
NASA Grant NSG 1471

The Embedded Operating System Project

Mid-Year Report, May 1984

Principal Investigator
Roy H. Campbell

f

Research Assistants
Jeff Donnelly

Raymond B. Essick
Judith Grass

Dirk Gmnwald
Pankaj Jalote

David A. McNabb

Software Systems Research Group
University of Illinois at Urbana-Champaign

Department of Computer Science
1304 West Springfield Avenue
Urbana, Illinois 01801-2987

(217) 333-0215



(.MASA-CE-173438) THE EMBEDDED OPERATING N84-26319
SYSTEH PROJECT Mid-Year Interim Report
(Illinois oil.) 192 P nc ioV» Wl^ ^ nnclas

G3/61 00956

NASA Grant NSG 1471

The Embedded Operating System Project

Mid-Year Report, May 1984

Principal Invettigator
Roy H. Campbell

Research Assistants
Jeff Donnelly

Raymond B. Essick
Judith Grass

Dirk Grunwald
Pankaj Jalote

David A. McNabb

Software Systems Research Group
University of Illinois at Urbana-Champaign

Department of Computer Science
1304 West Springfield Avenue
Urbana, Illinois 61801-2987

(217) 333-0215

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD. VA. 221S1



OF rODT? QUALITY

V

ABSTRACT

This progress report describes research towards the design and construction of embedded
operating systems for real-time advanced aerospace applications. The applications concerned
require reliable operating system support that must accommodate networks of computers. The
report addresses the problems of constructing such operating systems, the communications
media, reconfiguration, consistency and recovery in a distributed system, and the issues of real-
time processing! We include a discussion of suitable theoretical foundations for the use of atom-
ic actions to support fault tolerance and data consistency in real-time object-based systems. In
particular, this report addresses:

• Atomic Actions
• Fault-Tolerance
• Operating System Structure
• Program Development
• Reliability and Availability
• Networking Issues

This document reports the status of various experiments designed and conducted to investigate
embedded operating system design issues. We describe experiments and measurements of the
distributed operating system UNIX United, a system chosen for study because of its use of re-
mote procedure calls and its level structure. In addition, we introduce several concepts which
we believe are very important to the economical and efficient design of embedded systems.

To support EOS, our experimental real-time Embedded Operating System design, we are con-
structing a portable object-based development system called INDEED. INDEED provides an
incremental development environment aimed at the particular needs of object-based real-time
system construction. EOS is representative of a family of operating system designs based on a
General Layered Operating System construction methodology called GLOSS. In addition, we
have implemented a portable and reliable compiler for Distributed Path Pascal, the real-time
programming language in which we propose to conduct many of the experiments.



EOS Project: Mid-Year Report May 1984

1. Project EOS Overview

Since 1979, the Software Systems Research Group at the University of Illinois has been working

with Dr. Edwin C. Foudriat of NASA Langley to develop methods and techniques for the construction of

real-time embedded operating systems for aerospace applications. The major practical research contri-

bution produced by this co-operative effort is an experimental real-time programming language called

Distributed Path PascaljCampbell 83]. Distributed Path Pascal incorporates strong-typing and allows

object-oriented programming, modularization of code, separate compilation, and fast real-time execution.

Distributed Path Pascal has been the development vehicle used to study many prototype systems

and research issues. The group has designed several small operating system components[McKendry et

al. 80, Kolstad 83] based on an object-oriented view of a computer system. This view accommodates the

design of autonomous operating system components networked together as "remote objects" [Kolstad 83].

The research project has also produced major contributions (some 18 published papers and 28 technical

reports) in aspects of system design including protection[McKendry & Campbell 80b], fau!t-tolerance[Wei

& Campbell 80, Schmidt 83, Campbell & Randell 83, Campbell & Anderson 83], fault-tolerance in real-

time systems[Horton 79, Wei 81, Leistman 81], atomicity, fault-tolerance, and consistency[Jalote &

Campbell 83, Mickunas et al. 84b], and distributed data base consistency[Mickunas & Jalote 83].

Our current research concentrates on applying the results of our previous research to the design

and construction of components of a prototype distributed real-time embedded operating system (EOS).

The major requirements for EOS are listed below.

Real-Time Response. Components and subsystems of the application must have support to enable them

to respond to I/O events in real-time; that is, fast enough to provide control for the physical system in

which the computer is embedded.

Reliable Operation and Fault Tolerance. System components may be used to implement critical life-



EOS Project: Mid-Year Report May 1984 2

support and hardware survival functions, and must have a very low likelyhood of failure. Fault tolerant

techniques should be employed to achieve levels of reliability beyond those that can be achieved by con-

ventional software engineering methodologies.

/

Autonomous Operation. The system should be a dynamically reconfigurable collection of distributed,

loosely-coupled, highly autonomous components. Such systems support failure isolation, standby spar-

ing, triple-modular redundancy, and majority voting. The modularization of components improves relia-

bility and facilitates maintenance.

Design and Maintenance Support. The development of an application will consist of the design, con-

struction, configuration, testing, and maintenance of highly autonomous objects and collections of

objects. This development process must be supported by appropriate tools and facilities. In particular,

these tools must allow fast prototyping, system instrumentation and debugging mechanisms, dynamic

upgrading of object implementations, reconfiguration, reusable software components, test-bed validation,

performance evaluation and tuning.

This report describes the results of the EOS project for the six months from November 15th

through the present. During this time we have:

• completed a Berkeley 4.2 implementation of a portable Distributed Path Pascal compiler
and interpreter which uses sockets for inter-machine communications;

• investigated practical designs of existing distributed systems including UNIX United;

• ported UNIX United to Berkeley UNDC;

• made preliminary performance measurements of UNDC United;

• examined networking issues of distributed systems;

• developed programming and fault-tolerant system concepts based on atomic actions;

• designed a development environment for object-oriented systems which aids in the con-
struction of distributed software;

• investigated improvements to Path Pascal's scheduling primitives;

• completed a portable Path Pascal code-generating compiler for UNDC and stand-alone
systems which will support production development of Path Pascal programs;



EOS Project: Mid-Year.Report May 1984 3

• planned the overall structure of EOS.

In section 2 of this report we describe our work on providing fault tolerance and consistency

through atomic actions. Software fault tolerance is still a relatively new area and little attention has

been given to the practical and theoretical aspects of supporting fault tolerance in real-time systems.

Section 3 examines networking issues for distributed real-time systems. We include a case study of

the distributed system UNIX United[Brownbridge et al. 82] which supports remote procedure calls and .

remote file access. The results from our study have provided many insights into the the design and

structure of distributed operating systems. Improvements made to UNIX United are also described.

These improvements have led to substantial savings in time requirements of operations. Discussions of

TCP/IP protocols and optical fiber networks are also included in this section.

Section 4 contains a description of INDEED, an INcremental Development Environment for Exten-

sible Distributed systems. INDEED is object-based and provides a means to prototype, extend, debug,

instrument, test and maintain embedded systems. The system supports dynamic reconfiguration, remote

operations, and distribution on a network of processors.

Section 5 discusses the issues relating to the structure of operating systems. The General Layered

Operating System Structure or GLOSS provides a methodology for building a family of operating sys-

tems from reusable components. Depending upon the choice and manner in which these components are

combined, systems with different properties can be obtained.

Section 6 contains a discussion of several unresolved language design issues related to the problem

of specifying reliable real-time systems, including fault tolerance, atomic actions and scheduling. We

consider some solutions in the form of system and language primitives for supporting such facilities.

Improvements to Path Pascal scheduling primitives are outlined.

In section 7, we describe recent advances in Distributed Path Pascal implementations. New net-
4

work provisions, utilizing the more general socket mechanism of Berkeley UNIX, have been incorporated

into the Distributed Path Pascal Interpreter. The new provisions allow better support for distributed

software development. Work is nearing completion on a new production Distributed Path Pascal



EOS Project: Mid-Year Report May 1984 4

compiler in which the code generation phase is the same as that used to support the Berkeley version of

the UNIX portable C compiler. The front end of this compiler is implemented using an LALR parser and

components taken from the Berkeley Pascal compiler. In addition to offering improved performance, the

software will be immediately portable to.many different machines, and will provide a reliable production

environment for both stand-alone and UNIX-based Distributed Path Pascal.

2. Atomicity and Fault-Tolerance

The single most important requirement of a real-time system is that its performance must satisfy

timing constraints. However, the reliability of an embedded real-time system is often critical to the suc-

cess of applications such as missile launching systems, space stations, and flight control systems. The

tools and concepts employed in real-time system construction should help the designer achieve both a

high degree of reliability and a high level of performance. The use of atomic actions can help attain

these goals.

2.1. Atomic Actions

An atomic action is an operation, possibly consisting of many steps performed by many different

processors, that appears "primitive" and indivisible to its environment. At some "level of abstraction",

the atomic action transforms the system from one state to another with no visible intermediate states.

To the environment, the atomic action has the properties of indivisibility, non-interference and strict

sequencing. Atomic actions may be nested. By definition, atomicity implies that no communication can

occur between processes performing the atomic action and processes outside the atomic action. This res-

triction is necessary to ensure that the "internal states" of the atomic action are not visible from outside

the action, which would destroy the property of indivisibility. Whenever we use "atomic action" in this

section, we are referring to a planned atomic och'on[Anderson & Lee 81], that is, an atomic action which

has been programmed to occur rather than one which arises by circumstance.

There is another view of atomic actions held by Liskov[Liskov 83] and Davis[Davis 78]. They

require that atomic actions should not only be indivisible, but should also be recoverable. This means



EOS Project: Mid-Year Report May 1984 5C

that the effect of an atomic action is "all-or-nothing"; either all the objects remain in their initial state,

or all the objects change to their final state. If a failure occurs it must be possible to either complete the

action or to restore all objects to their initial states.

We believe that indivisibility is fundamental but recoverability is not. Recoverability is a property

which is not needed for all applications. If recoverability is desired, it should be constructed using primi-

tive atomic actions. Moreover, the imposition of a general form of recovery (such as backward error

recovery) can result in a loss of performance, which is unacceptable in systems where performance is

critical. As Dr. Foudriat points out[Foudriat et al. 84], performance-oriented systems often require

minimal synchronization and simple recovery schemes which can be provided by forward error recovery

or reinitialization. In such systems, recovery control should be left to the programmer. Furthermore, as

pointed out in[LeBlane 84], the "all-or-nothing" definition of atomic actions is not well suited for real-

time distributed systems, simply because many operations in such systems do not naturally behave in

that way. (For example, consider the effect of an operation changing the control surface of an unstable

aircraft.) Our view of atomic actions does not impose recoverability, and yet it provides a structure

which can be used by the programmer to easily provide recovery in a distributed system.

In the next two sections we discuss the application of atomic actions to two major reliability prob-

lems: data consistency and fault tolerance. We also discuss our contributions to these areas.

2.2. Atomic Actions to Ensure Data Consistency

Each process accessing shared data (for example, configuration tables in a network of machines)

does so under the assumption that the consistency constraints on the data are satisfied. However, if

many processes access the data in an uncontrolled fashion, the data can become inconsistent. If the

shared data becomes inconsistent, processes may make incorrect decisions and perform invalid computa-

tions. This is a problem which must be solved satisfactorily in any distributed system that employs

shared databases. Although the database requirements of current aerospace applications are modest,

future requirements for databases in embedded systems will increase with increases in demand for real-

time analysis of large amounts of data. This is particularly relevant to systems that must operate



EOS Project: Mid-Year Report May 1084 6

without much support from ground control. Moreover, real-time system mechanisms which ensure data-

base consistency must also provide satisfactory performance and must be able to support time-

constrained programs. Examples of database applications which might occur in such real-time systems

include surveillance, data collection, inventory, error diagnosis, and knowledge bas^j for expert systems.

We will use database terminology to formally specify this problem. A database consists of

identifiable data items called entities. The unit of processing on a database, called a transaction, is a

sequence of read and write actions on entities of the database.

Even if a read or write on an entity is assured to be atomic, the database may lose its consistency

because of concurrent access by different transactions. This is a result of the fact that the transaction is

the unit of consistency rather than the individual read or write action This problem was first described

by Eswaran, et al.[Eswaran et. al. 76]. The solution to this problem is to insure that each transaction

operates as if all other transactions are indivisible operations. To maintain the consistency of the data-

base, a transaction should be an atomic action. In the database literature, the problem of providing

atomicity to transactions is often referred to as the "concurrency control problem".

Eswaran, et al. also proposed a locking protocol called the Thase Locking" protocol, which insures

atomicity for each transaction. Many subsequent proposals have been made to provide atomicity in

databases. In Appendix A we describe a new protocol, the "Re-Read Protocol", for controlling con-

current access to a database. The protocol uses a combination of preventive and corrective measures to

maintain consistency, and always grants a Read request without delay. The protocol is deadlock-free,

requires DO backup data, and supports a greater degree of concurrency than Two Phase Locking. A

transaction is never aborted or delayed indefinitely by the protocol.

The guaranteed absence of deadlock, abortion, and indefinite postponement, which this protocol

provides, is of particular interest in real-time systems. If transactions can deadlock, as in Two Phase

Locking, the system requires mechanisms for deadlock detection and subsequent abortion of one or more

transactions. This leads to unpredictable delays and additional overhead, which are not acceptable in

real-time systems. The usefulness of the absence of indefinite postponement of transactions needs no ela-



EOS Project: Mid-Year Report'May 1984 T'

boration.

2.3. Atomic Actions for Fault Tolerance

As mentioned before, reliability is a major concern in real-time systems. It is very difficult, if not

impossible, to write provably correct programs. It is also difficult to demonstrate that a correct program

has been translated precisely into correspondingly correct machine code. Fault-tolerance techniques pro-

vide the means to keep the system running even if the design of the system has bugs. Fault tolerant

techniques enhance system reliability beyond the point which can be achieved by regular software

engineering methods.

Some of the major requirements for fault tolerant techniques in real-time systems are listed below.

a) Both forward and backward error recovery, should be supported. Forward error recovery is particu-

larly useful in time-critical situations in which the source of the error can be determined. Backward

error recovery is required to recover from errors of unknown origin. Both schemes should be provided

in a manner in which they may complement one another. Where good performance and high reliability

are required, both techniques can then be used.

b) Uniformity. Preferably, the system should support both forms of recovery in an uniform fashion.

This would permit easy use of the techniques, and result in more readable and reliable programs.

c) Simplicity. Fault tolerance techniques should be simple, so that one can easily ascertain that the tech-

niques themselves do not have faults. Since error recovery measures are less frequently exercised in sys-

tem tests, it is important that the measures are easy to program and understand.

d) Performance: The techniques must have good performance in order to be useful in real-time systems.

This means that the recovery time and error propagation in the system should be bounded.

e) Flexibility. The programmer should be able to select particular recovery techniques to meet a given

set of requirements. We doubt that any one scheme of error recovery is sufficient for an embedded real-



EOS Project: Mid-Year Report May 1984 8

time system. It would be undesirable to impose a particular scheme, such as the recoverable atomic

action, upon the design of such a software system. Instead, we propose that the designer should be able

to choose one of several techniques. In this section we will argue that atomic actions, as we define them,

provide a structure for recovery within which these requirements can be met.

Fault-tolerant techniques, in contrast to fault avoidance methods, use protective redundancy to

ensure that an erroneous system state does not lead to system failure. These methods attempt to place

the system in a state from which processing can proceed and failure can be averted. Techniques for

fault tolerance are usually classified as backward or forward error recovery techniques. Backward error

recovery involves backing up one or more processes to a previously checkpointed state, which is expected

to be error free, and then attempting to continue further processing. In contrast, forward error recovery

aims to identify the fault and correct the erroneous state of the system before proceeding with normal

processing.

Both of these fault tolerance techniques have four major phases[Randell et al. 78]: error detection,

damage assessment, error recovery, and fault treatment/continued system service. Error detection by

software is done by checks on the state of the system which are usually performed just before leaving

the system (or sub-system). The checks should be derived from the specifications. If the hardware

detects errors, the system is usually informed of the error by a hardware interrupt.

Atomic actions provide a convenient structure to support damage assessment and recovery. In the

atomic action framework, the damage due to a fault is confined to some atomic action which contains

both the fault and the detection of the error resulting from the fault. Since a fault can only be detected

by detecting its manifestation, that is, an erroneous state, it may be difficult to pinpoint the fault and

consequently the extent of the damage due to the fault. The initial estimate is that the damage is

confined to the deepest nested atomic action enclosing the error detection point. If the recovery in this

atomic action does not succeed, then recovery is attempted in the next enclosing atomic action. This

process continues. The nesting property of atomic actions permits this approach for damage assessment.



EOS Project: Mid-Year Report May 1084 Q

The atomic action containing the damage can be inspected to determine the cause of the error, as a

forward recovery technique would do. Alternatively, all the computation performed inside the atomic

action can be regarded as being suspect. In this case, the computation should be discarded and the sys-

tem returned to the state it was in at the beginning of the atomic action. This is the backward error

recovery approach; the state of each process must be saved before that process enters the atomic action,

in order to provide an easy way to roll back to a previous consistent state. For both kinds of recovery,

atomic actions provide bounds on the damage produced by the fault. In the case of backward recovery,

planned atomic actions also prevent the domino effect. The domino effect is particularly undesirable in

real-time systems because it makes it difficult to bound the amount of recovery needed and consequently

adds uncertainity about the recovery time.

The use of atomic actions to support backward recovery in concurrent systems was first proposed

by RandelljRandell 75]. The construct proposed is called a conversation. This scheme uses the static

definition of the boundary of an atomic action to define a priori the limits for error containment. The

use of atomic actions for forward recovery is proposed and discussed by Campbell and Randell[Campbell

& Randell 83]. It has been suggested that the two techniques of providing fault tolerance should be used

in a complimentary manner[Randell et al. 78, Cristian 82]. Cristian first proposed a scheme to integrate

the two techniques by considering backward recovery to be an exception handler for & failure exception.

The scheme has been extended to asynchronous systems in[Campbell & Randell 83] employing atomic

actions. This proposal is described in Appendix B.

Few implementations permit both approaches to be combined within a particular application.

Even fewer techniques are available for the construction of fault-tolerant software in systems of con-

current processes and/or multiple processors. Appendix C contains a proposal for supporting forward

and backward error recovery in a system of'Communicating Sequential Processes (CSP). The proposal

uses atomic actions, called S-Conversations, to support the different recovery schemes. The S-

Conversation is implemented using CSP primitives. Syntax and consistency are checked during compila-

tion and at run-time. The S-Conversation uses a small set of primitives to uniformly provide both for-



EOS Project: Mid-Year Report May 1084 10

ward and the backward recovery.

2.4. Future Work

We have shown how we can use atomic actions to preserve data consistency and support fault

tolerant techniques, without significant sacrifices of performance. However, the application of atomic

actions is not limited to these areas, but can aid in improving software reliability in many additional

ways. Our preliminary investigations have revealed that atomic actions can be used to develop tech-

niques to structure and design concurrent systems. They can also simplify the problem of proving paral-

lel programs correct. We are currently investigating these areas. In Appendix D we describe some of

our preliminary findings.

3. Networking Issues

Future real-time embedded systems will be designed as networks of many different specialized pro-

cessors. Such networks offer many advantages over a centralized processor. By decomposing the control

of an embedded system into many independent control systems, many of the problems of real-time pro-

cessing can be eliminated. Networks provide reliability by physically separating different functions of a

system, reducing the possibility of error propagation, permitting replication of important components,

and reducing the risk that a component failure will result in the failure of the whole system. However,

the structure of a reliable software system for a network of processors is an active topic of research.

In this section we discuss a distributed operating system, called UNIX United, which we have stu-

died in some depth. We also discuss some networking issues which arise in optical fiber networks. We

studied UNIX United because it is simple, available, portable and includes many desirable features.

UNIX United was originally designed to connect an arbitrary number of Version 7 UNIX systems into a

distributed system which has the same properties as a single processor UNIX system. As such, UNIX

United provides an easy-to-use workbench for constructing EOS. However, the major contribution to

EOS results from the study of the principles that underly UNIX United's construction. UNIX United is

a UNIX® extension which provides transparent access to remote resources and files, communications



EOS Project: Mid-Year Report May 1084 11.

between remote processes, and process migration.

3.1. UNIX United

The Newcastle Connection is a software package that implements UNIX United by enhancing

UNIX with mechanisms for transparent access to remote files, invocation of remote processes and pro-

cedures, and communication between processes on different processors. Despite the additional capabili-

ties, the UNIX United that results from combining UNIX systems is identical to a single processor UNIX

system at the application program and user interface level. Thus, software that is prepared to run on a

UNIX system can easily be reconfigured to make use of the distributed processing facilities of UNIX

United. Similarly, users may invoke the distributed facilities of the system using standard UNIX com-

mands.

The Newcastle Connection is implemented as a set of subroutines which are linked into the user

program. These subroutines replace the standard entry points for system calls, the mechanism whereby

the user program communicates with the UNIX kernel. These subroutines determine whether a

requested action should be performed locally or remotely, and perform the appropriate packaging, mes-

sage transmission, and interpretation of results.

UNIX United involves no modifications to the UNIX kernel. This allows it to be moved easily

between different implementations of UNIX. Users uninterested in the extensions provided by UNIX

United can link their programs with the default subroutine libraries and avoid all overhead associated

with the UNIX United system call mapping.

3.1.1. Properties of UNIX United

Level Structuring : UNIX United is modular and small because it forms a single, well-defined layer within

the system. The interface between the Newcastle Connection and the UNIX kernel is, to all intents and

purposes, identical to the interface between application programs and the Newcastle Connection. Other

layers can be added (and have been added) between user processes and the kernel without requiring

changes to the kernel or the Connection. These benefits are identical to those which we proposed would



EOS Project: Mid-Year Report May 1084 12

come from using the execute statement [McKendry & Campbell 80aj to build level-structured operating

system.

Remote Procedure Calls : Remote procedure calls provide a basis for implementing all distributed ser-

vices and functions. The scheme adopted is similar to that proposed to support remote objects in Path

Pascal except that it is not object-oriented. In particular, the performance measurements of UNIX

United show this to be an effective and efficient way to provide general remote access to resources.

Efficient Remote File Access : An efficient remote file access should allow permissions and accessing

methods to be set up at an "open file" request rather than with each read and write request. UNIX

United implements this scheme which allows many performance optimizations to be made.

Variable-Length Datagram Service : There are several advantages to the Newcastle Connection scheme

of providing a network protocol based on a variable-length datagram. First, the datagram can be

transmitted quickly using a scatter/gather packet transmission scheme. Second, large and small

datagrams can be sent by using different protocols; for example, long datagrams may use protocols

adapted from file transfer protocols. Future releases of the Newcastle Connection will include "adapter"

software which will provide routing and-protocol selection based on the length of the data to be

transmitted.

Hierarchical Naming Scheme : The hierarchical naming scheme used by the Newcastle Connection is a

very simple and effective way of naming resources inside a network. The scheme eliminates the need for

name servers within the network. This improves reliability and efficiency since the resources in the sys-

tem can be named in a completely distributed manner. However, it would seem appropriate to extend

the naming scheme to allow the specification of physical names, such as remote process id, remote file

descriptor, and remote user group. In addition, for consistency purposes, it would appear very desirable

to be able to use path names that start from the root of the hierarchy, as well as path names that start

at the "current working directory" or at the "root" of the local host.



EOS P rojeet: Mid-Year Report May 1984 13,

Process Mapping : UNIX United allows the environment of a process to be mapped from one machine to

another. Thus open files, parent and sibling processes, and other process attributes are independent of

the machine on which the process executes. This has many advantages including generality. It actually

simplifies the network support structure provided by the Newcastle Connection, and allows the code to

be very small and efficient.

3.1.2. Experiments on UNIX United

We have made several performance measurements of UNIX United running on departmental equip-

ment. Two VAX ll/750s and two 80 megabyte CDC permanent-surface disk drives were used for the

experiments. The machines were connected by a 10M Ethernet®

Remote procedure calls can provide most network facilities efficiently. In one comparison, we

transmitted 2 megabytes of data from a local disk to a remote disk using UNIX United's copy command

which is implemented by remote procedure calls. The transmission time took 2.1 minutes as compared

to a local copy time of 1.75 minutes. Remote random access to a disk took 26 milliseconds per

byte/record. Details of these measurements can be found in Appendix E.

The largest part of the time required for the file copy was a result of disk latency and arm conten-

tion; network transfer times were a small part of the overhead. We believe the next largest overhead in

remote access was caused because the Newcastle Connection remote procedure call transmits data as a

sequence of packets. Stream protocols, which permit transmission of several packets at a time using a

"sliding window" or similar protocol, are much more efficient. The Berkeley UNIX "rep" (remote copy)

facility employs such a protocol. In the latest release of UNIX United, some of this overhead has been

reduced by a new protocol which implements scatter/gather transmission for remote procedure calls

with large amounts of data. However, as of the time of writing this report, we have yet to measure the

effect of this new protocol on performance.

Access to open files can be optimized by utilizing a buffer cache, as done in UNIX. Such a tech-

nique can greatly improve performance if the program that accesses a file exhibits locality of reference in

the records selected for read or write. The cache can also improve performance when several processes



EOS Project: Mid-Year Report May 1084 14

are accessing the same open file. It is not possible to cache a remote file in a local host if processes in

multiple hosts have opened the same file for reading and writing. In one experiment called iotest,

described in Appendix E, we measured some of the effects of not being able to provide a local cache for

remote file access.

3.1.3. Lessons Learned

Many lessons were learned from the experiments we performed. We expect them to be of great

help in the design of EOS. We found that it is practical to permit remote access to records of a file

rather than to require the transmission of the whole file from one system to another. In a system in

which storage space is at a premium, the ability to have processors select just the information they need

from a remote resource is a great economy. The performance of UNIX United when used for single

record access justifies this approach.

We found that a distributed system must be carefully tuned. Initial timings of UNIX United

revealed many mismatches between packet size, remote service request sizes, and buffering sizes. Typi-

cally, most remote procedure calls were only a few bytes in length, while the maximum packet size sup-

ported on our Ethernet is 2 Kbytes. By using the packet size of 2 Kbytes, the performance improved by

a factor of three.

The use of light-weight protocols for remote procedure calls have significant performance advan-

tages. The performance of UNIX United was very sensitive to the amount of copying occurring in the

protocol handlers. By improving the copying algorithms, we improved the performance by a factor of

five. For EOS, we propose protocols which eliminate copying. We also propose that for unavoidable

copying, we use subroutines which take advantage of the hardware architecture.

AH components of a system interface must be consistently networked. For example, we found that

the mapping of signals and exceptions between remote processes was very convenient. However, such

mappings should also be implemented consistently. One of the bugs we discovered in UNIX United was

that signals were mapped in a somewhat ad hoc way for certain special process configurations. When a

process is executed remotely, a stub process is left to intercept signals from the user. In Version 7 UNIX,



EOS Project: Mid-Year Report May 1084 . IS^

this proved to be satisfactory. However, in Berkeley UNIX there are several additional signals including

one to suspend a running process with the intention of being able to restart that process at a later time.

This signal and the "kill" (abort) signal cannot be intercepted by a UNIX process. The effect of sending

either of these two signals to a remote process is to suspend or kill the local stub process instead. The

bug'-fix involves making sure that signals are mapped correctly within the Newcastle Connection layer"

instead of allowing them to be directly intercepted by the stub processes.

In UNIX, signab are used to communicate exception messages. In EOS, this problem corresponds

to ensuring that exception conditions that are sent to a remote object are reported to the actual object,

and not intercepted by a run-time mechanism supporting the distribution of objects. The exception

mechanism required for the run-time mechanism and network conditions should be a implementation

concern completely separate from that of the application exception handling scheme. The exception

handling routines of the run-time and network support can, of course, signal exceptions to the applica-

tion.

The disk block size used by utilities for portable operating systems should be machine independent.

For example, the Berkeley UNIX 4,1 stdio library utilities assume that it is best to copy IKbytes blocks

of data from one file to another. In the remote file access case, the copy utility actually resulted in

inefficient use of the network packet size. It is worth noting that in the new release of Berkeley UNIX

(4.2), the stdio library utilities now query their environment as to the appropriate block size to be used.

3.2. Networking Mechanisms

We have investigated several protocols to support networking for EOS. In order to provide max-

imum communication compatibility with other systems, the networking mechanisms should be imple-

mented using standard protocols. However, our experience from UNIX United suggests that several exist-

ing ISO Open Systems Interconnection Model protocols[Zimmermann 80], including TCP/IP[PosteI 81a,

Postel 81b], are inefficient. Our current plan is to investigate some of the new OSI protocols which may

support light-weight remote procedure calls more efficiently. In addition, we understand that many of

the less efficient standard protocols are being embedded within single chip components which may result



EOS Project: Mid-Year Report May 1984 16

in improved performance.

Most of the UI Department of Computer Science computers, specifically two VAX ll/780s, seven

VAX ll/750s, one Pyramid, and ten SUNs, communicate over a 10 Mhz Ethernet via the TCP/IP pro-

tocols. These protocols offer reasonable reliability but make inefficient use of the host computer if they

are implemented in software. The internet addressing scheme is becoming very popular and would allow

any EOS system to coexist with other networked systems. In general, we believe that it is better to pro-

vide a general interface to the network in EOS rather than make EOS depend too heavily upon one

form of networking software support. Our work on Distributed Path Pascal provides such an interface,

based on variable length messages containing remote procedure calb transmitted using UNIX pipe-like

operations. We have found that it is very easy to port Distributed Path Pascal from pipes to sockets to

datagrams. The choice of network protocols for EOS seems to be primarily an optimization question.

3.3. Optic Fiber Networks

Much of our research on distributed systems has used Ethernet for prototype experiments. How-

ever, such a networking media may not be adequate for major embedded distributed system applica-

tions. Project EOS has also examined several other networks in cooperation with other projects in the

Department of Computer Science at the University of Illinois. In particular, we have compared ring net-

works and Ethernet-like networks based on optic fiber transmission. A two megahertz optic fiber ring

network has been constructed in the Department and has been interfaced to two VAX 750s running

Berkeley 4.2 UNDC. This network is capable of being upgraded to speeds in excess of 100 megahertz.

Currently, a 30 megahertz version of the network is under construction. In our opinion, networks that

provide transmission rates in the same order as I/O devices are not only feasible but very desirable,

especially in applications requiring responsive real-time systems.

3.4. Some Advantages of Optic Fiber

Optic fibers have several advantages over other communication media particularly in aerospace

applications:



EOS Project: Mid-Year Report May 1984 17.

• They are less susceptible to environmental disturbances. For example, they are immune to elec-

tromagnetic interference, lightning, static, radio frequency interference, ground loop problems, and solar

flares.

• They do not generate any environmental concerns; for example, they do not generate electromagnetic

interference or radio frequency interference.

• They provide a secure transmission service which is impossible to monitor, and they prevent crosstalk,

between different communication circuits.

• Current optic fiber technology now provides a low loss transmission medium which can be used over

large distances, requires few repeaters and is more reliable than previous mediums. Although initial

space station systems are likely to be small, some future space platforms may require distributed com-

puting support that extends over a considerable distance.

• The physical properties of optic fiber also make it a very attractive medium to be used in aerospace.

It is lightweight, flexible, and small in size.

For these reasons, despite its current expense, optic fiber has become one of the most attractive com-

munications media for future embedded systems.

3.4.1. Ethernet with Optical Fibers

The Ethernet protocol permits several networked computers to compete for access to the Ethernet,

a base-band transmission on a coaxial cable. This protocol has been also implemented on optic fiber, for

example by Ungermann Bass Inc. The protocol introduces random delays into the transmission of mes-

sages but has become very popular for commercial use because of its availability and ease of use. A

major disadvantage of the protocol is noticed in high-transmission rate networks in which the nodes are

geographically distributed. (For 10 megahertz the limit is about a mile and a half.) In such cases, the

propagation delay of the signal along the cable may be so large as to prevent the collision detection



ORIGINAL PAGE ES

EOS Project: Mid-Year Report May 1984 OF POOR QUALITY 18

mechanism from functioning reliably. An Ethernet tends to become saturated at high-levels of packet

transmission. When used in combination with optic fiber, the Ethernet protocol may be implemented

with a transmit and receive fiber. Communication is achieved by transmitting a packet of information

from a node along the transmit fiber. All of the transmit fibers meet at a central node where a trans-

ducer and.amplifier retransmits the packet back out on all the receive fibers. The central node also

detects collisions by noticing simultaneous transmissions on the transmit fibers.

3.5. IlUnet

IHinet[Cheng et. al. 80] is an example of a token ring network and is similar to the 'Distributed

Computing System" at the University of California, Irvine. Illinet transmits information at a rate much

faster than that of the Ethernet because collisions are avoided by passing a token around the ring.

Current work is constructing an Illinet implementation that supports a link bandwidth of 32 Megabits

per second. ECL circuits are used to interface the optical transducers to a communications processor.

To achieve a reasonable speed, most of the network access and link control protocol function is

implemented in hardware. The link control protocol enables nearly all of the 32 Megabits to be available

for interprocessor communication. The network is organized as a ring with a relatively short loop delay

around which packets are transmitted. The network control structure is distributed and is based on a

token control scheme. This scheme makes message transmission times deterministic which is a desirable

property in real-time network applications. A node which receives a token may send a packet. If the

node does not wish to communicate or has sent a packet, the token is passed on to the next node in the

ring. A recovery protocol is used to ensure continued service if the token is lost.

The hardware includes an associative addressing scheme that permits broadcasts to all or selected

network nodes. Each packet includes a sixteen bit destination address. This destination address is a

logical address in that it is independent of the actual physical node which may receive the packet. Each

node may load a table of destination addresses for which it wishes to receive packets. As a packet passes

a network node, the hardware compares the packet destination address with the table and and generates



EOS Project: Mid-Year Report May 1034

an acknowledgement if a match is obtained. Several nodes may acknowledge a packet. The scheme per-

mits a network resource, associated with a particular network address, to be transferred transparently

from one network node to another without any control mechanism being involved. The address recogni-

tion hardware and link control protocols enable efficient broadcast communication. Dlinet is not limited

in length and simulations of the network (using Path Pascal) have shown that it does not saturate but

gracefully degrades as network traffic increases. Illinet is interfaced to network nodes by a programm-

able DMA interface. It is currently being used with the standard TCP/IP protocols and has proved very?

reliable.

Illinet does not require a central controller for clock synchronization or access control. Segments of

the ring are joined at nodes by a ring adapter. Each ring adapter acts as a repeater by rebroadcasting

the incoming data stream data. The communications processor breaks messages into packets and sends

these packets to the ring adapter output buffers. From there they are transmitted one at a time each

time the adapter receives a token. After transmitting one packet, the adapter waits to receive the ack-

nowledge field of that packet once it has traveled around the ring. The data packet is retransmitted

until a positive acknowledgement is received from all the nodes that are receiving packets with the given

packet destination address. The token is then passed on to the next node in the network. The proces-

sor receives messages from the host by DMA transfer. Receipt is acknowledged by an interrupt sent to

the host processor. The host then signals "commence sending" and the processor transmits the message.

Packets received from the network are acknowledged and assembled within the ring adapter and proces-

sor. A packet is not acknowledged if the CRC check fails or there are not enough free buffers within the

processor. When a message is completed it is transferred by DMA to the host and the host is inter-

rupted. Hosts must assure reliable message sequencing.

4. INDEED: An Incremental Development Environment

The construction of reliable, embedded real-time application software is an enormous task demand-

ing tools of much greater flexibility and power than required for the development of conventional sys-

tems. The size, complexity, and special critical requirements of the computational tasks of space system



EOS Project: Mid-Year Report May 1984 20

software require sophisticated approaches to development methodology including support for reliability,

portability, fast prototyping, programming-in-the-large, and incremental development. The choice of

object-based programming to achieve some of these requirements imposes the additional requirements of

protected support for dynamic allocation, revocation, and reconfiguration of separately developed, highly

autonomous components[Foudriat et al. 84]. These components may reside together on a single machine,

or may be distributed over a possibly non-homogeneous network of autonomous computers and devices.

Policy decisions regarding placement of an object on a particular hardware device or at particular physi-

cal location on the network should be independent of the specification of the object, and should not

obstruct dynamic reconfiguration. Where special purpose hardware requires that a specific set of ser-

vices be identified with a particular hardware node, this should not be visible to client-objects requesting

the location-dependent operations. This allows hardware reconfiguration without requiring revision of

existing software implementing the client objects, that is, configuration portability.

4.1. Extensibility and Incremental Development

The operating system to support advanced object-based applications must provide efficient and

reliable mechanisms for inter-object exchange of services. The primary task of the object-based operat-

ing system is no longer limited to providing a fixed and immutable set of system services to a series of

highly isolated tasks. For very specialized applications under severely critical requirements, such as

those of real-time space station software, the conventional virtual machine (such as the Path Pascal or

ADA VM), or some component providing a sub-set of the virtual machine system services, may prove

inadequate, inefficient, or too restrictive. Such system services can be provided by new server objects

within the system or application, as long as these server objects are available within the environments of

the intended clients. For example, since objects themselves provide "persistent data", but allow special-

ized and protected operations on that data, the classical OS file system services can all be provided by

classes of "file objects" with appropriate operations[Appelbe & Ravn 84]. Rather than define and pro-

vide all external services required by application software, the role of the object-based operating system

is to enable objects to provide (use) services to (of) other objects in a reliable and protected manner.



EOS Project: Mid-Year .Report May 1084 21,

Thus the primary responsibility of the object-based operating system is to create, maintain, reconfigure,

and monitor access paths among sets of highly autonomous objects and nodes (collections of objects),

and to protect against access other than that defined and allowed by the operations.

In a system designed to support the exchange of services between highly autonomous components,

communication between client and server objects must be efficient and well-defined. In addition, these

communication mechanisms must provide for dynamic reconfiguration of access paths during initial pro-

totyping, during incremental development, and during system debugging or reorganization. At a given

stage in the development of an application, and at any instant during the operation of the system, there

exists a collection of objects, ranging from finished implementations to prototypes or even stubs, which

exchange services in the form of operations. If one object has the capability to request a service from

another object, then we say that there exists an access path from the client object to the server object.

Note that this does not imply that the client must request the service, but only that the client may do

so. This collection of all existing objects, along with all access paths between pairs of objects, forms a

general graph structure, which is maintained by the operating system mechanisms. Further restrictions

on this structure constitute the system's access control policy, or protection policy.

4.2. Overview of Thesis Proposal for INDEED

INDEED is an incremental development environment which supports object-based programming,

environment definition and management, dynamic reconfiguration of collections of compiled objects, and

extension of system virtual machines, based on the object model of the systems programming language

Distributed Path PascaI[Kolstad 83]. In the INDEED system, the individual components are objects, or

highly autonomous collections of objects (nodes). Objects are the smallest units of separate compilation,

and may be added, replaced, or removed from a running system in a single atomic action. During

development, individual objects may be tested and debugged even though other objects, whose services

are required of the object undergoing testing, may not have been implemented or may still be in the pro-

totype stage. Restrictions on allowable access paths are imposed automatically and are enforced by



EOS Project: Mid-Year Report May 1984 22

mechanisms within INDEED. By default, these restrictions are the same as those imposed by the scope

and parameter-passing semantics of the system programming language. However, other subsystems with

specialized access control management are also supported (such as GLOSS layers). For example, for the

purposes of debugging, system monitoring, or reconfiguration, full control of the access policy could be

granted, which would permit unrestricted access to objects and processes in the system. This would

allow manual creation or manipulation of any portion of the potentially fully-connected access graph. It

would not, however, allow any operations on an object inconsistent with that object's definition.

INDEED utilizes the Path Pascal language model as the operating system language, in the sense

that "system calls" and commands consist of calls on the operations of system objects. Three primitive

system object types form the "nugget"[Joy 84] of the INDEED system, the symbol table object (STO),

the object compilation manager (OCM), and heap management object (HMO). Firstly, the symbol table

object, STO, provides the mapping between source program names of Distributed Path Pascal objects

and capabilities to specific instances of those objects and their type definitions. With or without the

operations for creating new definitions of object names, the STOs implement environments for all objects

in INDEED by viewing and managing certain objects as tables of capabilities. Secondly, the object com-

pilation manager, or OCM, provides traditional DPP compilation facilities, traditional except that

• external references are resolved by calls to the current environment STO, and that
• the unit of compilation is the object rather than the program.

The OCM generates code for object access in the form of indexing through environments, and provides

protection by restricting access to legitimate operations only. Lastly, the heap manager object, or HMO,

manages memory allocation for all INDEED objects. Thus the HMO views each object as a segment of

contiguous locations in "capability-space", which may be either physical memory or virtual memory

depending upon the implementation and underlying hardware. Various versions of all three primitive

objects can be configured together to form specialized subsystems. These primitive objects are described

in more detail below.

In much the same way that the system-wide notion of "file" provides a unifying concept in the

UNDC® operating system, the system-wide notion of "object" provides the unifying theme for all



EOS Project: Mid-Year Report May 1984 23

structures in INDEED. While the UNK®file philosophy provides great flexibility and encourages the

construction of larger tools from smaller ones, it does so at the expense of the security and efficiency pro-

vided by information-rich type checking. The unstructured nature of the UNEX®file implies that full

responsibility for checking lies with' the user of the file. Thus the programmer using the file data type

must include additional, possibly complex, integrity-checking code to make his program robust, leading

to inefficiencies and possible sources of error not present in a strongly typed environment. Even more

significant is the fact that the original programmer of a particular file application has no guarantee that

users of these special purpose files will perform only valid operations on those files, hence there is no sys-

tem support for the integrity of the data. In INDEED, processes acting on Distributed Path Pascal

objects may perform only the legitimate operations associated with those components.

4.3. Environment Management in INDEED

The run-time symbol table managers in INDEED monitor and manage access to all object instances

in the flat object-space. Each manager controls access to a disjoint set of objects located in one or more

contiguous chunks of (possibly virtual) memory on a given node. This access control is capability-based.

The symbol manager provides operations for mapping names to capabilities, returning attributes of

objects associated with names (type descriptors), redefining the mapping (new object, new type, new

operations), mapping local calls to remote objects via the remote procedure call mechanism, and provid-

ing software trapping on operation calls. Just as the UNK®directory structure permits construction of

a hierarchy of files on top of the flat file structure[Thompson 78], hierarchies of objects can be built by

creating capabilities to symbol managers within other symbol managers.

The INDEED STO thus defines and manages a hierarchical run-time environment according to the

given policy for access control. A subset of the operations defined on the STO object includes exact'*'

those operations provided by the Path Pascal compiler symbol table. These access control policy seman-

tics are equivalent to the rules governing naming in the Path Pascal source language. This is the default

access policy. Subsystems of specialized STOs can be built which enforce alternate schemes, or more res-



EOS Project: Mid-Year Report May 1084 24

trictive schemes, which will allow construction of interfaces between INDEED and subsystems supporting

other languages, such as Ada® HAL/S, etc. By swapping capabilities, the STO can dynamically redefine

object implementations for such purposes as modifying and improving existing services, providing stubs

for unimplemented objects, monitoring and/or trapping operation invocations on a particular object,

and dynamically switching local service calls to remote server objects by switching to Remote Procedure

Call filters[Spector 82, Shrivastva & Panzieri 82, Birrell & Nelson 84]. Roll-back of recovery

objects[Schmidt 83] can be implemented in INDEED in exactly this manner; the previous state of an

object can be recorded by copying the object into a hidden object, perhaps on stable storage, and roll-

back would involve swapping the capability for the active object with that of the hidden copy. All of

these modifications to the access graph can occur dynamically without the necessity of "bringing the sys-

tem down" for reconfiguration.

4.4. Storage Management in INDEED

The feasibility of a heap-based system such as INDEED depends heavily on the efficiency with

which objects may be allocated dynamically. In INDEED, activation records (stack frames) themselves

are treated as (environment) objects and are allocated from a heap. All requests to instanciate objects,

including new activation records, are requests made by a single process for an initially unshared portion

of free space. If a single global heap (per machine) were accessed by many concurrent processes each

time a procedure call occurred, contention and additional overhead during the calls could severely

reduce response time.

In order to avoid this added complexity and overhead, the HMO in INDEED manages one or more

regions of contiguous memory locations of a "capability space". All of these heap regions are disjoint,

and each region is managed by at most one HMO. When a new process is called, the process may be

granted a contiguous segment of memory for use as a stack for efficient creation of activation records

during procedure (or function) calls. If and when this region is exhausted due to repeated procedure

calls, a stack overflow is detected and results in a call to the controlling HMO, which allocates an addi-



EOS Project; Mid-Year Report May 1984 25

tional stack-region for the process.

The size of the region granted has great influence on the expected time to the next stack-overflow,

and tuning the HMO allocations to the characteristics of a given process allows system performance to

be optimized. Note that the stack allocation policy of the current implementation of Distributed Path

Pascal is a degenerate case of this more general approach, specifically the case of an initial allocation of

the process' estimated stack size, with program termination if stack overflow occurs. Of course, an HMO

could refuse to grant additional stack regions to a process, and instead allocate the AR object directly,

from either the remaining free space or from "holes" in existing stack regions. In this case, additional

stack-overflow faults will occur as soon as the process requires more memory. The generalized heap allo-

cation scheme allows tradeoffs between efficiency and space utilization, and allows fine-tuning on the

per-process level. When the number of active references to a given object drops to zero, the space allo-

cated to the object can be recovered and added to the free list. Recovery of heap space is the responsi-

bility of the HMO, and is governed by the particular policy in force.

4.5. Incremental Development in INDEED

The third essential primitive component (also an object) in INDEED in the object compilation

manager or OCM. The operations provided by the OCM permit both the generation of compiled code

for a new object, and the instanciation of that object within the current environment. The OCM

differentiates between the use of a capability for environment object indirection and the use of a capabil-

ity for object operations in the code produced to exercise the capability. In the former case, the object

addressed by the implicit capability contains a jump table for operations in objects and access to imple-

mentations for all entities visible (defined) in that environment. In the latter case, the OCM generates

indexing off the object capability according to the type definition of the object. In this way objects in

INDEED may have dual roles as both environment (package) objects and as abstract data type (class)

objects.



EOS Project: Mid-Year Report May 1984 28

This use of indirection through environment objects provides the flexibility needed for incremental

development, dynamic reconfiguration, multiple implementations (versions), and programming stubs. To

ensure that new configurations preserve the integrity of previously compiled objects, we define an object

uniquely within a given environment by its index into that environment. If previously generated code

for client processes and objects utilizes a given service object, we say that the definition is "active".

Hence the correctness of a configuration (access graph) of active objects requires that the definitions

preserve the specification semantics of each active object. An inconsistent definition, which would

change the object's external interface (set of operations), cannot be installed at an index which is still

active. On the other hand, the implementation of a given object, including the code for the operations,

the local variables, and the set of environments in which the object is defined, can all be revised dynami-

cally (at run-time) without perturbing the active objects, as long as this revision occurs as an atomic

action. This restricts dynamic reconfigurations and reimplementations to those which do not violate the

policy mechanisms enforced by the STO, and so preserves the system integrity.

4.0. Production Systems

Various components developed under INDEED can be selected to compose the final production

embedded real-time system. Objects in the original configuration which were included solely to provide

specialized development services, such as instrumentation, filtering, editing, or simulation, can be omit-

ted in the production configuration without requiring revision to any of the objects selected. Even

INDEED primitive objects may be omitted; for example, in an embedded system which does not require

further incremental development, the OCM can be omitted. More often, a development-oriented object

will be replaced by a specialized version which provides only a subset of the original operations, or which

provides restricted operations. For example, one could provide a restricted STO which does not include

the operation for creating new object definitions in the environment. The final configuration need

include only those objects actually essential to the production system, and can include restricted versions

of objects which provide only essential operations. This ability to streamline and tune configurations is

critical to efficient real-time performance.



EOS Project: Mid-Year Report May 1984 2?-*

5. Operating System Structure

GLOSS is a methodology for assembling operating system components to provide varying environ-

ment and performance characteristics. Such environments may provide debugging capability, software

fault-tolerance, triple-modular hardware redundancy, atomicity, real-time response, and transparent

access to remote resources. For example, time-critical processes can run in a real-time environment

while other computational processes can run in a batch-oriented environment. Machine dependent

processes can access particular features of a processor while other processes may be isolated by a virtual

address space. Distributed processes can utilize the layers providing transparent access to remote

resources while others are isolated on a particular host. All these forms of processes can coexist on the

same node and may communicate through common mechanisms. Although the GLOSS methodology is

independent of any particular implementation mechanism, the INDEED system is capable of providing

the layered environment structure to support this technique.

A system structured according to the GLOSS methodology has a minimal kernel providing a set of

basic functions, such as inter-process communication, memory management, scheduling, and perhaps

portions of a filesystem.1 Virtual machines are layered above this basic unit as desired to refine the basic

operations of the kernel without altering their function (such as providing real-time environments, distri-

buted filesystems, atomic actions, and fault tolerance). Each layer conforms to the standard interface

and forms an encapsulation of the system This serves to isolate and identify related mechanisms that

support a particular extension to the basic kernel. This encapsulation may be realized solely by software

support or it may be realized by hardware mechanisms such as the "supervisor state".

Processes are allowed to change environments with little or no overhead. However, changing the

environment may involve some loss of environment-specific facilities. For example, leaving a distributed

filesystem environment will prevent access to any open remote files.

Bill Joy of Son Microsystems calls this basic kernel a 'nugget*, a unit smaller than the conventional 'kernel*[Joy 84].



EOS Project: Mid-Year Report May 1084 28

5.1. Properties of GLOSS

In GLOSS, the definition of the interface between layers is standardized for a given family of

operating systems. This allows different layers to be combined together in different combinations. Com-

munication through this interface is constrained to follow a common protocol within that family of sys-

tems. Certain layers may require the inclusion of other layers in a particular order because of the exten-

sions they provide. For example, a TMR layerfBrownbridge et al. 82], which executes a program in

parallel on several hosts, may require a distributed filesystem layer to manage access to any replicated

files. Each layer is analogous to a "UNIX" filter, intercepting the standard operations requested by

application programs and processes in higher layers and mapping them into operations on more primi-

tive layers. For example, a distributed filesystem layer may convert a read file request into a series of

lower level requests to transmit a message to a remote host requesting a remote file access.

GLOSS requires that the interfaces between layers be identical. This permits layers to be easily

assembled into new permutations. UNIX pipes are a good example of how a standard interface provides

great flexibility by permitting elements to be combined into pipelines. All the standard read/write

operations function identically on both files and pipes, which allows arbitrary numbers of filters

(processes with their inputs and outputs connected together) to be combined by pipes to process infor-

mation.

Each layer must provide at least a minimal service for every request defined by the standard inter-

face. For example, a Two-Phase protocol "commit" primitive that might be used to implement an

atomic action would be defined in an atomic action layer. The atomic action layer may not necessarily

be an adjacent layer to the software in which atomic actions request the primitive; there could be several

intervening layers which would allow the request to pass transparently down to the atomic action layer.

For example, a distributed filesystem layer could simply pass requests for the "commit" primitive down

to lower layers.

Layers should implement a related set of system services and should be designed to be "thin": each

level should include only a minimum of complexity to provide a basic set of services and no more.



EOS Project: Mid-Year .Report May 1084 2*L

Examples include distributed filesystems (that route standard file-access requests to the appropriate

machine), atomic action layers (that isolate the effects of operations within the atomic action until the

action is completed), and fault-tolerant layers (that provide error detection and redundant

data/computation capability).

Use of layering in this fashion has several advantages. It allows programs and layers to run in

different environments-without needing any change. For example, a program can be debugged in a layer

which provides debugging facilities and then "migrated" to another environment without the debugging

layer.

Multiple environments can run on the same machine. Several highly-reliable processes may be

using the fault-tolerant layers while trusted real-time processes may be running with a minimum of

layers and overhead directly interacting with the lowest level kernel.

Process switching is simplified. A process can switch between layers at will by invoking appropri-

ate routines. Sometimes this will involve the revocation of resources. If a process running in a distri-

buted filesystem environment calls a routine in the basic kernel, the process may have to re-open any

previously open remote files.

5.2. Mechanisms to Support GLOSS

GLOSS specifies a uniform interface between adjacent layers. The interface would be independent

of programming languages, host machines, and operating systems. This would allow GLOSS to provide

support for other languages in addition to Path Pascal, such as Ada(Ada Reference Manual]. Distri-

buted Path Pascal would be linked to a GLOSS interface by a small run-time library or by the STO of

INDEED. For EOS, the GLOSS interface will include embedded operating system run-time support ser-

vices. These services would define support for fault-tolerance, real-time and deadline scheduling, protec-

tion, and networking primitives.

Capability managers, implemented as STOs in INDEED, provide a basis'for a GLOSS implementa-

tion. Each capability provides protected access to a fixed set of services. Each layer has its own set of



EOS Project: Mid-Year Report May 1984 30

capability managers, and provides the same service interface. A particular application will be bound to

the actual services via its set of capabilities as determined by the capability manager. For efficient real-

time applications and layers, the capability manager may be eliminated by replacing the capabilities

with statically bound pointers. At lower levels in the system, some services may be undefined. The

default stub objects in INDEED can be used to trap such undefined calls, or to perform a null default

service operation that returns an "unsupported operation" error.

Many current computers provide several processor operation "modes". The VAX and PDP-11

families provide "kernel", "executive", "Supervisor", and "User" modes. The Motorola 68000 family

architectures only provide 2 levels of privilege. These modes can be used to separate and protect the

name and address spaces of various layers.

5.3. Naming Layers

The system should support a name mapping mechanism within the network. A naming layer is

used to map a "transparent name", i.e. one that is host dependent, to a physical address. This physical

address could be anything from a UNIX United path name to a specific byte on a disk. Naming layers

also support file replication, -which is important for implementing fault tolerance. Should a particular

host of a replicated file become unavailable, the layer should map the file name to another other host

which has a copy. One implementation of a naming layer is map name service requests to invocations on

a name server object on the network. A name server would map the name to a particular host and file

system entry. Another implementation of a naming layer is the Newcastle Connection. It is important

that the means of mapping the name is transparent to programs above the interface of the naming

layer.

The naming layer of a reliable distributed operating system provides critical services. Should the

service not function properly, then each network node could be isolated. For this reason, measures must

be taken to ensure the continuity and integrity of the name layer. It is good practice to distribute the

responsibilities of name service to several nodes in the network. Thus, if one node were to crash, the



EOS Project: Mid-Year Report May 1884 3C

entire system would not be lost.

5.4. Distributed Kernels

From our experience with UNIX United, we believe that a distributed operating system would do

well to put some of the remote access routines inside the kernel. If the "distribution layer" of a distri-

buted operating system resides in user space (as the Newcastle Connection does in its current form),

several problems occur. The first problem is that it is much costlier to execute in user space rather than

kernel space. A large increase in speed can be achieved if the network routines are moved into a

"trusted" layer where they can share critical network and process identity information reliably. This

also reduces the size of the user programs. A second problem concerns the handling of exception condi-

tions. The exceptions required to implement the abnormal conditions concerned with networking sup-

port are independent from the exceptions required in the domain of user applications. When there is no

clear distinction between user applications and networking provisions, exceptions (signals in UNIX) may

be handled inappropriately (as in the kill and suspend signals sent to stub processes in UNIX United).

6. Language Design Research

This year we have studied methodologies and mechanisms for supporting distributed multi-

processor computation and real-time programming. We have investigated the problems of scheduling

access to resources and of providing atomic actions and fault-tolerance in such an environment. We

have considered providing both system primitives and programming language mechanisms to support

such facilities. In this section, we outline some of the results of our study of scheduling issues. Because

of certain implementation issues, we believe it may be more convenient to implement scheduling facilities

as extensions to a programming language rather than as operating system primitives.

Path Pascal addresses many of the synchronization issues that are viewed as problems in other

concurrent languages. It is possible to construct complex synchronization schemes for a large class of

applications and examples. Synchronization is separated from sequential operation design. Concurrent

use of a resource can be encapsulated within an object. Modifications in the number and design of user



EOS Project: Mid-Year Report May 1984 32

processes do not affect the implementation of a resource. Path expressions are readable and verifiable.

One of the facilities lacking in Path Pascal is a means to specify scheduling concerns within the

language. Scheduling facilities can be constructed using Path Pascal, and Path Pascal programs can be

linked to such facilities. However, it is not possible to specify that processes requesting the mutually

exclusive execution of a routine embedded within an Open Path Expression should be served in an

application-defined order. For example, the application might require that the scheduling order is deter-

mined by the number of critical real-time resources being used by each process.

In this section, we discuss scheduling within embedded systems, and consider possible language

mechanisms that could be used in Path Pascal. We give a scheduling example based on the implementa-

tion of a shortest job first scheduling algorithm and show how this might be specified using scheduling

primitives within Path Pascal.

0.1. Embedded Operating System Scheduling Requirements

Any component of an operating system that cannot service all requests as they are received must

implement some form of scheduling to choose between pending requests. Scheduling is used to decide

which process will gain control of a processor, and to order requests for access to peripheral devices and

resources. Scheduling is also an inherent part of any scheme using priorities or deadlines to ensure

timely service[Deitel 84].

Many of the performance requirements of an embedded computer system will need to be supported

by efficient scheduling. For example, a real-time file system will allow a user to specify a "degree of

urgency"(Foudriat et al. 84] for a file when it is opened. This urgency measure must be used within the

filesystem name-server and real-time seruerjFoudriat et al. 84] to mediate between competing service

requests. The loader also must use priority, deadlines and usage information to schedule its work.

Scheduling problems also pervade the run-time and communications systems. For this reason, it is very

important that scheduling be reliable and efficient.



EOS Project: Mid-Year Report May 1984 33^

Very few languages provide scheduling support to users. Users are left to build their own

schedulers out of the primitives provided by the language. As T. Wei mentions in his thesisjWei 81], any

concurrent language must implement scheduling to coordinate parallel processes. Scheduling is fre-

quently specified implicitly, as in Path Pascal.

In Appendix G, we present a scheduler implemented in Path Pascal. The example will serve to aid

discussion of various aspects of scheduling in Path Pascal. A shortest job next scheduler was chosen as

the example because it is similar to but simpler than a deadline scheduler and avoids the issues-thai

arise over preemption. The Shortest Job Next scheduling algorithm provides the minimum average

response time for a group of processes, provided that the running time of each process can be estimated.

This can be regarded as a special case of priority scheduling.[Peterson and Silberschatz 83] discuss this

algorithm in the context of CPU scheduling.

The design of a non-preemptive shortest job next scheduler for a resource is not intuitively

difficult. Each process that calls the resource provides a job time estimate to the scheduler. When the

resource is available, the waiting process with the smallest running time estimate should gain access to it.

A simple implementation of such a scheduler queues incoming requests in ascending order of job esti-

mates. When the resource becomes free, the least estimate job can simply be dequeued from the front of

the list.

The Path Pascal solution presented in Appendix G introduces several monitor-like components.

The event descriptor object essentially implements a monitor signal/ wait. It functions like a semaphore,

and is as error-prone and difficult to use as a semaphore. Consider, for example, how the scheduler

would behave if in resume, the call to signal occurred before the job was dequeued.

Multiple layers of objects contribute to an inefficient solution. Each object uses implicit FIFO

queues to implement the Path Expression. On top of these implicit queues, the user must implement an

explicit queue to manage job estimate queueing. To implement the user's scheduling requires at least

three sets of redundant implicit queues (a set for each of scheduler, SQ and event_dscr ).



EOS Project: Mid-Year Report May 1984 34

Examination of the code for the shortest job next scheduler does not easily reveal which conditions

will cause a call to be delayed or resumed. The complexity of the solution appears to exceed the com-

plexity of the problem. A better solution to this problem would:

• encapsulate the resource and the scheduler
• eliminate redundant queues
• reduce the complexity introduced by scheduling

Such examples yield valuable insights into the scheduling requirements for embedded operating systems,

and into shortcomings of currently available languages for specifying scheduling.

6.2. Scheduling Support in Higher Level Languages

The problems encountered in designing a shortest job next scheduler are a direct result of the

implicit FIFO queueing used in implementing Path Expressions. Scheduling is essentially orthogonal to

the synchronization constraints expressed in Path Expressions. As a result, it is possible to design a

language mechanism that would allow the user to specify a different scheduling criterion. Research in

scheduling synchronization (see SR[Andrews 81] and[Leinbaugh 81, Leinbaugh 82]) suggests that it is

possible to build efficient user specified scheduling into synchronization.

Such a scheduling mechanism would allow the user to substitute a means of ranking requests for

default FIFO queueing. The simplest case would be to choose among competing calls the one with a cer-

tain parameter of the least value. A function of parameters and resource state variables should be possi-

ble as well. Non-preemptive scheduling can be incorporated into many synchronization schemes.

Preemptive scheduling presents possible consistency problems that would need extra support.

Appendix H presents a Path Pascal-like implementation of a shortest job next scheduler that uses

such a scheduling mechanism. In the original shortest job next scheduler, the resource was ensured to

execute in mutual-exclusion by the use of a specific calling sequence and the semantics of the scheduler.

In the new notation, mutual exclusion can be explicitly specified in the resource object.

The appendix shows that scheduling can be applied orthogonally to synchronization without great

difficulty. It is also clear that this can fit cleanly into existing synchronization notations. The result of



EOS Project: Mid-Year Report May 1984 , 351

adding a scheduling mechanism results in much cleaner code, and may also have a payoff in efficiency.

A scheduling mechanism of this sort could be applied to many scheduling problems within a real-

time operating system, including implementing priorities and deadlines. Where dynamic scheduling cri-

terion were needed, queueing could be done using a function of several variables. The resulting

schedulers should not be less efficient or less reliable than the schedulers a user could program[Andrews

81].

7. Distributed Path Pascal

Several enhancements were made to Distributed Path Pascal during the last six months and a new,

more reliable, compiler is now under construction. This section describes the improved network facilities

now supported.by the interpreted Distributed Path Pascal system, .and the status of the production Dis=

tributed Path Pascal compiler.

7.1. Enhanced Networking

DPP provides transparent network access to objects. It is not necessary to specify within a Path

Pascal process whether an object is- remote or local. Objects are declared as being possibly remote. The

compiler turns references to these objects into pointers to objects and uses system calls to dereference

the pointers. The object may be local or remote; it makes no difference to the calling process. An object

may be changed from one node to another without changing the user programs. This makes the system

easier to change, and makes the changes transparent to the applications.

DPP also supports a transparent network structure. The underlying nature of the network is hid-

den from the Path Pascal process. Remote objects are bound through the "import" system call. This

system call consults local object tables and queries other processors on the network for instances of the

appropriate object. This makes changing the network configuration user and application independent.

Changing the network structure will require modifying some system tables, but the user process does not

need to know about the change.



EOS Project: Mid-Year Report May 1084 30

With the arrival of the 4.la BSD and 4.2 BSD systems, a new networking mechanism, sockets, was

available for use by the DPP interpreter on UNIX. Sockets allow communications between unrelated

UNIX processes. This is an improvement over pipes, which require a single process to configure the two

ends of the pipe and hand them to offspring processes. In the implementation based on pipes, it is

difficult to dynamically add an instance of a Path Pascal Interpreter to a simulation. Sockets do not

have this restriction. Once a socket is created, it is bound to a specific address. The socket can then be

used to provide datagram service to arbitrary socket addresses (including loop-back service). Each Path

Pascal interpreter creates a socket and registers it with a central UNIX process. This UNIX process

fields address requests and broadcast messages. In this way, the new DPP interpreter and network sup-

port allows Path Pascal Interpreters to be added dynamically to a simulation. When the new interpreter

starts up it registers with the central UNIX process; requests for operations on remote objects can

proceed normally; and multiple remote objects loaded in the interpreter become accessible to the rest of

the network of interpreters.

A single nameserver is not a prerequisite to this scheme. It is possible, and probably advantageous,

to build a hierarchy of nameservers (or address-servers). Each nameserver maintains information for a

small group of Path Pascal Interpreters. These servers may register with a meta-server which handles

communications between the servers in the same way that a server handles communications between the

Path Pascal Interpreters.

7.1:1. Networked Path Pascal Interpreters

The initial Interpreter implementation used the UNIX "pipe" interprocess communications. A sin-

gle UNIX process acted as gateway for all Path Pascal interpreters. Each Path Pascal interpreter sent

messages down a pipe to the routing process2 which passes the message down another pipe (or pipes in-

the event of a broadcast message) to the recipient(s).

2 This UNIX process should not be confused with the Path Pascal process concept. A Path Pascal interpreter emnlates *
Path Pascal machine running many Path Pascal processes within a single UNIX process. A UNIX process can be thought of as a
Path Pascal virtual machine.



EOS Project: Mid-Year Report May 1984 a?t

The Path Pascal interpreter has now been modified to handle remote procedure calls and interface

to a network mechanism. The first network implementation was done as part of[Kolstad 83]. Later

implementations utilize TCP/IP addressing formats and datagram facilities provided in the 4.2 BSD ver-

sion of UNIX. The interpreter itself has been modified to isolate the implementation of the particular

networking mechanisms. To change networks, approximately 10 routines must be rewritten. The inter-

facing between these routines and the rest of the interpreter remains unchanged.

Each instance of a Path Pascal interpreter represents a Path Pascal processor. These can run on a'

single UNIX host or can be distributed across several UNIX machines. The "piped" network was imple-

mented on a single UNIX host; the current implementation allows Path Pascal processes to reside on any

number of UNIX hosts.

7.2. A Reliable Path Pascal Compiler

In response to the need for efficient, portable Path Pascal compilers, work has been started on a

compiler based on the Pascal system provided with Berkeley UNIX. This compiler generates an inter-

mediate code which is translated by a separate code generator using a machine-independent format.

This is the same format that is used by the Portable C Compiler (PCC). Currently there are code gen-

erators for the Motorola 68000, VAX-11 family, PDP-11 family, and the National Semiconductor 16000

family of processors. It is believed that this code generator will continue to be ported to new architec-

tures as they are developed, as it provides immediate access to C, FORTRAN and Pascal compilers.

There are several advantages to using the Berkeley Pascal compiler. It uses an LALR(l) parser

and has an error recovery ability that the current P4-based compiler lacks. It fixes simple mistakes

using a minimum-cost error recovery technique. Additionally, experience with this compiler indicates

that it is somewhat easier to modify and maintain than the P4 compiler. Other features of the compiler

include separate compilation, the ability to call FORTRAN and C programs directly, and finer control

over the selection of hardware data types used to represent Pascal data types.



EOS Project: Mid-Year Report May 1984 38

The current Path Pascal compiler seems to provide a reasonably fast execution environment. In a

standard producer-consumer problem run for the production of one thousand items, the process took

five seconds of CPU time and eleven seconds of real-time on a fairly loaded VAX-11/750. It must be

emphasized that these are timings of the initial, unoptimized implementation which uses only a proto-

type context-switching mechanism. Since the production/consumption of each item requires two process

switches, it would appear that it takes roughly 25ms for an item to be created, several P and V opera-

tions to be performed (using a rather expensive method which saves the entire state of the process when

performing the semaphore operation and then restores it when done) and the production/consumption

of the item to be reported to a UNIX file.

Process switching times vary with the machine, but on the VAX-11/750, it takes about 25

microseconds to perform a context switch. This time is small, and in most applications does not appear

to be significant overhead in Path Pascal execution. More important are the schedule, process creation

and semaphore manipulation times. One program involving the creation/deletion of a single process

1000 times had a total execution time of 2.8 seconds, or about 2800 microseconds per process creation

and destruction. Each creation/deletion cycle involves the execution of four context switches, the use of

a generalized dynamic memory package which reclaims process space, and a rather inefficient scheduler.

These execution times can be improved by having the compiler generate machine dependent code

for the P and V synchronization primitives. If this approach is taken, non-blocking P operations will be

reduced to two instructions on the VAX-11. Similarly, the process creation time is highly dependent on

the run-time environment. It is assumed that the final real-time environment will either not use virtual

memory or at least provide for memory-locked processes. There are no limits on the number of

processes which may be created, which simply depends on the about of memory present. The general-

ized memory allocation routine may be able to be improved in specialized applications where the

memory use pattern is better known.

The new compiler also allows passing procedures, functions, and processes as "formal parameters"

to other procedures. This feature is defined in Pascal but was absent from the P4-based implementa-



EOS Project: Mid-Year Report May, 1984 38*.

tion. We have also modified the compiler to provide an "otherwise" clause for the "case" statement.

The run-time system, written in the C programming language, provides for dynamic process crea-

tion and disposal of process resources (memory and files) upon completion. It is hoped that this run-time

system will eventually be re-written in Pascal.

The implementation of the "object" data abstraction facility is nearly complete. Entry procedure's,

functions and processes are working, as are object initialization procedures and path expressions. The

"initially" procedure is also working, and a matching "finally" procedure, invoked when an object is

dereferenced, is defined but not yet implemented at the time of this report. Symbol hiding and nesting

of objects are all handled in an efficient and logical manner which does not adversely impact the sym-

bolic debuggers. Absolute variable binding is also done.

Possible additions could include the development of global code improvers based on use-definition

chaining. This is currently not done in the portable C compiler, but it should be possible to write a

code-improver which works on the intermediate code. This has been done by a private company (Zilog),

and it may be possible to acquire rights to this program.

7.2.1. Planned Extensions to the Compiler

This re-implementation of the language has provided us with an opportunity to extend the basic

Path Pascal system. We are planning on allowing separate compilation of objects, provided a skeleton

outline is provided. The syntax for remote and "externally declared" or "forward declared" objects will

be very similar and will in fact use the same approach internally. The forward declared object concept

is being provided to allow cyclic references to objects within objects. Additionally, since more informa-

tion is kept at compile-time, some improvements in efficiency can be made, such as reducing the

space/time product cost of the current "wait-for-sons" primitive.

Other important changes being considered involve implementing deadline scheduling for interrupt

processes and modifications to the underlying structure of the distributed object mechanism. It is also

hoped that a mechanism can be provided which will allocate the stack-frames for processes from the glo-



EOS Project: Mid-Year Report May 1984 40

bal heap in a fast manner. This will allow us to remove the need to declare the size of processes and will

hopefully reduce the risk of process faults due to lack of stack space.

The networking aspect of the new system is the least developed aspect. Currently, we are investi-

gating using the "Courier" remote-procedure call (RFC) mechanism to provide the RPC's for remote

object reference. This would hopefully reduce much of the complexity of the networking software, as

well as provide a standardized RFC mechanism which automatically performs machine-dependent data

format conversions to provide greater machine independence in a multi-architecture environment. The

Courier package was developed by Xerox PARC to provide a reliable RFC mechanism. Courier is lay-

ered on top of the NASA/DOD approved Internet Protocol (IP), and thus should enjoy a great deal of

support. In an effort to determine if there is a better standard, we are also investigating the standard

proposed by Sun Microsystems Inc., based on their experience with the Courier standard.

7.2.2. Debugging Facilities

The most important advantage of using this new compiler system is related to the support environ-

ment. The Berkeley Pascal compiler generates sufficient symbol table information and run-time tests to

be used with a variety of source-level debuggers (Either "sdb" on 4.1BSD UNIX, or "dbx" on 4.2BSD

UNIX). These debuggers provides run-time tracing, triggers on reference to specific variables, line-at-a-

time execution, symbolic variable inspection, and break-points on either the line or machine instruction

level. Additionally, there is a facility for running profiled programs to determine execution time statis-

tics. The profile facility is an excellent method for determining which sections of programs need to be

improved. While none of these debuggers were designed for a multi-process program, we feel that it

should be easy to provide the few extensions needed to make debugging such programs simple.

7.2.3. Porting Path Pascal to the IBM Workstations

The portable Path Pascal system is now being ported to the IBM 68000 Xenix system. The com-

piler has been ported already and is generating F-code. The interpreter will be ported next. The only

problems encountered so far can be attributed to incompatibilities between Berkeley Pascal (underlying



EOS Project: Mid-Year Report May 1984 41

the VAX Path Pascal implementation) and IBM Pascal.

7.3. Uses of Path Pascal

As a side note, we feel that it should be useful to remark that several research groups on the UIUC

campus have been using Path Pascal for simulation of inherently concurrent activities, including ;

advanced processor architecture, and simulation of a fileserver using an Ethernet under a variety oL

loading conditions.

Prof. Belford's research group is using Path Pascal for simulation studies of different concurrency

control protocols for distributed databases.

The research group headed by Prof. Jane Liu and funded by an ARMY DOD Contract, required a

simulation model for the performance analysis of algorithms executing in a distributed system. The

model developed for this purpose was designed in Path Pascal. The model is designed in three layers:

the network layer, the host layer, and the user layer. Each layer is defined by several components which

describe completely all data structures, internal operations, protocols and interfaces to other layers.

Path Pascal object declarations, process declarations, and path expressions were found to be very useful

for designing a flexible yet simple model of a distributed system, and were used as the basic building

blocks for defining system components such as physical communication busses, message buffers, hosts

processors, job queues, etc. The model was defined in approximately 4000 lines of code, and generated

approximately 40K bytes of P-code.

This base of users has provided us with continued feedback on the effectiveness of Path Pascal in

simulation, as well as an active user community test-bed for new compilers. This will be used to good

advantage in the construction and testing of the new compiler.

7.4. Future Experiments

In conclusion, we feel that this re-implementation of the Path Pascal system provides many advan-

tages over the current implementations. While it is being developed in a UNIX environment, this is not



EOS Project: Mid-Year Report May 1084 42

required for actual systems. The current compiler can produce code that will run on a bare machine.

Similarly, while the current work is being done for the VAX-11 architecture, the modifications needed to

port this to Motorola-68000 systems are already in the compiler for the basic Pascal language, and the

machine-specific code in the compiler needed for the Path Pascal extensions are fairly minimal. Most of

the new run-time environment is written in C for convenience and does not depend heavily on the host

machine. When a Pascal version of this code is written, most of these dependencies will be removed.

As the system continues to mature, tests will be run in a multi-architecture environment using an

Ethernet communication link between 68000-based Sun workstations, VAX-11 mainframes, IBM Instru-

ments CS-9000 workstations and possibly Pyramid mainframes. These tests should enable us to spot

portability problems and maintain a much higher-quality compiler. Additionally, we hope to construct a

"stand-alone" system on a VAX-11/750. This would provide us with a better test-bed for the dead-line

interrupt process mechanism as well as provide the ability to test the efficiency of the compiled code for

device drivers and other time-critical tasks.

8. Summary

During the period of the project under review, we have studied and designed key aspects required

in the development of a family of embedded real-time operating systems. We have considered a frame-

work in which the system can be prototyped, incrementally built, tested, measured, and finally delivered.

The framework allows software components to be validated and ported unchanged from the develop-

ment environment to a production environment. It permits software components to be re-used without

change in real-time subsystems, networks of systems, fault-tolerant systems, and protected environ-

ments.

The key components of our work include the development of GLOSS, a methodology which
~i

simplifies the. design of a family of operating systems; INDEED, an environment to support prototyping,

incremental development, and dynamic reconfiguration of object-based systems; enhancements to port-

able interpreted Distributed Path Pascal; and the construction of a reliable Distributed Path Pascal

compiler. EOS, the example embedded operating system which we are constructing, will provide system



EOS 'Project: Mid-Year Report May 1984 ,, 43 %,

services through object-oriented software components.

We have also examined design and. measured the performance of several existing network and dis-

tributed operating systems including UNIX United. By porting UNIX United to Berkeley 4.2, we have

discovered many design issues and performance concerns that will effect the development of EOS. The

experiment has also allowed us to confirm many of our design decisions.

We believe that our current research has produced many new and interesting results. In the next

few months, we hope to begin to implement many of our ideas which will enable us to provide further

experimental evidence of the validity of our approach.



EOS Project: Mid-Year Report May 1084 44

References ~__

(Ada Reference Manual] Preliminary ADA Reference Manual. SIGPLAN Notices (June 80) vol. 14,

no. 6.

[Anderson & Lee 81] Anderson, T. and P. A. Lee. Fault Tolerance, Principles and Practice.

Prentice-Hall International, Englewood Cliffs NJ, 1981.

[Andrews 81] Andrews, Gregory R. Synchronizing Resources. ACM Transactions on Programming

Languages and Systems (October 1981) vol. 3, no. 4, pp. 405-430.

[Appelbe & Ravn 84] Appelbe, William F. and A. P. Ravn. Encapsulation Constructs in Systems

Programming Languages. ACM Transactions on Programming Languages (April 1984) vol.

6, no. 2, pp. 129-158.

[Birrell & Nelson 84] Birrell, Andrew and Bruce Nelson. Implementing Remote Procedure Calls. ACM

Transactions on Computer Systems (February 1984) vol. 2, no. 1.

[Brownbridge et al. 82] Brownbridge, D. R., L. F. Marshall and Brian Randell. The Newcastle

Connection or UNIXes of the World Unite!. Software - Practice and Experience (1982) vol.

12, pp. 1147-1162.

[Campbell 83] Campbell, Roy H. Distributed Path Pascal. In: Distributed Computing Systems, Y.

Paker and J. P. Verjus, eds. Academic Press, 1983, pp. 191-224.

[Campbell & Anderson 83] Campbell, Roy H. and T. Anderson. Practical Fault Tolerant Software for

Asynchronous Systems. SAFECOMP 83, Third International IF AC Workshop on

Achieving Safe Real-time Computer Systems, Pergamon Press, Oxford, England

(1983).



EOS Project: Mid-Year Report May 1984t 45*V

•fCampbell & Randell 83] Campbell, Roy H. and Brian Randell. "Error Recovery in Asynchronous

Systems", Department of Computer Science Technical Report #1148, University of Illinois at

Urbana-Champaign, Urbana, Illinois, 1983.

[Cheng et. al. 80] Cheng, W. Y., S. Ray, Robert Bruce Kolstad, J. Luhukay, Roy H. Campbell and Jane

W. S. Liu. "ILLINET - A 32 Mbits/sec. Local Area Network", Department of Computer Science*

Technical Report #1035, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1980, p.

26.

[Cristiao 82] Cristian, F. Exception Handling and Software Fault Tolerance. IEEE Transactions on

Computers (June 1982) vol. C-31, no. 6, pp. 531-540.

(Davis 78] Davis, C. T. Data Processing Spheres of Control. IBM System Journal (1978) vol. 17, no.*

2, pp. 179-198.

(Deitel £4] Deitel, Harvey M. An Introduction to Operating Systems. Addison-Wesley, Reading,

MA, 1984.

[Eswaran et. al. 76] Eswaran, K. P., J. N. Gray, R. A. Lorie and I. L. Traiger. The Notion of

Consistency and Predicate Locks in a Database System. Communications of the ACM

(November 1976) pp. 624-633.

[Foudriat et al. 84] Foudriat, E, C., W. J. Berman, R. W. Will and W. L. Bynum. "An Operating

System for Future Aerospace Vehicle Computer Systems", preliminary), Langley Research

Center, NASA, Norfolk, Virginia, 1984, p. 45.

[Horton 79] Horton, Kurt H. "A Fault-Tolerant Deadline Mechanism", M.S. Thesis, Department of

Computer Science Technical Report #998, University of Illinois at Urbana-Champaign, Urbana,

Illinois, 1979, p. 52.

[Jalote & Campbell 83] Jalote, Pankaj and Roy H. Campbell. "Fault Tolerance Using Communicating

Sequential Processes", Department of Computer Science Technical Report #1149, University of

Illinois at Urbana-Champaign, Urbana, Illinois, 1983, p. 21.



EOS Project: Mid-Year Report May 1984 46

[Joy 84] Joy, William N. The Scientific Computing Environment: Workstations, UNIX and

Supercomputers. Colloquium, Coordinated SClence Laboratory, University of Illinois at

Urbana-Champaign (May 1984).

[Kolstad 83] Kolstad, Robert Bruce. "Distributed Path Pascal: A Language for Programming Coupled

Systems", Phd. Thesis, Department of Computer Science Technical Report #1136, University of

Illinois at Urbana-Champaign, Urbana, Illinois, 1983.

[LeBlane 84] LeBIane, Thomas J. Programming language support for Real-Time distributed systems.

Proceedings, International Conference on Data Engineering (April 1984) pp. 371-376.

[Leinbaugh 81] Leinbaugh, Dennis W. "High Level Specification and Implementation of Resource

Sharing", Technical Report OSU-CISRC-TR-81-3, Ohio State University, Columbus, Ohio, 1981.

[Leinbaugh 82] —. "High Level Description and Synthesis of Resource Schedulers", Submitted to ACM

'82: Ohio State University, Columbus, Ohio, 1982.

[Leistman 81] Liestman, Arthur L. "Fault-Tolerant Scheduling and Broadcast Problems", Phd. Thesis,

Department of Computer Science Technical Report #1063, University of Illinois at Urbana-

Champaign, Urbana, Illinois, 1981, p. 98.

[Liskov 83] Liskov, Barbara H. and Robert Scheifler. Guardians and Actions: Linguistic Support for

Robust, Distributed Programs. ACM Transactions on Programming Languages and

Systems (July 1983) vol. 5, no. 3, pp. 381-404.

[McKendry & Campbell 80a] McKendry, Martin Steward and Roy H. Campbell. "The Execute

Statement: Design, Examples, and Implementation Algorithms", Department of Computer

Science Technical Report #1044, University of Illinois at Urbana-Champaign, Urbana, Illinois,

1980, p. 22.

[McKendry & Campbell 80b] —. "Mechanisms for Protection and Process Control in Operating

System Languages", Department of Computer Science Technical Report #1038, University of

Illinois at Urbana-Champaign, Urbana, Illinois, 1980, p. 15.



EOS Project: Mid-Year Report May 1984 47.

[McKendry et al. 80] McKendry, Martin Steward, Roy H. Campbell and Robert Bruce Kolstad.

"Pathos: A Path Pascal Operating System", Department of Computer Science Technical Report

#1016, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1980, p. 20.

[Mickunas & Jalote 83] Mickunas, M. D. and Pankaj Jalote. "The Delay /Re-Read Protocol for

Concurrency Control in Databases", Department of Computer Science Technical Report #1145;

University of Illinois at Urbana-Champaign, Urbana, Illinois, 1983, p. 13.

[Mickunas et al. 84b] Mickunas, M. D., Pankaj Jalote and Roy H. Campbell. The Delay/Re-Read

protocol for Concurrency Control. In: Proceedings, First International Conference on Data

Engineering. IEEE, Los Angles, California, 1984.

[Peterson and Silberschatz 83] Peterson, James L. and Abraham Silberschatz. Operating System

Concepts. Addison-Wesley Publishing Co., Reading, Massachusetts, 1983.

[Postel 81aJ Postel, Jon. "Internet Protocol - DARPA Internet Program Protocol Specification", RFC

791, USC/Information Sciences Institute, 1981, p. 44.

[Postel 81bj —. "Transmission Control Protocol - DARPA Internet Program Protocol Specification",

RFC 793, USC/Information Sciences Institute, 1981, p. 85.

[Randell 75] Randell, Brian. System structure for software fault tolerance. IEEE Transactions on

Software Engineering (June 1975) vol. SE-1, no. 2, pp. 220-232.

[Randell et al. 78] Randell, Brian, P. A. Lee and P. C. Treleaven. Reliability Issues in Computing

System Design. ACM Computing Surveys (June 1978) vol. 10, no. 2, pp. 123-165.

[Schmidt 83] Schmidt, George Joseph. "The Recoverable Object as a Means of Software Fault

Tolerance", MS Thesis, Department of Computer Science, University of Illinois at Urbana-

Champaign, Urbana, Illinois, 1983.

[Shrivastva & Panzieri 82] Shrivastva, S. K. and F. Panzieri. The Design of a Reliable Remote

Procedure Call Mechanism. IEEE Transactions on Computers (July 1982) vol. C-31, no. 7.



EOS Project: Mid-Year Report May 1084 48

[Spector 82] Specter, Alfred. Performing Remote Operations Efficiently on a Local Computer Network.

Communications of the ACM (April 1982) vol. 25, no. 4.

[Thompson 78j Thompson, K. UNLX&Implementation. Bell System Technical Journal (July 1978)

vol. 57, no. 6, pp. 1931-1946.

[Wei 8lJ Wei, Anthony Yu-Wu. "Real-Time Programming with Fault-Tolerance", Phd. Thesis,

Department of Computer Science Technical Report #1041, University of Illinois at Urbana-

Champaign, Urbana, Illinois, 1981, p. 125.

[Wei & Campbell 80] Wei, Anthony Yu-Wu and Roy H. Campbell. "Construction of a Fault-Tolerant

Real-Time Software System", Department of Computer Science Technical Report #1042,

University of Illinois at Urbana-Champaign, Urbana, Illinois, 1980, p. 24.

[Zimmermann 80] Zimmermann, H. OSJ Reference Model - The ISO Model of Architecture for Open

Systems Interconnection. IEEE Transactions on Communications (April 1980) vol. 28, pp.

425-432.



APPENDIX A

The Delay/Re-Read Protocol for
Concurrency Control in Databases

Presented at International Conference on
Data Engineering

Los Angles
April, 1984



ORIGINAL PAGE 191
OF POOR QUALITY

1.INTRODUCTION

The problem of concurrency control in databases has received a good deal of atten-

tion in recent years[4,5,8,15,18,21). Concurrency control is the activity of co-ordinating

concurrent access to a database by various transactions, such that the actions of one

transaction do not interfere with actions of another. Unrestricted concurrency among

database transactions can result in an inconsistent database [5, 0]. Eswaran et. al. [S]

proposed a protocol, known as Two Phase Locking, to preserve database consistency.

Two Phase Locking requires that each transaction lock the entity it is going to

access. A transaction may request a Read lock or an Update lock on an entity. A lock is

"granted" only if no other transaction holds a conflicting lock. Furthermore, each tran-

saction runs through both a "growing phase" and a "shrinking phase". In the growing

phase a transaction collects the locks that it requires, and in the shrinking phase it

releases them. A transaction cannot request any further locks once it has released any

lock. A disadvantage of Two Phase Locking is that deadlock may occur. Deadlock is a

major eoaeera ia eoaeurreaey control [11,23], aad usually oae or more of the deadlocked

traasaetioas must be aborted before proeessiaf may proceed, This implies that backup

data must be maiataiaed so that if deadlock oeeurs, transactions may bt aborted and

"uadoae", thereby restoring the database to a eoasisteat state.

Maay variatioas OB loeklag protocols have beea proposed [2,7], aati St has beea

demoastrated that loeki&g achieves somewhat better results when the datable Is struc-

tured as a hierarchy [12, IS]. The solutions proposed by Thomas [21] aad steams [20]

have been found to be special cases of Two Phase Locking [4].

A - l Reproduced from
best available copy.



The use of locking to maintain consistency is an entirely preventive measure that is,

it tries to prevent any view of the database from becoming inconsistent. Two Phase

Locking assumes the worst case in jwhjch any transaction which potentially may conflict

with another transaction is synchronized. Since this is a sufficient but not a necessary

condition for actual conflicts [3,4] Two Phase Locking tends to be overly restrictive and

results in a reduction in concurrency.

Kung [13] proposed a corrective measure for concurrency control in an effort to

relieve the tight restrictions of locking protocols. In his scheme each transaction works

on a private copy of the database and no control is imposed on the actions of any tran-

saction. If, on termination, it is determined that the transaction has operated on a con-

sistent state, the transaction is committed and its changes made permanent. However,

if the transaction operated on an inconsistent state, the view of the transaction is

"corrected" before its changes are made permanent. The "corrective measure" is to

abort the transaction and resubmit it, hoping that it will see a consistent state in the

new attempt. In the basic scheme a transaction is prone to repeated abortion. Special

measures had to be taken to detect and prevent "starvation" of a transaction.

Conflict Graph Analysis (5,6] is another technique used to increase the degree of

concurrency. It also employs a preventive technique, but uses static analysis of the

conflict graph to reduce the amount of synchronization needed to ensure that the data-

base remains consistent.

In the present paper we present a new protocol, which employs both preventive and

corrective measures. The protocol, which we call the Delay/Re-Read Protocol, acts, on

the one hand, in a corrective fashion by sometimes forcing a transaction to re-read some



4-3

data; it does so upon recognizing that a transaction has read an inconsistent set of data.

The protocol acts, on the other hand, in a preventive fashion by sometimes imposing a

delay before permitting a transaction to write to the database; it does so upon recogniz-

ing that such a write might, at the present time, jeopardize the integrity of the data-

base. A Read request by a transaction is always granted without delay. A Write

request may be delayed. The protocol is deadlock-free and no transaction is ever

aborted. Consequently, no backup data is needed for the operation of the protocol. The

protocol supports a greater degree of concurrency than Two Phase Locking and no tran=

saction is ever delayed indefinitely. This work constitutes a part of a forthcoming thesis

[12], and is based upon the preliminary results in [14].

This paper is organized as follows. In Section 2 we present our model of a database

system. In Section 3 we define our notion of consistency and present some results relat-

ing consistency to the ordering of basic actions of transactions. In Section 4 we present

the Delay/Re-Read Protocol and prove that it is both consistent and deadlock-free. In

Section 5 we discuss some aspects of the Delay/Re-Read Protocol.

2. SYSTEM MODEL

We consider the database to be a collection of distinct objects with unique

identifiers, called entities. Assertions, called integrity constraints specify the possible

values of the entities. Integrity constraints govern the possible interactions of opera-

tions upon entities. A database which satisfies all of the integrity constraints is said to

be in a consistent state. A complete specification of the integrity constraints for a data-

base might be very large and it might not have an explicit representation.



/?-4 OF

In order to formalize our moded, we present some definitions.

We denote the set of entities in the database by "E". Each entity may be read or

written indivisibly.

Definition 2.1. A transaction, denoted Tk, is a set of actions

* = l'l/|=l

together with a linear ordering* <r», on Tk. <r* is meant to reflect the temporal ord-

ering of the individual actions of T*. Each <* is a 4-tuple

where

(1) k uniquely identifies the transaction, Tk to which f* belongs

(2) a*€{.R, W}, called the operation, denotes either Read or Write

(3) eftE denotes the entity upon which the operation a* is performed

(4) Uf C 2E (power set of E), called the Use Set.

In the case af—W, U-1 denotes a set of entities which are used to compute the new

value of e*. Consequently, we may often use a "function" notation when describing a

Write action:

* Recall: a partial ordering < on a set X ia a subset *C C X"XX for which (fl ,f>)c^ and,
(6,a)c< implies C = 6, and for which (a,b)6< and ( b , C )t <[ implies ( f l ,c)f<; (a,b)t< b usually
written a<6; if fl<6 and a^b then we write fl<^6; < is said to be a linear ordering on X if for
every a ,b^X , either a < 6 or 0 < a .



ft***-

In the case af=R, U* is the empty set. Consequently, we may often omit U* when

describing a Read action:

tf=(k,R,ef)

We require that each transaction be well formed, that is

(1) a transaction may read an element at most once;

(2) a transaction may write an element at most once;

(3) all Reads of a transaction must precede all of its Writes;

(4) the Use Set for a Write action must include the entity being written, i.e. the new

value of an entity depends on its old value (among other things), and;

(5) an entity must be read before it can appear in the Use Set of any write.

Formally, these constraints may be written as follows:

Definition 2.2. A transaction Tk ={1?}?^ is said to be well-formed if and only if the

following conditions hold:

(1) if t(=(k,R,tl) and */=(*,£,«/) then e/^«*

(2) if tf=(k,W,et,Ul) and t*=(k,W,e*,U*) then «,^«*

(3) if t*=(k,R,e?) and t*=(k,a*,e*,U*) then either tf<rf/or a*=R

(4) if tf = (k, W,ef, Uf) then ef is in Uf

(5) if tf=(k,W,ef,Uf) then for every ytU? there exists t* for which t*=(k,R,y) and



X?-6

Our model is thus a generalization of Papadimitriou's "two-step restricted" model

[17], in which our restrictions (4) and (5) with Uk—{ek} reduce to Papadimitriou's

simpler restriction that an entity must be read before it can be written.

3. CONSISTENCY

We assume that a given transaction, Tk, transforms the database from one con-

sistent state to another consistent state (although the database may temporarily be in

an inconsistent state while Tk is executing). Our goal is to allow concurrent transac-

tions, yet ensure that when the transactions complete the database will be in a con-

sistent state.

The notion of concurrent transactions is captured by the following definition.

Definition 3.1. Let T1, . . . , Tn be transactions. A schedule, 5, for Tl
t . . . , Tn is

the set of actions

5= U T
1=1

together with a linear ordering, <5, on 5, for which for all i, < j-, C <$.

As before, the relation <$ is meant to reflect temporal ordering (with truly simul-

taneous actions having an "effective" temporal ordering imposed by <$). Since actions

of each transaction are performed in the order the transaction requests them, it follows

that if t k<T> tk then we must have **<$/*; hence the requirement that <rt C <5.



0-7"

For each transaction T1, we define its registration, (i,w), as a request which pre-

cedes Tl 's Writes and which follows Tl 's Reads. As we shall see, the registration for a

transaction will actually be an enumeration of its Write Set. We extend <r, (and

correspondingly, <$) to include (1,10) in the obvious way, viz., (i,R,x)<T,(i,w) and

(i,u))<T,(i,W,y). Moreover, we further extend <5 so that if (i ,u>) precedes (j,w) in

time, then (i,w)<s(j,w).

The aim of any concurrency control method is to ensure that the schedules per-

formed on the database transform it from one consistent state to another. Serializabil-

ity [8, 16] has been generally accepted as the consistency criterion for schedules. Serial-

izability holds that a schedule for transactions T1, . . . , Tn is consistent if the state of

the database after executing the schedule is the same as it would have been had the

transactions been executed one after another in some order. Note that the order

(corresponding to some permutation {KJ}*^ o/[l,n]) is not specified.

Given a schedule S, which satisfies the serializability criteria, we refer to the per-

muted serial execution rff|, . . ., T** as an Equivalent Serial Schedule (ESS). Such an

ESS is not necessarily unique. A schedule having an ESS will be called a Consistent

Schedule. Not all the schedules are consistent. A concurrency control protocol is said to

be consistent if it ensures that the schedule that finally acts on the database (which

might be different from the schedule submitted) is consistent.

Since our model requires that each entity be read before it can be written, a

schedule S can be checked for serializability using its corresponding precedence graph,

Gs [22]. We construct the graph as follows. The nodes correspond to the transactions.



The arcs are determined by the following rule:

If (i,R,x)<s(j tW,x) or (*,W,x)<s(j,W,x) or (i tW tx)<8(j,R,x) for any x,

then draw an arc from T* to TJ .

We note that since <5 is a total relation, it follows that the undirected version of

Gs is a complete graph.

A schedule 5 is serializable if its precedence graph is acyclic. It follows that we can

find an ESS for S by topological sorting.

Clearly the temporal ordering of the registrations induces a serial schedule, 5. If

Tl precedes T3 in such a serial schedule, S, we write T'<§T}. We shall see that the

Delay/Re-Read Protocol, using those registrations, produces a schedule, S whose

*equivalent serial schedule is 5.

Lemma 3.1. Let S be a schedule for well-formed transactions. Then the precedence

graph Gs has no arc from TJ to T' if for every (i,W,x) in S, (j,R,x)eS and

(i,w)<s(j,w) implies (i,W,x)<5(j,R,x).

Proof. The proof is by contradiction. There are only three ways that Gs can have an

arc from T}' to T:

(1) (j,R,x)<s(i,W,x). Since <s is anti-symmetric, this directly contradicts the

hypothesis that (j,R,x)eS and (i,w)<s(j tw) and (i,W,x)<s(j,Rtx).

(2) (jtW,x)<s(i,W,x). Since T' is well-formed, we have

As in case 1, the hypothesis yields



which, by anti-symmetry of Gs, disallows this case.

(3) (j,W,x)<s(i,R tz). Since Tl is well-formed, we have

Also

so

(/,">)<$('»

which, by anti-symmetry of <$, contradicts the hypothesis that («,t0)<s(/,t0).

Theorem 3.2. Let S be a schedule for well- formed transactions. Then the precedence

graph Gs is acyclic if for every (i,W,x) in 5, (/,/?, ar)c5 and (t,tt>)< iy(y,t[;) implies

Proof. The proof is by contradiction. Suppose that £5 has a cycle involving nodes

7"1, • • • 7"* (k>l). Since <$ strictly orders the registrations of the transactions, there

is one registration (i ,w) among {(iltw)t...,(ik,w)} which is "earliest" in time. Now for

every other transaction, T* , .;t{«i,.. •,»'*} (;T^')> we have (i,w)<sUtw)t which by

hypothesis implies (i,W,x)<s(j,R,x). So Lemma 3.1 applies and there can be no arc

to Tl from each such T}, /^{'i, •••,**} (/7^0- Therefore, the presumed cycle involving

T1 is not possible.



Corollary 3.3. Let 5 be as in Theorem 3.2 and S the serial schedule induced by the

registrations. Then 5 is consistent and 5 is an ESS of 5.

Proof. Since by Theorem 3.2, Gs is acyclic, it follows that S is serializable and hence

consistent. Moreover, any serial schedule having Gs as its precedence graph is an ESS

of 5. Clearly 5 is such a serial schedule.

Informally, the theorem lays down a sufficient condition to be satisfied by the

schedule that will ensure that every transaction sees a consistent state, that is, the set of

values returned by the Reads of the transaction is such that it is the same as the set of

values of these entities in some consistent database state. This does not imply that all

the Reads must be performed on the same consistent state. A Read can be performed

on any database state, possibly transitory and inconsistent, but the set of values read by

all Reads must be such that all the values can co-exist in some consistent database

state. Theorem 3.2 specifies the condition when this is satisfied. This theorem is the

basis of Delay/Re-Read Protocol.

In the following sections M^-(x) and -#,-(*) mean same as (i,W,x) and (i,R,x)

respectively.

4. DELAY/RE-READ PROTOCOL

Not all schedules satisfy the condition of Theorem 3.2 in the form they are submit-

ted. The purpose of the Delay/Re-Read Protocol is to control any schedule so that the

schedule that finally acts on the database satisfies the condition of the theorem.



/J-ll

Each transaction is submitted to a Transaction Manager which assigns a Transac-

tion Process (TP) to each transaction. A History File is used to record the information

about the actions performed on the database by the various transactions. This is

different from a "log file". A log file, along with data about the actions also records the

old and new values of the entities which are modified to provide a "backup". The his-

tory file records only a window of activity and no "backup" data is recorded. As we

shall see, the history file need only maintain a record of the actions of recent transac-

tions.

When a transaction requests a Read, the TP permits the read and records this

action in the history file. No control is exercised over the Read requests. When a tran-

saction requests a Write, the TP executes the protocol and awaits its instruction(s). The

protocol may allow the TP to permit the request or may require the TP to re-read some

entities, to re-do the computation, and to re-submit the Write request. When the Write

is granted the TP permits the Write and records the action in the history file.

The Delay/Re-Read Protocol is used to ensure that any schedule remains con-

sistent. This is accomplished by a combination of preventive and corrective measures.

The Delay/Re-Read Protocol sometimes delays a Write request (a preventive action).

Alternatively, the Delay/Re-Read Protocol sometimes requires TP to re-read some enti=

ties prior to proceeding with a Write (a corrective action), thereby assuring that the Use

Set for .the Write is consistent.

We assume that the Write Set of the transaction is known by the TP. This infor-

mation is required after the transaction has performed all of its Reads. A.similar

assumption has been made in SDDl [6], and is required in locking protocols in order to



4-12

determine whether to request a shared or exclusive lock. This does not place any res-

trictions on what may be read and written by transactions, but rather merely requires

that a transaction's Write Set be known. Afte? *he transaction has performed all its

Reads and before it performs its first Write, it records its Write Set in the history file. If

the Write Set of T* is {x,y,z}, this is recorded in the history file as wi(x)wi(y)wi(z).

The recording of the Write Set is assumed to be an atomic action. This action serves

the purpose of the registration as discussed in section 3.

A Read action is recorded as Rf (entity -name) in the history file. A Write action of

the form W{(x(U)) is recorded as M^(ar)u,-(ar1)«,-(z2) — «»(*m) where each xfeU. The

writing of this sequence is taken to be atomic. (Note that one of the xi=x and we need

not include «,-(x) since it is implied by Wj-(x). For the sake of uniformity we will

assume that «,-(*) is also recorded)

Let us now present the Delay /Re-Read Protocol formally.

Let x,ycE

The History File, H is maintained as a string over the alphabet

Let an ellipses (...) denote an arbitrary string over J] (possibly of length zero).

Let TP(j) be the transaction process of T} . The Delay /Re-Read Protocol is shown

in figure 1. -



., ORIGINAL PAGEFS
'L* OF POOR QUALITY

Given a request for Wj(x( U)),

(* SECTION I*)
1. for every T{<§T

}' do
2. { if #=...£,-(*)... #

then
3. if there exists Tk <§ T for which H*=...wt(x)... 8
4. then await u,-(x)

5. for every ye U do
6. {for every Tf<sT

} r do
7. { if #=...«;(?)...
8. then await

(* SECTION III *)
9. if there exists ycU & r<§ T> for which #=... Wf(y)... & Hj£... Wi

then
10. {for every ye U
11. {if there exists T '<§ T>
12. for which //=... M;(y)...
13. then instruct TP(j) to reread y

}
14. instruct TP(j) to recompute x(U)
15. instruct TP(j) to resubmit W}-(x(U))

}
16. else authorize W;(x(U)).

Figure 1: The Delay /Re-Read Protocol

Sections I and n constitute the preventive action of the protocol (causing delays);

section HI constitutes the corrective action (causing re-reads).

Informally, the Delay /Re-Read Protocol ensures that there is no arc in Gs from T3

to T' (where T1 <§ TJ). For this the protocol must ensure that for any xeE



(1) W{(x)<sRj-(x) . (ensured by Section ffl)

(2) Wi(x)<sWj(x) (ensured by Section H)

(3) Rj(x)<s Wj(x) (ensured by Section I)

Since re-reads are possible, R here means the effective or the final Read. For any

T*<§T], if condition 1) does not hold (line 12 and 7), the protocol ensures that TJ

waits until W^x) is performed (line 8) and then re-reads the entity (line 13), thus ensur-

ing condition 1).

Condition 2) is satisfied since the well-formedness criterion Rj(x)<s W-(x) together

with Condition 1) ensure that Wj(x)<sWj(x).

It takes a bit more thought to see why it is necessary to do anything more to

ensure that Condition 3) is satisfied. A transaction, T* may not perform Wf(x) if some

T3' <§ Tl will "soon" be instructed to re-read x. This situation is illustrated by the fol-

lowing time line.

•*' time
Tk: Rk(x) wk(x) Wk(x(x))
T>': RjWRjMwjiy) R

T: RM*i(*) iWi(x)] ^OOM*)
It should be pointed out that in the protocol when we refer to a Tl such that

T'<§T}, we can exclude from consideration any transaction Tl which terminated

before T> started, since such a T* automatically satisfies the conditions of Theorem 3.2.

To avoid complication, we do not mention it in the protocol.

We conclude this section with a number of claims for the Delay/Reread Protocol.



4-15'

Claim 4.1. The Delay/Re-Read Protocol is consistent.

Sketch of Proof. The above discussion illustrates that any ftj(y) occurs after all

W{(y) that may occur (for (i,w)<s(j,w)). Thus, the hypotheses of Corollary 3.3 are

satisfied, and the resulting schedule is consistent.

Claim 4.2. The Delay/Re-Read Protocol is deadlock-free.

Sketch of Proof. T> is made to wait for T* only if (»',«>)<$(/,«>). Since <s is a

linear ordering, it follows that no deadlock can occur.

Claim 4.3. For any entity at most one re-read is performed by any transaction.

Sketch of Proof. Before a transaction, TJ discovers in Section IE that it must per-

form a Re-read of some entity y, T1 must first pass through the "gate" of Section IL

Section n delays the progress of TJ until all elder transactions, Tf <STJ have per-

formed their Writes of entity y. Therefore, upon entry to Section HI, transaction T1 is

assured that elder transaction have finished their Writes to entity y. Moreover, any

younger transaction Tk>$T} which wants to perform a Write to entity y is delayed in

Section I until T3 has performed its Re-read of y.

Claim 4.4. No transaction is delayed indefinitely.



Sketch of Proof. Inspection of the protocol shows clearly that no delay is ever

imposed on the eldest transaction. Since we assume that transactions always terminate,

it follows that eventually every transaction becomes the eldest of the active transac-

tions, and is therefore immune to further delay.

5. DISCUSSION

History File : It may appear that the history string, H, grows without bound. How-

ever, there is a simple method by which we can prune H. We observe that we need not

record the actions of any transaction that terminated prior to the start of all currently

active transactions. Hence, actions of such transactions can be removed from H. We

further observe that the performance of a Re-Read, /?;-(x), obviates the need for any

previous record of -Ry(z); thus H can be further pruned of such #y(z)'s.

History file pruning need not be done by the Protocol or the TPs. A background

process can maintain and prune H. Since, the record of actions being removed from H

are not being considered by the protocol, the background process will not interfere with

the protocol, and so no synchronization is needed for it. This technique will keep the

history file pruned and make the act invisible to the protocol while reducing its over-

head.
•o-cj ^

Efficiency Considerations : We may make a few observations concerning the "over-

head" of the Delay/Re-Read Protocol. Overhead in the Delay/Re-Read Protocol is of

three forms: "delay overhead" corresponding to the delay of a Write in lines 4 and 8;



"re-read overhead" in line 13, which includes the re-computation of x(U) in line 14,

and; "search overhead" resulting from the pattern searching in the history file.

It is apparent that if H is pruned, as indicated above, then there is no overhead

when there is only one active transaction. Moreover^ there remains no overhead, even

with multiple concurrent transactions, so long as they operate on disjoint sets of enti-

ties. Overhead increases only as the interaction among transactions increases, vis-a-vis

increasingly overlapping Use Sets.

The overhead can be further reduced by utilizing the fact that if an entity has been
~i

used in a previous Write by the same transaction, its value is consistent and so the
-3

corrective part of the protocol (Section III) need not be executed for that entity.

The search overhead is reduced by pruning H. It can be further reduced by organiz-
j

ing the history file efficiently. For example, since each pattern the protocol looks for is

specified by actions on the same entity, we can divide the history file into sub-history

files, one for each entity (or a group of entities). Hashing and/or indexing can then be

used to further reduce the search time.

The scheme can also be modified to eliminate the recomputation overhead, where

the computation is expensive. Suppose Tl attempts W^(z(l/)) where the computation

of x(U) is expensive. T% might view M^-(a:(f/)) as merely a request to write, without

first performing the expensive computation. Only once the Write has been authorized,

does T' proceed with the computation of x( U), finally performing the Write.

Advantages Over Locking : It is difficult to compare Two Phase Locking with the

Delay/Re-Read protocol because both have different overheads resulting from the



4-18

different strategies followed. Some comparisons are however possible (although we make

no attempt here at a full comparison).

1) By using Two Phase Locking transactions can deadlock. The Delay/Re-Read

Protocol is deadlock-free.

2) Because of the corrective strategy, the Delay/Re-Read Protocol provides greater

concurrency, sometimes at the cost of re-read overhead. But, the Protocol also provides

a greater degree of concurrency even without any re-read (see example 1 below). Also,

in the Delay/Re-Read Protocol a Write request is delayed only when it would otherwise

lead to inconsistency, while in Two Phase Locking granting a lock can be delayed when

it might otherwise lead to inconsistency. The throughput of the Delay/Re-Read Protocol

is further improved by this fact.

3) Locking requires a lock table, the size of which is fixed and is a function of the

total number of entities in the database. This can be a rather large and unnecessary

overhead under low concurrency. Moreover, locking also requires a "log file", so that the

actions of some transactions can be "undone".

The Delay/Re-Read Protocol needs merely the history file, the size of which

depends upon the current degree of concurrency. For low concurrency this overhead is

low. Moreover, no backup data need be recorded for the protocol.

4) There is a possibility of 'starvation' in Two Phase Locking, when more than one

transaction is waiting to lock an entity. The problem is solved by using so-called fair

schedulers. No problem of starvation occurs with the Delay /Re-Read Protocol and no

extraordinary measures are needed to prevent starvation.



#-19

Two Examples : We give two examples, (left- to-right vertical alignment indicates

temporal ordering) First in which no re-read is to be done and no write is delayed. In

the second example, a re-read is needed.

Example 1:

)RZ(*) w2(z) Wz(z(x,z))

Two-Phase Locking would force R2(x) to wait until after Wl(x(x, y)), effectively forcing

serial execution, while the Delay/Re-Read Protocol permits full concurrency and

requires no delay or re-read overhead. In fact, in this example the Delay /Re-Read Pro-

tocol will result in optimum throughput (neglecting the time to execute the protocol).

Example 2:

7": RWRM-tMtMWfab)) Wi(*(*))«i(«)

2* :R2(x) *2(y)tM*)*2(y)W2(y(y)) R^x) W2(x(x]

In this example no delay overhead is incurred. But prior to performing W2(x(x)) T~

must re-read x (shown emboldened), and must recompute x(x) (if it had already been

computed using the old value of x). Locking will force serial execution and a simple

minded Two Phase Locking protocol will deadlock.

8. CONCLUSION

We have presented a new protocol for controlling concurrent access to a database

which uses both preventive and corrective measures for maintaining consistency, and in

so doing, permits a high degree of concurrency. The protocol is deadlock-free and

accomplishes its "forward recovery" without the need for backup data, without the need



#-20

for reversing the effects of any Writes, and without aborting transactions. The utility of

this method will vary from system to system, depending on the re-read overhead in a

particular system. We are currently studying the effects of the underlying system struc-

ture on the overhead of the protocol. We are also working on generalizing the protocol

for providing different levels of concurrency.

ACKNOWLEDGEMENTS:

The authors would like to thank Prof. Geneva G. Belford for providing useful

suggestions. One author (P. Jalote) would especially like to thank her for discussions

leading to insights into the problem. This work was supported, in part, by the Highly

Available Data Base Project of IBM San Jose Research Laboratory and, in part, by

NASA Grant NSG 1471.

REFERENCES

[1] R. Bayer, H. Heller and A Reiser, "Parallelism and recovery in database systems",

ACM Transactions on Database Systems, June 1880, pp. 130-156.

(2] R. Bayer and M. Schkolnick, "Concurrency of operations on B-trees", Ada In/or-

matica, vol 9-1, 1977, pp. 1-21.

|3] P. A. Bernstein and N. Goodman, "Approaches to concurrency control in distri-

buted data base systems", Proceedings of the National Computer Conference, 1979,

pp. 813-820.

[4] P. A. Bernstein, D. W. Shipman and, W. S. Wong, "Formal aspects of serializabil-

ity in database concurrency control", IEEE Transactions on Software Engineering,



ft- 21

vol. SE-5, No. 3, May 1979, pp. 203-216.

[5] P. A. Bernstein and N. Goodman, "Concurrency control in distributed database

systems" ACM Computing Surveys, Vol. 13, No. 2, June 1981, pp. 185-221.

[6] P. A. Bernstein, D. W. Shipman and J. B. Rothnie, "Concurrency control in a sys-

tem for distributed databases (SDD-1)", ACM Transactions on Database Systems,

March 1980, pp. 18-51.

[7] C. S. Ellis, "Concurrency search and insertion in 2-3 trees", Acta Informatica, vol

14-1, 1980, pp. 63-86.

[8] K. P. Eswaran, J. N. Gray, R. A. Lorie and I. L. Traiger, "The notion of con-

sistency and predicate locks in a database system", Communications of the ACM

Nov 1976, pp. 624-633.

[9] J. N. Gray, R. A. Lorie and G. R. Putzolou, "Granularity of locks in a shared data

base", IBM Research Report, RJ1654, Sept. 1975.

(10) J. N. Gray, "Notes on database operating systems", in Operating Systems: An

Advanced Course, Vol 60, Lecture Notes in Computer Science, Springer-Verlag,

New York, 1978, pp. 393-481.

[11] S. S. Isloor and T. A. Marsland, "The deadlock problem: an overview", IEEE Com-

puter, 1980, pp 58-78.

[12] P. Jalote, Ph.D. thesis, University of Illinois, Department of Computer Science, in

preparation.

[13] Z. Kedem and A. Silberschatz, "Controlling concurrency using locking protocols"

Proceedings of the 20th IEEE Symposium on Foundations of Computer Scince, Oct



#-22

1979, pp. 274-285.

[14] H. T. Kvmg and J. T. Robertson, "On optimistic methods for concurrency control,"

ACM Transactions on Database Systems, June, 1981, pp. 213-226.

[15] M. D. Mickunas and P. Jalote, "The delay/re-read protocol for concurrency control

in databases", Tech. Rep., Dept of Computer Science, University of Illinois at

Urbana-Champaign, No. UIUCDCS-R-1145, March 1983.

[16] C. H. Papadimitriou, "The serializability of concurrent database updates", Journal

of the ACM, Oct 1979, pp. 631-653.

[17] C. H. Papadimitriou and P. C. Kanellakis, "On concurrency control by multiple

versions" Proceedings of the ACM SIGMOD Conference, 1982, pp. 76-82.

[18] D. R. Ries and M. Stonebraker, "Effects of locking granularity in a database

.management system", ACM Transactions on Database Systems,Vol 2, No. 3, Sept.

1977, pp. 233-246.

[19] A. Silberschatz and Z. M. Kedem, "A family of locking protocols for database sys-

tems that are modeled as directed graphs", IEEE Transactions on Software

Engineering, Nov 1982, pp. 558-862.

[20] R. C. Stearns, P. M. Lewis and D. J. Rosenkrantz, "Concurrency control for data-

base systems", Proceedings of the Conference on Foundations of Computer Science,

ACM, NY, 1976, pp. 19-32.

[21] R. H. Thomas, "A solution to the update problem for multiple copy databases

which uses distributed control", Proceedings of COMPCON, 1978, IEEE, NY.



fr -23

[22] J. D. Ullman, Principles of Database Systems, Computer Science Press, 1980.

[23] M.Yannakakis, C. H. Papadimitriou and H. T. Kung, "Locking policies: safety and

freedom from deadlock", Proceedings of COMSAC79 IEEE, Chicago, pp 286-297.



APPENDIX B

Error Recovery In Asynchronous Systems

Submitted for publication to IEEE
Transactions for Software Engineering



6 - 2 -

1. INTRODUCTION

The demand for reliable computer systems has led to techniques for the construc-
tion of fault-tolerant software systems [6] and [11]. These techniques are intended to
ensure that a system fulfills the purpose for which it was constructed despite software
faults, hardware faults, and invalid invocations of its functions. Networks of computers,
distributed resources, and multiple processors introduce new problems of constructing
reliable systems and involve the complex organization and control of error recovery in
asynchronous systems [8], [12], [14] and [19]. This paper introduces general principles
and a framework for the design of reliable asynchronous systems based on fault tolerance
incorporating forward and backward error recovery.

1.1. Fault Tolerance and Error Recovery

A fault-tolerant system is one that is designed to function reliably despite the
effects of faults (component or design faults) during normal processing. Such a system
detects errors produced by faults and applies error recovery techniques in the form of
exceptional mechanisms and abnormal algorithms to continue operation and resume nor-
mal computation. However, error propagation may hamper error recovery; the contin-
ued operation of a system containing an error can result in the introduction and spread
of further errors. Successful fault tolerance must enable the system to continue to func-
tion despite error propagation during the time interval, which may be lengthy, between
the first manifestation of a fault and the eventual detection of an error.

So called "forward error recovery" aims to remove or isolate specific errors so that
normal computation can be resumed [16]. It is accomplished by making selective correc-
tions to a system state containing errors. Because recovery is applied to a system state
containing errors, forward error recovery techniques require accurate damage assessment
(or estimation) [1] of the likely extent of the errors introduced by the fault.

. In contrast, "backward error recovery" aims to restore the system to a state which
occurred prior to the manifestation of the fault. Using this earlier state of the computa-
tion, the function of the system is then provided by an alternate algorithm until normal
computation can be resumed [11]. (In practice, the most recent restorable system state
which is free from the effects of the fault may be difficult to determine. In order to find
an appropriate system state, a search technique may be used involving iteratively
attempting recovery from successively earlier restorable states until recovery is success-
ful.) Because backward error recovery restores a valid prior system state, recovery is pos-
sible from errors of largely unknown origin and propagation characteristics. (All that is
required is that the errors have not affected the state restoration mechanism.) Backward
error recovery may involve considerable time overhead and could require extensive test-
ing of potentially acceptable system states.

Forward and backward error recovery techniques complement one another, forward
error recovery allowing efficient handling of expected conditions and backward error



, 6 - 3 -

recovery providing a general strategy which will cope with faults a designer did not - or

chose not to - anticipate. As a special case, a forward error recovery mechanism can
support the implementation of backward error recovery [7] by transforming unexpected

errors into default error conditions.

1.2. Asynchronous Systems

We assume that all the activities of a computer are composed of the activities of a

set of primitive operations ("atomic actions"), each of which has the property of indivisi-

bly advancing the state of a computation. Likewise, we can also consider the activities

of systems that are more abstract than a computer (for example, the execution of a sys-

tem of software components) as being formed from a basic set of primitive atomic
actions that have the property of indivisibly advancing the state of that system. An
asynchronous system is one that is designed so that its activities may consist of two or

more independent and simultaneously active primitive atomic actions. Of course,

abstract asynchronous systems of software could be executed by a computer that is

sequential in operation.

In practice, each primitive atomic action is part of a sequence of actions called a

process which advances a particular computation (or operation on a system) from an ini-
tial state, through a set of successive intermediate states, perhaps to a final state. If
atomic actions from different processes may be interleaved or active simultaneously, then

the system is often described as having concurrent processes. Two or more processes

interact if they include primitive atomic actions which, reciprocally, modify each other's
intermediate states. (Such atomic actions are shared in the sense that they advance the

computation of more than one process.)

For fault tolerance to be effective, asynchronous systems require the coordination
and synchronization of normal activity with any activity supporting fault tolerance.
The errors generated by a fault may propagate from one process to another by interac-

tions or interprocess communication. Moreover, faults may manifest themselves in
several processes if the fault is a malfunction of a common element in their respective

processors. Control of fault-tolerant mechanisms may be defined by a centralized com-

ponent of the system or by the system's distributed components. The pattern of inter-

process communication may permit one group of processes to recover from a particular
fault while other system processes continue to perform their normal activities.

Corresponding to a spectrum of constraints that can be imposed upon interprocess

communication, there is a spectrum of error recovery techniques for asynchronous sys-
tems. For example, conversations [11] so synchronize a pre-identified group of Interact-
ing processes that these processes can perform error detection and error recovery before

they communicate to other processes not in the group. The restriction on communica-
tion prevents possible error propagation to other processes during the conversation and
simplifies state restoration.



5 - 4 -

Transactions constructed from the interactions of processes using a programmed
two-phase commit protocol [9] are co-ordinated so as either to produce a result agreeable

to all the constituent processes or to restore all information changed by the transaction

to its prior state. Such transactions can have a varying number of constituent processes

providing that they all obey the protocol.
•* i

If no synchronization is imposed on normal activity, processes may detect errors

and attempt to perform error recovery independently of other processes. However, such

processes require more complex coordination schemes for fault-tolerant provisions, as in
the chase protocol [17] and [25]. Starting from the process that flrst detects an error,
this protocol involves notifying all processes that may have received an error propagated

via interprocess communication and/or whose activities are invalidated by the backward
error recovery of other processes. Within the restrictions imposed by the protocol, each
process may independently and asynchronously proceed with recovery.

The construction of systems with activities that are formed from hierarchies of

atomic actions provides a structure for fault tolerance in asynchronous systems [1].

Within the hierarchy, the activities of a group of components are co-ordinated to have
the properties of an atomic action using more primitive atomic actions (these properties

are described in Section 3.1). For example, the components of a critical section may be

co-ordinated to update a set of variables indivisibly by the invocation of appropriate
operations on semaphores. There are two reasons why such a hierarchy is a convenient

structure. If a fault, resulting error propagation, and subsequent successful error
recovery all occur within a single atomic action they will not affect other system activi-
ties. Furthermore, if the activity of a system can be decomposed into atomic actions,

fault tolerance measures can be constructed for each of the atomic actions indepen-
dently. Thus, atomic actions provide a framework for encapsulating fault tolerance
techniques within modular components.

Although atomic actions have been defined many times in different ways (for exam-
ple, [8], [14] and [15]) we will use the following definition [l]:

"The activity of a group of components constitutes an atomic

action if there are no interactions between that group and the
rest of the system for the duration of the activity."

A more formal definition and analysis using occurrence graphs formed from events and
relations of causality can be found in [3]. Atomic actions are characterized by the set of

events they generate. This set has the property that if any two events within that set

are connected by a causal chain of events, all the events in that chain must also reside in

the set. An interaction between two activities called A and B would correspond, in the

event model, to a causal chain of events between two different events generated by A

which passes through at least one event generated by B. For example, a message passed



- 5 -

betwecn two activities results in an interaction if an acknowledgment is received from
the recipient of the message. (Notice that both definitions are more primitive and less

constraining than, a definition with the property "all or nothing" [14].)

A system has been defined as a set of components which interact under the control

of a design [16]. Systems that are designed explicitly so as to synchronize the activities

of their components in order to form atomic actions have planned atomic actions. The

'design also determines the way in which the components interact with the environment

of the system [l]. The environment of a system is another system which provides input

to and receives output from the first system. Such an exchange of information is an
operation. The activities concerned in an atomic action may be internal to the system or

may be operations.

If all the operations on a system involve only planned atomic actions, then that sys-

tem is an atomic system (an exchange of information is not necessarily an atomic action).
Such systems may be used as components in the design and construction of other, more

complex, systems as if their activities were primitive atomic actions. Systems may also
contain spontaneous atomic actions that arise fortuitously from the dynamic sequences of

events occurring in a system. For the purposes of structuring fault tolerance measures,

spontaneous atomic actions are of little value even if they can be easily identified as

such.

Planned and spontaneous atomic actions represent the two opposite ends of a spec-

trum of error recovery techniques and depend upon the extent to which explicit con-

straints are imposed upon interprocess communication. The conversation is an example

of a planned atomic action with which backward error recovery is associated. The chase
protocol scheme associates backwards error recovery with a more spontaneous form of

atomic action dynamically determined by the protocol from past patterns of interprocess
communication and available fault-tolerant provisions. Other error recovery techniques
based on atomic actions that are more spontaneous than those of the conversation but

less spontaneous than those of the chase protocol exist. For example, the two phase
commit protocol explicitly co-ordinates processes entering and leaving a transaction but

does not specify which processes are involved.

In the present paper, we introduce principles, structure, and a framework for syn-

chronizing and coordinating forward and backward error recovery in asynchronous sys-

tems based on atomic actions. We adopt the definitions of error, fault, and failure intro-
duced by [16] and improved by [1]. A fault-tolerant system includes four constituent

activities identified as:



$ - 6 -

i) error detection;
ii) damage confinement;

iii) error recovery;
iv) fault treatment and continued service.

A fault-tolerant scheme must support all four activities. We first review error recovery

'in a single process system. Next, vie propose a general error recovery scheme for asyn-,
chronous systems. Finally, vie introduce specific implementation techniques for fault-,

tolerance in systems.

2. ERROR RECOVERY IN SINGLE PROCESS SYSTEMS

A framework for fault-tolerance can be provided by the notions of exception, excep-
tion condition, exception handler, and forward error recovery [l], [13] and [7]. Anderson

and Lee provide the diagram in Fig. 1 below to illustrate the framework. A component,
pursuing its normal activities, receives a request for a service from another component,
performs the service, and returns an appropriate response. The request may be

parameterized. The component may service a request by invoking the services of other
components.

If a service, provided by the component is invoked with an invalid set of parame-

ters, the component may return an abnormal result or interface exception. Similarly, if a

component fails because it cannot tolerate a fault that it has detected, it may return a

failure exception. Components that explicitly return abnormal results are said to signal

an exception to the requesting component. (The exception may have parameters.)



. PASS $
OT'POOR QUALITY

Service Normal
requests responses

^

y

i

k

Return t<

- i

Normal Activity

\ . t

Interface Failure
exception exception
signals signals

t 1
> normal operation

k

Abnormal Activity
(fault tolerance by

exception handling)

A | A

Service Normal Raised exceptions Interface Failure
requests responses exception exception

signals signals

Fig. 1: Framework for an ideal fault-tolerant component.

If a component either receives an abnormal response from an invocation of another

component or detects an error or abnormal condition during normal activity, it should

raise an exception and invoke appropriate fault tolerance measures. Recovery is an

abnormal activity of the component and is continued until the component either returns

to its normal activities or signals an exception. The relationship between the normal

and abnormal activity of a component and the raising and signalling^of exceptions is

shown in Fig. 1. Note that an exception is raised within the component, but signalled
between components.

The Sow of control of a computation within a component should change as the

result of a raised exception. Such a modified or exceptional flow of control is dis-

tinguished from the normal flow of control. Within a program, exceptional flow of con-

trol is associated with code fragments that are called exception handlers. The exception

handlers may examine any parameters associated with the exception and provide meas-

ures to deal with the exception. Exceptions, software components, and exception

handlers are associated by a handling context. The enable operation creates a handling

context and associates it with the current flow of control. The disable operation ter-

minates the context. An example of a context nested within another context is shown

in Fig. 2. The symbols '[' and ']' represent the enable and disable operations respec-

tively. The notation



B - 8 -

and

ORIGINAL PAGE IS
OF POOR QUALITY

represents enable and disable operations with the exceptions xl,...,xi and corresponding

handlers hl,...,hi.

e<xl:hl> e<x2:h2,x3:h3> d<x2:h2,x3:h3> d<xl:hl>
process A

<—context 2

context 1

Fig. 2: Example of contexts, exceptions, and handlers.

The measures provided by the exception handler are intended to deal with an

exception occurring during the execution of the software component with which it is

associated by context. The context may be determined dynamically by the control flow

of the program (as in PL/1), by the data flow (as in Id), or statically by scope (as in

ADA). Many exception mechanisms use a stack to save contexts. This stack is often

coupled with the procedure call mechanism. Careful structuring of the manner in which

contexts, components, exceptions, and exception handlers interact can simplify the pro-

vision of fault tolerance.

If the fault tolerance measures are successful, a handler may provide a normal con-

trol flow return from the component which raised the exception to the component which

invoked that component. Figure 3 shows an example of successful forward error

recovery in which the relationship between control flow, context, and exception are illus-
trated.

raised exception x
return to normal

control flow

normal control flow

exception handler h
abnormal control flow (or

exceptional control flow)

suspended control flow resumed flow

e<x:hl> d<x:hl>

Fig. S: Example of successful forward error recovery.



If the fault tolerance measures are unsuccessful or inadequate, a handler should sig-
nal a failure exception. Abnormal control flow continues in an exception handler of the
invoking component. To prevent cyclic and possibly non-terminating patterns of fault

and recovery behavior when fault tolerance cannot be achieved, no means is provided
whereby a component which receives a signalled exception as a result of an invocation
can resume the failed activity [13]. Figure 4 shows an example of returning an abnormal

"response in which exception handler h2 signals exception failure xl. The component
which invoked the failed activity raises exception xl in response to the signal and
invokes handler hi.

return with
signalled exception xl

raised exception x2

exception handler h2

-[
e<xl:hl> e<x2:h2>

normal computation

-xl

exception handler hi

d<x2:h2> d<xl:hl>

Fig. 4- Example of returning an abnormal response.

An exception handler is a component and may have its own context, exceptions,
and exception handlers. This permits the nesting of exception handling facilities.

If an exception is raised within a component (or an exception handler) that does
not have a context defining an appropriate handler, the component fails and a failure
exception is signalled.

2.1. Exception Mechanisms

Exception mechanisms implement the change in flow of control (or flow of data)
implied by the signalling or raising of an exception. Many explicit tests and branches in
a software component may be avoided if the exception mechanism is integrated with the
interpreter that implements the activity of the component. (For example, the mechanism
is often integrated with the operating system or programming language processor). The
mechanism may detect a standard set of implicit exceptions (for example, address out of
range, divide by zero, invalid operation code) in addition to those raised explicitly by the

component.



2.2. Implementing Backward Error Recovery

The framework provided by "exceptions" can be used to implement the recovery

block scheme proposed by [11]. (See also [7].) As illustrated in Fig. 5, a recovery block

consists of a primary algorithm, one or more alternates, and an acceptance test. On

invocation of a recovery block, the primary algorithm is performed and its results are
validated by the acceptance test. If, for any reason, the algorithm fails to complete or to
satisfy the acceptance test, restoration of a prior system state removes the effects of the

algorithm and an alternate is attempted. Each alternate is tried in turn until either a
satisfactory evaluation of the acceptance test permits a normal return or the lack of any
further alternates requires the signalling of a failure exception.

Figure 6 shows how the recovery block is implemented by a context that includes

the primary block, a set of exceptions, and an exception handler. Recursively, the
exception handier may have a context, a set of exceptions, and an exception handler.
Each recursion implements a particular alternate block. The primary block activates a

recovery cache for the preservation of the initial state, executes the primary algorithm,
and then applies the acceptance test. If errors are detected, an exception is raised and

the exception handler of the primary algorithm is invoked. The exception handler

restores the initial state using the cache, attempts an alternate algorithm, and applies
the acceptance test. If the acceptance test indicates the presence of errors, the exception
handler raises an exception and thus activates its own exception handler. The most dee-

ply nested exception handler signals a failure exception. If any application of the accep-
tance test indicates a satisfactory result, a normal return is made from the primary or

alternate block (exception handler) and hence from the recovery block.

ensure acceptancejtest

by primaryjblock
else by alternate_block
else by error;

Fig. 5: Example of recovery block.



6-11- ORESWAL PASS 33
OF POOR QUALITY

(* ensure correct operation *)

primary_block : system_component
initialize_cache

(* start primary *)

enable(other_exceptions, alternate_l)

do_primary_algorithm

if not (acceptance_test) then signal(alternate_exception)

disable(other_exceptions, alternate_l)

discard_cache

return

(* end primary *)

alternate_block_l : exception_handler

restore_cache

enable(other_exceptions, alternate_2)

do_alternate_algorithm

if not (acccptancejtest) then signal(alternate_exception)

disable(other_exceptions, alternate_2)

discard_cache

return

(* end alternate *)

alternate_block_2 : exception_handler

restore_cache
signal(f ailure_exception)

(* end alternate *)

Fig. 6: Equivalent recovery implemented using exception handlers.

This is, in effect, a stylized use of the exception framework to provide back-ward error

recovery. Unexpected exceptions are transformed into the default "other_exceptions"

and errors are removed by restoring a prior state using the cache. However, in general,

exceptions are used to support forward error recovery schemes which assume detailed

knowledge of the erroneous state and attempt to isolate errors. For example, the follow-

ing forward error recovery scheme is implemented using the exception framework and is

taken from recommended take-off emergency procedures for light aircraft.



ORIGINAL PAGE ii
6 - 12 - OF POOR QUALITY

engine_failure : exception_handler
begin avoid_stall (* damage confinement *)

lower_flaps (* damage confinement- slower descent *)

select_emergency_landing_site (* damage confinement *)

switch_fuel_tanks (* In case of blocked fuel-lines/empty tank *)

s\vitch_magnetos (* In case of ignition system fault *)

open_de-icers (* In case of fault in iced throttle *)

end

Fig. 7: Emergency procedure for light aircraft.

The forward error recovery strategy attempts to land the aircraft safely and thus confine

any damage to the engine. Various recovery strategies are attempted to clear possible

faults within the aircraft engine.

3. FORWARD ERROR RECOVERY IN ASYNCHRONOUS SYSTEMS

The exception handling described in the previous section of this paper provides a

framework for the implementation of fault tolerance in systems with but a single sequen-

tial process. Fault tolerance provisions for systems of concurrent processes are compli-

cated by the possibility of communication of erroneous information and the need to co-

ordinate processes engaged in recovery. Generalizing the exception handling framework

to support fault tolerance in asynchronous systems requires additional system structure

concerning the co-operation and co-ordination of the individual processes.

3.1. Structuring Systems of Concurrent Processes

The construction of systems out of components whose activities form atomic

actions provides a structure for fault tolerance in asynchronous systems. A system of

concurrent processes contains many separate flows of control. Each flow of control

represents the sequential activity of one of the processes of the system. Atomic actions,

however, involve concurrent activities in which processes communicate in order to co-

operate or to co-ordinate their use of shared resources. The flow of control of a process

joins or leaves an atomic action at an entry or exit point of a component, respectively.

The system shown in Fig. 8a contains three components each of which is designed so

that its activity constitutes a planned atomic action. Figure 8b shows the control flows

of two processes that participate in the planned atomic actions. Synchronization is asso-

ciated with the process entry and exit points of each component in order to ensure that
an atomic action occurs.



G - is - OF POOR QUALITY

Fig. 8a: Structure of a
system with planned
atomic action components
1, 2, and 3.

Process A

Process B

1

3

2

s,

_>

3

3

Fig. 8b: The invocation of atomic actions
within a system by two processes A and B
showing their control flows and entry and
exit points.

Fig. 8: An example of a system, its components and processes.

3.2. Fault Tolerance Structuring Principles

If successful, any fault tolerance measures employed within an atomic action are

invisible to the rest of the system. This provides a framework for encapsulating such

measures into modular components.

The notion of reliability requires that a system have a specification against which

the actual results of invoking its operations can be assessed. When an atomic action is

executed, a well-defined state exists at the beginning and termination of its activity

(although these states may not necessarily be instantaneously observable). The intended
relationship between these states constitutes a specification for the atomic action which

is independent of any asynchronous activity inside or outside the atomic action.

The reliability of an atomic action depends upon the reliability of each of its com-

ponents. (Atomic actions which do not contain measures for handling possible faults

have been described as being "out of control" [4].) An initial and final state can be asso-

ciated with the flow of control of each process joining and leaving the atomic action.

Pre- and post-conditions associated with such initial and final states can specify the

results of the activity of each process. These pre- and post-conditions constitute a

decomposition of the specification of the atomic action. The specifications and the

encapsulation associated with an atomic action provide a context for the application of

error detection and damage assessment techniques. Because atomic actions delimit any

error propagation caused by interprocess communication they also support error

confinement.



- 14 -

We propose the following two principles for structuring fault tolerance within asyn-

chronous systems:

1) The operations provided by a fault-tolerant asynchronous
system should be implemented by atomic actions.

2) Each fault tolerance measure should be associated with a

particular atomic action and should involve all of its

processes.

A fault-tolerant system is reliable, even though it may suffer from internal faults and
contain internal errors, as long as its operations provide services which are in accordance

with the system specification. Any fault tolerance measures that the system invokes as a
result of detecting such errors should be invisible when that system is used as a com-
ponent of another system. Hence, system services must be atomic actions. Although

this principle appears to restrict the applications for which our techniques are appropri-
ate, in fact this is not the case. Computer hardware and software are often merely com-
ponents in much larger systems which can be regarded as fault-tolerant, perhaps partly

or wholly through the efforts of people and the safety devices of other equipment. Of
course, error recovery in such systems must be co-ordinated between components having

very different characteristics.

3.3. Exception Handling in Atomic Actions

If a component of an atomic action raises an exception, it indicates the detection of
an abnormal condition, or error. The error may have been produced as a result of the

activity of this component and/or one (or more) of the other components of the atomic
action. Alternatively, the original fault may have occurred prior to the atomic action.

The raising of an exception within a fault-tolerant atomic action requires the application

of abnormal computation and mechanisms to implement the fault tolerance measures. If

the recovery measures succeed, the atomic action should produce the results that are

normally expected from its activation. Atomic actions that explicitly return an abnor-

mal result have components that co-operatively signal an exception.

An atomic action may contain internal atomic actions. If an exception is raised
within an internal atomic action, then the fault tolerance measures of that internal

atomic action should be applied. However, an internal atomic action may signal an

exception. This exception is raised in the containing atomic action. An atomic action

failure exception signifies the failure of one or more of the components of an internal
atomic action. In particular, a failure exception should be used to indicate that an inter-

nal atomic action did not have an appropriate exception handler for an exception that
was raised by one of its components.



- f l - 1 5 -

ORIGINAL PAGE ESI
OF POOR QUALITY

We propose the following exception handling scheme for atomic actions:

Whether one or several components of the atomic action raise an exception, the

fault tolerance measures necessarily involve all of the processes of that atomic action.

(The fact that an exception has been detected elsewhere amongst the processes in an

atomic action invalidates the assumptions that any of the processes can terminate nor-

mally and provide the appropriate results. If some of the processes are not required to

"change their flow of control to execute fault tolerance measures, they do not interact

with the other processes and hence should participate in a separate atomic action.)

Examples of an atomic action in which a component raises an exception and each pro-

cess of the atomic action changes its flow of control are shown in Fig. 9 and Fig. 10.

Every component of the atomic action responds to the raised exception by changing to

an abnormal activity. Each process whose normal control flow is within one of the com-

ponents changes to an exceptional control flow which executes a handler for that excep-

tion. This handler either returns the component to normal activity or signals a further

exception. (The change in control flow of a process that occurs as a result of a raised

exception in a sequential system is a special case of the changes in control flow that

should occur in an asynchronous system.) Figures 9 and 10 show the possible control

flows of two processes participating in an atomic actions following an exception. In

Fig. 9, the recovery measures implemented by the exception handlers succeed and the

normal control flow of the processes is resumed. Figure 10 shows the control flow of the

processes of an atomic action when the exception handlers for the components cannot

recover.

Atomic Action

normal
X-

flow

normal
X-

flow

exceptional flow

v X
suspended flow

exceptional flow

V :*>

suspended flow

1

i

resumed
x

flow

resumed

^

flow

Fig. 9. An example of successful error recovery in an atomic action.



- 16-
ORIGINAL FAQS &
OF POOR QUALITY

It is convenient to restrict signalled exceptions so that each component (or exception

handler) of an atomic action returns the same exception. The signalling of the same

exception ensures that the components agree on the abnormal result that should be

returned to indicate the failure of the atomic action. (Note that an exception should be

raised if two or more components try to signal different exceptions. The exception

handlers for this exception should signal a failure exception.) An exception is raised in

••an atomic action if one of its internal atomic actions signals an exception. Signalling a

single exception from an internal atomic action simplifies the selection of the appropriate

exception handlers and recovery measures.

If any of the components of an atomic action do not have a handler for a raised '

exception then all of the components should signal an atomic action failure.

Atomic Action

normal

flow

normal

flow

exceptional flow

suspended flow

exceptional flow

suspended flow

signalled
exception

signalled
exception

Fig. 10. An example of returning an abnormal response or failure from an atomic action.

The raising of an exception in an atomic action indicates that the computation has

reached an erroneous state. The strongest post-condition on the state of an action after

an exception is detected is a damage assessment predicate. (This definition differs some-

what from [l] because we have chosen to assert what is known about the state of the

system containing the errors and faults rather than specify the errors and faults.) The

predicate should imply the (preferably weakest) pre-condition for the measures intro-

duced to implement fault tolerance for a given exception. The post-condition for the

measures is identical to the post-condition of the atomic action because we have adopted

a termination model [13] for the semantics of exception handling.



$ - 17 -

3.4. An Example from Banking

A bank must ensure adequate cash reserves to allow customers to withdraw money.
These reserves are maintained on a day to day basis. If the reserves drop below a cer-
tain minimum, the bank will borrow money from other banks until it can redress the
balance by either selling assets or gaining new deposits. Depositing or withdrawing
money are atomic actions with respect to the day to day management of the cash
'reserves. If many customers withdraw savings and the bank cannot borrow money for
its cash reserves at a reasonable rate of interest, the bank manager may raise an excep-
tion in the form of an increase to the bank deposit rate. The error, detected in the form
of a lack of cash reserves, could be caused by a number of faults including an increase in
the amount that the customers are spending on consumer goods. The customers will
now be either earning more money on their deposits or paying more interest on their
loans. The customers may invoke exception handlers in the form of transferring more of
their money into deposits or seeking a different bank for their loan.

Suppose, however, that some of the customers cannot now afford to pay the
interest on their loans. If a large enough amount of money is involved and withdrawals
continue, the bank may not be able to cover withdrawals. At this point, the bank must
raise a failure exception and suspend customer withdrawal operations. Customers with
deposits may now invoke exception handlers in the form of legal action to reclaim their
money from the bank.

The bank and its customers interact at two different levels of abstraction. Custo-
mers hold accounts with the bank within a fault-tolerant banking system. The banking
system provides the service of safely lending money. If reserves drop or the number of
customers diminishes, exception measures involving the banking system are invoked and
may change the kind of banking service provided (modifying the interest rates or provid-
ing additional useful banking facilities like mortgages.) Customers will be aware of such
exceptions. They will be particularly concerned if the bank fails. Within this system,
the day to day services provided by the bank occur within a fault-tolerant transaction
system. These transactions are deposits and withdrawals. Any faults occurring within a
transaction (for example, mistakes by the bank teller) should be invisible to the enclos-
ing banking system, since the transactions are intended to form atomic actions.

4. EXCEPTION RESOLUTION

The fault tolerance structuring principles guide the design of a synchronization and
co-ordination framework for forward error recovery in asynchronous systems. However,
some aspects of the design of the framework are not obvious and need detailed con-
sideration. The concurrent and potentially parallel nature of the execution of the
processes within an atomic action may introduce ambiguity in the choice of fault toler-
ance measures to handle a particular exception condition. Co-ordination between the
fault tolerance measures provided by an atomic action and the fault tolerance measures



ORIGINAL PAGE Mi

ft - 18 - OF POOR °-UALITY

provided by any internal atomic actions also requires careful consideration.

4.1. Resolution of Concurrently Raised Exceptions

Two or more components of an atomic action may concurrently raise different

exceptions. This event is likely if the errors resulting from one or more faults cannot be

identified with a* unique exception by the error detection facilities of each component in

the action.

ente r atomic action exit

Fig. 11: Exceptions x and y in processes A and C.

Suppose two processes A and C raise exceptions x and y, and that these are different.

Two different fault tolerance measures could exist to provide recovery for x and y

respectively, each consisting of a set of handlers (that is, a handler for each of A, B, and

C). However, the two exceptions, in conjunction, constitute a third exception z: the con-

dition that both exception x and y have occurred. A resolution scheme is required to

determine the correct recovery strategy. The introduction of an exception hierarchy

allows resolution of concurrent exceptions within the same atomic action.

Exception Hierarchy

One simple method of providing an exception hierarchy to resolve the ambiguity

arising from exceptions that are raised simultaneously is to order the exceptions. From

amongst the exceptions raised within the atomic action, the resolution scheme would

select the exception with the highest priority in the order. A resolution mechanism

would ensure that all the processes in the atomic action change control flow to execute

the appropriate handlers associated with this chosen exception. This scheme is fre-

quently used in sequential systems where the state of only one process is involved in

error detection within a component but several exceptions may be raised simultaneously.

(For example, a power failure interrupt may take precedence over the the detection of

an invalid operation code which may take precedence over a page fault for an operand

address.) The disadvantage of this simple scheme is that the presence of two or more

concurrent exceptions might be symptomatic of a different, more complicated, erroneous

state.



ORIGINAL PAQ1 &
/> OF POOR QUALITY

<£> - 19 -

We therefore instead propose the use of an exception tree. If several exceptions are

concurrently raised, the exception used to activate the fault tolerance measures is the

exception that is the root of the smallest subtree containing all of the exceptions. This

hierarchy permits the occurrence of various exceptions (and thus the detection of errone-

ous states by several components) to be categorized appropriately by the resolution

mechanism.

For example, consider the following exception tree for a twin-engine aircraft:

Universal
exception

emergency
engine-loss

exception

left-engine right-engine
exception exception

Fig. 12: Example exception tree for twin-engined aircraft.

If the left (or right) engine fails, the pilot can adjust the controls appropriately to com-

pensate for the loss of the left (right) engine in order to fly the aircraft to the nearest

airport. If both the right and left engine fail, the pilot must follow the emergency land-

ing procedures. Even with the complete loss of both engines other exceptions could
occur that would endanger the emergency landing procedure (for example, fire). All such

further exceptions, if not explicitly listed individually within the exception tree, are
categorized as the universal exception.

Each atomic action will have its own tree of exceptions. At the root of each tree is,

in principle, the universal exception. (In practice, the possibility of a 'universal excep-

tion1 is often ignored.) The universal exception cannot be explicitly raised or signalled by

a component; rather it can only be signalled or raised by the underlying exception mech-

anism. In general, the damage assessment for an exception in the tree will imply the

intersection of the damage assessments for the exceptions in each of its subtrees. The

greater the number of different exceptions raised within an atomic action, the less the

damage assessment predicate may assert about the current state of the system. The

damage assessment for the universal exception must assume that any and perhaps all of

the state variables and even the representation of the process may have been been



corrupted. Only the underlying exception mechanism itself should be presumed undam-
aged. In contrast, the leaves of the exception tree may have very detailed damage
assessments corresponding to the failure of particular internal atomic actions or the

detection of specific abnormal conditions and errors.

The exception handlers invoked as a result of several exceptions raised concurrently
should have weak enough pre-conditions (that is, equal or weaker than the damage

"assessment) to allow them to provide the appropriate fault tolerance measures. If the

universal exception is raised, its handler should signal a failure exception. The exception
mechanism raises the universal exception for any exception that is raised which does not
have a handler. However, if there is no handler for the universal exception, the excep-

tion mechanism must act on behalf of the atomic action and signal the universal excep-
tion to avoid circularity. Even backward error recovery measures require a stronger
pre-condition than that provided by the universal exception. The damage assessment

predicate for the "other_exceptions" exception (introduced in section 2.3 to help specify
backward error recovery using the exception framework) assumes that the cache
correctly holds the prior state of the system. In.general, exceptions that invoke back-

ward error recovery measures will be descendents of the universal exception and ances-

tors of any exceptions invoking forward error recovery measures. Some of the leaves of

the exception tree may be failure exceptions of internal atomic actions.

It is convenient to provide default exceptions and handlers for specific exceptions or

classes of exceptions that may occur within the atomic actions of a system. The excep-
tion mechanism must ensure that the correct default handlers are enabled during the
activation of each atomic action. Examples of default exception handlers are backward

error recovery for the 'other_exceptions" exception, forward error recovery that signals a

distinguished failure exception for the universal exception and diagnostics for the class of
failure exceptions.

The example of nested atomic actions shown in Fig. 13 below implies the set of
exception trees shown in Fig. 14.



6 - 2 1 -

ORIGINAL PAGE S3
OF POOR QUALITY

Atomic Action 1: Exceptions xl, x2, (xl and x2)
and Other_Exceptions.

Atomic: Action 2: Exception x3 and x4

Atomic Action 3:
Exception xS

Atomic Action 1:

Fig. IS: Nested contexts of three atomic actions.

Universal Exception

Other_Exceptions

Failure_Atomic_Action_2 xl and x2

xl x2



i ORIGINAL PAGE IS
OF POOR QUALITY

& - 22 -

Atomic Action 2: Atomic Action S:

Universal Exception Universal Exception

x5

x3 x4

I
Failure_Atomic_Action_3

Fig. 14-' The three exception trees of the atomic actions.

The default 'Other_Exceptions" exception might be associated with backward recovery
measures in the form of a conversation. Exceptions xl, x2, xl and x2,
Failure_Atomic_Action_2, x3, x4, Failure_Atomic_Action_3, and x5 might be associated
with specific forward error recovery measures.

The exception tree could be generalized to a complete lattice [18]. The lattice
would represent a partial ordering of the exceptions. The resolution mechanism would
resolve concurrently raised exceptions by selecting the exception that is their least upper
bound within the lattice. The least upper bound of all the exceptions in the lattice
would be, of course, the universal exception. Whether such a general structure is desir-
able for constructing reliable systems can only be determined from future practical
experience.

4.2. Exceptions and Internal Atomic Actions

. The forward error recovery framework for asynchronous systems must synchronize
and co-ordinate recovery from exceptions within fault-tolerant systems that are them-
selves constructed from fault-tolerant components. In particular:

1 A component of the atomic action may raise an exception while other com-
ponents of the atomic action are involved in internal atomic actions.

2 The fault tolerance measures for an atomic action may require that internal
atomic actions be aborted.

4.2.1. Exceptions and Internal Atomic Actions.

A component of an atomic action raises an exception while other components are
involved in internal atomic actions. In principle, all the components of the atomic action
must invoke fault tolerance measures even if the atomic action includes internal atomic
actions. However, the definition of atomicity makes internal atomic actions indivisible.



6-23-

In addition, out of the large number of possible exceptions that might be raised within
an atomic action, many will have no meaning within an internal atomic action.

en

"

ter atomic action 1 ex

~ : *-

.
•*_

'

it

^

•^

enter exit

atomic action 2

Fig. 15: Example of an exception x in an atomic action with an internal atomic action.

The fault tolerance measures implemented for exception x in atomic action 1 will assume
that either the atomic action 2 has not yet started or that it has already completed.
Further, exception x may have no meaning within atomic action 2.

Thus, after the detection of an exception, any active internal atomic action must be
completed before the fault tolerance measures of the containing atomic action are
invoked. (This also implies that if components of an atomic action and components of a
internal atomic action concurrently raise different exceptions, the fault tolerance meas-
ures of the internal atomic action will be completed first.) However, in certain cir-
cumstances it may be desirable to abort an internal atomic action and this situation is
examined next.

4.2.2. Aborting Internal Atomic Actions

• Although, in theory, a containing atomic action can always compensate for interior
atomic actions by masking their effects, these fault tolerance measures cannot be com-
menced until the internal atomic actions terminate. Thus, if an exception associated
with real-time concerns is raised in the containing atomic action, the delay caused
because internal atomic actions are active may prevent a timely recovery. Alternatively,
the containing atomic action may detect an exception which indicates that its internal
atomic actions will not terminate (for example, a deadlock condition). In this case, it
would never be able to invoke its recovery measures. The fault tolerance framework
must therefore permit the abortion of internal atomic actions. We thus propose the fol-
lowing solution.

An internal atomic action may be aborted if it is defined to have a distinguished
abortion exception. An abortion exception is raited by the exception mechanism to indi-
cate that an exception hat been raited in the containing atomic action. The abortion
exception is, to all intents and purposes, a special interface exception that is raised



automatically to indicate that the pre-conditions under which the internal atomic action
•was invoked are invalid. If an abortion exception is raised, the internal atomic action
should proceed to apply fault tolerance measures to abort itself. When the internal

atomic action has completed its fault tolerance measures and terminates, the containing

atomic action may invoke its own fault tolerance measures.

If an internal atomic action cannot abort itself correctly and return normally, it

'may signal an exception. (If the atomic action can neither return normally nor signal an

exception it is not fault-tolerant.) The proposed scheme does not distinguish between a
signalled exception returned from an aborted atomic action and one returned from the

completion of an ordinary internal atomic action. In both cases, the.signalled exception

is raised in the containing atomic action and may influence the choice of the fault toler-
ance measures that are subsequently invoked.

The principle of recovery occurring within an atomic action is not contravened by
the abortion scheme because:

1 the abortion exception is included as part of the speciGcation of the internal
atomic action;

2 any recovery instituted as part of the abortion of the internal atomic action is
accomplished within that atomic action;

3 any recovery instituted by the internal atomic action is indivisible with respect

to the containing environment. (The processes in the containing environment

are suspended, if necessary, until the internal atomic action completes its
recovery.)

4 only one abortion exception is allowed for each internal atomic action and it is
raised if any exception occurs in the containing atomic action. Complete dam-

age assessment of an atomic action can only be made when all of its processes
suspend their normal control flow (and all internal atomic actions have com-

pleted). If multiple abortion exceptions were permitted and were bound to

different exception conditions in the containing atomic action then:

4.1 an aborted internal atomic action could signal an exception which aborts
another internal atomic action. (This complicates the exception mecha-

nism and may impose undesirable delays upon error recovery while inter-

nal atomic actions abort each other.)

4.2 an abortion exception could be raised in an internal atomic action that is

already trying to abort itself. (That is, the initial abortion of an internal

atomic action is based on an incomplete damage assessment.)

The abortion scheme we propose requires an internal atomic action to be defined
with an explicit abortion exception. However, sometimes it may be more convenient to

make the abortion exception implicit and to associate a default handler with the excep-

tion. For example, backward error recovery schemes often assume a default abortion



- 25 -

ORIGINAL PAGE 13
OF POOR QUALITY

exception and handler. If an exception is raised within a conversation, provided a
recovery cache permits restoration of prior system states, any internal conversations may
be immediately aborted.

4.3. Implementing Backward Error Recovery

The framework we propose permits the implementation of the conversation scheme
proposed by [20]. Each conversation is an atomic action composed of several com-
ponents which have contexts, exceptions and exception handlers. The fault tolerance
measures require the activation of a cache for the initial state of the atomic action. The
acceptance test provides error detection and raises an exception if it fails. Should an
exception be raised in one or more components, normal control flow is suspended in all
the processes and exceptional control flow is commenced. The handlers restore changed
cached values and attempt the alternate algorithms. If all the alternates fail, a failure
exception is signalled to a containing atomic action. We assume that the processes
invoking the conversation are appropriately synchronized to execute the conversation
correctly, although we do not show the mechanisms concerned.

Example of a Conversation

The interaction of two processes A and B in a conversation is shown in the diagram
that follows. Individual actions of each process and combined actions of both processes
are distinguished by enclosing them in boxes. Synchronization and co-ordination
between the processes is implied by the structuring of the diagram.

enter_conver3ation_of_A_and_J}
ensure acceptancejtest by

primary_of_A primary_of_B

eke by

al tern ate_l_of_j\ alternate_l_of_P

else by

error error

exit_conversation_of_A_and_B

Fig. 16: A conversation.



vfc- 26 - ORIGINAL PAGE IS
OF POOR QUALITY

primary: of_A primary: of_B

'initialize_cache_for_A_and_B
enable(other_exception3,alternate_l)

do_primary_A do_primary_B

if not (acceptancejtest) then
signal(alteraate_exception)

disable(other_exceptions,alternate_l) ,,
discard_cache

return_A
end primary

return_B
end primary

Fig. 17: Primary implementations.

alternate_l:of.j\ alternate_l:of_B

restore_cache_for_A_and_J3
enable(other_exceptions,al tern ate _2)

do_alternate_J_of_-A do_altern ate_J_of_B

if not (acceptancejtest) then
sign al(alternate_except ion J2)

disable(other_exceptions_2lternate_J2)
discard_cache

return_A
end alternate.^

return_B
end alternate_J

Fig. 18: Alternate implementations.

alternatej2: of_A alternateJZ: of_B

re3tore_cache_for_A_and_B
signal(failure_exception)

end alternatej2 end alternated

Fig. 19: Default alternate implementations.



- 27 -

It is trivial to generalize this implementation of the conversation so that internal

conversations can be aborted by an abortion exception.

4.4. Recovery Schemes Supported by the Framework.

The exception framework supports both backward and forward error recovery

schemes. Within a particular atomic action, it is possible to employ both schemes. For

example, particular exceptions may have forward error recovery handlers and any other

exception may have a- default handler that implements a backward error recovery

scheme. Thus, the framework generalizes to the case of asynchronous systems the

scheme of combining forward -and backward error recovery for a sequential process

described in [16].

5. A SPECTRUM OF ERROR RECOVERY TECHNIQUES

Depending upon the extent to which atomic actions are planned or spontaneous,

the framework of fault tolerance based on atomic actions supports a spectrum of error

recovery techniques (described in Section 1.2) for asynchronous systems.

The resolution mechanism automates the propagation of an exception occurring in

one process to all other processes in the atomic action while resolving any ambiguities

caused by several components raising different exceptions concurrently. It separates the

provision of the underlying resolution and exception facilities from the user and

simplifies the construction of recovery measures from the exception handling framework.

The method by which the processes of an atomic action may be identified depends upon

the way in which atomic actions are implemented and the degree to which their consti-
tuent activities are parameterized in the definition of the atomic action. Essentially, the

mechanism:

1 Suspends all the processes engaged in the atomic action.

2 Aborts any internal atomic actions requiring abortion because of the exception
condition.

3 Chooses the appropriate exception that reflects the erroneous state of the
atomic action.

4 Raises the chosen exception in all of the processes, causing them to change

control flow and execute the appropriate exception handlers.

Note that atomicity prevents the suspension of a process engaged in an internal atomic

action until that action terminates. Also, exceptions may be raised concurrently during

the interval between the occurrence of the first raised exception and the completion of

the last internal atomic action.

We will examine an implementation of the resolution mechanism for two different

forms of planned atomic action. The first form of planned atomic action assumes that

the identity of the atomic action is explicitly defined (for example, as in a conversation).



6-28--

The second form of planned atomic action, which provides more spontaneity, allows
atomic actions to be implicitly created during the lifetime of a system (for example, as in
the chase protocol scheme).

5.1. Explicitly Defined Atomic Actions

Explicitly defined planned atomic actions have pre-determined components that are
'designed to synchronize to form a particular atomic action. Examples include (i) the
checkpointing of a large distributed data base, (ii) the organization of compiled code for •
a multi-processor, and (iii) computer architectures with uninterruptable instructions.

The synchronization required to implement a planned atomic action may impose an
overhead on the efficiency with which internal actions are executed, or may restrict the
degree of parallelism between those actions. For example, if concurrent access to a set
of resources is infrequent, any synchronization imposed to achieve atomicity is largely a
performance overhead. Similarly, mutually exclusive access to a set of resources provides
atomicity but eliminates parallel processing.

However, planned atomic actions simplify certain implementation concerns when
they are used as a framework for fault tolerance. Prior knowledge of the components of
a planned atomic action aids:

1 identification of the components within the atomic action.

2 communication required to co-ordinate invocation of fault tolerance measures.

3 rigorous specification of the function implemented by the atomic action.
Rigorous specifications support error detection and damage assessment.

A range of synchronization and co-ordination techniques may be used to construct
planned atomic actions. One component of the action may provide a centralized control
for synchronizing the other components. Such schemes are similar to the monitor [10]
and to similar synchronization schemes for accessing shared data. Alternatively, each
component may support a distributed control scheme perhaps based upon transmitting
messages and employing a two-phase protocol [9]. Such a mechanism is outlined in the
Appendix.

5.2. Implicitly Defined Atomic Actions

Atomic actions which are implicitly defined are less easy to use to support forward
error recovery although they have been proposed to support backward error recovery in
the chase protocol scheme [17]. The difficulty in using such atomic actions arises from
the problems of specifying their correct behavior for the purposes of measuring reliabil-
ity. Despite the problems of using spontaneous atomic actions in practice, we shall
briefly examine the consequences of spontaneity upon the proposed exception handling
scheme and resolution mechanism.



29-

ORIGINAL PAGE IS
OF POOR QUALITY

The group of components constituting a implicit planned atomic action is recog-
nized by the interactions that have occurred and the handling contexts established by the
components. The boundaries of the atomic action will coincide with the boundaries of
the individual components and contexts that provide fault tolerance measures. Implicit
atomic actions introduce a new ambiguity in the choice of fault tolerance measures to
handle a particular exception condition. The ambiguity arises because there may be no

•pre-determined relation between a particular exception and a given atomic action. Con-

sider the following interaction:

time t

e<x:hl>
process A

V
11

process B [ [
e<x:h2> e<x:h3>

d<x:hl>

d<x:h3> d<x:h2>

Fig. 80: Exception in implicit atomic action.

The contexts for the handlers hi, h2, and h3 define the boundaries of possible implicit
atomic actions that may be used in recovery schemes. Process A and B exchange infor-
mation at interaction II and, by definition, at this point they must be in the same
atomic action. Both processes have handlers for an exception x and the enable and dis-
able operations for this exception now delimit an implicit atomic action. If process A
raises an exception x at time t, the appropriate context associates handler hi with the
recovery to be invoked. Although exception x occurs when process B is executing within
the context associated with handler h3, there is no interaction of that context with pro-
cess A and it can be regarded as a different implicit atomic action. Therefore, that inter-
nal atomic action should be completed and then handler h2 of the enclosing context of
process B invoked for the exception x. (If the exception x had been detected in process
B instead of process A, only handler h3 would be invoked and process A would be

unaffected.)

Any resolution mechanism for implicit atomic actions must compute a recovery
strategy from the known set of interactions and the contexts in which they occurred.
Such a resolution mechanism will be similar, in many ways, to the mechanism underly-
ing the chase protocol [25].



ORIGINAL PAGE S3
- 30 - OF POOR QUALITY

Commitment Exceptions and Failures

A direct result of the implicit formation of atomic actions is that a process may dis-

card provisions for forward error recovery prematurely. For example, it may disable a

handler for a context containing an interaction with another process even though that

other process might still raise an error as a result of the exception. Figure 21 illustrates

such a situation.
9

time t
:hl>

process A —[
^x:ni<?

ft
1

\

*

11
f

1 11 I
»^vh9^> /l*'vh')>>

1 •>
I -^

^̂process B
e<x:

Fig. 21: Example of a commitment exception.

Exception x raised in process A will generate a failure exception in process B which has

discarded its exception handler (h2) for x. (This assumes B does not have a handler for

x in a containing context.) Such exceptions result from process B committing itself too

early to the results of a computation [22] that were formed in a co-operative atomic

action. Because implicit atomic actions are involved, it is very difficult to devise a practi-

cal forward recovery strategy for commitment errors.

8. CONCLUSION

We have introduced a framework for the provision of fault tolerance in asynchro-

nous systems. The proposal generalizes the form of simple recovery facilities supported

by nested atomic actions in which the exception mechanisms only permit backward error

recovery, as has been proposed for data bases [4]. It allows the construction of systems

employing both forward and backward error recovery and thus allows the exploitation of

the complementary benefits of the two schemes. Backward recovery, forward recovery,

and normal processing activities can occur concurrently within the organization pro-
posed.

We believe that a reduction in the complexity of the desiga of fault tolerant

software for an asynchronous system can be achieved by using atomic actions to struc-

ture the activity of the system. Although many notations have been devised for error

recovery which include explicit definitions of atomic actions [2], [12], [14], [15], [21], [22]

and [24], most of the notations are either inadequate or too restricted to permit their use

as the basis for the exception scheme we have described. Practical systems can only be

constructed if suitable notations are developed to express the concept of an atomic



- 31 -

action [5].

We have generalized exception handling to provide a uniform basis for fault toler-

ance schemes within the atomic action structure. The generalization included a resolu-
tion scheme for concurrently raised exceptions based on an exception tree and an abor-

tion scheme to permit the termination of internal atomic actions.

Finally, we have outlined an automatic resolution mechanism for exceptions in
atomic actions which allows users to separate their recovery schemes from the details of

the underlying algorithms. While we have not discussed implementation in any detail in

this paper, the mechanism can be implemented with distributed control by means of a
simple message passing system.

Acknowledgments. This research was funded by the Science and Engineering Research

Council of the United Kingdom who supported Roy Campbell with a Senior Visiting Fel-

lowship while at the University of Newcastle upon Tyne for the 1982/83 academic year.



32

7. REFERENCES

[l] T. Anderson and P.A. Lee, Fault Tolerance, Principles and Practice,
Prentice-Hall International, Englewood Cliffs NJ, 1981.

[2] T. Anderson and M. R. Moulding, "Dialogues for Recovery Coordination
in Concurrent Systems," Technical Report, In preparation, Com-
puting Laboratory, University of Newcastle upon Tyne, 1983.

[3] E. Best and B. Randell, "A Formal Model of Atomicity in Asynchronous
Systems," Technical Report 130, Computing Laboratory, Univer-

sity of Newcastle Upon Tyne, December 1980.

[4] L. A. Bjork and C. T. Davies, "The Semantics of the Preservation and

Recovery of Integrity in a Data System," IBM Technical Report
TR02.540, December 1972.

[5] R. H. Campbell, T. Anderson and B. Randell, "Practical Fault Tolerant

Software for Asynchronous Systems," SAFECOM 83, Cambridge,
To be published, 1983.

[6] L. Chen and A. Avizienis, "N-Version Programming: A Fault-Tolerance

Approach to Reliability of Software Operation," Digest of Papers

FTCS-8: Eighth Annual International Symposium on Fault-
Tolerant Computing, Toulouse, pp. 3-9, June 1978.

(7] F. Cristian, "Exception Handling and Software Fault Tolerance," IEEE
Transactions on Computers, Vol. C-S1, No. 6, pp. 531-540, June
1982.

[8] C. T. Davies, "Data Processing Spheres of Control," IBM Systems Jour-
nal, Vol. 17, No. 2, pp. 179-198, 1978.

[9] J. N. Gray, "Notes on Data Base Operating Systems," In R. Bayer, R. M.

Graham and G. Seegmuller (Ed.), Lecture Notes in Computer Sci-

ence, Vol. 60, Springer-Verlag, Berlin, pp.393-481, 1978.

[10] C. A. R. Hoare, "Monitors: An Operating System Structuring Concept,"

Communications of the ACM, Vol. 17, No. 10, pp.549-557,
October 1974.



- 33-

(11] J. J. Horning, H. C. Lauer, P. M. Melliar-Smith and B. Randell, "A Pro-

gram Structure for Error Detection and Recovery," In E. Gelenbe
and C. Kaiser (Ed.), Lecture Notes in Computer Science, Vol. 16,

Springer-Verlag, Berlin, pp.171-187, 1974.

[12] K. H. Kim, "Approaches to Mechanization of the Conversation Scheme

Based on Monitors," IEEE Transactions on Software Engineering,

Vol. SE-8, No. 3, pp. 189-197, 1982.
/•

[13] B. H. Liskov and A. Snyder, "Exception Handling in CLU," IEEE Tran-
sactions on Software Engineering SE-5(6), pp.546-558, November

1979.

[14] B. Liskov, "On Linguistic Support for Distributed Programs," IEEE
Transactions on Software Engineering, Vol. SE-8, No. S, pp. 203-

210, May 1982.

[15] D. B. Lomet, "Process Synchronization, Communication and Recovery

Using Atomic Actions," SIGPLAN Notices, Vol. 12, No. S, pp.
128-137, March 1977.

[16] P. M. Melliar-Smith and B. Randell, "Software Reliability: The Role of

Programmed Exception Handling," SIGPLAN Notices 12(3), pp.
95-100, March 1977.

[17] P. M. Merlin and B. Randell, "Consistent State Restoration in Distri-
buted Systems," Digest of Papers FTCS-8: Eighth Annual Interna-

tional Symposium on Fault-Tolerant Computing, Toulouse, pp.
129-134, June 1978.

[18] R. Milne and C. Strachey, A Theory of Programming Language Seman-
tics. Chapman and Hall, London, 1976.

[19] B. Randell, P. A. Lee and P. C. Treleaven, "Reliability Issues in Com-

puting System Design," ACM Computing Surveys, Vol. 10, No. 2,
pp. 123-165, June 1978.



fi> - 34-

[20] B. Randell, "System Structure for Fault Tolerance," IEEE Transactions
on Software Engineering, Vol. SE-1, No. 2, pp. 220-232, 1975.

[21] D. L. Russell and M. J. Tiedeman, "Multiprocess Recovery Using
Conversations," Digest of Papers FTCS-9: Ninth Annual Interna-
tional Symposium on Fault-Tolerant Computing, Madison WI, pp.

106-109, June 1979.

[22] S. K. Shrivastava, "A Dependency, Commitment and Recovery Model

for Atomic Actions," Proceedings of the Second Symposium on
Reliability in Distributed Software and Database Systems, Pitts-
burgh PA, pp.112-119, July 1982.

[23] S. K. Shrivastava and J-P. Banatre, "Reliable Resource Allocation
Between Unreliable Processes," IEEE Transactions on Software

Engineering, Vol. SE-4, No. 3, pp. 230-241, May 1978.

[24] A. Z. Spector and P. M. Schwarz, "Transactions: A Construct for Reli-

able Distributed Computing," Operating Systems Review, Vol. 17,
No. 2, pp. 18-35, April 1983.

[25] W. G. Wood, "A Decentralised Recovery Control Protocol," Digest of
Papers FTCS-11: Eleventh Annual International Conference on
Fault-Tolerant Computing, Portland, pp. 159-164, June 1981.



J-35-
ORIGJNAL PAGE IS

APPENDIX OF POOR QUALITY

Resolution Algorithm and Mechanism for Planned Atomic Actions

We will assume a distributed system in which processes can exchange messages.
Three kinds of message are employed:

1) Raise exception x in atomic action aa.

2) Acknowledge exception in atomic action aa.

3) Commit components involved in atomic action aa to invoke the exception

handlers.

The message passing system includes time-out, check-sum, and other facilities to ensure reli-

able transmission. If the message passing system fails to transmit or receive a message for a

process attempting recovery, an undefined exception is raised in that process. Each process,
message, context, and exception can be uniquely identified. Some (unspecified) mechanism

provides a mapping from an atomic action into the processes that are engaged in that atomic

action.

The following distributed algorithm, executed by each process in an atomic action,
implements the resolution mechanism:

(*When an exception is detected:*) '

when receive("raise",x:exception; aa:atomic_action) or raised(xexception; aa:atomic_action) do

{
(*Save current pending exception for broadcast condition. *)
previous_pending[aa] := pending[aa];

(*Resolve exception within tree and save in 'pending'. *)
if raised(x) then

{
pending[aa] := if node(x,exception_tree[aa]) then x

else universal_exception

}
else pending[aa] :== root_smallest_subtree(exception_tree(aa],pending[aa],x )

(*Check for an exception handler for the exception.*)

if handler[aa,pending[aa]]=nil then pending[aa] := universal_exception

(*Let the other processes know which exception is pending *)

(*in this process if a raised exception changes the pending *)



ORIGINAL PAGE Ii
-30- op poOR QUALITY

('exception or a raise message results in a new exception. *)
if pending[aa] <> x or

(raised(x) and (previous_pending[aa) <> pending[aa]) then

{
broadcast( "raise", pending[aa],aa) to other_processes[aa]
replies_needed[aaj := number(other_processes[aa])

else

replies_needed[aa] := 0
(*Save acknowledgments until can suspend process.*)
enqueue_ack("acknowledgement",aa,source_process)

(*Finish any internal atomic actions.*)
if internal_atomic_action[aa]. active then

{
(*If permitted abort internal atomic action.*)
if internal_atomic_action[aa|. aborts and

not internal_atomic_action[aa). aborted then

{
(* Abort only on the first raised exception *)
(*in the containing atomic action. *)
internal_atomic_action[aa). aborted := true
raise(abort,internal_atomic_action[aaj)

}
(*Let the internal atomic action finish *)
('using a co-routine resume. *)
resume_process

else

(*If there are no internal atomic actions *)
(*send any acknowledgments and suspend the process. *)
while queued_acks do send(dequeue_ack)
suspend_process

(*When a process returns from an internal atomic action*)



- 37 - ORIGINAL PAGE IS
OF POOR

(*to a containing atomic action with a pending * *)

(*exception: *)

when process_returns(aa:atomic_action) do
if pending[aa] <> nil then

{
(*Send any acknowledgements.*)
while queued_acks do send(dequeue_ack)
suspend_process

(*\Vhen an acknowledgement is received for the *)
(*Iast broadcast made, check to see if every *)
(*acknowledgment has been received: *)

when receive("acknowledgementn,aa:atomic_action) do
if acknow!edge_last_broadcast and (replies_needed[aa] > 0) then

{
replies_needed[aa] := replies_needed[aa]-l
if repHes_needed[aa] = 0 then

broadcast("commit",aa) to other_processes[aa]
execute(handler[aa,pending[aa]])

}
else ignore

(*When resolution has finished, one or more of the processes *)
(*will have received a complete set of acknowledgments. *)
(*These processes broadcast a commit, and every process *)
(*which receives a commit may commence recovery. *)
(*Note that processes cannot commit until all internal *)
(*atomic actions are terminated and acknowledgements made. *)

when receive("commit",aa) do

execute(handler[aa,pending[aa]])

Fig. A: A resolution mechanism algorithm.

The algorithm, shown in Fig. A, consists of four parts corresponding to (i) the
detection of an exception, (ii) the completion of internal atomic actions, (iii) the receipt



£ - 38 - ORIGINAL PAGE (9
OF POOR QUALITY

of an acknowledgment and (iv) the receipt of a commit message. The algorithm ter-

minates after one or more processes receive a complete set of replies to a broadcast. Each
of these processes then broadcasts a "commit" message to all the other processes in the

atomic action permitting them to begin recovery. Separate copies of the algorithm are
instantiated for each of the processes involved in the atomic actions. Each copy of the
algorithm has its own set of variables. The four parts of each instantiation of the algo-

. rithm are mutually exclusive. A measure of the complexity of the algorithm is the total
number of messages required to establish exception handling. The minimum number of
messages occurs when only one process detects an error and transmits an exception mes-

sage to the other processes engaged in an atomic action. The minimum is:

3(0-1)

where n is the number of processes involved in the atomic action. The maximum
number of messages required to establish recovery within a particular atomic action

occurs when:

1' Every process detects an error and sends exception messages to the other processes
in the atomic action concurrently. This contributes n(n-l) messages.

2 Every process receives one exception message and sends new exception messages to

the other processes in the atomic action concurrently.

3 2) is repeated the maximum of n-2 times after which every exception has been

received by every process. This contributes n(n-l)(n-2) messages.

4 Every process replies to the last n-1 exception messages. This contributes n(n-l)
messages.

5 Every process broadcasts a commit. This contributes n(n-l) messages.

The maximum number of messages is:

n(n-l)+ n(n-l)(n-2)+ n(n-l)+ n(n-l)

or

n(n-l)(n+ 1).

This assumes that the height of the exception tree is at least n.

Although the resolution mechanism requires communication among the processes in

an atomic action there is no overhead if an exception is not raised. Moreover, the over-

head can be much reduced by centralizing the control of the resolution mechanism,

minimizing the height of the exception tree (or number of exceptions), or minimizing the
number of processes in each atomic action.



APPENDIX C

Fault Tolerance using Communicating Sequential Processes

To be presented at International Symposium
on Fault-Tolerant Computing

Kissimi, Florida
June, 1984



„ , „, , , ^oo ORIGINAL PAGE S3Fault Tolerance using CSP Qp pOQR QUALITY

1. Introduction

Several practical techniques for the construction of fault-tolerant software have evolved in order to

improve the reliability of computer systems [RAN78]. The aim of these techniques is to ensure that the

system provides the intended service despite possible software (including software design) or hardware

faults. The techniques depend upon two complementary approaches to fault-tolerance known as for-

wards error recovery and backwards error recovery. The two approaches complement one another and

it has been suggested that both be used to provide more reliable software [RAN78, AND81, CRI82,

CAM83].

Forwards error recovery aims to identify the error and, based on this knowledge, correct the sys-

tem state containing the error [BES81, CRI83]. The approach requires accurate damage assessment and
*

identification of the cause of error. Exceptions and Exception Handlers are a common mechanism used

to provide forwards recovery [AND81, LIS82]. In contrast, backwards error recovery corrects the system

state by restoring the system to a state which occurred prior to the manifestation of the fault. The

recovery block scheme [RAN75] provides a system structure that supports backwards recovery. In the

recovery block scheme, the system state is saved at various points called recovery points. If the system

is later found to be in an inconsistent state, discovered by detecting an exception or applying an accep-

tance test to the state of the system, it may be restored to a state stored at a previous recovery point.

The computation is repeated with a different algorithm called an alternate. If the system state after the

alternate passes the acceptance test, then normal computation is resumed. Otherwise, the earlier state

may be restored again and another alternate attempted. Eventually, if all the alternates for a given

recovery point have been attempted and all have failed to satisfy the acceptance test, the system state is

restored to an even earlier recovery point.

The recovery block scheme is well-suited for in a sequential program environment. The extension

of this scheme for use with concurrent processes, where the the processes may share information, is not

easy because of the possibility of error propagation between processes as a result of interprocess com-

munication. If communication exchanges have not been co-ordinated with the establishment of recovery

. C - l - ;



ORIGINAL PASS Si
Fault Tolerance using CSP ^ pOOR QUALITY

points, the discovery of an error may result in an uncontrolled rollback of many processes called the

domino effect [RAN75J.

The domino effect may not occur very often in practice and a chase protocol has been devised*

[MER78,. WOO81] to compute the appropriate recovery points to which a group of communicating con-
f

current processes must be restored. Alternatively, the domino effect can be avoided by structuring the

interactions between processes and the establishing of recovery points [KIM78, KIMSO, RAN75]. If the

actual recovery strategy must be computed at run-time, the scheme is dynamic [KIM78, KIMSO]. If the

recovery strategies for errors can be computed before execution, perhaps by a compiler, then the scheme

is static (RAN75].

A language construct called a conversation [RAN75] has been proposed to provide a static back-

wards error recovery scheme. The conversation is an extension of the recovery block scheme to com-

municating processes. It isolates all the processes within a conversation from communications with other

processes for the duration of the conversation. This limits the propagation of errors and eliminates the

possibility of the domino effect. Each process may enter the conversation asynchronously and establish

a recovery point. It should execute an acceptance test before it leaves the conversation. Processes leav-

ing the conversation are delayed until every process within that conversation has passed its acceptance

test. In this case, the conversation "succeeds". If any process fails its acceptance test, all processes must

rollback to the start of the conversation and try their alternates. Several implementations of conversa-

tions have been described [SHR79, CAR83, AND83, KIM80J.

Forwards error recovery in systems of communicating processes is discussed by Campbell and Ran-

dell in [CAM83]. A framework for exception handling is proposed that is based on the use of atomic

actions.

In this paper, we use the framework provided by Campbell and Randell to support backwards and

forwards error recovery in a system of Communicating Sequential Processes (CSP) [HOA78J. We present

a construct called an S-Conversation which supports both backwards and forwards error recovery so

that they may be used in a complementary way. The basic S-Conversation scheme can be implemented



1 ORIGINAL PAGE 53
OF POOR QUALITY

Fault Tolerance using CSP

using only CSP primitives and the control for recovery is distributed over the processes taking part in

communication.

2. Communicating Sequential Processes

CSP was proposed by Hoare as the basis for a concurrent programming language. CSP uses

input/output commands for synchronization and communication. Message passing is synchronous

though named static channels. An output command is of the form:

destination ! expression

where destination is the process name and expression is a simple or structured value. An input command

has the form:

source ? target

where source is a process name and target is a simple or structured variable.

The commands Pa ? target in the process Pr and Pr ! expression in the process Ps match if the tar-

get and expression have the same type. Two processes communicate if they execute a matching pair of

input/output commands. The result of executing a matching pair of commands is that the value of

expression is assigned to target. There is no buffering and Pa or Pr must wait at the output or input

command till the other process is ready to execute the matching command. After the communication,

both processes proceed independently and concurrently. If Ps or Pr does not execute a matching com-

mand, the other process may wait forever. This inherent limitation of a synchronous message passing

language makes detection of a so called "deserter" [KIM82] or dead process difficult.

Central to CSP is the use of Dijkstra's Guarded Commands [DIJ75J. A Gur»wled,_Command is of the

form:

G - C

where G is a guard and C is a command list. A guard is a list of boolean expressions which may be



ORIGINAL PAGE S
Fault Tolerance using CSP QF POOR QUALITY

followed by an input command. Output commands may not appear in the guards. The command list

may only be executed if every boolean expression in the list of the guard evaluates to "true". The alter-

native command has the form:

and specifies the execution of exactly one of the constituent guarded commands. If none of the guards

permit execution of a command list, the alternative command fails. If more than one guard allows a com-

mand list to be executed, a nondeterministic selection of one of the possible command lists is made.

A repetitive command of the form:

* | alternative command ]

specifies as many iterations as possible of the alternative command. The repetitive command terminates

when all the guards fail.

Changes have been advocated to CSP [BER80, SEL78, SNE81J and many of them include the pro-

vision of output commands within the guards. We will use CSP with the facility of having output com-

mands in the guards. We will assume that the language supports a primitive exception mechanism for a

single process, although no such proposal exists in the original CSP paper.

3. The S-Conversatlon
J-

We define a Synchronized Conversation (S-Conversation) as a distributed control structure which a

group of processes may join or leave together in synchrony. While the processes are within the distri-

buted control structure, they may communicate with one another but not with processes outside of the

control structure. The S-conversation provides an "abstract atomic action" which is similar to, but

more synchronized than, the atomic actions proposed by [CAM83J. The S-Conversatipn will be used as a

framework within which backward and forward error recovery can be provided within CSP.

The aim of an S-Conversation is to provide a recoverable abstract atomic action within which

processes may interact. For this it must have the following properties [KIM82, CAM83J:

. 6 - 4 -



ORIGINAL
Fault Tolerance using CSP QF POOR

1) A recovery line for backward error recovery. In the event of an error, the processes may be

rolled back by restoring the states of the processes to the recovery points that were esta-

blished at the recovery line. The S-Conversation provides a recovery line which is defined

by the synchronized entry of all participating processes.

2) A test line for the processes. The test line is a set of diagnostic tests, one for each process,

which is used to determine whether any errors have occurred during the S-Conversation

before the processes leave the control structure synchronously. If errors have occurred,

then those errors must be contained and repaired by recovery measures within the S-

Conversation if the S-Conversation is to be reliable. In backwards error recovery, the diag-

nostic tests may include execution of "acceptance tests".

3) Recovery measures. If any process has errors, all processes must co-operatively invoke

appropriate recovery measures. In the backward recovery scheme, if the acceptance test of

any process is not satisfied, then each process must be rolled back to the recovery line and

execute an alternate algorithm. In the forward recovery scheme, if a process detects an

exception then all the processes in the S-Conversation should invoke their handlers for that

exception.

4) Error confinement. The processes and their communications must be isolated inside the control

structure from other processes and communications not in the control structure to prevent

propagation of errors. The S-Conversation prevents information smuggling.

5) Recursive refinement of "abstract atomic actions" into other, more concrete, atomic actions.

The S-Conversations may be strictly nested, one contained within another. The nested S-

Conversation may only involve processes involved in the containing S-Conversation.

As a practical point, an implementation ought to detect and allow recovery from a deserter process

or a process which dies [KIM82]. For example, a process expected to participate in an S-Conversation

may not do so. This is a specially difficult problem to handle in a message passing system, since a process

6-5-



Fault Tolerance using CSP

ORIGINAL PAGE 19
OF POOR QUALITY

cannot unilaterally observe the state of another process (it can be done if communication is through

shared data).

4. Error Recovery with S-Conversations

The S-Conversation can be used to support backwards and forwards error recovery for concurrent

processes. For the purposes of explanation, we use the following syntax for an S-Conversation:

PI::[ ...
S-Conv with ( P2, P3 Pn )

— conversation of P, with P0, P,, ..., P .i & o n

end

1

Figure 4.1: An S-Conversation.

We require each process taking part in an S-Conversation to explicitly specify the S-Conversation

construct. The syntax for an S-Conversation control construct includes a list of the other processes

which will also be in the S-Conversation. Each of the processes taking part in the S-Conversation must

agree as to the participant processes of the information exchange. The set of processes { P., Pn, ..., P }

is called the C-Set of the S-Conversation. On entry to the S-Conversation, a run-time check establishes

whether the C-Set for each participating process is the same.

Backwards error recovery can be programmed within an S-Conversation in the form indicated by

the syntax shown in Fig. 4.2.

C - 6 -



ORIGINAL PASS eg
Fault Tolerance using CSP Qp poOR QUAL|Ty

S-Conv with ( P2, P3, .... Pn )
ensure < acceptance test>
by < primary >
else by <alternate>

else by < alternate >
else error

end

Figure 4.2: Backward Error Recovery using the S-Conversation.

The backward error recovery control construct implements a conversation [RAN75J. Some meas-

ure for recording the state of the variables of a process is executed as the process enters the S=

Conversation. This is part of the implementation of the recovery line. Then, the primary algorithm is

executed. At the end of the primary, the acceptance test is evaluated. If all the processes P., Pn, ..., P_

pass their respective acceptance tests, then the primary is completed by leaving the S-Conversation. If

any of the processes fail their acceptance test or generate a run-time error during the primary, then each

process in the S-Conversation is rolled back to the recovery line and the next alternate routine is exe-

cuted. At the end of the alternate, the acceptance test is repeated. Eventually, either all the processes

pass their respective acceptance tests or one or more of the processes have no alternates left to try. If

any processes run out of alternates, all the processes fail and return an "error".

Since S-Conversations may be nested, the primaries and alternates may include further S-

Convcrsations to provide error recovery and enhance reliability.

Forwards error recovery can be programmed within an S-Conversation in the form indicated by

the syntax shown in Fig. 4.3.



Fault Tolerance iwlng CSP ORIGINAL PAGE 1$
OF POOR QUALITY

S-Conv with ( P2, P3, .... Pn )
ensure no.exceptions
by <primary>
on exception
[ <exceptioUj> -> <handler,>

-> <handlern>

D <exception > -> <handler >

else error
end

Figure 4.3: Forward Error Recovery using the S-Conversation.

The forwards error recovery is based on exception handling in asynchronous processes [CAM83]. A

process entering the S-Conversation executes the primary routine. After completing the primary, the

process waits at the test line for the completion of the other processes in the S-Conversation. If every

process executed its primary without raising an exception, the processes can exit the S-Conversation.

Otherwise, if an exception is detected during execution of the primary, then all the processes in the S-

Conversation will be notified of the exception. Each process then executes the handler routine for that

exception. Once again, each process will, when it finishes its handler, wait at a test line for the other

processes to complete. If the handlers are all executed successfully without any further exceptions being

detected, the S-Conversation can terminate normally. If exceptions are detected, then all the processes

involved in the S-Conversation return an error.
J-

Because of concurrency, several different exceptions might be raised simultaneously. In this paper,

we assume that, whenever simultaneous exceptions are detected, they are resolved into a single exception

which reflects the state of the S-Conversation by a mechanism based on a an approach similar to the

. e-8-



Fault Tolerance using CSP nn
OF POOR QUALITY

exception resolution scheme discussed in [CAM83].

Forwards error recovery may be nested within backwards error recovery to take advantage of the

complementary benefits of the two schemes as shown in Fig. 4.4.

S-Conv -with ( P2, P3, ..., Pn )
ensure < acceptance test>
by <primary>

on exception
I

<exceptionj> -> <handler1>
D <exception2> -> <handler >

D <exceptionn> -> <handler >

else by <alternate>

else by error
end

Figure 4.4: Forwards and Backwards Error Recovery using the S-Conversation.

If an exception is raised while the primary is executed, control changes from the primary to the

appropriate exception handler. If the exception handler can recover successfully and complete the pri-

mary computation, the acceptance test of the backwards error recovery scheme is attempted. If the

acceptance test is passed, the S-Conversation is terminated, otherwise a roll back is performed and the

next alternate attempted. :

However, the forward error recovery scheme may not be able to provide a successful recovery for a

raised exception in the primary. In such cases, the exception will be passed to the backwards error

recovery scheme and the process will be rolled back to the recovery line and then allowed to execute the

next alternate. The nesting of S-Conversations allows many recovery schemes including the enhance-

ment of an alternate with forwards error recovery.

C.-9-



ORIGINAL PAGE K
OF POOR QUALITY

Fault Tolerance using CSP

5. Recovery Primitives for S-Conversatlons

Three forms of error recovery - backwards, forwards, and combined - may be constructed using the

S-Conversation control structure. In this section, we outline how these forms may be implemented using

a common set of S-Conversation recovery primitives. The primitives support entry and exit into an S-

Conversation and include a voting scheme. The primitives have CSP implementations which are

described in a following section.

The basic S-Conversation primitives are shown in Fig. 5.1.

PI::| ...
S-Conv (P2, P3 Pn )

<code>
exit unless < exception >
<code>
exit unless < exception >

end

1
Figure 5.1: A Basic S-Conversation.

The body of the conversation includes "exit" statements which correspond to a test point within

the test line. When the process reaches this point, it waits for other processes to reach their correspond-

ing points in the S-Conversation. The "exception" is evaluated by a vote taken between all the

processes and is null if the S-Conversation is successful. If the exception is null, then the S-Conversation

has produced a result which meets the "ensure" specification and the exit statement terminates the con-

trol structure. Otherwise, the process continues within the S-Conversation and recovery measures are

invoked. If none of the exits are taken, the S-Conversation completes when the process reaches the

"end" statement.

In general, implementation of any of the forwards and backwards error recovery schemes will



ORIGINAL PAGE 5§
Fault Tolerance using CSP QF POOR QUALITY

require the use of several exit primitives.

The S-Conversation primitives may be used to implement backwards error recovery using the

scheme shown in Fig. 5.2.

S-C.onv (P2, P3 PQ )
<save state>
< primary >
exit unless <exception(<acceptance test>)>
<restore state>
<alternate>

exit unless <exception(<acceptance test>)>
< restore state>
signal error

end

Figure 5.2: Backward Recovery using S-Conversation Primitives.

The variables of the process are saved after entry to the S-Conversation. At the first test line,

each process evaluates its acceptance test to detect an exception and this exception is compared with the

result of the acceptance tests of the other processes. If any of the processes fails to satisfy its acceptance

test, the exit statement will not terminate the construct. Instead, the variables of the process are

restored to the values that were saved at the recovery point and the next alternate is executed. At the

next test point, the acceptance test is again evaluated; this time using the values produced by the alter-

nate. This continues until either the exit statement receives a vote indicating a null exception or the last

alternate is attempted. The last alternate is used to return an exception to indicate that the S°

Conversation has failed and the S-Conversation then completes.

. C-ii-



ORIGINAL PAGE 5S
OF POOR QUALITY

Fault Tolerance using CSP

The S-Conversation primitives may be used to implement forwards error
recovery using the scheme shown in Fig. 5.3.

S-Conv(P2,P3 ..... PJ
<primary>
exit unless < exception >
I

exception, -> handler.
D exception 2 •> handler^

O exception -> handler
1
exit unless <exception>
signal error

end

Figure 5.3: Forward Recovery using S-Conversation Primitives.

The first test point after the primary detects whether any process detected an error. If no excep-

tions are raised, then the exit statement terminates the S-Conversation. Otherwise, the processes con-

tinue the S-Conversation by executing their handlers for the exception returned from the vote.

When the handler is completed, the processes invoke another test line. If this test line returns no

exception, the exit statement terminates the S-Conversation. Otherwise, an error is returned and the S-

Conversation completes.

C-12-



ORIGINAL PAGE (9
Fault Tolerance using CSP OF POOR QUALITY

Forwards and backwards error recovery schemes may be combined
as shown in Fig. 5.4.'

S-Conv (P2, P3 Pn )
<save state>
< primary >
exit unless <exception(<acceptance test>)>
I

exception. -> handler.
n exception 2 -> handler^

n exception -> handler

exit unless <exception(<acceptance test>)>
<restore state>
< alter n ate >

exit unless <exception(<acceptance test>)>
<restore state>
signal error

end

Figure 5.4: Forwards and Backwards Recovery Combined.

Figure 5.4 is an implementation of the recovery scheme shown in Fig. 4.4. Having completed the

primary, the process will wait at the first test point for the result of the vote on the acceptance test. If

the acceptance test succeeds and no exceptions have been raised, then the S-Conversation terminates. If

the acceptance test fails or an exception has been raised, the process attempts recovery by invoking the

selected handler. A second test point reevaluates the acceptance test. This time, if an exception is

raised within a handler or the acceptance test detects an exception, backwards error recovery is applied

and the process executes the next alternate.

6. Implementation

A CSP-based implementation of the S-Conversation primitives is described in this section. The

implementation uses only the CSP primitives for communication and synchronization between processes.

The reliability of the recovery schemes is enhanced by compile and run-time checking.



ORIGINAL PAGE fSj
Fault Tolerance using CSP OF POOR QUALITY

A combination of compile and run-time checking is used to prevent information smuggling. A syn-

tactic check ensures that a process participating in an S-Conversation only communicates to the other

processes named in the C-Set of the S-Conversation. A further run-time check must be used to ensure

that the C-Sets of the processes involved in a particular S-Conversation are the same.

The correct nesting of S-Conversations can be checked at compile-time by examining each process.

Every process identifier which occurs in the C-Set of a nested S-Conversation must also occur in the C-

Set of any enclosing S-Conversation.

The basic S-Conversation primitives are transformed into CSP primitives that implement the entry

of processes into and the exit of processes from the S-Conversation control construct by a preprocessor.

Both the entry and exit implementations involve a voting mechanism. For the purposes of implementa-

tion, we require the processes within an S-Conversation to have a static ordering (for example, we could

use the lexicographic ordering of their identifiers).

6.1. S-Conversatlon Entry

Entry of a process into an S-Conversation requires synchronization and a C-Set consistency check.

The consistency check uses a voting technique based on the Two Phase Commit protocol [GRA75]. Vot-

ing is implemented by passing a message up and down a chain of the processes attempting to enter the

S-Conversation.

The processes whose identifiers are included in the C-Set of an S-Conversation are organized into a

chain using their static ordering. In a vote, starting from the head of the chain, each process passes C-

Set information to its successor. If the C-Set of any process does not agree with the information that

the process receives, a C-Set exception is passed on. This ensures that the tail process will receive a C-

Set exception if the C-Sets are not consistent. Next, the tail process returns the result of the vote back

down the chain to the head. In this way, every process receives an exception if the C-Sets are incon-

sistent. If the C-Sets are inconsistent, the S-Conversation is aborted by each process aborting its local

attempt to enter the S-Conversation. If a S-Conversation is aborted, each process could execute its pri-

mary; however, the recovery scheme of that S-Conversation cannot be used. If exceptions are detected

• f - 14 -



ORIGINAL PAGE IS
Fault Tolerance using CSP OF POOR QUALITY

the enclosing S-Conversation must perform the recovery.

The voting algorithm is shown in Fig. 6.1. Different algorithms are used for the head, middle and

the tail of the chain. Since the chain is constructed using the static ordering of the processes, a

compile-time algorithm can construct the voting scheme. We assume that process P- is the predecessor

of process

For the head of the chain (process P.):

P2 ! C_Set;
[ P« ? success () •• proceed

OP2? failureQ-ABORT

1

For the middle of the chain (process P-):

Pj.1 ' C.Set;
( (C_Set = My_C_Set) - P.+I ! C_Set

D (CJSet * My_C_Set) - P. j ! CJSetJSxception

[ PJ . 1 ? success () •* P. - ! success ();
proceed

DP.+1 ? failure () -Pw ! failure ();
ABORT

For the tail (process Pn):

> 7
n-1 '

rv

P.
(CJSet = My_CJ3et) - Pn_j ! success ();

proceed;
n (CJSet * My_C_Set) -. Pn_j ! failure ();

ABORT

I
Figure 6.1: Implementation of the entry into an S-Conversation.

The scheme has no mechanism to cope with the problem of a deserter process'. If a process is in

the C-Set of a set of processes taking part in an S-Conversation but it does not have an appropriate S-

Conversation (a deserter process), then it will block entry into the S-Conversation because its neighbors

c- 15-



ORIGINAL FAGS

Fault Tolerance using CSP OF POOR

in the S-Conversation voting chain will never be able to satisfy their I/O requests. A similar situation

can arise if two processes have different C-Sets for the same S-Conversation. There appears to be no

satisfactory solution to this problem unless a timeout mechanism is provided in CSP.

Suppose each process could start a preset timer when it tries to pass information to its successor

process in the chain. If the process is unable to execute a matching input command within the set time,

the preset timer could awaken it and it could then locally abort the S-Conversation. The same tech-

nique can be applied by each process when it expects input from its successor process in the chain. If

one process aborts its S-Conversation, all the processes attempting to enter the S-Conversation will also

eventually abort - either because they timeout or because they are informed of a C-set exception by a

successor or predecessor process. For brevity, we do not consider the details of such schemes further in

this paper.

6.2. The Exit Statement

The exit primitive is used to terminate an S-Conversation if it is successful. The exit'primitive uses

a chain-based voting scheme to decide whether an exception has been detected by any of the processes in

the S-Conversation. If an exception is detected, all the processes in the S-Conversation must participate

in recovery. Each process sends its successor process a result exception which reflects any exception that

it may have detected as well as the exception passed to it by its predecessor. The final result is sent to

each process in the S-Conversation by transmitting it back down the chain. The "value" of an excep-

tion is taken to be null if no exception occurred. The implementation scheme is shown in Fig. 6.2.



ORIGINAL PAGE Ci
OF POOR QUALITY

Fault Tolerance using CSP

For the head of the 'chain (process Pj):

PO '• my_exception;
[ (P2 ? success ())- exit

n (P2 ? fail ()) - proceed

For the middle of the chain (process PJ:

P. , ? exception ;
P. . ! resolve(exception , my_exception) ;
[ (Pi+1 ? success ()) - PJ_J ! success ();

exit

proceed

1

For the tail (process P ):

P i ? exception ;
exception := resolve(exception,my_exception);
[ (exception = null) •• P - ! success ()

O (exception * null) - Pn_j ! fail ();
proceed

1
fig 6.2 : Translation of the exit statement

6.3. The Exception Mechanism

A process in a S-Conversation might raise an exception in a statement other than an acceptance

test. In this situation, the processes in the S-Conversation should not continue with the normal process-

ing. Instead all the processes should go to the exit statement and start the voting process. Such a cir-

cumstance also exists if an S-Conversation terminates abnormally with an error condition, in which case

the recovery action of the enclosing S-Conversation should be invoked.

We require a mechanism which can notify processes inside an S-Conversation that an exception has

been raised and change the control flow of the processes so they can terminate normal processing and

start the voting process at the exit statement. Such a mechanism can be implemented if output com-



Fault Tolerance using CSP

mands are allowed in the CSP guard statement. We will briefly describe how this mechanism can be

incorporated, in to the S-Conversation scheme using the CSP primitives.

If a process detects an exception, it transmits an exception message to the head process of the

chain of processes. At each input or output statement, the head process checks for an exception message

from any of the other processes in the S-Conversation. This can be done by transforming each input or

output statement in the head process into an alternative command containing additional input state-

ments. If a process informs it of an exception, it starts an exception vote at the next exit statement.

Each of the other processes check if their predecessor process has an exception vote to report at

each input or output command. This can be done by transforming each input or output statement in

the process into an alternative command that includes an input statement from the predecessor process.

If informed of an exception, a process propagates the exception vote at the next exit statement. It

transmits the vote in a similar manner to a regular vote and awaits the returned summary.

The exception vote uses the voting mechanism discussed previously. The head process initiates the

voting and the exception is propagated along the chain. However, the head process is informed of an

exception by one of the other processes in the S-Conversation.

If more than one process in the S-Conversation detects an exception, then only one process need be

able to communicate its exception to the head process. The rest will be blocked in their attempt to com-

municate the exception. However, each of these blocked communications is in an alternative statement

which also contains an input command from the predecessor process. Thus, any process which is

blocked will eventually be activated by the receipt of an exception vote from its predecessor in the pro-

cess chain. Once the blocked process receives this exception vote, it propagates the vote in the normal

manner.

7. Conclusion

The paper proposes a technique for supporting backward and forward error recovery in a system

of Communicating Sequential Processes. The technique uses a construct called an S-Conversation which

C-18-



Fault Tolerance using CSP

coordinates an exchange of information between a group of processes. The S-Conversation supports for-

wards and backwards error recovery in a uniform manner. The control structure of a S-Conversation is

distributed over the processes taking part in it. It is implemented using CSP primitives and supports

local compile time and run-time checking to support reliable forwards and backwards error recovery.

The number of communication messages needed to coordinate the S-conversation is O(n), where n is the

number of processes taking part in the S-Conversation. The minimum number of communications

needed is also O(n) since all processes must receive at least one message.

Although we have considered practical support for error recovery in concurrent systems, much

further research and development is still required. We have not devised a simple scheme for detecting

deserter processes in CSP. This seems to be a limitation of the synchronous message passing system

which CSP employs. We have assumed that an exception mechanism can be supported for individual

processes in CSP. We have not considered the real-time issues and non-termination of processes.

We believe that a structure like the S-Conveisation should be used in concurrent languages to pro-

vide both backwards and forwards error recovery support. This would encourage the development of

reliable concurrent applications. We have shown that both recovery techniques may be provided using a

small number of uniformly applied S-Conversation primitives. We have demonstrated the practicality of

using both schemes by devising a mechanism which can be transformed into CSP language primitives.

This mechanism may be distributed over the processes engaged in the S-Conversation. The benefit of

supporting error recovery by using programming constructs such as the S-Conversation requires detailed

investigation.

References

[AND,81] Anderson, T. and P. A. Lee, Fault Tolerance, Principles and Practice. Prentice-Hall Interna-
tional, Englewood Cliffs NJ.1981.

[AND83] Anderson, T. and M. R, Moulding, Dialogues for Recovery Coordination in Concurrent Sys-
tems. Technical Report, Computing Laboratory, University of Newcastle upon Tyne, 1983.

[BES81] Best, E., F. Cristian, Systematic Detection of Exception Occurrences. Science of Computer
Programming, Vol. 1, No. 1. North Holland Pub. Co., 1981,pp. 115-144.



[BER80] Bernstein, A. J., Output Guards and Nondeterminism in Communicating Sequential Processes,
ACM TOPLAS, Vol 2, No 2, April 1980, pp 234-238.

[BUC83] Buckley, G. N., A. Silberschatz, An Effective Implementation for the Generalized Input-Output
Construct of CSP, ACM TOPLAS, Vol 5, No 2, April 1983, pp 223-235.

[CAR83] R. H. Campbell, T. Anderson and B. Randell, Practical Fault Tolerant Software for Asynchro-
nous Systems, SAFECOM 8S, Cambridge, October 1983.

|CAM83] Campbell, R. H., B. Randell, Error Recovery in Asynchronous Systems. Tech rept no.
UIUCDCS-R-83-1148, Department of Computer Science, University of Illinois at Urbana-
Champaign, 1983.

[CRI82] Cristian, P., Exception Handling and Software Fault Tolerance, IEEE Transactions on Comput-
ers, Vol C-31, No 6, June 1982, pp 531-540.

[CRI83] Cristian, F., Reasoning about Programs with Exceptions, Digest of papers FTCS 13: Thirteenth
international symposium on Fault Tolerant Computing, Milano, Italy, June 1983, pp 188-195.

[DIJ75] Dijkstra, E. W., Guarded Commands, Nondeterminancy and Formal Derivation of Programs,
CACM, Vol 18, No 8, Aug 1975, pp 453-457.

[GRA78] Gray, J. N., Notes on Database Operating Systems, in Operating Systems: An Advanced
Course, Vol 60, Lecture Notes in Computer Science, Springer-Verlag, New York, 1978, pp 393-
481.

[HOA78] Hoare, C. A. R., Communicating Sequential Processes, CACM, Vol 21, No 8, Aug 1978, pp
666-677.

(KIM82] Kim, K. H., Approaches to Mechanization of the Conversation Scheme based on Monitors, IEEE,
Transactions on Software Engineering, Vol SE-8, No 3, May 1982, pp 189-197.

|KIM78] Kim, K. H., An approach to Programmer-Transparent Coordination of Recovering Parallel
Processes and its Efficient Implementation Rules, Proc. 1978 International Conf. on Parallel Pro-
cessing, Aug 1978, pp 58-68.

[KIM80] Kim, K. H., An Implementation of a Programmer-Transparent Scheme for Coordinating Con-
current Processes in Recovery, Proceedings COMSAC80, 1980, pp 615-621.

[LIS82] Liskov, B., On Linguistic Support for Distributed Programs. IEEE Transactions on Software
Engineering, Vol. SE-8, No. 3, May 1982, 203-210.

[MER78] Merlin, P. M., B. Randell, State Restoration in Distributed Systems, Digest of Papers FTCS-8:
Eighth Annual International Symposium on Fault-Tolerant Computing, Toulouse, June 1978, pp
129-134.

.-'

[RAN75] Randell, B., System structure for software fault tolerance, IEEE Transactions on Software
Engineering, Vol SE-1, No 2, June 1975, pp 220-232.

[RAN78] Randell, B., P. A. Lee and P. C. Treleaven, Reliability Issues in Computing System Design.
ACM Computing Surveys, Vol. 10, No. 2, June 1978, 123-165.

[RUS79J Russell, D. L., M. J. Tiedeman, Multiprocess Recovery using conversations, Digest of Papers



APPENDIX D

Th'e Concept of Atomic Actions in Concurrent Systems

Preliminary Thesis proposal of
Pankaj Jalote



The Concept of Atomic Actions In Concurrent Systems

Pankaj Jalote

Preliminary Thesis Proposal

1. Introduction

The concept of indivisibility of actions has been in use almost since the interrupt facility was intro-

duced in computer hardware. The possibility of interrupts forced the designer to identify the primitive*1

activities provided by the system which cannot be interfered with even by an interrupt. The facility of

setting interrupts off was provided so that the systems programmer can make an operation which is not

indivisibly executed by the hardware, or which consists of many indivisible hardware operations, indivisi-

ble by taking care of the only event - interrupt- which can interfere with the operation and destroy its

property of indivisibility.

Though the term atomic action might suggest an action which should be indivisible and so pre-

clude any concurrent activity, we are interested in the conceptual atomicity of the operation. This means

that at the level of abstraction at which the operation is being performed, it should appear the atomic.

That is, it should enjoy the properties of a primitive action, namely indivisibility, strict sequencing and

non-interference. At a lower level of abstraction the different sub operations constituting the atomic

operation might interleave with actions of other operations, the only restriction is that the interleaving

and 'interference' at lower levels be such that the overall effect at the level of the operation is that the

operation was performed atomically.

We have already mentioned that an atomic action may not be a primitive action actually executed

atomically, but might be made from many different actions. This concept of building 'larger' atomic

actions has also been in existence for a long time. The concept of defining a function is precisely that of

defining a 'large' atomic actions in terms of smaller actions. This hierarchy can be as deep as desired.

So, in a sense this concept of atomic actions has been fundamental to our thinking, and is also the

basis of the top down design methodology of sequential programs and functional notation. In sequential

programming the concept is well established and the languages for constructing sequential programs



O-2

have constructs such as procedures and functions to support this view. In sequential programs, since

there is no interference between processes, atomicity is automatically guaranteed and so is never expli-

citly mentioned.

The situation changes when we consider concurrent systems, where more that one process might be

interacting to perform a task. The problem becomes more complex because of the information exchange

between the processes, and what was an easily implemented concept in sequential programming, becomes

a difficult problem in the face of concurrency. The need for atomicity and the difficulty of implementing

it in concurrent systems was first felt in the area of operating systems which led to the discovery of

semaphores by Dijkstra Semaphores provided a mechanism by which a programmer could assure that a

sequence of actions could be regarded as indivisible.

Since then the problem has reappeared in the context of databases as well as that of fault toler-

ance. Different techniques have been employed to solve the problem in these different contexts.

The aim of this paper is to provide an understanding of atomic actions, study the nature of atomic

actions in different types of concurrent systems, and show that atomicity is indeed fundamental, and

many different requirements which appear in different contexts have actually the same goal: to have a

mechanism to ensure atomicity of operations. We also aim to show many other advantages which accrue

from having such a construct. By doing this we will hopefully have convinced the reader of the useful-

ness of having some construct for supporting atomic actions, and the fundamental nature of the pro-

perty of atomicity. This will hopefully provide enough justification to claim that the provision of atomic

actions should be included in languages designed for concurrent systems, so that many of the existing

problems can be treated uniformly.

2. Atomic Actions

An atomic action is an operation, possibly consisting of many steps performed by many different

processors, such that it appears 'primitive' and indivisible to its environment. So, to the environment it

is like a primitive operation which transforms the state of the system from one state to another without

having any intermediate states, and has the properties of indivisibility, non-interference and strict



0-3

sequencing.

This definition does not preclude the possibility of atomic action having a structure of its own,

though it should not be visible to the environment. This allows atomic actions to be nested, and an

atomic action to be composed of many, possibly concurrent, atomic actions. The visibility rules needed

to preserve the property of atomicity at each level require that an atomic action be only aware of the

actions which are its immediate children. Nested actions aid in decomposing activities in a modular •

fashion and have been proposed by others [8,18,19j.

The definition of atomicity implies that no communication can take place across the boundary of

the atomic action. In other words, inside an atomic action the processes performing the atomic action

are not aware of the existence of other processes outside the action and the processes outside are not

aware of the activity inside the atomic action. This restriction is necessary to ensure that the "internal

state" of the atomic action does not become visible from outside the action, thereby destroying the pro-

perty of indivisibility. This definition of atomic action implies the definition used in Anderson and

Lee[2], and is similar to one proposed by Lomet[l9].

Though atomic actions are defined from the point of view of the environment of the actions, and

though an operation acquires the property of atomicity, when to its environment, it appears atomic,

there are cases when an action can be inherently atomic. That is, there are situations when the structure

of the action itself guarantees the property of atomicity, and the environment need not be considered.

The two phase locking protocol[lO| is an example of implementation providing inherent atomicity. Such

actions can also be recognized by looking at their execution history[5,6j. In reality, since looking at the

whole environment may be infeasible, the aim of implementations should be to control the computation

in such a way that the execution of an action is inherently atomic. A language mechanism to support

atomicity, will provide atomic actions which will be inherently atomic.

There is another view of atomic actions held by Liskov [18] and Davis[8]. They require that atomic

actions should not only be indivisible, but should also be recoverable. This means that the after effect of

an atomic action is all-or-nothing: either all the objects remain in their initial state or change to their



D - 4

final state. So, if a failure occurs it must be possible to either complete the action or restore all objects to

their initial states.

We believe that indivisibility is fundamental but recoverability is not. Recoverability is a property

which is not needed in all the systems and should be built using the primitive atomic actions,if desired.

The definition of atomic action says nothing about how the boundaries of atomic actions are

defined. The atomic actions might be planned atomic actions, which has been implied so far. Planned

atomic actions are atomic actions that have been planned during the design time of the system, and sup-

ported at run time. A language construct for atomic actions (with proper run time support) will lie in

this catagory.

In contrast atomic actions might be dynamically identified atomic actions. This approach looks at

the execution history of the program and finds the set of actions which satisfy the property of atomicity.

While this approach is useful for modeling and understanding atomic actions[5,6,20], it does not provide

the programmer with any mechanism to implement or specify atomicity. So, from the point of view of

aiding in design of concurrent programs, such atomic actions are not very interesting. For the rest of the

paper the term atomic action will mean planned atomic actions only.

3. Requirements for atomic actions

Any implementation of an atomic action must satisfy certain conditions. In this section we define

those requirements. These are general requirements, and as we shall see in the next section the impor-

tance of different requirements may be different under different systems.

1) Well defined boundaries : Each atomic action should have start and end boundaries, and it

should have two side boundaries. By side boundaries we mean that if there is more than one process tak-

ing part in the action then the side boundaries of the atomic action seperate the processes taking part in

the atomic action from those which are not. The start and end boundaries might be spread over several

processes. Together the boundaries enclose the amount of computation which has been specified to be

atomic, and which the implementation should ensure has the property of indivisbility and atomicity.



0 - 5

2) Information containment or indivisibility : An atomic action must not receive information from

or pass information to any activity outside the boundaries of the atomic action. Unless the information

containment property is satisfied, the indivisibility of the atomic action cannot be guaranteed.

3) Nesting : Atomic actions should be allowed to be nested. This would permit an atomic action to

be defined in terms of other nested atomic actions. Nesting allows modular refinement and structuring of

atomic activities. Only strict nesting can be allowed (that is, no boundary of a nested atomic action

should cross any boundary of the enclosing action), else information containment may be violated.

4) Concurrency : An implementation for atomic actions should allow maximal concurrency. An

approach to provide atomicity is to let processes run sequentially, but this is overly restrictive. So, an

implementation should allow maximum possible concurrency, while preserving the atomicity property.

5) Robustness : An implementation should be robust. We include the properties of fairness,

deadlock freeness etc. under this catagory. This property, like the previous property, is a desired pro-

perty rather than a strict, basic requirement.

4. Nature of atomic actions

So far we have been talking about atomic actions as a concept, without giving it any concrete

form. The form of atomic actions and the problems which might be encountered during implementation

might actually depend on the nature of concurrent system and the kind of atomicity needed. For exam-

ple, the problems in a shared memory system in which only a single process takes part in the atomic

action, are different from those in a message passing based system where multiple processes are taking

part in the atomic action. In this section we catagorize atomic actions into two types and discuss,

without proposing any implementation, the problems associated with these two types of atomic actions.

4.1. Single process atomic actions

When a single process specifies an operation, consisting of many steps of the same process, to be

executed atomically, we call such atomic action as single process atomic action (SPAA). The main

feature of SPAA is that the specification of the atomic action boundary is entirely in one process. We



0- e

should point out here that it does not mean that only one process will finally perform all the computa-

tion inside the atomic action. Many different processes might be invoked to perform different operations

which constitute the atomic action. But, the boundary is specified in one process only, and hence the

name.

Having only one process specify the atomic action does not mean that the problem providing

SPAAs is easy. It can be easily shown that guaranteeing atomicity of the basic computational steps

inside the body of an SPAA does not ensure atomicity of the entire SPAA|6,10] if there are other active

processes whose actions might interfere with the actions of the SPAA. Special measures have to be

taken to ensure atomicity of the entire computation of the SPAA.

Serializability[4,24] has been accepted as the criteria for ensuring atomicity. Serializability requires

that the implementation of SPAA should be such that the net effect of performing the computation of

different atomic actions should be same as performing the actions serially in some order. The serial order

to which the actual execution is equivalent is immaterial.

We would like to point out here that though often serializability is used as a synonym for atomic

action, it is actually a property of atomic actions. For SPAAs showing that the implementation is such

that the property of serializability holds ensures proper implementation.

Let us now look at SPAAs under the two major kind of distributed systems: shared memory sys-

tems and message passing systems.

Shared memory systems are those, as the name suggests, in which different processes share data

through shared memory. That is, different processes might be accessing and updating the same memory

location. Primary examples of shared memory systems are databases and monitors.

The problem of SPAAs in shared memory systems can be stated as follows: A process wants to per-

form certain operation on the shared data atomically. Due to the presence of processes sharing the data,

its operation can be interfered with by another process. What is needed in this situation is some way for

a process to say that it wants an operation to be atomic, and some implementation to provide atomicity.

Many of the requirements are easily satisfied in a shared memory environment for SPAAs. The



boundaries are easily specified, and nesting is quite often not needed, though proper nesting can easily be

checked for because the body of the atomic action is contained in one process only.

This problem has occured in the area of operating systems, and is referred to as the problem of

mutual exclusion [27], though the concept of mutual exclusion is somewhat more restrictive than SPAA.

Semaphores and monitors[l2] are different techniques devised to provide atomicity in a shared memory

environment.

In the context of databases, the problem of providing SPAAs is called the problem of concurrency

control. The unit of atomicity needed in databases is called a transaction. A transaction is a sequence

of basic operations on the shared data. Since many transactions may be active concurrently and per-

forming operations on the same data, data inconsistency can result. Provision has to be made to ensure

that the entire computation of a transaction has the property of indivisibility. Many different solutions

have been proposed[3,10,21,28|. The main criteria for atomicity in databases has been that different

operations performed on the shared data should appear to have been done in sequence and without

interleaving, that is, the serializability condition should be satisfied.

In message passed systems there is no shared memory and the processes communicate by sending

and receiving messages. Each process has exclusive access to the data it owns and so the data is not

prone to concurrent access from many processes. However, a process may request the owner process of

the data to perform certain operation on the data. In essence the sender of the reqest message becomes

the client and the receiver the server. Example of such systems are Distributed processes [11] and

ARGUS Such systems are conceptually similar to shared memory system, except that the data is distri-

buted, and the request for an operation goes through the process which owns the data. Moreover, the

system has to further handle the problems which occur in message passing systems like lost and dupli-

cate messages, remote host down etc. So, though the problem of providing atomic actions is more com-

plex due to distributed data and multiple nodes, conceptually the problem of SPAAs is still the same.

The atomic action is specified in one process only and serializability is once again the major criteria for

atomicity. Examples of atomic action in such a system are described in [1,18,29].



0-8

4.2. Multiple process atomic actions

An atomic action need not necessarily be part of only one process. It may extend over many

processes. If many processes together specify and take part in an atomic action we call it a multiple pro-

cess atomic action (MPAA). In this case the boundary of the atomic action extends over all the

processes taking part in the atomic action. The start and end boundaries are no longer as simply defined

and identified as in SPAAs. The start and end boundaries will be the set of entry and exit points respec-

tively, corresponding to the entry into, and exit from the atomic action by the constituent processes of

the atomic action. Each process may have many steps between its entry and exit points. The side

boundaries are critical in MPAAs. In SPAA the side boundaries were defined simply since only one pro-

cess was between the two side boundaries and everything else was outside, and the issue of side boudary

did not ever arise. In a sense MPAAs are SPAAs with another dimension added. An example of MPAA

would be the conversation construct[25].

First let us show that MPAA is not simply a collection of SPAAs.

Claim: If the computation between the entry and exit points of each process is assured atomicity, it

would not guarantee atomicity of the entire MPAA.

The argument to show that the validity of the claim is quite simple. Since the computation of each

process which lies inside MPAA is made into an SPAA, serializability of SPAAs is assured. Let us say

that these SPAAs run sequentially (this will preserve serializability). Between two SPAAs another

action, which does not belong inside MPAA can come and execute, and change or read the data, thereby

setting up communication between the inside and outside of the MPAA. This will violate the contain-

ment requirement of atomic action.

Having support for SPAA is not enough to support MPAA. (Though the converse is true, because

an SPAA is a special case of an MPAA.) Since many processes take part in an MPAA, the control of the
I -

atomic action is distributed and processes must now cooperate and jointly work to implement the atomic

action. The main problem in implementing MPAA will lie in creating and supporting proper boundaries,

and the primary criteria for atomicity becomes the requirement of information containment, that is,



o- 9

there should be no communication across the boundaries of the atomic action. (However, the actions

will also be serializable)

The distributed control of MPAA introduces another problem, namely, the problem of deserter

process [14], a problem which has no counterpart in SPAA. The deserter process problem occurs when a

process which is understood to be a participant in an atomic action by other processes taking part in the

action, does not take part in the action. This can result in endless wait by other constituent processes of

the action.

An example of MPAA in a shared memory environment is given by Kim(l4], which uses monitors,

and an example of MPAA in a message passing system is given by Jalote and Campbell[l3], which uses

Communicating Sequential Processes for the message passing system.

5. Properties of atomic actions

In this section we will look at some of the properties of atomic actions. Many have already

appeared in the literature in different contexts and with different names. We would like to stress that all

these are the benefits which accrue from having atomic actions, even though many of these properties

have been taken to mean atomic actions themselves.

1) Mutual Exclusion: This is the terminology used in the context of operating systems, specifying

that when two operations in two different processes, operate on the same shared data then they should

execute in mutual exclusion. That is, only one operation at a time should be operating on the shared

data. Atomicity guarantees mutual exclusion. It does not mean that any two atomic actions will run (or

need to run) in mutual exclusion, but the actions will always be non interfering, implying mutual exclu-

sion where ever needed. Atomic actions provide a more general property than mutual exclusion. Mutual

exclusion is often overly restrictive[l9] and so leads to loss of concurrency. Atomic actions have no such

restriction because of their generality.

2) Serializability and data consistency: This is the terminology used in the context of databases.

The requirement is that concurrently executing transactions (a sequence of basic operations) should exe-



O-io

cute such that the result is as if the transactions had executed serially in some order. Atomicity implies

serializability. If transactions are specified as atomic actions, then a correct implementation of atomic

actions would ensure serializability. In this sense, all the concurrency control protocol aim to implement

atomic actions.

3) Fault tolerance: Fault tolerance in distributed systems is another area where atomic actions are

of great help. The aim of fault tolerant techniques is to ensure that the system provides the intended

service despite possible faults. The techniques depend upon two complementary approaches to fault-

tolerance known as forwards error recovery and backwards error recovery. Forwards error recovery

aims to identify the error and, based on this knowledge, correct the system state containing the error.

Exceptions and Exception Handlers are a common mechanism used to provide forwards recovery[2,17].

In contrast, backwards error recovery corrects the system state by restoring the system to a state which

occurred prior to the manifestation of the fault. Recovery block ec/»eme[25] is often used to structure

the system to support backward recovery.

The problem of providing fault tolerance necessarily involves damage assessment and contain-

ment[26], and this problem becomes complex in concurrent systems. Atomic actions provide convenient

structure to support fault tolerance in concurrent systems. For providing backward recovery in con-

current systems a structure called conversation[25] has been proposed. As it turns out, the structure

conversation is essentially a MPAA with synchronized exit by all the processes taking part in it. For

providing forwards error recovery and combined error recovery the use of atomic actions has been

recognized and a framework to do so has been presented by Campbell and Randell[7].

4) Deadlock Freeness: If all processing is done using atomic actions a system of concurrent

processes will remain deadlock free. However, the implementation of the atomic action may not be

deadlock free, which might get the system in a state of deadlock. But, at the level of atomic actions

there will be no deadlock. Deadlock is a property of implementation of atomicity. For example, two

phase locking, which is an implementation of atomicity, may cause system deadlock. If the implementa-

tion of atomic action is deadlock free, we can be assured that the system is deadlock free.



5) Proving correctness: Almost all the techniques for proving correctness of parallel programs in a

shared memory system, assume atomic action at some Ievel[l6,22,23]. The reason is that since parallel

processes may interfere, some basic activity has to be identified which will be guaranteed to execute

without interference, that is, execute atomically. Because of the interference freeness, assertions can be

made easily about the behavior of the action. With this as a basis proofs of larger actions can then be

built on top of it. But, some level of atomicity is required and needs to be identified for making asser-

tions about the programs. It seems that if atomicity is provided at the language level whereby larger

operations can be specified and guaranteed to be interference free, the proof of the system should sim-

plify considerably. However, no formal work has been done along these lines and how much the provi-

sion of atomic actions simplify the problem of proving correctness is a research problem.

6) Program structuring: In designing concurrent programs for shared memory environment, some

assumption is needed about the atomicity of operations. In[9] the atomic actions assumed are clearly

stated. We believe, that provision of atomic actions will help the designer in designing parallel programs,

because he can specify any activity as atomic and then be assured of interference freeness of that

activity. Consequently, he can concentrate on designing the structure of the action itself. This would

transfer some of the burden of designing parallel programs from the system designer to the language

designer and implementor. We would like to mention again that this too is an area which needs more

research before definite claims can be made.

0. Implementation comments

It is not the intent of this paper to propose implementation strategies to support atomic actions.

However, we would like to discuss some general issues about implementation.

An implementation can be either static or dynamic. This issue is more pertinent in implementation

of SPAAs. A static method implies that the serial order to which the final execution of SPAAs is

equivalent is determined fixed once and then it never changes. An example is the timestamp technique of

concurrency control [ refs ], in which the effective ordering of SPAAs is same as the ordering of their

timestamps. In general static ordering will result in loss of concurrency.



D-12

Dynamic schemes, on the other hand, do not fix the effective ordering of actions statically. The

ordering depends on the order in which the operations are performed. Such techniques have potential to

support more concurrency. Locking protocolsjlO] and the Delay/Re-Read Protocol of Mickunas, Jalote

and Campbell[2l] are be examples of dynamic schemes.

An implementation may either be optimistic or pessimistic (or combined). A pessimistic approach

assumes the worst case and acts in a preventive fashion so that atomicity is assured. A pessimistic

approach often leads to loss of concurrency. Locking protocols are examples of the pessimistic approach.

An optimistic approach works on the assumption that interference between atomic actions is rare,

and so takes no precausions against it. Usually they will involve some strategies to redo the computa-

tion in case atomicity is being violated. Kung and Robertson's[l5] method is an example of this.

The two strategies can be combined to use the benefits of both. The Delay /Re-Read Protocol is an

example of this.

7. Conclusion

In this paper we have looked at the concept of atomic actions. We believe that atomicity is a fun-

damental concept and natural to our thinking. The need of atomicity has been felt in different areas and

different names have been given to the problem in different contexts.

If provisions exist to declare any operation atomic and if support exists for ensuring atomicity,

many advantages will result. The problems of ensuring mutual exclusion and serializability will not exist

any more. Solution to two major problems in the areas of operating systems and databases will be

granted as an effect of having atomic actions, and the systems designer need not bother about those

problems. Providing fault tolerance will simplify considerably. For providing fault tolerance in con-

current systems some notion of atomicity is required and fault tolerance can be provided using atomic

actions with considerably less effort.

We also believe that the provision of atomic actions will help in proving correctness of programs

and will aid in designing parallel programs.



Though the concept of atomicity has been in existence for a long time, it is only recently people

have started understanding the nature of atomic actions and the generality of the concept. The possibili-

ties of having atomic actions in programming languages is a recent idea too. As a result many conse-

quences of having atomic actions as basic structures are still open areas for research. We are currently

devising a design methodology for parallel programs using atomic actions. We are also looking into the

problem of proving correctness of parallel programs using atomic actions.

Refrences

1. Allchin, J. E. and McKendry, M. S. Synchronization and recovery of actions. In: Proceed-

ings of sympo on principles of distributed computing. ACM SIGACT-SIGOPS,

Montreal, 1983, pp. 17-19.

2. Anderson, T. and Lee, P. A. Fault Tolerance, Principles and Practice. Prentice-Hall

International, Englewood Cliffs NJ, 1981.

3. Bernstein, P. A. and Goodman, N. Concurrency control in distributed database systems.

ACM Computing Surveys (June 1981) vol. 13, no. 2, pp. 185-221.

4. Bernstein, P. A., Shipman, D. W. and Wong, W. S. Formal aspects of serializability in data-

base concurrency control. IEEE Transactions on Software Engineering (May 1979)

vol. SE-5, no. 3, pp. 203-216.

5. Best, E. Atomicity of activities. In: Lecture Notes In Computer Science, Vol 84,

Wilfred Brauer, ed. Springer-Verlag, New York, 1980, pp. 226-250.

6. Best, E. and Randell, B. A formal model of atomicity in asynchronous systems. Acta Infor-

matica (1981) vol. 16, pp. 93-124.

7. Campbell, R. H. and Randell, B. "Error Recovery in Asynchronous Systems", UIUCDCS-R-

83-1148, Department of Computer Science, University of Illinois at Urbana-Champaign,

1983.



0-"

8. Davis, C. T. Data processing spheres of control. IBM System Journal (1978) vol. 17, no.

2, pp. 179-198.

9. Dijkstra, E. W., Lamport, L., Martin, A. J., Scholten, C. S. and Steffens, E. F. M. On-the-fly

garbage collection: an exercise in cooperation. Communications of the ACM (Nov.

1978) vol. 21, no. 11, pp. 966-975.

10. Eswaran, K. P., Gray,-J. N., Lorie, R. A. and Traiger, I. L. The notion of consistency and

predicate locks in a database system. Communications of the ACM (Nov 1976) pp.

624-633.

11. Hansen, Per Brinch. Distributed processes: A concurrent programming concept. Communi-

cations of the ACM (Nov. 1978) vol. 21, no. 11, pp. 934-941.

12. Hoare, C. A. R. Monitors, an operating system structuring concept. Communications of

the ACM (Oct 1974) vol. 17, no. 10, pp. 549-557.

13. Jalote, P. and Campbell, R. H. Fault tolerance using communicating sequential processes.

In: Proceedings, 14th International Symposium on Fault Tolerant Computing,

IEEE, ed., Kissimie, Florida, 1984, pp. to-be.

14. Kim, K. H. Approaches to Mechanization of the Conversation Scheme based on Monitors.

IEEE, Transactions on Software Engineering (May 1982) vol. SE-8, no. 3, pp. 189-

197.

15. Kung, H. T. and Robertson, J. T. On optimistic methods for concurrency control. ACM

Transactions on Database Systems (June 1981).

16. Lamport, L. Proving correctness of multiprocess programs. IEEE Transactions on

Software Engineering (March 1977) vol. SE-3, no. 2, pp. 125-143.

17. Liskov, B. H. On Linguistic Support for Distributed Programs. (May 1982) vol. IEEE, no.

Transactions, pp. 203-210.



D- 15

18. Liskov, B. H. and Scheifler, R. Guardians and actions: Linguistic support for robust, distri-

buted programs. ACM TOPLAS (July 1983) vol. 5, no. 3, pp. 381-404.

19. Lomet, D. B. Process structuring, synchronization, and recovery using atomic actions. SIG-

PLAN notices (ACM) (March 1977) vol. 12, no. 2, pp. 128-137.

20. Merlin, P. M. and Randell, B. State Restoration in Distributed Systems. In: Digest of;f

Papers FTCS-8: Eighth Annual International Symposium on Fault-Tolerant

Computing., Toulouse, 1978, pp. 129-134.

21. Mickunas, M. D., Jalote, P. and Campbell, R. H. The Delay/Re-Read protocol for con-

currency control. In: Proceedings, First International Conference on Data

Engineering. IEEE, Los Angles, California, 1984.

22. Owicki, S. and Gries, D. An axiomatic proof technique for parallel programs. Acta Infor-

matlca (1976) vol. 6, pp. 319-340.

23. —. Verifying properties of parallel programs: an axiomatic approach. Communications of

the ACM (May 1976} vol. 19, no. 5, pp. 279-285.

24. Papadimitriou, C. H. The serializability of concurrent database updates. Journal of the

ACM (Oct 1979) pp. 631-653.

25. Randell, B. System structure for software fault tolerance. IEEE Transactions on

Software Engineering (June 1975) vol. SE-1, no. 2, pp. 220-232.

26. Randell, B., Lee, P. A. and Treleaven, P. C. Reliability Issues in Computing System Design.

ACM Computing Surveys (June 1978) vol. 10, no. 2, pp. 123-165.

27. -• Shaw, A. C. The logical design of operating systems. Prentice-Hall, Englewood Cliffs,

N.J., 1974.

28. Silberschatz, A. and Kedem, Z. M. A family of locking protocols for database systems that

are modeled as directed graphs. IEEE Transactions on Software Engineering (Nov



0-16

1982) pp. 558-862.

29. Weihl, W. and Liskov, B. Specification and implementation of resilient, atomic data types.

SIGPLAN notices (June 1983) vol. 18, DO. 6, pp. 53-64.



APPENDIX E

Performance Measurements on UNIX United



•SaSS3DO.ld

pnc 001)030003 sq) ua3M)aq pasodmi J3ABJ [cooi)ippe ue jo asn aq) qSnoiq) pa)aauia|duii £[\pv3i aq

S3i)iipej asaq) aAaipq »M 'qacojddc p3)infi XINIA 9ID no pascq S3!?!IP Ĵ Smoirei?q p«oj pac

swnosaj apiAOid o) Aoq Saiaiaicxd Xpaajjna ajc a^ -noipaanoQ aq) jo aaacuuojjad aq?

o-> sn paMon^ 3A«q snoi^n^Aa asaqx 'uia^s^s aq) jo sinauiajnscaui aaneuijojiad pa?

auios ajjEiu o) sn pa))taiiad scq tua^sXs pa^nqiJ^sip aq) jo noi'jB^nauiajduii toajina aqj,

sain^aj Xaja^jjag aq) jo |pj asn o) a|qc aq )oa Xcui

suia-jsXs A*aia3(jag jo pasoduioa uta^sXs pa^inQ XINfl B n!1'>JA papnpui aq A"BUI stua^s^s XINA

•ajCM)jos joDO)ojd Jl/dOX 9<I) °1 aa^JJa^ni s)i SmXjijduiis Xq aoipannoQ aq) jo fouapiya

O) pna)in aM ^n)naAg -siO30)ojd ^JOM)aa dl/JOl ^aia^jag aq) asn o) aocjaa-jn

-noQ aq) 8ni)dcpc Xq pa)nauia|duii si sma-jsXs pa)in^ XINH ^ap^iaQ oaaM)aq noi)C3ianuiuioQ '001)030

-OOQ aq) o) sooisoa)xa sajinbaj aooaq po« janja^ £\ aq) spoa)X9 jaoja^ Xapjjjag aqj, -suoiiBjado a)ooiai

poc |C3O| o)oi s]]C3 aq) sdeto poe sassaoojd jasn jo qjso [anja^ aq) s)daaja)n; uoi-jaaunoQ

)oo)

aq

i uia)SA*s pa)ion aq) O)Ot

XINfl

paseq-00089

aq) 2oi)jod

o) 001)330003

®XINaX Pa« LA Sninnnj SQ006

i HIM (paponj VSVN

)ioQ XINfl

psoipoui

•DOI)33)Ojd

poc 'Soissaooid ponoj^^oeq poc ponojSajoj 'ooi)C3ianoiaio3 ss33ojdj3)ai 'o/I 'ssaoDB aDiAap poc ajg joj

63i)fii3cj XINfl pjcpoc)s aq? Smsn Xq suia^sXs qons )oni)soo3 Xcui Xaq) 'pca)soj -snoi^DiiddB pa)nqu)

-sip uicjSoid o) s|ODO)Ojd ^joM)ao poc ooi)C3ionuiuio3 Jossa3ojdja)oi )noqc MOQ^ o) paan )oo op sjasn

snqj, '013)8X3 XINfl Jossaoojd 3{3ois c UIQJJ a|qcqsin3ni)sipoi ^n^uoipanj si pa)ioQ XINfl 'saoi)c3ianui

-UIOD pac ssaoDB aajnosaj a)ouiaj 'uisipu^^d s)joddns )cq) uia-jsXs pa)nqij)sip c 0)01 suia)sXs XINfl L

aniquioo o) pasn aq A*eui )cq) aSB^osd aj«M)jos c si 001)330003

aoNvwno jaaj aaxiNa XINQ



sa)eo?uii|3 aig 9D,1 JOJ 3<PBD Jajgnq aq) asncoaq Xdoo aq) Suiop pauuojjad snoi)CJado

)oj c si siqj, 'spnoaasijjtui ^'j jo 3<te.i3Ae ire sajju) )sa) [BDO| aq) a; ooi)c.iado o/I l^g ')sa) sores aq) ni

ajg sq) dn )as 07 pauuojjad aja* soopejado SIIJM QOOS9 <iaq)<inj y -c^cp q)8aa| oiopocj 8nisn snoi

uiopaej 3J9AV asaqj, -ajg ajouiaj c Snisn snoifcjado a^ijM QOS Pn^ PC9J DOS pauiiojjad )sa)oi anp

aq) 'Mopq s)Qaaiajnscaui pa^inQ XINfl 311 °I '1O1™ ^nauiajnscaui {c^aainuadxa oiqtiM aq 04 sc

os aje s-jnatuaojiAUa Xjcaipio pac pafiafl XIMT1 3II1 n! sauii) aoi)n3axa naaM^aq saonajajgip aq) 'j

'001)330003 ansB3*3N aq) o? pa^oj] 3<1 ̂ snui mcaSojd qrea asncaaq )oaoinojiAoa pa)iof) XINA

ui jaSoo| sajj^) SnijiduioQ -8)03010011x03 XVA pa^io^ao sq) 01 po« XVA ai^ois sq) q)oq 01 apoo

8oi)n3axa poc Snijiduioo joj aooeoijojjad aq) Moqs s)oaoiajnscaui asaqj, •soizcSeoi 31A9 n!

3J3M. )cq) S3ot)noi )S3) jo )3s ji^uis c q-jiM apcoi SBM S)oaui3jnsc3ui asocuiiojiad jo )as puooas

•ooi)cjado 3)oui3J lad

jdAC Xdo3 3)oui3j p3)iQfi XINfl 9nX *ooi)ejado jad spnooasiijiui 93 jo paads aSejaAC DC )c sooi)

a)UM poe pcai 000> 63^oi pocuiuioD Xdoa XINfl 3llX 'SJjaojq a)Xq]| i 0005 pajajsaci) ^doo

90=2 'sg'CS '«9'S S^:i 'SS'8I 'WZ
(ijddB ),osaop) 9^:1 'sg-gi 'nQ'T

80:I 'S6'6I' 'ng'O W-l 'si'8I 'ng'l

|vooi fB9O{ o^ {vaof pma

g

aq) q)iM

pa)oauiaidon Xdoa XINfl a1'> Pnc ^d°D XINfl jf^nipjo aq) q)oq poc pntiuuioo Xdoo dai Xap^Jag aq)

oa3M)aq nosuEduioD qSnoj c apiAOjd MOjaq sSoiuit) aqx '»ig a)Xqc3aui OM) c saidoo )sa) )sjg

08 OQD 9QO Poc ^oaiaui oicm jo a)Xoj^ z S1B^ XVA ̂ 3 'QS9I> 3ninnnj

sia)nduiO3 QSZ, XVA PaP^oi ^Dq^n no papnpnoo aiata s)sa) aqx '^IQ a|8ois c Souajsocj) no pnc

-ojd jjj^uiqDnaq XINfl 9iq^nCAC A*(ipcaj SOIOODJ no pascq s)sa) aaocuuojjad p3)3npooa



c , ORIGINAL PAGE -»
^ OF POOR QUALITY

most of the overhead. Each I/O operation in the remote test takes an average of 24 milliseconds. (The

length of the records being read and written vary in this test and result in a different access overhead

than the earlier copy test.)

A comparison of the data shows that the single machine UNIX benefits greatly from the use of the

local file cache. A more detailed analysis of the performance of the UNIX United system reveals that the

majority of the time spent in communication was in the TCP/IP and hardware transmission, not in the,

Newcastle Connection code.

VAX 11/750 NC_VAX11/750
cc eros.c

execution

cc fibo.c

execution

cc floatpt.c

execution

cc iotest.c

real
user
sys

real
user
sys

real
user
sys

real
user
sys

real
user
sys

real
user
sys

real
user
sys

5,
2.3,
1.6,

5,
4.4,
0.2,

5,
1-9,
1.6,

6,
4.8,
0.6,

5,
2.5,
1.5,

10,
8.7,
0.6,

9,
4.0,
1.8,

5
2.6
1.8

4
4.1
0.2

5
2.3
1.5

5
4.7
0.2

5
2.6
1.7

8
8.4
0.1

10
4.8
2.0

10,
3.7,
2.7,

6,
4.5,
0.3,

12,
3.3,
2.7,

6,
5.0,
0.3,

12,
3.6,
2.8,

10,
9.0,
0.4,

13,
5.3,
3.2,

12
3.8
3.3

5
4.1
0.3

12
3.5
3.1

5
5.2
0.3

14
3.8
3.2

9
8.4
0.4

15
6.4
3.1

execution
real 115, 117 1589, 1604



ORIGINAL PAGE fg
OF POOR QUALITY

user
sys

5.1,
105.9,

4.5
110.2

139.9,
540.6,

128.8
557.0

cc sort.c
real
user
sys

10,
3.9,
1.7,

9
4.4
1.9

14,
5.2,
2.8,

16
5.6
3.4

execution
real
user
sys

60, 54
58.3, 52.4
0.5, 0.5

55,
52.1,
0.6,

51
48.1
0.7

A further analysis of the iotest performance gave the following profile for remote access to a file:

I/O test, 500 random reads/writes.
-file opened for sequential writing
-normal termination after writing data file
-file opened for random reading and writing
-run complete
139.9u 540.6s 26:29 42% 12+20k 5+24io lOpf+Ow

%time cumsecs #call ms/call

50.0
19.1
8.7
6.0
3.3
2.9
2.0
1.8
1.1
1.1
1.0
0.8
0.7
0.6
0.5
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

320.27
442.60
498.60
536.88
557.95
576.20
589.23
600.85
608.15
615.12
621.35
626.53
630.70
634.25
637.48
639.45
639.62
639.77
639.88
639.95
640.00
640.03
640.05
640.07
640.08
640.08
640.08

67005
67005
134042

67005
65500
67005
65501
67004
67005
67005
67004

1
66000
67005
500
1000
1000
1000
7

1
2

500
1
2

4.78
1.83
0.42

0.27
0.20
0.17
0.11
0.10
0.09
0.08
0.06

3550.00
0.05
0.03
0.33
0.15
0.12
0.07
7.14

16.67
8.33
0.03
0.00
0.00

name

_ .receive
_ .signal
_alarm
mcount
_ _netcall
_ _rwrite
_ jjetrcv
_write
_ jrcall
_ _netsend
__ buildsn
__ rmt_fd
_main
_bmove
jsetjmp
_ _rread
.random
Jseek
__ rlseek
__stat
__ doprnt
__ getNC
__ umask
_read
__ creat
__ delfd



0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08
640.08

2
1
1
1
1
2
1
1
1
5 '
3
3
1
2
1
2
1
1
1
2
1
1
4
1
1
1
2
2
1
1

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

£-5

findnn
_ _getegid

geteuid
_ _getgid
_ _getid
_ =getpid
_ _getpug

getuid
joctl

_ _jpack
locate
mkfd
ncinit
netatoi

_ _petinit
_ jietitoa

netopen
netrslt

_ jiewsrv
jclose

_ _rcreat
_ _jopen
_ ./service

socket
socketaddr
.write

_close
_creat
Joctl
_open

ORIGINAL PAGE S9I
OF POOR QUALITY

The commands labeled " command" are original UNIX utilities. The Newcastle Connection

software has names beginning with ".command". As can be seen from the statistics, approximately 69%

of the time required to access a remote file is taken up by the send and receive primitives. This indi-

cates that lightweight protocols and fast, responsive networking hardware is more critical to good perfor-

mance than any major improvements to the Connection software and the remote procedure call scheme.

Last, we compared the size of the iotest program when it is used to access a remote resource to the

size when it is compiled on standard UNIX. From our studies, this is close to the maximum additional

space required by any process using remote access to networked machines. The results, shown below,

demonstrate that the network facility is very inexpensive with respect to space. The additional space

required by the iotest program to access remote files is 6k bytes of program and Ikbytes of data space.



A few extra bytes of control information are also required (bss) for the remote procedure call interface,

and for the Newcastle Connection naming schemes. From the point of view of UNIX, it would be better

to include this overhead in the kernel where it would be shared by all processes performing remote

access.

Script started on Mon Feb 13 23:05:13 1984

il% cc iotest.c -o normal
i2% cc iotest.c -o connected
13% size normal connected

textd atabssdechex
51201024194080841f94normal
1126420482104154163c38connected

Script done on Mon Feb 13 23:06:20 1984

We believe that the remote procedure call scheme, using lightweight protocols, removes the need

for having large amounts of TCP/IP protocol software in the 4.2 kernel. Such space considerations, ,

although probably not relevant to the users of UNIX, is very relevant in the design of small embedded

systems, and has been considered in the design of EOS and DPP.



APPENDIX F

Dllnet - A 32 Mblts/sec. Local Area Network

F-\



F-3-

1. Introduction

The rapid development in VLSI technology has made host computers

and terminals smaller and cheaper. In recent years it has become rather*

common for an organization to have several computing systems with

substantial processing and memory capacity operated and maintained

within the same building or in several closely located buildings. These

computing systems may each serve a wide range of simple and intelligent

terminals. The need to share data, programs, processing power, and I/O

facilities invariably makes it necessary for the computers and terminals

to be interconnected in the form of a local area network. Indeed, many

local area networks have been designed and implemented. Among the well

known local area networks are Xerox ETHERNET [1], Bell SPIDER [2], and

LCSNET [3]. These networks have been designed to provide low delay

access via interactive terminals to host computers at relatively low

cost per interconnection and with ease for network extension and
i

reconfiguration. Since the effective link bandwidth in such a network

is divided evenly among all terminals and hosts, it is often impossible

to facilitate transfer of large files between host computers at high

speeds required in many applications.

Many studies have shown that the performance of a local resource

sharing network and distributed data base system depends critically on

the communication bandwidth between hosts [4]. In particular, an

effective resource sharing environment can be achieved only when wide

Preceding page blank ^ ^ *;OT FILMED

L



ORIGINAL PAGE 63
OF POOR QUALtTY

P - 4 -

band data links between hosts are available to allow file transfers at

speeds near those of fast I/O devices in the hosts. ILLINET is a local

area network designed to accomplish this goal. Its structure is similar

to the Distributed Computing System (DCS) at the University of

California, Irvine [5]. This paper describes ILLINET which has been

designed and is currently being implemented in the Department of

Computer Science at the University of Illinois at Urbana-Champaign.

In section 2 the design objectives of ILLINET are discussed. These

objectives impose several constraints on the network configuration and

control structure. Section 3 gives an overview of ILLINET. In section

4 the link level data packet format is described together with the

hardwired network access and link control protocols. Finally, the

hardware architecture is presented in section 5.

2. Design Objectives

ILLINET will eventually connect several PDP-11's, a PRIME computer,

and a network of microcomputers. These computers are operated and

maintained by the Department and are used in a variety of real-time and

batch processing applications. Currently they are already

interconnected via 9600 baud lines in a star configuration to provide

access to 50-60 simple terminals. All of these computers are located

within one building although ILLINET is designed to allow interbuilding

connections. It is envisioned that one of the nodes on ILLINET will be

•5a



I

a PDP-11 which will serve as a gateway to the main campus computing

facility.

The primary-purpose for the design and implementation of ILLINET is.

to enhance existing computation facilities so that the resultant

computer network will support effectively a variety of research

activities in the areas of distributed operating systems, distributed

data base systems and file servers. In order to assure that

transmission links between the nodes and link-control level protocols

will not be the bottleneck in interprocessor communication and data

flow, it was decided that ILLINET is to be constructed using the latest

cost effective technology. The transmission medium used in ILLINET is

fiber optics because of its ability to support high bit rates and allow

reasonable interfaces. A link bandwidth of 32 Kbits per second is

achieved with the use of ECL circuits. Since most of the network access

and link control protocol functions are implemented in hardware, nearly

all this bandwidth will be available for interprocessor communication.

The need to avoid the difficult task of providing bidirectional

signal transmission and proper termination of the optical fibers

dictated that ILLINET be a ring network. The packet switching

discipline and distributed network control structure are used. Because

of the high data link bandwidth and the relative short loop delay in

ILLINET, it Is not necessary that the most efficient network access

control scheme be used. The version of token control scheme implemented



F - 6 - "I
•'-.•?•

in ILLINET is described in sections 3 and 5. It is similar to the " ,

scheme used in DCS. It will undoubtedly provide sufficiently low access

delay and high network throughput.

In order to support high-level process communication in broadcast

mode and to allow transparent transfer of destination process from one

node to another, associative addressing is used in ILLINET. Address

recognition hardware and link control protocols are both designed to

support efficient broadcast communication in the network.

3. Network Overview

The configuration of ILLINET is described in Figure 1. It contains

no central controller or primary station to carry out clock

synchronization and access control functions. In each of the ring £
'%
-*

adaptors (RA) on the ring, there is a 16-bit active data path (hereafter |f

referred to as front-end window) between the optical receiver and :||

transmitter in the front end. More specifically, a RA functions as a. ^

repeater which retransmits the incoming data stream. The portion of the ^.
•.-**.
-£•*

data stream appearing in the front-end window may be examined by the RA. jf
'

A host can gain access to the network via the ring adaptor attached

to it. To each of the hosts on ILLINET, the network functions as a

packet- switched network. To send a message, the host segments the

message into network packets of a maximum size of 4K bits. Each packet

is delivered individually to the RA where it is stored in one of the

I



F-7-

u o
o w
o

s
I

0)
H

00

•H CO
<u co
U OJ

S S

•».
•'k

00
(0

i-H
i-H
O



ORIGINAL PAGE IS
OF POOR QUALITY

F-8 -

output buffers. The completion of the loading of the data packet into

the output buffer is acknowledged by an interrupt sent by the RA to the

host. The host in turn can signal the RA to commence accessing the

network and transmitting the data packet. The transmission of the data

packet is then carried out under the control of the RA without host

intervention. Under normal operating conditions, the data packets will

be delivered to the destination in the order in which they are sent from

the host to the RA, and duplicate and lost packets will not occur.

However, reliable sequenced delivery is not guaranteed. Mechanisms to

assure reliable datagram delivery and message sequencing and reassembly

are carried out by the hosts.

The RA monitors the data stream passing through its front-end

window at all times. When there is a packet to be delivered, the RA
1

removes the access control token (01111111) from the ring when the token ;f

'!
appears at its front-end window. There is only one control token in the I

"$
ring. When the RA receives the token, it is allowed to transmit one '3

data packet. The format of the data packet is shown in Figure 2. ;|
•2

Besides the receiving process name there are CRC check, duplicate mark .5

and acknowledge/repeat request fields. The data packet is retransmitted ^

until positive acknowledgements are received from all RA's serving ^

active processes whose names match the receiving process name in the ";

packet header. (We will return to discuss the acknowledgment and repeat *;',
v.
•'*.-

request features in the next section.) The use of this stop-and-wait ARQ .£
"S«r

scheme simplifies the host-to-host synchronization. Since the .bandwidth 2



f-9-
ORIGINAL PAGE 19
OF POOR QUALITY

Front-end
window

Packet
Disasem-
fa ly

Packet
formatter

Output
Buffers

RA-to-Host
interface

Ring Adaptor

Host

1

Figure 1



»'
••?

- 10 "

of the host-to-RA interface Is significantly lower than the network :
•*' *

bandwidth, the host-to-host throughput will not be limited by its use ;

[6]. Furthermore, since there are two output buffers in the RA, network o -

access for transmission from one buffer over the network can be carried

out while the host loads the other output buffer. Thus, the speed of

large file transfer between hosts will be limited primarily by the

bandwidth of the host-to-RA interfaces.

In order to facilitate dynamic renaming and broadcast mode

communication, a high-speed static RAM is provided in each RA to store '

the local active process name table as suggested in [7], This table is ^

updated by the host. When a data packet passes the front-end window of

a RA, the RA checks the receiving process name field to determine

whether it matches any of the names in its process name table. The data
•| ;

packet is copied into one of the 16 input buffers as it is ;| I
$!

simultaneously subjected to CRC checks. The data packet is kept in the 1| ;

I.!input buffer only when there is a process name match, the data packet is -%
4

free of error, and there is an input buffer available for its storage. -

In this case, the RA interrupts the host to inform it of the reception .j

of the data packet. As the data packet passes through its front-end -'
T
•:

window, the RA makes comment in the acknowledgment/repeat request field.

Such comments serve as acknowledgments to the sending RA. ,

Within the ring only the data path between the optical receiver and

transmitter inside the sending RA is open. Hence, under normal .



: II • F-ll-

'•• t

operating conditions, the sending RA will remove the data packet when it

returns to the optical receiver. By checking the contents of the

acknowledgment/repeat request field in the returned data packet, the

sending RA can- decide immediately whether retransmission of the data

packet is warranted. Either when the data packet transmission is

completed successfully or is aborted after retransmission a maximum

number of times, the sending RA releases the token and interrupts the

host. By checking the status of the RA, the sending host can determine

whether the transmission of the data packet is successful. If the other

output buffer is nonempty and if the transmission of the previous data

packet is successful, the host may signal the RA to commence network

access again. On the other hand, if the delivery of the data packet

fails, the host may ask the RA to attempt retransmission again or to

invoke error diagnosis process. Thus, the sending RA is guaranteed the

use of the data link for the delivery of both the data packet and the

associated acknowledgment.

A. Packet Format and Link Control Protocols

The link level data packet format is shown in Figure 2. The data

field is sandwiched between the packet header and trailing control

fields. The header consists of the flag, "01111110," marking the

beginning of a data packet, duplicate mark (DP), and the receiving

process name field. The sending process name, packet sequence number

and higher-level control information are considered here as parts of the



F- 12 -

data field. The trailing control fields consist of the cyclic redundant

check code (CRC), the acknowledgment/repeat request (ACK/RQ) field, and

the occupied token "01111111",* marking the end of the data packet. The

receiving process name and the data are supplied by the host. The other

fields are generated by the sending RA.

We note that the data packet format is similar to that in HDLC. To

achieve data transparency a zero is inserted following every occurrence

of 5 contiguous 1's in the data steam between the flags and the occupied

token as in HDLC. The flag and the token are the only control fields

containing more than 5 1's and hence can be uniquely identified at link

level. Before the zero insertion the data field is n x 16 bits long for

some n between 0 and 255. The 16-bit CRC code specified by the

t

generating polynomial x +x + x + 5 i s used for detecting errors in

all bits between the flag and the ACK/RQ field. .

A data packet is marked as a duplicate by the sending RA with its :•!
v|

DP set to 1. A RA can check the first 16 bits (after zero deletion) ;§-i
following the flag to determine if the packet is intended for some local ;g

•1
process and whether the data packet is a duplicate one. The last 8 bit £<

field before the occupied token is the ACK/RQ field. When a data packet

leaves the sending RA, its ACK/RQ field is reset to off to mean negative

The bit pattern representing the occupied token is the same as .
that used to represent the control token. That a token is occu-
pied (and, therefore, is not trapped by a RA which is waiting to
obtain the token) is signified by this pattern following a match-
ing flag.



f- 13 -

acknowledgment and no repeat request* As the data packet passes through

its front end, each RA on the ring may acknowledge whether the data

packet is properly received by marking its comment in the ACK/RQ field.

A RA sets the ACK field if the receiving process name matches the name

of a. local process name and if the data packet is copied and stored in

its input buffer ready to be delivered to the local process. The RQ

field is set when there is a process name match. However, either due to

error detected in the data packet or due to input buffer overflow, the

data packet is not correctly copied into the input buffer. Thus, the RA

may request the data packet be retransmitted.

The operations of the sending RA is described by the flowchart in

Figure 3. Before transmitting a data packet, the acknowledgment state

of the sending RA and the number of retransmissions count are Initially

reset to zero. When the data packet is being transmitted for the first

time, the duplicate mark is set to 0. As the data packet makes a round

trip around the ring appropriate comments are collected in the ACK/RQ

field from all RA's on the ring. By scanning the ACK field, the sending

RA may determine whether the ACK field is set (meaning that some RA made

a positive acknowledgment). If the ACK field is set, the acknowledgment

state of the sending RA is set to 1. The repeat request field is.set if

any RA made a repeat request. The sending RA will immediately retransmit

the data packet in this case. However, this time the DP bit is set to 1

to mark the data packet as a duplicate. If, on the other hand, the RQ

field is found to be off when the data packet returns to the optical



F-14- ORIGINAL PAGE IS
OF POOR QUALITY

is transmission account

I: the number of maximum allowable transmission
attempts

S: Acknowledgement State

DP: duplicate mark

ACK: Acknowledgement

RQ: Repeat Request

DP=1

Start transmit-
ting and wait
for ACK/RQ

Figure 3

-

I
*
*
1

I



receiver in the sending RA, the transmission is considered completed.

We note that the acknowledgment and the repeat request fields in the

returned data packet not set by any RA will be interpreted by the

sending RA that the receiving process name does not match the name of

any active processes on the ring. In this case, the sending RA

immediately retransmits the data packet. Since this data packet has not

been received by any RA, it is not marked as a duplicate.

The operation of a RA which is not transmitting is described by the

state transition diagram in Figure 4. Such a RA is in one of two

states, a or 3. When the DP in a data packet is 0, any RA may copy the

data packet and make comment in the ACK/RQ field. Once a RA receives a

data packet and stores it in an input buffer, it writes a positive

acknowledgment in the ACK/RQ field of the data packet and enters state

.gf: 3. As this data packet reaches the sending RA, its acknowledgment state

will be set to 1. Hence, during subsequent retransmission of the data

packet, the DP is set to 1. While it is in state 3, the RA is inhibited

to make comment in any data packet marked as duplicate.

A RA enters state a when it makes a repeat request comment in the

RQ field of the last data packet passing through its front-end window.

When the duplicate mark in the data packet is set to 1, RA copies the

data packet into its input buffer and makes positive acknowledgment in

the ACK/RQ field only if it is in state a. Thus, reception of duplicate

packets is prevented except in the relatively rare cases when noise



F-16-

CRC * MATCH / x

ORIGINAL PAGE 13
OF POOR QUALITY

•;f

;f

CRC*MATCH*INOVFL/ACK
CRC U MATCH * INOVF / RQ

DP U DP*CRC*>IATCH/x

DP*CRC*MATCH*INOVFL/

DP*(CRC U MATCH*INOVFL)/RQ

Legend: A/B

A: condition

CRC: CRC error code o.k.

DP: duplicate mark

MATCH: receiving process name of the data packet matches with
that of some local process.

INOVFL: input buffer overflow

B: action

ACK: positive acknowledgement

RQ: repeat request

x: no comment

:!'
.'-"-;J
~.i~

"X

•-5- .

Figure 4



F-17-

causes messages to be garbled on more than one link in the network.

To summarize, a RA which is not transmitting will set the ACK field

of the data packet passing through its front-end window and thus make a

positive acknowledgment of its reception if (1) it is in a state, or it

is in 3 state, but the DP of the data packet is 0, (2) the receiving

process name in the data packet matches some process name in the

receiving RA, (3) there are free input buffers, and (4) the CRC check

detected no error in the data packet. Similarly, it will make a repeat

request if it is in state a, or it is in state $, the OP of data packet

is 0, and one of the following conditions is true: (1) the CRC check

found the data packet to be errorous, or (2) there is no free input

buffer and the receiving process name of the data packet matches with

that of some local process.

We note that there is no need to initialize the RA to be in a or 3

state. Being self-synchronized, the RA should function correctly even

if some RA's are in state a and some RA's are in state 3 at the time

when the transmission of any data packet commences.

A. Error Recovery

In the two nodes that have been implemented to date, error recovery

hardware is not included. Because of the limited knowledge in the

failure characteristics of the type of networks such as ILLINET, it was

decided to postpone the implementation of these hardwares. Instead,



F- 18 -

network error recovery functions are carried out by the hosts. However,

time-out and interrupt circuits are included in each of the RA's for the

detection of malfunctions in the RA or networks. For example, when a RA

has a data packet to be sent but has waited for a long time for the

control token, an interrupt is sent to the host when a preset time-out

period expires to alert the host possible network malfunctions and

invoke recovery procedure. Similarly, if after a RA caught the control

token and transmitted a data packet but the occupied token at the end of

the data packet does not return after a maximum loop delay or if the

transmission lasted too long a period of time, appropriate interrupt

signals are sent to the host. Status bits within the RA are provided to

aid the host in its diagnosis to pinpoint the cause of network

malfunction. The input buffer and output buffer memory modules are

completely independent. Therefore, it is possible to support echo

transmission mode. In this mode, a sending RA stores the data packet

transmitted from its own output buffer when the packet returns from the

network. It is also possible for a host to separate the RA from the

network. In this case, a data packet may be transmitted directly from

the output buffer to the Input buffer of the RA. Thus, individual RA's

can be tested independently making isolation of malfunctioned RA a

relatively easy task.

Hardware for recovery from error conditions involving the token is

Included in our design; Under normal operating conditions there is only

one control token circulating around the ring. Failure or transient



F-19-

noises In both RA's or the link may cause the token to be lost or

duplicated. We refer to these conditions as no token or duplicated

token, respectively. Clearly, the no token condition exists when the

network is turned on initially.

To explain how the no token or duplicated token conditions are to;

be handled in 1LLINET, let us discuss the error conditions that can

occur in ILLINET. As described above, all RA's monitor the data stream

on the ring as it passes by their 16-bit front-end windows. Data

streams arriving at the'optical receiver in a RA is not relayed to the

optical transmitter unless this data stream represents the access token

or when it is -preceded by a flag and the flag is detected by the RA. At

the end of the data packet, the last remaining 16-bit of data in the

front-end window are delivered to the optical transmitter for

transmission only when the occupied token marking the end of the data

packet is detected. Hence, any data stream with no leading flag and
''.'?ir'

occupied token is blocked by the front-end of some RA. A data stream

with a leading flag but no occupied token is truncated by 16-bits after

passing through each RA until the data packet disappears. A data stream

containing occupied token but no leading flag becomes a control token

instead. Thus, the continuous circulation of random or broken data

packets left on the ring due to failures in the sending RA or

intermittant noise is prevented. "Garage collection" in this case is

not required.



•F- 20 - §

In the sending RA, the data path between the optical receiver and -f

transmitter is normally open during the transmission of a data packet. ':.

This data packet is removed from the ring when it returns. If for some

reason the data path within the sending RA is closed when the data

packet returns to the sending RA, it will be left circulating on the

ring. We note that this error condition is a serious one. If the

duplicate mark in the packet is not set and if the receiving process

name matches the names of some active process on the ring, the input

buffers in the RA serving these processes will eventually overflow since

the data packet will be copied by these RA's each time it passes by

their front end. In this case, a RA monitoring the network will see

well-formatted data packets pass by even though the no token condition

exists. Since the sending process name and packet sequence number are

considered as parts of data and not monitored by the RA's, this type of

no token condition can be detected either by the receiving hosts after -£
.'•is.

the received data packets have been examined or by a RA after waiting ~^;

for some access token for a period of time longer than the maximum £.

access delay on the ring. If in a N-node ring with loops delay L the ^

maximum packet length is T seconds, and each RA is allowed to transmit k •:&'•

times before freeing the token, the maximum access delay is roughly (N- ,j£.

l)(k)(L+T). (For example, in a 6 node, 1 km ring network, the length of ''"?

this period is approximately 10 usec. with k - 16.) Fortunately, we

believe that this type of no token condition rarely occurs in ILLINET.
<

When it does occur, it is handled as follows: when a RA observes data ,,;

.1



.•a

- 21 -

stream but no control token passes by its front-end window for a period

of time longer than its estimated maximum access delay, it opens the

data path between the optical receiver and transmitter. Thus, it

removes the "garbage" from the ring. However, the no token condition

persists.

The no token condition can be detected easily in the case when

there is no data stream circulating on the ring. In this case, a RA can

decide that there is no token on the ring after one maximum loop delay.

(In our previous example, this time is roughly 7 Msec.) This type of no

token condition is handled in the following manner« When a RA observes

no data stream in the ring and there is no access token passing by its

front end for a period longer than one maximum loop delay, it will enter

a time-out period and continue to monitor the activities on the ring.

If when its time-out expires and no token is observed, it will insert a
'*fe,.

token on the ring. By making the differences between the time-out

periods of the different RA's equal to or longer than one loop delay, we

are assured that once such a no token condition occurs, a token will be

generated in a reasonably short time. Moreover, only one token will be

generated in most cases.

The duplicate token detection scheme is designed for the general

case when the exact loop delay is not known or may be variable. In this

case, the duplicate tokens can be detected reliably at the host level.

That there are more than one RA transmitting data packets at the same



r - 22 - |
'~ff'.

time can be detected by the sending host by examining the sending

process name and packet sequence number In the data field of the packets

arriving at the optical receiver of its serving RA. However, the need

of the host intervention will undoubtedly significantly lower the

network throughput. Alternately, we may require that the sending

process name be placed in the first 16 bits of the data field. The

sending RA can, therefore, determine whether the packet arriving at the

optical receiver is the same one sent on the ring by itself. When the

received data packet is found to be from another RA, the sending RA can

conclude that duplicate token conditions exist. Again, by removing all

data streams arriving at its receiver, a sending RA will delete all

tokens from the ring.

5. Hardware Structure

• ' ..<¥.

The hardware structure of the RA's already implemented is described -A-

by the block diagram shown in Figure 5. To satisfy the different speed |

requirements of the different functional blocks of the RA at a minimum ^

cost and complexity, it is Implemented in ECL, STTL, and LSTTL. A RA '•£

consists of three PC boards, the front-end, memory module and •$
»**:

retransmission control logic, and RA-to-host interface. U

The front end contains the transmitting and receiving logics.

Between the optical receiver and transmitter, there is a shift register

which serves as a delay buffer. The RA may hold up the incoming data •



-23-
ORIGINAL PAGE 19
OF POOR QUALITY

_ -r-i.

•'•&?'

•*%•
.•'•-*.;

Encoder
MUX

RQ

Shift Register

Transmitting logic

ACK

ECL

CRC
generator

Front end
Parallel-to-
Serial
Converter

STTL

Output
word
count
registers

Recieving logic

Serial-to-
Parallel
Converter

Output
Buffer

Memory modules and retransmissions
control logic

LSTTL

Command
decoder

interface

Figure 5



r - 24 -

stream, scan and process the contents of the various fields as they

appear in the shift register. Here, appropriate comment is generated

and inserted in the ACK/RQ field of the data packet. " Then the last 16

bits containing the ACK/RQ field and the token are shifted out to the

transmitter. The major functions of the transmitting logic are

parallel-to-serial data conversion, zero insertion CRC error code

generation, and data packet formatting. The major functions of the

receiving logic are zero deletion, serial-to-parallel conversion and CRC

check. All these operations are carried out bit-serially and are

implemented in ECL logic.

Within the memory modules and retransmission logic, the are input

and output buffers, process name table, and retransmission control

circuits. The buffer memory are segmented into 256 16-bit word pages.

Sixteen pages are used as input buffers and two pages are used as output

buffers. The input and output buffers are organized as independent

modules, each is capable of supporting either read or write operation at

32 Mbits/sec. Upon detection of the flag, the input buffer write

operation is initiated. If at the time data is being transferred from

the input buffer to the host, this transfer operation is halted

temporarily. The input buffer write operation will be terminated when

the occupied token marking the end of the data packet is detected, when

the receiving process name in the data packet does not match any names

in the process name table, or when the duplicate mark is found to be set

indicating that the date packet is already copied by the RA. Any

is*

Pf
•'*'

'.jfY



Vvh-

'v.-.' •
''?$••"

fe
t .',;.',

•f?*
f "• -
I*'"

- 25 -

temporarily halted memory transfer operation will then be resumed.

There are two output buffers in the output modules to allow the

process of waiting for network access and data transfer from the host to

be carried out concurrently. A 32 Kxl memory module implemented with

Intel 2147H3 is used to store receiving process names. (Currently, we^

are using only one chip containing 4 K in each RA.) The 15-bit receiving

process name is used to address this RAM table. An output bit from the

table being 1 indicate a match of the receiving process name with some

local process name in the table. Thus, the process of checking

receiving process name match can be carried out in 55 nsec. The table

can be dynamically updated by the host within 500 nsec. All buffer

memory operations, receiving process name checking and updating, and

retransmission control are carried out at word level and are implemented

in STTL logic.

Finally, the RA-to-host interface contains the command decoder, RA

status registers and interfaces to and from buffer memory modules.

These circuits allow the RA to appear to the host as a peripheral device

and can be easily linked to the host via a DMA interface. This portion

of the RA is implemented in the TTL logic.

Acknowledgment

The authors wish to thank Cyrus Weise, Kurt Horton, Izuml Suwa for

suggestions and help in the design and Implementation of ILLINET.



- 26 -

References

[1] Metcalfe, R.M. and D.R. Boggs, Ethernet: distributed packet
switching for local computer network, CACM 19, 7, July 1976, 395-
404. -

[2] Frazer, A.G., Spider—an experimental data communication system,
Proceedings International Communications Conference, 21F-1-10,
CACM.

[3] Pogram, K.T. and D.P. Reed, The MIT laboratory for computer science
network, Local Area Networking NBS Special Publication 500-31,
April 1978, 22-23.

[4] Weber, H., D. Baum and R. Popescu-Zelltin, ESA—an evolutionary
system architecture for a distributed data base management system,
Proceedings of Berkeley Conference on Distributed Processing, 1979.

[5] Farber, D.J., A ring network, Datamation, February 1975, 44-46.

[6] Burton, H.O. and D.O. Sullivan, Error and error control,
Proceedings of the IEEE 60, 1972.

[7] Mockopetris, P., Design consideration and implementation of ARPA
LNI nametable, University of California, Dept. of Information and
Computer Science, Technical Report 92, Irvine, CA, April 1978.

-'35s-



APPENDIX G

Shortest Job Next Scheduler

6-'.



Shortest Job Next Scheduler

The Path Pascal scheduler implementation presented here is based on the FIFO scheduler

presented in the Path Pascal User's Manual[Campbell & Kolstad 80c|. Each scheduler call is associated

with an event descriptor. The event descriptor is entered into a queue of suspended jobs ordered by job

estimate. The event descriptor is defined as follows:

type event_dscr = object
path signal ; wait end;
entry procedure; signal; begin end;
entry procedure; wait; begin end;

end; (* event_dscr *)

The event descriptor is part of a job queue element:

bufptr = "buffer;
buffer = record

job : event_dscr; (* an object for block/ unblock *)
jobest : integer; (* job time estimate *)
next : bufptr;

end;

These are elements in a queue of suspended processes ordered by job time estimates:

SJNQ = object (* Shortest Job Next Queue *)
path 1: (enter ; leave) end;
var head : bufptr;
entry procedure enter (m: buffer);

begin
(* insert a job into the queue by jobest *)

end;
entry function leave : bufptr;

begin
(* return the head of queue., lowest jobest *)

end;
init; head := nil end;

end; (* SJNQ *)

These components are used to build the scheduler:

scheduler : object
path suspend , resume end;
var SQ: SJNQ; (* the shortest job queue *)

entry procedure suspend (jobtime: integer);
(* Block an incoming resource scheduling call until it
becomes the job with the lowest time estimate. *)

var jptr: bufptr;



begin
new(jptr); •
jptr*. jobest := jobtime;
SQ. enter (jptr);
jptr*. job*, wait; (* blocks until awakened *)

end;

entry procedure resume;
(* Take the shortest job from the queue and release
it so that it may execute its resource access. *)

var jptr : bufptr;
begin

jptr := SQ. leave; (* dequeues shortest *)
jptr*. job*, signal; (* unblock *)
dispose (jptr);

end;
end; (* scheduler *)

The resource is encapsulated in a separate object:

resource : object
path use_scheduled_resource end;

entry procedure use_scheduled_resource;

end; (* use_scheduled_resource *)
end; (* resource *)

AH processes that use this resource must execute the sequence:

scheduler, suspend (my_job_estimate);
resource. use_scheduled_resource;
scheduler, resume;

Notice that if any user process does not follow this sequence of calls, serious problems result. If a process

fails to call resume, the scheduler will deadlock. If a process does not call suspend, the scheduling is sub-

verted and the result will probably be a corrupted resource. Simply implementing a sequential path in

the scheduler:
path suspend ; resume end;

will not correct this problem. Although such a path will force every call to resume to be preceded by a
N

call to suspend, there is no way to specify that a particular process must call both suspend and then

resume. Object Path Expressions could be supplemented by Process Path Expressions[Campbell 76],

Access Right Expressions [Kieburtz & Silberschatz 83] or capabilities [McKendry & Campbell 80c,

McKendry £ Campbell 82] to enforce such calling disciplines.



APPENDIX H

A Scheduling Mechanism

\\-\



A Scheduling Mechanism

The following program uses a Path Pascal-like notation to present a specification for a shortest job

next scheduler implemented using such a scheduling mechanism:

resource : object
path 1 by job_est : (use_resource) end;

entry procedure use_resource (job_est : integer);

end; (* use_resource.*)
end; (* resource object *)

A process calls this resource in this manner:

resource. use_resource (my_job_est);

The resource could be scheduled by substituting queueing on the least job_est for default FIFO queueing

in the operation prologue and epilogue:

prologue:
P (semi , job_est); (* semaphore 1 *)

body:

epilogue:
V (semi , job_est);

The P and V operations could be implemented as follows:

P(s ,x) = V(s,x) =
s. value := s. value -1; s. value := s. value + 1;
if s. value <0 If s. value <= 0
then begin then begin

(* queue in s.list by x *) P := (* call with least x from s. list *)
block; unblock P;

end; end;

Scheduling is appropriate only where Path Expressions place restrictions on the number of processes

that may be executing. For example, it would be inappropriate to add scheduling to these paths:

path x , y end;
path [x] end;

Scheduling is useful where processes may be suspended:

path n by schedule_exp : (x) end;
path x ; by schedule_exp y end;

Of course, if the scheduling criterion is not specified, some default (such as FIFO) may be used.



[•JIBLIOGRAPHIC DATA
[SHEET

1. Report No.

UIUCDCS-R-80-1035
3. Recipient's Accession No.

and Subtitle

••"/!*'•••Vt~-

5. Report Date

October

ILLINET--A 32 Mbits/sec. Local Area Network* 6.

;. Author(s) w.Y. Cheng, S. Ray, R. Kolstad, J. Luhukay,
R. Campbell. J.W-S. Liu

8. Performing Organization Kept.
No.

I. Performing Organization Name and Address
Department of Computer Science
University of.Illinois
222 Digital Computer Lab
Urbana, IL 61801 -

10. Project/Taslc/Worlc Unit No.

11. Contract/Grant No.

NSF MCS 79-06945

12. Sponsoring Organization Name and Address

National Science Foundation
Washington, D.C.

13. Type of Report & Period
Covered

14.

15. Supplementary Notes

6. Abstracts

ILLINET is a fiber-optical ring network designed to provide wide
band linkages between host computers for the purpose of facilitating file
transfers at speeds near those of fast I/O devices in the hosts. Its
structure is similar to the Distributed Computing System. ILLINET will
eventually connect several PDP-111s, a PRIME computer and a network of
microcomputers. These computers are used in a variety of real-time and
batch processing applications. Currently they are already interconnected
via 9600 band lines in a star configuration to provide access to simple
terminals. This paper describes the network architecture, control structure,
and hardware configuration of ILLINET.

7. Key Words and Document Analysis. 17o. Descriptors

Local-Area network
Ring network

7b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group

18. Avai labi l i ty Statement 19. Securi ty Class (This
Report)

UNCLASSIFIED
20. Security Class (This

Page
UNCI.ASSIFIF.D

21. No. of Pages
28

22. Price

FORM NTIS-30 (10-70) USCOMM-OC




