General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

AN EVALUATION OF THE DIRECTED FLOW GRAPH METHODOLOGY
By
Wesley E. Snyder

Sarah A. Rajala

ORIGINAL EaNTA3
EOLOR iy, TS

Final Report

to
National Aeronautics & Space Administration
Grant NAG 1-20

(NASA-CR-173593) AN EVALUATION OF THE N84-26324

DIRECTED FLOW GRAPH METHODCLOGY Final

Report (Nortia Carolina State Univ.) 61 p :

HC A04/MF AO1 CSCL 09B Unclas
G3/61 19404

Department of Computer and Electrical Engineering
North Carolina State University
Box 7911
Raleigh, NC 27695-7911

May 1984

1.

Table of Contents

Introdution

Design of the Image Labeling System

2.1 Algorithm Description
2.2 Circuit Description
2.2.1 CAM1 Chip ORign .
2.2.2 CAM2 Chip . BliAL 8y
2.2.3 System Description Pﬂlan ”lﬁ“?*f*w

[;p N

~~~~~~~

DGM Description of System

3.1 Description of DGM
3.2 Using DGM To Construct A Data Flow Graph
3.3 Modeling the Region Labeling System Using DGM

Evaluation

Conclusion

~N

QO ~JON O\

12
13

13
15

16



1. Introduction

The purpose of this project was to evaluate the applicability cf the
Directed Graph Methodology (DGM) to the design and analysis of special purpose
image and signal processing hardware. To this end, a special purpose image
processing system was designed and described using DGM. The design, suitable
for VLSI, implements an innovative region labeling technique. The utility of
DGM was evaluated using thie design.

Two chips were designed, both wusing NMOS technology, as well as a
functional system utilizing those things to perform real-time region
labeling. The system was described in terms of DGM primitives.

As a result of this effort, it was concluded that DGM, as it is currently
implemented, is inappropriate for describing synchronous, tightly coupled,
special purpose systems. Instead, .the nature of the DGM formalism lends
itself much md;e readily to ﬁodeling of networks of general-purpose proces-
sors. Section 2 of this report describes the image labeling system, including
the two custom chips which were designed.

Section 3 provides an overview of DGM, and then shows how the special
purpose design may be described using DGM.

Section 4 describes and justifies the conclusion that DGM is inappro-
priate for describing special purpose signal processing systems.

Details are contained in the appendices.



2. Design of the Image Labeling System

DGM was evaluated in the design of a hardware system for region labeling.
The purpose of this circuit is to partition an image into a set of meaningful
regions, and to do so "on the fly" with a single pass over the data. These
partitioned regions are composed of all pixels that have similar attributes
and have a four-neighborhood connectivity.

One technique for assigning pixels to regions is known as '"region
growing." The region growing technique is initiated by choosing a pixel which
meets some criteria (e.g. grey level above threshold) for inclusion in a
region. The algorithm then proceeds by examining all adjacent neighbors of
the pixel and comparing that pixel with the neighbor in question. Typical
measures of similarity include the magnitude of the neight:oring pixel's grey
level or the relative contrast between the pixel and its neighbor under
consideration for inclusion in the region. This process is repeated recur-
sively for ali newly accepted'pixels until no new pixels can be added to the
region. Since the region4§rowing technigue always results in closed regions,
this technique is often preferable to other techniques which are hased on edge
detection or line fitting.

The algorithm for region labeling incorporated into the system architec-
ture described in this report differs from traditional region growing in ‘hat
it performs the assignment of pixels in a sequential, raster-scan fashion
rather than using & recursion. For this reason, it is potentially orders of
magnitude faster than recursive region growing. It is a technique based on
the concept of equivalence relationships between pixels of the image. The
regions are labeled in a single pess over the image by utilizing a
content-addressable memory. Appendix 1 provides the theoretical foundation

for the algorithm described herein.



2.1 Algorithm Description

Two pixels a and b are defined to be equivalent (designated R(a,b)) if
they belong to the same region of an image. This relationship can be shown to
be reflexive (R(a,a)), symmetric (R(a,b)=>R(b,a)) and transitive (R(a,b) AND
R(b,c)=>R(a,c)).

The transitive property enables all pixels in a region to be detemined by
congidering only local adjacency properties. In this algorithm, each pixel
will be compared with each adjacent pixel in a left-to-right, top-to-bottom
raster scan rashion. Pixels in a simple binary image are labeled in
raster scan order.

The system in this report assigns labels to pixels maintained in a table
of equivalence relationships. Figure 2 shows that this hardware resides
between the image memory and a host computer.

If two pixels meet some criterion, in the case of a binary image, both
pixels are atﬂlogic 1, end they are adjacent, then they are in the same
region. By definition, if “two pixels are in the same region, the R(a,b)
holds.

That is

ADJACENT  (<x,y>, <x',y'>) AlI(x,y)=I(x',y")I<T<=DR(<x,y>,<{x',y"'>).
The transitive property of R cannot be used to infer

R(<x,y>, <x',y'>)=>11(x,y)=-I(x",y")ILT
without also considering the adjacency property.

As the region partitioning proceeds in real-time (i.e. synchronously with
the raster scan), two activities must be performed. First, the M memory must
be loaded with the region label number of each pixel under consideration, and
second, the CAM memory must be updated with all equivalence relationships

discovered. For example, if region 4 is actually identical to region 2, then



4
both CAM(2) and CAM(4) will contain 2 (the lower numbered region label takes
precedence. Hence, when the host computer interrogates pixel (x,y) of the M
memory, the interface/processor interprets M(x,y) in terms of the CAM memory
and returns CAM(M(x,y)) to the computer. Whenever an equivalence relationship
is detected, all locations in the K memory containing the larger region label
number are loaded with the smaller region label number. While the execution
of this step in real time is not within the qapebilities of conventional
random access memories, it is within the capability of the content-addressable
memories.

The architecture used to implement the algorithm is shown in figure 1.
The architecture contains four major components: image (I), region label
memory (M), equivalence CAM memory, and an interface/processor. The region
labels assigned to individual pixels are contained in the region label memory.
However, the contents of the M memory also include all intermediate region
labels for whiéh equivalence fabels were determined.

The M memory is a conventional random access memory. However, the
equivalence memory has two modes of oceration. It may be wused as a
conventional RAM where the address in corresponds to the region table, and
data out is the equivalent table. In the associative memory mode, it is used
to update that table. In this mode, two activities occur in synchronism with
a 2-phase clock:

Phase l--all memory cells whose contents match the contents of the data

bus, set their corresponding enable flip-flops. (see figure 5)

Phase 2--all memory cells whose enable flip-flops are set, read the

contents of the data bus.

This operation effectively updates the equivalence table in parallel

during the scan.



5
Thus when two regions are found to be identical (step 6 below), all
locations in the CAM memory containing the larger region number are changed to
the smaller region label number, thus allowing regions to be grown in a single

pass over the image.
Algorithm: Region Growing

C - current pixel
N - previous pixel to C on current scan line
A - pixel from previous scan line which is "topographically" above
current pixel
P - previous pixel to A on previous scan line
I I I
P | A |
I I I
I I |
[ N | C |
I | I

Square template for region growing
Let the initial label number, K=1
Scan the.image from left to right and top to bottom. f(i) refers to the
image brightness at point'f. In this description only binary-valued images

are considered. The extension to grey-valued images is straightforward.

1. If f(C) =0 Text Pixel Layout
then label (C) =0 comment: X X
X0
else
begin
2. If fF(N) = f(C) =1 and f(P) = f(A) = x
then label (C) = label (N) comment: x g
11
3. If f(P) = f(A) = f(N) = f(C) =1
then label (C) = label (N) comment: 11
11
4., If f(A) = f(C)=1l, and f(P) = x, and f(M) = O
then label (C) = label (A) comment: X 1
X0
5. If f(C) =1 and f(A) = f(N) = 0 and f(P) = x
then label (C) = K; CAM(K) = K comment: X 0



K = K+l 3 A new region

6. If £(C) = f(") = f(N) =1 and f(P) =0
then

7. If label (A) < label (N)
then comment 3 g i

label (C) = label (A)
CAM(N) = CAM(A) (update)

Else

label (C) = label (N)
CAM(A) = CAM(N) update)

Continue till finished

END

2.2 Circuit Description

2.2.1 CAM1 Chip

This content-addressable memory contains the equivalencies between re-
gions and has .two modes of operation. In the first mode, it behaves like a
conventional RAM and is used in this mode when a new region is encountered.
The first pixel in a new.;egion cannot be equivalent to any other region.
Therefore, each cell in the CAM is initialized to contain its own address.
This is illustrated in step 5 of the algorithm. CAM(i) refers to the contents
of address i in the CAM. Thus, initially, CAM(i)=i.

In the associative memory mode, the CAM updates the equivalencies. When
the chip is in this mode, two functions occur in synchronism. The word to be
updated is placed on the data bus of the CAM. All memory cells whose contents
match this word set their flip-flops. Next, the replace word is placed on the
data bus and all memory cells whose flip-flops were set are now changed to the
replace word. This operation hes now merged all regions which were found to be

equivalent. An individual cell in the CAM may be found at different times to

be equivalent to many different regions and be updated several times as a

result.



7
Figure 2 shows a block diagram of the CAM 1 chip, illustrating the use of the
common data bus and enable flip flop. Appendix 2 contains a complete
description of the CAM 1 chip, as well as simulation and performance analysis

results.

2.2.2 CAM2 Chip

The purpose of the CAM2 chip is to update the current scan line when an
equivalence is found; as a result, this will eliminate the time consuming read
to CAMIL.

In steps 6 and 7 of the algorithm, an equivalence between two regions is
found. Here, CAMl has to be told, for instance, that region 3 is equivalent to
region 1. That is, at cell 3 in the CAMl, a data 1 needs to be written. Also,
before the next pixel can be interrogated, M memory will be written with the
smallest of these two labels. (In this case, a 1 is written into M.)

If all pikels on the current scén line that have been labeled as region 3
have not already been changed to region label 1, a read to CAMl will be
necessary to find out if reéion 3 1is equivalent to any other region. Instead
of having to read cell 3 of CAMl (a slow process), CAM2 was designed to change
all region lables that were labeled as a 3 to region latel 1 on the current
scan line. The CAM2 chip needs only to hold one raster scar line of labeled
regions to perform this function. Figure 3 shows a block diagram of the CAM2
chip, and figure 4 shows the circuit layout.

The CAM2 chip (Figure 3), consists of eight input pins called VL, and
two more sets of eight input pine ralled Replace and Compare. The chip has an
output port called VLA and three control lines, latch, replace, and ViLp
enable. The chip behaves as a regular shift registor except when it is given a

replace control signal.



When the replace signal is high, every word on the previous

line is bit by bit compared with the eight bit compare register.

8

Raster Scan

Every word

which is "true" to this compare operation will at the trailing edge of ¢+At be

replaced by the contents of the replace register. If the replace

control line

was not high the words are not clocked again. The inputs replace and compare

are not latched by the CAM2 package and are assumed to be valid throughout the

duration of the replace command.

2.2.3 System Description

The form pixels (binary valued) to be tested by the hardware are defined

as follows:
Previous Line P A

Current Lipne N c

=z [y}
] [

Previous pixel to C on current scan line

I»
1

pixel

P - previous pixel to A on previous scan line

Current pixel [ any pixel to the right of C is currently undefined ]

pixel from previous scan line which is "topographically" above current

The following six test conditions satisfy all possible logical combina-

tions for a four neighbor connectivity and serve as appropriate control
signals.

[ CNA ACNP CAN AcN ACNP

Only one condition will be true at any given pixel evaluation.
Refer to figure 5 for the system block diagram.

X X

Case 1: T X 0

Whenever the current pixel isn't a logical 1, that pixel is to be

unconditionally labeled as a zero.



Bus Connections for Case 1l:
1. 2eros are placed on the data bus, VLy, and VLy.).

2. Latch signals are sent to VLN, VLy.), end a write signal is sent
to M-memory.

3. The address counter to M-memory is incremented.

X 0
Case 2: CNA 1 1

This condition erises when the current and previous pixel are at logic 1.

The current pixel is to be labeled identically as the previous pixel.

Bus Connections for Case 2:
1. The contents of VLn is gated onto VLy end the date bus.
2. A latch signal is sent to VLn and & w: "e signal is sent to M-memory.

3. The address counter to M-memory is incremented.

o 11
Case 3: ACNP 11
Here, all four of the test pixels sre at logic 1. The current pixel is

to be labeled identicelly as the previous pixel.

Bus Connections for Case 3:

Same as for CNA.

CAN X!
Case 4: 0 .

Here the current pixel and the above pixel are at logic 1. Current pixel

is to be labeled identically to its above pixel.



replace bus

_8/
-+

Shift

Register

Label Q/ Cell 00 0
Data / * —>

Compare 8/
bus /
A A 4
Compare
)

Figure 3: Organization of CAM2



11
Bus Connections for Case 4:
1. Wait for VLa to propagate through CAM 2 package.
2. The contents of VLp is gated to the data bus, VLy_], and VLy.

3. A latch signal is sent to VLn.]1, VLy, and a write signal is sent to
M-memory.

4. The address counter for M-memory is incremented.

Case 5: ACN X0
01

The current pixel is at logic 1, but none of its test pixels are true.
This condition shcows the appearence of a new label region. The label counter
is to be incremented and the current pixel is labeled from the incremented

label counter.

Bus Connections for Case 5:

1. The label counter is gated orto the data bus, CAM buses, VLj-1, and
VLN,

2. A write signal is sent to M-memory and to the CAM.

3. The address counter to the M-memory is incremented.

Case 6: ACNP 01
11
The current, previous, and above pixels are at logic 1, while the
previous pixel to A is at logic 0. The contents of VLp contain the above
label and VLy.] holds the previcus label. These two lal:1s are compared and
the current pixel is labeled from the smallest of the two. The CAM and the

CAM 2 chip are updated accordingly.



12

Bus Connections for Case 6:

l.
2.

Wait for VLp to propagete through CAM 2 package.

The contents of VLA is gated onto the comparator inputs and latched
for future access.

. The contents of VLy.; is gated onto the comparator.

The comparator is enabled.
When VLa < VLn-1

The contents of VLy.) is gated onto the CAM 2 compare inputs, and onto
the CA'1 address bus.

The contents of VLp is gated onto the CAM 2 replace inputs.

A replace signal is sent to the CAM 2 package and a union signal to
the CAM.

. After one CAM delay, the contents of VLp is gated to CAM data inputs.

YLp is placed onto the data bus and latch signals are sent to Viy.j,
VLN and a write signal is sent to M-memory.

When VLa > VLy_]

The contents of VLp.is gated onto the CAM 2 compare inputs, and onto
the CAM address bus.

The contents of VLN_] is gated onto the CAM 2 replace inputs.

A replace signal is sent to the CAM 2 package and a union signal to
the CAM.

After one CAM delay, the contents of VLy_) is gated to CAM data
inputs.

VLy-] is placed onto the data bus and latch cignals are sent to V0Ly
and a write signal is sent to M-memory.

3. DGM Description of System

In this section, an overview of DGM 1is provided, followed by a

description of this system in DGM format, and e discussion of the effective-

ness of the representation.



13
3.1 Description of DGM

The DGM software, as supplied, consists of two parts: a directed graph
editor (DGMED) and an ADA package library manager (DGMLM). Both are written
in VAX (VMS) Pascal.

DCGM is intended to be a hierarchical system design and analysis tool. A
system is represented as a directed graph. FEach vertex in the graph
represents a system function and arcs designate data flows between vertices.
Arcs have attributes such as produce, consume, threshold and capacity. These
attributes are related to the amount of data at a node input that must be
present before a node can fire, and to the amount of data that is produced and
consumed when a node does fire.

Vertex functions are impiemented hy ADA packages assigned to the vertices
from a library of packages. A set of processor assignments can be specified
for each package as ar aid in mapping the flow graph onto an architecture.

The methodology supperts a top down design strategy. A design is refined
by expanding higher level nodes into more detailed subgraphs until the desired
level of refinement is ré;ched. Each node in the graph has an ADA package
assigned which performs the node function. The use of flow graphs at all
levels of the hierarchy provides a uniform, consistent representation of the
system and can provide a convenient mechanism for moving up and down the

hierarchy.

3.2 Using DGM To Construct A Data Flow Graph

The process of constructing a flow graph begins by using DGMLM, the
library manager, to enter the ADA package definitions of vertex functions into
the package library. DGMLM maintains a library of functions, so only new

functions need to be entered.



14

Information required for a package is its name and the specification of
its inputs, outputs and data types. Produce, consume and threshold attributes
can also be specified for each package. Only ADA package header information
is kept by the library manager. The actual code bodies would be included when
the graph description was compiled.

DGMLM itself is a menu driven program which allows for addition,
deletion, modification and display of package definitions. The most serious
shortcoming of DGMLM is that although a list of packages currcntly in the
library is available, it 1is difficult to tell what function a particular
package performs. The package name and inputs and output data descriptions
are available, but there is no provision for a text description of what the
package does. Clearly a package name can provide some indication of function
as can knowledge of the inputs and outputs, but this 1is not sufficient. A
text description capebility would be.a useful addition.

This makeé the use of ﬁackage definitions already in the library very
difficult, eand requires the ontry of new definitions and much external
bookkeeping to keep track of what each package does for each new flow graph.
The next step is the entry of the graph description using DGMED. OGMED, also
a menu driven program, allows for the creation and modification of flow
graphs. Vertex name and function definitions are entered as well as the
connectivity and attribute information provided by the arcs. ADA package
assignments are also made to each node.

The major shortcoming of DGMED is its lack of a graphic data entry and
poor display capability. While the menu driven approach is simple to use, it
makes verification of the correct construction of a flow graph difficult.
Verification must be done by examining e text description of the graph and
comparing it to a mental picture or a hand drawn prototype. The graphic

display capability provided is very primitive and not very useful.



15

DGMED also mekes it difficult to maintain more than one graph at a time

in the same directory. The creation of a new graph destroys the old graph,
since the same files are used for the graph description. To maintain
different graphs requires renaming files or moving files to another directory

and starting over. This must be done by the user.

3.2 Modeling The Region Labeling System Using DGM

A data flow graph of the system is shcwn in figure 6 and a block diagram
is shown in figure 5. Appendix 3 contains a tabular summary of the circuit
flow graph. Appendix 4 contains the ADA package definitions and Appendix 5

contains a description of the graph in DGM notetion.

4, Evalustion

The basic thrust of DGM, that of representing a system as a data flow
graph, has significant potential as a design tool. However, the utility of a
design aid is-directly related to the information that can be extracted from
the design representation;y The DGM software, as it exists at NCSU, is
primarily for the entry and maintenance of data flow graphs and the package
library. Few graph analysis tools currently exist.

The ability to obtain information from the graph at all levels of the
hierarchy is important. This information can be then used to analyze and
improve the design. The information required can change at different stages
of the design.

In the initial stages of a design, functional correctness will be
important. Later stages may put the emphasis on other considerations such as
performance. These differing requirements mandate a variety of analysis

tools.



16

The ability to assign ADA packages to graph nodes and the existence of
graph control variables implies that some type of functional simulator is
planned, but it is currently not aveilabe. This capability would be very
useful in establishing functional correctness of a design and for generating
test data.

DGM, as it currently stands, seems to be primarily concerned with
software system design. Suppport for ADA software packages and processor
assignments is provided, as is the ability to create new data types. In
addition, data flow graphs are inherently asynchronous, while hardware systems
are usually corsidered to be synchronous.

In the early stages of a hardware system design, a functional simulation
based on software function modules could be useful. However, at some point in
the design, this is no longer adequate. Hardware notions such as clocks,
registers and propagation delays are probably better represented in a hardware
description lsnguage and simulator than in a general purpose language such as
ADA. Thus the ability to assign both hardware and software function modules

to graph nodes would be an important addition to DGM.

5. Conclusion

Our basic conclusion is that DGM has the potential to be a valuable
design tool for both hardware and software system design. Flow graphs can
provide a convenient and useful representation of a system hierarchy.
However, the asynchronous nature of data flow graphs does not well model
tightly coupled, synchronous hardware systems.

The ultimate utility of any design aid depends on the information it
provides the designer. In the case of DGM, this requires the further
development of tools which can extract such information from the flow graph

representation.



17
A similar design system, based on many of the ideas of DCM, is under
development at the Research Triangle Institute in North Carolina. This system
has a color graphics data input and display, and a variety of analysis tools.
These include a dynamic graph simulator, an analyzer besed on a Petri net

model of a graph and a hardware description language interface.



Video

Host
Computer

Image
Memory
(1)

Inter-
face

Processor

Region
Label
Memory

(M;

Figure 1

Equiva-
lence
Memory

(K)




ol ™ wordo

Fl .j word1

sellect

(o]

address
coder

Figure 2:

address|
bus

data
bus

Organization of the K Memory

ORIGINAL T 57 1€







G 2an81y

|
N

H
(-

== A N e

=t . _ | ! ] | : _ . : :

=] . T - _ ” . .. 1 1 |

Sooa poond S B | _ i U

—t—t1 - = s — ! ! _ ! i

£ e . A *
S { |

sommm Enabll ECE SO [

= - ] o 1)
o] Eia B B 1 [« > ~
e B : ¥ )

et I € dNDV — I~ 3 z,:o -
——f-c- — | 1 h ) nelll _ .
shaay Seosy I ) N T
== - L I -4
pomany b4 z !-l‘

l

=5 ) 1 5 e | i ez B

i

i o
-t =)
[l
i
i
o
>y
o~
b3
<
")
VEg=~-8
t
=

ikl
!
P
J
-

ORIGINAL PACE 19
OF POOR QUALITY




ORIGINAL PAGE '
OF POOR QUALITY

g aandyy




L4 Ay o S A e/ e £

A E

Appendix 1.

Content-Addressable Read/Write Memories for Image Analysis

by'
Wesley E. Snyder
Carla D. Savage

IEEE Transaction on Computer, October, 1982.

Pl

<<

<G



Appendix 2

Design of & Content-Addressable RAM
by

Robert Tyszcenko



1. Introduction

This chupter has twc major components: 1) a decoder and 2) a memory cell
with attached logic. These two compcnents have been designed and, to some
extent, tested. Figure 1 shows what one word of memory looks 1like at its
highest level.

The three major operations consist of two that are fairly straigh!for-
ward, the Read & Write of a memory cell. The third, Union, requires the extra
logic in the-"smart memory."  Because of the variety of operations being
performed, a 4-phase clock is wused, rather than pipelining. Before an
operation begins, the previous operation is completely over.

To complete the chip, some logic and pass trensistors need to be designed
to reqgulate the flow of date & addresses from pads to their destination. In
particular, the fact that input and output is done with the same pad and
drivers causes a problem on and between the Read & Union operations. A
solution is proposed later in ‘this report.

The basic operation of the circuit is best understood by reading the
"Timing Conventions" data,' and the "Mixed Notation" illustretion in con-
Jjunction with the following explanation.

Since this circuit uses mostly nor logic, inputs to indicate a Read,
Write, or Union, are active when low. Note also that the decnder which
selects a given deta word requires two phases for operation. for a Read or
Write, a memory location is specified by the decoder. Dropping the appropri-
ate control (Read,Write) line completes the operation. The Union operation is
not done with decoder assistence. It occurs because a "flag" was set (by xor
logic) to indicate that one or more memory locations match a dsta registers
contents. All cells thet have their "flag" set will be rewritten with the new

date placed in the date register on ¢2.



A2-3

In what follows, in a filename such as xor.ab, the .ab tells ABCD that

the file contains ABCD text. Wires are frequently labelled with something
like: wire-N at the top and: wire 8 at the bottom. This facilitates
simulation because qrs assumes that they are one node. Labels are required
whenever ¢ wire at the periphery of a cell is to connect to another cell or to

a wire outside of the present cell.

2. Description of Cells

2.1 mcell.ab (fig. 6)

This is the memory itself. This design was chosen because of the simple
refresh control, performed by clocking & pass transister on ¢31, and the
rejuirement that both the tfue and complement form of the memory cell be
available at all times.

Notice that reading is controlled by ren_e/ren w. The signal on this
line is generated by a read enable iogic cell called rencell.ab. Writing to
memory is more compliceted since it can occur as: 1) a simple RAM write, ?) a
Union operation write. Wfiting is controlled by a signal on union_e/union_w

\from uvenable.ab) or by a signal on ram_e/ram w (from wencell.ab).

2.2 xor.ab (fig. 7)

FPerforms the xor function. If the contents of memory match the contents
on rre data bus then xor_out will go to Vss. Note that the pulldowns (pd.)
appear to form two legs--one to the left and the other to the right of the

pullup (pu.). Since at most one leg will have a path to Vss:

pu.
=> small devices

e b 'zpo
(S Il—‘l#

pd.

and pass transistors are avoided.



ORIGINAL PAGE 19
OF POOR QUALITY

WYYIVIQ LINJY¥ID NOILVION Q3XIiW
sajeb Jou isnf

qe*adi|s *
\I‘{,{II\..\/I'
~ \\\n‘.\!"l{r
qe-" | {3douaa qe° | |2ouam qe‘ajqeuan ﬁ % !\I\J
ey e e : 4 qerupyind 4
L =E PUd
=
- UT ybiy s
a|qeuad j) ppA
_ puy
qe*uox | |
IS
1 viva
; . - ¥OX —
m _ . :..I.__..l .: 1133
_ o -
! [ 03
! , b
4 ~—] P
R
PPA
peau
| : -
, uojun _
! . —
. {013U0>
: 33 1M
h“ |
=
23 14M wed qe* | |adcw
LnOAT dAT
qe° 312auuod
1
(peau) (3314m) onmev qeuapub viva

| Ly V1va
Jequ 1eqM 1equ 9|qeuad



A2-4
2.3 pulldn.ab (fig. 8)

This cell is essential for the Union operation. The wire labelled
pwr_w/pwr_e is precharged on ). Assume the contents of memory match the
contents of a data register to which it is compared. The cell xor.ab does the
c;mpare. Since the two are equal, xin_n is at Vgg, and pwr_w/pwr_e stays
high. This is the "flag" that indicates that a write should occur for this

memory cell on 3. The logic to generate the enable signal is in uensble.ab.

The cell otl.ab is affected too.

2.4 slice.ab (fig. 9)
The constituents of this cell are 1) moell.ab; 2) xor.ab and 3)

pulldn.ab.

2.5 connect.ab (fig. 10)
This cell is composed simply of wires. The following wires come from

off-chip: 1) penable_n/penable_s

to otl.sb
2) gndenab_s/gndenab_N
3) Vss_n/Vss_e - to mcell.ab
4) Mbar_n/Mbar_s to uenable.ab
5) Wbar_n/Woar_s to cencell.ab
6) Rbar_s/Rbar_N to rencell.ab

The following wires are generated on chip: (actually the signals on them
are generated on-chip)

renable w/renable_s - from rencell.ab to mcell.ab

aenable_w/uenable_s - from uenable.ab to mcell.ab

wenable_w/wenable_s - from wencell.ab to mcell.ab



A2-5
2.6 ctl.ab (fig. 11)

This cell 1is used during Union operations. During ¢), the upper pass
transistor is on which charges the wire labelled pwr_w/pwr_e. The charge is
stored on an inverter attached to pwr_e and resides in uenable.ab. The lower
pass transistor is off and means that the charge remains even if the previous
state of pulldn.ab would have allowed it to discharge. After the output of
xor.ab settles (by ¢2 hopefully) the lerr pass transistor is turned on by 43.
If the memory cell (all 10 bits) differs from the data that it was compared

to, pwr_w/pwr_e and the gate in uenable.ab will discharge.

2.7 rencell.ab (fig. 12) and wencell.ab (fig. 13)

Both cells perform the nor function. Moth are used when operating in the
RAM mode. Both share an active low input from the decoder. Either
Wbar_n/Wbar_s or Rbar_n/Rbar_s can go to Vgg if their respective operations
(Write,Read) are being performed. .They should not both be low at the same
time. Their';utputs enable éhe Read or Write by activating pass transistors

in mcell.ab.

2.8 uenable.ab (fig. 14)

Basically an inverter and a nor gate. If the inverter has a low input
this implies that a mismatch between the memory cell and the data register
occurred causing xor.ab to output a high signal which discharged pulldn.ab and
the gate of this inverter. Despite the fact that Mbar_n/Mbar_s may be at Vgg
(for Union operation) nothing will happen. Similar reassonsing will reveal
that the Union operation will occur if the memory contents match the data

register contents.



A2-6

2.9 Decoder: in general

The decoder was designed such that it dissipates no static power, which
justifies its larger size.

This decoder can have 256 outputs and yet be built with little more than
a proper arrangement of:
1) dec00.sb
2) decOl.ab
3) decll.ab and
4) decout.ab attached to provide the outputs.

For example, let us look at how to arrive at the arrangement in figure 3.
We want 4 outputs.

Count in binary:

oo
-0

—
=

This is easily extended (but tedious).
I allow for 10 inputs even though log2 256 seem sufficient because the 2
high order bits can, effectively, act as chip select inputs. (Recall that 4

chips each with 256 locations are expectred in the final configuration)

3. Timing Conventions

To write:

¢1: Latch data. Latch address to decoder. Refresh memory.
¢2: Let decoder select a word.

¢3: Drop Write control line.

¢4: Raise Write control line.



A2-7
To Read:

$¢)1: Latch address to decoder. Refresh memory. Precharge data lines if
desired by placing V4qq on I/P peads.

¢2: Let decoder select a word. Drop Read control line.
¢3: Latch B/p to pads.

¢4: Raise Read control line.

To tnion

¢1: Precharge pulldn.ab. Refresh memory. Latch I/P data.
¢2: Enable ground in pulldn.ab and otl.ab cells

¢3: Latch new data. Lower Mode control line.

¢4¢ Raise Mode control line.

4. Testing

4.1 Decoder Test: (figs. 2&3)

Dectest.ab (not capitalized) represents the decoder that was tested (fig.
2). As above, ats required that I create a file called decoid.ab. In either
case, what was tested could be called a low-going l-of-4 decoder. Even though
the pu/pd ratio was about 2 instead of 4, a successful simulation is depcited
in figure 3.

For grs: the spicefile is : spfiledec
the clockfile is : clkfiledec

5. Pincount and Estimate of Transistor Count

Pins: - AO - A9 10
DO - D9 10
Vdd&Vss
4-phase clk
MODE
WRITE
READ
penable
genable +

P bt s b e BN



A2-8

Transistor Count:

mcell.ab, xor.ab, pulldn.ab : 14/glice=> 140/word
total control logic : + 13/word

152 * 256 = 39,168
+~_ 5,120 (Decoder, Cmos type)

24,288

Solution to problem posed in introduction

¢3 conflict occurs between action for Read and for Union

Jo Read: we need something like this:

Vdd

03 r4 >,lutch output
Read ~—

‘«—J l——r—~4A.

vdd
To Union:

L .
VA

-, latch I/P
—

Union




May Zb
16:42

word

VOCC ULl

t
be ”ll‘rﬂtll

.......

.......

.......

-------

.......

1

FIGURE



ORIGINAL PAGE IS

OF POOR QUALITY
FIGURE 2

Nov %51

dectest 17:34 |

L/ /L ;g]z”//////é’;:f’/////////ﬁﬁ

% 4




€ 34n9i4

10080 "PAHL0 "QYVSY "YPUSK "YUV Y "YPRED "YBCY "PRT O 0

21l

A

81

J|
L .
x

B11

- . L 111

2°"ANRA "N A NN " NAGA " NNAT A " AACA " A2 A DAL ' o




B L T 1 A Lo B A 4

1 340914
3
n
e o P
s . ° [
[} n o o
3 o e e
e - q q
! Y ¢
ATUIS— n.J —ATUd S
dTuoun— £ —MATUofun
B i:
Gz a-eon Feren ~cen
< D
. O
25 T .
= 0 [ -
co S N\ [ 1 e PO |
4 afiya— < BF —a= T 1yd
S5 R TRy
ATPPA— 8 T 5 —RTppn
a—we s _7 tm U_ & ~—wg
! !
. <
3 e
2 q
a a
T1:97

2 Aey . -.®UE




4

May 26
16:

Xor

-wdd._e

ORIGINAL PAGE 1§
OF POOR QUALITY

ves..e

Q8eg i

F

ﬂ
77y,
)

L oo O

e

"N

[

s e

-

' 117/,

Lo8L I

7777/ Aé

by

—

L=

XOL 1030

[~F- ¥ FONT-

vdd._w»

vss.w

—CadL e

FIGURE 5§



ay

pulldn

16:39 |

ORIGINAL PAGE g

OF POOR QuUALITY

3 3

§ T

r f
cz{gm
: :
i H

FIGURE 6



sllice

mce | |

X O

oul ldn




May 26
16: 44

connect

—

ORIGINAL PAGE 5_3
OF POOR QUALITY

—Vves.e

ﬁ—-sucln—o e

xasL e - o0 I8

i Ivcoo=-u in
200t 10— 08¢ i®
Task le - D8 I9

[ 22-X X4 F-IN-

JuCcoo—~u |0

AUCOD~L |C~

ocVDVCNO 1o

wenable_w

vas. . r—

uenable_w—

renable_w

auscoo—~o i®

FIGURE 8

B A 1 i



ctl

May 26
16: 46

ORIGINAL PAGT i3
OF POOR QUALITY

P ]
e e
s a
b b
1 1
e e
vdd_w— wdd._e
von_r 777,
-tV /////
pur _w— ll ll +w-¢
gnd_w 3 { I l = /88 €
n
a
b
1 1
) e

F1GURE

o

9




0L 34¥n914

e

o -M-een
2 ﬁ 3Tapodag— BH—= Mm-apoosaqg
23
23
o -
v
A m . 2 7
82 p
m S \..\ e
(o N

—m=ppn

LI F-Lo Y
Xoeoc o

ﬁwdduw
92 hwvy)

[[920UadJ




11 3d4Nn9oid

s
Jd
)
q
a—sen M-e8A
™
23
I g
z 8 10
ga /, 5% n‘&r\.\
x o i~ N.
oIS (383NN
a=ppn- M—ppa
> 4
- -
q Jd
™ ™)
u
s "
7S 91
9z ey [[=2usm




ORIGINAL PAGY 19
OF POCR QUALILY

cS 9t

¢l 3¥n91I4

e

<

.

q

e { -M— e 8N
MMMMWV —M=3 [ qeuad
=
, & EA Y v -y
2. \N" ID
4”4 I
T —MTppA

2 t
v v
9 u
W a

gp Aey

S[geuan




Appendix 3

Tabular Representation of a Data Flow Graph



Summary cf graph CAMCHIP

QUEUE THRESHOLD READ CONSUME CAPACITY PRODUCE DATA-TYPE INIT SOURCE

L1 1
L2 1
L3 1

L4 1
1 1

12
3
Al

=

vVl
vl
vVl
VL1
VL2
VL3
VL4

bt bt et b et s

MEMOU 1

CAMOU 1

NODE

LABELCNTR
COMPARE
VLSI

ZERD

VLN
ADDCNTR
MEMMEM

CAM

1
1
1

o

SR -

[ VR S S Sy )

PACKAGE

LABELCNTR
COMPARE
VLSI

ZERO

VLN
ADDCNTR
MMEM

CAM

End of graph CAMCHIP

1
1
1

e

I

1ST PROCESSOR

1
3
4
5
6
7
10

VL8

1
1
1

[y

[

(T o

1
1
1

-

b

Pt et et ot et et et

*

* *x

* %k %k k *k *k %k

*

m ™M

ina B Hins Bns Bis it Bimd g s B |

-

2ND PROCESSOR EXCLUDES

LABELC
LABELC
LABELC

LABELC
ZEROC

ZERO
ZERO
ADDCNT

VLN
VLN
VLN
VLSI
VLSI
VLSI
VLSI

MEMM

CAN

SINK

VLN
CAM
MEMM

VLSI
MEMM

VLN
VLSI
MEMM

CAM
COMPAR
VLSI
VLN
COMPAR
CAM
MEMM

SHARE

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

FALSE



Appendix 4

ADA Package Defintions



package LABELCNTR is
procedure GO_LABELCNTR (
-- output queues in package
OUT_QUEUE_1: out array(l..1) of INTEGER
OUT_QUEUE_2: out arruy(l..1) of INTEGER
OUT_QUEUE_3: out array(l..1) of INTEGER

OUT_QUEUE_4: out array(l..1) of INTEGER

)
end LABELCNTR H

package CAM is

procedure GO_CAM (

-- input queues in package

IN_QUEUE_1: in array(l..1) OF INTEGER
IN_QUEUE_2: in array(l..1) OF INTEGER
IN_QUEUE 3:  in array(l..1) OF INTEGER
--output queues in package

OUT_QUEUE_1: out array(l..1) OF INTEGER
);

end CAM ;
package ADDCNTR is
procedure GO_ADDCNTR (

-- output queues in package
OUT_QUEUE_l: out array(l..1) OF INTEGER
) 3

end ADDCNTR ;

-e

-

-e

e



package MMEM is

procedure GO_MMEM (

-- input queues in package

IN QUEUE_1:  in aerray(l..1) OF INTEGER
IN QUEUE_2:  in erray(l..1) OF INTEGER
IN_QUEUE_3:  in array(l..1) OF INTEGER
IN_QUEUE_4:  in array(l..1) OF INTEGER
-~ output queues in package

OUT_QUEUE_1: out array(l..1) OF INTEGER
)3

end MMEM 3
package ZERO is
procedure GO_ZERD (

-=- output queues in package

OUT_QUEUE_1: out array(l..1) of INTEGER
OUT_QUEUE_2: out array(l..1) of INTEGER
OUT_QUEUE_3: out array(l..l) of INTEGER
)s

end ZERO 3
package VLSI is
procedure GO_VLSI (

-- input queues in package
IN_QUEUE_1: in array(l..1) OF INTEGER
IN QUEUE_2:  in array(l..1) OF INTEGER
IN_QUEUE_3: in array(l..1) OF INTEGER
-~output queues in package

OUT_QUEUE_l: out array(l..1) OF INTEGER

-e

-e

-e

e

-e

-e

-e

P SO




-- output queues in package

OUT_QUEUE_1l: out arrey(l..1) of INTEGER
OUT_QUEUE_2: out array(l..1) of INTEGER
OUT_QUEUE_3: out array(l..1) of INTEGER
OUT_QUEUE_4: out array(l..1) of INTEGER

-e

-e

)
end VLSI H
package COMPARE is
procedure GO_COMPARE (

-- ipput queues in package
IN QUEUE 1:  in array(l..1) OF INTEGER
IN QUEUE_2: in erray(l..1) OF INTEGER
)

end COMPARE

-e

package VLN is

procedure GO_VLN (

e

-- input queues in package

IN QUEUE_1: in array(l..1) OF INTEGER

IN QUEVE_2:  in aerray(l..1) OF INTEGER

IN QUEUE_3: in erray(1l..1) OF INTEGER

--output queues in package

OUT_QUEUE_l: out arrayf{l..1) OF INTEGER
OUT_QUEUE_1: out array(i..1) of INTEGER
OUT_QUEUE_2: out erray(l..1) of INTEGER
OUT_QUEUE_3: out array(l..1) of INTEGER
)3

end VLN

-eo

-e

-e

)



»oendix 5

Data Flow Graph in DGM Notation




graph CAMCHIP contains;
package LABELCNTR has
output =
L1

threshold
read
consume
capacity
produce
data_type
L2
threshold
read
consume
capacity
produce
data_type
L3
threshold
read
consume
capacity
produce
data_type
L4
thre~hold
read
consume
capacity
produce
data_type

1
1
1
1
1
I

NTEGER

Il Tl Ty ey

NTEGER

bt s ot ot et

NTEGER

s et s bt s

NTECER
package CAM has
input =

VL3
threshold
read
consume
capacity
produce
data_type

1
1
1
1
1
INTEGER

L2 threshold
read
consume
capacity
produce

1
1
1
1
1
data_type = I

NTEGER



vl
threshold
read
consume
capacity
produce
data_type

bt et et et et s

NTEGER

output =
CAMOUT

threshold
read
consume
capacity
produce
data_type

et e et e b

NTEGER
packege NDCN™ 1 has

output =
Al

threshold
read
consume
capacity
produce
data_type

Pt e et ot et

"w e N e

NTEGER
package MMEM has

input =
A2

threshold
read
consume
capacity
produce
data_type

L3
threshold
read
consume
capacity
produce
data_type

VL4
threshold
read
consume
capacity
produce
data_type

e

NTEGER

D\WMWWM!:»WNIU



Z1
threshold
read
consume
capacity
produce
data_type

[ SR

NTEGER

output =

MEMOUNT
threshold
read
consume
capacity
produce
data_type

— b e e

NTEGER

package ZERO has
output =
Z1

threshold
read
consume
capacity
produce
data_type

NTEGER

2
threshold
read
consume
capacity
produce
data_type

NTEGER

73
threshold
read
consume
capacity
produce
data_type

NTEGER



package VLSI has
input =
V3

threshold
read
consume
capecity
produce
data type
L4 -
threshold
read
consume
capacity
produce
data_type
3

thoeshold
read
consume
capacity
produce
data type

ot ot ot ot fd ot

NTEGER

el N oy Sy

NTEGER

et b b ot s

NTEGER
output =

VLl
threshold
read
consume
capacity
produce
data type

et o et ot e

NTEGER

VL2
threshold
read
consume
capacity
produce
data_type

et st ot ot it

NTEGER
VL3

VL4
threshold
read
consume
capacity
produce
data_type

et et ot ot et et

NTEGER



package COMPARE has
input =

vVl
threshold
read
consume
capacity
produce
data_tvpe

et et o fot et

NTEGER

VL2
threshold
read
consume
capacity
produce
data_type

T I T T T I

et bt et o ot

NTEGER

package VL.SN has
input =

L1
threshold
read
consume
capacity
produce
data_type

wawunnnn

NTEGER

VLl
threshold
read
consume
capacity
produce
data_type

Z2

threshold
read
consume
capacity
produce
data_type

NTEGER

L L I L I TR 1]

[V T S S

NTEGER
output =

V3
threshold
read
consume
capacity
produce
data_type

e = e o e

NTEGER



queue
queue
queue
queue
queue
queue
queue
queue
queue
queue
queue
queue
queue
queue
queue
queue

queue

node LABELCNTR

L1
L2
L3
L4
Z1
72
3
Al
vl
V2
V3
VL1
VL2
CL3
CL4
MEMOUT

CAMOUT

V2

threshold
read
consume
capacity
produce
data_type

bt et bt et ot et

has type

has type =

has type
has type =
has type =
has type =
has type =
has type =
has type =
has type =
has type =
has type =
has type =
has type =
has type =

has type =

has type

has package
processor
priority
sharable
output

NTEGER

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

LABELCNTR

1

1

FALSE
L1

-e

-e

s

e

e

-e

L3 L4



node COMPARE

node VLSI

node ZERO

node VLN

node ADDCNTR

node MEMMEM

node CAM

endgraph CAMCHIP

has package
processor =
sharable =
output =

has package
processor
priority
sharable
output

has package
processor =
sharable =
output =

has package
processor
priority
sharable
output

has package
processor
sharable
output

has package

processor
sharable
input
output

has package
processor
sharable
INPUT
output

COMPARE
3

FALSE
V2

VLSI
4
FALSE
ZERO
VL1

ZERO
5
FALSE
Z1

VLN
6
FALSE
L1

V1

ADDCNTR
7

FALSE
Al

MMEM

10
FALSE
L1
MEMOUT

CAM
VL8
FALSE
VL3
CAMOUT

with

, VL2

with
L3

, VL2

with

with

VL1

with

with

s Al

with

L4
y VL3

L3

, VL&

L4

L4

L4

, VL&



	GeneralDisclaimer.pdf
	0033A02.pdf
	0033A03.pdf
	0033A04.pdf
	0033A05.pdf
	0033A06.pdf
	0033A07.pdf
	0033A08.pdf
	0033A09.pdf
	0033A10.pdf
	0033A11.pdf
	0033A12.pdf
	0033A13.pdf
	0033A14.pdf
	0033B01.pdf
	0033B02.pdf
	0033B03.pdf
	0033B04.pdf
	0033B05.pdf
	0033B06.pdf
	0033B07.pdf
	0033B08.pdf
	0033B09.pdf
	0033B10.pdf
	0033B11.pdf
	0033B12.pdf
	0033B13.pdf
	0033B14.pdf
	0033C01.pdf
	0033C02.pdf
	0033C03.pdf
	0033C04.pdf
	0033C05.pdf
	0033C06.pdf
	0033C07.pdf
	0033C08.pdf
	0033C09.pdf
	0033C10.pdf
	0033C11.pdf
	0033C12.pdf
	0033C13.pdf
	0033C14.pdf
	0033D01.pdf
	0033D02.pdf
	0033D03.pdf
	0033D04.pdf
	0033D05.pdf
	0033D06.pdf
	0033D07.pdf
	0033D08.pdf
	0033D09.pdf
	0033D10.pdf
	0033D11.pdf
	0033D12.pdf
	0033D13.pdf
	0033D14.pdf
	0033E01.pdf
	0033E02.pdf
	0033E03.pdf
	0033E04.pdf
	0033E05.pdf

