
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

AN EVALUATION OF THE DIRECTED FLOW GRAPH METHODOLOGY

By

Wesley E. Snyder

Sarah A. Rajala

cc-

V^°^1
`°	 oR^srra^t c^*r;

5 ^2	 Final Report	 S0i0R
to

National Aeronautics & Space Administration
Grant NAG 1-20

(NASA-CR-173593) AN EVALUATION OF THE	 N84-26324
DIRECTED FLOW GRAPH METHODOLOGY Final
Report (North Carolina State Univ.) 61 p
HC A04/MF A01	 CSCL 09B	 Unclas

G3/61 19444

Department of Computer and Electrical Engineering
North Carolina State University

Box 7911
Raleigh, NC	 27695-7911

May 1984

l

Table of Contents

I. Introdution	 1

2. Design of the Image Labeling System	 2

2.1	 Algorithm Description 	 3
2.2	 Circuit Description 	 6
2.2.1 CAM1 Chip QR/ ► t .	 , 	 6
2.2.2 CAM2 Chip	 &UMIL	

i;''" s	 7r'- •.!
2.2.3 System Description 	 ^OtOR 	 g

3. DGM Description of System 	 12

3.1	 Description of DGM	 13
3.2	 Using DGM To Construct A Data Flow Graph	 13
3.3	 Modeling the Region Labeling System Using DGM 	 15

4. Evaluation" f

5. Conclusion.	 16

^„i s ^ tea,,. .:Sa mss... , _ -- --^..^--• - -

I. Introduction

The purpose of this project was to evaluate the applicability cf the

Directed Graph Methodology (DGM) to the design and analysis of special purpose

image and signal processing hardware. 	 To this end, a special purpose image

processing system was designed and described using DGM. 	 The design, suitable

for VLSI, implements an innovative region labeling technique. 	 The utility of

DGM was evaluated using thie design.

Two chips were designed, both using NMOS technology, as well as a

functional system utilizing those things to perform real-time region

labeling. The system was described in terms of DGM primitives.

As a result of this effort, it was concluded that DGM, as it is currently

implemented, is inappropriate for describing synchronous, tightly coupled,

special purpose systems. Instead,.the nature of the DGM formalism lends

itself much more readily to modeling of networks of general-purpose proces-

sors. Section 2 of this report describes the image labeling system, including

the two custom chips which were designed.

Section 3 provides an overview of DGM, and then shows how the special

purpose design may be described using DGM.

Section 4 describes and justifies the conclusion that DGM is inappro-

priate for describing special purpose signal processing systems.

Details are contained in the appendices.

2

2. Design of the Image Labeling System

DGM was evaluated in the design of a hardware system for region labeling.

The purpose of this circuit is to partition an image into a set of meaningful

regions, and to do so "on the fly" with a single pass over the data. 	 These

partitioned regions are composed of all pixels that have similar attributes

and have a four-neighborhood connectivity.

One technique for assigning pixels to regions is known as "region

growing." The region growing technique is initiated by choosing a pixel which

meets some criteria (e.g. grey level above threshold) for inclusion in a

region.	 The algorithm then proceeds by examining all adjacent neighbors of

the pixel and comparing that pixel with the neighbor in question. 	 Typical

measures of similarity include the magnitude of the neight:oring pixel's grey

level or the relative contrast between the pixel and its neighbor under

consideration for inclusion in the region. 	 This process is repeated recur-

sively for all ne:yly accepted pixels until no new pixels can be added to the

region.	 Since the region -growing techni ^ue always results in closed regions,

this technique is often preferable to other techniques which are based on edge

detection or line fitting.

The algorithm for region labeling incorporated into the system architec-

ture described in this report differs from traditional region growing in `.hat

it performs the assignment of pixels in a sequential, raster-scan fashion

rather than using a recursion.	 For this reason, it is potentially orders of

magnitude faster than recursive region growing. It is a technique based on

the concept of equivalence relationships between pixels of the image.	 The

regions are labeled in a single pass over the image by utilizing a

content-addressable memory.	 Appendix 1 provides the theoretical foundation

for the algorithm described herein.

3

2.1 Algorithm Description

Two pixels a and b are defined to be equivalent (designated R(a,b)) if

they belong to the same region of an image. This relationship can be shown to

be reflexive (R(a,a)), symmetric (R(a,b)=>R(b,a)) and transitive (R(a,b) AND

R(b,c)=>R(a,c)).

The transitive property enables all pixels in a region to be detemined by

considering only local adjacency properties. In this algorithm, each pixel

will be compared with each adjacent pixel in a left-to-right, top-to-bottom

raster scan fashion. Pixels in a simple binary image are labeled in

raster scan order.

The system in this report assigns labels to pixels maintained in a table

of equivalence relationships. Figure 2 shows that this hardware resides

between the image memory and a host computer.

If two pixels meet some criterion, in the case of a binary image, both

pixels are at logic 1, and they are adjacent, then they are in the same

region. By definition, if'two pixels are in the same region, the R(a,b)

holds.

That is

ADJACENT (<x,y>, <x',y'>) AII(x,y)-I(x',y')I<T<=>R(<x,y>,<x',y'>).

The transitive property of R cannot be used to infer

R (< x , y>, <x',y'>)=>II(x,y)-I(x',y1)1<T

without also considering the adjacency property.

As the region partitioning proceeds in real-time (i.e. synchronously with

the raster scan), two activities must be performed. First, the M memory must

be loaded with the region label number of each pixel under consideration, and

second, the CAM memory must be updated with all equivalence relationships

discovered. For example, if region 4 is actually identical to region 2, then

4

both CAM(2) and CAM(4) will contain 2 (the lower numbered region label takes

precedence. Hence, when the host computer interrogates pixel (x,y) of the M

memory, the interface/processor interprets M(x,y) in terms of the CAM memory

and returns CAM(M(x,y)) to the computer. Whenever an equivalence relationship

is detected, all locations in the K memory containing the larger region label

number are loaded with the smaller region label number. 	 While the execution

of this step in real time is not within the capabilities of conventional

random access memories, it is within the capability of the content-addressable

memories.

The architecture used to implement the algorithm is shown in figure I.

The architecture contains four major components: 	 image (1), region label

memory (M), equivalence CAM memory, and an interface/processor. The region

labels assigned to individual pixels are contained in the region label memory.

However, the contents of the M memory also include all intermediate region

labels for which equivalence labels were determined.

The M memory is a conventional random access memory. 	 However, the

equivalence memory has two modes of operation.	 It may be used as a

conventional RAM where the address in corresponds to the region table, and

data out is the equivalent table. 	 In the associative memory mode, it is used

to update that table. 	 In this mode, two activities occur in synchronism with

a 2-phase clock:

Phase 1--all memory cells whose contents match the contents of the data

bus, set their corresponding enable flip-flops. (see figure 5)

Phase 2--all memory cells whose enable flip-flops are set, read the

contents of the data bus.

This operation effectively updates the equivalence table in parallel

during the scan.

-A

:t

5

Thus when two regions are found to be identical (step 6 below), all

locations in the CAM memory containing the larger region number are changed to

the smaller region label number, thus allowing regions to be grown in a single

pass over the image.
Algorithm: Region Growing

C - current pixel

N - previous pixel to C on current scan line

A - pixel from previous scan line which is "topographically" above
current pixel

P - previous pixel to A on previous scan line

I	 I
I	 P	 I	 A	 I
i	 I	 I
I	 I	 I
I	 N	 I	 C	 I
I	 I	 I

Square template for region growing

Let the initial label number, K=1

Scan the image from left to right and top to bottom. f(i) refers to the

image brightness at point-i. In this description only binary-valued images

are considered. The extension to grey-valued images is straightforward.

1. If f(C) = 0	 Text Pixel Layout
then label (C) = 0	 comment:	 X X

X 0
else

begin

2. If f(N)	 = f(C) = 1 and f(P) = f(A)	 = x
then label (C)	 = label	 (N) comment: X 0

1 1
3. If f(P)	 = f(A)	 = f(N)	 = f(C) =1

then label (C)	 = label	 (N) comment: 1 1
1 1

4. If f(A)	 = f(C)=1,	 and f(P)	 = x,	 and f(M) = 0
then label (C) = label	 (A) comment: X 1

X 0
5. If f(C)	 = 1 and f(A)	 = f(N)	 = 0 and f(P) = x

then label (C) = K;	 CAM(K) = K comment: X 0
0 1

T+

K = K+1	 ; A new region

6. If f(C) = f(",) = f(N) = 1 and f(P) = 0
then

7. If label (A) < label (N)
then

label (C) = label (A)
CAM(N) = CAM(A) (update)

Else

label (C) = label (N)
CAM(A) = CAM(N) update)

Continue till finished

6

comment: 0 1
1 1

END

2.2 Circuit Description

2.2.1 CAM1 Chip

This content-addressable memory contains the equivalencies between re-

gions and has .two modes of operation. In the first mode, it behaves like a

conventional RAM and is used in this mode when a new region is encountered.

The first pixel in a new region cannot be equivalent to any other region.

Therefore, each cell in the CAM is initialized to contain its own address.

This is illustrated in step 5 of the algorithm. CAM(i) refers to the contents

of address i in the CAM. Thus, initially, CAM(i)=i.

In the associative memory mode, the CAM updates the equivalencies. When

the chip is in this mode, two functions occur in synchronism. The word to be

updated is placed on the data bus of the CAM. All memory cells whose contents

match this word set their flip-flops. Next, the replace word is placed on the

data bus and all memory cells whose flip-flops were set are now changed to the

replace word. This operation has now merged all regions which were found to be

equivalent. An individual cell in the CAM may be found at different times to

be equivalent to many different regions and be updated several times as a

result.

As
	

---^U+

7

Figure 2 shows a block diagram of the CAM 1 chip, illustrating the use of the

common data bus and enable flip flop. Appendix 2 contains a complete

description of the CAM 1 chip, as well as simulation and performance analysis

results.

2.2.2 CAM2 Chip

The purpose of the CAM2 chip is to update the current scan line when an

equivalence is found; as a result, this will eliminate the time consuming read

to CAM1.

In steps 6 and 7 of the algorithm, an equivalence between two regions is

found. Here, CAM1 has to be told, for instance, that region 3 is equivalent to

region J.. That is, at cell 3 in the CAM1, a data 1 needs to be written. Also,

before the next pixel can be interrogated, M memory will be written with the

smallest of these two labels. (In this case, a 1 is written into M.)

If all pixels on the current scan line that have been labeled as region 3

have not already been changed to region label 1, a read to CAM1 will be

necessary to find out if region 3 is equivalent to any other region. Instead

of having to read cell 3 of CAM1 (a slow process), CAM2 was designed to change

all region lables that were labeled as a 3 to region label 1 on the current

scan line. The CAM2 chip needs only to hold one raster scan line of labeled

regions to perform this function. Figure 3 shows a bock diagram of the CAM2

chip, and figure 4 shows the circuit layout.

The CAM2 chip (Figure 3), consists of eight input pins called VL n , and

two more sets of eight input pins called Replace and Compare. The chip has an

output port called VLA and three control lines, latch, replace, and VLA

enable. The chip behaves as a regular shift registor except when it is given a

replace control signal.

8

When the replace signal is high, every word on the previous Raster Scan

line is bit by bit compared with the eight bit compare register. Every word

which is "true" to this compare operation will at the trailing edge of p+At be

replaced by the contents of the replace register. If the replace control line

was not high the words are not clocked again. The inputs replace and compare

are not latched by the CAM2 package and are assumed to be valid throughout the

duration of the replace command.

2.2.3 System Description

The form pixels (binary valued) to be tested by the hardware are defined

as follows:

Previous Line	 P	 A

Current Line	 N	 C

C - Current pixel [any pixel to the right of C is currently undefined]

N - Previous pixel to C on current scan line

A - pixel from previous scan line which is "topographically" above current
pixel

P - previous pixel to A on previous scan line

The following six test conditions satisfy all possible logical combina-

tions for a four neighbor connectivity and serve as appropriate control

signals.

C	 CNA	 ACNP	 CAN	 ACN	 ACNP

Only one condition will be true at any given pixel evaluation.

Refer to figure 5 for the system block diagram.

X X
Case 1:	 X 0

Whenever the current pixel isn't a logical 1, that pixel is to be

unconditionally labeled as a zero.

9

Bus Connections for Case 1:

'_ Zeros are placed on the data bus, VL N , and VLN-1•

2. Latch signals are sent to VLN, VL N-1, and a write signal is sent
to M-memory.

3. The address counter to M-memory is incremented.

X 0

Case 2:	 CNA	 1 1

This condition arises when the current and previous pixel are at logic 1.

The current pixel is to be labeled identically as the previous pixel.

Bus Connections for Case 2:

1. The contents of VLn is gated onto VL N and the data bus.

2. A latch signal is sent to VLn and a w: 'e signal is sent to M-memory.

3. The address counter to fit-memory is incremented.

1 1
Case 3:	 ACNP	 1 1

Here, all four of the test pixels are at logic I. 	 The current pixel is

to be labeled identically as the previous pixel.

Bus Connections for Case 3:

Same as for CNA.

CAN X '_
Case 4:	 0 .

Here the current pixel and the above pixel are at logic I. Current pixel

is to be labeled identically to its above pixel.

01

L

C

10

replace bus

8

Figure 3: Organization of CAM2

11

Bus Connections for Case 4:

1. Wait for VLa to propagate through CAM 2 package.

2. The contents of VL A is gated to the data bus, VLN-1, and VLN.

3. A latch signal is sent to VLN-1, VL N , and a write signal is sent to
M-memory.

4. The address counter for H-memory is incremented.

Case 5:

The current pixel is at

This condition shows the appe;

is to be incremented and the

label counter.

ACN	 X 0
0 1

logic 1, but none of its test pixels are true.

arence of a new label region.	 The label counter

current pixel is labeled from the incremented

Bus Connections for Case 5:

1. The lapel counter is gated onto the data bus, CAM buses, VL1-1, and
VLN,

2. A write signal is sent to M-memory and to the CAM.

3. The address counter to the 11-memory is incremented.

Case 6:	 ACNP	 0 1
11

The current, previous, and above pixels are at logic 1, while the

previous pixel to A is at logic 0.	 The contents of VLA contain the above

label and VLN-1 holds the previous label. 	 These two laLils are compared and

the current pixel is labeled from the smallest of the two. 	 The CAM and the

CAM 2 chip are updated accordingly.

12

Bus Connections for Case 6:

1. Wait for VLA to propagate through CAM 2 package.

2. The contents of VLA is gated onto the comparator inputs and latched
for future access.

3. The contents of VLN-1 is gated onto the comparator.

4. The comparator is enabled.

When VLA < VLN-1

a. The contents of VL N-1 is gated onto the CAM 2 compare inputs, and onto
the CAA address bus.

b. The contents of VLA is gated onto the CAM 2 replace inputs.

c. A replace signal is sent to the CAM 2 package and a union signal to
the CAM.

d. After one CAM delay, the contents of VLA is gated to CAM data inputs.

e. .'LA is placed onto the data bus and latch signals are sent to VLN-1,
VLN and a write signal is sent to M-memory.

When VLA > VLN-1

a. The contents of VLX.is gated onto the CAM 2 compare inputs, and onto
the CAM address bus.

b. The contents of VLN-1 is gated onto the CAM 2 replace inputs.

c. A replace signal is sent to the CAM 2 package and a union signal to
the CAM.

d. After one CAM delay, the contents of VLN -1 is gated to CAM data
inputs.

e. VLN-1 is placed onto the data bus and latch signals are sent to VLN
and a write signal is sent to M-memory.

3. DGM Description of System

In this section, an overview of DGM is provided, followed by a

description of this system in DGM format, anI a discussion of the effective-

ness of the representation.

AjW

13

3.1 Description of DGM

The DGM software, as supplied, consists of two parts:	 a directed graph

editor (DGMED) and an ADA package library manager (DGMLM).	 Both are written

in VAX (VMS) Pascal.

DGM is intended to be a hierarchical system design and analysis tool. 	 A

system is represented as a directed graph. 	 Each vertex in the graph

represents a system function and arcs designate data flows between vertices.

Arcs have attributes such as produce, consume, threshold and capacity. 	 These

attributes are related to the amount of data at a node input that must be

present before a node can fire, and to the amount of data that is produced and

consumed when a node does fire.

Vertex functions are implemented by ADA packages assigned to the vertices

from a library of packages. 	 A set of processor assignments can be specified

for each package as an aid in mapping the flow graph onto an architecture.

The methodology supports a top down design strategy. A design is refined

by expanding higher level nodes into more detailed subgraphs until the desired

level of refinement is reached. Each node in the graph has an ADA package

assigned which performs the node function. 	 The use of flow graphs at all

levels of the hierarchy provides a uniform, consistent representation of the

system and can provide a convenient mechanism for moving up and down the

hierarchy.

3.2 Usinq DGM To Construct A Data Flow Graph

The process of constructing a flow graph begins by using DGMLM, the

library manager, to enter the ADA package definitions of vertex functions into

the package library.	 DGMLM maintains a library of functions, so only new

functions need to be entered.

14

Information required for a package is its name and the specification of

its inputs, outputs and data types. Produce, consume and threshold attributes

can also be specified for each package. 	 Only ADA package header information

is kept by the library manager. The actual code bodies would be included when

the graph description was compiled.

DGMLM itself is a menu driven program which allows for addition,

deletion, modification and display of package definitions. 	 The most serious

shortcoming of DGMLM is that althou gh a list of packages currcntly in the

library is available, it is difficult to tell what function a particular

package performs.	 The package name and inputs and output data descriptions

are available, but there is no provision for a text description of what the

package does.	 Clearly a package name can provide some indication of function

as can knowledge of the inputs and outputs, but this is not sufficient. 	 A

text description capability would be.a useful addition.

This makes the use of package definitions already in the library very

difficult, and requires the antry of new definitions and much external

bookkeeping to keep track of what eac) package does for each new flow graph.

The next step is the entry of the graph description using DGMED. 	 DGMED, also

a menu driven program, allows for the creation and modification of flow

graphs.	 Vertex name and function definitions are entered as well as the

connectivity and attribute information provided by the arcs. 	 ADA package

assignments are also made to each node.

The major shortcoming of DGMED is its lack of a graphic data entry and

poor display capability.	 While the menu driven approach is simple to use, it

makes verification of the correct construction of a flow graph difficult.

Verification must be done by examining a text description of the graph and

comparing it to a mental picture or a hand drawn prototype. 	 The graphic

display capability provided is very primitive and not very useful.

DGMED also makes it difficult to maintain more than one graph at a time

in the same directory.	 The creation of a new graph destroys the old graph,

since the same files are used for the graph description. 	 To maintain

different graphs requires renaming files or moving files to another directory

and starting over. This must be done by the user.

3.2 Modeling The Region Labeling System Using DGM

A data flow graph of the system is shcwn in figure 6 and a block diagram

is shown in figure 5. 	 Appendix 3 contains a tabular summary of the circuit

flow graph.	 Appendix 4 contains the ADA package definitions and Appendix 5

contains a description of the graph in DGM notation.

4. Evaluation

The basic thrust of DGM, that of representing a system as a data flow

graph, has significant potential as a design tool.	 However, the utility of a

design aid is directly related to the information that can be extracted from

the design representation.	 The DGM software, as it exists at NCSU, is

primarily for the entry and maintenance of data flow graphs and the package

library. Few graph analysis tools currently exist.

The ability to obtain information from the graph at all levels of the

hierarchy is important.	 This information can be then used to analyze and

improve the design.	 The information required can change at different stages

of the design.

In the initial stages of a design, functional correctness will be

important.	 Later stages may put the emphasis on other considerations such as

performance.	 These differing requirements mandate a variety of analysis

tools.

16

The ability to assign ADA packages to graph nodes and the existence of

graph control variables implies that some type of functional simulator is

planned, but it is currently not availabe. This capability would be very

useful in establishing functional correctness of a design and for generating

test data.

DGM, as it currently stands, seems to be primarily concerned with

software system design. 	 Suppport for ADA software packages and processor

assignments is provided, as is the ability to create new data types. In

addition, data flow graphs are inherently asynchronous, while hardware systems

are usually considered to be synchronous.

In the early stages of a hardware system design, a functional simulation

based on software function modules could be useful. However, at some point in

the design, this is no longer adequate. Hardware notions such as clocks,

registers and propagation delays are probably better represented in a hardware

description language and simulator than in a general purpose language such as

ADA.	 Thus the ability to assign both hardware and software function modules

to graph nodes would be an important addition to DGM.

5. Conclusion

Our basic conclusion is that DGM has the potential to be a valuable

design tool for both hardware and software system design. Flow graphs can

provide a convenient and useful representation of a system hierarchy.

However, the asynchronous nature of data flow graphs does not well model

tightly coupled, synchronous hardware systems.
r

The ultimate utility of any design aid depends on the information it

provides the designer.	 In the case of DGM, this requires the further

development of tools which can extract such information from the flow graph

representation.

AD

1

OT

s	 r

17

A similar design system, based on many of the ideas of DGM, is under

development at the Research Triangle Institute in North Carolina. This system 	 1

has a color graphics data input and display, and a variety of analysis tools.

These include a dynamic graph simulator, an analyzer based on a Petri net

model of a graph and a hardware description language interface.

"WOW !

Video

Image

Memory

(I)

Host

Computer	 ----
Region

Inter-	 Label
face	 Memory

Processor I	 I	 (Mi

Equiva-
lence

Memory

(K)

Figure 1

A

e

e2

0 P, n, I tv."

'OF P'j

data
bus

Figure 2: Organization of the K Memory

ice.

ORIGINAL PALM: 13

OF POOR QUALITY

1 ^Iil Il}I 1, li Vii}	 lli? illi if}i li,l li''i'a i' l	 i	 l; f}}I i;li 1 94 liil'!^;

'Ii li^i
^}^ 1 I'^ li}! i

}li ,^11 lil
Iii I II ;??^ ' J'	 ^ p ^^ 1

1

i

,

4̂ ie;4

!I' I 'i I. ^^

--7—
I

i i I

70.E

• 114
i ^ I	 I !

,

K

1:
^

it- -
7

-1--

z

I
i I

V
^

- -

IT

1.

of	 .

f_ n in
i

s

., u ti E
;ZI

• Y ..
i,

ill
1

^

_ -,..	 • ^. fir♦ i ^`I• 'd' ^+^,.^- _	 .ins.

t!1

0
L
7
00

(L

a,
w
a
00

w

ORIGINAL PAGE 19

OF POOR QUALITY

.7777

Ai

Appendix I.

Content-Addressable Read/Write Memories for Image Analysis

by
Wesley E. Snyder
Carla D. Savage

IEEE Transaction on Computer, October, 1982.

Appendix 2

Design of a Content-Addressable RAM

by

Robert Tyszcenko

1. Introduction

This chapter has twc major components: 1) a decoder and 2) a memory cell

with attached logic.	 These two components have been designed and, to some

extent, tested.	 Figure 1 shows what one word of memory looks like at its

highest level.

The three major operations consist of two that are fairly straightfor-

ward, the Read do Write of a memory cell. The third, Union, requires the extra

logic in the "smart memory."	 Because of the variety of operations being

performed, a 4-phase clock is used, rather than pipelining. 	 Before an

operation begins, the previous operation is completely over.

To complete the chip, some logic and pass transistors need to be designed

to regulate the flow of data & addresses from pads to their destination. 	 In

particular, the fact that input and output is done with the same pad and

drivers causes a problem on and between the Read & Union operations. 	 A

solution is proposed later in this report.

The basic operation of the circuit is best understood by reading the

"Timing Conventions" data, and the "Mixed Notation" illustration in con-

junction with the following explanation.

Since this circuit uses mostly nor logic, inputs to indicate a Read,

Write, or Union, are active when low. 	 Note also that the decoder which

selects a given data word requires two phases for operation. 	 For a Read or

d
Write, a memory location is specified by the decoder. 	 Dropping the appropri-

ate cintrol (Read,Write) line completes the operation. The Union operation is

t
not done with decoder assistance.	 It occurs because a "flag" was set (by xor

logic) to indicate that one or more memory locations match a data registers
i

S	
contents. All cells that have their "flag" sec will be rewritten with the new

y

date placed in the date register on m2.

,,r -A

r+

A2-3

In what follows, in a filename such as xor.ab, the .ab tells ABCD that

the file contains ABCD text.	 Wires are frequently labelled with something

like:	 wire-N at the top and: 	 wire —8 at the bottom. This facilitates

simulation because qrs assumes that they are one node. Labels are required

whenever s wire at the periphery of a cell is to connect to another cell or to

a wire outside of the present cell.

2. Description of Cells

2.1 mcell.ab (fig. 6)

This is the memory itself. This design was chosen because of the simple

refresh control, performed by clocking a pass transister on ml, and the

requirement that both the true and complement form of the memory cell be

available at all times.

Notice that reading is controlled by ren a/ren w. 	 The signal on this

line is generated by a read finable logic cell called rencell.ab. 	 Writing to

memory is more complicated since it can occur as: 1) a simple RAM writes ') a

Union operation write. 	 Writing is controlled by a signal on union a/union w

from uenable.ab) or by a signal on ram a/ram w (from wencell.ab).

2.2 xor.ab (fig. 7)

Performs the xor function.	 If the contents of memory match the contents

on h--j data bus then xor out will go to Vss.	 Note that the pulldowns (pd.)

appear to form two legs--one to the left and the other to the right of the

pullup (pu.). Since at most one leg will have a path to Vss:

	

pu. 1	 4

	

w	 1 => small devices

	

R	 2

	

pd. w	 2

and pass transistors are avoided.

N
d

L
C

N

S
Q 'C
C7
Q
O
F

V

V
2O
HQHO2
DW
X
Z

Nu

N

URiGINAL PAGE 19
OF POOR QUALITY

•o

L^
v
	

u

A2-4

2.3 pulldn . ab (fig. 8)

This cell is essential for the Union operation. 	 The wire labelled

pwr w/pwr a is precharged on 1.	 Assume the contents of memory match the

contents of a data register to which it is compared. The cell xor.ab does the

compare.	 Since the two are equal, xin n is at V as , and pwr w/pwr_e stays

high.	 This is the "flag" that indicates that a write should occur for this

memory cell on 3.	 The logic to generate the enable signal is in uenable.ab.

The cell otl . ab is affected too.

2.4 slice.ab (fig. 9)

The constituents of this cell are 1) moell.ab; 2) xor.ab and 3)

pulldn.ab.

2.5 connect.ab (fig. 10)

This cell is composed simply of wires. 	 The following wires come from

off-chip: 1) penable_n/penable s
to otl.ab

2) gndenab s/gndenab_N

3) Vss n/Vss a	 to mcell.ab

4) Mbar n/Mbar s	 to uenable.ab

5) Wbar n/Woar s	 to cencell.ab

6) Rbar s/Rbar N	 to rencell.ab

The following wires are generated on chip: (actually the signals on them

are generated on-chip)

renable w/renable s - from rencell . ab to mcell.ab

aenable w/uenable s - from uenable . ab to mcell.ab

wenable w/wenable s - from wencell . ab to mcell.ab

^i

A2-S

2.6 ctl.ab (fig. 11)

This cell is used during Union operations. During tl, the upper pass

transistor is on which charges the wire labelled pwr w/pwr e. 	 The charge is

stored on an inverter attached to pwr a and resides in uenable.ab. 	 The lower

pass transistor is off and means that the charge remains even if the previous

state of pulldn.ab would have allowed it to discharge. 	 After the output of

xor.ab settles (by t2 hopefully) the lower pass transistor is turned on by $2.

If the memory cell (all 10 bits) differs from the data that it was compared

to, pwr w/pwr a and the gate in uenable.ab will discharge.

2.7 rencell.ab (fig. 12) and wencell.ab (fig. 13)

Both cells perform the nor function. ►loth are used when operating in the

RAM mode. Both share an active low input from the decoder. 	 Either

Wbar n/Wber s or Rbar n/Rber s can go to V ss if their respective operations

(Write,Read) are being performed. 	 They should not both be low at the same

time.	 Their outputs enable the Read or Write by activating pass transistors

in mcell.ab.

2.8 uenable.ab (fig. 14)

Basically an inverter and a nor gate. If the inverter has a low input

this implies that a mismatch between the memory cell and the date register

occurred causing xor.ab to output a high signal which discharged pulldn.ab and

the gate of this inverter.	 Despite the fact that Mbar n/Mbar s may be at Vas

(for Union operation) nothing will happen. 	 Similar reasonsing will reveal

that the Union operation will occur if the memory contents match the data

register contents.

M

A2-6

2.9 Decoder: in general

The decoder was designed such that it dissipates no static power, which

justifies its larger size.

This decoder can have 256 outputs and yet be built with little more than

a proper arrangement of:

1) dec00.ab

2) decOl.ab

3) decll.ab	 and

4) decout.ab attached to provide the outputs.

For example, let us look at how to arrive at the arrangement in figure 3.

We want 4 outputs.

Count in binary:	 0 0
0 1

1 0
1 1

This is eesily extended (but tedious).

I allow for 10 inputs even though lo92 256 seem sufficient because the 2

high order bits can, effectively, act as chip select inputs. (Recall that 4

chips each with 256 locations are expectred in the final configuration)

3. Timing Conventions

To write:

^1: Latch data. Latch address to decoder. Refresh memory.

2: Let decoder select a word.

3: Drop Write control line.

4: Raise Write control line.
b.

3i

` ^", _ LL . ^^r► ^^ ^ mfr ^1 ..^r.^ __ ^.

A2-7

To Read:

^1: Latch address to decoder. Refresh memory. Precharge data lines if
desired by placing Vdd on I/P pads.

02: Let decoder select a word. Drop Read control line.

03: Latch 93/p to pads.

U: Raise Read control line.

To Union

�1: Precharge pulldn.ab. Refresh memory. Latch I/P data.

�2: Enable ground in pulldn.ab and otl.ab cells

03: Latch new data. Lower Mode control line.

4: Raise Mode control line.

4. Testing

4.1 Decoder Test: (figs. 20)

Dectest.ab (not capitalized) represents the decoder that was tested (fig.

2). As above, ats required that I create a file called decoid . ab.	 In either

case, what was tested could be called a low-going 1-of-4 decoder. Even though

the pu/pd ratio was about 2 instead of 4, a successful simulation is depcited

in figure 3.

For grs: the spicefile is : spfiledec
the clockfile is . clkfiledec

5. Pincount and Estimate of Transistor Count

Pins: - AO - A9 10
DO - D9 10
Vdd&Vss 2
4-phase clk 4
MODE 1
WRITE 1
READ 1
penable 1
genable +1

Read

ltitch output

latch I/P

mcell.ab, xor.ab, pulldn.ab	 14/slice=> 140/word
total control logic 	 + 13/word

153 wo d

152 * 256 =	 39,168
5,120

44,288

(Decoder, Cmos type)

Solution to rop bleu, posed in introduction

03 conflict occurs between action for Read and for Union

To Read: we need something like this:

Vdd

Vdd

To Union:

^3

Union	 —'I

v v	 v000vugacu
a

U	 `

O	 =

O

O	 '

s

i

OrI ^• ••, U CJ

1

M-- U C1

4

O......{ui

co
0--»Um

U-

M— U CJ
i

0) ^-1 -y U CJ 4

i

M--.-. U CJ	
{

I

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 2

dectest o ^ -5 -1

17:34 I

m

m

y

S

.0

v

m

m
m

m
CS)
N
CD

lD
m

m
m
In
m

CD M

W

C7

m
m

CD
ni
CD

m

a

m mo)	 oo
H	 ^..i H	 H

H

i

ML 1•

!rM IwC"o

L 1«

=.04L Iw

CAML 1

PL 10340

Ln

W
CC

t7

LL

ORIGINAL PAGE t9
OF POOR QUALITY

ORIGINAL PAGE 11
OF POOR QUALITY

I

0•«r I e 	 ^ ^«• 1•

X — C 1

%D

W
C
G7

W

CAOL Ic	 AFL In

li
Q	 ^

s I Ice

-^W

mce 1 1

xo r

pulld n

FIGURE 7

3AOL 1

=AOL

O:.0O L

0C'ObCOA I

010 0 0A- 0

1

U
Q^

C-

0

U

i s U

C OA-• Y IS

COA- 6 IO

OL In

OL 10	 00

W

OL 10

COim-6 1•

3WCOA 10

:0A-+N 10

ORIGINAL FHL^'^ ^^
OF POOR QUAL ITY

a

O	 4 y
V	 C C
>1] L

e

.e

q

ay
C t 1	 16: 4f_

ORIGINAL. PA:-.7. ig
OF POOR QUALITY

P	 q
e	 e
n	 n
a	 a
b	 b
I	 I
e	 e

e	 e

i	 •

FIGURE	 9

Q.1

U

nC—

W

4 C Oa-+

OL IN
tC.a O L 1

O

W

C7

IL

ORIGIN L P"^' s
gi

OF POOR QU A` '

1r
oil

a u
4

V	 ^
4
D

w

c^

w

•L 10

ORIGINAL. FAZE J3
OF POOR QUALITY

r

ab

^	 j

z

3AOL i

s^
QJ

'Ui C-

ai

s 3

V C 4A-+

At IA
=.aec, 1

i
1

4 C QA-
W

C7

U.

a
ORI(OtNAL ^'APK? "I

OF POOR QUTA i :''

a
C
V
Q

t

Appendix 3

Tabular Representation of a Data Flow Graph

Summary cf graph CAMCHIP

QUEUE THRESHOLD READ CONSUME CAPACITY PRODUCE DATA-TYPE INIT SOURCE SINK

L1 1 1 1 1 1 * F LABELC VLN

L2 1 1 1 1 1 * F LABELC CAM

L3 1 1 1 1 1 * F LABELC MEMM

L4 1 1 1 1 1 * F LABELC VLSI

Z1 1 1 1 1 1 * F ZERO MEMM

Z2 1 1 1 1 1 * F ZERO VLN

Z3 1 1 1 1 1 * F ZERO VLSI
Al 1 1 1 1 1 * F ADDCNT MEMM

V1 1 1 1 1 1 * F VLN CAM
V1 1 1 1 1 1 * F VLN COMPAR
V1 1 1 1 1 1 * F VLN VLSI
VL1 1 1 1 1 1 * F VLSI VLN
VL2 1 1 1 1 1 * F VLSI COMPAR
VL3 1 1 1 1 1 * F VLSI CAM
VLd 1 1 1 1 1 * F VLSI MEMM

MEMOU 1 1 1 1 1 * F MEMM

CAMOU 1 1 1 1 1 * F CAN

NODE PACKAGE 1ST PROCESSOR 2ND PROCESSOR EXCLUDES SHARE

LABELCNTR LABELCNTR 1 FALSE
COMPARE COMPARE 3 FALSE
VLSI VLSI 4 FALSE
ZERO ZERO 5 FALSE
VLN VLN 6 FALSE
ADDCNTR ADDCNTR 7 FALSE
MEMMEM MMEM 10 FALSE

CAM CAM VLB FALSE

End of graph CAMCHIP

F

a

Appendix 4

ADA Package Defintions

i

;

I

package LABELCNTR	 is

procedure GO LABELCNTR
	

(

-- output queues in package

OUT—QUEUE-1: out array(1..1) of INTEGER	 ;

OUT—QUEUE-2: out arruy(1..1) of INTEGER
	

i

OUT—QUEUE-3: out array(1..1) of INTEGER
	

;

OUT—QUEUE-4: out array(1..1) of INTEGER 	 ;

end LABELCNTR

package CAM	 is

procedure GO CAM

-- input queues in package

IN—QUEUE-1:	 in array(1..1) OF INTEGER

IN—QUEUE-2: in array(1..1) OF INTEGER

IN—QUEUE-3: in array(1..1) OF INTEGER

--output queues in package

OUT—QUEUE-1: out array(1..1) OF INTEGER

end CAM

package ADDCNTR	 is

procedure GO ADDCNTR

-- output queues in package

OUT—QUEUE-1: out array(1..1) OF INTEGER

end ADDCNTR

i

i

i

i

;

package MMEM	 is

procedure GO MMEM

-- input queues in package

	

IN—QUEUE-1:	 in array(1..1) OF INTEGER

	

IN—QUEUE-2:	 in array(l..l) OF INTEGER

IN—QUEUE-3: in array(l..l) OF INTEGER

	

IN—QUEUE-4:	 in array(1..1) OF INTEGER

-- output queues in package

OUT—QUEUE-1: out array(l..l) OF INTEGER

end MMEM

	

package ZERO	 is

procedure GO ZERO

-- output queues in package

OUT—QUEUE-1: out array(l..l) of INTEGER

OUT—QUEUE-2: out array(1..1) of INTEGER

OUT—QUEUE-3: out array(l..l) of INTEGER

end ZERO

package VLSI	 is

procedure GO VLSI

-- input queues in package

	

IN—QUEUE-1:	 in array(l..l) OF INTEGER

	

IN—QUEUE-2:	 in arrfiy(1..1) OF INTEGER

IN—QUEUE-3: in array(l..l) OF INTEGER

--output queues in package

OUT—QUEUE-1: out array(l..l) OF INTEGER

;

a

-- output queues in package

OUT—QUEUE-1: out array(1..1) of INTEGER
	

;

OUT—QUEUE-2: out array(1..1) of INTEGER
	

;

OUT—QUEUE-3: out array(l..l) of INTEGER
	

;

OUT—QUEUE-4: out array(1..1) of INTEGER
	

;

end VLSI

package COMPARE	 is

procedure GO COMPARE

-- input queues in package

IN—QUEUE-1: in array(l..l) OF INTEGER
	

;

IN—QUEUE-2:	 in array(l..l) OF INTEGER
	

;

end COMPARE

package VLN	 is

procedure GO_VLN

-- input queues in package

IN—QUEUE-1: in array(l..l) OF INTEGER
	

;

IN—QUEUE-2:	 in array(1..1) OF INTEGER
	

;

IN—QUEUE-3:	 in array(l..l) OF INTEGER
	

;

--output queues in package

OUT—QUEUE-1: out array(1..1) OF INTEGER

OUT—QUEUE-1: out array U ..l) of INTEGER
	

;

OUT—QUEUE-2: out array(l..l) of INTEGER
	

;

OUT—QUEUE-3: out array(1..1) of INTEGER
	

;

end VLN

^J

A . pendix 5

Data Flow Graph in DGM Notation

graph CAMCHIP	 contains;

package LAdELCNTR	 has

output =

L1

threshold = 1
read	 = 1
consume = 1
capacity	 = 1
produce	 = 1
data—type = INTEGER

L2
threshold = 1
read = 1
consume	 = 1
capacity	 = 1
produce	 = 1
date type = INTEGER

0
threshold = 1
read	 = 1
consume	 = 1
capacity = 1
produce	 = 1
data type = INTEGER

L4
thre^hold = 1
read	 = 1
consume	 = 1
capacity	 = 1
produce	 = 1
data type = INTEGER

package CAM	 has

input =

VO
threshold = 1
read = 1
consume = 1
capacity = 1
produce	 = 1
data type = INTEGER

L2 threshold = 1
read = 1
consume = 1
capacity = 1
produce	 = 1
data type = INTEGER

Vl
threshold = 1
read = 1
consume = 1
capacity = 1
produce = 1
date type = INTEGER

output =

CAMOUT

threshold = 1
read	 = 1
consume	 = 1
capacity	 = 1
produce	 = 1
date—type = INTEGER

package PDCN-t

output =

threshold = 1
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

package MEM	 has

i
input

A2
threshold = 1	 i.
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

0
threshold = 1
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

VL4
threshold r 1
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

has

Al

•

read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

Z1
threshold = 1
read = 1
consume	 = 1
capacity = 1
produce	 = 1
data type = INTEGER

output =

MEMOUNT
threshold = 1
read = 1
consume = 1
capacity = 1
produce	 = 1
data type = INTEGER

package ZERO	 has

output =

Z1

threshold = 1
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

Z2
threshold = 1
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

Z3
threshold = 1

t,..:.

package VLSI	 has

input =

V3

threshold = 1
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

L4
threshold = 1
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

D
threshold = 1
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

output =

threshold = 1
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

threshold = 1
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

VU

VL2

VL3

VL4
threshold = 1
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

package COMPARE	 has

input =

V1
threshold = 1
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

VL2
threshold 1
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

d

package V!_SN	 has

input =

L1
threshold = 1
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

VU
threshold = 1
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

Z2
threshold = 1
read = 1
consume = 1
capacity = 1
produce = 1
data type = INTEGER

output =

V3
threshold = 1
read	 = 1
consume	 = 1
capacity	 = 1
produce	 = 1
data type = INTEGER

• ;rw4 ^► - rte+^ ^•.r^-	 r	 — -,	 Ad

V2
threshold = 1
read = 1

co-isume = 1
capacity = 1

produce = 1

data type = INTEGER

queue L1 has type = DATP :=0

queue L2 has type = DATA :=0

queue 0 has type = DATA :=0

queue L4 has type = DATA :=0

queue Z1 has type = DATA :=0

queue Z2 has type = DATA :=0

queue Z3 has type = DATA :=0

queue Al has type = DATA :=0

queue V1 has type = DATA :=0

queue V2 has type = DATA :=0

queue V3 has type = DATA :=0

queue VU has type = DATA :=0

queue VL2 has type = DATA :=0

queue CL3 has type = DATA :=0

queue CL4 has type = DATA :=0

queue MEMOUT has type = DATA :=0

queue CAMOUT has type = DATA :=0

node LABELCNTR has package LABELCNTR with

processor = 1

priority = 1
sharable = FALSE

output = L1 ,	 L2 0 L4

JI

, VL2

with

L3
VL2

with

, Z2

with

VU
V2

with

, L2

with

, Al

with

, V1

	

, L3	 , L4

L4

	

VL3	 , VL4

	

, Z3	 L4

Z2

	

V3	 L4

	

L3	 L4

	

, Z1	 , VL4

, L2

.:	
v

has package COMPARE
processor = 3
sharable = FALSE
output	 = V2

has package VLSI
processor = 4
priority = FALSE
sharable = ZERO
output	 = VU

has package ZERO
processor = 5
sharable = FALSE
output	 = Z1

has package VLN
processor = 6
priority = FALSE
sharable = L1
output	 = V1

has package ADDCNTR
processor = 7
sharable = FALSE
output	 = Al

has package MMEM

processor = 10
sharable = FALSE
input	 = L1

`-	 = MEMOUT

:age CAM
r = VL8

= FALSE
= VL3
= CAMOUT

node COMPARE

node VLSI

node ZERO

node VLN

node ADDCNTR

node MEMMEM

with

	GeneralDisclaimer.pdf
	0033A02.pdf
	0033A03.pdf
	0033A04.pdf
	0033A05.pdf
	0033A06.pdf
	0033A07.pdf
	0033A08.pdf
	0033A09.pdf
	0033A10.pdf
	0033A11.pdf
	0033A12.pdf
	0033A13.pdf
	0033A14.pdf
	0033B01.pdf
	0033B02.pdf
	0033B03.pdf
	0033B04.pdf
	0033B05.pdf
	0033B06.pdf
	0033B07.pdf
	0033B08.pdf
	0033B09.pdf
	0033B10.pdf
	0033B11.pdf
	0033B12.pdf
	0033B13.pdf
	0033B14.pdf
	0033C01.pdf
	0033C02.pdf
	0033C03.pdf
	0033C04.pdf
	0033C05.pdf
	0033C06.pdf
	0033C07.pdf
	0033C08.pdf
	0033C09.pdf
	0033C10.pdf
	0033C11.pdf
	0033C12.pdf
	0033C13.pdf
	0033C14.pdf
	0033D01.pdf
	0033D02.pdf
	0033D03.pdf
	0033D04.pdf
	0033D05.pdf
	0033D06.pdf
	0033D07.pdf
	0033D08.pdf
	0033D09.pdf
	0033D10.pdf
	0033D11.pdf
	0033D12.pdf
	0033D13.pdf
	0033D14.pdf
	0033E01.pdf
	0033E02.pdf
	0033E03.pdf
	0033E04.pdf
	0033E05.pdf

