
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



FAST DECODING OF A dmin - 6 RS CODE

by

'	 3̂

^ t- N

fn
G

Huijie Dengv
Department of Electrical Engineering

Illinois Institute of Technology
! .^x 

1
^^- \C	 Chicago, IL 60616

Daniel J. Costello, Jr.*
Department of Electrical Engineering

University of Notre Dame
Notre Dame, IN 46556

December, 1983

(NASA -CF-17362 0) FAST DECODING OF A d(MIN) 	 N84-26326

= 6 RS CODE (Illinois Inst. of Tech.) 20 p
HC A02/HF A01	 CSCL 09B

Oncla s
G3/61 19488

This work Was supported by NASA under Grant NAG 2-202.

* On leave from the Illinois Institute of Technology

-+. ± - • rte J ^`i infl ..^^. 1 ^. a.s^

B-1



a.

F

There are several known approaches to decoding RS codes. One approach is

the iterative algorithm (1], (2]. It has the advantage of easy

implementation, but does not meet the high-speed requirement, since the

decoding time is too long. Another approach is the table-lookup method (1),

by which high-speed decoding is achievable. The drawback is that even for

moderate code length r, the implementation of this decoding scheme becomes

impractical, since either a large storage or complicated logic circuitry is

needed. For example, if the (37,32) dmin'6 RS code over GF(28) is used to

correct any two or fewer byte errors and detect any three byte errors, the

decoding table would contain (28-1) (1 7 ) + (28-1) 2 ( 2
37

4.3 x 107

correctable error patterns!

In this report, we present a method for decoding a dmin - 6 RS code. The

method satisfies both high-speed and easy implementation requirements.

I. The dmin - 6 RS Code and it's Properties

In this section we specify the two-byte-error-correcting and

three-byte-error-detecting RS code and show some of it's properties.

The generator polynomial for the drain - 6 RS code is given by

2
g(x) - I (x + ai),	 (1)

i--2

where we choose a to be a primitive element of GF(2 m). The parity-check

matrix, H, of the code specified by Eq. (1) can be written as

1	 a 2	 (d-2)2	 ...	 (.72)n-1

1	 a-1	 (d-1)2	 .,,	 (a 1)n-1

H-	 1	 1	 1	 1
	

(2)

1	 a	 (a)2	 ...	 (a)n-1

1	 a2	 (a2)2	 ...	 (a2)n-i

1



where n < 2m - 1 and 1 - a0 is the identity element of GF(2m). Because the

code has dmin - 6, then every combination of dmin - 1 - S or fewer columns of

H is linearly independent, and the code is capable of correcting any two or

fewer byte errors and simultaneously detecting any combination of three byte

errors [1].

Let V - (v0, vl. ..... vn-1) be a code word that is transmitted over a

noisy channel. Let Y - (Y0, Y19 ...., Y•.-1) be the received vector at the

output of the channel. Because of the channel noise, Y may be different from

V. The vector sum

e - Y + V - (e0, e l. ..... en-0	 (3)

is an n-tuple where ei * 0 for Yi 	 vi and ei - 0 for Yi - vi. This n-tuple

is called the error pattern. When Y is received, the decoder computes the

syndrome S,

ST - Y HT - (v+e)HT -e HT

- ( S-2, S-1, 90, S1, S2)

Since V HT - 0, the syndrome S computed from the received Y depends only on

the error pattern e, and not on the transmitted code word V [1].

Let 15, Ed, and ST deonte the syndromes corresponding to single, double and

triple byte error patterns, respectively. Then from Eq. (4) we have,

ea 2i

ea i

I -	 e	 (5)

e al

eo2i

2
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where a is the error value and i is the error location.

ela2i + e ta 2j

ela i + e2a'j

'	 el	 + e2
	

(6)

e l ai	+ e2aj

ela2i + e2a2j

where 0 < i < j < 2m - 1

and

ela2i + e2a 2j + e3a2k

elal + e 2aj + e3a k

ST	el	 + e2	 + e3	 (7)

e l ai	+ e2aj + e3ak

elaZi + e2 a2 j + e3a2k

where 0 < i < j < k < 2m - 1.

Before proceeding, we need to prove some properties of the code which

will be used later.

Property 1

jSSd #ST	 (8)

holds true for any single, double, and triple byte error patterns.

Proof:

First we show that , * .Id. If not, then there exists at least one single

byte error pattern and one double byte error pattern such that

IS - N

or	 is+Na0.

3
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From Eqs. (5) and (6) we have

ela2il	 eta 2i2 + e3a2i3

ela--i l	 e2a-12 + e3a i3

el	 +	 e2	 + e3

ela i l	 e2ch + e3a13

ela..il	 e2a2i2 + e3m2i3

CL -2i1 a 2i 2 a2i3 0 -

a i t a-i2 a i 3 0

el 1 + e2 1 e3 1 0

ai l ail al3 0

a2i1 a2i2 La2i3 0

for i2 < i3.

This contradicts the fact that any 5 or fewer columns of H in Eq. (2) are

linearly independent! Hence SS * Sd. By the same argument we can prove that

the other cases also hold true.	 Q.E.D.

Lemma 1

If a is a primitive element of GF(2m), then

a-i + aj * 0	 (9.1)

a2i +072j *0	 (9.2)

for 0<i< j<2m-1.

Proof:

If a-i + a-j - 0, multiply both sides by a1+j * 0. Then we have m i + aj - 0,

but this is impossible since a is a primitive element. Similarly we can show

Eq. (9.2) is also correct. 	 Q.E.D.

4

0wobbi, 4"M



Let !d 0 (9-2, S-1, S0, S1, 92)T . From Eq. (6) we have the following

equations:

S_2 - el a 2i + e2a-2j (10.1)

S- 1 - ela-1 + e2a-j (10.2)

SO	 - el + e2 (10.3)

S1	 - ela l + e2ai (10.4)

S2	 . ela21 + e2a2j (10.5)

Property 2

Let id - (S-2, S-1, S0, S1, S2 )T be the syndrome correspondi.ng to a

double byte error pattern with error values el and e2 at locations i and j,

respectively. Let N denote the number of zero elements of .Ed. Then,

N<2,

and the only two cases for which the equal sign can hold for some values of i

and j are

1) S-1-S2	 0

2) S1 ' S-2	 0

Proof :

It can easily be seen from Lemma 1 that the following vector3

(1,1), (a i ,aj ), (a2i ,a2j ), (a i ,a-j ), and (a 2i , a 2j),

where 0 < i < j < 2m - 1, are pairwise linearly independent except for the two

pairs:

1) (a-i ,a-j ), ((,2i,a2j),	 2) (ai ,aj ), (a 2i ,a 2j).

These two pairs can be linearly dependent for some values of i and j.

Combining this fact with Eqs. (10.1) - (10.5), we obtain the property.

O.E.D.
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Property 3

Let ,!d . (9-2, S-1, SO, 91, S2 )T . Then the equations

S1S-2 + S-lSO # 0	 (11.1)

SOSI + S 2 S-1 # 0	 (11.2)

S2S-2 + 50 2 * 0	 (11.3)

hold true for any double byte error pattern.

Proof :

1) Suppose S2S-2 + SO 2 - 0. From Eqs. (10.1), (10.3) and (10.5) we obtain

(ela2i + e2a2j ) (ela 2i + e2a 2j ) + (el + e2) 2 - 0.

Expanding this equation and performing some simplification gives us 	 {

a2i-2j + a 2i+2j - 0.

But this is impossible since a is a primitive element and i # j.

Therefore, S2S-2 + SO 2 * 0.

2) Suppose S1S-2 + S-ISO - 0, that is SIS-2 - S-lSO.

From Eqs. (10.1) - (10.4) we have

(ela l + e2aj ) (ela 2i + e2a 2j ) - (ela i + e2a j ) (el + e2).

After some simplification we obtain

ai-2j + aj-2i . ai + a j. 	
i

Multiplying both sides by a 2i+2 J # 0, the above equation becomes

a3i + a3j . a1+2j + aj+2i	 (12)

or

(ai + aj ) (a2t + ai+j + a2j ) . ai+j (ai + aj).

This can be reduced to 	 }

	

a21 + a2j . 0	 for i # i.

But this is impossible. Hence SlS-2 + S-lSO # 0.

1
6



3) Suppose SOS1 + S2S-1 - 0. In the same way as above we obtain

a3i + 03j . ai*2j + aj +2i.

This is exactly the same as Eq. (12). Hence the equality is invalid, and

	

S OS 1 + S2S-1 * 0.	 O.E.D.

II. Decoding Using The Quadratic Equation

In this section we show that the well known quadratic equation over

GF(2m ) can be used to decode the code described in Section I. Also we present

a method of solving it.

It was shown in Lemma 1 that if a is a primitive element of GF(2 m), then

a i + a- j * 0 and a-2i + a-2 J * 0 both hold true for any 0 < i < j < 2 m - 1.

From Eqs. (10.1) and (10.3) we have

det I

SO	 1

S-2 a- 2J
	 S_2 + SO a 2j

(13)

11	 (ai+ai)2

det
la - 2i a 2J

From Eqs. (10.2) and (10.3) we have

SO	1

de

-1
a7 j	 S-1 + SO a-j

	

e1	 ^	 (14)	 ^

1	 1	 a l + a-]	 l

de
a' 1 a J

t

Then

	S-1 + SO a j	 S-2 + SO a-2j	 i
•	 (15)

a i +a j	 (ai+a j)2

Now multiply both sides by (a i + a J) 2 * 0. Eq. (15) becomes

	

( a-i + a-j ) (S_1 + SO a J ) - S_2 + SO a 2J.	 (16)

7	 J
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After simplification we have

S-1 (a 1+ 07j) + S-2 + SO a i-j	 0. (17)

Multiplying (17) by al+j gives us

S-l (ai + aJ) + S-2 al %j + SO	 0. (18)

In the same way, from Eqs.	 (10.3)	 - (10.5),	 we can obtain

Sl(al + aJ) + SO al aj + S2 M 0. (19)

Now define

bai +aJ (20.1)

C aj	 aJ . (20.2)

Eqs. (18) and (19) can be written as

S-lb + S-2c + SO m 0 (21.1)

Slb + SOc + S2 m 0. (21.2)

Also define

A
Y1 S1S-2 + S- 1 SO (22.1)

Y 2 S2S-2 + go (22.2)

e
Y3 ' SOS1 + S2S-1. (22.3)

Solving Eqs.	 (21.1),	 (21.2)	 for b and c, we have

b • Y2
al + aJ (23.1)

Y1

C • Y3 alaj (23.2)

Y1

for yl * 0.	 Also,	 from Eqs.	 (20.1) and (20.2) we see that al and aJ are the

roots of

y2 +by+c - 0.
	 (24)

,

s
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This is the well-known quadratic equation over GF(22). We will see in Section

III that Eq. (24) plays an important role in decoding. Therefore we call it

the "decoding equation". Because of it's importance, in the remainder of this

section we discuss a mathod of solving it.

The formula for the roots of the quadratic equation y2 + by + c - 0 is

(- b + Vb 2 - 4c /2. Unfortunately, for finite fields of characteristic two,

this formula is not applicable because the denominator is zero (2 - 1+1 - 0).

However, there are several known approaches to solving this pro tjlem. One way

of finding the roots is by trying each element of the field in roquence (3J.

But this is unacceptable for fast decoding because it takes a long time. The

method given in [4) is probably the best one known. We present it here.

Let

	

y - bx.	 (25)

Then Eq. (24) becomes

	

X2 + x + K - 0,	 (26)

where K - c/b2.

Let 0 be an element of GF(2 m), and define

	

m-1	 i
T2(0) - 1 82	(27)

i-0

T2(3) is called the trace of B. It is either zero or one [4]. For even m,

define

(m-2)/2	 2i
T4(0) -	 1	 02	 (28)

1-0

If (26) has solutions, then T4(0) is either zero or one (4). Eq. (26) has

solutions in GF(2m ) if ana only if T2(K) - 0, where K - c/b2 [2), (5).

9
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Let xl be a solution of Eq. (26), then x2 - 1 + xl is the other solution.

Suppose T2(K) - 0, i.e., Eq. (26) has solutions. Then we have the following

results 14l:

1) m odd.

X1 . S K2	E K2	(29)

j 6J	 iel

where I

2) m = 2 modulo 4

	

(r6)/4	 2+4i
X1	 I	 (K + K2 ) 2	 ,	 for T4(K) . 0,	 (30.1)

i-0

(s-6)/4	 2+4i
xl . al +	 E	 (K + K2 ) 2	 for T4 (K)	 1,	 (30.2)

i-0

where al is a 4olution of the equation a1 2 + al + 1 - 0.

3) m S 0 modulo 4.

	

M-1	 (m/4) -1 	 21+m/2
xl . S+S 2 + K2 (1 +	 K2	 ), for T4(K)	 1,	 (31)

1-0

(m/4)-1 (m/4)-1	 21-1 + m/2 + 22]-2).
where S	 E	 I	 K( 2

j-1	 i-j

For T4(K)	 0, select an element 0 of CF(2m) such that T2(6)	 1, computs':

Kl - B + 6 2 , and solve z 2 + z + Kl + K - 0 using Eq. (31) with K replaced by

Kl + K. Then xl - 6 + zl is a solution of Eq. (26), where zl is obtained from

(31). For m - 4,8,12, Eq. (31) reduces to the following forms:

m - 4,	 xl . K8 + K12:

M - 8,	 xl - K33 + K66 + K129 + K132;

m - 12, xl - K2048 (l + K64 + K256 + K1024) + K129 + K258 + K506 + K513

+ K1026 + K1032.

;I
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III. Decoding of the Code

In this section we describe the decoding scheme for the
i

double-byte-error-correcting and triple-byte-error-detecting RS code specified

by Eqs. ( 1) and ( 2), through an analysis of the decoding equation (24)

obtained in Section II. For convenience, we rewrite Eq. (24) as

Y2 + by + c - 0	 (32.1)

where

	

Y2	 828-2 + Sa

	

b - a^+aj ^ --	 (32.2)

	

Y1	 818-2 + 8-180

	

c

• 

a iaj - Y3 - 8081 + S28-1	 (32.3)

 Y1	 818-2 + S-180

Now suppose that a double byte error pattern with error values al and e2 at

locations i and j (i<j) occurs. By our definition, Sd - (8-2,8 - 1,80,81,82)T

is the syndrome associated with this error pattern. From property 3 in

Section I we Imow that yl - S1S-2 + S_1S0 * 0, Y2 - 828-2 + 80 2 * 0, and

Y3 - 8081 + S28-1 * 0. Therefore b and c in Eqs. ( 32.2) and ( 32.3) exist. By

definition b - a l + aj and c - a lai for 0 < i < j < 20 - 1. Rance Eq. (32.1)

has two roots, m i and aj . Thus we obtain:

Theorem 1: If S-2, S-1, 80, 81, 82 are the els%ents of Id, decoding equation

(32.1) has two roots, m i and aj , where i and j are the two error byte

locations and 0 < i < j c 221-1.

In other words, whenever a double byte error occurs, it's error locations can

be found by solving the decoding equation ( 32.1).

i
Since m i + aj * 0 when a is a primitive element of CF(2 8), Eqs. (10.3),

(10.4) and ( 32.2) imply that

11



b Idtt

	

l	 3	 SOaj + 8 1	SOaj+ al

	

1	 1	 ei + aj	b
dot

	la
i	 aj

and

e2-SO+0I,

wheat el ail t2 art the error values at locations i and j of the double

error pattern.

Ilow lot 13 - (8-2,8-I,SO,51,82', T be the syndrome corresponding to a

single byte error pattern with error value o at location i. From Eq. (5) we

have:

8-2 - e a 2i	 (34.1)

S-1 - e a 1	 (34.2)

SO - a	 '34.3)

81 - e a i	 (34.4)

82 - a a21	 (34.5)

From Eqs. (34.1) - (34.5), we sec that

	

8-1	 80	 91
.	

82	 ia	 (35)

	

S-2	 9-1	 so	 Sl
Eq. (35) is equivalent to

Yl - QIS-2 + S-ISO - 0	 (36.1)

Y2 - 528-2 + 802 - 0	 (36.2)
k

Y3 - 5081 + 828-1 - 0.	 (36.3)

The above result implies the following theorem:

Theorem 2:

If E-2, S-1, SO, 81, 82 are the elements of D, than Yl - Y2 - Y3 - 0.

In other words, whenever a single byte error occurs, Yl - Y2 - Y3 - 0.

12
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From Eqs. (34.3) and (34.4) we have

ai = S1	 (37.1)
SO

e = So,	 (37.2)

where i gives the error location and a is the error value of the single byte

error pattern.

From properties 1-3 in Section I and Theorems 1 and 2, we have:

Theorem 3:

If more than two elements of the syndrome S - (S-2,S-1,SO,Sl,S2) T equal zero;

or if Yl, Y2, and Y3 are not all equal to zero, but at least one of them does

equal zero; or it the decoding equation (32.1) does not have roots in GF(2m),

then at least three byte errors have occurred.

We now summarize the decoding scheme obtained above for the

double-byte-error-correcting and triple-byte-error-detecting Reed-Solomon Code

defined by Eqs. (1) and (2). Receive Y, and calculate the syndrome

ST = YHT	(S-2,S-1,SO,S1,S2).

1) If S - 0, decide that no errors occurred.

2) If more than two elements of the syndrome equal zero, decide that at least

3 errors occurred.

S
3) Compute Yl, Y2, Y3. If Yl - Y2 - Y3 - 0, calculate a l = 	 , and correct

SO

a single byte error with error value e - SO at location i.

4) If Y1, Y2, Y3 are not all zero but at least one of than equals zero,

decide that at least three byte errors occurred.

5) If Yl * 0, Y2 * 0, Y3 * 0, compute K - c /b2 and T2(K). If T2(K) - 1,

decide that at least three byte errors occurred. 	 i

6) If T2(K) - 0, solve the decoding equation (32.1) and find the roots a l and	 1

aJ. Compute el - (SOaJ + Sl)/b, e2 - SO + el, and correct a double byte

error with error.values a	 e2 at locations i and j, respectively.

i

13



IV. Decoding of the Extended Code

The parity-check matrix H given in (2) can be extended to form a new

parity-check matrix given by

1 0

0 0

H 0 0	 (38)

0 0

0 1

The code C l specified by Hl is an (n+2, n-3) dmin ' 6 code, called the

extended Reed-Soloman code, where n < 2m - 1. [6,7,81.

In the same way as in Section I we can show that

* Sd * ST	(39)

holds true for all single, double, and triple byte error patterns. And

obviously if the error locations are confined to locations 0 through n-1, all

the previous results apply.

Now assume that errors occur at locations n and/or n+l. Then the

syndrome for the single byte error pattern is given by

e	 S-2

0	 S-1

SS -	 0	 SO	 (40.1)

0	 Sl

0	 S2

14



With an error at location n, or

0	 S-2

0	 S-1

SS -	 0	 SO	 (40.2)

0	 S1

Le	 S2

with an error at location n + 1. For a double byte error pattern, the

syndrome is given by

JCL-2i + e 2	 S-2

ela l	S-1

Sd	 e1	 =	 SO	 (41.1)

e1a1	S1

ela2i	
S2

with two errors at locations i and n, respectively, where 0 < i < n-1, and

ela2i	
S-2

ela i	 S-1

id =	 e1	 =	 SO	 (41.2)

elai	S1

e1a2i + e2	 S2

with two errors at locations i and n+1, respectively, where 0 < i < n-1.

Finally

el	 S-2

0	 S-1

=	 0	 -	 SO	 (41.3)

0	 S1

e2	 S2

with two errors at locations n and n+l, respectively.

15
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From (40.1) - (41.3) we obtain the following results. From the received

vector r, compute the syndrome S T - r HIT - (S-2,S-1,SO,Sl,S2).

1)	 If

S-2 # S- 1 - S O - S l - S 2 - 0,	 (42)

then decide that a single byte error pattern occurred. From (40.1) we have

the error value e - S-2, and the error location is n.

2) If
i

i	 S2 $ 9-2 - 9-1 - SO - Sl - 0,	 (43)

then a single byte error pattern has occurred with error value e - S2 at

location n+l.

3) If

S-1	 SO	 S1	 S2

S-2	 S-1	 SO	 S1

then decide that a double byte error pattern occurred. From (41.1) we see

that the error value el - SO and S1 - a l , where i gives the location of el.

SO

Since e2 - S-2 + e l a 2i - S-2 + Spa 2i, it occurs at location n.

4) If

S-1 - SO -
 Sl

	 (45)

S-2	 S-1	 SO	 S1

then a double byte error pattern occurs with error values el - SO and

e2 - S2 + SOa2i at locations i and n+l, respectively, where i is obtained from

al - S1 .

SO

5) If

S-2 s 0, 92 # 0, and S-1 - SO - Sl - 0	 (46)

then a double byte error pattern occurs with error values el = d-2 and e2 - S2

at locations n and n+l, respectively.

16
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Nov we combine the discussion in this section with that of Sections I-III

to obtain the following decoding scheme for the double-byte-error-correcting

and triple-byte-error-detecting extended Reed-Solomon Code Cl defined by

(38). From the received vector r, compute the syndrome

ST = r !, T - (S-?,S..1,SO,S1,S2).

1) If S - 0, decide that no errors occurred.

2) If S-2 * S-1 - SO - Sl - S2 - 0, decide that a single byte error pattern

occurred with error value e = S-2 at location n.

If S2 * S-2 - S-1 - SO - S1 - 0, then a single byte error pattern occurred

with error value e - S2 at location n+l.

3) If — S-1 * SO = S1	
S2 , 

a double byte error pattern occurred.

S-2	 S-1	
SO	 S1

e1 - So and e2 - S-2 + Spa 2i give the error values at locations i and n,

S
respectively, where 1	 ai.

SO

S-11	 SO	 S1	 S2
If	 =	 _	 *	 , a double byte error pattern occurred.

S-2	 S-1	 SO	 Sl

e1 - SO and e2 - S2 + 90a 2i give the error values at locations i and n+l,

S
respectively, where 1 - ai.

SO

If S_2 * 0, S2 * 0, and S-1 - So - S1 - 0, a double byte error pattern

occurred, with error values e1 = S-2 and e2 - S2 at locations n and n+l,

respectively.

4) If more than two elements of the syndrome e qual zero, decide that at least

3 errors occurred.

17
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s
5) Compute Y1, Y2, Y3- If Y1 - Y2 - Y3 - 0, calculate a l	1 and correct

SO

a single byte error with error value e a SO at location i.

6) If Y1, Y2, Y3 are not all zero, but at least one of them equals zero,

decide that at least three byte errors occurred.

7) If Yl * 0, Y2 * 0, Y3 * 0, compute K - c/b 2 and T2(K). If T2(K)	 1,

decide that at least three byte errors occurred.

8) If T2(K) a 0, solve the decoding equation (32.1) and find the roots a l and

a]. Compute el - (Soa j + S1)/b, e2 - So + el, and correct a double byte error

with error values el and e2 at locations i and j, respectively.

18
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