
',/ 4,",*-g-cR-I'P4_31/"_

NASA Contractor Report 172311
_,IAsA.CK-172311
1984001_30

•
THEVERRUNANDVERNALSOFTWARESYSTEMS _" _" ._.I..t_,,': ,_-,

FORSTEADY-STATEVISUAL EVOKEDRESPONSE

EXPERIMENTATION mox_o_ za_s _'_0_4
;l O0 ,.W

William H. Levison (Bolt Beranek and Newman)
Greg L. Zacharias (Charles River Analytics)

BOLTBERANEKANDNEWMANINC.
Cambridge, Massachusetts 02238

Contract NAS1-16982
March 1984

,-:,_J'__ 1984

__I_A LAI'4GLEYRESEARCHCENTERLfBRARY.NASA

NationalAeronauticsand HAr..IPTON,VlRGII'_IA
SpaceAdministration

LangleyResearchCenter
Hampton, Virginia 23665

TABLE OF CONTENTS

Page

i. INTRODUCTION 1

2. METHODOLOGY 7

2.1 Generationof Sum-of-SinesInputs 8
2.2 Quasi-linearAnalysis 13

2.2.1 Computationof Signal Spectra 17
2.2.2 Computationof DescribingFunctions 22

2.3 Guidelinesfor Model Analysis 25
2.3.1 ParameterIdentification 26
2.3.2 A CandidateModel Structure 32

3. USER'S GUIDE TO VERRUN 41

3.1 Major Functions 41
3.1.1 InitialSetup and ParameterSpecification 43
3.1.2 Pre-TrialInitialization 50
3.1.3 Real-TimeControl 51
3.1.4 Post-RunFile Maintenanceand Multi-Run 52

Control
3.2 Program Generationand Operation 53

3.2.1 Program Generation 53
3.2.2 ProgramOperation 54

4. USER'S GUIDE TO VERNAL 63

• 4.1 Major Functions 63
4.1.1 Part i: Read Header 63
4.1.2 Part 2: List Header 65
4.1.3 Part 3: Time-DomainStatistics 65
4.1.4 Part 4: Spectra 66
4.1.5 Part 5: DescribingFunctions 67

i

4.2 Program Generation and Operation 67

4.2.2 Program Operation 68

APPENDIX A. THE VER_JN SOFTWARE SYSTEM A-I .

A.I Program Structure A-I •
A.2 SoftwareDescription A-I

APPENDIXB. THE VERNAL SOFTWARESYSTEM B-I

B.I Program Structure B-I
B.2 Software Description B-I

APPENDIX C. OTHER MAJOR FORTRAN ROUTINES C-I

APPENDIX D. FORTRAN I/O LIBRARY ROUTINES D-I

APPENDIX E. MACRO LIBRARY E-I

ii

LIST OF FIGURES

FIG. i. EFFECTSOF THE TASK ENVIRONMENTON THE 5
STEADY-STATEVISUALLY EVOKED RESPONSE

• FIG. 2. COMPUTATIONOF SUM-OF-SINESCOMPONENTALTI_JDE 14
FIG. 3. COMPUTATIONOF REMNANT SPECTRUM 20
FIG. 4. EFFECTS OF THE TASK ENVIRONMENTON THE 34

STEADY-STATEVISUALLYEVOKED RESPONSE
FIG. 5. COMPARISONOF INITIALMODEL PREDICTIONSWITH 39

EXPERIMENTALDATA
FIG. 6. CLOSED-LOOPSTIMULUS/RESPONSEENVIRONMENT 42
FIG. 7. MAJOR VERRUN FUNCTIONS 44
FIG. 8. SAMPLE DIALOG FOR INITIALOPERATIONOF VERRUN 55
FIG. 9. SAMPLE DIALOG FOR CONTINUINGOPERATIONOF VERRUN 61
FIG. 10. MAJOR VERNAL FUNCTIONS 64
FIG. ii. SAMPLE DIALOG FOR OPERATIONOF VERNAL 69

FIG. A.I ORGANIZATIONOF THE VERRUN SOFTWARESYSTEM A-2
FIG. A.2 FLOW DIAGRAM FORMAT A-6
FIG. B.I ORGANIZATIONOF THE VERNAL SOFTWARESYSTEM B-2

iii

LIST OF TABLES

TABLE I. TIME-BASE PARAMETER VALUES AND LIMITS 45
TABLE 2. SOS PARAMETER VALUES AND LIMITS 47

TABLE A.I FUNCTIONS OF THE VERRUN ROOTINES A-4
TABLE B.I FUNCTIONS OF THE VERNAL ROUTINES B-3 "
TABLE D.I IOLIB ROUTINES D-I
TABLE E.I UTLLIB ROUTINES E-I

PREFACE

This report summarizesthe work performedfor NASA Langley

" Research Center under Contract No. NASI-16982by Bolt Beranek and

Newman Inc. (BBN). Dr. Greg L. Zacharias was the initial

Principal Investigator for BBN and was responsible for

developmentand implementationof the VERRUN and VERNAL software

systems at BBN and at LRC. Upon Dr. Zacharias'departurefrom

BBN, Dr. William H. Levison became Principal Investigator and

assumed responsibility for completion of the program

documentationand final technicalreport. Ms. Regis Donovan and

Mr. Adrian Ho served as programmers for BBN. Dr. Alan Pope

servedas TechnicalMonitor for NASA.

V

SUMMARY

Two digital computer programs have been developed for use in

experiments involving steady-state visual evoked response (VER):

VERRUN, whose primary functions are to generate a sum-of-sines

(SOS) stimulus and to digitize and store electro-cortical

responses; and VERNAL, which provides both time- and

frequency-domain metrics of the evoked response. These programs

have been coded in FORTRAN for operation on the Digital Equipment•

Corporation PDP-II/34, using the RSX-II Operating System, and the

PDP-II/23, using the RT-II Operating System. Users' and

programmers' guides to these programs are provided, and

quidelines for model analysis of VER data are suggested.

vi

i. INTRODUCTION

Considerable effort has been devoted in recent years to the

development of reliable metrics for pilot workload. Assessment

. of workload (more generally, operator cognitive state), would

allow the identification of workload "bottlenecks", provide

useful data for the evaluation of the crew/system interface and,

in general, provide information necessary for maintaining task

workload within desired limits throughout a given mission.

Reliable measures of workload could also be useful in assessing

the state of operator training in situations where objective

measures of man/machine system performance alone are inadequate.

Numerous efforts have been undertaken to

develop reliable metrics of pilot workload, including subjective

estimates, primary and secondary task measures, and physiologic

measures. Exploration of physiologic measures has been motivated

by the desire to obtain one or more measures that are

non-interfering with the primary task mission, and are not likely

to be biased by the operator's preference for a given man/machine

interface or by his unwillingness to admit that a particular task

is difficult.

Cortical evoked response -- electrical potentials recorded

from the scalp obtained in response to a visual or auditory

• stimulus -- is being explored as a workload metric. The bulk of

such efforts has dealt with the transient response to a

pulse-like stimulus. Typically, responses to multiple stimuli

1

are averaged on a point-by-point basis so that the specific

response to the test stimulus can be extracted from the

background electro-cortical activity.

Research has also been conducted with steady-state visual

stimuli. In this arrangement, the amplitude of a stimulus light

source is driven by an electrical signal consisting of one or

more sinusoids; and the recorded scalp potentials are

subsequently analyzed to quantify s_:_usoidalresponse components

at the specific frequencies contained in the stimulus. Use of

steady-state inputs of this sort allows the application of

systems analysis techniques that have received widespread success

in the characterization of non-biological electrical and

mechanical dynamically-responding systems.

This report contains descriptions of two digital computer

programs intended for use in experiments involving steady-state

visual evoked response (VER): VERRUN, whose primary functions are

to generate a sum-of-sines (SOS) stimulus and to digitize and

store electro-cortical responses; and VERNAL, which provides both

time- and frequency-domain metrics of the evoked response. These

programs have been coded in FORTRAN for operation on the Digital

Equipment Corporation PDP-II/34, using the RSX-II operating

system, and the PDP-II/23, using the RT-II operating system.

The report is organized as follows. In the remainder of

this introductory section we present some preliminary data that

suggest the feasibility of a VER-basedworkload metric. Chapter

2

2 provides a theoretical background regarding sum-of-sines input

generation and frequency-response analysis via fast-Fourier

transform techniques. Guidelines for performing model analysis

on the frequency-response data are also provided.

Chapter 3 provides a user's guide to the VERRUN runtime

program. Major functions of this program are summarized, and

instructions for generating and operating VERRUN are given.

Chapter 4, similarly structured, provides a user's guide to the

VERNAL analysis program.

A set of five appendices contains information of interest to

the programmer. Appendices A and B describe the VERRUN and

VERNAL main programs, respectively, along with the major FORTRAN

subprograms used by these programs. Major FORTRAN subprograms

used by both main programs are described in Appendix C.

Appendix D contains descriptions of FORTRAN input/output

library routines, and assembly-language routines are described in

Appendix E.
i

1
Figure 1 presents some (very) preliminary data that

suggest the feasibility of a VER-based workload metric.

Frequency-response metrics from a single subject are shown for

three experimental conditions: (a) SOS visual stimulus only; (b)

1
Provided by Mr. Andrew M. Junker of the Air Force Aerospace

Medical Research Laboratory.

SOS visual stimulus plus manual tracking task, and (c) SOS visual

stimulus plus a laboratory-type decision-making task. (The

particular metrics shown -- gain, phase, and remnant -- are

described in Chapter 2 for the benefit of readers unfamiliar with

control systems analysis).

Task-related effects are greatest at the stimulus frequency

of 9.5 Hz, which is within the normal range of the EEG alpha

component. A consistent progression from lights-only, to

tracking, to decision making is observed at this frequency: (a) a

decrease in the describing-function "gain" (amplitude ratio), (b)

a decrease in the phase lag, and (c) a decrease in the remnant.

These results are consistent with the expectation that, as the

subject is required to attend to a motor or cognitive task (and

thus attend less to the visual stimulus), the overall strength of

the VER should be reduced. These results are thus consistent

with results that have been obtained with the transient VER, in

which certain response components (especially the P300 component)

diminish in amplitude as external task loading is imposed.

This trend also suggests that the tracking task provides a

lower workload than the decision task, or, more precisely, that

the combined tasks of attending to the VER stimulus and making

decisions draw more heavily upon common "resource pools" than do

the combined tasks of attending to the lights and manual

tracking.

Because of the small data base reflected in Figure 1 (i

4

I I I I I l I i

0o o
"o 0

Z o

0 L,,_ 0

• -2o _ _
0

[3

-200 A

B

-400-

Cn -600-

L,J
O3

21_ -800.

0
0

-,ooo Task o
o LIGHTS ONLY [3o

TRACKING o0
-1200-

DECISION

-1400 o

co
-o o

-20 r,,
I-- o
z [3 r_ r.

rl I

z_ _ L_ m

-40 |

• 3 10
I

F'REQUENCY(rod/sec)

subject, 2 trials/condition), we cannot assess the statistical

significance of the apparent task-related changes in response,

nor can we perform a reliable model analysis of these data.

Nevertheless, these results are sufficiently encouraging to

warrant further development and testing of the VER-based workload

metric.

_o METHODOLOGY

The VERRUN and VERNAL computer programs are tools to

" facilitate application, to the study of visual evoked response,

of an experimental methodology that has been successfully applied

over the years to the study of manual control behavior. The use

of sum-of-sines (SOS) inputs has been driven by efforts to

construct linear models of the controller's response behavior.

To construct these models, it is necessary to distinguish between

(a) the portion of the controller's response linearly correlated

with the external input, and (b) the "noisy" portion of the

response not linearly correlated with the input. In the jargon

of manual control, the noisy response component is known as

"remnant", as it contains the portion of the response power that

remains when we remove the response component that can be

accounted for by a linear response strategy having time-invariant

parameters. In this report we shall apply the term "remnant" to

the portion of the VER not linearly related to the stimulus. The

SOS input capitalizes on the property of a linear system that a

continuous sinewave input will yield, in the steady-state, a

sinewave output having the same frequency. Because of the

property of superposition, a sum of sinewaves input will yield a

steady-state sum of sinewaves output having identical frequency

• composition. The SOS input, then, enhances post-experiment

• analysis in the following ways:

a. Response power at non-input frequencies is by
definition remnant, as input-correlated power can occur

7

only at input frequencies. Thus, it is relatively easy
to distinguish remnant from input-correlated response
components.

b. By concentrating input power at a few selected
frequencies, signal/noise ratios (i.e., ratio of
input-correlated to remnant-related power) can be
enhanced, thereby increasing the reliability of
performance metrics based on input-correlated response
components.

Three topics are discussed individually in the remainder of

this chapter: • (a) generation of the SOS input, (b) quasi-linear

analysis of systems driven by the SOS input, and (c) guidelines

for linear model analysis. Tile VERRUN and VERNAL programs

reflect implementations of the techniques discussed under items

(a) and (b), respectively.

2.1 Generation of Sum-of-Sines Inputs

The VERRUN program is intended to allow modulation of a

visual stimulus intensity by a sum-of-sines electrical signal of

the form: N
c

I(t) = [ajsin(_jt + _j)
j=l (i)

which is a summation over N sinewaves, wherelthe jth wave has
C

associated with it an amplitude a , a relative phase _ , and a
j J

frequency m , where
J

j = hj_o (j=I,...,Nc) (2)

where, in turn, h is the associated integer harmonic multiplier,
J

and _ is the "base frequency". By choosing a desired period T
o o

for the SOS signal, so that I(t) repeats itself every T seconds
o

(i.e., I(t)=I(t+T)), then the base frequency will be specified
o

• by:

o = 2/T rad/sec
o (3)

The harmonics, amplitudes, and phases are generally free

parameters which can be chosen to "shape" the SOS signal as

required. By choosing the harmonics (h) as positive integers,
J

we can ensure, for each sinewave component of the signal, that an

integral number of cycles appear in one period of the stimulus

I(t). The amplitudes (a) can then be chosen to distribute the
J

stimulus power over frequency in a manner deemed appropriate for

the measurement situation. Finally, the phases (_) can be
J

changed to vary the temporal pattern of the signal I(t), while

leavingunchanged its power spectral characteristics.

The SOS stimulus generation is done digitally, with one time

sample of the signal generated every T seconds (the sample
S

period). Thus, the kth sample is given by:

Ik - I(t=kTs) (k=0,1,2,...) (4)

where k ranges from zero up to some upper limit determined by the

overall run time. The I values can be computed in an efficient
• k

manner if we choose to quantize the allowable choices of the SOS

phases _ , according to
J

_j = Pj_o (j=I,...,Nc) (5)

9

where p is an integer "phase multiplier" (analogous to the
J

harmonic multiplier for the frequency) and _ is a "base phase"
o

given by
= 0]T

_O O S .

(6)

where _ is the base frequency and T is the sample period.
o S

Direct substitution of (2) through (6) into the continuous-time

version of the SOS equation (i) then yields the following

sampled-time version:
N

Ik = [c ajsin [_o(khj+pj)] (7)
j=l

which conveniently defines the SOS signal at the kth sample

ins_;nt.

Although this relation can be used to directly compute the

SOS signal at each sample time, computational efficiency can be

gained by use of an intermediate sinusoidal "look-up" table.

This can b_ created by first recognizing that the SOS period T
o

and the sample period T must be related by N , the number of
S o

samples in one period of the signal, according to:

T = N T (8)
o o s

This then allows us to reexpress the base phase as follows:

/\

_O 2 z TS 2T/N O

which, in turn, allows us to define the following tabular

sinusoidal function S :
n

10

Snsin n o (10)

where n is the table index, which ranges from 1 to N , the total
o

- length (period) of the table. The sampled-time version of (7)

may then be expressed as:
N
c

Ik = [a.S (k =0,1,2,...) (ll)
j=l 3 nj,k

where the table index n is given by
j,k

nj,k = khj + pj (j=I,...,Nc) (12)

With a new computation each kth sample, this reduces to the

following "incremental" form:

nj = n + h. (j=l,,k j,k-i 3 -..,Nc) (13)

with n equalling p.. Additional (storage) efficiencies are
j,o 3

obtained by use of a "quarter-wave" lookup table for S , and a
n

simple logic for determining index quadrant.

As noted above, three quantities must be defined for each of

the N sinewave components in order to generate a sample
c

waveform: the harmonic index, the amplitude, and the initial

relative phasing. The harmonic indices are usually selected to

span the frequency range of interest -- often, the range over

which the system is expected to exhibit significant response.

Component phase indices are typically selected randomly so that

" the stimulus has the appearance of a random process. Note that a

selection of, say, zero for all component phase indices would

ii

provide a highly-structured input that may well induce a response

different from that to a random-appearing input.

There are a number of bases for selecting component

amplitudes. One may select SOS amplitudes to approximate the

power distribution of some underlying theoretical power spectral

density function. This approach is often adopted in manual

control studies to facilitate certain types of post-experiment

model analysis or to reflect a linear representative of some

real-world disturbance (e.g., _ wind gust). Alternatively, one

may simply assign the same amplitude to all components; this

approach is commonly adopted when one does not have a basis for

"shaping" the input spectrum. Still another approach is to

"pre-whiten" the input: that is, attempt to compensate for the

filtering effects of the system to yield an SOS response having a

uniform set of amplitudes.

At present, VER applications seem to be employing components

of like amplitudes. Nevertheless, here we describe a procedure

for constructing an SOS input to approximate a known spectral

density function, since the VERNAL analysis program allows for

approximate reconstruction of a theoretical power spectral density

function.

Figure 2 shows a sketch of a continuous power spectral

density function, approximated by a sum of four sinusoids.

12

2
Frequency is divided into "windows" defined by the geometric

midpoints of adjacent SOS frequencies. The power contained in a
b

given SOS component is the integral of the theoretical power

. spectral density function within the corresponding window, as

indicated in the figure. Thus:

N

_o = [_j " _j-i]1/2

+ 1/2 J (14)
_j = [_j • _j+l]

1/2

IF]aj = . 4- j _(_)d_3 (15)

where #(_) is the continuous power spectral density function.

The first and last SOS components are special cases. For

the first component, the minimum frequency is set to 0; for the

last component, the maximum frequency is computed as

+ _/_ (16)=_ j-i

2.2 Quasi-linearAnalysis

The primary function of program VERNAL is to allow a

quasi-linear analysis of the VER. Certain frequency-response

2
The use of geometric, rather than arithmetic, means stems from

the tradition in manual control experimentation to locate input
frequencies at approximately equal logarithmic intervals.

13

fi_3+ i'I/2aj = I2L # (_) dw

t_(aj

,I

--- r- I-- _
I

I

I I
-) _.

1 I) Xl_.
I

I I I ,

I
- +

_j o_j _j (k)

FIG. 2. COMPUTATION OF SUM-OF-SINES COMPONENT ALTITUDE

14

metrics are computed to facilitate 'linear modeling of the

relationship between the "system input" (the visual stimulus) and

the "system output" (evoked electro-cortical response). Other

frequency-response metrics are computed to allow characterization
Q

of the portion of the evoked response that cannot be character-

ized by a time-invariant linear transformation of the stimulus.

Standard time-domain statistics of mean, standard deviation,

and rms are also computed. If we let x(k) (k=l,...,N) be the
o

sampled time history of some variable of interest, these

statistics are computed as follows:
N

mean = - xCk)N
0 k=l

rms = N x2(k)

o k=l 2 2 1/2 (17)
standard deviation = [(rms) - (mean)]

Two frequency-response metrics are of primary interest: the

"describing function", which relates the evoked response to the

visual stimulus; and the spectrum of theevoked response. For

this discussion we define the describing function empirically as

the Fourier transform of the response divided by the Fourier

transform of the stimulus, measured at input frequencies only.

Because the Fourier transforms are complex quantities, each

• describing function estimate may be characterized by its

magnitude (which we call the "gain" or "amplitude ratio") and by

its relative phase shift. Describing-function measures are often

used in a model-matching procedure to derive analytic

representations of system input/output characteristics.

15

The power spectrum is partitioned into input-correlated and

remnant components. The remnant is of particular interest, as it

serves two functions:

i. It provides a test of the reliability of the describing
function estimates.

2. In the case of the VER experiment, it provides an
indication of the background electro-cortical activity

3
not linearly related to the visual stimulus.

Frequency-response analysis requires Fourier transforms of

the desired response signal (or "channel") and the visual

stimulus. VERNAL, along with many other programs that perform

this type of analysis, uses a "fast-Fourier transform" (FFT) to

perform this operation efficiently. The particular algorithm

used in VERNAL requires that the time-history sample length
n

contain N =2 points, where n is a postive integer. The
o

experimental run length is typically longer (N points = T
r r

seconds) to allow the system to reach steady-state. The interval

used for analysis, then, is of length N and usually begins a
o

number of sample points beyond the start of the run.

In order that the FFT of a sum-of-sines time history contain

significant response at SOS frequencies only (i.e., no "side

Even though remnant is, by definition, not li_ correlated
with the external stimulus, there may be a functional rela-
tionship between the two. One of the questions for VER research
is, in fact, to determine whether or not such a functional rela-
tionship exists.

16

bands"), the sample period N used in constructing the SOS input
o

signal must be the same as the number of samples processed by the

FFT routine. (The VERNAL and VERRUN programs are configured so

that N is the same for both.)
o

Assume that the FFT routine processes the sampled time

history x(k)i(k=i,...,N +i), where "i" is the "start point" for
o

analysis, and returns the Fourier transform X(k), (k=l,...,N /2).
o

(The FFT returns independent transforms for N/2 frequencies

only.) Since the transform is a complex quantity, the transform

X(k) may be considered to be two vectors XR(k) and XI(k)

containing the real and imaginary parts, respectively. Each

frequency index "k" represents a frequency "bin" of 2_T . Thus,
o

the bin width of each FFT result is identical to the base

frequency _ used in constructing the stimulus SOS.
o

Once the FFT's have been computed for the signals of

interest, we can then proceed to estimate spectral and describing

function quantities as discussed below.

2.2.1 Computationof Signal Spectra

The signal spectrum is defined at each FFT index as

P(k) = [XR(k)2 + XI(k)2]/2 (18)

Because the signal being analyzed is an SOS input, or the
o

response to an SOS input, partitioning the spectrum into

input-correlated and remnant components is relatively

17

straightforward. By definition,all power estimatesat indices

not correspondingto SOS frequencies constitute the "remnant

power" and, to a first approximation,all power estimatesat

input frequenciesconstitutethe "correlatedpower". Thus:

remnant power = P(k), k_h
J

correlated power = C(k), k=h
J

where h is the jth SOS frequency, and N is the number of
j c

sinusoidal components in the SOS input, as defined earlier.

The fractional remnant power -- the fraction of total signal

power contained at non-input frequencies -- is often of interest.

Thi_ computation is performed as follows:

TOTPOW = N/2

P(k)
k=l

CORPOW = N (19)

FRREM = (TOTPOW-CORPOW)/TOTPOW

where TOTPOW is the total signal power contained in the N/2

independent FFT frequencies, CORPOW is the total correlated power

summed over all SOS frequencies, and FRREM is the fractional

remnant power.

The estimates of correlated power must be considered

18

approximations because of possible "contamination" by remnant.

(Correlated power can exist only at input frequencies, but

remnant power is assumed to be distributed smoothly with

frequency.) To determine the reliability of a given

" correlated-power estimate, we must estimate the level of remnant

power contained at that SOS frequency. Since we cannot

distinguish remnant from input-correlated power in a single FFT

measurement, we adopt the following strategy: (i) assume remnant

to vary smoothly with frequency, (2) average the remnant

estimates in the y__ of the SOS frequency, and (3) use this

average as the estimate of remnant power contained at the SOS

frequency.

To elaborate, let us define the (estimated) input-correlated

power for the jth SOS frequency as

C = P(h) (2_)
J J

Consider the diagram of Figure 3, which shows a hypothetical

signal spectrum in the vicinity of the jth SOS frequency. In the

VERNAL program (and in other similar programs created by BBN),

averaging is performed over a window 1/4 octave wide centered

about the input frequency.

Let the upper and lower boundaries of the averaging window

be designated as k and k , respectively. For a window extending
J J

• i/8 octave above and below the SOS frequency, these quantities

are computed as

19

C ,

3

R. averaged over this "window"3

" I,,I,!Jl,,r,,1,1,
k. h. k +

3]]

FIG. 3. COMPUTATION OF REMNANT SPECTRUM

k_ = hj/2 (1/8)

k+ = h. • 2 (1/8) (21)
3 3

where the computed indices are rounded to the nearest integer.
+

The total number of frequency bins spanned is k - k + i, and
J J

the number of "remnant frequencies" (total number of bins minus
+

one for the jth SOS frequency) is k - k . Thus, the estimate of
J J

remnant power associated with the jth SOS frequency is

(22)
k=kj

The measures C and R are pure spectral (rather than spectral
J J

density) measures and have units of signal power. We may refer

to these measures as "power per bin".

These measures are usually expressed in terms of dB:

20

Cdb = 10_log(C)
J J

(23)
Rbd = 10*log(R)

J J

where the logarithm is to base ten. To determine the reliability

of measures based on correlated power (C(k) plus describing

function estimates), we compute the following signal/noise ratio

(in dB):

P = Cdb - Rdb (24)
J J J

!

A criterion value P=6 dB is typically assumed for determining

measurement reliability. That is, estimates of correlated power

or describing functions at frequencies for which p is less than 6

dB are considered "unreliable" and are not used in subsequent
/,

analysis (e.g., computation of within- and across-subject

statistics)•

It is useful to convert spectral measures to units of power

per rad/sec (or power/Hz) when the SOS has been constructed to

approximate the power distribution of some theoretical continuous

power spectral density function, or when one wishes to normalize

the data to allow comparison with results obtained using

different experimental run lengths (and hence, different

frequency bin widths). Remnant is converted by simply dividing

" the remnant estimate (power/bin) by the bin frequency _ . Thus,
o

R' = R
j j o
Rdb' = Rdb - 10*log(_) (25)
j j o

21

Conversion of correlated power, on the other hand, is not as

simple. Recall the discussion in section 2.1 concerning

calculation of SOS amplitudes so as to approximate a continuous

power spectral density function. Frequency windows were defined

by the geometric midpoints of adjacent SOS frequencies _ and

in equations 14-16, and each amplitude was chosen to contain the

power within its corresponding window.

To convert input-correlated powe_ to units of power per

rad/sec, we approximate the i.,verse process by a "box-car"

representation. That is, we transform C into a uniform powerJ
+

spectral density over the frequency region _ - _ . If we let W
J j jp

= _ - _ , the power per rad/sec is
J J
C' = C /W
J j J

Cdb' = Cdb - 10*log(W)
J j j

2.2.2 Computation of Describing Functions

Analysis of steady-state VER is expected to involve

computation of one or more describing functions relating selected

pairs ot signals. For two transformed signals X and Y, the

describing function estimate at the jth SOS frequency index is

computed as

Y(hi)G. w •

J X(hj) (26)

where h is the FFT index corresponding to the jth SOS frequencyJ

22

(consistent with the definition of h in Section 2.1), X(h) and
J J

Y(h) are the corresponding Fourier coefficients of the "input"
J

. (denominator) and "output" (numerator) signals defined for this

computation, and G is the describing function at that frequency,
• j

expressed as a complex number.

For analysisof VER data, the signalX will typicallybe the

SOS visual stimulusI, and Y will be a particularresponsesignal

of interest. One may, however,compute the describing function

between two VER response channels as well. To keep the

discussiongeneral,we shallmake no assumptionshere as to the

specificvariablesused in the describingfunction computation.

The complex quantity G is usually transformed into a pair
J

of real quantities for presentation. The "gain" (more properly,

the "amplitude ratio") is the magnitude of G , expressed in dB.
J

Thus,
a = 20"iog(IG l)
J J
= 20*log(lY(h)l) - 20*log(IX(h)l) (27)

J J

= ayj - axj

where ay. and ax. are the magnitudesof Y and X, expressed
3 3

in dB.

. The phase shift is computed as the difference between the

relative phase angles of X and I, expressed in degrees. Thus,

= LY(h) - LX(h) (28)
J J J

where the "angle" of X, for example, is computed as

23

-I
LX(h) = 360*tan (XI(h)/XR(h))

J J J

Because •phase is a circular function, repeating every 360

degrees, the inverse tangent operation yields a phase estimate

within a 360-degree range (typically, 0 to 360, or -180 to +180.)

Now, dynamically responding systems that contain a large number

of integrating elements and/or significant delays may exhibit a

phase-shift change of more than 360 degrees over the frequency

range of interest. Therefore, a method of "unwrapping" the phase

shift may be required to obtain a true picture of the

frequency'dependency of the phase response.

The VERNAL program unwraps the phase by requiring the

phase-shift estate at a given SOS index to vary no more than plus

or minus 180 degrees from the•phase estimate at the preceding

index, where a reference phase of 0 degrees is adopted for the

SOS index. Thus, the following mathematical constraint is

satisfie_:

- 180 i _ i _ + 180 (29)
j-i j j,l

This• algorithm has worked well for analysis of manual

control data, where the phase-producing aspects of the

man/machine system and the spacing of SOS frequencies usually

guarantee a phase change magnitude of less than 180 degrees from

one SOS index to the next. Whether or not this algorithm works

as well for VER data remains to be seen.

24

Since the objective of computing the describing function is

to provide a characterization of the linear relationship between

two signals, the describing function estimates are valid only to

the extent that the Fourier coefficients X(h) and Y(h) reflect
• j J

response activity linearly correlated with the external SOS

stimulus. Therefore, the spectra of X and Y are checked to

verify that the signal/noise ratios 0 are greater than some

criterion value (say, 6 dB) for both signals. If either spectrum

fails this test at a given SOS frequency, the gain and phase

shift estimates at that specific frequency are considered invalid

and are omitted from further consideration.

2.3 Guidelines for Model Analysis

Studies of manual control research often involve a

post-analysis modeling effort in which the time- and

frequency-domain measures described above are used to derive

parameters of an analytic model. This analysis typically serves

two purposes: (a) data compression, in which the measures

derived during the primary data reduction are further reduced to

a small number of model parameters, and (b) development and

validation of theoretical models for operator response behavior.

We anticipate the application of analytic model analysis to VER

results as well, primarily to achieve an efficient

. characterization of stimulus/response relationships (or, more

precisely, to achieve a parsimonious characterization of the

effects of experimental variables on stimulus/response

relationships).

25

Once the frequency-response metrics have been derived from

the VER data, three ingredients are needed to allow model

analysis:

i. An analytic model that has a well-defined (and,
ideally, small) set of independent modelparameters and
the capability of yielding predicted performance
metrics of the type extracted from the data.

2. A scalar metric ("matching error") that defines how
well the data are matched by the model predictions.

3. One or more algorithms to identify the set of parameter
values that provides the least discrepancy between
"predicted" and experimenta= measurements.

It is important to note that the model parameters identified

from a given data set are functions not only of the model

structure, but of the definition of the matching error, the

search procedure employed in the identification, and possibly the

way in which the search procedure is initialized. Unless the

model is capable of an exact match to the data -- not likely

unless the model itself has been used to generate "data" for test

purposes -- the results of the model analysis will be specific to

the details of the analysis procedure. Therefore, a consistent

model-matching procedure should be used when exploring the

effects of experimental variables on the VER, or when exploring

inter-subject differences.

2.3.1 Parameter Identification
u

In this discussion we review a particular scheme for

identifying model parameters. This scheme has been extensively

26

applied to the identification of pilot model parameters from

manual tracking data, with apparent success; it is, nevertheless,

quite general and can handle a number of model structures.

. We recommend that, at least initially, linear model

structures be tested, and that parameter identification be based

on the describing function (gain and phase) and remnant measures

described above in Section 2.2. For reasons that will be clear

shortly, we further recommend that model analysis be performed on

ensemble statistics of these metrics, rather than measures

obtained from a single experimental trial.

Assume for this discussion that some model, having a

parameter set _, is capable of generating predictions for these

metrics and is to be tested against VER data. (A specific

candidate model structure for VER analysis is considered in

Section 2.3.2).

We suggest the following scalar matching criterion, which is

similar to that used for manual control analysis:
A

{ Nj_II [aj- _] 1 N1 [.] 2

E2 1 1 _j(p) + N1 _ _J-_J(p)

= _ N1 "= aj j=l _j

N2 ^ 2 _
1 (£)

+ N2 _ Rdbj-Rdbj
• j=l

Rdb.
. 3

m

where:

27

i. a _, _ , and Rdb are the gain, phase, and remnant
J J J
estimates for the jth SOS frequency as defined in
Equations 27, 28, and 23, respectively. These
quantities represent mean estimates determined by
ensemble (point-by-point) averaging across experimental
replications and/or across subjects.

2. a _, etc., is the model prediction for a particular
j *

choice of values for parameter set _;

3. o , etc., is the standard deviation of the
a
J

experimental measurement determined from ensemble
averaging;

4. N is the number of frequency components for which
1
reliable gain and phase estimates have been obtained,
and N is the number of frequencies yielding reliable

2
remnant estimates. Except for the SOS visual stimulus
(which is theoretically remnant-free), N will equal

2
the number of SOS frequencies N . N will be equal to

c 1
or less than N , depending on the signal/noise

c
environment at the various SOS frequencies.

Inclusion of the experimental standard deviations in the

scalar matching error allows each error component to be weighted

inversely by the reliability of the data. In this way, "matching

power" is concentrated on the data points that are (presumably)

the most repeatable. On the other hand, to prevent the matching

scheme from giving excessive weight to data points having

unusually low variability, we suggest that the following minimum
2

standard deviations be imposed for computing E : 0.5 dB for gain

and remnant, 3 degrees for phase shift.

28

Weighting inversely by standard deviation also converts each

error term into a dimensionless number, thereby allowing the

• accumulation of matching errors across different metrics. The

quantity E (the square root of the criterion defined in Equation

30) reflects the average number of standard deviations of

mismatch. That is, if every model prediction differed from its

corresponding data point by "n" standard deviations, E would have

a value of "n".

2
The matching error E may be expressed as

2
E = eWe (31)

where each element e of the column vector _ is the difference
J

between the jth experimental data point and the corresponding

model prediction, and each element w of the diagonal matrix _ is
i

a weighting coefficient. For the criterion of Equation 30, e =
1

^ ^ 2

a-a (p), e = _-_ (_), etc., and _ = I/3N _ , _ =
1 1 (N +i) 1 1 1 1 al (NI+I)

2 1
I/3N a , etc.

1 2
In a given application, the matching error E will depend on

the particular choice of parameter values _. The objective of
2

the gradient search scheme is to find the _ that minimizes E .

To implement the search scheme, we initially assume that model

predictions (and therefore prediction error) vary linearly with

model parameters. Thus, a change in parameter values yields a

change in modeling error characterized as de = Q,Ap, where

29

q(i,j) = De /Sp (32)
•j i

That is, the matrix Q contains entries quantifying the

sensitivity of each prediction error, to each model parameter.

This matrix is determined empirically using the specific data and

parameter sets at hand. : 4

z

Solving for minimum J as a function of AR, we obtain

-1
A_ = -[OWO'] OWe (33)

If modeling errors were truly related linearly to model

parameters,the desired best-matching parameter set would be

obtainedby the followingthree-stepprocedure:

a. Select an initial parameter set R ;
o

.... b. Compute the sensitivity matrix Q and the parameter
increment Ap as defined in Equations 32 and 33;

c. Compute the desired parameter set as R=R +AR
o

J

Now, since the relationship between model parameters and

model predictions is seldom totally linear, two or more

iterations of the above procedure are required until some

convergence criterion is satisfied. Because the parameter change

computed as per Equation33 will sometimes yield a scalar

matching error greater than the starting value, 'it is often

•useful to augment the minimization procedure with a line-search

to optimize the magnitude of Am.

A full discussion of the techniques of implementing the

30

quasi-Newton gradient search scheme, and of the ramifications of

adopting such a procedure, is beyond the scope of this report.

Further implementational details may be found in Levison

(1981a,b, 1982).

One point to mention here, however, is that the uniqueness

of the identified parameters is not guaranteed for any numerical

search scheme, including the quasi-Newton procedure.

Specifically, a change in the initial guess _ may result in
o

different values for the identified parameters for the same data

base. The severity of this potential problem in a given

application depends on a number of factors, including:

a. the degree to which the model structure is capable of
matching the data;

b. the existence of one or more parameters to which the
scalar matching error is relatively insensitive;

c. the degree to which the relation between model
parameters and predictions is nonlinear; and

d. the vector "distance" of the initial guess _ from the
o

value of p that would provide a global minimum.

To minimize the non-uniqueness problem, therefore, one

wishes to test a model that has a structure capable of matching

the experimental data with a set of nearly-orthogonal parameters,

and to initialize the search scheme with parameter values that

are close to optimal. This approach has been quite successful in

identifying "pilot-related" parameters of the optimal control

model from manual tracking data.

31

_.3.2 A Candidate Model Structure

As indicated earlier, we have not included model results in

this report for two reason: (a) lack of a sufficient data base,

and (b) ambiguities in "unwrapping" the phase'shift component of

the VER. Nevertheless, we discuss a candidate model structure

here for readers who might wish to conduct model analysis of VER

once the above constraints have been overcome.

If we had a theoretical quasi-linear model for the VER (as

we have, for example, for manual control behavior), we would

offer this model for initial testing. Given the lack of such a

model, we must examine the experimental data and, relying on our

kne.:_sdgeof control systems, postulate a model structure that is

likely to mimic the VER.

We must also decide whether we wish to match describing

function and remnant data simultaneously with a single model

structure, or to match these quantities independently with either

similar or different model structures. Again, given the lack of

a firm theoretical basis for deciding whether or not the VER and

the background electro-cortical activity are functionally

related, we suggest the general approach (i.e., independent

models) at this time. If strong correlations are subsequently

found between the describing function and remnant models, one can

re-analyze the data using a more highly constrained modeling

philosophy.

32

For convenience, the preliminary results shown previously in

Figure 1 are repeated here in Figure 4. The following overall

trends in the frequency-response measures can be ascertained:

• i. Gain appears to reach a maximum in the region of 9-15
Hz, then fall off with increasing frequency.

2. Phase lag (i.e., negative phase shift) increases
monotonically, and relatively strongly, with increasing
frequency.

3. Remnant peaks in the region of 9-12 Hz, then decreases
with increasing frequency.

These trends suggest that one consider a resonant

second-order filter with pure delay as a model for the describing

function response, and a second-order filter for the remnant

response. (Since remnant is a power spectrum and therefore

contains no phase or timing information, a delay parameter is not

identifiable from the remnant data.)

A second-order model to the describing function might take

the form:
K -juTe

F(j_) =

2_ n +(_n_2l+-rj- (34)

where j_ is radian frequency, expressed as an imaginary number;

F(j_) is the filter transfer function that will be matched to the

experimental describing function; K is the asymptotic

low-frequency filter gain; T is a pure delay; _ is the natural
n

frequency (approximately the resonant frequency) of the filter,

and _ is the filter damping ratio.

33

• I ! I ! I ! I I

co 0
"0 0

0 0

<. _ A
[]

•. -2o : _ _g
. 0 ii

r]

:: R " "

-200 Z$

--400, 0

"_ -600-
"o
L,J m
U')

< o __ -800-

o
n

-ooo Task o e
o LIGHTS ONLY n

0

TRACKING o z_[3
-1200.

A DECISION

--1400 8 -

m
• "0 0

-20. e-
l-- o
Z n Q P-I

rv"
--40 ,

3 10

FREQUENCY(rod/sec)

FIG. 4. EFFECTS OF THE TASK ENVIRONMENT ON THE STEADY-STATE
VISUALLY EVOKED RESPONSE

Q

34

F(j_) is a theoretical transfer function and therefore is a

continuous function of frequency. When used in a scheme for

. identifying model parameters, however, it will be evaluated only

at frequencies corresponding to the experimental describing

function measurements -- i.e., the SOS stimulus frequencies. At

each such frequency, the complex quantity F(j_) will be converted

to gain (dB) and phase (deg) to facilitate computation of

model/data differences. Since F(_) represents a model for the

VER describing function only, the scalar matching error will be

based on the first two summations contained in Equation 30.

The objective of the gradient search procedure is to

identify values for the four independent model parameters -- K,

T, _ , and _ -- that minimize the scalar matching error. If we
n

assume a VER experiment employing 10 frequencies (yielding 10

gain and 10 phase estimates), a 5:1 data compression results if

the data can be reasonably well matched by the model.

As noted above, success of the identification procedure is

contingent on the selection of a suitable initializing set of

parameter values. For a low-order model of the type suggested

here, selecting a reasonable initial parameter set is relatively

straightforward. Once the issue of unwrapping the experimental

phase shift has been resolved, the following procedure shouldw

yield satisfactory results:

i. Determine K from the asymptotic low-frequency gain
exhibited by the data. (Be sure to convert dB to
absolute units.)

35

2. Estimate time delay T from the phase shift at the
higher frequencies. Note that the phase shift due to
delay is a linear function of frequency: phase in
degrees is given by 57.3"_T, or 57.3*2nfT, where "f" is
frequency in Hz. High-frequency phase will thus be
equal to the asymptotic high-frequency phase shift due
to the dynamics response of the filter (exclusive of
delay), plus the effects of delay. For a second-order
filter, maximum phase shift due to dynamic elements is
-180 degrees. Thus, for a given SOS index "j",
representing a frequency beyond the filter bypass,

l

z -180 - 57.3"2_f T (35)
j o

Accordingly, we select the initial delay parameter

_+180
T= J

57.3"2_f.
1

(36)

3. Let the initial guess for the natural frequency _ be
n

the frequency at which the experimental describing
function gain is a maximum.

4. Determine the initial value for damping ratio _ from
the ratio of the maximum VER describing function gain
to the asymptotic low-frequency gain. For systems with
a distinct resonance, the damping ratio is
approximately

!

1/2F
=

or (37)
!

i/(2,10(Fdb /20))

where F' is the ratio of maximum to low-frequency asymptotic gain

computed from absolute values, and Fdb' is the same ratio in dB.

Guidelines 3 and 4 apply only when a resonance phenomenon is

apparent in the data. Otherwise, set the initial _ to the
n

36

frequency at which the describingfunctiongain has decreasedby

about 3 dB from its asymptotic low-frequency value, and set

between 0.7 and I.

Selection of initial parameter values for a remnant model

would proceed in the same fashion, except this model would have

only three parameters (K, _ , and _), and step 2 would be
n

omitted. _J

To demonstrateapplicationof these guidelines,we use the

data of Figure 4 (the trackingcase) as an example. Taking the

gain at the first SOS frequencyas the asymptotic low-frequency

gain, we set K=0.1 (equivalent to -20 dB). Selectingthe

second-highestfrequencyof about 22 Hz as the basis for the time

delay computation,we use equation 36 to computea delay of about

0.12 seconds from the phase shift (about-1200) measured at that

frequency. The gain curve seems to peak at around 10-12 Hz, so

we let _ = 12 Hz. Finally,we note a maximum gain increase of
n

about 10 dB, which, from Equation 37, yields a damping ratio _ of

about 0.16.

Model "predictions" obtained with this initial parameter set

are compared to the experimental describing function estimates in

Figure 5. Model results are plotted as a continuous function of

frequency; data are represented by discrete symbols at SOS

frequencies. While not providing a particularly close match to

the data, the model results do reflect important frequency trends

and, in general, provide a reasonable "ballpark" approximation.

37

On the basis of our past experience in applying this approach to

modeling of manual tracking response, we would expect this

initial guess to allow the search procedure to reach a global

minimum.

Success of model analysis will be contingent, of course, on

the ability to properly unwrap the phase response. The phase

curve shown in Figure 5 (not produced by the VERNAL program)

conforms to the assumption that hhe VER phase shift should

monotonically decrease with increasing frequency. On the other

hand, the VERNAL program as currently configured would have

placed the phase measurement at the fourth SOS frequency at a

value slightly more positive than the phase at the third

frequency, rather than nearly 360 degrees more negative as shown

in the Figure. It is not clear at this stage which is the

"right" way to unwrap the phase.

In addition, the sign of the VER is arbitrary in terms of

theoretical modeling and depends experimentally on the polarity

convention adopted in recording the electro-cortical potentials.

Thus, one could adopt an analytic model with a negative gain and

thereby translate all predicted phase values by plus or minus 180

degrees.

Note that no phase ambiguity exists for an analytic linear

model of given structure and parameterization: each

differentiation represented in the numerator of the transfer

function asymptotically adds 90 degrees phase lead, each

38

* I i I s I I I

O.

• _ 0 0 0

I_ 0 0 0 0

"0 O_ °

-
< -20.

-4O

0

-200-
0

-400- o

-1000 0
o

-1200, 0

--1400 , , ,",,
. 3 1() ' -

FREQUENCY(rod/sac)

FIG. 5. COMPARISON OF INITIAL MODEL PREDICTIONS WITH
EXPERIMENTAL DATA

39

differentiation represented in the denominator asymptotically

adds 90 degrees phase lag, a negative sign adds ±180 degrees, and

pure time delay contributes a phase lag that is linear with

frequency. •

Because linear model predictions are unambiguous, we suggest

that a linear model -- rather than some arbitrary criterion of

"reasonableness" -- be used to guide the analysis of phase-shift

•characteristics. Initially, this approach will require a

closely-coupled iterative procedure, where the model is used to

guide the analysis, and the experimental data are used to define

model parameters• As the experimental data base expands,

ho?'_ver, we suspect that one or more baseline model structures

-- either theoretical or determined empirically I__will emerge to

guide this type of analysis. In any case, development of

_eliable and efficient techniques to perform coupled data and

model analysis are suggested as an area for further research.

40

3. USERIS GUIDE TO VERRUN

- 3.1 Major Functions

VERRUN is a software system designed to support

electroencephalographic (EEG) visual evoked response (VER)

experimentation using sum-of-sines (SOS) stimulation as described

in Section 2.1. The system is designed to operate in a

single-user real-time mini computer-based environment, with

modular software to facilitate transportability across systems.

Currently, the system is implemented on the Digital Equipment

Corporation (DEC) PDP-II/34, using the RSX-II operating system,

and on the PDP-II/23, using the RT-II operating system• The

primary source language is FORTRAN, with some support code

written in the MACRO assembly language.

VERRUN is intended for use in the closed-loop

stimulus/response environment sketched in Figure 6. The stimulus

generator is driven by the software, through a digital-to-analog

(D/A) converter, via a commanded SOS signal I . The generator,
c

in turn, provides an intensity-modulated visual stimulus I for

"driving" the human subject's "steady-state" VER (ssVER). The

resulting scalp voltages (E through E) are transduced and
1 N

" amplified by the EEG recording hardware, and the measured

voltages (E through E) are sampled through a multi-channel
• 1 N

analog-to-digital (A/D) converter• A stimulus intensity signal

(1) is likewise transduced and sampled, through an additional A/D

41

_,_STIHULUS GENERATOR LIGHT iNTENSITY

IC i i BUL'BHFz'''-CIRCUITDRIVER BULB I__ HUMAN EEG/SCALP_ VOLTAGESAMpEEG

•. I EZ "bEN

: " /_ SENSOR. L , J MEASURED INTENSITY (_1 ,.._N)

,r I

' I "ICLOCK _ _ A/D 0
I
I

COMMAND 1 D/A _ I_ VERSOS -_. A/DI J- MEASURED

INTENSITY[. i [EEG
i : I •

I ,_!-iTERMINAL I = E_ A/DN FI EN

LkCOMPUTER-- SYSTEM] GLZ-201

FIG. 6. CLOSED-LOOP STIMULUS/RESPONSE ENVIRONMENT

channel. VERRUN implements four major functions as diagrammed in

Figure 7: (i) initial setup and parameter specification, (2)

pre-trial initialization, (3) real-time SOS generation and data

recording, and (4) post-trial file maintenance. Typically,

initial setup and parameter specification is performed only at

the start of a multi-trial experimental session, and the

remaining three functions are performed in order during each

experimental trial.

A user will generallywant to use the same time-baseand SOS

parameters throughout an entire experiment (except for

re-randomizationof the SOS •phases). Since VERRUN can be

42

initializedwith values storedon a previously-createddata file,

a/1. e_,_.i_r_e_e_p_!_i!_1]_qg_],_ r_ _ % minimum of usermlnlmum of user

. interactionwith the program.

• 3.1.1 Initial Setup and ParameterSpecification

Both time-based and SOS parameters are specified during this

initialization phase. Parameters may be specified in one of four

ways:

a. Read all parameter values from a previously-createdfile.

b. Request "nominal" (pre-stored) values for all
parameters.

c. Specify all parametersinteractively.

d. Request nominal values for time-base (or SOS)
parameters and specify SOS (or time-base)parameters
interactively.

If parametersare specified interactively, or if nominal

values are requested individually for the time-baseand SOS

parametersets, the user is providedan opportunityto reviewand

modify parameter values before continuing on. This

review/modificationoption is omitted if the parametersare read

from file, or if nominal values have been requested for all

parameters.

The user is then asked if he wishes to perform a run. If

so, VERRUN executes pre-trial initialization. If not, the

parameters are stored on a file specified by the user, and VERRUN

provides the options of (a) specifying another parameter set, (b)

performing an experimental trial, or (c) terminating the program.

43

• I ° INITIAL SETUP

IPARAMETER SP_EDIFICIATION!

• IPRE-TRIAL
INITIALIZATION

!

SUM-OF-SINES GENERATION
AND

DATA RECORDING

POST-TRIAL
FILE MAINTENANCE

i FIG. 7. MAJOR VERRUN FUNCTIONS

44

With direct user specificationof the time-baseparameters,

the user is prompted to enter the sample interval in

• milliseconds, I , and the overall run length in secondsT ,
S R

definingthe durationof an experimentaltrial. Both entries are

checked againstminimum and maximum limits;nominal as well as

limiting values are shown in Table i. VERRUN then computesthe

sample intervalin seconds,T , and the number of samples per
S

trials, N , as follows:
R

T = I 11000 (38)
S S

N = T /T +i (39)
R R S

Values specified for I and T are checkedagain to make sure
S R

that N does not exceed the system'spreset upper storage limits;
R

nominal values are given in Table 1.

TABLE i. TIME-BASE PARAMETER VALUES AND LIMITS

Parameter units nominal minimum Imaximum note

Is msec 5 1 i00 (i)

TR sec 5.2 0 i00 (i)

NR -- 1040 0 2250 (2)

note: (i) both parameters are also checked to ensure satisfying
- limits on NR

(2) computedvia (2.14)

45

Given the total number of sample points N comprising a run,
R

VERRUN specifies the total number of sample points N for oneo

period of the SOS signal. For compatibility with the FFT routine

to be used later for signal analysis, the value for N is chosen
o

to be the largest power of 2 less than or equal to N . VERRUN
R

also computes the overall SOS period in seconds T , the baseo

frequency in Hz f , and the base phase in degrees @ , as
o o

described in Section 2.1. Time-base parameters are then listed

for user verification and respecification if not satisfactory.

With direct user specification of the SOS parameters, the

user is first prompted to specify the number of sinewave

co_?_nents, N . This may be done by specifying the "nominal"
c

value option, or by direct entry, in which case limit checks are

provided. Limiting-and nominal values are given in Table 2.

The user is then prompted to specify a desired SOS frequency

set, f'. where j ranges from 1 to N , and f' is in Hz. This can
c jJ

be done by specifying the "nominal" frequency set option (if Nc

is nominally specified), in which case the first N components ofc

the nominal frequency set are selected. If the user chooses

instead to specify the N frequencies directly, VERRUN allows for
c

corrections to be made during data entry, and provides checks to

ensure that the chosen frequencies are consistent with the

previously-chosen sample and run times. Limiting and nominal

values are given in Table 2.

Once the desired frequency set has been specified, VERRUN

46

TABLE 2. SOS PARAMETERVALUES AND LIMITS

Parameter unitsl nominal Iminimum maximum note

, N -- 6 1 15c
!

f. Hz 5,10,..,75 f fs/2 (i)• 3 o

a. -- i,i,i,... 0 i003
!

_j deg -- 0 360 (2)

IRMS volts 1 0 5

• = 1/T° and f = I/TSnotes- (i) fo s

(2) nominal values set by random number generator

then computes, for each component, the nearest corresponding

integer multiplier according to:

h = [f'/f] (j=I,...,N) (40)
j i o c

This then yields the harmonically related SOS frequencies f ,
J

where

f = h f (j=I,...,N) (41)
i j o c

Naturally, progressively smaller values of f allow for
o

progressively closer matches between the desired drive frequency

sets f , and the actual harmonically derived set, f . Smaller
J J

values of f can, in turn, be obtained by increasing T .
o o

Once the SOS frequency set has been specified in this

. fashion, the user is provided the opportunity of listing both

desired and actual frequencies, along with the corresponding

harmonics. If not satisfactory, VERRUN allows for

respecification.

47

Following SOS frequency specification, VERRUN prompts the

user for the distribution of SOS amplitudes with frequency. This

is done by specifying normalized (dimensionless) amplitudes a ,
J

which are related to the SOS (dimensioned) amplitudes a , by a
J

scale factor f, or:

a = fa (j=I,...,N) (42)
j j c

so that, with f free, the user can specify the _ of the a
J

distribution, independent of the signal RMS level.

The normalized amplitudes a may be set by specifying the
J

"nominal" amplitude set option (if N is nominally specified), or
c

by direct entry of the N normalized amplitudes. If the user
c

chooses the latter, VERRUN allows for corrections to be made

during data entry, and provides checks to ensure that the chosen

amplitudes are within prespecified limits. Limiting and nominal

values are given in Table 2.

Once the normalized amplitude set has been specified, VERSOS

then prompts the user for the desired RMS signal level of the SOS

signal, I . This may be done by specifying the "nominal" value
RMS

option, or by direct entry, in which case limit checks are

provided (limiting and nominal values are given in Table 2).

VERRUN then computes the amplitude scale factor f according to:

f =_ IRMS aj (43)
\j=l

48

By then computing the SOS amplitudes according to (42), VERRUN

ensures that the SOS signal I(t) will have the desired RMS level,

since

N N

[c a_ 1 _ 2
• 12 (t) = ,i f2 [c

j=l Y 3 = Y j=l = I_4S (44)

Following SOS amplitude specification, VERRUN prompts the

user for a desired SOS phase set, _ , where j ranges from 1 to
J

N . Phases can be selected in one of three ways (I) the
C

"nominal" selection procedure, (2) specification of a "seed" for

picking a set of random phases, or (3) direct specification of

phases. If the user chooses the nominal option, VERRUN uses a

random number generator to select uniformly distributed values

between 0 and 360 deg; the "seed" of the random number generator

is automatically changed from run to run to allow for a

consistent means of randomizing the phase sets each run (and thus

the SOS time history). If the user specifies the seed for phase

randomization, or specifies phases directly, VERRUN allows for

corrections to be made during data entry, and provides checks to

ensure that the chosen phases are within prespecified limits

(given in Table 2).

Once the desired phase set has been specified, VERRUN then

. computes, for each component, the nearest corresponding integer

phase multiplier, p , according to:
• i

p = [@'/_] (j=I,...,N) (45)
j j O C

49

The SOS phases can then be computed as integral multiples of the

base phase as

= p . _ (46)
! j j o

This, of course, quantizes the phase choices, but progressively

smaller values of _ allow for progressively closer matches
o

between the desired phase set _' and the actual set _ . SmallerJ J
values for _ can, in turn, be obtained by reducing the ratio of

O

T /T .
S o

3.1.2 Pre-Trial Initialization

Pre-trial initialization consists of four basic steps.

First, if an experimental trial has just been completed, and the

user has requested another run, the user is provided the option

to change all, some, or none of the time-base and SOS parameters.

If the user requests no changes, SOS component phases are

automatically re-randomized. (This step is omitted on the first

trial following initial setup and parameter specification.)

Next VERRUN displays the date, time, and run number selected

for the upcoming trial. (The run number is set to 1 during

initial setup and is automatically incremented by 1 for

successive trials.) The user either accepts or modifies the run

number and then specifies up to 6 lines of commentary.

VERRUN then prompts the user for a filename for parameter

and data storage. After some simple legality checks on the

50

entered name, VERSOS opens a file and writes out the "header":

that portion of the data file comprised of the (previously-

. defined) run parameter values, along with miscellaneous

"housekeeping" parameters and tags to aid in later data file

maintenance.

Finally, VERRUN generates a "pre-stored" version of the

entire SOS signal to be used. This is done by first generating

and storinga "quarterwave"sine table associatedwith the sample

and base periods,T and T , of the SOS signal, using the tabular
S o

sinusoidal function S , as describedin Section 2.1. With this
n

table, the sampled-time version of the SOS signals is then

computed for all N sampleswhich comprisea complete run. Each
R

sample value is then scaledfor eventualconversion by the D/A

hardware, and then stored in a linear data array. With the SOS

signal generatedand stored,VERSOS prompts the user for a "run

start" signal, and waits for the user's response.

3.1.3 Real-Time Control

Once a start signal is received from the user, VERRUN zeros

the D/A channels and starts the digital clock "ticking" at a

pre-specified rate (nominal clock rate is 100 kHz). After the

clock has counted down the number of ticks corresponding to the

desired sample interval T , D/A and A/D conversions are
S

• performed. This cycle is repeated N times to generate an
R

experimental trial of the desired length T seconds, after which
R

the clock is stopped and the D/A channels zeroed.

51

Two signals are generated each sample interval: (a) a

square wave alternating between maximum positive and negative

values on D/A channel 0, to be used for test purposes, and (b)

the SOS signal on channel i, obtained by table lookup.

Three signals are recorded by A/D channels 1-3 and are

stored in the same linear array containing the SOS stimulus

signal. The data sequences recorded from the three A/D channels

are interleaved with each other and with the SOS stimulus. That

is, the first element of the linear data array contains the first

SOS sample, the second through fourth elements contain the first

samples recorded from A/D channels 1-3, respectively, the fifth

el_m,nt contains the second SOS sample, and so forth. The linear

data array will therefore contain 4*N samples at the end of the
R

experimental trial.

3.1.4 Post-Run File Maintenance and Multi-Run Control

VERRUN "closes-out" a run by first writing the recorded data

strings onto the file opened at the beginning of the run, thus

appending the data to the parameter set used to specify the run.

The file is then closed, and the user is provided the options of

(a) performing another run, (b) setting up a parameter file, or

(c) terminating the program. If another run is requested, the

run number is incremented, and VERRUN proceeds with pre-trial

initialization as described in Section 3.1.2. Request for a new

parameter file returns the program to the initialization mode

described in Section 3.1.1.

52

3.2 ProgramGenerationand Operation

VERRUN was designed to run efficientlyunder DEC's RT-II

operatingsystem,but program development can be conveniently

• done under the RSX-II operatingsystem in a time-sharedmode.

•3.2.1 Program Generation

An executable file of the VERRUN software system is

generatedwithin the RSX-IIOperatingSystem by the command:

TKB @VERRUN.CMD

where the file VERRUN.CMD containsthe followingtext:

VERRUN=VERRUN
PARSET
TIMPAR
SOSPAR
SOSNCP
SOSHMC
SOSAMP
SOSPHS
SOSGEN
LOOP
RWHEAD
RWDATA
TITLER
UTLLIB/LB
IOLIB/LB
/
RESLIB=(I,54)DEVCOM/RW=7
//

• The last three lines of the CMD file exercises the option to

access a specific file in the residentlibrary. This file is
t

requiredto allow real-timeoperationsby the RSX system.

c

53

3.2.2 ProgramOperation

TWO examples of VERRUN operation are shown in this section.

First, we illustrate the procedure one might follow when defining

parameters for a new experiment. The second example illustrates

the more typical operating mode in which minimal trial-to-trial

changes are made. For expository purposes, the user input is

circled in these examples.

Figure 8 illustrates a sample dialog for an initial

experimental trial. User entries are circled; other text is

generated by the program. Section A shows that the user has

refused to accept nominal time-base parameters and has

interactively specified the sample period and run time (trial

duration). Upon request, VERRUN lists the specified and computed

time-base parameters, along with the base frequency.

Section B illustrates interactive specification of component

SOS frequencies, followed by •a listing of the final set of

harmonic indices and frequencies. Note that the actual

frequencies differ slightly from the desired (user-specified)

frequencies because of the requirement for VERRUN to use integral

harmonics of the base frequency. In Section C, the user

specifies component amplitudes and overall signal rms level, and

VERRUN lists both the relative amplitudes specified by the user
b

as well as the adjusted amplitudes that will be used later to

generate an SOS signal of the specified rms level.

54

VERRUN')

PARAMETERS FROM A FILE?_

NOMINAL PARAHETERS? G

___TIME B_.S_EF'ARANETERS___
NOMINAl. TIME BASE?_

SAMPLE F'ERIOD (_N_) =_ __RUN TIME (SEC)

LIST TIME BASE PARAMETERS?Q

SAMPLE PERIOD = 5 (MSEC)
RUN LENGTH = 6.00 (SEC) WITH 1201 SAMPLES
SOS PERIOD = 5.12 (SEC) WITH 1024 SAMPLES
BASE FRE_ = 0.20 (HZ), BASE PHASE = 0,35 (DEG)
OK? Y

FIG. 8. SAMPLE DIALOG FOR INITIAL OPERATION OF VERRUN

55

__(_SOS F'ARAMETERS_(__)_

NOMINAL SOS7

NOMINAL NUMBER OF SINES?_

NUMBER OF SINES=Q "

NOMINAL FREQUENCIES?

• ENTER DESIRED FREQUENCIES (HZ):

F'(1)=_
F(2)=
F(3):=
F(4)= 0.5:
F(5)= 2 _ _',

::: F(6)= 3.5':

F(7)= ____
h_Y CHANGES? N_

WANT FREQUENCIES LISTEn?Q

COMP HARM FRO FRQ(BES)

1 31 6.05 6.00
2 38 7.42 7°50
3 46 .8.98 9.00
4 54 10.55 10.50
5 61 11.91 12.00
6 69 13.48 -13.50
7 77 15.04 15.00

OK?Q

FIG. 8. (Cont'd)

56

NOMINAL AMPLITU['ES?@

- ENTER (RELATIVE) AMF'LITUDES:

A(1)=1
' A(2)=I

A(3)--.51
A(4)= .51
A(5)= .51

A(61-1 I
A(7 -1

ANY CHANGES? @

NOMINAL RMS LEVEL?@ __Q

RMS LEVEl. (VOLT)6QLIST AMF'LITUDES?

COMF' AMP AMP (REL)

1 1.30 1.00
2 1.30 1.00
3 0.65 0.50
4 0.65 0.50
5 0.65 0.50
6 1.30 1.00
7 1.30 1.00

OK?Q

NOMINAL PHASES?@

LIST PHASES?@

COMP PNUL PHS PHS(DES)

1 1018 357.89 357.87
2 563 197.93 197.90

- 3 101 35.51 35.34
4 322 113.20 113.04
5 197 69.26 69.39

• 6 680 239.06 239.10
7 714 251.02 251.02

OK?@

FIG. 8. (Cont'd)

57

LIST SOS PARAMETERS?@

COMP HARM FREQ AMP PHASE

1 31 6.05 1.30 357.89

2 38 7.42 1.30 197.93 --_F_ i

3 46 8.98 0.65 35.51
4 54 10.55 0.65 113.20
5 61 11.91 0.65 69.26
6 69 13.48 1.30 239.06
7 77 15.04 " 1.30 251.02

OK?@

DOING A RUN NOW?Q

RUN NUMBER: I BATE: 15-DEC-83 TIME: 11:04:56

CHANGING THE RUN NUMBER?_

NUMBER OF COMMENT LINES:_
!TEST OF VERRUN PROGRAM

v

ENTER FILENAME FOR OUTPUT: I'EST1.VER -_F)
GENERATING SOS SIGNAL NOW...

S TO START:_@_y FiE

v

STORING DATA NOW...

DOING ANOTHER RUN?@

SET UP A PARAMETER F ILE?_

TTO -- STOP

2:.

FIG. 8. (Concl'd)

58

Section D shows the user selecting nominal phases (i.e.,

VERRUN selects a random phase set). Direct user specification of

• phases would be highly unlikely even in the initial setup mode

and would most likely beemployed only for program testing and

debugging. Note that, after each set of parameters has been

specified, VERRUN asks the user if he is satisfied with the

results• If the user responds with "N", the particular set is

re-specified.

In Section E the user requests a review of the entire set of

SOS parameters and accepts the results. If the user were to

respond "N" to the query, VERRUN would repeat Sections B through

E, affording the user an opportunity to modify any or all sos

parameter subsets.

Section F illustrates the following sequence of events:

i. The user decides to conduct an experimental trial•
(The alternative would be to save only the parameters
on file.)

2. The user accepts the run number, which is automatically
initialized to "i".

3. The user specifies one line of comment and names the
output file.

4. Real-time SOS generation and data recording are
initialized by responding "S" to the prompt•

5. The user terminates VERRUN by declining to perform
another run or another problem initialization.

Figure 9 shows the type of terminal interaction that might

occur in a "production-run" mode where the user performs a

59

/
d

sequence of experimental trials with a statistically invariant

SOS stimulus. Section A assumes that the user initializes the

first such trial from the data file created in the sample case

discussed above. After specifying the name for the new data

file, the user changes the run number to "2", as this is the a

second trial to be performed the same day. The user then

provides a single line for commentary, initiates real-time

operation, and requests another run.

The type of interaction that will occur for most

experimental trials is shown in Section B. The user requests no

changes from the previous run, causing VERRUN to retain all

previous parameter values except for re-randomization of the

phases. The user then accepts the new run number, types a

comment line, initiates real-time operations, and requests

another run.

60 _>

I

• ._RUN VERRUN']

PARAMETERS FROM A FILE?Q

ENTER FILENAME FOR INPUT: TEST1.VER

DOING A RUN NOWTQ

RUN NUMBER, ° 1 DATE._ 15-DEC-83 TIME: 11;11;43

CH'ANGING THE RUN NUMBER?Q __@

NEW RUN NLIMBE:'R:
RUN NUMBER: "2 DATE: 15-DEC-83 TIME: 11:11:50

CHANGING THE RUN NUMBER .9(N_

a

NUMBEROr COMMENTLZNES:

ENTER FILENAME FOR OUTPUT: {I'EST2.VFR_)
GENERATING SOS SIGNAL NOW..°

TYPE S TO START: (_
STORING I'IATANOW...

FIG. 9. SAMPLE DIALOG FOR CONTINUING OPERATION OF VERRUN

61

DOING ANOTHER RUN?_

ANY CHANGES? _

4'

RUN NUMBER: 3 DATE: 15-DEC-83 TIME: 11:12:55

CHANGING THE RUN NUMBER?_

NUMBER OF COMMENT LINES:_

!IDEMO OF VERRUN
!IF'ROI'IUCTION RUN
!l'rFsr _,3
ENTER FILENAME FOR OUTI:'UT:(TEST3.VER_
GENERATING SOS SIGNAL NOW...

TYPE S TO START: Q
STORING DATA NOW...

DOING ANOTHER RUN? O

FIG. 9. (Concl'd)

•62

4. USER'S GUIDE TO VERNAL

VERNAL is a digital computer program for performing

post-experiment analysis of VER data obtained using the VERRUN

• program described in Chapter 3. VERNAL is written entirely in

FORTRAN and is implemented on the PDP-II/34, using the RSX-II

operating system, and the PDP-II/23, using the RT-I1 operating

system.

4.1 Major Functions

VERNAL performs the five major operations shown in Figure

10. This program is "menu-driven" in that the user specifies

interactively, via a "part" number, the operation VERNAL is to

perform. Upon completion of a given operation, the user

specifies the next operation to be performed. A part number of 0

displays the options shown in Figure 9, and a part number of -i

terminates the program.

Part 1 (read header) must be performed first; otherwise,

program parts may be executed in any order. Figure 10 shows the

typical order in which program functions are executed. These

functions are described individually below.

4.1.1 Part I: Read Header

Once the user has specified the name of the data file,

VERNAL opens the file, reads the header information, and leaves

the file open for subsequent reading of the experimental data.

63

READ HEADER

LIST HEADER

COMPUTE
TIME-EOMAIN
STATI STI CS

r

SIGNAL SPECTRA

COMPUTE
DESCRIBING FUNCTIONS

l
FIG. 10. MAJOR VERNAL FUNCTIONS

64

4.1.2 Part 2: List Header

Header information consisting of run identification, problem

parameters, and user commentary, is displayed on the user's

• terminal. If the user then discovers he has not requested a file

of interest, he may next request re-execution of Part i, in which

case the current file is closed, and a new file is requested and

opened.

4.1.3 Part 3: Time-Domain Statistics

When a statistical computation (either time- or frequency-

domain) is first requested for a given data file, VERNAL reads

the experimental data from the current file, stores the data in a

linear array, and closes the file. The user is informed of the

currently specified starting point for calculations, and is given

the option to change the start point, which must lie within the

range of 1 to N -N +i, where N is the number of samples/channel
R o R

in the experimental trial, and N is the number of samples in the
o

SOS period. This restriction guarantees that N samples will be
o

available for computation. The user will typically request a

start point greater than 1 to minimize the influence of the

transients that most likely followed the onset of the SOS

stimulus.

Before computingtime-domainstatistics,VERNAL provides the

option to list the entire data base stored in the array IDATA, or

to list an array XDATA of data from a single channel of the

65

user's choosing. Unless the user is debugging the program, or

suspects unusual response behavior, this option will typically

not be exercised.

w

The primary function of this part is to compute mean,

standard deviation, and rms amplitude as defined in Section 2.2,

Equation 17. These quantities are computed for all data channels

and displayed on the user's terminal.

4.1.4 Part 4: Spectra

Part 4 computes the spectra of one or more signals of the

user's choosing, using fast-Fourier transform (FFT) techniques as

de.c;ibed in Section 2.2. Once the spectrum has been computed

for a specified data channel, the user has the option of listing

either the entire spectrum (i.e., at all FFT frequencies) or the

spectral components at SOS frequencies. Again, unless the user

is debugging the program or looking for some specific spectral

feature (say, evidence of significant nonlinear response

behavior), this option will typically not be exercised.

Whether or not the listing option is exercised, VERNAL will

list, for each input frequency: (i) correlated power per

measurement bin, (2) remnant power per bin, (3) the ratio of the

correlated to remnant power, (4) correlated power per rad/sec,

(5) remnant power per rad/sec, (6) the ratio for correlated power

to remnant power (rad/sec), and (7) the number of frequency bins

included in the remnant averaging window. These spectral

66

quantities are given in dB. Conversion of power per bin to power

per rad/sec is discussed in Section 2.2.1.)

The following overall statistics (in problem units) are then

. listed: (i) correlated power summed over all input frequencies,

(2) rate of correlated to total signal power, (3) remnant power

summed over all non-input frequencies, (4) rate of remnant to

total power, and (5) total signal power(i.e., sum of all spectral

computations over all frequencies). The user is then given the

option to perform another spectral analysis or to specify another

program part.

4.1.5 Part 5: Describing Functions

Part 5 performs a describing function analYSiS as defined in

Section 2.2.2. When execution is begun, VERNAL prompts the user

for indices corresponding to the numerator and denominator

channels. After the requested describing function h as been

computed, gain (in dB) and phase (in degrees) are printed out at

each SOS frequency, except that computations failing the 6 dB

signal/noise ratio test (Section 2.2.1) are flagged by a printout

of the string (_*_). The user then has the option of computing

another describing function or specifying another program part.

b

4.2 Program Generation and Operation

J

VERNAL has been implemented to run under the DEC RT-II and

RSX-II operating systems. This program performs post-experiment

analysis with no requirement for real-time operation.

67

4.2.1 Program Generation

An executable file of the VERNAL software system is

generated within the RSX-II Operating System by the command:

TKB @VERNAL.CMD

where the file VERNAL.CMD contains the following text:

VERNAL=VERNAL
PART
SIGNAL
STATS
SPECT
DFCN
REMPWR
FFT
RWHEAD
PWDATA
TITLER
FFTPKG
IOLIB/LB

4.2.2 Program Operation

A sample dialog with VERNAL is shown in Figure ii. Section

A shows that the user has requested the file "TEST3" and, by

requesting execution of Part 2, has caused VERNAL to display the

parameter values and other descriptive information for this data

file.

In Section B, the user requests execution of Part 3 to

obtain time-domain statistics. The start point (initialized to

unity when VERRUN is first started) is changed to 150 to allow
q

statistical analysis to begin 0.75 seconds into the run. After

the options to list time histories are waived, VERNAL displays

68

:_llN VERNAL)

TO PART (0-6):_0 _[ENTERFILENAMER INPUT:"EST3.VEE)
TO PART (0-6): _)
VERSION NUMBER: 2

RUN IDENTIFICATION
FILE: TEST3,VER RUN NO: 3 DATE: 15-DEC-83 TIME: 11:12:55

* DEMO OF VERRUN
PRODUCTION RUN

. TEST #3

']'IME BASE F'ARAHETERS
SAMF'LE PERIOD: 5 MSEC
BASE FREQUENCY: 1.953E-01 HZ BASE[PHASE: 3.516E-01DEG
SOS PERIOD: 5.120E+00 SEC WITH: 1024 PTS
RUN LENGTH: 6.000E.00 SEC WITH: 1201F'TS

•_SOS SIGNAl. PARAMETERS_
OF SOS COMPONENTS: 7

COMP HARM FREQ AMP PMUL, PHS
I 31 6.05 1.298 500 175.8
2 38 7.42 1.298 614 215.9
3 46 8,98 0,649 713 250,7
4 54 10,55 0,649 131 46,1
5 61 11,91 0.649 907 318,9
6 69 13.48 1,298 848 298,2
7 77 15,04 1,298 916 322,1

TO PART (0-6): 0 =
READING IN DATA NOW....

SCORING STARTS AT POINT I WANT TO CHANGE?_)

ENTER START POINT IN RANGE 1 THRU 178:_

I'EST CODE: WANT IDATA LISTEI))

TEST CODE: WAN'r XDATA LISTED?

IqOING STATS NOW...

FILE: TEST3.VER RUN NO: 3 E'ATE: 15-DEC-83 TIME: 11:12:55

, CHAN AVG S.D. RMS
1 -0.001 2.000 2.000
2 -0.002 4.001 4.001
3 1,998 2,000 2,827
4 0,004 2,061 2,061

FIG. ii. SAMPLE DIALOG FOR OPERATION OF VERNAL

69

TO PART (O-6):Q
SPECTRUM FOR CHANNEL #:0
DOING FFTo..

_TEST CODE: WANT SF'ECTRUM LISTOUT?Q

FILE: TEST3.VER RUN NO: 3 DATE: 15-DEC-83 TIME: 11:12:55

SF'ECTRUM FOR CHANNEL # 1

F'WR/BIN PWR/HZ (_

COMF' FREQ _ COR REH C/R _ COR REH C/R _ NREI

1 6.05 _ -0.74 -89.83 89.08 _ -9.01 -82,73 73,73 • 6
2 7.42 _ -0.75 -90.37 89_62 _ -2.40 -83.27 80.88 i 6
3 8.98 _ -6.77 -91.23 84.46 • -8.72 -84.14 75.42 _ 8
4 10.55 _ -6.77 -91.55 84.79 _ -8.45 -84.46 76.01 _ 9
5 11.91 _ -6.77 -89.84 83.07 _ -8.41 -82.75 74.33 _ 11
6 13.48 _ -0.75 -89.81 89.07 _ -2.69 -82.72 80.03 _ 12
7 15.04 _ -0.75 '-90.45 89.70 _ -2.92 -83.35 80.43 • 13

COR PWR = 4.00 COR/TOT F'WR = 1.00
REM PWR :: 0.00 REM/TOT PWR = 0.00

TOT F'WR = 4.00

ANOTHER SPECTRUM?_

TO F'ART (0-6):Q
CHANNEL + FOR DFCN NUM: 121
CHANNEL # FOR DFCN DENOM:
DOING FFT...

DOING FF'T,,,

FILE: TES'T3,VER RUN NO: 3 DATE: 15-DEC-B3 TIME: II112:55

DFCN FOR (CHAN 2)/(CHAN 1)

COMF' FREQ GAIN PHASE
1 6.05 6.0 0.0
2 7.42 6.0 0.0
3 8.98 6.0 0.0
4 10.55 6.0 0.0
5 11.91 6.0 .0.0
6 13.48 6,0 0.0
7 15.04 6.0 0.0

ANOTHER DFCN?@
FIG. ii. (Concl'd)

TO PART (0-6): Q
TTO -- STOF' 70

>

the average, standard deviation, and rms levels for all four data

channels.

The user then requests that VERNAL compute the spectrum of

data channel No. 1 (Section C). VERNAL performs the required FFT

analysis, computes input-correlated and remnant spectral

components, and displays the results. The user declines the

option to compute another spectrum.

In Section D the describing function computation is

initialized by specification of the data channels corresponding

to the numerator and denominator variables. After FFT's have

been computed for both channels, gain and phase shift are

computed and displayed. The user then declines to compute

another describing function and terminates VERNAL by specifying

execution of Part No. -i.

71

PROGRAMMER'S GUIDE TO VERRUN AND VERNAL

The software system described in this Programmer's Guide consists

of two main programs, several major FORTRAN subprograms, a FORTRAN

library of input/output support routines, and a MACRO library of

programs used for real-time operations and for random number

generation. Description of the various software elements is organized

into five sections as follows: (A) the VERRUN main program and the

major FORTRAN subprograms called by VERRUN; (B) the VERNAL main

program and the major FORTRAN subprograms called by VERNAL; (C)

additional major FORTRAN subprograms called by both VERRUN and VERNAL;

(D) the I/O FORTRAN library, and (E) the MACRO library.

72

APPENDIXA
THE VERRUN SOFTWARESYSTEM

A.I Program Structure

The organizationof the VERRUN software system is shown in Figure

A.I. The main programVERRUN will, in the normal course of events,

call the six main subprogramsPARSET, TITLER, RWHEAD, SOSGEN, LOOP,

and RWDATA. They, in turn, call the routinesindicatedby the line

connectionsmade to their respectiveblocks. In general, the calling

sequence at any given level correspondsto the top-to-bottomordering

shown in the diagram. Thus, PARSETcalls TIMPAR, SOSPAR, and RWHEAD

in that order.

Subprograms belongingto the assembly-languageMACRO library are

indicatedby cross-hatching. All other subprograms are written in

FORTRAN, and most of these programs use one or more routinesin the

I/O library. In the interestof minimizingclutter,calls to the I/O

library are not shown explicitly in this and in the ensuing flow

diagrams.

A.2 Software Description

Table A.I contains brief descriptions of each of the FORTRAN

routines contained in the VERRUN software system. The remainder of

this Appendix provides documentation for each of the routines listed

in the Table except for TITLER, RWHEAD, and RWDATA (which are common

A-I

._lRw,-,,=AD_ ",,r,,=RI

r, _sG,=,,, ",'ABG,=,,,I

SOSVA,_ S,,,,,=C,,,I

FIG. A.I ORGANIZATION OF THE VERRUN SOFTWARE SYSTEM

to both VERRUN and VERNAL and are described separately in Appendix C).

The documentation for each item consists of (i) a brief written

description, a flow diagram, and a program listing. Except as noted

above, program descriptions are provided in the order shown in Table

A.I.

The written description consists of sections as follows:

FUNCTION: a brief statement of the routine's function.

OPERATION: a more detailed description of the routine's
operation, and how the function is carried out.

INPUTS/OUTPUTS: lists of the input and output variable which are
passed by the routine's own argument list, or by
COMMONs accessed by this routine.

LOCAL: important variables not included in the argument list
or in common blocks, especially variables passed to
other routines.

CALLER/CALLS: the name of the calling routine, and the names of any
routines called.

In the case of the main programs VERRUN and VERNAL, only the

calls are indicated; there are no inputs or outputs to a superior

calling routine, and all variables are "local".

In the following program descriptions, variable names written

entirely in capital letters indicate FORTRAN variables, whereas

variable names written in lower case (or upper case with subscripts)

refer to problem variables discussed in Chapter 2. The "=" symbol

indicates either identity or replacement, as will be clear from the

context. For example, the phrase "t =TSAMP" appearing in the
s

A-3

TABLE A.I FUNCTIONS OF THE VERRUN ROUTINES

KQH21K_

VERRUN Main Program. Controls pre-run parameter setup,
real-time SOS stimulus generation and response
recording, and post-run file maintenance.

PARSET Sets problem parameters interactively or by reading
from existing file.

TIMPAR Defines the time-base parameters during interactive
user setup.

SOSPAR Defines the SOS parameters during interactive user
setup.

SOSNCP Specifies the number of SOS components.

SOSHE_ Specifies the SOS harmonics.

SOSAMP Specifies the SOS amplitudes.

SOSPHS Specifies the SOS phase multipliers.

RWHEAD Reads and writes header information.

TITLER Reads and writes title information.

SOSGEN Computes, scales and stores the SOS signal time
history, before the start of each run.

TABGEN Generates the basic quarter-wave sine table used for
SOS generation.

SOSVAL Generates a new SOS value for each call and increments
the phase multiplier.

SINFCN Generates one value of the tabular sinusoidal function
for each call.

LOOP Control real-time operation of the program, including
(a) maintenance of the timing loop, (b) generation of
the SOS stimulus signal, and (c) sampling and storing
of data.

A-4

discussion of the routineTIMPAR signifiesthat the problem variable

t is representedby the program variableTSAMP, whereas the phrase
• S

"TSAMP=ISAMP/1000.0"indicatesa replacementoperationexecutedwithin

" the routine.

The general format for a flow diagram is shown in Figure A.2.

The routine of immediate interest is indicated by the block drawn with

thick lines; the calling routine is shown above, and any routines

called are shown below. The connecting "flow lines" are used to

indicate the flow of information between routines via the argument

list, where one routine's output becomes the other routine's input.

Labels on these lines indicate the particular variables involved.

Information flow via COMMON are indicated by flow lines circled and

labelled with the name of the specific COMMON list in brackets.

Because of their complexity, and because they have no calling

routines, the main program VERRUN and VERNAL deviate somewhat from

this format.

A-5

CALL ING
" ROUTI NE

(INPUTS) (OUTPUTS)

l lSUBPROGRAM 0

(INPUTS TO (INPUTS <COMMON >
ROUTINE]-) TO

ROUTINE 2)

(OUTPUTS (OUTPUTS
FROM FROM

ROUTINE i) ROUTINE 2)
V

CALLED CALLED
ROUTINE ROUTINE
(i) (2)

FIG. A.2 FLOW DIAGRAM FORMAT

A-6

programVERRUN

FUNCTION: Controls pre-run parameter setup, real'time SOS
stimulus generation and response recording, and
post-runfile maintenance.

OPERATION: Operation begins with a call to PARSET to allow the
user to specifyproblem parameters interactively or
from a previously stored data file. If the user
indicateshe is not ready to complete a run, the
parameters are stored on a new file, and pre-run
parametersetup is again initiated by a call to
PARSET.

Once the header is ready to run, header informationis
stored in the output file by a call to RWHEAD, and the
entire SOS time history is computedand stored by a
call to SOSGEN. VERRUN then waits for a run start
signal from the user. Upon this signal, the routine
LOOP is called to provide real-time stimulus
generation, responserecording,and in-memorystorage
of the data in the array IDATA.

Upon completionof the run, VERRUN writes out the data
array IDATA via a call to RWDATA, closes the data
file, and returns to the pre-run parametersetup
portion of the program.

CALLS: PARSET, TITLER, RWHEAD, SOSGEN, LOOP, RWDATA

A-7

program VERRUN

ICHNGE, LUNFIL, IRUN ._|

"-] PARSETIRUN, ISAMP, NPER, NRUN, NCOMP, HARM
AMP, PMUL

V IRW, LUNIT, MODE, IRUN
E _ TITLER

IRUN
R

R IRW, IUNIT, ICLOSE _]RWHEADIRUN, ISAMP, NPER, NRUN, NCOMP, HARM,
N A_IP, PMUL

u%

NPER t NRUN, NCHAN, NCOMP, HAP_I. A_MP, PMU_

I
SOSGEN ,_

u'_

PMUL, IDATA

ISAMP, NRUN, NCHAN

"_ '" IDATA _-!

LOOP

IRW, LUNIT, NCHAN H RWDATA

iRWDATA

NILMAX
0 <LENGTH>

0 <TMPCOM>
TMPVEC

A-8

PROGRAM VERRUN
c
C CHANGES BY W.H. LEVISON, 12/9/83

• C i. DEFINE LUNFIL AS UNIT 3
c

COMMON /LENGTH/NRMAXP

COMMON /TMPCOM/TMPVEC
c

LOGICAL*I LASK, LANS, ICHNGE, MODE, FILNAM(II), TITLE(200)
INTEGER HARM(15), PMUL(15)
DIMENSION TMPVEC(20), AMP (15)
DIMENSION IDATA (9000)

c
DATA IDIM/9000/ IDIMENSION OF IDATA
DATA LUNFIL/3/ ILUN FOR DATA FILE
DATA LUNTTY/5/ ILUN FOR TTY
DATA NCHAN /4/
DATA MODE /'U'/ *START WITH UNDEFINED MODE

c
C SET UP PARAMETERS...
c
100 NRMAX = IDIM/NCHAN

ICHNGE = 'Y'
IRUN = 1

i10 CALL PARSET (ICHNGE,LUNFIL,IRUN,ISAMP,NPER,
1 NRUN,NCOMPrHARM,AMP,PMUL)

c
IF (MODE .NE. 'U') GO TO 120 ISET MODE TO P OR R
MODE = 'P'
IF (LASK (WDOING A RUN NOW? ') .EQ. 'Y') MODE - 'R'

120 IF (MODE .EQ. 'P') GOTO 300 IGO SET PARAMETERS
c
C NORMAL RUN MODE
c

DO 150 I = I,IDIM IZERO OUT IDATA
150 IDATA(I) = 0
c
200 IRW = 1 IREAD TITLE FROM TTY

CALL TITLER (IRW, LUNTTY, MODE, IRUN)
IRW = 2 IWRITE HEADER ONTO FILE
ICLOSE = 2 IAND LEAVE OPEN
CALL RWHEAD (IRW,LUNFIL,ICLOSE,IRUN,ISAMP,NpER,

1 NRUNtNCOMPwHARMtAMPwPMUL)
" CALL TTYOUT ('GENERATING SOS SIGNAL NOW...')

CALL SOSGEN (NPER, NRUN_ NCHAN, NCOMP, HARM, AMPr PMUL, IDATA}
• CALL TTYOUT ('TYPE S TO START: $')

CALL LANS ('S', 'S')
CALL LOOP (ISAMP, NRUN, NCHANr IDATA)
CALL TTYOUT ('STORING DATA NOW...')
IRW = 2 IWRITE DATA TO FILE & CLOSE IT

A-9

CALL RWDATA (IRW, LUNFIL, NRUN, NCHAN, IDATA)
c
c

CALL TTYOUT (' ')
IF (LASK ('DOING ANOTHER RUN? ') .EQ. 'N') GOTO 210
ICHNGE = LASK ('ANY CHANGES? ')
IRUN = IRUN + 1 IINCREMENT RUN NUMBER
GOTO 110

c
210 IF (LASK ('SET UP A PARAMETER FILE? ') .EQ. 'N') STOP
c

MODE = 'P'
GOTO 100

c
C PARAMETER FILE SET UP MODE
C
300 IRW = 1 IREAD TITLE FROM TTY

CALL TITLER (IRW, LUNTTY, MODE, IRUN)
IRW = 2 IWRITE HEADER ONTO FILE
ICLOSE = 1 IAND CLOSE IT
CALL RWHEAD (IRW,LUNFIL,ICLOSE,IRUN,ISAMP,NPER,

_ NRUN,NCOMP,HARM,AMP,PMUL)
C
C USER SPECIFIES WHAT'S NEXT
C

CALL TTYOUT (' ')
IF (LASK ('ANOTHER PARAMETER FILE? ') .EQ. 'Y') GOTO 110
IF (LASK ('DOING A RUN NOW? ') .EQ. 'N') STOP

C
MODE = 'R'
GOTO -_00
END

A-10

subroutine PARSET

" FUNCTION: Sets problem parameters interactivelyor by reading
from an existingfile

OPERATION: If PARSET is calledwith the flag ICHNGEset to 'N',
indicating no changes to previously-definedproblem
parameters,a call is made to the routineSOSPHS (via
the routine SOSPAR) for re-randomization of phase
multiplersPMUL(J). If ICHNGE indicates changes are
to be made, the user has the option of initializing
problem parametersfrom an existing file through a
call to RWHEAD. If the user selects to define
parameters directly, the flag NOMPAR is set to
indicate whether or not parametersare to be selected
interactivelyor selectedfrom a stored set of nominal
values. Time base and SOS parameters are then
specified through calls to TIMPAR and SOSPAR,
respectively,and control is returned to the main
program VERRUN.

INPUTS: ARGLST: ICHNGE,LUNFIL, _RUN

OUTPUTS: ARGLST: IRUN, ISAMP,NPER, NRUN, NCOMP, HARM,
AMP, PMUL

LOCAL: NOMPAR, IRW, ICLOSE

CALLER: VERRUN

CALLS: TIMPAR, SOSPAR, RWHEAD

A-II

subroutine PARSET

i VERRUN
j

ICHNGE IRUN, ISAMP
LUNFIL NPER, NRUN
IRUN NCOMP, HAP_4

AMP, PMUL

PARSET
tt

I

Lf_
_p
o

NOMPAR NOMPAR IRW
ICHNGE LUNFI L
IRUN ICLOSE
NPE R IRUN

ISAMP NCOMP IRU , ISAMP
NPE R HARM NPE N RUN
NRUN AMP NCC , HARM

_ PMUL _ AMP, PMUL

TIMPAR SOSPAR RWHEAD

A-12

SUBROUTINE PARSET (ICHNGE, LUNFIL, IRON, ISAMP, NPER,
1 NRUN, NCOMP, HARM,AMP, PMUL)

• C
C SETS THE PROBLEM PARAMETERSBY USER-SPECIFIEDINPUTS,

. C OR...BY READING FROM AN OLD FILE
C
C INPUTS: (VIAARGLST) ICHNGE, LUNFIL, IRON
C OUTPUTS: (VIAARGLST) ISAMP
C (") NPER, NRUN, NCOMP
C (") HARM, AMP, PMDL
C
C

LOGICAL*ILASK, NOMPAR, ICHNGE
INTEGER HARM(l),PMUL(1)
DIMENSIONAMP(1)

C
IF (ICHNGE.EQ. 'N') GOTO 200
CALL TTYOUT (' ')
IF (LASK ('PARAMETERSFROM A FILE? ') .EQ. 'Y')GOTO 300

C
C GET PARAMETERSDIRECTLYFROM USER
C
100 NOMPAR = LASK ('NOMINAL PARAMETERS? ')

CALL TIMPAR(NOMPAR, ISAMP, NPER, NRUN)
200 CALL SOSPAR (NOMPAR,ICHNGE, IRON, NPER, NCOMP, HARM, AMP,

PMUL)
RETJ RN

C
C GET PARAMETERS FROM AN OLD FILE
C
300 IRW = 1 IREAD HEADER FROM FILE

ICLOSE = 1 IAND CLOSE IT
CALL RWHEAD (IRW,LUNFIL, ICLOSE, IRON, ISAMP,NPER,

1 NRU N, NCOMP, HARM, AMP, PMU L)
CALL TTYOOT (' ')
RETU RN
END

A-13

subroutine TIMPAR

FUNCTION: Defines the time-base parameters during interactive
user setup

OPERATION: The following parameters are defined:

a. Intersample interval (msec) ISAMP

b. Intersample interval (seconds) t =TSAMP
s

c. Run length in seconds t =TRUN
r

d. Number of sample intervals in run N =NRUN
r

e. Number of sample intervals in measurement
interval N =NPER

o
f. Minimum phase increment _ =PZERO

o
g. Minimum frequency increment f =FZERO

o

If the flag NOMPAR indicates selection of nominal
parameters, ISAMP and TRUN are set to pre-stored
values, remaining parameters are calculated as
described below, and control is returned to the
calling routine PARSET. Otherwise, the user specifies
ISAMP and TRUN. Entered values are checked against
nominal (stored) limits; if exceeded, the user is
prompted to reenter.

TIMPAR computes timebase parameters as follows:

a. TSAMP=ISAMP/1000.0

b. NRUN=(TRUN/TSAMP)+I, rounded to the nearest
integer. If NRUN exceeds a nominal (stored)
limit NRMAX, the user is requested to
re-specify the time base parameters.

k
c. NPER is set to the largest 2 contained in

NRUN, where k is an integer

d. PZERO=360.0/NPER

e. FZERO=I.0/TPER

A-14

If ISAMP and TRUN have been specifiedby the user, the
user is allowed to reviewthe entire set of time base
parametersand to re-specifyISAMP and TRUN if desired

• before control is returnedto PARSET.

• INPUTS: ARGLST: NOMPAR
<LENGTH>:NRMAX

OUTPUTS: ARGLST: ISAMP,NPER, NBI]N
<TIMCOM>:PZERO, FZERO,TSAMP, TRUN

CALLER: PARSET

CALLS: ---

A-15

subroutine TIMPAR

PARSET 1
I

NOMPAR IS_P
NPE R
NRL_

i
%o
u%

o

PZERO, FZERO

TIMPAR

<LENGTH > <TIMCOM >

A-16

SUBROUTINETIMPAR (NOMPAR,ISAMP,NPER, NRUN)
C
C TIMPAR SETS UP THE TIME BASE PARAMETERSFOR VERRUN
C TIME PARAMETERSARE EITHERUSER SPECIFIED,OR
C SET TO NOMINALVALUES

• C INPUTS: (VIAARGLST) NOMPAR
C (VIALENGTH) NRMAX
C
C OUTPUTS:(VIAARGLST) ISAMP,NPER, NRUN
C (VIATIMCOM) PZERO,FZERO, TSAMP, TRUN
C

COMMON /LENGTH/NRMAX
COMMON /TIMCOM/PZERO,FZERO, TSAMP, TRUN

C
LOGICAL*ILASK, NOMPAR

C
DATA ISMIN, ISNOM,ISMAX /i, 5, 100/
DATA IMAX /32767/
DATA TRNOM, TRMAX /5.2, 100.0/

C
IF (NOMPAR.EQ. 'Y') GOTO 110
CALL TTYOUT ('*******TIMEBASE PARAMETERS******')

100 IF (LASK ('NOMINALTIME BASE? ') .EQ. 'Y') GOTO 110
C

CALL TTYOUT ('$SAMPLEPERIOD (MSEC)= $')
ISAMP = IANS (ISMIN,ISMAX)
TSAMP = ISAMP/1000.0
CALL TTYOUT ('RUNTIME (SEC)= $')
TRUN = RANS (TSAMP,TRMAX)
CALL TTYOUT (' ')
GOTO 120

110 ISAMP = ISNOM
TSAMP = ISAMP/1000.0
TRUN = TRNOM

120 TEMP = TRUN/TSAMP+ 1.5
IF (TEMP .LE. IMAX) GOTO 125
WRITE (5, 200) IMAX

200 FORMAT (' SAMPLE COUNT EXCEEDS INTEGERLIMIT OF ',I6
1 '; TRY AGAIN')
GOTO 126

125 NRUN = TEMP
IF (NRUN .LE. NRMAX) GOTO 130
WRITE (5, 201) NRUN, NRMAX

201 FORMAT('SAMPLE COUNT',I6,'EXCEEDS FRAME LIMIT OFl,I6
1 '; TRY AGAIN')

• 126 TNEED = (NRMAX- i) * TSAMP
WRITE (5, 202) ISAMP, TNEED

202 FORMAT (' WITH SAMPLE PERIOD =' I4
1 ' (MSEC),NEED RUN TIME .LE. ',F6.3,'(SEC)',/)

GOTO 100

A-17

c
13o NPER = 1

DO 140 J = i, 20
NPER = 2 * NPER

140 IF (NPER .GT. NRUN) GOTO 150
150 NPER = NPER/2
C

TPER = NPER * TSAMP
TRUN = (NRUN - i) * TSAMP

C
PZERO = 360.0/NPER
FZERO = 1.0/TPER

C
IF (NOMPAR-EQ. 'Y') RETURN
IF (LASK ('LIST TIME BASE PI'd_AMETERS?') .EQ. 'N') RETURN
WRITE (5, 205) ISAMP

205 FORMAT (' SAMPLE PERIOD =', I4, ' (MSEC)')
WRITE (5, 206) TRUN, NRUN

206 FORMAT (' RUN LENGTH =', F10.2, ' (SEC) WITH', I5, ' SAMPLES')
WRITE (5, 207) TPER, NPER

207 FORMAT (' SOS PERIOD =', F10.2, ' (SEC) WITH', I5, ' SAMPLES')
WRITE(5, 208) FZERO,PZERO

208 FORMAT (' BASE FREQ = ', F10.2, ' (HZ), BASE PHASE ='
' (DEG)' /)1 F10.2, ,

IF (LASK ('OK? ') .EQ. 'N') GOTO 100
RETURN
END

A-18

subroutineSOSPAR

• FUNCTION: Defines the SOS parameters during interactiveuser
setup

• OPERATION: SOSPARspecifiesthe followingparametersets:

a. the numberof sinusoidalcomponentsN =NCOMP
c

through a call to SOSNCP

b. the SOS harmonicindices h =HARM(J) through
J

a call to SOSHMC

c. the SOS amplitudesa =AMP(J) through a call
J

to SOSAMP

d. the SOS phase multipliersp =PMUL(J) through
J

a call to SOSPHS

SOSPAR is calledwith the argumentICHNGE to indicate
whether any parameterchanges are to be made, and (if
changes are to be made) the argument NOMPAR to
indicate whether or not nominal parametervalues are
to be selected. If ICHNGE is set to 'N', phase
multipliers are re-randomized,and control returnsto
the calling routinePARSET.

If both ICHNGEand NOMPAR are set to 'Y' all SOS
parameters are (re)setto nominal values, and control
returns to PARSET. If SOSPAR is called with
NOMPAR='N' the user has the option to (a) requestf

nominal values for all parameters (setNOMSOS='Y'),or
(b) interactivelyspecify values for all parameter
sets (set NOMSOS='N'). If parametersare specified
interactively,the user is allowed to review the
parameter settings and re-specifythe entire set if

• desired. Upon completionof this operation, control
returnsto PARSET.

INPUTS: ARGLST: NOMPAR, ICHNGE, IRUN, NPER
<TIMCOM>:PZERO, FZERO,TSAMP

OUTPUTS: ARGLST: NCOMP, HARM, AMP, PMUL
<TIMCOM>:PZERO, FZERO,TSAMP

A-19

LOCAL: NOMSOS

CALLER: PARSET

CALLS: SOSNCP, SOSHMC, SOSAMP, SOSPHS

A-20

subroutine SOSPAR

i •

PARSET <TIMCOM>

j
NOMPAR NCOMP
ICHNGE HARM
IRUN AMP PZERO
NPER ' PMUL FZERO

TSA_

'r

L_ ' " SOSPAR.. ., , ,

_D
u%

NOI.ISOS NOMSOS AMP PMUL o
NPER
NCOMP

NOM
: NOMSOS ICH

NCOMP IRT7NCOMP [HARM I r NCOMP

SOSNCP SOSHMC SOSAMP 1 SOSPHS

A-21

SUBROUTINE SOSPAR(NOMPAR,ICHNGE,IRUN,NPER,NCOMP,HARM,AMP,
PMUL)

C
C SOSPAR SETS UP THE SOS PARAMETERS FOR SOSGEN
C SOS PARAMETERS ARE EITHER USER SPECIFIED, OR
C SET TO NOMINAL VALUES
C

C INPUTS: (VIA ARGLST) NOMPAR, ICHNGE, IRUN, NPER
C OUTPUTS: (VIA ARGLST) NCOMP, HARM, AMP, PMUL
C

COMMON /TIMCOM/ PZERO, FZERO, TSAMP
c

LOGICAL*I LASK, NOMPAR, NOMSOS, ICHNGE
INTEGER HARM (I), PMUL (i)
DIMENSION AMP (i)

c
IF (ICHNGE .EQ. 'N') GOTO 300
NOMSOS = 'Y'
IF (NOMPAR .EQ. 'Y') GOTO 110
CALL TTYOUT ('************SOS PARAMETERS************')

100 NOMSOS = LASK ('NOMINAL SOS? ')
c
110 CALL SOSNCP (NOMSOS, NCOMP)

CALL SOSHMC (NOMSOS, NCOMP, NPER, HARM)
CALL SOSAMP (NOMSOS, NCOMP, AMP)

200 CALL SOSPHS (NOMSOS, ICHNGE, IRUN, NCOMP, PMUL)
IF (NOMPAR .EQ. 'Y') RETJRN
IF (LASK ('LIST SOS PARAMETERS? ') .EQ. 'N') RETURN
WRITE (5, 1000)

1000 FORMAT (IX,'COMP',5X,'HARM',7X,'FREQ',7X,'AMP',8X,'PHASE',/)
WRITE (5, 1001) (J, HARM(J), FZERO * HARM(J), AMP(J),
1 PZERO * PMUL(J), J = i, NCOMP)

1001 FORMAT (I5, 5X, I4, 5X, F6.2, 5X, F6.2, 5X, F8.2)
CALL TTYOUT (' ')
IF (LASK ('OK? ') .EQ. 'N') GOTO 100
RETURN

c
300 CALL SOSPHS(NOMSOS, ICHNGE, IRUN, NCOMP, PMUL)

RETURN
END

A-22

subroutineSOSNCP

• FUNCTION: Specifiesthe number of SOS componentsN =NCOMP
c

OPERATION: If the user has specifiedthat all SOS parameterstake
' on their nominal (stored) values (via the flag

NOMSOS),NCOMP is set to its nominal value, and
control is returned to SOSPAR. Otherwise,
specificationof NCOMP can be either by choosing a
nominal (stored)value or by enteringa value from the
terminal. The entered value is checked against
nominal (stored)limits; if exceeded, the user is
promptedto reenter.

INPUTS: ARGLST: NOMSOS

OUTPUTS: ARGLST: NCOMP

CALLER: SOSPAR

CALLS:

A-23

subroutine SOSNCP

LSOS PA,R

NOMSOS NCOMP

I

o

A-24

SUBROUTINESOSNCP (NOMSOS,NCOMP)
C
C INPUTS: (VIAARGLST) NOMSOS

• C OUTPUTS:(VIAARGLST) NCOMP
C

LOGICAL*ILASK, NOMSOS
' C

DATA NCPMIN,NCPNOM, NCPMAX /i,6,15/
C

IF (NOMSOS.EQ. 'Y') GOTO 200
IF (LASK ('NOMINALNUMBEROF SINES? ') .EQ. 'Y') GOTO 200

C
100 CALL TTYOUT ('NUMBEROF SINES= $')

NCOMP = IANS (NCPMIN,NCPMAX)
CALL TTYOUT (' ')
RETJRN

C
200 NCOMP = NCPNOM

RE_JRN
END

A-25

subroutine SOSHMC

FUNCTION: Specifies the SOS harmonics h =HARM(J) -
J

OPERATION: If the user has specified that all SOS parameters take
on their nominal values (via the flag NOMSOS), the
desired frequencies f'=FRQTMP(J) are set to their

J
nominal values, which range in 5 Hz increments from 5
to 75 Hz. Harmonic indices are computed as

HARM (J)=FRQTMP (J)/FZERO J=l, NCOMP)

where FZERO is the minimum frequency increment f
o

computed in TIMPAR. The HARM(J) are rounded to the
nearest integer•

Control is then returned to the calling routine,
SOSPAR.

If the user has not specified that all SOS take on
their nominal values, the user is given the option to
choose the nominal frequency set. If he so chooses,
then SOSHMC operates as described above. If the user
does not choose this option, he is then allowed to
enter the desired SOS frequencies. Each entered value
is checked against nominal (calculated) limits; if
exceeded, the user is prompted to reenter. Once all
frequencies are entered, the harmonic indices are
calculated as above.

SOSHMC then allows the user to review/change the
chosen parameter set; if satisfactory, control is
returned to the calling routine SOSPAR.

INPUTS: ARGLST: NOMSOS, NCOMP, NPER
<TIMCOM>: PZERO, FZERO, TSAMP

OUTPUTS: ARGLST: HARM

LOCAL: <TMPCOM>: FRQTMP

CALLER: SOSPAR

CALLS:

A-26

subroutine SOSHMC

' SOSPAR I
)

!

NOMSOS
NCON_P HARM
NPER

i

o

S0SHMC I PZEROr FZEROf TSA_ O
Ii

<TIMCOM>

A-27

SUBROUTINE SOSHMC (NOMSOS, NCOMP, NPER, HARM)
C
C INPUTS (VIA ARGLST) NOMSOS, NCOMP, NPER
C (VIA TIMCOM) FZERO, TSAMP
C
C OUPUTS (VIA ARGLST) HARM
C

COMMON /TMPCOM/ FRQTMP
COMMON /TIMCOM/ PZERO, FZERO, TSAMP

C
LOGICAL*I LANS, LASK, NOMSOS
INTEGER HARM (i)
DIMENSION FRQNOM (15), FRQTMP (15)

c
DATA FRQNOM /5., i0., 15., _.0.,25., 30., 35., 40., 45.,
1 50., 55., 60., 65., 70., 75./

C
FMIN = FZERO
FMAX = 1.0/(2.0 * TSAMP)

100 IF (NOMSOS .EQ. 'Y') GOTO 120
IF (LASK ('NOMINAL FREQUENCIES? ') .EQ. 'Y') GOTO 120

c
110 CALL TTYOUT ('ENTER DESIRED FREQUENCIES (HZ) : ')

CALL VECTIN (i, 'FREQ', NCOMP, FRQTMP, FMIN, FMAX)
GOTO 140

c
120 DO 130 J = i, NCOMP
130 FRQTMP (J) = FRQNOM (J)
140 IERR = 0 ICHECK FOR LIMIT EXCEEDANCE

DO 150 J = i, NCOMP

FTEMP = FRQTMP (J)
IF ((FTEMP .LT. FMIN) .OR. (FTEMP .GT. FMAX)) IERR = 1

150 CONTINUE
IF (IERR .EQ. 0) GOTO 160 ISKIP BELOW IF WITHIN
LIMITS CALL TTYOUT ('ONE OR MORE FREQUNCIES EXCEED
LIMITS') WRITE (5, 151) FMIN, FMAX

151 FORMAT (' FMIN=', F7.2, 3X, 'FMAX=', F7.2)
CALL TTYOUT ('$ ')
IF (LASK ('WANT FREQUENCIES LISTED? ') .EQ. 'N') GOTO 153
WRITE (5, 152) (J, FRQTMP (J), J = i, NCOMP)

152 FORMAT (IX, I4, 5X, F7.2)
CALL TTYOUT ('$ ')

153 CALL TTYOUT ('CHANGE FREQENCIES OR TIME BASE? (F/T) $')
IF (LANS ('F', 'T') .EQ. 'F') GOTO 110
CALL TTYOUT ('TIME BASE CHANGE OPTION NOT IMPLEMENTED')
GOTO 153

C
160 DO 170 J = i, NCOMP
170 HARM (J) = FRQTMP (J)/FZER0 + 0.5
C

A-28

IF (NOMSOS.EQ. 'Y') RETJRN
IF (LASK ('WANTFREQUENCIESLISTED? ') .EQ. 'N') RETURN

C
• WRITE (5, 200)

'HARM' 8X, 'FRQ',8X, 'FRQ(DES)' /)20B FORMAT (1X, 'COMP',7X, ,
WRITE (5, 201) (J,HARM(J),FZERO*HARM(J),FRQTMP(J),J=I,NCOMP)

' 201 FORMAT (I4,5X, I6, 6X, F7.2, 6X, F7.2)
CALL TTYOUT (' ')
IF (LASK ('OK? ') .EQ. 'N') GOTO lOO
RETURN
END

A-29

subroutine SOSAMP

FUNCTION: Specifies the SOS amplitudes a =AMP(J)
J

OPERATION: If the user has specified that all SOS parameters take
on their nominal values (via the flag NOMSOS), the

normalized amplitudes, a , are set to their nominal
J

values. Otherwise, the user has the option to enter
the values from the TTY. Entered values are checked
against nominal (stored',limits; if exceeded, the user
is prompted to reenter. Next specified is the RMS SOS
level, RMSLVL. This can be done either by choosing a
nominal (stored) value, or by entering a value from
the terminal. The entered value is checked against
nominal (stored) limits; if exceeded, the user is
prompted to reenter. SOSAMP then scales the

normalized amplitudes, a , to obtain the SOS
J

amplitudes, a , which yield the desired RMS level
J

according to:

1 a2.
RMSLVL = 2 3=i

SOSAMP then allows the user to review/change the
chosen parameter set; if satisfactory, control is
returned to the calling routine, SOSPAR

INPUTS: ARGLST: NONSOS, NCOMP

OUTPUTS: ARGLST: AMP

CALLER: SOSPAR

CALLS:

LOCAL: <TMPCOM>:AMPTMP

A-3_

subroutine SOSAMP .

SOSPAR I

NOMSOS AMP
NCOMP

i
_D
u%

! °
I

SOSAMP

A-31

SUBROUTINE SOSAMP (NOMSOS, NCOMP, AMP)
C
C INPUTS: (VIA ARGLST) NOMSOS, NCOMP
C OUTPUTS: (VIA ARGLST) AMP
C

COMMON /TMPCOM/AMPTMP
C

LOGICAL*I LASK, NOMSOS
DIMENSION AMP(l), AMPNOM(15), AMPTMP(15)

C
DATA AMPNOM /15 * I./
DATA RMSMIN, RMSNOM, RMSMAX /0., i., 5./
DATA AMIN, AMAX /0., 100./

C
IF (NOMSOS .EQ. 'Y') GOTO 129

100 IF (LASK ('NOMINAL AMPLITdDES? ') .EQ. 'Y') GOTO 120
c
110 CALL TTYOUT ('ENTER (RELATIVE) AMPLITUDES: ')

CALL VECTIN (I, 'AMP', NCOMP, AMPTMP, AMIN, AMAX)
GOTO 140

C
120 90 130 J = i, NCOMP
130 AMPTMP(J) = AMPNOM(J)
C
140 RMSLVL = RMSNOM

IF (NOMSOS .EQ. 'Y') GOTO 150
IF (LASK ('NOMINAL RMS LEVEL? ') .EQ. 'Y') GOTO 150
CALL TTYOUT ('RMS LEVEL (VOLT) = $')
RMSLVL = RANS (RMSMIN, RMSMAX)

C
150 SUMSQ = 0.0

DO 160 J = i, NCOMP
160 SUMSQ = SUMSQ + AMPTMP(J) * AMPTMP(J)

C
SCALE = RMSLVL * SQRT(2.0/SUMSQ)

C
DO 170 J = i, NCOMP

170 AMP(J) = SCALE * AMPTMP(J)
C

IF (NOMSOS .EQ. 'Y') RETURN
CALL TTYOUT ('$ ')
IF (LASK ('LIST AMPLITUDES? ') .EQ. 'N') RETURN

C
WRITE (5, 200)

200 FORMAT (iX, 'COMP', 7X, 'AMP', 7X, 'AMP (REL)', /)
WRITE (5, 201) (J, AMP (J), AMPTMP (J), J = i, NCOMP)

201 FORMAT (I4, 5X, F7.2, 5X, F7.2)
CALL TTYOUT (' ')
IF (LASK ('OK? ') .EQ. 'N') GOTO 100
RETURN

A-32

END

A-33

subroutine SOSPHS

FUNCTION: Specifies the SOS phase multipliers p =PMUL(J)
J

OPERATION: If the user has specified that all SOS parameters take
on their nominal values (via the flag NOMSOS), or the
program is updating automatically for a new run
(indicated by the flag NOMPAR), then the desired
phases @'=PHSTMP(J) are generated via a uniform random

, j
number generator which operates over the range 0 to
360 degrees, and whiLh is started by a nominal
(stored) integer "seed", incremented by the run
number. The correnponding phase multipliers are then
calculated as:

PMUL (J)=PHSTMP/PZERO (j=l, NCOMP)

where PZERO is the minimum phase increment, in
degrees, computed in TIMPAR. The PMUL(J) are rounded
to the nearest integer.

Control is then returned to the calling routine
SOSPAR.

If the user has not specified a nominal selection of
all SOS parameter, then the user is given the option
of choosing either randomized phases, or specified
phases. If randomized, the user enters an integer
"seed" value, and the desired phases are generated as
above. If specified, the user enters the individual
phases. Each entered value is checked against nominal
(stored) limits; if exceeded, the user is prompted to
reenter. With phases then specified, the phase
multipliers PMUL(J) are calculated as above. SOSPHS
then allows the user to review/change the chosen
parameter set; if satisfactory, control is returned to
the calling routine, SOSPAR.

INPUTS: ARGLST: NOMSOS, ICHNGE, IRUN, NCOMP
<TIMCOM>: PZERO

OUTPUTS: ARGLST: PMUL

LOCAL: <TMPCOM>: PHSTMP

CALLER: SOSPAR

A-34

CALLS:

A-35

subroutine SOSPHS

I " SOSPAR i

NOMS OS
ICHNGE PMUL
IRUN
NCOMP

0o
eq

i
%o

o

_ "

" 1 PZERO

SOSPHS 0

/¢
<'i"IMCOM_

A-36

SUBROUTINESOSPHS (NOMSOS,ICHNGE, IRUN, NCOMP, PMUL)
C
C INPUTS: (VIAARGLST) NOMSOS, ICHNGE

• C (VIAARGLST) IRUN, NCOMP
C (VIATIMCOM) PZERO
C

" C OUTPUTS:(VIAARGLST) PMUL
C

COMMON/TMPCOM/PHSTMP
COMMON/TIMCOM/PZERO

C
LOGICAL*ILASK, NOMSOS, ICHNGE
INTEGERPMUL (I)
DIMENSIONPHSTMP(15)

C
DATA PMIN, PMAX /0., 360./
DATA IMAX,TMAX/32767,32767./

C
IF (ICHNGE.EQ. 'N')GOTO 130

100 IF (NOMSOS.EQ. 'Y')GOTO 130
IF (LASK ('NOMINALPHASES?') .EQ. 'Y') GOTO 130

C
110 IF (LASK ('RANDOMPHASES? ') .EQ. 'Y') GOTO 120
C

CALL TTYOUT ('ENTER (DESIRED)PHASES (DEG):')
CALL VECTIN (i, 'PHASE',NCOMP, PHSTMP, PMIN, PMAX)
GOTO 160

C
120 CALL TTYOUT ('$RANDOM PHASE SEED (POS INT) = $')

ISEED = IANS (0, IMAX)
CALL TTYOUT (' ')
GOTO 140

C
130 ISEED = IRUN + 1 INORMALSEED = RUN # + 1
140 CALL RNSEED (0, ISEED) ISETGENERATOR

DO 145 I = i, 100 IWARMUP GENERATOR
145 CALL RNUM (ITEMP,I)
C

DO 150 J = i, NCOMP
CALL RNUM (ITEMP,i)
TEMP = ITEMP
TEMP = (TEMP+ TMAX)/(2.*TMAX)

150 PHSTMP (J) = PMAX * TEMP
• C

160 DO 170 J = i, NCOMP
170 PMUL (J) = (PHSTMP (J) / PZERO) + 0.5
C

IF (ICHNGE.EQ. 'N')REBORN
IF (NOMSOS .EQ. 'Y') RE_JRN
IF (LASK ('LISTPHASES? ') .EQ. 'N') RETURN

A-37

C
WRITE (5, 200)

'PHS (DES) '200 FORMAT (IX, 'COMP', 6X, 'PMUL', 8X, 'PHS', 8X, , /)
WRITE (5, 201) (J, PMUL(J), PZERO*PMUL(J), PHSTMP(J),
J=l, NCOMP)

201 FORMAT (I4, 5X, I6, 6X, F7.2, 6X, F7.2)
•CALL TTYOUT (' ')
IF (LASK ('OK? ') .EQ. 'N') GOTO 100
RETJRN
END

A-38

subroutineSOSGEN

. _JNCTION: Computes, scales and stores the SOS signal time
history,before the start of each run.

" OPERATION: SOSGENfirst sets up the basic quarter-wavesine table
SINTAB,via a call to TABGEN

SOSGEN then "loops"for NRUN times,where NI_JNis the
number of samples in the entire run, and is set by
TIMPAR. For each kth sample,SOSGEN:

a. calculatesa new SOS value via a call to
SOSVAL

b. scales it for later D/A conversion

c. stores it in the scaled indexedarray IDNTA

INPUTS: ARGLST: NPER, NRUN, NCHAN, NCOMP, HARM, AMP, PMUL

OUTPUTS: ARGLST: PMUL, IDATA

LOCAL: SOS

CALLER: VERRUN

CALLS: TABGEN, SOSVAL

Q

A-39

subroutine SOSGEN

NPER
NRUN
NCHAN PMUL
N COMP q DATA
HARM
AMP
PMUL

V

i !SOSGEN

I
_PER I

NPER o
NCOMP
HARM PM[
AMP
PMUL

TABGEN SOSVAL

A-40

SUBROUTINE SOSGEN(NPER,NRUN,NCHAN,NCOMP,HARM,AMP,PMUL,IDATA)
C
C SOSGENGENERATESSOS SIGNAL & LOADS IT INTO FIRST CHANNELOF

_- IDATA
C
C INPUTS: (VIAARGLST) NPER,NRUN,NCHAN,NCOMP,HARM,AMP,

PMUL
C OUTPUTS: (VIAARGLST) PMUL,IDATA
C
C NOTES: I)SOSGENKEEPS HARMONICCOUNTER IN PMUL,OVERWRITINGIT
C 2)SOS SCALINGASSUMES PLUS/MINUS5 VOLT D/A
C

INTEGERHARM(l),PMUL(1)
DIMENSIONAMP(1)
DIMENSION IDATA (i)

C
DATA IMAX,VMAX/2048,5./

C
I = 1
SCALE=IMAX/VMAX
CALL TABGEN(NPER)
DO 10 IFRAME= i, NRUN
CALL SOSVAL(NPER,NCOMP,HARM,AMP,PMUL,SOS)
IDATA(I)=SCALE*SOS+ IMAX

10 I = I + NCHAN
RETJRN
END

A-41

subroutine TABGEN

FUNCTION: Generates the basic quarter-wave sine table S =SINTAB -
n

used for SOS generation.

OPERATION: TABGEN first calculates the half-wave counter NHALF
and quarter-wave counter NQUART,•according to:

NHALF=NPER/2 ; NQUA.LT=NHALF/2

where NPER is th3 SOS period set by TIMPAR. The

quarter-wave table S is then calculated according to:
n

Sn = sin 2_ (n=0,....,

and stored with an index shift of 1 so • that

SINTAB(N+I) is associated with S , assuring unity (and
n

non-zero) indexing for the first array element.

INPUTS: ARGLST: NPER

OUTPUTS: <TABCOM>: NHALF, NQUART, SINTAB •

CALLER: SOSGEN

CALLS".

A-42

subroutine TABGEN

' SOSGEN

NPER

, !

NHALF o
NQUART

I SINTAB

TABGEN 0

#
<TABCOM>

A-43

SUBROUTINE TABGEN(NPER)
c
C TABGEN CALCULATES HALF & QUARTER WAVE INDICES NHALF
C & NQUART AND SETS UP QUARTER WAVE SINE TABLE

SINTAB
c
C WHERE SINTAB (N+I)=SIN (2 * PI * (N/NPER))
C FOR 0 .LE. N .LE. (NPER / 4)
CC INPUT: (VIA ARGLST) NPER
C OUTPUT: (VIA TABCOM) NHALF,NQUART,SINTAB
c
C NOTE: CURRENTLY ASSUMES NPER .LE. 2048
c

DIMENSION SINTAB(513)
C

COMMON/TABCOM/NHALF,NQUART,SINTAB
c

IF(NPER.LE.2048)GO TO 10
CALL TTYOUT('******TABGEN: NPER TOO BIG')
STOP

C
10 IF (NPER .NE. 0) GOTO 15

STOP '**********TABGEN ZERO DIVIDE**********'
15 TWOPI=2.*3.14159

NHALF=NPER/2
NQUART=NHALF/2
TEMP=TWOPI/NPER

c
DO 20 N=0,NQUART

20 SINTAB(N+I)=SIN(N*TEMP)
c

RETj RN
END

A-44

subroutine SOSVAL

FUNCTION: Generates a new SOS value I =SOS for each call and
k

incrementsthe phase multiplierPMUL

OPERATION: SOSVALfirst sets the sine table indexN equal to the
phase multiplier PMUL(J). This index is then
adjusted,modulo NPER, to lie between 0 and NPER-I.

SOSVAL calculatesa new SOS value accordingto

N

Ik = _ ajSnj (J=I,.--,Nc)j=l ,k

where a are the SOS amplitudes AMP(J) (set by the
J

routine SOSAMP) and S is the tabular sinusoidal
n

functiondefined by

S=n sin [2_(_o)] (n=0,...,N O)

This calculationof S is done via a direct call to
n

SINFCN. The followingoperationsare performedduring
each incrementof the componentindex J:

a. The sine table index N is set to the
corresponding phase multiplier PMUL(J).

b. This index is adjusted modulo NPER to lie
between _ and NPER-I.

c. The quantity I is incremented as defined
k

' above.

. d. A new value for PMUL(J), to be used during
the subsequent sample interval, is computed
as

,

A-45

PMUL(J) = N+HARM(J)

where HARM(J) are the harmonic indices set
by the routine SOSHMC.

INPUTS: ARGLST: NPER, NCOMP, HARM, AMP, PMUL

OUTPUTS: ARGLST: PMUL, SOS

LOCAL: N

CALLER: SOSGEN

CALLS: SINFCN

A-46

subroutine SOSVAL

SOSGEN

i
NPER PMUL
NCOMP ! SOS
HARM
AMP
PMUL

If

SOSVAL _"I
Lt_

4 o
N SINFCN
NPER

A-47

SUBROUTINE SOSVAL(NPER,NCOMP,HARM,AMP,PMUL,SOS)
c
C CALCULATES NEW SOS VALUE FOR EACH CALL
C AND INCREMENTS PMUL BY HARM
C
C INPUT: (VIA ARGLST) NPER,NCOMP,HARM,AMP,PMUL
C OUTPUT: (VIA ARGLST) PMUL,SOS
C

INTEGER HARM(1),PMUL(1)
C

DIMENSION AMP(1)
C

SOS=0.
C

DO 10 J=I,NCOMP
N=PMUL (J)
•IF(N.GE.NPER)N=MOD(N,NPER)
•SOS=SOS + AMP(J)*SINFCN(N,NPER)
N=N +HARM (J)
PMUL (J)=N

10 CONTINUE
C

RETURN
END

A-48

functionSINFCN

" FUNCTION: Generates one value of the tabular sinusoidal function
SINFCN, for each call

OPERATION: SINFCN generates the sinusoidal function S =SINFCN,
n

where

Sn = sin [2_(_)] (n=0,...,No)O

where N =NPER is the SOS period, set by TIMPAR.
o

SINFCN does this by "reflecting" n into the first
quadrant (module N), and then using the precalculated

o

quarter-wave table S =SINTAB, generated by TABGEN, to
n

assign the appropriate sinusoidal value.

INPUTS: ARGLST: N, NPER
<TABCOM>: NHALF, NQUART, SINTAB

OUTPUTS: ARGLST: SINFCN

CALLER: SOSVAL

CALLS:

A-49

subroutine SINFCN

SOSV/',L

N SINFCN -.
NP_R

I

' u'_

o

SlNFCN I NHALF, NQUART, SINT_o

<TABCOM>

A-50

FUNCTION SINFCN(N,NPER)
c
C CALCULATES SINFCN (N) = SIN (2 * PI (N / NPER))

" C FOR 0 .LE. N .LE. (NPER-I)
C USES QUARTER WAVE SINE TABLE SINTAB
c
C INPUT: (VIA ARGLST) N,NPER
C (VIA TABCOM) NHALF,NQUART,SINTAB
c
C OUTPUT: SINFCN
c

DIMENSION SINTAB(i)
C

COMMON/TABCOM/NHALF,NQUART,SINTAB
c

NTEMP=N
IF(NTEMP.GT. NHALF) NTEMP=NPER-NTEMP
IF(NTEMP.GT.NQUART) NTEMP=NHALF-NTEMP
SINFCN=SINTAB(NTEMP+I)
IF(N.GT.NHALF) SINFCN=-SINFCN
RETJRN
END

A-51

subroutine LOOP

FUNCTION: Control real-time operation of the program, including .
(a) maintenance of the timing loop, (b) generation of
the SOS stimulus signal, and (c) sampling and storing
of data.

OPERATION: LOOP selects a clock rate of 100 kHz by setting the
variable IRATE to 2. The number of clock "ticks" NTIC
in a sample interval is determined by multiplying the
number of clock ticks per msec (in this case, 100) by
the number of msec pe_ sample interval (ISAMP). The
clock is first stopped via a call to CLSTOP; D/A
channels 0 and 1 are initialized to IZERO=2048, the
integer corresponding to zero volts; and the clock is

• started with a count of NTIC via a call to CLSTRT.

LOOP "loops" for NRUN sample intervals and, for each
interval, performs the following operations:

1_. A call to CLWAIT checks the clock count. If
the count has reached zero, a message
indicating a "bad interval" is typed and the
program is stopped. Otherwise, the program
waits until the clock count reaches zero.

2. D/A conversions are performed by D/A units 0
and 1 which contain, respectively, a test
signal ITEST which alternates between 0 and
4095, and the SOS input signal IDATA(I).

3. A/D conversions are performed via A/D
devices 1 through 3, and the converted data
are stored in the array IDATA.

4. The test signal is "flipped".

Upon completion of NRUN cycles, the clock is stopped,
and D/A channels 0 and 1 are again initialized to
2048.

INPUTS: ARGLST: ISAMP, NRUN, NCHAN, IDATA

OUTPUTS: ARGLST: IDATA

LOCAL: IRATE, NTICKS

A-52

CALLER: VERRUN

CALLS: CLSTOP, CLSTRT, CLWAIT, DTOA, ATOD

A-53

subroutine LOOP

VERRUN 1 _

ISAMP
NRUN IDATA
NCHAN
IDATA

LOOP I

IRATE
NTICKS
(channei) IDATA
(data)

i

<REALTIMEI0PERATI0NS)I

A-54

SUBROUTINE LOOP (ISAMP, NRUN, NCHAN, IDATA)
C
C INPUTS: (VIA ARGLST) ISAMP, NRUN, NCHAN, IDATA

_- C OUTPUTS:(VIA ARGLST) IDATA
c

LOGICAL CLWAIT
c

DIMENSION IDATA (i)
c

DATA IRATE /2/ ISET CLOCK 100KHZ
DATA IZERO /2048/
DATA IFLIP,ITEST/I,0/ ITEST CODE
DATA TMAX/32767./ ITEST CODE

c
NTEMP = 10.**(4-IRATE) + 0.1 IGET TICK COUNT
NTICKS = NTEMP * ISAMP
I = 1 ISET IDATA INDEX

c
CALL CLSTOP ISTOP CLOCK & ZERO D/A'S
CALL DTOA (0, IZERO)
CALL DTOA (i, IZERO)
CALL CLSTRT (IRATE, NTICKS) ITHEN START CLOCK

c
DO 100 IFRAME= i, NRUN
IF (CLWAIT()) GOTO 10

C CALL TTYOUT ('*****LOOP: BAD TIME INTERVAL*****')
C STOP
10 CONTINUE

C
CALL DTOA (0, ITEST) ITEST CODE
CALL DTOA (I, IDATA (I))
CALL ATOD (i, IDATA (I+l))
CALL ATOD (2, IDATA (I+2))
CALL ATOD (3, IDATA (I+3))

C
SCALE=5./IZERO ITEST CODE
XSIG=SCALE* (IDATA (I)-I ZERO) ITEST CODE
IDATA(I+I)= (2.*XSIG)/SCALE + IZERO ITEST CODE
IDATA(I+2)= (XSIG+2.)/SCALE + IZERO ITEST CODE
CALL RNUM(ITEMP,I) ITEST CODE
TEMP = ITEMP ITEST CODE
TEMP = TEMP/TMAX ITEST CODE
IDATA(I+3)= (XSIG+TEMP)/SCALE + IZERO ITEST CODE

" C
I = I + NCHAN

. C
IFLIP = -IFLIP ITEST CODE FOR D/A 0
IF(IFLIP .EQ. I) ITEST = 0 ITEST CODE
IF(IFLIP .EQ.-I) ITEST = 4095 ITEST CODE

C

A-55

100 CONTINUE

CALL CLSTOP ISTOP CLOCK & ZERO D/A'S
CALL DTOA (0, IZERO)
CALL DTOA (i, IZERO)
RE_JRN
END

A-56

APPENDIXB
THE VERNAL SOF_ARE SYSTEM

B.I Program Structure

The organizationof the VERNAL softwaresystem is shown in Figure

B.1. The main programVERNAL will, in general,call the eight main

subprogramsPART, RWHEAD, RWDATA, SIGNAL, STATS, TITLER, SPECT, DFCN.

They, in turn, call the routinesindicatedby the line connections

made to their respectiveblocks. All programsare written in FORTRAN.

In order to minimizeclutter,calls to the FORTRAN I/O library are not

shown explicitlyin the flow diagrams containedin this Appendix.

B.2 Software Description

Table B.I contains brief descriptions of each of the routines

contained in the VERNAL software system. The remainder of this

Appendix provides documentation for each of the routines listed in the

Table (and in that order), except for TITLER, RWHEAD, and RWDATA

(which are common to both VERRUN and VERNAL and are described

separately in Appendix C). Documentation is of the same format as

that used in Appendix A (see Section A.2).

Sm I

i VERNAL I

>{ PART I i

RWHEAD TITLER :

SPECT

.w

.) LIMIT
DFCN

FIG. B.I ORGANIZATION OF THE VERNAL SOFTWARE SYSTEM

B-2

TABLE B.I FUNCTIONSOF THE VERNAL ROUTINES

VERNAL Controls time-domainand frequency-domainanalysisof
VER time histories.

PART Allows user to specify the section of code to be
executedby the programVERNAL.

RWHEAD Reads and writes header information.

TITLER Reads and writes title information.

RWDATA Reads and writes time 5istory data.

SIGNAL Extracts and scales a single channel of _ata for
subsequentprocessing.

STATS Calculatesmean, standarddeviation,and rms value for
a time history.

SPECT Computes frequency-responsestatistics for a single
data channel.

FFT Returns N-point fast-Fourier transform of a time
history.

FAST Computesdiscretefast-Fouriertransform.

REMPWR Computes remnant power over a specific frequency
"window".

LIMIT Maintainvariablewithin limits.

DFCN Compute the describingfunction between two channels.

B-3

program VERNAL

FUNCTION: Controls time-domain and frequency-domain analysis of
VER time histories

OPERATION: VERNAL is "menu-driven" in that the user specifies
interactively, via a "part" number, the operation he •
wishes VERNAL to perform. Upon completion of a given •
operation, the user specifies the next operation to be
performed. A part number of 0 displays the program
options, and a part number of -1 causes VERNAL to
terminate.

The program parts a,'e:

Part i: Read header from data file

Part 2: List header on the terminal

Part 3: Compute time-domain statistics

Part 4: Compute signal spectra

Part 5: Compute describing functions

Part 6: (not currently implemented)

Part 7: Read data from file

Part 1 must be performed first, and Part 7 must be
performed before data analysis can be undertaken.
Otherwise, the parts may be requested in any order.

VERNAL is initialized with the flag INFILE set to 'N'.
Operation then proceeds with activation of Part i,
wherein a call to RWHEAD causes a data file to be
specified by the operator, header information to be
read from the requested file, and the file to be
left open for possible subsequent read-in of data.
The flag LIDATA is set to 0 to signify that
time-history data have not been read from this file,
and INFILE is set to "Y".

Execution of Part 2 writes the header information of
_ the currently opened data file to the terminal. If

the user decides he would rather analyze a different
file, he again executes Part 1 to close the current
file and open a new one.

B-4

Whenever Parts 3, 4, or 5, are specified,the flag
LIDATA is checked to determine whether or not data
have been read from the current file. If not, data

" are read via a call to RWDATA, the data file is
closed, and LIDATA set to i. The user then specifies
the sample index NSTART at which analysis is to begin.
This index is constrainedto allow analysis of NPER
samples. Subsequent execution of Parts 3-5 will
operateon the same data base. In order to analyze a
new data file, or to redefinethe start point,the
user must execute Part 1 followed by Part 3, 4, or 5.

Executionof Part 3 (time-domain statistics) begins
with an option for the user to list on the terminal
the entire data base stored in the array IDATA,or to
list data from a single channel,which is stored in
the temporaryarray XDATA. Via successive calls to
SIGNAL and STATS,VERNAL computesthe mean, standard
deviation,and rms for each time history (NPER points
beginning at NSTART) and lists the results on the
terminal.

To compute a signal spectrum,the user requestsPart 4
and then specifies the channel to be analyzed.
Successivecalls to SIGNAL and SPECT yield the desired
spectrum. The user then has the option to list the
spectrum (typicallyexercisedto test the program on a
short test signal). If the listing option is
exercised, the user has the further option ot listing
either the entire signal or only the signal components
at input frequencies.

VERNAL then lists,for each input frequency: (i)
correlated power per measurement bin, (2) remnant
power per bin, (3) the ratio of the correlated to
remnant power, (4) correlatedpower per rad/sec, (5)
remnantpower per rad/sec, (6) the ratio of correlated
power to remnantpower (rad/sec),and (7) the number
of frequency bins includedin the remnantaveraging
window. These spectralquantitiesare given in dB.
The following overall statistics(in problem units)
are then listed: (i) correlatedpower summedover all
input frequencies, (2) ratio of correlated to total

" signal power, (3) remnant power summed over all
non-inputfrequencies,(4) ratio of remnant to total

..... power, and (5) total signalpower (i.e.,sum of all
spectralcomputationsoverallfrequencies). The user
is then given the option to perform another spectral
analysis or to specifyanother program part.

B-5

When execution of Part 5 (describing function
analysis) is begun, VERNAL prompts the user for
indices corresponding to the numerator and denominator
channels. Calls to SIGNAL and SPECT provide the gain
and phase information subsequently used by the routine
DFCN to compute the specified describing function.
Gain and phase at each frequency are printed out, and
computations failing the signal/noise test within DFCN
are flagged by a printout of the string (****).

CALLS: PART, RWHEAD, RWDATA, SIGNAL, TITLER, SPECT, DFCN

B-6

program VERNAL

. INFILE i
_. PART

IPART

IRW, LUNIT, ICLOSE _'-iRWHEAD "
!

IRUN, ISAMP, NPER, NRUN, NCOMP, HARM |
AMP, PMUL

IRW, LUNIT, NF_, NCHAN !

i_. RWDATA

V IDATA

E •

JCHAN, NSTART, NPER, NCHAN, IDATA, LSIGNL._

R -I SIGNALN LSIGNL, XDATA

A JSIG, NPER, XDATA "

STATS

AVG, SIG, RIMS
t

IRW, LUNTTY, MODE, IRUN i

o

TITLER
IRUN

. JCHAN, NCO_, HARM, NPER, LSPECT, XDATA _! "

• -- / SPECTLSPECT, XDATA

JDFCN, NCOMP _i ' i
DFCN

GAIN, PHASE, CRFLAG
w

PZERO, FZERO, TSAIMP,TRUN
O <TIMCOM>

FNAME, IDATE, ITIME, NLINE, TITLE
'0 <TTLCOM>

AMPCOR, PHSCOR, CDIVP,,PWRCOR, PWRREM
' ' " O <SPCCOM>

TOTCOR, TOTREM, NREM

B-7

PROGRAM VERNAL
c
c CHANGES BY W.H. LEVISON, 12/15/83
C i. REVISE STATEMENT3000.
C 2. REVISE STATEMENT4011 (PWR/HZ). ii
C 3. ADD COMPUTATION OF PWR/HZ.
C 4. GOTO 401 INSTEAD OF 410. °
C 5. CORRECT COMPUTATION OF TOTPWR
C

COMMON /TIMCOM/ PZERO, FZERO, TSAMP, TRUN
COMMON /TTLCOM/ FNAME, IDATE, ITIME, NLINE, TITLE
COMMON /SPCCOM/ AMPCOR, PHSCOR, CDIVR, PWRCOR, PWRREM,

1 TOTCOR, TOTREM, NREM
C

LOGICAL*I LANS,LASK, LSOS
LOGICAL*I MODE, INFILE, TITLE (200), IDATE(9), FNAME(II)
INTEGER HARM (15), PMUL (15), HOURS, SECONS
DIMENSION AMP(15), IDATA(5000), XDATA(1250)
DIMENSION AVG(4),SIG(4),RMS(4)
DIMENSION AMPCOR(15,4),PHSCOR(15,4),CDIVR(15,4),

1 PWRCOR(15,4) ,PWRREM (15,4) ,TOTCOR(4) ,TOTREM(4),
1 NREM (15)

DIMENSION JDFCN(2),GAIN(15),PHASE(15),CRFLAG(15)
C

DATA LUNFIL, LUNTTY /3, 5/
DATA INFILE /'N'/
DATA RTD /57.296/
DATA NSTART/I/ ITEMP CODE
DATA NCHAN/4/ ZTEMP CODE

C
10 CALL PART (INFILE, IPART)

IF (IPART .LT. 0) STOP
C

20 GOTO (100, 200, 300, 400, 500, 600) IPART
C
C PART1 : READ HEADER FROM DATA FILE
C
100 CONTINUE

IRW = 1 IREAD HEADER FROM FILE
ICLOSE = 2 IAND LEAVE OPEN
CALL RWHEAD (IRW,LUNFILr ICLOSE, IRUN, ISAMP,NPER,

1 NRU N, NCOMP, HARM, AMP, PMU L)
INFILE = 'Y' IINDICATE WE HAVE AN INPUT FILE
LIDATA = 0 ! IDATA NOT LOADED
LSIGNL = 0 ! XDATA NOT COMPUTED
LSTATS = 0 ! STATS NOT COMPUTED
LSPECT = 0 ! SPECTRANOT COMPUTED
GOTO 10

C
C PART2: LIST HEADER

B-8

c
200 CONTINUE

IRW = 2 IWRITEHEADER TO TTY
. CALL RWHEAD (IRW,LUNTTY,ICLOSE,IRUN,ISAMP,NPER,

1 NRUN,NCOMP,HARM,AMP,PMUL)
GOTO 10

• C
C PART3: COMPUTE SIGNAL STATISTICS
C
300 CONTINUE

IF (LIDATA .EQ. 0) GOTO 700
C
**************************** TEST *****************************
C

CALL TTYOUT(' ')
IF (LASK ('**TEST CODE : WANT IDATA LISTED?') .EQ. 'N')GOTO 301
IRW=2 IWRITE DATA ONTO TTY
CALL RWDATA (IRW, LU NTTY, NRU N, NCHAN, IDATA)

C

301 CALL TTYOUT(' ')
IF(LASK('**TESTCODE: WANT XDATA LISTED? ').EQ.'N')GOTO302
CALL TTYOUT('ENTERJCHAN $')
JCHAN=IANS(1,NCHAN)
CALL SIGNAL (JCHAN,NSTART,NPER,NCHAN,IDATA,LSIGNL,XDATA)
WRITE(5,1010)(I,XDATA(I),I=I,NRUN)

1010 FORMAT(I5,IPEI2.4)
302 CONTINUE

C
****************************TEST ******************************
C

IF (LSTATS.EQ. i) GOTO 320
C

CALL TTYOUT('DOINGSTATS NOW...')
DO 310 JCHAN = i, NCHAN
CALL SIGNAL (JCHAN,NSTART,NPER,NCHAN,IDATA,LSIGNL,XDATA)
CALL STATS (JCHAN,NPER,XDATA,AVG,SIG,RMS)

310 CONTINUE
LSTATS = 1 IINDICATESTATS COMPUTED

C
320 IRW = 2 IWRITETITLE ONTO TTY

MODE = 'S' IBUT SUPPRESSCOMMENTS
CALL TITLER (IRW,LUNTTY, MODE, IRUN)
WRITE (5,3000)

. 3000 FORMAT(//,5X,'CHAN',8X,'AVG',10X,'S.D.',10X,'RMS')
WRITE (5,3010)(J,AVG(J),SIG(J),RMS(J),J=I,NCHAN)

3010 FORMAT(2X,I5,4X,FI0.3,3X,FI0.3,4X,FI0.3)
• WRITE (5,3020)

3020 FORMAT(//)
GOTO 10

C

S_9

C PART4: COMPUTE SIGNAL SPECTRA
C
400 CONTINUE

BINLOG=I 0.0 *ALOGI 0 (FZERO)
IF (LIDATA .EQ. 0) GOTO 700

C
401 CALL TTYOUT ('SPECTRUM FOR CHANNEL #: $')

JCHAN = IANS (I,NCHAN)
C

CALL SIG NAL (JCHAN, N START, NPE R, NCHAN, IDATA, LS IGNL, XDATA)
CALL SPECT (JCHAN, NCOMP, HARM, NPER, LSPECT, XDATA)

C
****************************** TEST *******************************
C

IF(LASK('**TEST CODE: WANT SPECTRUM LISTOUT? ').EQ.'N')
GOTO 405

• _ LSOS = LASK('**TEST CODE: ALL FREQS? ')
• C

NHALF = NPER/2
DO 404 K=0,NHALF
IF (LSOS .EQ. 'Y') GOTO 403
DO 402 L = I,NCOMP

402 IF (K .EQ. HARM(L)) GOTO 403 •
GOTO 404

C
403 INDEX = 2*K + 1

WRITE (5,4000) K,XDATA(INDEX) ,RTD*XDATA(INDEX+I)
40_0 FORMAT (I5,2F10.3)
404 CONTINUE
405 CONTINUE

C
************************** TEST **********************************
C

CALL TTYOUT(' ')
IRW = 2 IWRITE TITLE ONTO TTY
MODE = 'S' IBUT SUPPRESS COMMENTS
CALL TITLER (IRW, LUNTTY,MODE, IRUN)

C
WRITE (5,4010) JCHAN

4010 FORMAT (/,32X, 'SPECTRUM FOR CHANNEL # ', I2, /)
WRITE (5,4011)

4011 FORMAT (27X, 'PWR/BIN', 18X, 'PWR/HZ')
WRITE (5,4012)

4012 FORMAT (/,IX,'COMP FREQ * COR REM C/R',
1 ' * COR REM C/R', -
1 ' * NREM')

WRITE (5,4013)
4013 FORMAT(13X,'*',27X,'*',27X,'*')

A0=0
DO 420 J = I,NCOMP

B-10

AFREQ=FLOAT(HARM (J))
IF(J.EQ.NCOMP) GO TO 410
AI=SQRT(AFREQ*FLOAT(HARM(J+l)))

. GO TO 415
410 AI= (AFREQ**2)/A0
415 WIDTH=f0.0*ALOGI0(AI-A0)

" A0=AI
AFREQ=AFREQ*FZERO
TEMPI=PWRCOR(J,JCHAN)-WIDTH-BINLOG
TEMP2=PWRREM(J,JCHAN)-BINLOG
TEMP3=TEMPI-TEMP2
WRITE (5,4020) J,AFREQ,PWRCOR(J,JCHAN),PWRREM(J,JCHAN),

1 CDIVR(J,JCHAN),TEMPI,TEMP2,TEMP3,NREM (J)
420 CONTINUE

' *' F8 2 2F9 2,' *',I4)4020 FORMAT (I4,F8.2,' *',FS.2,2Fg.2, , . , .
c

TOTPWR=TOTCOR(JCHAN)+TOTREM(JCHAN)
WRITE (5,4031) TOTCOR(JCHAN), TOTCOR(JCHAN)/TOTPWR
WRITE (5,4032) TOTREM(JCHAN), TOTREM(JCHAN)/TOTPWR
WRITE (5,4033) TOTPWR

4031 FORMAT(//,5X, 'COR PWR = ', F9.2, 5X, 'COR/TOT PWR = ', F9.2)
4032 FORMAT(5X, 'REM PWR=', F9.2, 5X, 'REM/TOT PWR= ', F9.2,/)
4033 FORMAT(5X, 'TOT PWR = ', F9.2,//)
c

CALL TTYOUT(' ')
IF (LASK ('ANOTHER SPECTRUM? ') .EQ. 'Y') GOTO 401

c
GOTO 10

C
C PART5: COMPUTE TRANSFER FUNCTIONS
c
500 CONTINUE

IF (LIDATA .EQ. 0) GOTO 700
c
510 CALL TTYOUT ('CHANNEL # FOR DFCN NUM: $')

JDFCN(1) = IANS(I,NCHAN)
CALL TTYOUT ('CHANNEL # FOR DFCN DENOM: $')
JDFCN(2) = IANS(I,NCHAN)

c
DO 520 I = 1,2 IGET SPECTRA FOR NUM & DENOM
JCHAN = JDFCN(I)
CALL SIGNAL (JCHAN,NSTART,NPER,NCHAN,IDATA,LSIGNL,XDATA)
CALL SPECT (JCHAN,NCOMP,HARM,NPER,LSPECT,XDATA)

- 520 CONTINUE
c

CALL DFCN (JDFCN, NCOMP, GAIN, PHASE, CRFLAG)
c

IRW = 2 IWRITE TITLE ONTO TTY
MODE = 'S' IBUT SUPPRESS COMMENTS
CALL TITLER (IRW, LUNTTY, MODE, IRUN)

B-f1

WRITE (5, 5010) JDFCN
5010 FORMAT (/,25X,'DFCN FOR (CHAN ',II,')/(CHAN ',Ii,')',//)

WRITE (5,5015)
5015 FORMAT (20X,'COMP FREQ GAIN PHASE')

DO 530 J = i, NCOMP
530 WRITE (5, 5020) J, FZERO*HARM(J), GAIN(J), RTD*PHASE(J),

1 CRFLAG (J)
5020 FORMAT (20X, I4, F9.2, FI0.1, FI0.1, A8)

CALL TTYOUT(' ')
C

IF (LASK ('ANOTHER DFCN? ') .EQ. 'Y') GOTO 510
C

GOTO 10
C
C PART6: SUMMARY
C
600 CONTINUE

IF (LIDATA .EQ. 0) GOTO 700
GOTO 10

C
C PART7: READ DATA FROM FILE; SET START POINT
C
700 CONTINUE

CALL TTYOUT ('READING IN DATA NOW....')
IRW = 1 IREAD DATA FROM FILE & CLOSE IT
CALL RWDATA (IRW,LUNFIL,NRUN,NCHAN,IDATA)
LIDATA = 1 IINDICATE IDATA IS LOADED

C
CALL TTYOUT ('SCORING STARTS AT POINT $') ISET UP START
POINT
WRITE (5,105) NSTART

105 FORMAT (IH+,I55)
IF (LASK(' WANT TO CHANGE? ') .EQ. 'N') GOTO 20
NTEMP = NRUN - NPER + 1
CALL TTYOUT ('ENTER START POINT IN RANGE 1 THRU $')
WRITE (5,105) NTEMP
CALL TTYOUT ('$:$')
NSTART = IANS(I,NTEMP)
GOTO 20

C
END

B-12

subroutinePART

. FUNCTION: Allows user to specify the section of code to be
executed by the program VERNAL

OPERATION: PART first prompts the user to specify a program part
within the range -i to 6. A value of -I causes the
routine to return to the calling program; a value of
zero causes a printout of the part definitions,
followed by another prompt for a program part.

If the user specifies a number between 1 and 6, PART
checks the flag INFILE to determine whether or not a
data file has been specified for input. If such an
input has been specified, PART returns with the part
number specified by the user; otherwise, the part
number Is set to i, and the user is informed of the
need to specify a data file.

INPUTS: ARGLST: INFILE

OUTPUTS: ARGLST: IPART >
/ •

CALLER: VERNAL

CALLS:

B-13

subroutine PART

l

•_ VERNAl

INFILE IPART

i

o

!

B-14

subroutineSIGNAL

• FUNCTION: Extracts and scales a single channel of data for
subsequent processing

" OPERATION: On the first call to SIGNAL, the (uniform) scale
factors S = SCALE(J) are defined:

J

S = VMAX/IDATA
J

where VMAX is the maximum A/D and D/A voltage (defined
as 5 volts), and IMAX is one half the maximum
peak-to-peak variations allowed in the stored integer
data (defined as 2048). This operation is bypassed on
subsequent calls to SIGNAL.

Data for the signal channel JCHAN, starting at time
frame NSTART, are extracted from the interleaved data
vector d =IDATA(I) and stored in x =XDATA(K) for

i k
further processing. The following conversion is
performed for each x :

k

x = s . (d-d)
k j i o

where d = IZERO (defined as 2048) is the zero offset
o

of the data stored in IDATA.

INPUTS: ARGLST: JCHAN, NSTART, NPER, NCHAN, IDATA, LSIGNL

•OUTPUTS: • ARGLIST: LSIGNL, XDATA •

LOCAL: i SCALE, IZERO
? :

CALLER: VERNAL

CALLS•"

B-15

subroutine SIGNAL

I VERNAL

JCHAN
NSTART
NPER LSIGNL
NCHAN XDATA

iIDATA
LSIGNL %o

o

B-16

SUBROUTINE SIGNAL (JCHAN, NSTART, NPER, NCHAN, IDATA, LSIGNL
XDATA)

C

, C SIGNAL LOADS XDATA WITH DATA CHANNEL JCHAN, TAKEN
C FROM IDATA,STARTINGAT POINT NSTART IN THE IDATA ARRAY
C
C INPUTS: (VIAARGLST) JCHAN,NSTART,NPER,NCHAN,IDATA
C (VIAARGLST) LSIGNL (0=INITPASS, 1=OTHERS)
C OUTPUTS:(VIAARGLST) LSIGNL,XDATA
C

DIMENSIONIDATA(1),XDATA(1),SCALE(4)
C

DATA IMAX,VMAX/2048,5./
DATA IZERO/2048/

C
IF (LSIGNL.EQ. i) GOTO 20c
DO 10 J = I,NCHAN IINITSCALES FIRST TIME THRU

10 SCALE(J) = VMAX/IMAX
LSIGNL= 1 1& INDICATEDONE

C
20 SFACT = SCALE(JCHAN)

I = (NSTART-I)*NCHAN+ JCHAN
C

DO 30 K = I,NPER
XDATA(K) = SFACT*(IDATA(I)-IZERO)

30 I = I + NCHAN
C

RE_] RN
END

I

B-17

subroutine STATS

FUNCTION: Calculates mean, standard deviation, and rms value for
a time history

OPERATION: Statistics are computed for the data vector XDATA, of .
length NPER, defined in a preceding call to SIGNAL.
Mean, standard deviation, and rms are stored in the
vectors AVG(J), SIG(J), and RMS(J), respectively.

INPUTS: ARGLST: JSIG, NPER, XDATA

OUTPUTS: ARGLST: AVG, SIG, RMS

CALLER: VERNAL

CALLS:

L

B-18

subroutine STATS

I VERNAL
J

JSIG AVG
NPER : SIG
XDATA RMS

o_

i
u%

o

B-19

SUBROUTINE STATS (JSIG, NPER, XDATA, AVG, SIG, RMS)
C
C STATS CALCULATES TIME-AVERAGED MEAN, SD, & RMS VALUES
C FOR THE DATA STRING CONTAINED IN XDATA
C CALCULATIONS ARE DONE FOR THE FIRST NPER POINTS IN XDATA
C RESULTS ARE LOADED IN JSIG COMPONENTS OF AVG,SIG,&RMS
.C •

C INPUTS: (VIA ARGLST) JSIG,NPER,XDATA
C OUTPUTS: (VIA ARGLST) AVG,SIG,RMS
c

DIMENSION XDATA(1), AVG(1), SIG(1), RMS(1)
C

SUM = 0.
SUMSQ = 0.

c
DO 10 I =i, NPER
TEMP = XDATA(I)
SUM = SUM + TEMP
SUMSQ = SUMSQ + TEMP**2

!__ CONTINUE
C

_VG(JSIG) = SUM/NPER
RMS (JSIG) = SQRT(SUMSQ/NPER)
SIG(JSIG) = SQRT (ABS (RMS(JSIG)**2 - AVG(JSIG)**2))
RET0RN
END

B-20

subroutineSPECT

, FUNCTION: Computes frequency-responsestatistics for a single
data channel

" OPERATION: SPECT computes the following statistics for the
Fourier-transformeddata containedin the array XDATA:

a. Amplitude and phase shift for each SOS
frequencyindexdefined by HARM(J).

b. The input-correlatedpower at each SOS
frequency, the average remnantpower in the
vicinityof each such frequency, and the
ratio of correlatedto remnantpower.

c. Total power, total correlated power, and
total remnantpower containedin the signal,
plus the ratiosof correlated and remnant
power to total power.

When first called by VERNAL, certain constantsare
computed,and the flag LSPECT is set to unity so that
these computations are bypassedon subsequentcalls.
SPECT then calls the routine FFT to compute the
discrete fast Fourier transformof the time-history
data containedin the array XDATA. The results of
this transformationare returnedin the array XDATA as
alternate estimates of magnitude and phase. The
followingcomputationsare then performed:

a = 28.LOG(x)
j k

= x
j k+l

2
• P. = 10.LOG(x/2)

3 k

where a = AMPCOR(J)is the amplitude,in dB, of the
J

...... B-21

signal at the jth SOS harmonic index, _ = PHSCOR(J)
J

is the phase shift at that frequency, and P =

PWRCOR(J) is the signal power in dB. x represents
k

the values of XDATA at index "k", where, because of
the interleaving of magnitude and phase results,

k=2hj+l. The variable SUMCOR is incremented by the
jth correlated power computation (in experimental
units, not dB) in order to determine the total amount
of input-correlated power contained in the signal.

To compute the remnant power PWRREM(J) for the jth SOS
index, the indices KLOW and KHIGH (for array XDATA)
are computed to be approximately 1/8 octave below and
above the jth SOS harmonic index. The routine REMPOW
is then called to yield the accumulated remnant SUMREM
and to determine the number of frequency "bins"
NREM(J) utilized in the (local) remnant computation.
The remnant estimate PWRREM(J) is determined by
dividing SUMREM by NCOUNT and converting to dB. The
ratio of correlated remnant power CDIVR(J), in dB, is
computed by subtracting the remnant power (in dB) from
the correlated power (in dB). Correlated and remnant
powers are limited to a minimum of -99.99 dB, and a
call to LIMIT maintains the signal/noise ratio between
-99.99 and +99.99 dB.

After completing the above calculations for each SOS
index, SPECT computes the total remnant power via a
call to REMPOW, with indices KLOW and KHIGH set to
include the entire spectrum. Total correlated and
remnant power for the signal are stored as TOTCOR and
TOTREM, respectively.

INPUTS: ARGLST: JCHAN, NCOMP, HARM, NPER, LSPECT, XDATA

OUTPUTS: ARGLST: LSPECT, XDATA
<SPCCOM>: AMPCOR, PHSCOR, CDIVR, PWRCOR, PWRREM,
TOTCOR, TOTREM, NREM

LOCAL: KLOW, KHIGH, NCOUNT w

CALLER: VERNAL

CALLS: FFT, REMPWR, LIMIT

B-22

subroutine SPECT

VERNAL

,1

JCHAN
NCOMP
HARM LSPECT
NPER XDATA
LSPECT
XDATA

I
%o
u%
_D
O

i SPECTi /_'IPCOR
PHSCOP.
CD!VR

NPER NCOMP DBZERO PWPCOR
)ATA - HARM DBINF PWRREM

XDATA TMPCDR TOTCOR
KLOW TOTREM
KHIGH NREM

XDATA NCOUNT TMPCDR
SUMREM

.i

FFT REMPWR LIMIT /V

<SPC(>

w

B-23

i

SUBROUTINE SPECT (JCHAN, NCOMP, HARM, NPER, LSPECT, XDATA)
C
C FOR THE SIGNAL IN XDATA, SPECT CALCULATES, AT EACH SOS FREQ:
C 1)THE CORRELATED AMP AND PHS
C 2)THE CORRELATED & REMNANT POWER (PER MSMT BIN)
C 3)THE COR-TO-REM POWER RATIO (PER MSMT BIN)
C SPECT ALSO CALCULATES THE TOTAL CORRELATED AND REMNANT POWER •
c
C INPUTS: (VIA ARGLST) JCHAN
C (") NCOMP,HARM,NPER
C (") LSPECT (0=INIT PASS, 1=OTHERS)
C (") XDATA
C OUTPUTS:(VIA ARGLST) LSPECT,XDATA
C (VIA SCRCOM) AMPCOR,PHSCOR,CDIVR
C (VIA SCRCOM) PWRCOR,PWRREM,TOTCOR,TOTREM,

NREM
c

COMMON /SPCCOM/ AMPCOR,PHSCOR,CDIVR,PWRCOR,PWRREM,
1 TOTCOR,TOTREM,NREM

c
INTEGER HARM (i)
DIMENSION XDATA(i)
DIMENSION AMPCOR(15,4),PHSCOR(15,4),CDIVR(15,4),

1 PWRCOR(15,4),PWRREM(15,4),TOTCOR(4),TOTREM(4),
NREM(15)

C
DATA HALF /0.50/
DATA WINDOW /0.25/ 11/4 OCTAVE REM WINDOW_
DATA DBZERO, DBINF /-99.99,+99.99/ IZERO & INF IN DB UNITS

C
IF (LSPECT .EQ. i) GOTO 10
NHALF = NPER/2 IDO FIRST PASS CALCS
DBTWO = 10.*ALOGI0(2.)
RATIO = 2.**(HALF*WINDOW)
LSPECT = 1 I& INDICATE DONE

C
10 CALL TTYOUT ('DOING FFT...')

CALL FFT (NPER, XDATA)
C

SUMCOR = 0. IZERO THE COR PWR SUM
c

DO 30 J =I,NCOMP
KHARM = HARM(J) IGET JTH HARMONIC
INDEX = 2*KHARM + i l& ITS XDATA INDEX

w

c
C DO AMP, PHS, PWR CALCULATIONS FOR SOS FREQS (CORRELATED)
C

AMPTMP = XDATA (INDEX) IGET AMP & ITS SQUARE
AMPSQR = AMPTMP*AMPTMP
AMPTMP = 20.*ALOGI0(AMPTMP) IGET AMP & PWR IN DB

B-24

PWRTMP= AMPTMP - DBTWO
PHSTMP= XDATA (INDEX+I) IGET PHASE IN RAD

C
: AMPCOR (J,JCHAN)= AMPTMP ILOADCOR AMP,PHS,PWR

PHSCOR (J,JCHAN)= PHSTMP
PWRCOR (J,JCHAN)= PWRTMP

C
SUMCOR= SUMCOR+ AMPSQR IACCUMULATE2*PWR

C
C DO PWR CALCULATIONSFOR NON-SOS FREQS (REMNANT)
C

KLOW = KHARM/RATIO+ HALF IGETLOW & HIGH HARMS
KHIGH= KHARM*RATIO+ HALF IWHICHDEFINE REM WINDOW
IF (KLOW .LT. i) KLOW = 1 l& LIMIT THEM
IF (KHIGH.GT. NHALF) KHIGH = NHALF
CALL REMPWR (NCOMP,HARM,XDATA,KLOW,KHIGH,NCOUNT,SUMREM)

C
PWRTMP= DBZERO ICALCAVG REM PWR IN WINDOW
IF ((NCOUNT.GT. 0) .AND. (SUMREM.GT. 0.))

1 PWRTMP = 10.*ALOGI0(SUMREM/NCOUNT)
PWRREM (J,JCHAN)= PWRTMP
NREM (J) = NCOUNT ILOAD # OF REM FREQS IN AVG

C
C DO CALCULATIONSFOR COR-TO-REMPOWER RATIO
C

TMPCOR= PWRCOR (J,JCHAN) IGET COR & REM PWR
TMPREM = PWRREM (J,JCHAN)
IF (TMPCOR.GT. DBZERO) GOTO 18 ISET C/R TO ZERO WHEN
TMPCDR = DBZERO ICOR PWR IS ZERO
GOTO 20

18 IF (TMPREM.GT. DBZERO) GOTO 19 ISETC/R TO INF WHEN
TMPCDR = DBINF IREM PWR IS ZERO
GOTO 2_

_ 19 TMPCDR = TMPCOR - TMPREM ISETC/R TO DIF IN DB
CALL LIMIT (DBZERO,DBINF,TMPCDR) IANDLIMIT

2% CDIVR (J,JCHAN)= TMPCDR ILOADC/R VECTOR
C
30 CONTINUE

C
C DO TOTAL POWER CALCS
C

SUMCOR= SUMCOR/2. IGET TOTAL COR PWR
C

KLOW = 0 IGET TOTAL REM PWR (INCLDC)
KHIGH = NHALF
CALL REMPWR (NCOMP,HARM,XDATA,KLOW,KHIGH,NCOUNT,SUMREM)

C
TOTCOR (JCHAN)= SUMCOR ILOADTOTAL PWR FIGURES
TOTREM (JCHAN)= SUMREM

C

B-25

RETU RN
END

B-26

subroutine FFT

FUNCTION: Returns N-point fast-Fourier transform of a time
history

OPERATION: A time history of lengthN, stored in the array X, is
processed by the routineFAST, which overwritesthe
time history and returns (to FFT) its discreteFourier
transformin the array X.

The first element of X containsthe absolutevalue of
the mean of the time history. The second element
contains0 if the signalmean is positive; otherwise,
it contains _. The remaining elements contain
magnitudeand phase informationas follows:

2 [f2(i)+ f2(i+i)]i/2x(i) = No i=3,5,...
x(i+l)=tan-l(-f(i+l)/f(i))

where "i" is the index in the array X, F signifiesthe
real and imaginarycomponentsof the Fourier transform
returnedby the routineFAST, and x(i) signifies the
resulting gain and phase data placed in the arrayX
before returningcontrol to the calling routine.

INPUTS: ARGLST: N, X

OUTPUTS: ARGLST: X

CALLER: SPECT

CALLS: FAST

B-27

subroutine FFT

Q.

I SPECT Il

1

N
X X

_r

J

N
X X

Ir

l FAST

B-28

SUBR(YJTINEFFT (N,X)
C
C RE_JRNS N-POINT FFT OF X, IN X, WHERE N IS A PWR OF 2
C (AMP,PHS) FOR JTH HARMONIC STORED IN (X(2J+I),X(2J+2)),
C FOR J = 1 THRU N/2-1
C (AMP,PHS) FOR 0TH HARMONIC STORED IN (X(1), X(2))
C N/2TH (X(N+I),X(N+2))
c
C INPUTS: (VIA ARGLST) N,X
C OUTPUTS:(VIA ARGLST) X
C

DIMENSION X(2)
c

DATA PI /3.14159/
c

CALL FAST (N,X)
c

NHALF = N/2
TNODN = I./NHALF

c
TEMP = X(1)/N IDO ZEROTH HARMONIC (DC)
X(1) = ABS(TEMP)
X(2)= 0.
IF (TEMP .LT. 0.) X(2) = PI

C
DO 100 I = i, (NHALF-I) IDO HARMONICS FROM i TO (NHALF-I)
JODD = 2"I + 1
JEVEN = JODD + 1
TEMPI = X(JODD)
TEMP2 = X(JEVEN)
X(JODD) = TWODN*SQRT (TEMPI*TEMPI + TEMP2*TEMP2)
X(JEVEN) = ATAN2 (TEMPI,-TEMP2)

100 CONTINUE
c

TEMP = X(N+I) IDO N/2 HARMONIC (NYQUIST)
X(N+I) = TWODN*ABS (TEMP)
X (N+2) = 0.

RETJRN i
END

!

B-29

subroutine FAST

FUNCTION: computes discrete fast-Fourier transform.

OPERATION: A discrete Fourier transform is performed on the
N-point time history provided in the array B where N
must be 2 raised to an integral power. The mean value
of the time history is returned in element B(1), and
B(2) is set to zero. The Jth Fourier harmonic is
returned as a complex number, with the real part in
element B(2*J+I) and the imaginary part in B(2*J+2).
The N/2 harmonic is returned in B(N+I) with B(N+2) set
to zero. Thus, the array B must have a minimum
dimension of N+2.

INPUTS: N, B

OUTPUTS: B

CALLER: FFT

CALLS:

B-30

subroutine FAST

FFT I
J

!
N
X X

B-31.

C SUBROUTINE: FAST
C REPLACES THE REAL VECTOR B(K), FOR K=I,2,...,N,
C WITH ITS FINITE DISCRETE FOURIER TRANSFORM
C_mmm_m

c
SUBROUTINE FAST(N,B)

c
C THE DC TERM IS RE_JRNED IN LOCATION B(1) WITH B(2) SET TO 0.
C THEREAFTER THE JTH HARMONIC IS RETJRNED AS A COMPLEX
C NUMBER STORED AS B(2*J+I) + I B(2*J+2).
C THE N/2 HARMONIC IS RETJRNED IN B(N+I) WITH B(N+2) SET TO 0.
C HENCE, B MUST BE DIMENSIONED TO SIZE N+2.
C THE SUBROUTINE IS CALLED AS FAST(N,B) WHERE N=2**M AND
C B IS THE REAL ARRAY DESCRIBED ABOVE.
C

DIMENSION B(2)
COMMON /CONS/ PII, P7, P7TWO, C22, $22, PI2

C
C IW IS A MACHINE DEPENDENT WRITE DEVICE NUMBER
c

iw= 5
c

PII = 4.*ATAN(I.)
PI8 = PII/8.
P7 = I./SQRT(2.)
P7TWO = 2.*P7
C22 = COS(PI8)
$22 = SIN(PI8)
PI2 = 2.*PII
DO 10 I=i,15
M = I
NT = 2"*I
IF (N.EQ.NT) GO TO 20

10 CONTINUE
WRITE (IW,9999)

9999 FORMAT (33H'N IS NOT A POWER OF TWO FOR FAST)
STOP

20 N4POW = M/2
C
C DO A RADIX 2 ITERATION FIRST IF ONE IS REQUIRED.
C

IF (M-N4POW*2) 40, 40, 30
30 NN = 2

INT = N/NN
CALL FR2TR(INT, B(1), B(INT+I))
GO TO 50

40 NN = 1
C
C PERFORM RADIX 4 ITERATIONS.
c

B-32

50 IF (N4POW.EQ.0)GO TO 70
DO 60 IT=I,N4POW
NN = NN*4

: INT = N/NN
CALL FR4TR(INT,NN, B(1), B(INT+I),B(2*INT+I),B(3*INT+I),

* B(1), B(INT+I),B(2*INT+I),B(3*INT+I))
60 CONTINUE

C
C PERFORM IN-PLACEREORDERING.
C
70 CALL FORDI(M,B)

CALL FORD2(M,B)
T = B(2)
B(2) = 0.
B(N+I) = T
B(N+2) = 0.
DO 80 IT=4,N,2
B(IT) = -B(IT)

80 CONTINUE
RETJRN
END

C SUBROUTINE: FR2TR
C RADIX 2 ITERATIONSUBROUTINE

C
SUBROUTINEFR2TR(INT,B0, BI)
DIMENSIONB0(2), Bl(2)
DO 10 K=I,INT
T = B0(K) + BI(K)
BI(K) = B0(K) - BI(K)
B0(K)= T

10 CONTINUE
RE_JRN
END

C
ell

C SUBROUTINE: FR4TR
C RADIX 4 ITERATIONSUBROUTINE

C
•_ SUBROUTINEFR4TR(INT,NN, B0, BI, B2, B3, B4, B5, B6, B7)
• DIMENSIONL(15), B0(2), BI(2), B2(2), B3(2),B4(2), B5(2),

-" . B6(2),
• B7(2)

• COMMON/CONS/ PII, P7, P7TWO, C22, $22, PI2
EQUIVALENCE(LI5,L(1)),(LI4,L(2)),(LI3,L(3)),(LI2,L(4)),
• (LII,L(5)),(LI0,L(6)),(L9,L(7)),(L8,L(8)),(L7,L(9)),
• (L6,L(10)),(L5,L(II)),(L4,L(12)),(L3,L(13)),(L2,L(14)),
• (L1,L(15))

..

: B-33

c
C JTHET IS A REVERSED BINARY COUNTER' JR STEPS TWO AT A TIME TO
C LOCATE THE REAL PARTS OF INTERMEDIATE RESULTS, AND JI LOCATES
C THE IMAGINARY PART CORRESPONDING TO JR.
c

L(1) = NN/4
DO 40 K=2,15
IF (L(K-I)-2) 10, 20, 30

10 L(K-I) = 2
20 L(K) = 2

GO TO 40
30 L(K) = L(K-I)/2
40 CONTINUE

C
PIOVN = PII/FLOAT(NN)
JI = 3
JL= 2
JR= 2

c
DO 120 JI=2,LI,2
DO 120 J2=JI,L2,LI
DO 120 J3=J2,L3,L2
DO 120 J4=J3,L4,L3
DO 120 J5=J4,L5,L4
DO 120 J6=J5,L6,L5
DO 120 J7-J6,L7,L6
DO 120 J8=J7,L8,L7
DO 120 J9=J8,L9,L8
DO 120 JI0=Jg,LI0tL9
DO 120 Jll=J10,Lll,Ll0
DO 120 JI2=JII,LI2,LII
DO 120 JI3=JI2,LI3,LI2
DO 120 JI4=JI3,LI4,LI3
DO 120 JTHET=JI4,LI5,LI4
TH2 = JTHET- 2
IF (TH2) 50, 50, 90

50 DO 60 K=I,INT
T0 = B0(K) + B2(K)
T1 = BI(K) + B3(K)
B2(K) = B0(K) - B2(K)
B3(K) = BI(K) - B3(K)
B0(K) = T0 + T1
BI(K) = T0 - T1

60 CONTINUE
C

IF (NN-4) 120, 120, 70
70 K0 = INT*4 + 1

KL = K0 + INT - 1
DO 80 K=K0,KL
PR = P7* (BI(K)-B3(K))

B-34

PI = P7* (BI(K)+B3(K))
B3(K) = B2(K) + PI
BI(K) = PI - B2(K)
B2(K) = B0(K) - PR
B0(,K)= B0(K) + PR

80 CONTINUE
GO TO 120

c
90 ARG = TH2*PIOVN

C1 = COS(ARG)
S1 = SIN(ARG)
C2 = CI*'2 - SI*'2
$2 = CI*SI + CI*SI
C3 = CI*C2 - SI*$2
$3 = C2"SI + $2"CI

C
INT4 = INT*4
J0 = JR*INT4 + 1 _.
K0 = JI*INT4 + 1 ._.
JLAST = J0 + INT - 1
DO 100 J=J0,JLAST
K = K0 + J - J0 "
R1 = BI(J)*CI - B5(K)*SI
R5 = BI(J)*Sl + BS(K)*CI
T2 = B2(J)*C2 - B6(K)*S2
T6 = B2(J)*S2 + B6(K)*C2
T3 = B3(J)*C3 - B7(K)*S3
T7 = B3(J)*S3 + B7(K)*C3
T0 = B0(J) + T2
T4 = B4(K) + T6 i
T2 = B0(J) - T2
T6 = B4(K) - T6
T1 = R1 + T3
T5 = R5 + T7
T3 = R1 - T3
T7 = R5 - T7
B0(J) = T0 + T1
B7(K) = T4 + T5
B6(K) = T0 - T1
BI(J) = T5 - T4 ._

• B2(J) = T2 - T7
.... B5(K) = T6 + T3
_:_i B4(K) = T2 + T7

B3(J) = T3 - T6
100 CONTINUE

C

JR = JR + 2
JI = JI - 2

._ IF (JI-JL) 110, i10, 120
110 JI = 2*JR- 1

._ B-35

'JL = JR

120 CONT INO E _
RETd RN
END

C

C SUBROUTINE: FR4SYN _
C RADIX 4 SYNTHESIS _

c
•c

SUBROUTINEFR4SYN(INT,NN, B0, BI, B2, B3, B4, B5, B6, B7)
DIMENSIONL(15),B0(2), BI(2),B2(2), B3(2), B4(2), B5(2),
B6 (2) ,

* B7 (2)
COMMON /CONST/ PII, P7, P7TWO, C22, $22, PI2
EQUIVALENCE (LI5,L(1)), (LI4,L(2)), (LI3,L(3)), (LI2,L(4)),

* (LII,L(5)), (LI0,L(6)), (L9,L(7)), (L8,L(8)), (L7,L(9)),
* (L6,L(10)), (L5,L(II)), (L4,L(12)), (L3,L(13)), (L2,L(14)),
* (LI,L (15))

C

L(1) = NN/4
DO 40 K=2,15

IF (L(K-I)-2) 10, 20, 30
10 L(K-I) = 2
20 L(K) = 2

GO TO 40
30 L(K) = L(K-I)/2
40 CONTINUE

C

PIOVN = PII/FLOAT(NN)
JI = 3
JL= 2
JR= 2

C
DO 120 JI=2,LI,2
DO 120 J2=J1,L2,LI
DO 120 J3=J2,L3,L2
DO 120 J4=J3,L4,L3
DO 120 J5=J4,L5,L4
DO 120 J6=J5,L6,L5
DO 120 J7=J6,L7,L6
DO 120 J8=J7,L8,L7
DO 120 J9=J8,L9,L8
DO 120 JI0=J9,LI0,L9
DO 120 JII=JI0,Lll,LI0
DO 120 JI2=JII,LI2,LII
DO 120 JI3=J12,L13,L12
DO 120 J14=J13,LI4,LI3
DO 120 JTHET=JI4,LI5,LI4

B-36

TH2 = JTHET- 2
IF (TH2)50, 50, 90

50 DO 60 K=I,INT
• T0 = B0(K) + BI(K)

T1 = B0(K) - BI(K)
T2 = B2(K)*2.0
T3 = B3(K)'2.0
B0(K) = T0 + T2
B2(K) = T0 - T2
BI(K) = T1 + T3
B3(K) = T1 - T3

60 CONTINUE
C

IF (NN-4)120, 120, 70
70 K0 = INT*4 + 1

KL = K0 + INT- 1
DO 80 K=K0,KL
T2 = B0(K) - B2(K)
T3 = Bl(K) + B3(K)
B0(K) = (B0(K)+B2(K))*2.0
B2(K) = (B3(K)-BI(K))*2.0
B1(K) = (T2+T3)*P7TWO
B3(K) = (T3-T2)*P7TWO

80 CONTINUE
GO TO 120

90 ARG = TH2*PIOVN
C1 = COS(ARG)
S1 = -SIN(ARG)
C2 = CI*'2 - SI*'2
S2 = CI*SI + CI*SI
C3 = CI*C2 - SI*$2
$3 = C2"SI + $2"CI

C
INT4 = INT*4
J0 = JR*INT4 + 1
K0 = JI*INT4 + 1
JLAST = J0 + INT- 1
DO 100 J=J0,JLAST
K = K0 + J - J0
T0 = B0(J) + B6(K)
T1 = B7(K) - BI(J)
T2 = B0(J) - B6(K)
T3 = B7(K) + BI(J)
T4 = B2(J) + B4(K)
T5 = B5(K) - B3(J)

• T6 = B5(K) + B3(J)
T7 = B4(K) - B2(J)
B0(J) = T0 + T4
B4(K) = T1 + T5
BI(J) = (T2+T6)*CI- (T3+T7)*SI

B-37

B5(K) = (T2+T6)*SI+ (T3+T7)*CI
B2(J) = (T0-T4)*C2- (TI-T5)*S2
B6(K) = (T0-T4)*$2 + (TI-T5)*C2
B3(J) = (T2-T6)*C3- (T3-T7)*S3
B7(K) - (T2-T6)*S3+ (T3-T7)*C3 "

100 CONTINUE
JR = JR + 2
JI = JI - 2
IF (JI-JL) i10, 110, 120

110 JI = 2*JR- 1
JL = JR

120 CONTINUE
RETd RN
END

C
C--"

C SUBROUTINE: FORD1
C IN-PLACE REORDERING SUBROUTINE
C-"

C
SUBROUTINE FORDI(M, B)
DIMENSION B(2)

C
K = 4
KL = 2
N = 2**M
DO 40 J=4,N,2

IF (K-J) 20, 20, 10
10 T = B (J)

B(J) = B(K)
B (K) = T

20 K = K- 2
IF (K-KL) 30, 30, 40

30 K = 2*J
KL= J

40 CONTINUE
RE_O RN
END

C
C-"

C SUBROUTINE: FORD2
C IN-PLACE REORDERING SUBROOTINE
C--

C
SUBROUTINE FORD2(M, B)
DIMENSION L(15), B(2)
EQUIVALENCE (LI5,L(1)), (LI4,L(2)), (LI3,L(3)), (LI2,L(4)),

* (LII,L(5)), (LI0,L(6)), (L9,L(7)), (L8,L(8)), (L7,L(9)),
* (L6,L(10)), (L5,L(II)), (L4,L(12)), (L3,L(13)), (L2,L(14)),
* (LI,L (15))

B-38

N = 2**M
L(1)= N
DO 10 K=2,M

• L(K) = L(K-I)/2
10 CONTINUE

DO 20 K=M,14
L(K+I) = 2

20 CONTINUE
IJ = 2
DO 40 JI=2,LI,2
DO 40 J2=JI,L2,LI
DO 40 J3=J2,L3,L2
DO 40 J4=J3,L4,L3
DO 40 J5=J4,L5,L4
DO 40 J6=J5,L6,L5
DO 40 J7=J6,L7,L6
DO 40 J8=J7,L8,L7
DO 40 Jg=JS,Lg,L8
DO 40 JI0=Jg,LI0,L9
DO 40 JII=JI0,LII,L_0
DO 40 JI2=JII,LI2,LII
DO 40 JI3=JI2,LI3,LI2
DO 40 JI4=JI3,LI4,LI3
DO 40 JI=JI4,LI5,LI4

IF (IJ-JI) 30, 40, 40 <i_,
i.30 T = B(IJ-I)- .:.

B (IJ-l) = B(JI-l) -_
B (JI-l) = T .,
T = B(IJ)
B(IJ) = B(JI) i_
B(JI) = T i.i.

40 IJ = IJ + 2
RETURN
END

B-39

subroutine REMPWR

FUNCTION: Computes remnant power over a specific frequency o
"window".

OPERATION: Once a power spectrum has been computed by the "
subroutine SPECT and stored in the vector XDATA, the
routine REMPWR computes the accumulated power in XDATA
between the frequency indices KLOW and KHIGH,
exclusive of power at SOS indices defined by HARM.
Remnant power is returned as SUMREM, •with NREM
indicating the number of frequency indices used in
computing the remnant power.

INPUTS: ARGLST: NCOMP, HARM, XDATA, KLOW, KHIGH

OUTPUTS: ARGLST: NREM, SUMREM

CALLER: SPECT

CALLS:

B-4_

subroutine REMPWR

l SPECT

NCOMP
HARM NREM
XDATA SUMREM
KLOW i%0
KHIGH m

%0
o

iREMPwRI

B-41

SUBROUTINE REMPWR (NCOMP,HARM, XDATA, KLOW, KHIGH, NREM, SUMREM)
C
C REMPWR COMPUTES THE SUMMED REMNANT POWER OVER THE
C HARMONIC WINDOW DEFINED BY (KLOW,KHIGH)
C SUMREM EXCLUDES POWER AT THE SOS HARMONICS DEFINED
C BY HARM, AND RETJRNS THE NUMBER OF REMNANT FREQS SUMMED
C
C INPUTS: (VIA ARGLST) NCOMP,HARM,XDATA
C (VIA ARGLST) KLOW, KHIGH
C OUTPUTS :(VIA ARGLST) NREM, SUMREM
C

INTEGER HARM (i)
DIMENSION XDATA (i)

C
NREM = 0 IZERO COUNTER & SUMMER
SUMREM = 0.

C
DO 20 K = KLOW,KHIGH !SUM FROM KLOW TO KHIGH

C
DO 10 L = I,NCOMP /EXCLUDE SOS HARMONICS

10 IF (K .EQ. HARM(L)) GOTO 20
C

INDEX = 2*K + 1 IGET REMNANT AMP
AMPREM = XDATA (INDEX)
SUMREM = SUMREM + AMPREM*AMPREM IACCUMULATE 2*PWR
NREM = NREM + 1 IINCREMENT COUNTER

C
20 CONTI NUE

C
SUMREM = SUMREM/2. ICALC SUMMED REM PWR
RE_JRN
END

B-42

subroutineLIMIT

" FUNCTION: Maintainvariablewithin limits

OPERATION: LIMIT first checks that the desiredminimum value XLOW
is less than or equal to XHIGH. If the test fails, an
error message is sent to the terminal,and the program
stops. Otherwise, the variable X is adjusted,if
necessary,to lie between XLOW and XHIGH.

INPUTS: ARGLST: XLOW, XHIGH, X

OUTPUTS: ARGLIST:X

CALLER: SPECT

CALLS:

B-43

subroutine LIMIT

SPECT 1

XLOW i O
XHIGH X

X _

o

B-44

SUBROOTINE LIMIT (XLOW, XHIGH, X)
C

IF (XLOW .LE. XHIGH) GOTO 10
._ CALL TTYOUT ('*****LIMIT: LOW/HIGH LIMITS REVERSED*****')

STOP
C
10 IF (X .LT. XLOW) X = XLOW

IF (X .GT. XHIGH) X = XHIGH
RETURN
END

:i

B-45

subroutine DFCN

FUNCTION: Compute the describing function between two channels

OPERATION: For each SOS index "j", DFCN computes the describing
• function gain Aa =GAIN(J) and relative phase shift A_ -

J J
= PHASE(J) between two channels as follows:

Aa = a - a
j j,l 9,2

j j,l j,2

where a =AMPCOR(J,I) is the amplitude of signal I in
j,l

dB, and _ =PHSCOR(J,I) is the phase shift of signal
j,i

I in degrees. AMPCOR and PHSCOR are determined by
previous calls to SPECT, and the indices I are set in
VERNAL to point to the channels specified by the user
to serve as the numerator (I=l) and denominator (I=2)
quantities for describing function computation.
Because phase shift is a circular function, repeating
every 360 degrees, a scheme for "unwrapping" the phase
is employed in an attempt to maintain a smoothly
varying function of frequency. Specifically, the
phase computation at a given SOS frequency is adjusted
up or down by an integral multiple of 360, if
necessary, to yield a result that is within ± 180
degrees of the phase estimate at the previous SO
frequency. (The reference phase PHSOLD is initialized
to zero for the first SOS frequency.)

The signal/noise ratios CDIV are checked for both the
numerator denominator signals; if either ratio is less
than 6 dB, the flag CRFLAG is set from subsequent
printout of "stars" (****) to indicate an unreliable
describing function estimate at that frequency.

INPUTS: ARGLST: JDFCN, NCOMP
<SPCCOM>: AMPCOR, PHSCOR, CDIVR

OUTPUTS: ARGLIST: GAIN, PHASE, CRFLAG

LOCAL: PHSOLD

B-46

subroutine DFCN

i VERNAL

JDFCN 'IGAIN
NCOMP PHASE

CRFLG
o

i

o

AMPCOR
PHSCOR
CDIVR

fo
<SPCCOM>

B-47

SUBROUTINE DFCN (JDFCN, NCOMP, GAIN, PHASE, CRFLAG)
c
C DFCN COMPUTES DESCRIBING FUNCTION FOR TWO CHANNELS
C CHANNEL NUMBERS FOR (NUM,DENOM) ARE (JDFCN(1),JDFCN(2))
C GAIN/PHASE IS DIFFERENCE IN DB/RAD OF CORRELATED SIGNAL "
C AMPS/PHASES
C PHASE CHANGE WITH FREQUENCY IS LIMITED , AND A FLAG IS .
C SET WHEN THE C/R RATIO IS LOW, FOR EITHER CHANNEL
C
C INPUTS: (VIA ARGLST) JDFCN, NCOMP
C (VIA SPCCOM) AMPCOR,PHSCOR,CDIVR
C OUTPUTS: (VIA ARGLST) GAIN,PHASE,CRFLAG
C

COMMON /SPCCOM/ AMPCOR,PHSCOR,CDIVR
C

DIMENSION JDFCN(2), GAIN(l), PHASE(1), CRFLAG(1),
1 AMPCOR(15,4), PHSCOR(15,4), CDIVR(15,4)

C
DATA BLANK, STARS/' ', '****'/
DATA SIXDB /6./
DATA PI, TWOPI /3.14159, 6.28318/

c
PHSOLD =0.

C
DO 40 J= I,NCOMP
JNUM = JDFCN(1)
JDENOM =JDFCN(2)
GAIN(J) = AMPCOR(J,JNUM) - AMPCOR(J,JDENOM) !GET GAIN

c
PHSTMP = PHSCOR(J,JNUM) - PHSCOR(JrJDENOM) ZGET PHASE
PHSDIF = PHSTMP - PHSOLD

10 IF (PHSDIF .LE. PI) GOTO 20
PHSDIF = PHSDIF -TWOPI
GOTO 10

20 IF (PHSDIF .GE. -PI) GOTO 30
PHSDIF = PHSDIF + TWOPI
GOTO 20

30 PHSTMP = PHSOLD + PHSDIF
PHASE (J) = PHSTMP

c
CRFLAG(J) = STARS ISET C/R FLAG IF C/R LOW
IF (CDIVR(J, JNUM) .LT. SIXDB) GOTO 40
IF (CDIVR(J,JDENOM) .LT. SIXDB) GOTO 40
CRFLAG (J) = BLANK
PHSOLD = PHSTMP

40 CONTINUE
C

RETJRN
END

B-48

APPENDIX C
OTHER MAJOR FORTRAN ROUTINES

P

This Appendix contains documentation for the FORTRAN subprograms

TITLER, RWHEAD, and RWDATA, which are common to the VERRUN and VERNAL

software systems.

C-I

subroutine TITLER

FUNCTION: Reads and writes title information

OPERATION: Title information may be read from or written to
either a file or the terminal. Title information
includes the file name (if relevant), run number,
date, time, and user-defined commentary.

The flag IRW indicates whether TITLER reads or writes
(l=read, 2=write). If information is to be specified
interactively (indicated by the value of LUNIT), the
current date and time are determined by calls to the
FORTRAN subroutines DATE and TIME, and date, time, and
run number are displayed to the user. If the program
is in the "run" mode (indicated by the value 'R', for
the flag MODE), the user is provided the option to
change the run number. Finally, the user is given the
opportunity to specify up to six lines of commentary.

If title information is being written to the terminal,
display of the commentary will be suppressed if TITLER
is called with MODE set to 'S'. A call to FILIN

(FILOUT) is made to transfer commentary when title
information is being read from (written to) a file.

INPUTS: ARGLST: IRW, LUNIT, MODE, IRON

OUTPUTS : ARGLST: IRON

I/O: <TTLCOM>: FNAME, IDATE, ITIME, NLINE, TITLE

CALLER: VERRUN, RWHEAD (VERRUN software system)
VERNAL, RWHEAD (VERNAL software system)

C-2

subroutine TITLER

(CALLING
,. PROGRAM)

LUNIT IRUN
MODE
IRI._

oo

i

i I °TITLER

,|,

FMAME
IDATE
ITIME
NLINE
TITLE

<TTLCOM>

C-3

SUBROUTINE TITLER (IRW, LUNIT, MODE, IRUN)
c
C TITLER READS/WRITES THE TITLE FROM/TO A FILE OR TTY
C THE TITLE INCLUDES FILE NAME, DATE, TIME, AND COMMENTS
C

C INPUTS (VIA ARGLST) IRW (i = READ, 2 = WRITE)
....C (VIA ARGLST) LUNIT,MODE .

C OUTPUTS:(VIA ARGLST) IRUN
C (VIA TTLCOM) IDATE, ITIME, NLINE, TITLE
c

COMMON /TTLCOM/ FNAME, IDATE, ITIME, NLINE, TITLE
•C

LOGICAL*I LASK,MODE,ITIME(8),IDATE(9),TITLE(255),FNAME(ii)
INTEGER HOURS, SECONS

C
DATA NDIM /255/
DATA LUNTTY /5/

c
GOTO (100,200) IRW

C
C READ-IN SECTION
100 IF (LUNIT .NE. LUNTTY) GOTO 130
c
C READ IN FROM TTY
110 CALL DATE (IDATE)

CALL TIME (ITIME)
WRITE (LUNIT, 3000) IRUN, IDATE, ITIME

3000 FORMAT (IX,'RUN NUMBER: ' I4 4X,'DATE: ',9AI,4X,'TIME: '8 , f

9AI,/)
IF (MODE .EQ. 'P') GOTO 120

CALL TTYOUT(' ')
IF (LASK('CHANGING THE RUN NUMBER? ') .EQ. 'N') GOTO 120
CALL TTYOUT ('NEW RUN NUMBER: $')
IRUN = IANS (0, 100)
GOTO 110

120 CALL TTYOUT ('NUMBER OF COMMENT LINES: $')
NLINE = IANS (0, 6)
IF (NLINE .EQ. 0) RETJRN
CALL TTYIN (NLINE, NDIM, TITLE)
RE_JRN

c
C READ IN FROM FILE
130 READ (LUNIT, 1000) FNAME, IRUN, IDATE, ITIME
1000 FORMAT (7X,IIAI,15X,I4,1IX,9AI,10X,9AI)

READ (LUNIT, 1010) NLINE
1010 FORMAT (19X,I4)

CALL FILIN (NLINE, NDIM, TITLE, LUNIT)
RETJ RN

c
C WRITE-OUT SECTION

C-4

200 IF (LONIT .NE. LONTTY) GOTO 210
C
C WRITE OUT ONTO TTY

. WRITE (LUNIT,2000) FNAME, IRON, IDATE,ITIME
2000 FORMAT (IX,'FILE: ',IIAI,6X,' RUN NO: ' I4 4X ' DATE: '

1 9AI,3X,' TIME: ',gAI)
IF (MODE .EQ. 'S') RETORN ISUPPRESS TITLE WRITEOUT
IF (NLINE .NE. 0) CALL TTYOOT (TITLE)
RETO RN

C
C WRITE OUT ONTO FILE
210 WRITE (LONIT, 2000) FNAME, IRON, IDATE, ITIME

WRITE (LUNIT, 2010) NLINE
2010 FORMAT (IX,'TITLE LINE COUNT: ',I4)

IF (NLINE .NE. 0) CALL FILOUT (TITLE, LUNIT)
RETdRN
END

C-5

subroutine RWHEAD

FUNCTION: Reads and writes header information

OPERATION: Information may be written to or read from a data
file, or written to (but not read from) the terminal.
If RWHEAD is called with LUNIT set to the terminal
device number, header information is displayed on the
terminal, and control returns to the calling program.
If information exchange with a data file is indicated,
the following operations are performed:

• a. The user specifies the name of the data
file.

b. If currently open, the data file is closed.

c. The data file is opened, and the flag IOPEN
is set to 'Y'.

d. Header information is written/read. This
information consists of a program version
number, title information (via a call to
TITLER), time base parameters, and SOS
parameters.

If the flag ICLOSE is set to i, the data file is
closed and IOPEN is set to 'N'; otherwise, the file
remains open. The file will be closed if program
VERRUN is being run in the parameter setup mode; it
will remain open if program VERRUN is operating in the
"run" mode, or if program VERNAL is being run.

iNPUTS: ARGLST: IRW, LUNIT, ICLOSE

I/O: ARGLST: IRUN, ISAMP, NPER, NRUN, NCOMP, HARM, AMP,
PMUL
<TIMCOM>: PZERO, FZERO, TSAMPt TRUN
<TTLCOM>: FNAME, IDATE, ITIME, NLINE, TITLE

CALLER: VERRUN, PARSET (VERRUN software system)
VERNAL (VERNAL software system)

CALLS: TITLER

C-6

subroutine RWHEAD

(CALLING
PROGRAM)

IRW IRUN, ISAMP
LUNIT NPER, NRUN
CLOSE NCOMP, HAPJI _I

AMP, PMUL m
_D
o

'I
FNAME, IDATE . PZERO, FZERO

ITIME, NLINE, TITLE | TSAMP, TRUI_

0 1 RWHEAD ' 0
: /

<TTLCOM> IRW <TIMCOM>
LUNIT IRUN
MDUMY
IRUN

• TITLER

h

C-7

SUBROUTINE RWHEAD(IRW,LUNIT,ICLOSE,IRUN,ISAMP,NPER,
1 N_JN,NCOMP,HARM,AMP,PMUL)

C
C CHANGES BY W.H. LEVISON, 12/9/83
C i. INITIALIZE MDOMY TO BE 'P'
C 2. ELIMINATE READ/WRITE OF ISEED
C
C READS/WRITES HEADER FROM/TO A DATA FILE
C ALSO WRITES HEADER TO TTY
C
C INPUTS: (VIA ARGLST) IRW (1=READ HEADER,2=WRITE HEADER)
C (") LUNIT
C (VIA ARGLST) ICLOSE (1=CLOSE FILE, 2=LEAVE FILE)

OPEN
C I/O: (VIA ARGLST) IRUN, ISAMP
C (") NPER, NRUN, NCOMP
C (") HARM, AMP, PMUL
C (VIA TIMCOM) PZERO, FZERO, TSAMP, TRUN
C

COMMON /TIMCOM/ PZERO, FZERO, TSAMP, TRUN
COMMON /TTLCOM/ FNAME, IDATE, ITIME, NLINE, TITLE

C
LOGICAL*I IOPEN,MDUMY,FNAME(II), IDATE (9), TITLE (255)
INTEGER HARM(l), PMUL(1), HOURS, SECONS
DIMENSION AMP (i)

c
DATA NVERS /2/
DATA LUNTTY /5/
DATA IOPEN /'N'/
DATA MDUMY/'P'/

c
IF (LUNIT .EQ. LUNTTY) GOTO 201

C
5 CALL FILNAM (IRW, FNAME, NCHAR) IGET FILE NAME

IF (IOPEN .EQ. 'N') GOTO 10
CLOSE (UNIT = LUNIT, DISPOSE = 'SAVE') IAND CLOSE IT IF OPEN
IOPEN = 'N' IAND INDICATE IT'S

CLOSED
10 GOTO (100, 200) IRW

C
C READ FROM FILE
C
100 CONTINUE

OPEN (UNIT=LUNIT,NAME=FNAME,CARRIAGECONTROL='LIST',TYPE='OLD')!
IOPEN = 'Y'
READ (LUNIT, 105) NVERS

105 FORMAT (17X, Ii,/,/)
CALL TITLER (IRW, LUNIT, MDOMY, IRUN)
READ (LUNIT, 110) ISAMP

110 FORMAT (/, /, 25X, I4)

C-8

READ (LUNIT, 115) FZERO, PZERO
115 FORMAT (17X, IPEI2.3, 21X, IPEI2.3)

READ (LUNIT, 120) TEMP, NPER
120 FORMAT (17X, IPEI2.3, 28X, I5)

READ (LUNIT, 125) TRUN, NRUN
125 FORMAT (17X, IPEI2.3, 28X, I5)

READ (LUNIT, 130) NCOMP
130 FORMAT (/,/, 22X, I4,/)

READ (LUNIT, 135) (HARM(I), AMP(I), PMUL(I), I=I,NCOMP)
135 FORMAT (10X, I5, 16X, F6.3, 5X, I6)

GOTO 300
c
C WRITE TO FILE (OR TTY)
C
200 CONTINUE

OPEN (UNIT=LUNIT,NAME=FNAME,CARRIAGECONTROL='LIST',TYPE='NEW')!
IOPEN = 'Y'

201 WRITE (LUNIT, 205) NVERS
'VERSION NUMBER: ' Ii)205 FORMAT (iX,

WRITE (LUNIT, 206)
206 FORMAT (/, IX, '***RUN IDENTIFICATION***')

CALL TITLER (IRW, LUNIT, MDUMY, IRUN)
WRITE (LUNIT, 209)

209 FORMAT (/, IX, '***TIME BASE PARAMETERS***')
WRITE (LUNIT, 210) ISAMP

210 FORMAT (IX,-'SAMPLE PERIOD: ', 8X, I4,' MSEC')
WRITE (LUNIT, 215) FZERO, PZERO

215 FORMAT (IX, 'BASE FREQUENCY: ' IPEI2 3, ' HZ'F • t

1 4X, 'BASE PHASE: ' IPEI2 3, ' DEG')
WRITE (LUNIT, 220) NPER*(ISAMP/1000.), NPER

220 FORMAT (IX, 'SOS PERIOD: ,IPEI2.3, ' SEC',
1 4X ,'WITH: ', 13X, I5 ' PTS') /i_

WRITE (LUNIT, 225) TRUN, NRUN ii_:_
' SEC' "_ ",;225 FORMAT (IX, 'RUN LENGTH: ,IPEI2.3, ,

1 4X, 'WITH: ', 13X, I5 ' PTS') _ii
WRITE (LUNIT, 229) •••

229 FORMAT (/, IX, '***SOS SIGNAL PARAMETERS***')
WRITE (LUNIT, 230) NCOMP ••_

'# OF SOS COMPONENTS: ' I4).... E230 FORMAT (iX,
WRITE (LUNIT, 234)

'AMP ''COMP' 5X, 'HARM' 7X, 'FREQ', 7X,234 FORMAT (2X, , ,
'PMUL' 7X, 'PHS')1 8X, ,

WRITE (LUNIT, 235) (J,HARM(J),FZERO*HARM(J),AMP(J),
• 1 PMUL(J),PZERO*PMUL(J), J=I,NCOMP)

235 FORMAT (I5,5X,I5,5X,F6.2,5X,F6.3,5X,16,5X,F6.i)
• C

IF (LUNIT .EQ. LUNTTY) RETJRN IRETORN IF JUST DONE TTY WRITE
c
300 IF•(ICLOSE .NE. l) RETJRN

CLOSE (UNIT = LUNIT, DISPOSE = 'SAVE') ICLOSE FILE

C-9 ill:

IOPEN = 'N' IAND INDICATE CLOSED
RETURN
END

J,

C-10

subroutineRWDATA

, FUNCTION: Reads and writes time history data

OPERATION: The data array IDATA is written to or read from a data
" file. IDATA may also be displayedon the user's

terminal. Data are stored in IDATA in an interleaved
format: the first data sample from the first channel,
followed by the first sample from the second channel,
etc. The data file, which has been opened previously
by a call to RWHEAD, is closed upon completionof data
transfer.

INPUTS: ARGLST: IRW, LUNIT, NFRAME, NCHAN

OUTPUTS: ARGLST: IDATA

CALLER: (mainprogram)

CALLS:

C-II

SUBROUTINE RWDATA (IRW, LUNIT, NFRAME, NCHAN, IDATA)
C
C RWDATA READS/WRITES THE DATA ARRAY IDATA FROM/TO FILE
C
C INPUTS: (VIA ARGLST) IRW (i = READ, 2 = WRITE)
C LUNIT, NFRAME, NCHAN, IIDATA
C OUTPUT: (VIA ARGLST) IDATA ;
C

DIMENSION IDATA (i), ITEMP (10)
c

DATA LUNTTY/5/
DATA NCMAX/4/

c
IF(NCHAN .LE. NCMAX) GOTO 10
CALL TTYOUT('******RWDATA: NCHAN .GT. NCMAX******')
STOP

c
10 GOTO (100,200) IRW

C
C READ DATA .FROM FILE & LOAD IDATA
100 IF (LUNIT .NE. LUNTTY) GOTO 105

CALL TTYOUT ('******RWDATA: TRYING TO READ FROM TTY******')
STOP

C
105 READ (LUNIT, 999)
999 FORMAT(/,/)

C
INDEX = 0
DO 120 I = i, NFRAME
READ (LUNIT,1000) IDUMMY, (ITEMP(J), J=I,NCHAN)

1000 FORMAT (IX, 515)
DO 110 J = i, NCHAN

110 IDATA(INDEX+J) = ITEMP(J)
120 INDEX = INDEX + NCHAN

GOTO 300
C
C WRITE ALL CHANNELS OF DATA FROM IDATA TO FILE (OR TTY)
200 WRITE (LUNIT, 2000) NCHAN
2000 FORMAT (/, iX, '***RECORDED DATA OF ', I3, ' CHANNELS***')

WRITE (LUNIT, 2001)
' C1 ' ' C2 ' ' C3 ' ' C4 '2001 FORMAT (2X, 'IFRM', , , ,)

INDEX = 0
DO 220 I=I,NFRAME
DO 210 J=I,NCHAN

210 ITEMP(J) = IDATA(INDEX+J)
WRITE (LUNIT,1000)I, (ITEMP(J),J=I,NCHAN)

220 INDEX = INDEX + NCHAN
IF (LUNIT .EQ. LUNTTY) RETdRN

C
300 CLOSE (UNIT = LUNIT, DISPOSE = 'SAVE')

C-12

RETJRN
END

C-13

subroutine RWDATA

I (MAIN
PROGRAM)

I

IRW
LUN IT IDATA
NFRAME
NCHAN

i

RWDATA II i

C-14

APPENDIXD
FORTRAN I/O LIBRARY ROOTINES

A list of the I/O library routines, along with brief descriptions

of their functions, are included in Table D.I. Listings of each

routine follow.

TABLE D.I IOLIB ROUTINES

FILIN Reads multiple lines of text from a file unit
specified by the calling program, stores in an array
specified by the calling program.

FILNAM Reads in a character string from the TTY, to be used
in specifying a file name for I/O on the system disk

FILOUT Outputs a text string onto a file unit specified in
the calling sequence.

FILSTR Reads a text string from a file unit specified by the
calling program and stores it in an array specified by
the calling program.

GETSTR Reads a single line of text from the TTY and stores it
in an array specified in the calling sequence.

IANS Reads an integer value from the TTY and checks that
the value is within bounds specified by the calling
routine

LANS Reads a single character from the TTY and checks that
it is valid according to the calling routine's
specifications

LASK Writes out a character string onto the TTY, reads back
a single Y/N character, and checks that the character

. is Y or N.

PUTSTR Outputs a single line of text with carriage control at
• the end of the line.

RANS Reads a value from the TTY and checks that the value
is within bounds specified by the calling routine.

D-I

RGET Reads a real value from the TTY.

STRING Same as GETSTR, except a character count is returned
to the calling routine.

TTYIN Reads in multiple lines of text from the TTY and
stores it in an array supplied by the called routine

TTYOUT Writes out onto the TTY a character array supplied by
the calling routine, with carriage control at both the
beginning and the end of the text.

VECTIN Loads a real vector, component by component from TTY
input, providing a range check on the component value,
and an opportunity for user corrections.

VECVAL Prompts the user to specify for a real number. Used
by VECTIN.

D-2

SUBROUTINEFILIN (NLINE,NDIM,TITLE,LUN)
C

LOGICAL*ITEMP (255),TITLE (i),CR_JRN ,LNFEED
• C

ISAVE=0
NTEMP=NDIM-2

C
IF (NLINE.EQ. 0) REBORN
CALL FILSTR (TEMP,LUN) ! READ ONE LINE FROM FILE
DO 10 I=I,71 ILOADTEMP INTO TITLE
ITEMP=I+ISAVE
IF((ITEMP.GE.NTEMP).OR.(TEMP(I).EQ.0))GOTO 15

C ICHECKFOR FULL TITLE VECTOR OR
C INULLCHARACTERIN TEMP INPUT

10 TITLE(ITEMP)=TEMP(I)
15 CONTINUE

IF (ITEMP.GE.NTEMP)GO TO 20 IQUIT IF TITLE IS FILLED
ISAVE=ITEMP ISAVELAST LOADED POSN

5 CONTINUE IBOTTOMOF LINE LOOP
20 IF (L .GT. NLINE) GOTO 25

DO 30 J = L, NLINE
30 CONTINUE
25 ITEMP=ITEMP+I

TITLE (ITEMP) =0
RETO RN

C
DATA CR_dRN, LNFEED /13, 10/

C ::

END '

: .".!

i_i;_,

D-3

SUBROOTINE FILNAM(IOCHAN,NAME,NCHAR)
C
C This subroutine acepts file names, checking them for legality
C (all alphanumeric characters, etc...)
C
C Input is IOCHAN. 1 for Input filename, 2 for Output filename.
C NAME is the array containing the name of the file.
C NCHAR is the number of characters in the filename.
C

LOGICAL*I NAME(10), DOT
LOGICAL*I UPCSA, UPCSZ, ASCII0, ASCII9
CALL TTYOUT('ENTER FILENAME FOR $', 5)
GOTO (5,10) IOCHAN ! Check for legitimate IOCHAN
STOP'****FILNAM:ILLEGAL IOCHAN VALUE**** '

C
C Print appropriate prompt and read filename.
C

5 CALL TTYOUT('$INPUT: $', 5)
GOTO 15

10 CALL TTYOUT('$OUTPUT: $', 5)
15 READ (5, 20) NAME
20 FORMAT (10AI)

C
C Is the first character a letter? (not <a or >b)
C

I = 1
IF ((NAME(I) .LT. UPCSA) .OR. (NAME(I) .GT. UPCSZ)) GOTO 100

C
C Now check the rest of the name to see if it is all

alphanumeric
C characters, and set NCHAR = to 3 places after the '.'
C

DO 200 I = 2,10
IF (NAME(I) .EQ. DOT) GOTO 50
IFLAG = -i
IF ((NAME(I).LT.UPCSA).OR.(NAME(I).GT.UPCSZ)) IFLAG=IFLAG+I
IF ((NAME(I).LT.ASCII0).OR.(NAME(I).GT.ASCII9))IFLAG=IFLAG+I
IF (IFLAG) 200, 200, 100

50 IF ((I .EQ. i) .OR. (I .GE. 8)) GOTO 100
NCHAR = I + 3
DO 110 J = I+l, NCHAR

110 IF (NAME(J) .EQ. DOT) GOTO 100
RETURN ! Legal File Name. Return.

200 CONTINUE
C
C Bad filename: deal with it...
C

D-4

i_0 CALL TTYOUT('INVALIDFILENAME. TRY AGAIN: $', 5)
GOTO 15

C
" DATA UPCSA, UPCSZ, ASCII0, ASCII9 /65, 90, 48, 57/

DATA DOT /'.'/
o END

D-5

SUBROUTINE FILOUT (MSG, LUN)
C
C
C This subroutine outputs the string MSG onto the file unit LUN.
C
C Last Modification Date: 12-July-83
c

LOGICAL*I MSG (i), EOF
c

ISTART = 1
c
C This next loop goes through the string until it encounters an
C End Of File indicator in order to find the terminating

position
C in the string.
C

ISTOP = ISTART
15 ISTOP = ISTOP + 1

IF (MSG(ISTOP) .NE. EOF) GOTO 15
c
c

INUM = ISTOP- ISTART
INUM = INUM + 2
WRITE (LUN, 200) (MSG (I), I = ISTART, ISTOP)

200 FORMAT (IX, 255AI)
C

RETJRN
C

DATA EOF /0/
END

D-6

SUBROUTINE FILSTR (CHAR, LUN)
LOGICAL*I CHAR(l)

C GETS UP TO 255 CHARACTERS FROM THE FILE
C THE TEXT STRING IS TERMINATED BY A NULL BYTE.
C <CR> IS NOT INCLUDED IN THE TEXT STRING
c

READ (LUN, 101) (CHAR (I), I = i, 255)
101 FORMAT(255AI)
C THE STRING WILL BE PADDED WITH SPACES (32)
C FIND THE FIRST NON SPACE AND SET THE BYTE
C AFTER IT TO 0.

DO 20 I=70,1,-i
20 IF(CHAR(I).NE.32)GOTO 30

CHAR (i)=0
RE_JRN

30 CHAR (I+l)=0
RETdRN
END

D-7

SUBROOTINE GETSTR (CHAR,MAX)
LOGICAL*I CHAR (i)

C GETS UP TO 'MAX' CHARACTERS FROM THE TTY:
C THE TEXT STRING IS TERMINATED BY A NULL BYTE.
C <CR> IS NOT INCLUDED IN THE TEXT STRING
C

ACCEPT 101, (CHAR(I),I=I,MAX)
101 FORMAT (100AI)
C THE STRING WILL BE PADDED WITH SPACES (32)
C FIND THE FIRST NON SPACE AND SET THE BYTE
C AFTER IT TO 0.

DO 20 I=MAX,I,-I
20 IF(CHAR(I).NE.32)GOTO 30

CHAR (1)=0
RE_JRN

30 CHAR (I+l)=0
REBORN
END

D-8

FUNCTION LANS (ANSI,ANS2)
c

. LOGICAL*I LANS,ANSI,ANS2
5 READ(5,100)LANS

100 FORMAT(S, AI)
" IF((LANS.EQ.ANSI).OR.(LANS.EQ.ANS2))RE_JRN

WRITE (5,200)ANSI,ANS2
' OR' A1' ' $)200 FORMAT(' PLEASE ANSWER ',AI, , , : ,

CALL TTYOUT ('$ ')
GO TO 5
END

c
FUNCTION IANS(MIN,MAX)

5 READ (5,100)IANS
100 FORMAT(I6)

IF((IANS.GE.MIN).AND. (IANS.LE.MAX))RE_JRN
WRITE (5,200)MIN,MAX

200 FORMAT(IX,'MIN=',I6,' AND MAX=',I6,' TRY AGAIN:'$)
GO TO 5
END

D-9

FUNCTION LASK (MSG)
C THIS PRINTS MSG AS A PROMPT OF UP TO 70 CHARACTERS, THEN
C ACCEPTS EITHER Y OR N AS A RESPONSE.

o

C
LOGICAL*I LANS, LASK, MSG(1)

C _ "

DO 10 I = i, 70
IF (MSG (I) .EQ. 0) GOTO 20

10 WRITE (5, 100) MSG (I)
100 FORMAT ($, IH+, AI, $)
20 LASK = LANS ('Y', 'N')

TYPE 200

200 FORMAT (/)
RETd RN
END

D-10

SUBROUTINE PUTSTR(CHAR,CEND)
LOGICAL*I CHAR(1),CEND

C OUTPUT UP TO 70 CHARACTERS ON THE TTY:
C IF CEND=$ THEN SURPRESS THE FINAL <CR>.

° C
DO 5 IC=I,70

5 IF(CHAR(IC).EQ.0)GOTO 6
IC=71

6 IC=IC-I
IF(CEND.EQ.'$')GOTO 8
TYPE 1000,(CHAR(1),I=I,IC)

1000 FORMAT('+' ,70AI)
RETU RN

8 TYPE 1001, (CHAR(I),I=I,IC)
1001 FORMAT('+',70AI,$)

RETJRN
END

D-If

FUNCTION RANS(RMIN,RMAX)
c
C FUNCTION TAKES A REAL NUMBER IN A SPECIFIC RANGE AS INPUT
C
100 RANS = RGET()

IF ((RANS .LT. RMIN) .OR. (RANS .GT. RMAX)) GOTO 200
RETJRN

200 WRITE (5, 10) RMIN, RMAX
' AND MAX= ' IPEIS.5 ' TRY AGAIN: ')10 FORMAT ('$MIN= ',IPEI5.5, , ,

GOTO 100
END

D-12

FUNCTION RGET ()
C
C FUNCTION TAKES A REAL NUMBER AS INPUT, CHECKING FOR VALIDITY
c

LOGICAL*I CHAR(25), ERR, STRING
10 CALL STRING(CHAR,15,I) ITAKE UP TO 15 CHARACTERS

IF (CHAR(I) .EQ. 0) GOTO 20 IIMMEDIATE CR/LF NOT ALLOWED
DECODE (I, 100, CHAR, ERR = 20) RGET

100 FORMAT(FI5.0)
RETJRN

c
C ERROR IN INPUT...DEAL WITH IT
C

20 TYPE 200
GOTO 10

200 FORMAT('0NOT A VALID REAL NUMBER. TRY AGAIN: ', $)
END

D-13

SUBROUTINE STRING(CHAR,MAX,I)
C
C STRING TAKES UP TO "MAX" CHARACTERS FROM THE TTY
C END OF TEXT IS A NULL BYTE
C THE CR/LF ISN'T INCLUDED IN THE TEXT
C

LOGICAL*I CHAR (i)
ACCEPT 101, (CHAR(I), I=I,MAX)

101 FORMAT(100AI)
C
C THE STRING WAS AUTOMATICALLY PADDED WITH SPACES, SO NOW WE
C GET TO GET RID OF THEM...
C

DO 20 I=MAX,I,-I
20 IF (CHAR(I) .NE. 32) GOTO 30

CHAR(l) = 0
RETJRN

30 CHAR(I+1) = 0
RETdRN
END

D-14

SUBRO0TINE TTYIN(NLINE,NDIM,TITLE,LAST)
C
C READS NLINE LINES OF TTY INPUT,CHARACTERBY CHARACTER,
C AND STRINGS IT TOGETHERIN TITLE, SEPARATINGEACH LINE
C WITH A CARRIAGE RE_JRN & LINE FEED
C
C ROUTINEREADS A MAX OF (NDIM-2*NLINE-I)CHARACTERS,
C WHERE NDIM IS DIMENSIONOF TITLE
C
C END OF TTY INPUT IS INDICATEDBY A NULL CHARACTER
C LAST POSITION IS RETJRNED IN "LAST".
C

LOGICAL*ITEMP (71),TITLE (I), CRTJRN,LNFEED, BLANK
C

ISAVE=0
NTEMP=NDIM-2

C
DO 5 L=I,NLINE IREADNLINE LINES
WRITE(5,200) IWRITEPROMPT CHARACTER

200 FORMAT(/, '+I'$)
CALL GETSTR (TEMP,70) IREADONE TTY LINE OF UP TO 70

C ICHARACTERS;TERMINATEWITH NULL
DO 10 I=i,71 ILOADTEMP INTO TITLE
ITEMP=I+ISAVE
IF((ITEMP.GE.NTEMP).OR.(TEMP(I).EQ.0))GOTO 15

C ICHECKFOR FULL TITLE VECTOR OR
C INULLCHARACTERIN TEMP INPUT

10 TITLE(ITEMP)=TEMP(I)
15 TITLE(ITEMP)=CR_JRN

ITEMP=ITEMP+I
TITLE(ITEMP)=LNFEED
•ITEMP = ITEMP + 1
TITLE(ITEMP)=BLANK
IF(ITEMP.GE.NTEMP)GOTO 20 IQUIT IF TITLE IS FILLED
ISAVE=ITEMP ISAVELAST LOADED POSN

5 CONTINUE IBOTTOMOF LINE LOOP
20 ITEMP=ITEMP+I

TITLE(ITEMP)=0
LAST = ITEMP•
RETJRN

C
DATA CR%_JRN, LNFEED, BLANK /13, 10, 32/ •

• C
END

D-15

SUBROUTINE TTYOUT (MSG)
C
C
C This subroutine outputs the string MSG onto the user's

terminal.
C .if there is a leading dollar sign in the string, the initial .
C carrige return/line feed is supressed. A trailing dollar sign

i C supressed the CR/LF.
C
C Last Modification Date: 12-July-83
c

LOGICAL*I MSG(1), DOLLAR, CRTJRN, LNFEED, EOF
c

ISTART = 1
IF (MSG(ISTART) .NE. DOLLAR) GOTO 5 ! Check if user wants
CR/LF
ISTART = ISTART + 1 I $ is there, message begins at next
character

GOTO 10
c

5 WRITE (5, 100) CRTURN, LNFEED ! No $, print CR/LF
10 IF (MSG(ISTART) .EQ. EOF) RETJRN ! Null msg.

Returns to main prog.
C
C This next loop goes through the string until it encounters an
C End Of File indicator in order to find the terminating

position
C in the string.
c

ISTOP = ISTART
15 ISTOP = ISTOP + 1

IF (MSG(ISTOP) .NE. EOF) GOTO 15
c

ISTOP = ISTOP - 1 ! Get index of the last character
IF (MSG(ISTOP) .EQ. DOLLAR) ISTOP = ISTOP - 1
IF (ISTART .GT. ISTOP) RETURN ! Quit if double dollar sign

c
DO 25 I = ISTART, ISTOP

25 WRITE (5, 100) MSG(I)
c

IF (MSG(ISTOP+I) .EQ. DOLLAR) RETURN
WRITE (5, 100) CRTURN, LNFEED ! Do CR/LF if no ending $
RETURN

C
100 FORMAT ($,lH+,A1,$)

DATA DOLLAR, CRTURN, LNFEED, EOF /'$', 13, 10, 0/
END

D-16

SUBROUTINEVECTIN(MODE,VECNAM,VECDIM,VECTOR,VECMIN,VECMAX)
C

, C LOADS A VECTOR VARIABLE (VECTOR)COMPONENTBY
C COMPONENTFROM THE TTYr IN A PROMPTINGMODEr
C CHECKINGTHAT THE TTY INPUTVALUE IS BETWEENVECMIN

" C AND VECMAX.
C VECNAM IS A ONE-CHARACTERLITERALASSOCIATEDWITH THE
C VECTOR, AND VECDIM IS THE VECTOR'SDIMENSION;BOTH
C ARE ASSUMED SUPPLIEDBY THE CALLING ROUTINE.
C WHEN MODE=I SEQUENTIALENTRY & CORRECTIONARE DONE
C =2 CORRECTIONONLY IS DONE
C

LOGICAL*1 LASK,VECNAM
INTEGERVECDIM
DIMENSIONVECTOR(l)

C
GO TO(5,15)MODE
STOP'*****VECTIN:ILLEGALVALUE FOR MODE*****'

C
5 DO 10 J=I,VECDIM IREAD-INSECTION

I= J
10 VECTOR (I) = VECVAL (I, VECNAM, VECMIN, VECMAX)

C
CALL TTYOUT (' ')
IF (LASK ('ANYCHANGES? ') .EQ. 'N')REBORN

C
15 CALL TTYOUT('ENTER COMPONENTINDEX') ICORRECTIONSECTION
20 CALL TTYOUT('I=$')

I=IANS(i,VECDIM)
VECTOR (I) = VECVAL (I, VECNAM, VECMIN, VECMAX)
CALL TTYOUT (' ') ii_
IF (LASK ('MORE? ') .EQ. 'Y') GOTO 20
RE_JRN

C
END

C

c
c

FUNCTIONVECVAL (I, VECNAM, VECMIN, VECMAX)
C

LOGICAL*IVECNAM
C

, 5 WRITE (5,100)VECNAM, I
' ' I2 ' '100 FORMAT(IX,A1,(, ,)= $)

VECVAL = RANS(VECMIN,VECMAX)
" END

D-17

APPENDIX E
MACRO LIBRARY

" A list of the assembly-language routines, along with brief

descriptions of their functions, are included in Table E.I. Listings

follow.

TABLE E.I UTLLIB ROUTINES

CLSTOP Stops the Clock

CLSTRT Sets clock A to repeatedintervalmode, presets the
buffer to an integervalue set by the calling routine,
and startsthe clock

CLWAIT Determinesclock statusupon enter. If the clock has
already timed out, a flag is set to indicatea "bad
interval",and control is returned to the calling
routine. Otherwise, the flag is set of a "good
interval",and a wait loop is continued until the
clock times out.

ATOD Samples a single A/D channel as specifiedin the
calling routine,converts the sampled voltage into an
integer between _ and 4_95, and returns this integer
to the calling routine.

DTOA Accepts integer value between 0 and 4_95 from calling
routine and does D/A conversionfor a singlechannel
(specifiedby calling routine)

RNUM Generatesand returns to the calling routine a vector
of N random integers

RNSEED Accepts from or returns to the calling routine the
seed number used by RNUM

E-1

.TITLE ATOD
; SUBROUTINE ATOD (ICHAN,IDATA)

;
; IN FILE ATOD. MAC

; ICHAN SPECIFIESCHANNEL NO. FROM 0 TO 15 •
; IDATA IS DATA WORD, BETWEEN 0 AND 4095,
; INCLU SIVE

•GLOBL ATOD

; HPL/SAT DEFINITION (I11COMMENTOUT FOR MNCIII)
LPSADS = 170400 ;A/D CONVERTER STATOS

; MNC DEFINITION (!!ICOMMENT OUT FOR HPL/SAT! !1)
; LPSADS = 171000 ;A/D CONVERTER STATJS

; COMMON DEFINITION
LPSADB = LPSADS+2 ;A/D CONVERTER BUFFER

ATOD: TST (R5)+ ; SKIP PAST PARAMETER COUNT
MOV (R5)+,R0 ; GET ADDRESS OF BUFFER
MOV (R5),RI ; GET DATA BUFFER ADDRESS
CLR @#LPSADS ; INITIALIZE CONVERTER
MOV (R0), R2 ; GET CHANNEL NUMBER
ASH #10,R2 ; SHIFT TO LEFT BYTE
MOV R2, @#LPSADS
INC @#LPSADS ; START CONVERSION

i$: TSTB @#LPSADS ; WAIT FOR CONVERSION
BPL i$; TO FINISH

TSTB @#LPSADS+I ; CHECK FOR CONVERSION
BMI 25 ; ERROR

MOV @#LPSADB, (RI) ; SAVE DATA IN BUFFER
RTS PC

25: MOV #-i, (RI) ; FORCE ERRONEOUS DATA TO -i
RTS PC

•END

E-2

.TITLEDTOA
; SUBR(_JTINEDTOA(ICHAN,IDATA)

; ICHAN SPECIFIESCHANNEL NO. FROM _ TO 5
; IDATA IS DATA WORD, ASSUMEDBETWEEN ZERO AND
; 4B95 INCLUSIVE

.GLOBLDTOA

; HPL/SAT DEFINITION (IIICOMMENTOUT FOR MNCIII)
EXTDA=I7_420

; MNC DEFINITION (IIICOMMENTOUT FOR HPL/SATIII)
; EXTDA=I71060

DTOA: TST (R5)+ ;SKIPARGUMENT COUNT
MOV @(R5)+,R% ;GET CHANNEL NUMBER
ASL R0 ;AND MPY BY 2
MOV @(R5)+,EXTDA(R_);LOADDA
RTS PC

.END

E-3

.TITLE CLOCK

;SIMPLE MSEC CLOCK ROUTINES FOR LPS-II ON HPL, SAT, MNC

;HPL/SAT DEFINITIONS (IIICOMMENT OUT FOR MNCIII)
STATJS= 170404

MODEl= 400
RATSHF= 1 ;NUMBEROF BITS RATE MDST BE LEFT-SHIFTED

;MNCDEFINITIONS (IIICOM_ENTOUT FOR HPL/SATIII)
;STA_0S=171020
;MODEl=2
;RATSHF=3 ;NUMBEROF BITS RATE MUST BE LEFT-SHIFTED

;COMMONDEFINITIONS
PRESET= STAndS+2 ;NO INTERRUPTVECTORS USED
RUN= 1
DONEFL= 200

;CLSTRT(IRATE,NTICKS):SET CLOCK FOR NTICKS AT IRATE,MULTIPLE
INTERVALMODE

;IRATE:I=IMHZ, 2=I00KHZ,3=IOKHZ,4=IKHZ, 5=100HZ,6=SCHMITT-
TRIGGERED,7=LINE

CLSTRT::CLR STA_0S ;CLEARANY EXISTINGSTATE
TST (R5)+ ;SKIPARG COUNT
MOV @(R5)+,RI ;GET RATE
ASH #RATSHF,RI ;SHIFT TO REQUIRED POSITION

BIS #MODEl+RUN,R1 ;SET MODE, RUN BITS
MOV @(R5)+,R0 ;GET NO OF CLOCK TICKS IN PERIOD
BEQ CLSX ;DO NOWT IF NO TICKS..
NEG R0
MOV R0, PRESET ;SET COUNTER

STMODI: MOV RI, STATUS
CLSX: RTS PC

;LOGICAL FUNCTION CLWAIT() RETURNS R0 .FALSE. IF TIMED-OUT ON ARRIVAL,
; ELSE, WAITS TILL CLOCK TIMES OUT, RETURNS R0 .TRUE. FOR GOOD

INTERVAL
CLWAIT::CLR R0 ;SET FLAG FOR BAD INTERVAL

BIT #DONEFL,STATUS ;AREWE DONE?
BNE WAITX ;YES
BIT #RUN, STATUS ;IS AN INTERVALSET UP?
BEQ WAITX ;NO: ABORT

WTLOOP: BIT #DONEFL,STATUS ;YES:WAIT FOR DONE FLAG
BEQ WTLOOP
COM R0 ;FLAGGOOD INTERVAL °

WAITX: BIC #DONEFL,STATUS
RTS PC

E-4 I

;CLSTOP()STOPS CLOCK DEAD
CLSTOP::CLR STATJS

RTS PC
.END

E-5

.TITLE RANDOM
R

.GLOBL RNUM,RNSEED

; SUBROUTINE RNUM (IRAN, N)

; ROUTINE TO GENERATE A VECTOR OF N RANDOM INTEGERS: IRAN.

RNUM: TST (R5)+ ; SKIP ARG COUNT
MOV (R5)+,R3 ; GET ADDRESS OF DATA VECTOR
MOV @(R5)+,R4 ; GET VECTOR LENGTH

NEXT: MOV RNLOW,R0 ; GET COPY OF LOW RN
MOV RNHIGH,RI ; GET COPY OF HIGH RN
MOV R0,RNHIGH ; NEW HIGH RN FORMED
ASL R0 ; SHIFT LOW RN LEFT 2
ASL R0
XOR R0,RI ; EXCLUSIVE OR OF 31 & 13
CLR R0
ASHC #1,R0 ; SHIFT R0,RI LEFT 1
BIS R0,RNHIGH ; MOVE (31113) INTO BIT 0
MOV RI,RNLOW ; MOVE (30112) (16129) INTO RNLOW
ASHC #2,R0 ; SHIFT R0,RI LEFT 2
ASL R0 ; SHIFT TO ZERO BIT 0
XOR R0,RNLOW ; EXCLUSIVE OR FOR LOW-ORDER BITS
MOV RNHIGH,(R3)+ ; STORE RANDOM INTEGER
SOB R4,NEXT ; DONE YET?
RTS PC ; YES, RETJRN.

RNLOW : .BLKW
RNHIGH: .BLEW

; SUBROUTINE RNSEED (ILOW, IHIGH)

; ROUTINE TO SET OR RETRIEVE SEED NUMBER FOR RANDOM INTEGER
; GENERATOR. IF BOTH ILOW=IHIGH=0, THE CJRRENT SEED VALUES ARE
; RE_ORNED IN ILOW AND IHIGH. OTHERWISE THE VALUES OF ILOW AND
; HIGH ARE USED TO SET THE SEED.

; NOTE: ILOW AND IHIGH CAN BE POSITIVE OR NEGATIVE INTEGERS, BUT
; ILOW MUST BE EVEN.

RNSEED: TST (R5)+ ; SKIP ARG CNT
MOV @ (R5) +,RI ; GET ILOW
MOV @(R5)+,R2 ; GET IHIGH
BNE SETSD ; CHECT FOR ZERO ARG

E-6

TST R1
BNE SETSD
MOV RNHIGH, ; BOTH 0, SO RETRIEVECURRENT SEED

R5
MOV RNLOW,

R5
RTS PC

SETSD: MOV RI,RNLOW ; STORE NEW SEED
MOV R2,RNHIGH
RTS PC

•END

E-7

u .,

!, Report No. 2. GovernmentAccessionNo. 3. Recipient'sCatalogNo.
NASA CR-172311

4. Title and Subtitle 5. Report Date

The VERRUN and VERNAL Software Systems for March 1984
6. PerformingOrganizationCode

Steady-State Visual Evoked Response Experimentation

7. Author(s) 8. Performing Organ{zation Report No.

William H. Levison and Greg L. gacharias 5486
10. Work Unit No.

9. Performing Organization Name and Address
Bolt Beranek and Newman Inc.
i0 Moulton Street "11.ContractorGrantNo.

Cambridge, MA 02238 _ NASI-16982
13. Type of Report and PeriodCovered

12. Sponsoring Agency Name and Address ContractorReT),ort
NationalAeronauticsand SpaceAdministration
Washington, DC 20546 14.SponsoringAgencyCode

- 505-35-33-01
15. Supplementary Notes

Langley Technical Monitor: Alan T. Pope
Final Report

16. Abstract

Two digital computer programs have been developed for use in experiments
involving steady-state visual evoked response (VER): VERRUN, whose
primary functions are to generate a sum-of-sines (SOS) stimulus and to
digitize and store electro-cortical responses; and VERNAL, which
provides both time- and frequency-domain metrics of the evoked response.
These programs have been coded in FORTRAN for operation on the Digital
Equipment Corporation PDP-II/34, using the RSX-II Operating System, and
the PDP-II/23, using the RT-II Operating System. Users' and
programmers' guides to these programs are provided, and guidelines
for model analysis of VER data are suggested.

i

17. Key Words(Suggestedby Author(s)) 18. DistributionStatement

8ioinstrumentation (physiological)
Biotechnology Unclassi fi ed - Unli mited
Man-machineinterface

Subject Category 54

19. SecurityCtar4if.(of thisreport) 20. SecurityClatsif.(of thispage) 21. No. of Pages 22. Price

Unclassified Unclassified 221 AI0
Q

.-30s F0_sale bvthe NatinnnlT_hnir.nl Infntmntinn_rvir== _.,innfiolrl t/i,,.;-;* _1_1

J

,0

it

