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SUMMARY

A problem in designing semiconductor memories is to provide some measure of
error control without requiring excessive coding overhead or decoding time.
For example, some 256K-bit dynamic random access memories are organized as
32K x 8 bit-bytes. Byte-oriented codes such as Reed Solomon (RS) codes [1]
can provide efficient low overhead error control for such memories. However,
the standard iterative algorithm (2] for decoding RS codes is too slow for
these applications.

In this paper we investigate some special high speed decoding techniques for
extended single-and-double-error-correcting RS codes. These techniques are
designed to find the error locations and the error values directly from the
syndrome without having to form the error locator polynomial and solve for
its roots. Two codes are considered:

I. A din = 4 SEC -DED Code

A ( 2m + 2, 2m - 1) code is formed by adding a 3 x 3 identity matrix to
the parity-check matrix of the RS code with generator polynomial

9Cx) = (x + 1) (x + a) (x + a2),

where a is a primitive element of GF ( 2m). It is shown that this extended
code with three additional information symbols has minimum distance d in = 4,
and hence is capable of single -error-correction (SEC) and
double-error-detection (DED).

Decoding of the error vector a is based directly on the syndrome

s = e HT = NO sip s 2), where H is the parity-check matrix of the extended

code. The decoding method can be summarized as follows:

1) A single error in the first three positions (corresponding to
the identity positions of H) results in a syndrome with only one
nonzero element.

2) If a single ;rror occurs in any other position, the syndrome
elements satisfy

i-3	 s 
	 s2

a	 = so 
_ sl

and i gives the error location.

3) If a single syndrome element is zero, or if

l ^ 2s	 s
0	 1	 =

a double-byte-error is detected.

In cases 1) and 2) , the error value is easily determined from the syndrome.
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II. A d . = 6 DEC - TED Code
min

A dmin = 6 RS code is formed from the generator polynomial

2

g ( x) = I (x + al),
i=-2

where a is a primitive element of GF(2 m). This code is capable of double-error-
correction (DEC) and triple-error-detection (TED), and can be extended by adding
two additional information symbols (see [1]).

The syndrome s = e HT = (s-2 , s-12 s0 , s 1 , s 2). Decoding can be summarized as
follows:

1) Calculate the following quantities:

Y1 = s l s -2 + s-1s0

2
Y2 = s 2S-2 + s0

Y3 = s 
0 
s 
I + S 

IS- 
1

If Y1 = Y2 = Y 3 = 0, a single-byte-error occured with value s 0 and location

s
i, where al = sl

0

2} If Yl # 
0Y2 

# 0, and Y 3 # 0, compute k = E2 and T2 (k) , where b
b	 Y1

Y3c = Y , an d for a field element B,
1

M-1 i
T,(0) Q 1 $2

i=0

is the trace of $. If T2 (k) = 0, solve the equation

y2+by+c=0

using the high-speed method described in [ 3] to find the error locators

a  and aj of a double-byte-error.
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3) If T2 (k) = 1, or if at least one but not all of Y1' Y 2, and Y3 
equals

zero, or if more than two elements of s equal zero, a triple-byte-error is
detected.

In case 2), the error values can be found directly from the syndrome and the
quantities calculated.
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