2 - (T1-T5)*S2
B6 (K) = (T@-T4)*S2 + (T1-T5)*C2
B3(J) = (T2-T6)*C3 - (T3-T7)*S3
B7(K) = (T2-T6)*S3 + (T3-T7)*C3

100 CONTINUE

JR = JR + 2

JI = JI - 2

IF (JI-JL) 1190, 110, 120
110 JI = 2*JR - 1

JL = JR
120 CONTINUE
RETURN
END
C
Gl e e e e e e

C SUBROUTINE: FORD1
C IN-PLACE REORDERING SUBROUTINE

e e e e e —
C

SUBROUTINE FORD1 (M, B)

DIMENSION B(2) ., .
c

K = 4

KL = 2

N = 2%*M

DO 40 J=4,N,2
10 T = B(J)
B(J) = B(K)
B(K) =T
20 K=K-2
30 K = 2%

KL = J
40 CONTINUE
RETURN
END
C
Clm e e e e e e e e

C SUBROUTINE: FORD2
C IN-PLACE REORDERING SUBROUTINE

SUBROUTINE FORD2(M, B)
DIMENSION L(15), B(2)

EQUIVALENCE (L15,L(1)), (L14,L(2)), (L13,L(3)), (L12,L(4)),

* (L11,L(5)), (L1@,L(6)), (L9,L(7)), (L8,L(8)), (L7,L(9)),

* (L6,L(18)), (LS,L(11)), (L4,L(12)), (L3,L(13)), (L2,L(14)),

* (L1,L(15)) .

(
)
)
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10

20

30

40

N
L(
DO

Cco
DO

Co
1J
DO
DO
DO
DO
DO
DO
DO
DO
DO
DO
DO
DO
DO
DO
DO

RE
EN

= 2**M
1) = N
18 K=2,M
L(K) = L(K-1)/2
NTINUE
20 K=M,14
L(K+l) = 2
NTINUE
=2
40 J1=2,L1,2
40 J2=J1,L2,L1
40 J3=J2,L3,L2
40 J4=33,L4,L3
40 J5=J4,L5,L4
40 J6=35,L6,L5
40 J7=36 ,L7,L6
40 J8=J7,L8,L7
40 J9=38,L9,L8
40 J16=J9,L16,L9
40 J11=J10,L11,L10
40 J12=J11,L12,L11
40 J13=J12,L13,L12
4¢ J14=J13,L14,L13
40 J1=J14,L15,L14
IF (IJ-JI) 30, 48, 40
T = B(IJ-1)-
B(IJ~1) = B(JI-1)
B(JI-1) T
T = B(I1IJ)
B(IJ) = B(JI)
B(JI) = T
IJ = IJ + 2
TURN
D
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FUNCTION:

_OPERATION:

' iNPUTS:
OUTPUTS:
' CALLER:

CALLS:

subroutine REMPWR

Computes remnant power over a specific frequency
"window".

Once a. power spectrum has been computed by the
subroutine SPECT and stored in the vector XDATA, the
routine REMPWR computes the accumulated power in XDATA
between the frequency indices KLOW and KHIGH,
exclusive of power at SOS indices defined by HARM.
Remnant power is returned as SUMRENM, with NREM
indicating the number of frequency indices used in
computing the remnant power.

ARGLST: NCOMP, HARM, XDATA, KLOW, KHIGH
ARGLST: NREM, SUMREM

SPECT
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- subroutine REMPWR

SPECT

NCOMP
HARM
XDATA
KLOW
KHIGH

Y

NREM
SUMREM

REMPWR
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19

20

SUBROUTINE REMPWR (NCOMP,HARM,XDATA,KLOW,KHIGH,NREM,SUMREM)

REMPWR COMPUTES THE SUMMED REMNANT POWER OVER THE
HARMONIC WINDOW DEFINED BY (KLOW,KHIGH)

SUMREM EXCLUDES POWER AT THE SOS HARMONICS DEFINED

BY HARM, AND RETURNS THE NUMBER OF REMNANT FREQS SUMMED

INPUTS: (VIA ARGLST)
(VIA ARGLST)
OUTPUTS: (VIA ARGLST)

INTEGER HARM(1)
DIMENSION XDATA(1)

NREM = 0
SUMREM = @.

DO 28 K = KLOW,KHIGH

DO 16 L = 1,NCOMP
IF (K .EQ. HARM(L)) GOTO 28

INDEX = 2*K + 1

AMPREM = XDATA (INDEX)

SUMREM = SUMREM + AMPREM*AMPREM
NREM = NREM + 1

CONTINUE

SUMREM = SUMREM/2.

RETURN

END

B-42

NCOMP,HARM, XDATA
KLOW,KHIGH
NREM, SUMREM

IZERO COUNTER & SUMMER

ISUM FROM KLOW TO KHIGH

IEXCLUDE SOS HARMONICS
IGET REMNANT AMP

IACCUMULATE 2*PWR
I INCREMENT COUNTER

ICALC SUMMED REM PWR



FUNCTION:
OPERATION:

INPUTS:
OUTPUTS:
CALLER:

CALLS:

subroutine LIMIT

Maintain variable within limits

LIMIT first checks that the desired minimum value XLOW
is less than or equal to XHIGH. 1If the test fails, an
error message is sent to the terminal, and the program
stops. Otherwise, the wvariable X is adjusted, if
necessary, to lie between XLOW and XHIGH. ‘

ARGLST: XLOW, XHIGH, X

ARGLIST: X

SPECT
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subroutine LIMIT

SPECT
A
XLOW
XHIGH
X
Y
LIMIT

0656+-710



73

SUBROUTINE LIMIT (XLOW, XHIGH, X)

IF (XLOW .LE. XHIGH) GOTO 190
CALL TTYOUT ('*****LIMIT: LOW/HIGH LIMITS REVERSED****%!)

STOP «

IF (X .LT. XLOW) X = XLOW
IF (X .GT. XHIGH) X = XHIGH
RETURN

END
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FUNCTION:
OPERATION:

INPUTS:

OUTPUTS:
LOCAL:

subroutine DFCN

Compute the describing function between two channels

For each SOS index "j", DFCN computes the describing
function gain Aa =GAIN(J) and relative phase shift Ag

J J
= PHASE(J) between two channels as follows:

ha =a - a
s I 1 S P
b8 =8 -8
J .l j.2
where a =AMPCOR(J,I) is the amplitude of signal I in

il
dB, and @ =PHSCOR(J,I) is the phase shift of signal
| joi -
I in degrees, AMPCOR and PHSCOR are determined by

previous calls to SPECT, and the indices 1 are set in
VERNAL to point to the channels specified by the user
to serve as the numerator (I=1l) and denominator (I=2)
quantities for describing function computation.
Because phase shift is a circular function, repeating
every 360 degrees, a scheme for "unwrapping" the phase
is employed in an attempt to maintain a smoothly
varying function of frequency. specifically, the
phase computation at a given S0S frequency is adjusted
up or down by an integral multiple of 368, if
necessary, to yield a result that is within + 180
degrees of the phase estimate at the previous SO
frequency. (The reference phase PHSOLD is initialized
to zero for the first SOS frequency.)

The signal/noise ratios CDIV are checked for both the
numerator denominator signals; if either ratio is less
than 6 dB, the flag CRFLAG is set from subsequent

printout of "stars" (****) to indicate an unreliable
describing function estimate at that frequency.

ARGLST: JDFCN, NCOMP
<SPCCOM>: AMPCOR, PHSCOR, CDIVR

ARGLIST: GAIN, PHASE, CRFLAG

PHSOLD
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subroutine DFCN

VERNAL
A
JDFCN “GAIN
NCOMP PHASE
CRFLG
v AMPCOR
3 PHSCOR
IVR
DFCN i cbIv //0;3
<SPCCOM>

B-47
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10

20

30

40

SUBROUTINE DFCN (JDFCN, NCOMP, GAIN, PHASE, CRFLAG)

DFCN COMPUTES DESCRIBING FUNCTION FOR TWO CHANNELS
CHANNEL NUMBERS FOR (NUM,DENOM) ARE (JDFCN(1) ,JDFCN(2))
GAIN/PHASE IS DIFFERENCE IN DB/RAD OF CORRELATED SIGNAL

AMPS/PHASES
PHASE CHANGE WITH FREQUENCY IS LIMITED , AND A FLAG IS

SET WHEN THE C/R RATIO IS LOW, FOR EITHER CHANNEL"

INPUTS: (VIA ARGLST) - JDFCN, NCOMP
(VIA SPCCOM) AMPCOR, PHSCOR, CDIVR
OUTPUTS: (VIA ARGLST)  GAIN,PHASE,CRFLAG

COMMON /SPCCOM/ AMPCOR,PHSCOR,CDIVR

'DIMENSION JDFCN(2), GAIN(1l), PHASE(l), CRFLAG(1l),

AMPCOR(15,4), PHSCOR(15,4), CDIVR(15,4)
DATA BLANK, STARS/' NPT TY
DATA SIXDB /6./
DATA PI, TWOPI /3.14159, 6.28318/

PHSOLD =8.

DO 48 J= 1,NCOMP

JNUM = JDFCN(1)
JDENOM =JDFCN(2)
GAIN(J) = AMPCOR(J,JNUM) - AMPCOR(J,JDENOM) IGET GAIN

PHSTMP = PHSCOR(J,JNUM) - PHSCOR(J,JDENOM) - 1GET PHASE
PHSDIF = PHSTMP - PHSOLD

IF (PHSDIF .LE. PI) GOTO 20

PHSDIF = PHSDIF -TWOPI

GOTO 10

IF (PHSDIF .GE. -PI) GOTO 30

PHSDIF = PHSDIF + TWOPI

GOTO 20

PHSTMP = PHSOLD + PHSDIF

PHASE (J) = PHSTMP

CRFLAG(J) = STARS ' ISET C/R FLAG IF C/R LOW
IF (CDIVR(J, JNUM) .LT. SIXDB) GOTO 40

IF (CDIVR(J,JDENOM) .LT. SIXDB) GOTO 40

CRFLAG(J) = BLANK

PHSOLD = PHSTMP

CONTINUE

RETURN
END
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APPENDIX C
OTHER MAJOR FORTRAN ROUTINES

This Appendix contains documentation for the FORTRAN subpfograms
TITLER, RWHEAD, and RWDATA, which are common to the VERRUN and VERNAL

software systems.



FUNCTION:

~ OPERATION:

INPUTS:
OUTPUTS:
1/0:

CALLER:

subroutine TITLER

Reads and writes title information

Title information may be read from or written to
either a file or the terminal. Title information
includes the file name (if relevant), run number,
date, time, and user-defined commentary.

The flag IRW indicates whether TITLER reads or writes
(l=read, 2=write). If information is to be specified
interactively (indicated by the value of LUNIT), the
current date and time are determined by calls to the
FORTRAN subroutines DATE and TIME, and date, time, and
run number are displayed to the user, If the program
is in the "run" mode (indicated by the value 'R', for
the flag MODE), the user is provided the option to
change the run number. Finally, the user is given the
opportunity to specify up to six lines of commentary.

If title information is being written to the terminal,
display of the commentary will be suppressed if TITLER
is called with MODE set ¢to .'S'. A call to FILIN

(FILOUT) is made to transfer commentary when title
information is being read from (written to) a file.

ARGLST: IRW, LUNIT, MODE, IRUN
ARGLST: IRUN
<TTLCOM>: FNAME, IDATE, ITIME, NLINE, TITLE

VERRUN, RWHEAD (VERRUN software system).
VERNAL, RWHEAD (VERNAL software system)



subroutine TITLER

(CALLING
PROGRAM)
IRW A
LUNIT IRUN
MODE
IRUN
y
TITLER }_______ﬂ
FNAME
IDATE
ITIME
NLINE
TITLE
0 .
<TTLCOM>

0656-728
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'WRITE (LUNIT, 3606) IRUN, IDATE, ITIME

SUBROUTINE TITLER (IRW, LUNIT, MODE, IRUN)

TITLER READS/WRITES THE TITLE FROM/TO A FILE OR TTY
THE TITLE INCLUDES FILE NAME, DATE, TIME, AND COMMENTS

INPUTS (VIA ARGLST) IRW (1 = READ, 2 = WRITE)
(VIA ARGLST) LUNIT, MODE .
OUTPUTS: (VIA ARGLST) IRUN
(VIA TTLCOM) IDATE, ITIME, NLINE, TITLE

COMMON /TTLCOM/ FNAME, IDATE, ITIME, NLINE, TITLE

LOGICAL*1 LASK,MODE, ITIME(8) ,IDATE(9) , TITLE(255) ,FNAME(11)
INTEGER HOURS, SECONS

DATA NDIM /255/
DATA LUNTTY /5/

GOTO (100,200) IRW

READ-IN SECTION
IF (LUNIT .NE. LUNTTY) GOTO 130

READ IN FROM TTY
CALL DATE (IDATE)
CALL TIME (ITIME)

FORMAT (1X,'RUN NUMBER: ',I4,4X,'DATE: ',9Al1,4X,'TIME: ',
9al,/) :
IF (MODE .EQ. 'P') GOTO 129

CALL TTYOUT(' ')
IF (LASK('CHANGING THE RUN NUMBER? ') .EQ. 'N') GOTO 120

CALL TTYOUT ('NEW RUN NUMBER: §$')

IRUN = IANS (0, 100)

GOTO 110

CALL TTYOUT ('NUMBER OF COMMENT LINES: §')

NLINE = IANS (@, 6)

IF (NLINE .EQ. @) RETURN

CALL TTYIN (NLINE, NDIM, TITLE)
RETURN

READ IN FROM FILE
READ (LUNIT, 1060) FNAME, IRUN, IDATE, ITIME
FORMAT (7X,11Al,15X,14,11X,9A1,10X,9Al)
READ (LUNIT, 1610) NLINE
FORMAT (19X,I4)
CALL FILIN (NLINE, NDIM, TITLE, LUNIT)

RETURN
WRITE~-OUT SECTION



200

2000

210
2010

IF (LUNIT .NE. LUNTTY) GOTO 210

WRITE OUT ONTO TTY
WRITE (LUNIT, 2000) FNAME, IRUN, IDATE, ITIME
FORMAT (1X,'FILE: ',11Al,6X,' RUN NO: ',I4,4X,' DATE: ',
1 9a1,3%X,' TIME: ',9Al)

IF (MODE .EQ. 'S') RETURN ISUPPRESS TITLE WRITEOUT
IF (NLINE .NE. @) CALL TTYOUT (TITLE)
RETURN

WRITE OUT ONTO FILE
WRITE (LUNIT, 2000) FNAME, IRUN, IDATE, ITIME
WRITE (LUNIT, 20610) NLINE
FORMAT (1X,'TITLE LINE COUNT: ',I4)
IF (NLINE .NE. @) CALL FILOUT (TITLE, LUNIT)
RETURN
END



FUNCTION:

- OPERATION:

INPUTS:
1/0:

CALLER:

CALLS:

subroutine RWHEAD

Reads and writes header information

Information may be written to or read from a data
file, or written to (but not read from) the terminal.
If RWHEAD is <called with LUNIT set to the terminal
device number, header information is displayed on the
terminal, and control returns to the calling program.
If information exchange with a data file is indicated,
the following operations are performed:

a. The user specifies the name of the data
file,

b. If'currently open, the data file is closed.

c. The data file is opened, and the flag IOPEN
is set to 'Y'.

d. Header information is written/read. This
information consists of a program version
number, title information (via a call to
TITLER), time base parameters, and SOS
parameters,

If the flag ICLOSE is set to 1, the data file is
closed and IOPEN is set to 'N'; otherwise, the file
remains open. The file will be closed if program
VERRUN is being run in the parameter setup mode; it
will remain open if program VERRUN is operating in the
"run" mode, or if program VERNAL is being run.

ARGLST: IRW, LUNIT, ICLOSE

ARGLST: IRUN, ISAMP, NPER, NRUN, NCOMP, HARM, AMP,
PMUL

<TIMCOM>: PZERO, FZERO, TSAMP, TRUN

<TTLCOM>: FNAME, IDATE, ITIME, NLINE, TITLE

VERRUN, PARSET (VERRUN software system)
VERNAL (VERNAL software system)

TITLER



subroutine RWHEAD

(CALLING
PROGRAM)
IRW 4IRUN, ISAMP
LUNIT NPER, NRUN §
CLOSE NCOMP, HARM i
AMP, PMUL K
O
o
FNAME, IDATE . Y . PZERO, FZERO
ITIME, NLINE, TITLE r : I TSAMP, TRUN
o RWHEAD —0
< oM>
<TTLCOM> IRW TIMCOM
LUNIT IRUN
MDUMY
IRUN
TITLER
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SUBROUTINE RWHEAD (IRW,LUNIT,ICLOSE,IRUN,ISAMP,NPER,
NRUN, NCOMP, HARM, AMP, PMUL)

CHANGES BY W.H. LEVISON, 12/9/83
1. INITIALIZE MDUMY TO BE 'P'
2. ELIMINATE READ/WRITE OF ISEED

READS/WRITES HEADER FROM/TO A DATA FILE
ALSO WRITES HEADER TO TTY

INPUTS: (VIA ARGLST) IRW (1=READ HEADER,2=WRITE HEADER)
' ( " ) LUNIT
(VIA ARGLST) ICLOSE (1=CLOSE FILE, 2=LEAVE FILE)
OPEN
I1/0: (VIA ARGLST) IRUN, ISAMP
( " ) NPER, NRUN, NCOMP
( " ) HARM, AMP, PMUL
(VIA TIMCOM) PZERO, FZERO, TSAMP, TRUN

COMMON /TIMCOM/ PZERO, FZERO, TSAMP, TRUN
COMMON /TTLCOM/ FNAME, IDATE, ITIME, NLINE, TITLE

LOGICAL*1 IOPEN,MDUMY,FNAME(11), IDATE (9), TITLE (255)
INTEGER HARM(1l), PMUL(1l), HOURS, SECONS
DIMENSION AMP(1)

DATA NVERS /2/

DATA LUNTTY /5/
DATA IOPEN /'N'/
DATA MDUMY/'P'/

IF (LUNIT .EQ. LUNTTY) GOTO 201

CALL FILNAM (IRW, FNAME, NCHAR) IGET FILE NAME

IF (IOPEN .EQ. 'N') GOTO 190
CLOSE (UNIT = LUNIT, DISPOSE = ‘'SAVE' ) IAND CLOSE IT IF OPEN
IOPEN = 'N' IAND INDICATE IT'S

CLOSED
GOTO (106, 280) IRW

READ FROM FILE

CONTINUE

OPEN(UNIT=LUNIT,NAME=FNAME, CARRIAGECONTROL='LIST',TYPE '‘oLp') !
I0OPEN = 'Y

READ (LUNIT, 105) NVERS

FORMAT (17X, I1,/.,/)

CALL TITLER (IRW, LUNIT, MDUMY, IRUN)

READ (LUNIT, 110) ISAMP

FORMAT (/, /., 25X, I4)
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READ (LUNIT, 115) FZERO, PZERO
115 FORMAT (17X, 1PEl12.3, 21X, 1PEl2.3)
READ (LUNIT, 128) TEMP, NPER
120 FORMAT (17X, 1PEl12.3, 28X, IS)
READ (LUNIT, 125) TRUN, NRUN :
125 FORMAT (17X, 1PEl12.,3, 28X, I5) .
READ (LUNIT, 130) NCOMP '
130 FORMAT (/,/., 22X, 14,/)
READ (LUNIT, 135) (HARM(I), AMP(I), PMUL(I), I=1,NCOMP)
135 FORMAT (10X, I5, 16X, F6.3, 5X, I6)
GOTO 309

WRITE TO FILE (OR TTY)

200 CONTINUE
OPEN(UNIT=LUNIT, NAME=FNAME, CARRIAGECONTROL='LIST',TYPE="NEW') !
IOPEN = 'Y!

201 WRITE (LUNIT, 285) NVERS

205 FORMAT (1X, 'VERSION NUMBER: ', Il)
WRITE (LUNIT, 206)

206 FORMAT (/, 1X, '***RUN IDENTIFICATION***')
CALL TITLER (IRW, LUNIT, MDUMY, IRUN)
WRITE (LUNIT, 289)

209 FORMAT (/, 1X, '***TIME BASE PARAMETERS**%*')
WRITE (LUNIT, 210) ISAMP :

210 FORMAT (1lX,-'SAMPLE PERIOD: ', 8X, I4,' MSEC')
WRITE (LUNIT, 215) FZERO, PZERO

215 FORMAT (1X, 'BASE FREQUENCY: ',1PEl12.3, ' HZ',
1 4X, 'BASE PHASE: ', 1PE12.3, ' DEG').
WRITE (LUNIT, 220) NPER*(ISAMP/1066.), NPER
220 FORMAT (1X, 'SOS PERIOD: '/1PE12.3, ' SEC',
1 4X ,'WITH: ', 13X, I5, ' PTS')
WRITE (LUNIT, 225) TRUN, NRUN
225 FORMAT (l1X, 'RUN LENGTH: - ''1PE12.3, ' SEC',
1 4X, 'WITH: ', 13X, I5, ' PTS')

WRITE (LUNIT, 229)
229 FORMAT (/, 1X, '***S0S SIGNAL PARAMETERS***')

WRITE (LUNIT, 230) NCOMP -
230 FORMAT (1X, '# OF SOS COMPONENTS: ', I4)

WRITE (LUNIT, 234) _ | :
234 FORMAT (2X, 'COMP', 5X, 'HARM', 7X, 'FREQ', 7X, 'AMP',

1 8X, 'PMUL', 7X, 'PHS') ,
WRITE (LUNIT, 235) (J,HARM(J),FZERO*HARM (J),AMP(J),
1 PMUL(J) ,PZERO*PMUL(J), J=1,NCOMP)

235 FORMAT (I5,5X,I5,5X,F6.2,5X,F6.3,5X,16,5X,F6.1)
IF (LUNIT .EQ. LUNTTY) RETURN IRETURN IF JUST DONE TTY WRITE

300 IF (ICLOSE .NE. 1) RETURN :
‘ CLOSE (UNIT = LUNIT, DISPOSE = 'SAVE') ICLOSE FILE



IOPEN = 'N' IAND INDICATE CLOSED

RETURN
END



FUNCTION:

OPERATION:

INPUTS:
OUTPUTS:
CALLER:

CALLS:

subroutine RWDATA

Reads and writes time history data

The data array IDATA is written to or read from a data
file. IDATA may also be displayed on the user's
terminal. Data are stored in IDATA in an interleaved
format: the first data sample from the first channel,
followed by the first sample from the second channel,
etc, The data file, which has been opened previously
by a call to RWHEAD, is closed upon completion of data
transfer.,

ARGLST: IRW, LUNIT, NFRAME, NCHAN
ARGLST: IDATA
(main program)
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SUBROUTINE RWDATA (IRW, LUNIT, NFRAME, NCHAN, IDATA)

RWDATA READS/WRITES THE DATA ARRAY IDATA FROM/TO FILE

INPUTS: (VIA ARGLST) IRW (1 = READ, 2 = WRITE)
LUNIT, NFRAME, NCHAN, IDATA
OUTPUT: (VIA ARGLST) IDATA

DIMENSION IDATA (1), ITEMP (10)

DATA LUNTTY/5/
DATA NCMAX/4/

IF (NCHAN .LE. NCMAX) GOTO 18
CALL TTYOUT('******RWDATA: NCHAN .GT. NCMAX****#1)
STOP

GOTO (100,2008) IRW

READ DATA .FROM FILE & LOAD IDATA
IF (LUNIT .NE. LUNTTY) GOTO 165
CALL TTYOUT ('******RWDATA: TRYING TO READ FROM TTY****%x1)

STOP

READ (LUNIT, 999)
FORMAT(/,/)

INDEX = 0
DO 128 I = 1, NFRAME

~ READ (LUNIT,1006) IDUMMY, (ITEMP(J), J=1,NCHAN)

FORMAT (1X,515)

DO 110 J = 1, NCHAN
IDATA (INDEX+J) = ITEMP(J)
INDEX = INDEX + NCHAN
GOTO 309

WRITE ALL CHANNELS OF DATA FROM IDATA TO FILE (OR TTY)
WRITE (LUNIT, 2000) NCHAN

FORMAT (/, 1X, '***RECORDED DATA OF ', I3, ' CHANNELS***!')
WRITE (LUNIT, 2ﬂﬁl)

FORMAT (2X, 'IFRM', cTF',' c2°' ¢c3',' c4'"')
INDEX = 0@ ;

DO 220 I=1,NFRAME

DO 21¢ J=1,NCHAN

ITEMP(J) = IDATA(INDEX+J)

WRITE (LUNIT,1000) I, (ITEMP(J) J=1,NCHAN)

INDEX = INDEX + NCHAN

IF (LUNIT .EQ. LUNTTY) RETURN

CLOSE (UNIT = LUNIT, DISPOSE = 'SAVE')
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RETURN
END
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subroutine RWDATA

( MAIN

PROGRAM)

IRW
LUNIT
NFRAME
NCHAN

A

v

IDATA

RWDATA
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APPENDIX D
FORTRAN I/O LIBRARY ROUTINES

A list of the I/0 library routines, along with brief descriptions
of their functions, are included in Table D.l. Listings of each

routine follow.

TABLE D.1 IOLIB ROUTINES

FILIN Reads multiple 1lines of text from a file unit
specified by the calling program, stores in an array
specified by the calling program.

FILNAM Reads in a character string from the TTY, to be used
in specifying a file name for I/0 on the system disk

FILOUT Outputs a text string onto a file unit specified in
the calling sequence.

FILSTR Reads a text string from a file unit specified by the
calling program and stores it in an array specified by
the calling program.

GETSTR Reads a single line of text from the TTY and stores it
in an array specified in the calling sequence.

IANS Reads an integer value from the TTY and checks that
the value is within bounds specified by the calling
routine

LANS Reads a single character from the TTY and checks that
it is wvalid according to the <calling routine's
specifications

LASK Writes out a character string onto the TTY, reads back
a single Y/N character, and checks that the character
is Y or N,

PUTSTR Outputs a single line of text with carriage control at
the end of the line. - '

RANS Reads a value from the TTY and checks that the value
is within bounds specified by the calling routine,



RGET

STRING
TTYIN

TTYOUT

VECTIN

VECVAL

Reads a real value from the TTY.

Same as GETSTR, except a character count is returned
to the calling routine,

Reads in multiple lines of text from the TTY and
stores it in an array supplied by the called routine

Writes out onto the TTY a character array supplied by
the calling routine, with carriage control at both the
beginning and the end of the text,.

Loads a real vector, component by component from TTY
input, providing a range check on the component value,
and an opportunity for user corrections.,

Prompts the user to specify for a real number. Used
by VECTIN.
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SUBROUTINE FILIN (NLINE,NDIM,TITLE,LUN)
LOGICAL*1 TEMP (255), TITLE (1), CRTURN ,LNFEED

ISAVE=0
NTEMP=NDIM-2

IF (NLINE .EQ. @) RETURN

CALL FILSTR (TEMP, LUN) ! READ ONE LINE FROM FILE
DO 18 1=1,71 ILOAD TEMP INTO TITLE :
ITEMP=I+ISAVE

IF((ITEMP.GE.NTEMP) .OR. (TEMP(I).EQ.8))GO TO 15
{CHECK FOR FULL TITLE VECTOR OR

INULL CHARACTER IN TEMP INPUT
TITLE (ITEMP)=TEMP(I)

CONTINUE :

IF (ITEMP.GE.NTEMP) GO TO 20 IQUIT IF TITLE IS FILLED
ISAVE=ITEMP ISAVE LAST LOADED POSN
CONTINUE IBOTTOM OF LINE LOOP

IF (L .GT. NLINE) GOTO 25
DO 36 J = L, NLINE
CONTINUE

ITEMP=ITEMP+1

TITLE (ITEMP)=0

RETURN

DATA CRTURN, LNFEED /13, 16/

END
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SUBROUTINE FILNAM(IOCHAN,NAME,NCHAR)

This subroutine acepts file names, checking them for legality
(all alphanumeric characters, etc...)

Input is IOCHAN. 1 for Input filename, 2 for Output filename,
NAME is the array containing the name of the file.
NCHAR is the number of characters in the filename.

LOGICAL*1l NAME(10), DOT

LOGICAL*1 UPCSA, UPCSZ, ASCII@, ASCII9

CALL TTYOUT('ENTER FILENAME FOR S$', 5)

GOTO (5,10) IOCHAN ! Check for legitimate IOCHAN
STOP' ****FI[,NAM: ILLEGAL IOCHAN VALUE****!

Print appropriate prompt and read filename,

CALL TTYOUT('SINPUT: §', 5)
GOTO 15

CALL TTYOUT('$OUTPUT: $', 5)
READ (5, 20) NAME

FORMAT (10Al)

Is the first character a letter? (not <a or >b)

I=1
IF ((NAME(I) .LT. UPCSA) .OR. (NAME(I) .GT. UPCSZ)) GOTO 1049

Now check the rest of the name to see if it is all

alphanumeric
characters, and set NCHAR = to 3 places after the '.'

DO 200 1 = 2,10

IF (NAME(I) .EQ. DOT) GOTO 50

IFLAG = -1

IF ((NAME(I).LT.UPCSA).OR. (NAME(I).GT.UPCSZ)) IFLAG=IFLAG+1
IF ((NAME(I).LT.ASCIIE).OR.(NAME(I).GT.ASCIIQ))IFLAG=IFLAG+1
IF (IFLAG) 200, 200, 100

IF ((I .EQ. 1) .OR. (I .GE, 8)) GOTO 190

NCHAR = I + 3

DO 116 J = I+1l, NCHAR

IF (NAME(J) .EQ. DOT) GOTO 100

RETURN ! Legal File Name. Return.

CONTINUE

Bad filename: deal with it...



100 CALL TTYOUT('INVALID FILENAME. TRY AGAIN: $', 5)
GOTO 15

DATA UPCSA, UPCSZ, ASCII@, ASCI19 /65, 98, 48, 57/
DATA DOT /'.'/
END
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SUBROUTINE FILOUT (MSG, LUN)

This subroutine outputs the string MSG onto the file unit LUN,

Last Modification Date: 12-July-83

. LOGICAL*1 MSG(l), EOF

ISTART = 1

This next loop goes through the string until it encounters an
End Of File indicator in order to find the terminating
position

in the string.

ISTOP = ISTART
ISTOP = ISTOP + 1
IF (MSG(ISTOP) .NE. EOF) GOTO 15

INUM ISTOP - ISTART

INUM INUM + 2

WRITE (LUN, 268) (MSG (I), I = ISTART, ISTOP)
FORMAT (1X, 255Al)

RETURN .

DATA EOF /8/
END
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SUBROUTINE FILSTR (CHAR, LUN)
LOGICAL*1 CHAR(1)

C. GETS UP TO 255 CHARACTERS FROM THE FILE
C THE TEXT STRING IS TERMINATED BY A NULL BYTE.
C <CR> IS NOT INCLUDED IN THE TEXT STRING
C .
READ (LUN, 1061) (CHAR (I), I =1, 255)
101 FORMAT (255A1)
C THE STRING WILL BE PADDED WITH SPACES (32)
C FIND THE FIRST NON SPACE AND SET THE BYTE
C AFTER IT TO 6.
DO 20 1=70,1,-1
20 IF (CHAR(I).NE.32)GOTO 30
CHAR(1)=0
RETURN
30 CHAR(I+1)=0
RETURN
END



SUBROUTINE GETSTR(CHAR,MAX)
LOGICAL*1 CHAR(1l)

C GETS UP TO 'MAX' CHARACTERS FROM THE TTY:
C THE TEXT STRING IS TERMINATED BY A NULL BYTE.
C <CR> IS NOT INCLUDED IN THE TEXT STRING
C

ACCEPT 101, (CHAR(I) ,I=1,MAX)
191 FORMAT (100Al)
C THE STRING WILL BE PADDED WITH SPACES (32)
C FIND THE FIRST NON SPACE AND SET THE BYTE
C AFTER IT TO @.
' ‘ DO 20 I=MAX,1,-1

20 IF (CHAR(I).NE.32)GOTO 30

' CHAR(1)=0
RETURN

30 CHAR(I+1)=0
RETURN
END



FUNCTION LANS(ANS1,ANS2)

LOGICAL*1 LANS,ANS1,ANS2
5 READ(5,100) LANS

1990° FORMAT(S, Al)
IF ((LANS.EQ.ANS1l) .OR. (LANS.EQ,ANS2) ) RETURN

WRITE (5,200) ANS1,ANS2
200 FORMAT (' PLEASE ANSWER ',Al,' OR ',Al,':',$)
: CALL TTYOUT ('$ ')
GO TO 5
END

FUNCTION IANS (MIN,MAX)
5 READ(5,100) IANS

100 FORMAT(I6)
IF ( (IANS.GE.MIN) .AND, (IANS.LE.MAX) ) RETURN

WRITE (5,200) MIN, MAX

200 FORMAT (1X, 'MIN=',16,' AND MAX=',16,' TRY AGAIN:'S)
GO TO 5
END
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FUNCTION LASK (MSG)

THIS PRINTS MSG AS A PROMPT OF UP TO 780 CHARACTERS,
ACCEPTS EITHER Y OR N AS A RESPONSE.

DO 180 I =1, 70
IF (MSG (I) .EQ.

LASK = LANS ('Y',
TYPE 200

FORMAT (/)

RETURN

END

LOGICAL*1 LANS, LASK, MSG(1)

) GOTO 20
WRITE (5, 100) MSG (I)
FORMAT ($, 1H+, Al, §)

INI)
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SUBROUTINE PUTSTR(CHAR,CEND)
LOGICAL*1 CHAR(1l) ,CEND

C OUTPUT UP TO 70 CHARACTERS ON THE TTY:
g IF CEND=$ THEN SURPRESS THE FINAL <CR>.
DO 5 IC=1,70
5 IF (CHAR(IC).EQ.0)GOTO 6
IC=71
6 IC=IC-1
IF (CEND.EQ.'$')GOTO 8
TYPE 1000, (CHAR(I),I=1,IC)
1000 FORMAT('+',70Al)

RETURN
8 TYPE 1001, (CHAR(I),I=1,IC)
1001 FORMAT('+',70A1,S$)

RETURN

END

D-11
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FUNCTION RANS(RMIN,RMAX)
FUNCTION TAKES A REAL NUMBER IN A SPECIFIC RANGE AS INPUT

RANS = RGET()
IF ((RANS .LT. RMIN) .OR. (RANS .GT. RMAX)) GOTO 204

RETURN

WRITE (5, 10) RMIN, RMAX

FORMAT ('S$MIN= ',1PE15.5,' AND MAX= ',1PEl5.5,'
GOTO 100

END

TRY AGAIN:

")
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FUNCTION RGET()
FUNCTION TAKES A REAL NUMBER AS INPUT, CHECKING FOR VALIDITY

LOGICAL*1 CHAR(25), ERR, STRING
CALL STRING (CHAR,15,I) ITAKE UP TO 15 CHARACTERS

IF (CHAR(I) .EQ. 8) GOTO 20 {IMMEDIATE CR/LF NOT ALLOWED
DECODE (I, 100, CHAR, ERR = 20) RGET

FORMAT (F15.0)

RETURN

ERROR IN INPUT...DEAL WITH IT

TYPE 200

GOTO 10
FORMAT ('ONOT A VALID REAL NUMBER. TRY AGAIN: ', §)

END

D-13
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SUBROUTINE STRING (CHAR,MAX,I)

STRING TAKES UP TO "MAX" CHARACTERS FROM THE TTY

END OF TEXT IS A NULL BYTE
THE CR/LF ISN'T INCLUDED IN THE TEXT

LOGICAL*1 CHAR(1)
ACCEPT 101, (CHAR(I), I=1,MAX)
FORMAT (180A1)

THE STRING WAS AUTOMATICALLY PADDED WITH SPACES,
GET TO GET RID OF THEM...

DO 20 I=MAX,1l,-1 »

IF (CHAR(I) .NE. 32) GOTO 38
CHAR(1l) = 0

RETURN

CHAR(I+1l) = 0

RETURN

END

D-14
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SUBROUTINE TTYIN(NLINE,NDIM,TITLE,LAST)

READS NLINE LINES OF TTY INPUT, CHARACTER BY CHARACTER,
AND STRINGS IT TOGETHER IN TITLE, SEPARATING EACH LINE
WITH A CARRIAGE RETURN & LINE FEED

ROUTINE READS A MAX OF (NDIM-2*NLINE-1) CHARACTERS,
WHERE NDIM IS DIMENSION OF TITLE

END OF TTY INPUT IS INDICATED BY A NULL CHARACTER
LAST POSITION IS RETURNED IN "LAST".

LOGICAL*1 TEMP (71), TITLE (1), CRTURN, LNFEED, BLANK

ISAVE=0

NTEMP=NDIM-2

DO 5 L=1,NLINE IREAD NLINE LINES

WRITE (5,200) IWRITE PROMPT CHARACTER

FORMAT(/, '+1'S)

CALL GETSTR (TEMP, 78) IREAD ONE TTY LINE OF UP TO 70
ICHARACTERS; TERMINATE WITH NULL

DO 18 I=1,71 ILOAD TEMP INTO TITLE

ITEMP=I+ISAVE
IF ( (ITEMP,GE.NTEMP) .OR. (TEMP(I).EQ.0))GO TO 15
' ICHECK FOR FULL TITLE VECTOR OR

INULL CHARACTER IN TEMP INPUT

TITLE (ITEMP)=TEMP(I)
TITLE (ITEMP)=CRTURN
ITEMP=ITEMP+1

TITLE (ITEMP)=LNFEED

. ITEMP = ITEMP + 1

TITLE (ITEMP) =BLANK

IF(ITEMP.GE.NTEMP)GO TO 20  IQUIT IF TITLE IS FILLED
ISAVE=ITEMP ' ISAVE LAST LOADED POSN
CONTINUE !BOTTOM OF LINE LOOP
ITEMP=ITEMP+1

TITLE (ITEMP) =0

LAST = ITEMP

RETURN

DATA CRTURN, LNFEED, BLANK /13, 10, 32/

END

D-15
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SUBROUTINE TTYOUT (MSG)

This subroutine outputs the string MSG onto the user's
terminal.

.if there is a leading dollar sign in the string, the initial

carrige return/line feed is supressed. A trailing dollar sign
supressed the CR/LF.

Last Modification Date: 12-Ju1y-83
LOGICAL*1 MSG(l), DOLLAR, CRTURN, LNFEED, EOF

ISTART = 1 o
IF (MSG(ISTART) .NE. DOLLAR) GOTO 5 ! Check if user wants
CR/LF

ISTART = ISTART + 1 | $ is there, message begins at next
character

GOTO 16

WRITE (5, 168) CRTURN, LNFEED | No $, print CR/LF

IF (MSG(ISTART) .EQ. EOF) RETURN ! Null msqg.

Returns to main prog.

This next loop goes through the string until it encounters an

End Of File indicator in order to f£ind the terminating
position

in the string.

ISTOP = ISTART

ISTOP = ISTOP + 1

IF (MSG(ISTOP) .NE. EOF) GOTO 15

ISTOP = ISTOP - 1 ! Get index of the last character

IF (MSG(ISTOP) .EQ. DOLLAR) ISTOP = ISTOP - 1

IF (ISTART .GT. ISTOP) RETURN ! Quit if double dollar sign

DO 25 I = ISTART, ISTOP

WRITE (5, 188) MSG(I)

IF (MSG(ISTOP+l) .EQ. DOLLAR) RETURN

WRITE (5, 1060) CRTURN, LNFEED | Do CR/LF if no ending $

RETURN

FORMAT ($,1H+,Al,S)

" DATA DOLLAR, CRTURN, LNFEED, EOF /'$', 13, 10, 8/

END
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SUBROUTINE VECTIN(MODE,VECNAM,VECDIM,VECTOR,VECMIN,VECMAX)

LOADS A VECTOR VARIABLE (VECTOR) COMPONENT BY
COMPONENT FROM THE TTY, IN A PROMPTING MODE,
CHECKING THAT THE TTY INPUT VALUE IS BETWEEN VECMIN
AND VECMAX,
VECNAM IS A ONE-CHARACTER LITERAL ASSOCIATED WITH THE
VECTOR, AND VECDIM IS THE VECTOR'S DIMENSION; BOTH
ARE ASSUMED SUPPLIED BY THE CALLING ROUTINE.
WHEN MODE=1 SEQUENTIAL ENTRY & CORRECTION ARE DONE

=2 CORRECTION ONLY IS DONE :

LOGICAL*1 LASK,VECNAM
INTEGER VECDIM
DIMENSION VECTOR(1)

GO TO(5,15)MODE
STOP' *****yYECTIN: ILLEGAL VALUE FOR MODE*#*%*%k!

DO 16 J=1,VECDIM IREAD-IN SECTION
I =4
VECTOR (I) = VECVAL (I, VECNAM, VECMIN, VECMAX)

CALL TTYOUT (' ')
IF (LASK ('ANY CHANGES? ') .EQ. 'N') RETURN

CALL TTYOUT('ENTER COMPONENT INDEX') ICORRECTION SECTION

CALL TTYOUT('I=$')

I=IANS(1,VECDIM)

VECTOR (I) = VECVAL (I, VECNAM, VECMIN, VECMAX)
CALL TTYOUT (' ')

IF (LASK ('MORE? ') .EQ. 'Y') GOTO 20

RETURN

END

FUNCTION VECVAL (I, VECNAM, VECMIN, VECMAX)
LOGICAL*1 VECNAM B

WRITE (5,1008) VECNAM, I

FORMAT (1X,Al,"'(',I2,')="S)

VECVAL = RANS(VECMIN, VECMAX)
END
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APPENDIX E
MACRO LIBRARY

A 1list of the assembly-language routines, along with brief
descriptions of their functions, are included in Table E.1l. Listings

follow.
TABLE E.1l UTLLIB ROUTINES

CLSTOP Stops the Clock

CLSTRT Sets clock A to repeated interval mode, presets the
buffer to an integer value set by the calling routine,
and starts the clock ‘

CLWAIT Determines clock status upon enter. If the clock has
already timed out, a flag is set to indicate a "bad
interval"™, and control is returned to the calling
routine, Otherwise, the flag is set of a "good
interval™, and a wait 1loop is continued until the
clock times out.

ATOD Samples a single A/D channel as specified in the
calling routine, converts the sampled voltage into an
integer between @ and 4895, and returns this 1nteger
to the calling routine,

DTOA Accepts integer value between # and 4095 from calling
' routine and does D/A conversion for a single channel
(specified by calling routine)

RNUM Generates and returns to the calling routlne a vector
of N random integers

RNSEED Accepts from or returns to the calling routine the
seed number used by RNUM :



.TITLE ATOD
SUBROUTINE ATOD (ICHAN, IDATA)

IN FILE ATOD.MAC

ICHAN SPECIFIES CHANNEL NO. FROM # TO 15
IDATA IS DATA WORD, BETWEEN 0 AND 4695,
INCLUSIVE

WO NS W Ve NI NI Ny “e g

.GLOBL ATOD
HPL/SAT DEFINITION (!!1COMMENT OUT FOR MNC! 1)

e

LPSADS = 170400 ;A/D CONVERTER STATUS
; MNC DEFINITION (11 1COMMENT OUT FOR HPL/SAT!!!)
; LPSADS = 171000 ;A/D CONVERTER STATUS
H COMMON DEFINITION
LPSADB = LPSADS+2 :A/D CONVERTER BUFFER
ATOD: TST (R5) + ; SKIP PAST PARAMETER COUNT
MOV (R5) +,RO ; GET ADDRESS OF BUFFER
MOV (R5) ,R1 ; GET DATA BUFFER ADDRESS
CLR @#LPSADS ; INITIALIZE CONVERTER
MOV (RG), R2 ; GET CHANNEL NUMBER
ASH #10,R2 ; SHIFT TO LEFT BYTE
MOV R2,@#LPSADS
INC _ @#LPSADS ; START CONVERSION
18: TSTB @#LPSADS ; WAIT FOR CONVERSION
BPL 18 ; TO FINISH
TSTB @#LPSADS+1 ; CHECK FOR CONVERSION
BMI - 28 ; ERROR
MOV @$#LPSADB, (R1) ; SAVE DATA IN BUFFER
RTS PC ~
28: MOV #-1, (R1) : FORCE ERRONEOUS DATA TO -1
RTS PC
« END
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DTOA:

.TITLE DTOA
SUBROUTINE DTOA(ICHAN, IDATA)

ICHAN SPECIFIES CHANNEL NO. FROM 8 TO 5
IDATA IS DATA WORD, ASSUMED BETWEEN ZERO AND
4095 INCLUSIVE

.GLOBL DTOA

HPL/SAT DEFINITION (! 1ICOMMENT OUT FOR MNC!!!)
EXTDA=170420

MNC DEFINITION (!1!1COMMENT OUT FOR HPL/SAT!!!)
EXTDA=171060

TST (R5) + ;s SKIP ARGUMENT COUNT

MOV e(R5)+,R0O ¢GET CHANNEL NUMBER

ASL RO ;AND MPY BY 2

MOV @(R5)+,EXTDA (R@) ; LOAD DA

RTS PC

« END



.TITLE CLOCK
;SIMPLE MSEC CLOCK ROUTINES FOR LPS-11 ON HPL, SAT, MNC

;HPL/SAT DEFINITIONS (111COMMENT OUT FOR MNCl11)
STATUS= 170404

MODEl= 409

RATSHF= 1 : NUMBER OF BITS RATE MUST BE LEFT-SHIFTED
;MNC DEFINITIONS (111COMMENT OUT FOR HPL/SAT!!1!)
;STATUS=171020

:MODEl= 2

:RATSHF=3 ;NUMBER OF BITS RATE MUST BE LEFT-SHIFTED

. ;COMMON DEFINITIONS
PRESET= STATUS+2 ;NO INTERRUPT VECTORS USED

RUN= 1
DONEFL= 200

;CLSTRT (IRATE, NTICKS) : SET CLOCK FOR NTICKS AT IRATE, MULTIPLE

INTERVAL MODE
;IRATE: 1=1MHZ, 2=100KHZ, 3=10KHZ, 4=1KHZ, 5=100HZ, 6=SCHMITT-

TRIGGERED, 7=LINE

CLSTRT: :CLR STATUS ;CLEAR ANY EXISTING STATE
TST (R5) + ;SKIP ARG COUNT
MOV @(R5)+,R1 ;GET RATE
ASH $RATSHF,R1 ;SHIFT TO REQUIRED POSITION
BIS #MODE1+RUN,R1 ;SET MODE, RUN BITS
MOV @(R5) +,R0O :GET NO OF CLOCK TICKS IN PERIOD
BEQ CLSX ;DO NOWT IF NO TICKS..
NEG RO
MOV R8, PRESET :SET COUNTER
STMOD1: MOV Rl, STATUS
CLSX: RTS PC

;LOGICAL FUNCTION CLWAIT() RETURNS R@ .FALSE. IF TIMED-OUT ON ARRIVAL,
; ELSE, WAITS TILL CLOCK TIMES OUT, RETURNS R# .TRUE. FOR GOOD
INTERVAL

CLWAIT: :CLR RO ;SET FLAG FOR BAD INTERVAL
BIT #DONEFL, STATUS ;ARE WE DONE?
BNE WAITX : YES
BIT #RUN, STATUS ;IS AN INTERVAL SET UP?
BEQ WAITX :NO: ABORT
WTLOOP: BIT #DONEFL, STATUS ;:YES: WAIT FOR DONE FLAG
BEQ WTLOOP /
COM - RO ; FLAG GOOD INTERVAL
WAITX: BIC #DONEFL, STATUS
RTS PC



;CLSTOP() STOPS CLOCK DEAD

CLSTOP: :CLR STATUS
RTS PC
+ END
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RNUM:

NEXT:

RNLOW :
- RNHIGH:

NE NG WE WE NG NE Ve N W we

RNSEED:

.TITLE RANDOM

.GLOBL RNUM,RNSEED

!

SUBROUTINE RNUM(IRAN,N)
ROUTINE TO GENERATE A VECTOR OF N RANDOM INTEGERS: IRAN.

TST (R5) + : SKIP ARG COUNT

MOV (R5)+,R3 ; GET ADDRESS OF DATA VECTOR
MOV @(R5)+,R4 ;s GET VECTOR LENGTH

MOV RNLOW, RO ; GET COPY OF LOW RN

MOV RNHIGH, Rl ; GET COPY OF HIGH RN

MOV RO, RNHIGH ; NEW HIGH RN FORMED

ASL RO : SHIFT LOW RN LEFT 2

ASL RO

XOR RO,R1 ; EXCLUSIVE OR OF 31 & 13
CLR RO

ASHC #1,R0O : SHIFT RO,Rl LEFT 1

BIS RO, RNHIGH ; MOVE (31!13) INTO BIT @
MOV Rl , RNLOW ; MOVE (301!12) (16129) INTO RNLOW
ASHC #2,R0 ; SHIFT RO,R1 LEFT 2

ASL RO ; SHIFT TO ZERO BIT 0@

XOR RO , RNLOW ; EXCLUSIVE OR FOR LOW-ORDER BITS
MOV RNHIGH, (R3) + ; STORE RANDOM INTEGER

SOB R4 , NEXT ;i DONE YET?

RTS PC ; YES, RETURN.

« BLKW

« BLKW

SUBROUTINE RNSEED (ILOW,IHIGH)

ROUTINE TO SET OR RETRIEVE SEED NUMBER FOR RANDOM INTEGER
GENERATOR. IF BOTH ILOW=IHIGH=0, THE CURRENT SEED VALUES ARE
RETURNED IN ILOW AND IHIGH. OTHERWISE THE VALUES OF ILOW AND
HIGH ARE USED TO SET THE SEED.

NOTE: ILOW AND IHIGH CAN BE POSITIVE OR NEGATIVE INTEGERS, BUT
ILOW MUST BE EVEN.

TST (R5) + ;7 SKIP ARG CNT

MOV @(R5)+,R1 ; GET ILOW

MOV @(R5)+,R2 ; GET IHIGH

BNE SETSD ; CHECT FOR ZERO ARG
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TST Rl

BNE  SETSD

MOV RNHIGH, ; BOTH 0, SO RETRIEVE CURRENT SEED
R5

MOV RNLOW,
R5

RTS PC

SETSD: MOV R1, RNLOW ; STORE NEW SEED

MOV R2,RNHIGH

RTS PC

.END
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