
NASA TechnicalMemorandum58258

NASA-TM-58258 19840018260

A Representational Basis
for the Development
of a Distributed. Expert System
for Space Shuttle, Flight Control

May 1984

LIBR_,,,vr,_y
: JUL3 1984

LAN_._LL , _ I E_

" NASA L 113t"L_RY, NASA

HANPTON_ VIRa[l_ll8

NationalAeronauticsand
Space Administration

4
J

TBIS DOCUMENT SUPERSEDES NASA-TM-58258 Wt_EEEII_ JSC

FOEM 1424 WAS OMITTED.

II

A Representational Basis for the Development of a Distributed Expert System

for Space Shuttle Flight Control

John J. Hetly, Jr.

Department of Computer Science, University of California, Los Angeles

and

The Aerospace Corporation

William V. Bates

NASAJohnson Space Center

MelCutler,SteveKelem

TheAerospaceCorporation

LIBRARY MATERIAL REQUEST
INSTRUCTIONS:

• List only oJTe Library Item on a form - PLEASE.
• For purchasing _or thesess,se Langley Form 125, "Purchase Request/Purchase Order. ""
• Obtain apj_roval of Section Head or higher official for classified material.

.NOTICE- WARNINGCONCERNINGCOPYRIGHT.RESTRICTIONS
LIBRARYINTERNAL

Thecopyrightlawof theUnitedStates(Title 17,UnitedStatesCode)governsthe making
of photocopiesor other reproductionsof copyrightedmaterial. USEONLY

Undercertainconditionsspecifiedinthe law, librariesand archivesareauthorizedto
furnisha photocopyor otherreproduction. Oneof thesespecifiedconditionsis that the
photocopy or reproductionisnot to be "usedfor any purposeotherthanprivatestudy, Order
scholarship,or research." If a usermakesa requestfor, or _ateruses,a photocopy or repro-
duction for purposesin excessof "fair use," that usermay be liable for copyright infringement.

This institution reservesthe right to refuseto accepta copying order if, in its judgment, OnOrder
fulfillment of the order would involveviolation of copyright law.

.... TOBEFILLEDINBYREOUESTER_Asapprop,'iat_/i i ,ha,.erdeobv
Document or Book Call Number (If available)

No Folder
--r-

Titlea_ Computer and ElectricalEngineering.
AN EVALUATION OF THE DIRECTED FLOW GRAPH METHOD_k,

OLOGY Final Report _ NoFi|m
Wesley E. Snyderand Sarah A. Rajala May 1984 61 p Original _
containscolor illustrations Borrow
(Grant NAG1-20)

Report (NASA-CR-173593; NAS 1.26:173593) Avail: NTIS
HC A04/MF A01 CSCL 09B CallIn

Source The applicabilityof the DirectedGraph Methodology(DGM) to
the design and analysis of special purpose image and signal
processing hardware was evaluated. A special purpose imag_" Reference

processingsystemwas designedand described usingDGM. The
DecN design, suitablefor very large scale integration (VLSI) implements Other:

region labelingtechnique. Two computer chipswere designed..
t)°th using metal-nitride-oxide-silicon(MNOS) technology,as well

is a functional system utilizingthose chips to perform real time
,Jregionlabeling.The systemis describedinterms of DGM primitives.

Article AS it is currentlyimplemented, DGM is inappropriatefor describing
synchronous,tightlycoupled,specialpurposesystems.The nature LIBRARYACTION
of the DGM formalism lends itself more readily to modeling
networks of general purpose processors. R.S.F. Beingobtainedfrom

Interlibrary Loan,

VO'...... __._Dame Univ., !nd. __ Material is charged

If Library doesnothavematerialshouldit be: (Check box/ to you.
Borrowed from another L_brary Ordered

[] Yes [] No [] Yes rl No [] Indefinite Loan [] Library Copy Material ill on

ROUTIN G ... indefinite loanto:
FROM
1. (x proper box) 1-'1NASA [] NON.NASA [] Foreign National U.S, Citlzen Yes[]Nol-I ltemisbelngoalled

IMall Stop No. Date)atron and will be

Requester in from another

sentto you.

Material ill given to
01vidon-'Br_neh-Sectionor Affiliation for Non-NASALibrary Patron TelephoneExten$ior you.

2'. Section'H'eed or Higher Official Signature (APproval for clmuifled materiel only) Other (Specify)

ro
3. 185/LIBRARY

4.

NASA LangleyForm 31 (Ray. May 19"/91 PREVIOUS EDITIONS ARE OBSOLETE PrescribingOocumantLMt 2240.1

l

Table of Contents

1 Introduction 2

1,1 Flight Control Team 3
1.1,1Organizational Structure 3
1,1.2Task Complexity and System Reliability 3
1.1.3Analytic Tools 6

1.2 Malfunction Procedures 6
1,2.1Types of Procedures 6
1.2,2Development of Malfunction Procedures]]

2 Automation of Malfunction Procedures] 1
2.1 Expert Systems and the Representation Problem]]
2,2 Rule-based Expert Systems 13

2.2.1Production Rules and the Predicate Calculus] 3
2.3 EarlyWork on Systems for Flight Control "14

2,3.1 EXPRES 14
2.3.2CRYEX] 4
2.3.3 GENEX] 5
2.3.4Derived Requirements 15

2.4 Development of a Boolean Representation] 5
2,4,1Malfunction Procedures as Graphs 17
2.4,2Generation of Boolean Functions "17

2,4.3Assignment of Variable Names] 8
2.4,4Procedural Logic in Boolean Form] 9

2,5 Software Implementation 21
2,5,1Organizing Principle 2]

2.6 Hardware Implementation 24
2,6.1 Generation of Hardware Descriptions 24
2,6,2 Reduction of Boolean Functions to Normal Form 26
2,6.3Minterms, Truth.tables and PLAs 26
2,6,4Interpretation of the Personality Matrix 26
2,6,5True and Complement Format 28.
2,6.6Comparing Logical and Physical Domain Formats 28
2.6,7PLA Performance Analysis 28

3 Distributed Architecture 29
3,0,1Characteristics of Distributed Architectures 29

3,1 Limitations of the Current Communications Architecture 30

3.2 Limitations of Current On-board Processing Architecture 30
3,3 Effect of Limitations on SSV Autonomy 31
3.4 Options for System Architecture and Interconnections 31

4 Summary 33

iii

List of Figu res

Figu re 1: Flight Control Team Organization 5
Figure 2: A Block Malfunction Procedure 7
Figure 3: A Special Subroutine (SSR) 8
Figure 4: A Failure Recovery Procedure (FRP) 9 ,
Figu re 5: A Pocket Checklist Procedure] 0
Figure 6: Equivalent Representations of Procedural Information] 6
Figu re 7: Design and Manufacture Sequence for VLSI Devices 25
Figu re 8: Disjunctive Normal Form Matrix andCorresponding Circuit Topology 27
Figu re 9: AutomatedAnalysisof ImplementationCharacteristicsof CRYO 6.3a Equations. 29
Figure 10: DistributedProcessingArchitecture:Software andHardware 32

List of Tables
i

Table 1: Flight Controller Functions 4
Table 2: Some Existing Expert Systems 12
Table 3: CRYO6.3a (figure 2) as Boolean Expressions 20
Table 4: Partial Listing of 63aRHS 23
Table 5: Partial Listing of 63aLHS 23
Table 6: Partial Listing of 63aEXP 23

iv

Abstract

A new representation of malfunction procedure logic which permits the automation of these

procedures using Boolean normal forms is presented. This representation is discussed in the context

of the development of an expert system for Space Shuttle flight control including software and

• hardware implementation modes, and a distributed architecture, The roles and responsibility of the

flight control team as well as previous work toward the development of expert systems for flight

control support at Johnson Space Center are discussed. The notion of malfunction procedures as

graphs is introduced as well as the concept of hardware.equivalence.

1 Introduction

The purpose of this paper is to present the preliminaryresults of work currently underway to

automate part of the Space ShuttleVehicle (SSV) flightcontrol team function throughthe application

of resultsfrom automata and sequential machine theory, and expert system research. Preliminary

applications have been developed based on these results using software tools developed for the

computer-aided design (CAD) of Very.Large Scale Integrated (VLSI) circuits and a high.level

language for the implementation of expert systems. Although developed specifically for the SSV, the

approach presented here appears to have application to the larger class of problems addressed by

control systems in general. The text describes the development of a data representation which

facilitates the automatic detection and resolution of anomalies occurring during SSV flight

operations, by introducing

1. a method for the translation to, and representation of malfunction procedures in Boolean
form,

2. the notion that malfunction procedures can be treated as graphs, and

3. the use of normal forms for the standardization of data structures to be used in computer
processing of the procedural information.

In addition to providing a data representation which will simplify software development and reduce

processor load with respect to previous approaches, we expect these improvements to

1.enhance the ability of the flight control team to detect and analyze anomalies faster and
to an extent greater than humanly possible. This is especially true for multiple dependent
failures; anomalies which are caused by one or more prior failures.

2. permit gradual transitioning from the current ground processing methods to an
increasingly automated and more distributed flight control system while preserving the
continuity and integrity of existing operational capabilities,

3. provide an environment designed to capture expert knowledge in machine-processable
form thereby preserving individual and collective expertise of the flight control team
members over time.

4. permit the arbitrary distribution of processing between the ground and the spacecraft as
well as between hardware and software.

The discussion will begin with a description of the organizational structure of the flight control team

and its responsibilities in SSV mission eperations. We shall then briefly discuss expert systems in

general terms before introducing a new representation for malfunction procedures using Boolean

logic. Following this will be a discussion of the application of VLSI design techniques used to derive,

from the Boolean representation, a disjunctive normal form matrix. The matrix representation

2

enables the processing of malfunction procedures by either software (using an expert systems

approach) or conversion to hardware in the form of programmable logic arrays (PLAs). A short

discussion of the impact this methodology can have on overall system design for space operations

follows including the selective distribution of processing to support increased vehicle autonomy as

well as reduced life-cycle costs for ground operations.

1.1 Flight Control Team

Asdescribed in [22], the modus operandi of the flight control teamcan be summarized, with respect

to responsibilities and activities during the operations phase of a space shuttle flight, as follows:

1. The fundamental role of the flight control team is to monitor and analyze Space Shuttle
systems for anomalous behavior, to analyze anomalies when they occur, to determine
corrective action, and to coordinate this action with the flight crew.

2. Most of the data from which these determinations and analyses are made are based on
computer processed, telemetry data originating from sensors on-board the SSV and
transmitted to the ground processing system.

Table 1 provides an abbreviated list of activities for which the flight control team is responsible for

during an SSV mission.

1.1.1 Organizational Structure

The SSV flight control team is organized as a hierarchy as depicted in figure 1. This organization

reflects both the diversity and the discrete compartmentalization of SSV system disciplines. In

general, SSV flight operations and procedures reflect a high degree of structure and definition in that

they are:

1. precise :operational procedures are developed, tested, and reviewed under simulated
mission conditions to achieve high precision.

2. deterministic : the SSV is a well understood, although complex, finite system. On-board
computers and sensors provide telemetry data. These data in combination with SSV
system design information, make possible the determination of the global state of the
vehicle.

3. documented : Operational procedures are catalogued in printed form. SSV system
performance is analyzed in detail both during and after a mission. Problems and
corrective action (successful and unsuccessful) are reviewed and documented.

1.1.2 Task Complexity and System Reliability

The SSV is significantly more complex than prior United States manned space vehicles, primarily

due to high redundancy of vehicle subsystems and the implementation of designs which reduce

single point failures within any single subsystem. While. in terms of system design, subsystem

3

Table 1: Flight Controller Functions

Flight Dynamics PrelaunchAnalysis
TrajectoryMonitoring
SpacecraftTracking
Aerodynamicsand Structures
MonitorOnboard NavigationState

SSVSystems PrelaunchAnalysis
ManageSpacecraftSystems
ConsumablesAnalysis
Fault Detectionand Isolation
Fault Recovery

SSVData Acquisition ManageCommunicationand DataSystems
ManageFlight Data

Payloads ManagePayloadActivities
ManagePayloadsand SupportEquipment

OperationsManagement PolicyMaking
Ground NetworkManagement
CoordinateCrewActivityPlan
LandingOperations
MedicalSupport
SupplementalTechnicalSupport

redundancy can greatly improve overall system reliability it also means that a system can have a

larger number of states. The number of states is directly proportional to the degree of redundancy.

The number and characteristics of these states must be known and considered in the analysis of

known or possible system or subsystem failures. In addition to the increase in complexity introduced

through redundancy, complexity is increased through the use of interdependent subsystems such

that failure of a single component can affect the performance of several different subsystems both

instantaneously, through total functional loss, and over time, through degraded performance. The

detection, isolation and correction of any fault in the SSV systems is extremely important in terms of

both crew safety and mission success. Not only is the detection and correction of real failures

necessary but, as pointed out in [25], to maximize system availability, unjustified system shutdown or

puIIdowns must also be minimized.

4

Fghtc°°tr°R°°ml htjOrecor
Guidance/ Computer Elect. Pwr. Public Ground

Flight Operations Guidance Booster Navigation Command Gen. Instr. Affairs Resources
Activities Integration Officer Engineer Cont. Sys. Lighting NetworkOfficer Officer Engineer Officer

Engineer Engineer Manager

Flight Data Environ./ Integrated I

CAPCOM Dynamics Payload Propulsion Processin Consum. Comm. J Physician
Officer Officer Engineer System Mech. Engineer

Engineer Engineer

l0 m i ii ii • m • • knln m u • n • • •

Medical
Staff Support Rm.

"Medical Monitor
Flight Flight Vehicle Systems "Biomedical Engr.
Activities Dynamics Staff Support Room # 1
Staff Staff

Support Support * ME "OMS/RCS "Sensor Ground Resources
Room Room " MPS "Control *DPS

(dispersed through
the Mission

"Phase * AERO 1 Control Center)
Support * AERO 2 Payload
• Timelines * AERO 3 Staff Support Room
• Pointing * Indat Vehicle Systems
• FDF Mgr. "Nav "Pallet System Staff Support Room # 2 Flight
"PF/IP "State "Payload Data Liason Data
"Crew *Trajectory "IUS Propulsion Systems "Life Support "EPS "Comm. Manager
Systems *O-Nav "IUS Vehicle Systems *Thermal "Instrumentation
• PADS "Guid/Targ "IUS Navigation Systems *Mechanical

"LSO

Staff Support Rooms
Natural Env Support Rm.

<==<<

Figu re 1: Flight Control Team Organization

5

1.1.3 Analytic Tools

The detection, analysis and recovery of faults is the responsibility of the flight control team and the

flight crew. The principal tools available to flight controllers and crew to assist them in these tasks are

either pocket checklists (small binders designed to hold all the responses to any problem that

requires crew action within five minutes) or large books containing several hundred procedures, each

comprising instructions to be executed when a fault arises which does not require immediate

response. These more involved directions, known as malfunction procedu res (or simply, malfs) are

critical to accurate and speedy fault detection and isolation.

1.2 Malfunction Procedures

In the current method of fault isolation, the flight crew and flight control team consult malfunction

procedures and reach a conclusion based on selected telemetry measurements and on.board

observations of switch settings (i.e., the vehicle state). Similar procedures are used to reestablish full

or partial system or subsystem function once an anomaly has been analyzed.

1.2.1 Types of Procedures

Four basic types of malfunction procedures are used by the flight teams [18]. Although they serve

differing functions they are collectively referred to as malfunction procedures. While this work

focuses primarily on system or block malfunction procedures, the methods presented in this paper

are applicable to all of the types of procedures described below.

1. System or Block Malfunction Procedures: The system malfunction procedure is a
deterministic representation of yes/no questions and crew procedures in the block and
line format of a flow chart. This form ideally lends itself to expert systems-type programs
due to its rule-based, "if.then" tree structure. Figure 2 is a representative block
procedure.

2. Special Sbbroutines (SSR): These are procedures that are accessed by many
different malfunction procedures. Also, the SSR is in more of a checklist format in
contrast to the block type used in the system malfunction procedures. Figure 3 is a
representative SSR.

3. Failu re Recovery Procedures (FRP): The FRP is a non.deterministic procedure used
when a General Purpose Computer (GPC) failure has already been determined and
certain steps must be taken to reconfigure the orbiter to take advantage of any remaining
capability in the failed GPC. Normally. FRP's are lengthier than the other malfunction
procedures. Figure 4 is a representative FRP.

4. Super Malfs: The super malf acts as a transition aid from the checklist to the
malfunction procedure itself. These procedures must be executed within five minutes of
the annunciation of an alarm and are critical to crew and mission safety. The wording
and format are identical to the ORB PCL (orbit pocket checklist) carried by the flight
crew. Figure 5 is a representative pocket checklist procedure.

6

EELS 6.3a CRYOHB PR£S

All H2 P norm _ _ [C/W FAILURE LOSSof ESS. bus, cb felled

"_ _-I htr onbl..... ItsIf: Any H2 P high ? In P Xdcr readlnoff scale low (I,5
H2 P _sla)and loss of

> 293.8psla Any H2 P low ? Auto capability< 153 psta
(_) If only P XdCrl

J failed low, con-
$68 CRYO

HE PROS _ YES _4 ' SYSTEMLEAK I__EULS CRYO 02(H2 tfnueAuto ops.
3 I P in all tks ,._.ib_, "_S]_':_r'-' LEAK Auto cycllngdeter-([i,,_i mined only by P in

1"_-153psta ? other lo tc patred

_: _1 LEAKBETWEENI _ 7 I Oeaot htrs paired and Tks 3,4

(_k are paired through
(OI3:D) I ed _ECTEO TKAND | - _ affected tk(s) her Auto logic
cb ESS2CA_YO { ICHECKVLV. LE_ I[(Rz)

C_TLRH2 TK1- C1 |CANNOTBE ISOLATED| • H2BTI(l(_213)HTRScb ESS2CAERYO
QTYH2_<1- cl ,C_ [or {All)

(013:B) _1/ e CRYOTK4HTRH2
cb ESS18C ERYO 8 J Also get YE_ ;9 J LOBSOF BSS I AtB Itwo) - OFF

CNTLRHE TK2 - cl ; _ PRESSAlarm _ _US, COMMONTO
cb [SS [BC CRYO and/or S68 CRYO :BOTHAFFECTEO02 '

101 Reconflg htrs
qTYFb_TK2- cl H2 PRESand $68 _NDH2 ffTRCNTLRS._ _r BUSLOSSSSR.(NLB60:G) CRYO02 PRESmsg _FFECTEOTK OTYS

¢b ESS3AB C_YO lines ? _LSOLOST.IF If prt ESSbus
CNTLRHE 1X3 - cl NO [SS18COL3&R15 lost, other alarms

cb ESS3ABCRYO .OST, THENONLY wtll be present.
QTYH2 _I(3- cl qSGLINES WITH NO If not pr| bus,
cb ESS IBCCRYO :7 LTS WILL RESULT sub-busesare:
CNTLRH2 TKA - cl TKI: ESSECA013&RIS j

cb ESS IBC ERYO _, ,,, T_(2:ESSIBC013&I_.S

I TK3: t

QTY H2 TK4 . cl 11{ TK3 and/orIKA _ _2 TK3 and TK4 ESSSABMLH6B

I_ _ TK4: ESSIBCML_B(R[) _'fTeaffectedtk ?) t_d: qty , r "H2 MANF VLV TK1,2 YES ,
ctr (tb - OP) YES NO

If TK qty • I_ _ 13JOperateon TK3
iN1) _d TK4 unttl qty
H2TKI,2,3 HTRS < 10%then:
A,B (six)- AUTO I {RL)
(All) _ i H2 TR3 IfrRSA,8
CRYO TK4HZ 'r _ (two)- OFF

If TR (It_,< ION NO and/orTKB)on Pnl(_ ATB Itwo(- u) (

H2 TKI,B.3HTRS YES
A,B (six)- OFF
(All)
CRYO TK4 }42 elsePOSS _ [LLC-1,__,

A-A,TO _ICAL'_O,LE..V_.EB_I-- DO NOTATTEMPTTO .,"
IRESETcb m

,t 1_ --
16 CNTLRcb of INO__.fp17[Continue to _ . .'
a-'_fectedtk on Pnl _nltor
MLB6B:Go ben? TKS,TK4Htrscycle Y{S-_BI P XDCR FAILEDl

YES ON when p....... i l_pO_. CONTINUETO m_K4 |
in both TKS • ' PEP,ATE I1(3 ANO
E17-B23psta ? IN AUTO

_.o
1191 POSSI

I _°'....._uR_I-'
,i FLEOLEO- (Ill(AFFECTEDHTR Zl] Deact htrS in_fected tk(s)i trillCAL PROBLEM.

DO NOT ATTEMPTTO {RI}

l IRESETcb ICHTLR • H2 TK3 HTRSA,B(two_- OFF

I and/or{ ,.AcN_oT.NT_,_
A_B two) - OFF

_ OVO99/ECLS/Ba

,, BASICREV A

Figure 2: ABIockMalfunctionProcedure

(CLS SSR-1(Coot)

_-ankpressures tks per system
depressing but ere belng flown,

proceed dtr tly
_t)_t to alarmI to Block"llr_andtgllevel or excess

buenttty then to OT-ockl_l

:onsu tton ! _ 5mallet teaks

be difficult

to locate with

pbel_._o I_ ,ta7 I °I%",__ _:_°::"_'1--_rs inaffected .hentrouble
2) Osfa ? NO |_n_A_'D'--' "" I _ shootfng wfthhtrs off, do not

YES _ "-'-"-- e"02tHZ) _1 (2.3) a'now 02(,Z.) 'rK........,°°.o,
6.3e r! or hero. 600(180)
6.3b 2-_ Ihtrs in s_s>'_lIm'n qrr ell I (All) pe]e. Fuel Cell
6.3f iF" _-- e CRYOTK4HTR loeds shouldbe

6.3g r! I_(_Ie)A.BTKI,2,3 02{H2) A.B - OFF baleeced IS6.3h _]-' k ClOSt_y ee

S.31 r i i,+._._e; peselble®,,,,+.4,,,
021H21A,B _1(1801 I sla, < IOZ). turn o_

K_rs to boost _]actlvate _i only TKI,Z Htrspress

S_ Sfnce hip p_
e O_(H2) TKI,2,3 _s not exactlyHTRSA,B _P. __

(six I - ON _ I equal betweentks,
tA(x)]'{1_.) I one tk may p,'ess-
• CRYOTK4KtR]e 02(IR) TK1,2 HTRS urtze sltghtly

02(;42) A.B I_l faster than the
Itwo) - ON _ other

YES -- _'_rerise In tm1,BI

ii,i,-._ . pi,,.,.:<s4 ®
• F lfl eltfler IKI Or AO L1 When Ill or

_ID iXZ p - 900 2so)

S'"_00_ 1X4 door ? YES)sta:
" 02(H2) IX1,2

2_01 HTRSA,B

tfc_;" - OFF
TKS+4HiPs• If
alreadp off go to equallze

tOBlockI_1 , _
(RI) '
e 02(H2) TK3

OFF eaktn9 tk off.

(A11) Block I_lJl (R1)• CRYOTK4HTR [per
I • 02(fi2) MAN/:VLV

TKI - CL
02(H2) A,9 -

N P$ door 7 Recor_ Inltlel
,ressure veluee.

decay ZO(IO) psi
and again record
both tk pressures.

C°mpare]_<_Pls TKZ

Pi "

Pf-

PI-Pf -

_P2 • ZAPI ?

NO YES

ALL VEH/ECLS/SSR-1
BASICR£VA

Figure 3: A SpecialSubroutine (SSR)

8

Qpc".p.7
.Ps.eco.nQFo.Loss AV.AZCOOU.Q
(ASCENT/O.mT)......

NOT[
PPocedurets destgeledto protecT-_FCs from overheating by eov|_
_2o _, _F$f_t_ct_o.s _nt_ cooled AvBay GPCs(If not ellready there).
G3F0and G2FD(or redundantG;_)funct|ons are placed tnto uncooled
AVBIly GPCSMld poweredoft'. If BFSts roved, newBFSGPCwH_ be
o_mpedto p_ov4de good8FS for" [ntry

For Ascent. _ls F_P essumsJ_Rg_, LOSSOF A¥ SAyFANSprOCedure
ASCR(T) has beenaccolpHsh;L;

[f _8]T €onfl_ 1$ G3(OlqSt_C_burns) or G8 (f_$ C/G}, t_t)st_te
fOP G2dlel'e _proprfate. NaJOr_:le 30] assm_ed|F no OPS3

, t PerfOm steps
A3_| f51) , 8-h
OR81-r (Gg,G8,G3/52) t-q

OPS - GI G1 - 8FS1 G1 - G1 G1 BFS OPS GI GI - G1 8F51

I _TPUT NOaHNOaHNO_ NOR_BKUP NOaHNO_ NOAHNOrMBKUP)UTPUTIN_4 NORHNO_ NOaHBKUP
E HALTRUH RU HALTRUN RUN HALTRUN RUN HALT _OO[RUN RUN HALTRUN RUN

GPC 12340 GPC 12340 _PC _2_4_
l

2 3 _ ,_ 2 2
3 3 3 3 3 4

_r ! _RT ,_RTl I

4 0 4 0 4 0

_ _"_
k_ I Z P_'I m

AV2Sll)'I 3
a. FR[IEZl[.-I_YREAS$[GHIq_T.......................... SSR-5..... • (;UN;';_i

• _ -OFF $'rrl--'T--'--T--" --'J'-
2 1 2 3

,. Secu'._ (_,',*8. 1,3 _'y) 3 1 2 3
• 8F5 _T,GNC,OI_ CO0PRO 4 1 2 3
• GPCS 1400E- I_LT (tb-b_) PL1/2 0 0 0

• 8FC_T OISA_- OFF 3 1 2 3
4 0 0 0

JiLL1RH/'DPS
FRp-7
BASICR£VA

Figure 4: A Failure Recovery Procedure (F.RP)

9

MN BUS UNDERVOLTS/ _1
' FC VOLTS-AMPS

bI current andeither volta qe out of ltmtt$:

VHNOIe FC FC13 foLTS ANPS ACTION
SHOR1"or OE_A_O FC

LOt(LW HIGHIf no MNeLlStted to affected FCHNBUS:
(26.4 <26.6 A)501 If affected FC/HNBUSconnectedto P/L BUS:

or I 1. GOto step 14
LGH If affected FC/MNBUSnot connectedto P/L BUS:
i)SO 2o Perfom step 3 o'_"affected FC Sl_rDII, 54

(CueCard), thee:
If FC VOLTS< 32.5 (FC Short):
i 3. Affected FCREACVLV- CL
i If first FCfetlure:
i I 4. PerformBUSTIE, 5-8 (Cue Card)

i 5o If al1 Iq/ BUSEStied, HNCTIE
or SUS - OFF

or I 6. Go to P_R_, LOSSof I FC/1 FREON

t LOOP,_ >>
f secondFCfat]we:

.. 7, Perfom affected HNBUSLOSSACTION,
S-IS, then:

8o Go to PIdRDII,LOSSof 211DFC 10-20 >>
f FCVOLTS> 32.5 (_1]5-_rt):

9. Go to affected _ BUSLOSSACTtoN,S-1S >)
if bus tied to affected FC/141BUS:

10. IJntte buses
If short eltslnated andHNBUSunpowereddue
I to bus untie:
or 11. Goto affected HNBUSLOSSACTION,

5-1S >>f short not eliminated and1411BUSunpoetff'ed
due to bus untie:
12° P/L PRI (three) - OFF
13. Perform SlJSTIE, 5-8 (Cue Card) -

9oodFCINNBUSto unpo_eredbus,
then:

If affected FC/IM BUSconnectedto P/L BUS:
14. DisconnectP/L 8USfrom affected

FC/HNBUS
If short eliminated:

or I 15. Goto P/L BUSLUSSACTION>>

I f short not eliminated:
t

16. Goto step 2
If affected FC/MNBUS.not;connectedto

P/L BUS:
17. 6o to step 2

Figu re 5: A Pocket Checklist Procedure

"10

1.2.2 Developmentof Malfunction Procedures

Eachmalfunctionprocedureis the productof hundredsof man-hoursof design,validation,and

verification.Typically,a malfunctionprocedureisinitiallydesignedbyoneor moreengineers.After

thebasicdesignhasbeendetermined,theprocedureisthencritiquedata 'desktop'reviewwherethe

malfunctionproceduresbookmanager,theauthorof the procedureandat leastone crewmember

reviewtheprocedureandcheckits feasibilityforuseon theSSV. Thenextstepisfor theprocedure

tobetestedbyusingboththeSingleSystemTrainer(SST)andtheShuttleMissionSimulator(SMS).

Boththe SST and the SMSprovidea simulatedSSV environmentin whichthe procedurecan be

tested.Inthisway,simulatedfailurescanbeinputintothesystemandcrewandflightteamresponse

totheprocedurecanbeevaluatedthroughintegratedsimulations.

2 Automation of Malfunction Procedures

1The factors which influence a decision to automate a task performed by a human are

straightforwardand implicitlydetermined by humanlimitationsand characteristics. Not surprisingly

thesefactors includespeed,accuracy, precision,complexity,andcost. While notall humanactivities

lendthemselvesto automation,where an activitywhich does exists,as is the case with malfunction

procedures,two fundamentalquestions mustbe addressed earlyin the process of automation. First,

what types of automata are available for use, and second, how shall the information and data

currently used by the human be represented for processing by those automata? Since we are only

considering programmable digital computers or their equivalent in this work, the ensuing discussion

will be limited to the selection and implementation of a methodology suitable for the representation,

on this class of automata, of the procedural logic embodied in malfunction procedures.

2.1 Expert Systems and the Representation Problem

Although no precise definition of an expert systemexists, a great deal has been writted about them.

A comprehensive review of the subject as well as the entire field of Artificial Intelligence can be found

in [2], Table 2 lists some of the more well-known expert systems with their particular application

domain and references. According to [2],

[expert} systems are most strongly characterized by their use of large bodies of domain
knowledge - facts and procedures, gleaned from human experts, that have proved useful
for solving typical problems in their domain.

Such systems differ from conventional programming in that they are intended as a general-purpose

aid to problem.solving within a particular domain as opposed to being dedicated to a particular

application within a domain. For example, an expert system might be used to determine which source

!
Sections 2 - 2 5 1 are adapted from [15]

]]

of tracking data is the most appropriate for use in updating a spacecraft state vector given the current

ground and vehicle status. A conventional computer program could then be used to perform the

computation from the source selected. A key problem in developing an effective expert system, as

pointed out by [24],
is how to represent and use the knowledge that human experts in these subjects

obviously possess and use. This problem is made more difficult by the fact that the expert
knowledge in ma.ny important fields is often imprecise, uncertain, or anecdotal (though
human experts use such knowledge to arrive at useful conclusions).

Function Domain System Reference

Diagnosis Medicine CASNET [32]
Medicine INTERNIST [26]
Medicine MYCIN [28]
Medicine PUFF [19]
Engineering SACON [4]
Geology PROSPECTOR [10]

Search Chemistry DENDRAL [12]
Chemistry SYNCHEM [14]

Problem Mechanics MECHO [6]

Solving and Programming PECOS [3]
Planning Configuring R1 [21]

Computers

Measurement Medicine VM [11]
Interpretation

Computer-aided Electronics SOPHIE [5]
Instruction Medicine GUIDON [7]

Knowledge Diagnosis TEIRESIAS [9]
Acquisition Diagnosis EMYCIN [29]

Diagnosis EXPERT [33]

System ROSIE [27]
Building AGE [23]

HEARSAY1II [1]

Table 2" Some Existing Expert Systems

12

2.2 Rule-based Expert Systems

Rule-based systemsare attractive because of their modularity,uniformity and ability to express

human expert knowledge in a natural manner[2]. Expert knowledgecan frequentlybe expressedin

the form of IF-THEN relations; rule-based systems are designed to take advantage of this

, characteristic. In particular, IF-THEN information can be satisfactorily represented as production

rules. Production rules are a computational formalism which can be used to define relationships

among variables. The relationships are structured such that the satisfaction of preconditions, called

antecedents, produce results, called consequents. Antecedents and consequents are generally

expressed using symbolic variables and logical operators.

2.2.1 Production Rules and the Predicate Calculus

The use of production rules permits us to express some kinds of expert knowledge in a formal way

and aids in the articulation of that knowledge. This formalism is also well-suited to expression in

programming languages and in the first.order predicate calculus [24], [15]. The first-order predicate

calculus is based on first-order logic (FOL) which, as the name implies, is a formal system of logic,

Use of this system permits us to manipulate expert knowledge according to logical principles and to

obtain inferences from known rules. A powerful result of this approach is the ability to form

hypotheses (or theorems) and test (or prove) them as well as to ask questions about the validity and

satisfiability of subsets of rules [24]. The representation of malfunction procedures, or for that matter

any procedures, in the form of production rules is useful to us here for the following primary reasons:

1. It provides a standard, formal structure which is easily translated into programming
languages. A familiar example of this is the IF.THEN syntax of FORTRAN although more
sophisticated programming languages are generally used for implementation of rule.
based systems.

2. It is compatible with the constructs of first-order logic and therefore first-order predicate
calculus. These formalisms have desirable properties for the development of automatic,
rule-based deduction systems.

This paper does not address the application of FOL to malfunction procedures other than to point out

the suitability of the representation presented here to the techniques of FOL as well as some results

from abstract algebra. Our primary purpose here is to establish the equivalence of a logical

representation of procedural information to the existing representation of the same information on

paper and to point out the advantages of the logical representation. The subsequent discussion will

focus on some early work done at Johnson Space Center. and then discuss how procedural

information can be expressed using Boolean functions and describe two methods of implementing

this representation,

]3

2.3 Early Work on Systems for Flight Control

A few prototype systems were developed to examine the feasibility of automating malfunction

procedures. Thesesystemsprovideda good basisforexperimentationand gavethose involvedinthe

projectgood demonstrationtools. The initialthrustwasto pickdifferent malfunction proceduresfrom

variousSSV disciplinesand, bycodingthemin Fortran77, determinecommonalitiesin format,syntax,

logicalstructure,and so forth. The goal was to define a small family of logical operatorswith some

typeof logicalarray as operands. A minimum of onetype of operatorwas envisionedfor each of the

four types of malfunctionprocedures. Initialworkwasbegun in June, 1982 by analyzing the systems

drawingsof theSSV PressureControl System.(PCS)and constructingfunctiona//oss logic diagrams.

Bycombiningthedrawing, logicdiagram, andmalfunctionprocedurefor the PCS, EXPRES was born

in October, 1982. The malfunction procedureprovidedthe rule.basedlogic and interpretationof the

drawingand diagramsuppliedthe basisfor an extensivequery structure.

2.3.1 EXPRES

E×PRES served its purpose as a demonstrationtoot quite well, but had two major shortcomings.

First, EXPRES acted as if the only inputs it had were provided by human operators, whereas,

eventuallya systemwas hoped for which could be linkedto a data bus and thereby access vehicle

telemetrydirectly. In other words,the humanhadto do a large amount of data checking in order to

answerthe questionsposed by the procedure. A computershouldbeable to do the monitoringitself.

Secondly, since it was a demonstrationtool, EXPRES had the PCS malfunction procedure logic

procedura//y programmed or hard-coded. This meantthat if anothermalfunction procedurewere to

be implemente the EXPRES program would require modification. This type of maintenance and

modificationiscostlyand error-proneas wellas difficultto control.

2.3.2 CRYEX

In February of 1983, CRYEX, another demonstrationexpert system which used the cryogenic

hydrogen pressure malfunction procedure, was designed to remove one of the shortcomingsof

EXPRES. CRYEX differed from EXPRES in that CRYEX allowed the user to define the symptoms of

the problem prior to the program execution by changing the values of certain parameters. This

feature made the program act as if the computer were interfaced with a data bus thereby accessing

data directly from the vehicle. This showed that the computer could make many decisions without the

assistance of a human. It still had the disadvantage of being hard-coded, however.

]4

2.3.3 GENEX

Asa response to the second criticism, GENEXwas conceived. GENEXwas built as a generic expert

system operator. In other words, it was built to process any systems malfunction procedure.

Benefitting fromthe experience gained from EXPRESand CRYEX, GENEX proved more efficient and

shorter than the previous demonstration products but only partially realized its goal. The major

problem remained that each procedure had to be uniquely coded; therefore generalizing the

representation of the four types of procedures to reduce the complexity of the software was difficult.

2.3.4 Derived Requirements

Experience with EXPRES, CRYEX and GENEX resulted in the identification of a number of

requirementsfor an expert systemto be usedto supportthe flightcontrolteam. The systemshould

1. be basedon existingsystemdiagrams, proceduresand functionalloss diagramsand, to
the extentpossible,be traceable to thesesourcedocuments.

2. make maximaluse of telemetrydata to reduceoperatorinteractionwiththe system.

3. not require the integral hard-coding of SSVsubsystem logic.

2.4 Development of a Boolean Representation

To satisfy these requirements, the approach was developed that represented.the procedures as sets

of Boolean functions. Figure 6 depicts the relationship of the source document, the original

malfunction procedure, to its Boolean equivalent. Because the procedures are generalized as

Boolean functions, one can

1. apply the techniques of automata theory, switching theory and abstract algebra [30].

2. take advantage of two methods of implementation software and hardware, as depicted in
figure 6.

Our discussion of the first point will be relatively limited because much of this work is still in progress

[15]. With regard to the second point, not only does this approach provide a standard data structure

it also provides the system architect the ability to selectively migrate processing between software

and hardware using a single common representation, thereby offering tremendous flexibility in the

design, development, testing and implementation of automated malfunction procedures. One of the

malfunction procedures. CRYO 6.3a, has been implemented in both modes as a proof-of-concept

demonstration.

15

= Documentation
System Malfunction Procedures
Subsystem Reconfiguration Procedures
Failure Recovery Procedures
Pocket Checklists

Manual

* Boolean Expressions

63ax2 = 63axl
¢o3ax4= 63axlc & (~63ax5) &63ax8

Semi
Auto= 3

* ProductionSystem: User, Rulesand Data Interaction

Antecedents I Consequents(63arhs) _> (63alhs)

I Explanation I<
(63aexp)

User 1 Automatic

TelemetryData J

Figu re 6: Equivalent Representations of Procedural Information

]6

2.4.1 Malfunction Procedures as Graphs

The malfunction procedure itself can be thOUghtof as a directed graph or digraph, G=(KE), where

V= {_,1,_,2....._'k},a set of vertices and E is a set of arcs such that eachelement of E is an ordered pair of

vertices, (vi,vi+l). An arc from _'i to _'i+zcan be denoted as vi_vi+ 1[16]. In this terminology the

boxes in the malfunction procedure are vertices, and the connecting lines represent arcs. A path in

the graph is a sequence of vertices _,i,v:....._'k. k>l, such that an arc, (Vi"-)1,i+1), exists for each i,

1<_.i< k. The path is said to be from vi to rk. For any vertex, _'iin a path, vertices _.. j< i are referred

to as predecessors of _,_.while vertices }'k, k>i are the successors of _'i, The numbering of the

vertices used here should not be confused with the numbers used to name the boxes in the

malfunction procedure. The numbering of the vertices is used to indicate order; the numbering of the

boxes is used as identification and not necessarily order. An interesting note is that malfunction

procedures are not trees. As defined in [16], a tree is a digraph with the properties that:

1. There exists a vertex, the root, without predecessors, from which there is a path to every
vertex.

2. Each vertex other than the root has exactly onepredecessor.

3. The successors of each vertex are ordered from the left.

Malfunction procedures fail to satisfy properties two and three, as seen in figure 2. We introduce the

concept of graphs here to permit us to be more precise in our subsequent discussion as well as to

establish the groundwork for the application of other analytical methods.

2.4.2 Generation of Boolean Functions

The translation of block malfunction procedures to Boolean functions is straightforward. Failure

Recovery Procedures (FRP) present a somewhat less direct translation but are nonetheless

convertible to the representation described below for block malfunction procedures. As an example,

consider the following expression:

63a9 = 63alcA ~ 6.,a_A ~ 6.,a5A 63a8 (1)

Referring to figure 2, note the heavily bordered box labelled with the number, 9, in the upper left-hand

corner of the box. This box, as do others with the heavy black border, represents a termination or

diagnostic state within the procedure. When a user of the procedure reaches one of these boxes by

following the logic of the procedure, a conclusion about the state of the subsystem of interest has

been reached.

17

2.4.3 Assignment of Variable Names

To represent the logic leadingto the conclusionnamed9 in figure 2 in machine-processableform

we have assigneda Boolean (binary.valued)variable named 63a9 to the vertex labelled 9. In the

context of discussionin section 2.2 this variable is the consequent of the antecedent conditions on

the right-hand side(RHS) of equation (1) in section2.4.2. When the consequent hasthe value 1,the

propositionwithin the box is true, when it is 0, the propositionis false. Since antecedent and

consequenttermsare assigned names in an identical mannerwe will present an example of naming

onlya single variable. Each vertex withina procedure is assigneda variable namecomposed of the

procedurename, for example 63a, and a numericsuffix which isthe label of the vertex. This process

can be summarizedbythe followingproductionor rewriting rules.

[0] S"-_AABAC

[1] A-,'l1213141516171819

[2]B-"alblcl...IxlYlz

[31c--,81x

These rules specify a string of literals of length four or five. The first literal, represented by the firstA

in rule [0], indicates the chapter in the malfunction procedure handbook where the procedure can be

found. The second A indicates the page in the chapter. The third literal,B, indicates the procedure

within the SSV engineering discipline. The fourth literal,A, specifies the vertex containing the text of

the proposition. Finally, the fifth literal, C, specifies subpropositions which may be posed in

association with any single proposition as in the case of 63ala, 63alb, 63a 1c of figure 2. When no

subpropositions are represented, this literal evaluates to null represented by ;k. The application of

these rules is illustrated below in the generation of the variable name 63a9. The selective application

of these rules at each step beginning with the start symbol, S, rewrites the literal string, AABAC, to the

variable name 63a9.

S--*AABAC [0]

AABAC--*6ABAC [1]

6ABAC_63BAC [1]

63BAC_63aAC [2]

63aAC-*63a9C [l]

63a9C_63a9 [3]

The bracketed number after each step is the number of the rule applied at that step. The use of

18

rewriting rules provides a systematic method of assigning names to variables the number of which

would rapidly become unmanageable if variable nameswere assigned in an ad hoc fashion. These

conventions assure that each variable will have a unique name and that every reference to any given

proposition (associated with a vertex) within a malfunction procedure will be made by the same name.

This is especially important since there are cross-references to the same vertex between the

malfunction procedures whereby one malfunction procedure branches into another.

2.4.4 Procedural Logic in Boolean Form

With a methodof assigning variable names, capturingthe logic of the procedure as a Boolean

function is trivial, Realizing that a Boolean function is equivalent to a path through the graph of the

malfunction procedure makes this immediatelyapparent. The numberof antecedent terms in the

resulting Booleanfunction is k-1 where k is the numberof verticesin the path; the path length iS

k- 1. Note that the consequent term of the function isan element of the path and contributesto the

size of k. The enumeration of a set of functions whichcovers or spans the malfunction procedure

canbe accomplishedby the simplerecursiveproceduredescribedbelow.
GENERATE(FUNCTION);

v _- NAME.OF(vertex);
N *- GET.NUMBER.OF.OUTPUT.ARCS;
if FUNCTION ~ = nil then LOGIC-AND 4- ' A " ;
else LOGIC-AND *- nil;

case 1: if N = 0 then
do;

FUNCTION *- v II - II FUNCTION;
output FUNCTION;

end;
case 2: else do until (N = 0);

N *- N-l;
if VALUE(arcN) = 'yes', or" nil then FUNCTION _-FUNCTIONIILOGIC-ANDIIv;
if VALUE(ar'cN) = 'no' then FUNCTION_-FUNCTIONIILOGIC-AND~IIv;
call NEXT.VERTEX;
call GENERATE(FUNCTION);

end:
return:
end GENERATE;

If this procedure is applied at the root of each malfunction procedure the result is a set of Boolean

functions like that in Table 3. We assume the existence of some other functions to service the

GET.NUMBER.OF.OUTPUT.ARCS, NAME.OF, VALUE. and NEXT.VERTEX calls. In particular,

GET.NUMBER.OF.OUTPUT.ARCSreturns 0, 1, or 2 for the various alternatives of nil, yes, or yes and

no. NAME.OF assigns a variable name to the vertex consistent with the rules of section 2.4.3,

NEXT.VERTEX follows the arc vi--*vi,__to the next vertex. This procedure is executed manually at

present although it could be implemented on a computer to support the automated design of

malfunction procedures.

19

63a2= 63ala
63a4= 63alc A 63a3
63a6= 63alcA ~ 63a3A 63a5
63a7= 63a6
63a9= 63a1¢A ~ 63a3A ~ 63a5A 63a8
63al0 = 63a9
63a14= 63a13
63a15= 63alcA ~ 63a3A ~ 63a5A ~ 63a8A ~ 63all A 63a12A 63a14
63a18=63alcA ~ 63a3A ~ 63a5A ~ 63a8A 63all A 63a16A 63a17
63a19=63alcA ~ 63a3A ~ 63a5A ~ 63a8A ~ 63all A 63a16
63a20=63alcA ~ 63a3A ~ 63a5A ~ 63a8A 63all A 63a16A ~ 63a17
63a21= 63a19
63a21= 63a20
63a24=63a22A ~ 63a14A 63a12A ~ 63all A ~ 63a8A ~ 63a5A ~ 63a3A 63alc
63a25= ~ 63a22A ~ 63a14A 63a12A ~63all A ~ 63a8A ~ 63a5A
~ 63a3A 63alc
63a27= 63a26A 63a23A 63alb
63a28= 63a25
63a28= 63a15
63a30=63a29A ~ 63a26A 63a23A 63alb
63a33= ~ 63a32A 63a31A ~ 63a29A ~ 63a26A 63a23A 63alb
63a35=63a32A 63a31A ~ 63a29A ~ 63a26A 63a23A 63alb
63a36= 63a34bA ~ 63a31A ~ 63a29A ~ 63a26A 63a23A 63alb
63a37= 63a30
63a37= 63a33
63a37= 63a35
63a37= 63a38
63a38= 63a34aA ~ 63a31A ~63a29A ~ 63a26A 63a23A 63alb
63a39= 63a36
63a42= 63a41A 63a40A ~ 63a23A 63alb
63a43= ~ 63a41A 63a40A ~63a23A 63alb
63a44= 63a42
63a44= 63a47
63a47= 63a46A 63a45A ~ 63a40A ~ 63a23A 63alb
63a47= 63a46A 63a45A 6368
63a48= ~ 63a46A 63a45A ~ 63a40A ~ 63a23A 63alb
63a48= ~ 63a46A 63a45A 6368
63a50= 63a49bA ~ 63a45A ~ 63a40A ~ 63a23A 63alb
63a50=63a49bA ~ 63a45A 6368
63a51=63a50
63a52=63a49aA ~ 63a45A ~ 63a40A ~ 63a23A 63alb
63a52= 63a49aA ~ 63a45A 63bx8
63a53= 63a52

Table 3: CRYO 6.3a (figure 2) as Boolean Expressions

The conversion of the malfunction procedure to a set of Boolean expressions is equivalent to the

enumeration of the possible paths through the graph. While enumeration problems are associated

with classes of problems considered intractable [13] we are not faced, here, with the full enumeration

20

problem since the set of paths for conversion to Boolean form is small and well.defined by virtue of

having been written down. This is the same as saying that the search space of the algorithm of

2.4.4 is small.

2.5 Software Implementation

Usingthe approach to variablenaming andlogic representationdescribedabove,a selectedsubset

of malfunctionprocedures wasimplemented ina convenienthigh.level language (HLL), ROSIE (Rule-

oriented Systemfor ImplementingExpertise) [27]. As used in thiswork, ROSIE is implementedon a

VAX 11/780 running the UNIX operating system. It should be noted that ROSIE was selected

primarilyas a matter of convenience and that thiswork does not require its use. Any programming

language could be used to implement the methods presented here. The principal advantages of

ROSIE are the interactive nature of the system,the existingsystemutilities for string manipulation,

and the relationalstructure of the underlyingdatabase system. These features present a powerful

developmentenvironment. The principal disadvantageis the largesystemoverhead associatedwith

the interpretive ROSIE language which is itself based on a dialect of LISP, INTERLISP.D. The

dependency on INTERLISP.D also limits the variety of systemson which ROSIE may be hosted at

present.

2.5.1 Organizing Principle

To retainthe terminologyfound in existingmalfunctionproceduresand, at the same time, retainthe

Booleanrepresentationcommonto both the softwareand hardwareimplementations,the information

contained in malfunction procedures was conveniently organized into three components. This

decomposition was suggested by the form of the Boolean functionsas shown in figure 6. As an

example, for the malfunction procedure, CRYO 6.3a, the rule.sets contain the following three

components:

1.63arhs - Antecedents. Contains the logic necessaryto determine the binary value of the
consequents of the Boolean expression. In general, this represents informationwhich
must be requested from the flight controller or the flight crew. The value of these
Boolean variables are potentially ascertainable from telemetry data. Grouping the
variables into this category essentiallyconstructsthe set of data which must be obtained
from some source external to the malfunction procdure itself.

2.63alhs - Consequents. Contains the inferential logic which determines the binary value
of the consequents as a function of the antecedents, Consequents are associated with

• either or both

a. diagnosis, the detection of a condition associated with the heavy, black bordered
boxes displayed in the original malfunction procedure document reproduced in
figure 6.

2]

b. action . the detection of a condition associated with a box in the original
procedure which requires human intervention or a change of vehicle state
necessary to provide further information or ensure vehicle safety before executing
the rest of the procedure.

3. 63aexp - Explanation. Contains the logic to interpret the values of the Boolean variables
into English text for presentation to the flight controllers or crew. This category uses
exactly the wording of the original malfunction procedure itself. This ability is a major
advantage in eliminating problems associated with introducing new terminology to a
highly specialized application.

This decomposition provides a strong organizational structure or paradigm for converting these rule-

sets into compiled, high-level languages such as FORTRAN or PASCAL as well as interpreted and

compilable languages like LISP. Tables 4, 5, 6 show the form each of these categories takes when

constructed as ROSIE rule.sets.

22

Table 4; Partial Listing of 63aRHS

[4] if H2 Press is true obtain 63ala of "H2 P Normal"
[5] if 63ala is true go 63alhs.
[6] if 63ala is false obtain 63alb of "H2 P High"
[7] if 63alb is true obtain 63a23 of "TK3 and/or TK4 the affected tk".
[8] if 63alb is false obtain 63aic of "H2 P Low".

Table 5: Partial Listing of 63aLHS

[1] if (63ala is true) assert 63a2 is true.
[2] if (63aic is true and 63a3 is true) assert 63a4 is true.
[3] if (63alc is true and 63a3 is false and 63a5 is true)

assert 63a6 is true.

[4] if (63a6 is true) assert 63a7 is true.

Table 6: PartialListing of 63aEXP

[8] if 63ala is true send {"" All H2 P norm",return}.
[9] if 63alb is true send {"" H2 P High",return,

"" ACTION: Deact htrs in affected tk(s).",return,
" (RI) H2 TKI(2,3) HTRS A,B OFF and/or",return,
" (A11) CRYO TK4 HTR H2 A,B - OFF",RETURN}.

[10] if 63aic is true send {"" H2 P low",return}.
[11] if 63a2 is true send {"" DIAGNOSIS: C/W Failure",return}.

23

2.6 Hardware Implementation

The reasonthatwediscussthetopicof hardwareimplementationatallisto pointouttheconceptof

hardware-equivalence. By virtueof the use of Booleanformalismwe are able to representthe

completelogicof the malfunctionprocedureas if itwerea programmab/e/ogic array (PLA). This

meansthat procedurallogiccontainedin the malfunctionprocedurescan be transformedto a

bit-map whichis independentof the methodor languageof implementation.Sincethe bit.map is

essentiallya truth.tablewitha standardstructure,describedbelow,a singleprocessoror program

can beconstructedwhichprocessesthesetables. Byadoptingthisrepresentationwe eliminatethe

needfor a largesoftwaresystemwhichwouldbe necessaryto captureand processthe logicof a

largenumberof malfunctionproceduresandpermittheprocessingof thesameprocedurallogicat

the level of register.registeroperations. This impliesnot only significantlyreduced storage

requirementsbut also veryhighprocessingspeeds. The next fewsectionssummarizethe steps

necessarytoconvertBooleanexpressionsto theirPLAformandpresenttheresultsof an actualPLA

synthesis.

2.6.1 Generationof Hardware Descriptions

Once the malfunctionprocedurehas been specifiedin Booleanform, the processof creating

descriptionsof hardwarewhich are functionallyequivalentto the malfunctionprocedureis

straightforward.A set of Booleanequationscanbe translatedintointegratedcircuitsthroughan

automatedseriesof translationsbetweendifferentintermediaterepresentations.Each of the

representationsisa descriptionofa differentaspectof the implementationprocess.Inthiscase,the

Booleanequationswillbe convertedintoa truthtablewhichissometimesreferredto asapersona/ity

matrix. Thetruthtablewillbe translatedintoan architectureknownas an AND.ORprogrammable

logicarray(AND-ORPLA). (In the remainderof thisdiscussion,thetermPLAwillbe usedto mean

AND.ORPLA.)ThePLAcanbeimplementedasa customintegratedcircuit.Figure7 summarizesthe

sequenceof stepsleadingfromtheBooleanfunctionstothe manufactureof the hardwaredevice.

Mostof thesestepsare implementedusing programsdevelopedin the Universityof California,

Berkeley,ComputerScienceDivision[20]. Thenamesof the majorprogramsinvolvedare listedin

figure7 accordingto theirroleinthesequentialdesignandmanufactureof a VSLIdevice. Although

one can actuallygeneratea semiconductordevicewhich executesthe logicof the malfunction

procedure,as shownbelow,to do so probablyis impracticalfor mostof the kindsof procedures

currentlyexisting,due to the volatilenatureof theseproceduresand the consequentfrequent

changesmadeto them. Whilethe redesignof thesedeviceswouldbe trivial,themanufactureand

integrationofthe resultantdeviceswouldnotbe generallycost.effective.A smallsubsetof highly

stableprocedurescould possiblybe identifiedfor hardwareimplementation.

24

* Boolean Expressions

63ax2 = 63axl
63ax4 = 63axlc &(~63ax5)&63ax8

eqntott 1
Presto

* Bit Map

PLAPersonality Matrix
Logic Minimization

Tpla 2
Mextra
esim

* Circuit Design & Analysis
DesignStyles
Technologies
Simulation
Performance Analysis

ARPANET 3

* Chip Manufacture
MOSIS

Figure 7: Design and Manufacture Sequence for VLSI Devices

25

2.6.2 Reductionof BooleanFunctionsto NormalForm

The design automationprogram eqntott generates a personalitymatrix suitable for PLA

programmingfroma setof BooleanfunctionsthatdefinethePLAoutputsintermsof itsinputs.Table

3 displaysthe inputto eqntott while figure8 showsthe resultingpersona/ity matrix and the PLA

resultingfromthatmatrixasdescribedinsection2.6.4. A personalitymatrixis a representationof a

set of Booleanfunctionsin disjunctive norma/ form (DNF) that definesa templatefor a circuit

implementationof thosefunctions.

2.6.3 Minterms, Truth-tables and PLAs

Disjunctive normal form expresses Boolean functions as sums of products or minterms. The

interested reader is directed to [31] for further discussion of normal forms for Boolean functions. One

method of organizing information contained in Boolean functions in general and functions in DNF in

particular is through the use of a truth-table. The mathematical term for a row in a truth table is a

minterm. A truth table is an enumeration of the output values of a set of Boolean equations for a

given set of in)utvalues. For example, the truth table for the Boolean function a/k (bV c) is
a b c out.
0 0 0 0
001 0
010 0
011 0
100 0
101 I
110 I
111 1

Each minterm is the conjunction (logical AND) of one or more terms. The second row of this truth

table is a minterm whose value is 0 if a is 0 and b is 0 and c is 1. A truth table can be reduced in size

by the use of don't care terms. A don't care term is represented by '-' in the truth table. One possible

truth table for a/k (bV ¢)using don't care terms is
a b c I out
o--I o
1001 0
ii I i
1- 1 I 1

The truth table representationand the PLA architecturewere chosen for their close similarities,

2.6.4 Interpretation of the Personality Matrix

The personality matrix consists of a line for each sum of products term, implicant, which begins with

that implicant followed by the values of the various outputs. The implicant is composed of a single

character (0, 1. or -) for each input variable in the conventionalfashion descibed in section 2.6.3.

The output values are represented by one of three characters (0, 1, or x). The PLA architecture is

physically similar to the truth table, in addition to implementingit functionally. The AND.OR PLA has

26

-0-0-0................................ 000000000000000000000000000000001
...................... 0 i---1- 000000000000000000000000000000110

.................................. 0 I-I--- O00000000000000000000000000011000
.. I--0- I 000000000000000000000000000100000
...................... I-I I 000000000000000000000000011000000
............... Ol....................... 000000100000000000000000000000000
.............. I................... 000000100000000000000000000000000
-0-01--0-0-0-0 I............................. 000000000101000000000000000000000
-0-01--0-0-0-01 ... 000000010000000100000000000000000
-0-01--0-0-01I--0.................................. 000000000011000000000000000000000
-0-01--0-0-01 I-I................................... 000000001000000000000000000000000
-0-01--0-01 ... 000011000000000000000000000000000
-0-01--01... 001100000000000000000000000000000
-0-01-I... 010000000000000000000000000000000
-01--0 0 0---0............ I- 000000000000000000000000000000110
-01--0................... 0........... 0---0.......... I--- 000000000000000000000000000011000
-01--0................... 0 -0--I--0 000000000000000000000000000100000
-01--0................... 0 0--I-1 000000000000000000000000011000000
-01--0................... 0.......... 1--0 000000000000000000000000100000000
-01--0 0 I-I 000000000000000000000001010000000
-01--0 I--0-0-0 I 000000000000000000001100000000000
-01--0I--0-0-0 1......... 000000000000000000010010000000000
-01--0 1--0-01--0 000000000000000001001000000000000
-01--0 1--0-01-1 000000000000000000101000000000000
-01--0 1--01 000000000000000010001000000000000
-01--0 1-1............................. 000000000000001000000000000000000
--I-I... 000000000000000000000000000000001
1--0-0.. 100000000000000000000000000000000
1---I............................. 000000000000000000000000000000001.
1-1... 000000000000000000000000000000001

Figu re 8: Disjunctive Normal Form Matrix and Corresponding Circuit Topology

27

two parts that are each implemented as planar portions of the (planar) integrated circuit. These

portions are called the and-plane and the or.plane. The and-plane lies adjacent to the or-plane in the

same way that the input portion of a truth table lies adjacent to the output portion. The and-plane and

or.plane have the same number of rows. Each row contains the circuitry to calculate one of the

minterms from the truth table.

2.6.5 True and Complement Format

Each pair of columns in the AND-plane contributes the true and complement of an input variable to

each of the appropriate minterms. A 1 contributes the true form of the input variable, a 0 contributes

the complement of the input variable. A minterm is calculated by anding the appropriate form of each

input variable that is selected by a 1 or a 0 in that row. An - in the truth table indicates that the input

variable does not contribute anything to the minterm. For example, the third row in the reduced truth

table above indicates that the third minterm is calculated by anding the true form of a with the true

form of b and that neither the true nor complement of c is used. Each column in the OR.plane

specifies an output variable. The output from a column is the logical OR of 0 with each minterm that

is selected by the presence of a one in that column.

2.6.6 Comparing Logical and Physical Domain Formats

The reduction, by eqntott, of the set of Boolean functions into disjunctive normal form creates a

matrix (bit-map) describing the normal form which is directly comparable to the physical realization of

the PLA in terms of integrated circuit mask layers, To illustrate this, figure 8 displays both the

truth.table for malfunction procedure CRYO 6.3a and the resulting PLA. They have been lined-up to

show the data format of the disjunctive normal form of the truth.table juxtaposed with the

corresponding circuit topology of the PLA. The ones in the left.hand part of the matrix are reflected in

a connection to the true input column in the circuit, the zeros in the left.hand part of the matrix are

reflected in a connection to the complemented inputcolumn in the circuit, and the ones in the

right-hand part of the matrix are reflected in a connection to the output column in the circuit. The

zeroes in the right-hand part of the matrix specifies no connection to the physical output column in

the circuit.

2.6.7 PLA Performance Analysis

The circuit description can be analyzed for area, timing, and power dissipation characteristics, and

can be simulated, with esim; see figure 7. as a further validation of the conversion from procedural to

Boolean form.

28

cryo6.eqn

Design Style Area (square microns) Power Dissipation (W) Worst Delay (ns)
' nMOS PEA (cis) 1176480 .115 (.065) 29.8

nMOS PEA (trans) 1247688 .115 (.065) 29.8
CMOS PLA (cis) 5031180 N/A N/A
CMOS PEA (trans) 4374832 N/A N/A

Figure 9: Automated Analysis of Implementation Characteristics of CRYO 6.3a
Equations.

3 Distributed Architecture

Previoussectionshave concentratedon the representationand implementationof procedural logic

usingnew approaches and new technology. Greater benefits may be realizedfrom these techniques

than from simple machine processing. We have demonstrated the equivalence of hardware

representationsto the logical representationof the originalmalfunctionprocedure. Based on these

discussions the benefits such an approach may have for the increasing distribution of mission

processingbetweenspace and groundas wellas betweenhardware andsoftware,are apparent.

3.0.1 Characteristics of Distributed Architectures

Distributedprocessingarchitectureshavegeneral charactersticswhich can be seen to be lacking

from the current SSV ADP architecture, although most of ihese characteristics can be found in the

operations network as a whole. Discussion here is limited to the characteristics of the ADP

architecturefor missionsupport. As discussedin [8], theseinclude:

processing supported by a network which provideshigh.level controlover inter-process
communicationin a standard,network.wideprotocol.

- communication strictly between asynchronous processes as opposed to mere remote
data access.

• data access accomplished via inter-process communication.

• resource sharing not limited to data-sharing and especially including sharing of
processing in support of a single task.

29

3.1 Limitations of the Current Communications Architecture

inthe past, unlessa space vehicle was in view of a ground.basedtracking station, which was only

15-20% of the time during an orbit for mannedspaceflights, space/ground communicationwas not

possible. Duringthe time when spacecraft wereblacked-out of communicationwiththe ground,all of

the data which the craft may have been collecting regarding its on-board systems, experiments or

external sensors had to be stored on-board. Only when communication was re-established could

data be communicated (transmited/received) with the ground. This situation is changing inasmuch

as the Tracking and Data Relay Satellite System (TDRSS) is anticipated, when fully operational, to

permit communication with the ground for 80-85% of a given flight.

3.2 Limitations of Current On-board Processing Architecture

Historically, the tasks performed in support of manned space flight have been distributed between

the on.board General Purpose Computers (GPCs) and the ground computers. This physical

separation was also a logical separation of processing responsibility, largely the result of the limited

space.ground communication. Tighter logical sharing of processing was restricted not merely by the

physical separation of the processors but fundamentally by the isolation resulting from low

transmission speeds and irregular opportunity for communication due to limited ground coverage.

This approach has been perpetuated in the SSVdata processing systems. Within the current system

architecture, the on-board General Purpose Computers (GPCs) perform these major functions [17]:

1. guidance, navigation and control of the SSVthrough ascent, on.orbit, and landing,

2. systems management which includes software to acquire, process and route data for
systemsevaluation and management,

3. payload software which permits the modification of the contents of mass memory units
(MMUs), and loading of the software to support display electronics units (DEUs).

The software to support these functions must be completely prepared and loaded on the MMU prior to

launch. There is extremely limited variation of systemprocessing once a launch has been executed.

Alteration of the MMU processing sequence can be accomplished only through the use of single

commands to the processor in the form of GPC instructions or data. These commands must be built

manually by either the flight crew or the controllers on the ground. For the purposes of malfunction

procedure processing, the GPCs act only as the interface between the flight team and the vehicle

systems and subsystems. The GPCs themselves do not have the capacity to support extensive

anomaly processing.

3O

3.3 Effect of Limitations on SSV Autonomy

These two factors, limitedcommunications and limited on-board processing, apply opposing forces

in attemptsto achieve increasedSSV autonomy. On the one handlimited communicationsmakes it

desirable to provide as much stand-alone capabilityon.board as possible. On the other hand, the

• desire for high reliability of the SSV systems, in the face of high SSV system complexity, requires the

expertise of more than just the flight crew for both nominal and off-nominal operations. The addition

of computers and software to support increased vehicle autonomy is not simple. Since the existing

computer systems are flight-critical, the alteration of their operational capabilities is an expensive

undertaking, and also subject to high schedule risk due to the nature of software development. This

is not, however, an impossible or even impractical goal. One method for additional processing

on.board, without requiring the alteration of existing on-board systems, is through the use of carry.on

micrcomputers. If we assume that the problem of additional processing is solvable, and it is, still to be

faced is the more difficult problem of capturing the collective expertise of the flight control team in a

computing system. The improvement in space-ground communications represented by TDRSS

makes this expertise more accessible to the flight crew but does change the very labor intensive

character of mission monitoring nor does it alone increase vehicle autonomy.

3.4 Options for System Architecture and Interconnections

The ability to select the mode of implementation,software or hardware, as well as the location,

space or ground, offers four options for any given system design attempting to the flight control

function. Theseare indicated in figure 10. The choices are not mutua//y exc/usive. This fact implies

the slightlymoresubtle point, however,that the methodspresentedin this paper make it possibleand

relatively simpletask incorporate significant increases in redundancyand autonomyfor procedural

processing,with all the attendant benefits and withoutgreat cost. This can be accomplished with a

single logical representationand in an automatedfashion. The importance of these resultscan be

seen by envisioninga spacecraft which, when normallyin contactwiththe ground, is monitoredby an

automatic malfunction processing system staffed by humans but which is capable of going

autonomous for the same function when, for any reason,it isout of communicationwiththe ground.

31

I Boolean I
Functions

Software Hardware

User I

Figu re 10: Distributed Processing Architecture: Software and Hardware

32

4 Summary

We have presented a new method for the representation of SSV malfunction procedures which

permit their conversion to a form suitable for processing by computers. These results are derived

from [15] which originated this representation for the development of a rule-based expert system

capable of automatic inference and the implementation of higher.level logic than that contained in the

malfunction procedures. Additionally we have presented the concept of hardware equivalence and

discussed the implications of the distribution of procedural processing between hardware and

software aswetl as space and ground. The results of this work stand-alone in that this representation

can be implemented based soley on the results presented in this paper and independent of any

further work to develop an expert Systembased on them.

33

References

[1] Balzer, R., Erman, L. D.,LondO,_ P. and Williams, C.
HEARSAY.Ill: A Domain.lr_dependent Framework for Expert Systems.
In Proc. First Ann. Conf. on Artificial Intelligence, pages 108.110. 1980.

[2] Barr, A. and Feigenbaum, E. eds.
The Handbook of Artificial Intelligence.
HeurisTech Press, 1981.

[3] Barstow, D. R.
An Experiment in Knowledge.based Automatic Programming.
Artificial Intelligence 12:7-119, August, 1979.

[4] Bennett, J. S., Engelmore, R. S.
SACON"AKnowledge.Based Consultant for Structural Analysis.
In Proc. of Sixth Intl. Joint Conf. on Artificial Intel!., pages 47.49. August, 1979.

[5] Brown, J.S., Burton, R.R., Bell, A. G.
SOPHIE:ASophisticated Instructional Environment for Teaching Electronic Troubleshooting

(An Example of AI in CAI).
Technical Report F41609.73.C-006, Bolt, Beranek, and Neuman Inc., 1974.

[6] Bundy, A. et al.
Solving Mechanics Problems Using Meta-Level Inference.
In D. Michie (editor), Expert Systems in the Microelectronic Age,. Edinburgh University Press,

1979.

[7] Clancey, W. J., Shortliffe, E. H., Buchanan, B. G.
Intelligent Computer-Aided Instruction for Medical Diagnosis.
In Proc. of 3rd Symp. on Computer Application in Medical Care. 1979.

[8] Davies,D. W.
Applying the RSA Digital Signature to Electronic Mail.
Computer :55-62, February, 1983.

[9] Davis, R.
Interactive Transfer of Expertise: Acquisition of New Inference Rules.
Artificial Intellig ence 12:121-157, August, 1979.

[10] Duda, R., J. G. Gaschnig, and P. E. Hart.
Model Design in the Prospector Consultant Systemfor Mineral Exploration.
In D. Michie (editor), Expert Systems in the Microelectronic Age,. Edinburgh University Press,

1979.

[11] Fagan, L., J. Kunz, E. A. Feigenbaum and J. Osborn.
Representation of Dynamic Clinical Knowledge: Measurement Interpretation in the Intensive

Care Unit.

In Proc. of the Sixth Conf. on Artificial Intelligence. 1979.

[!2] Feigenbaum. E. A., B. G. Buchanan, and J. Lederberg.
On Generality an Problem Solving: A Case Study Using The DENDRAL Program.
In B. Meltzer and D. Michie (editor), Machine Intelligence 6,. American Elsevier, 1971.

34

[13] Garey, M., Johnson, D.
Mathematical Sciences: Computers and Intractability. A Guide to the Theory of NP.

Completeness.
Freeman, San Francisco, 1979.

[14] Gelernter, J. L. et al.
• Empirical Explorations of SYNCHEM.

Science :1041-1049, September, 1977.

[15] Helly, J. J., Jr.
A Distributed Expert System for Space Shuttle Flight Control.
PhD thesis, University of California, Los Angeles, in preparation.

[16] Hopcroft, J., UIIman, J.
Computer Science: Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, Massachusetts, 1979.

[17] Suffredini, M.
Data Processing SystemOverview Workbook
DPS OV 2102 Advanced Training Series edition, NASA Flight Training Branch, NASA JSC,

Houston, TX 77058, January 1984.

[18] NASA.
SystemMalfunction Procedures Requirements
Final, Rev. B edition, Flight Operations Division, Lyndon B. Johnson Space Center, Houston,

TX 77058, June 15, 1982.

[19] Kunz, J. et al.
Aphysiological rule-based system for interpreting pulmonary function test results..
Technical Report HPP-78-19, Stanford University, 1978.

[20] Robert N. Mayo, John K. Ousterhout, and Walter S. Scott, editors.
1983 VLSITools.
Technical Report UCB/CSD 83/115, Universityof California, Berkeley, Computer Science

Division (EECS),March, 1983.

[21] McDermott, J.
R1: An Expert in the Computer Systems Domain.
In Proc. of the First National Conf. on Artificial Intelligence. 1980.

[22] Flight Operations Directorate: Crew Training and Procedures Division.
JSC.12770Shuttle Flight Operations Manual
NASAJohnson Space Center, 1978.
Preliminary.

' [23] Nii. H. P.,and N. Aiello.
AGE (Attempt to Generalize): A knowledge-based program for building knowledge-based

programs.
IJCAI :645-655, 1979.

[24] Nilsson. N.
Principles of Artificial Intelligence.
Tioga, 1980.

35

[25] L.F. Pau.
Control and Systems Theory. Volume 11: Failure Diagnosis and Performance Monitoring.
Marcel Dekker, Inc., New York, 1981.

[26] Pople, H.
The formation of composite hypotheses in diagnostic problemsolving.an exercise in synthetic

reasoning.
IJCAI :1030.1037, 1977.

[27] J. Fain, D. Gorlin, F. Hayes-Roth, S. Rosenschein, H. Sowiziral, D. Waterman.
The ROSIELanguage Reference Manual
RAND Corporation, 1981.

[28] Shortliffe, E.H. _
Computer-based medical consultations: MYCIN.
American-Elsevier, New York, 1976.

[29] Shortliffe, E. H.
Compu!er-Based Medical Consultations: Mycin.
Elsevier, 1976.

[30] T.L. Booth.
International Series in Applied Mathematics: Sequential Machines and Automata Theory.
John Wiley and Sons, Inc., New York, New York, 1967.

[31] R. Thomas.
Kinetic Logic. A Boolean Approach to the Analysis of Complex Regulatory Systems.
In Lecture Notes in Biomathematics. European Molecular Biology Organization, 1979.

[32] Weiss, S. M., C. A. Kulikowski, A. Safir.
A model-based consultation system for the long-term management o glaucoma.
IJCAI :826.832, 1977.

[33] Weiss, S. M., CI A. Kulikowski.
EXPERT:Asystem for developing consultation nodes.
IJCAI :642-947, 1979.

36

,_ U,S.GOVERNMENTPRINTtNGOFFICE:1984_769,.013/6281

=

1. Report No. J 2. Government AccessionNo. 3. Recip;ent's Catalog No,
TM 58258 Iill

4. Title and Subtitle 5. Report Date

A representational basis for the development of a distributed May 1984
expert system for Space Shuttle flight control

6. Performing OrganizationCode

7. Author(s) 8. PerformingOrganization Reoort No.John J. Helly, Jr. UCLA,Aerospace Corp.
William V. Bates JSC S-533
Me1 Cutler. Steven Kelem AerosDa_c..eCorp. 10. WorkUnitNo.

9. PerformingOrganiza=ionName and Address 56]-85-00-00-72

11. Contrac_ or Grant No. i
NASALyndon B. Johnson Space Center
Houston, TX 77058

13. Type of Report and Period Covered
12. SponsoringAgency Name and Address Technical Memorandum

NationalAeronautics& Space Administration 14 Spon_nogA_v Code
Washington,D. C. 20546

15. Supplementary Notes
1

A new representationof malfunctionprocedurelogicwhich permitsthe automationof these
proceduresusing Booleannormalforms is presented. This representationis discussedin the
contextof the developmentof an expert systemfor Space Shuttleflightcontrolincluding
softwareand hardwareimplementationmodes,and a distributedarchitecture. The roles and
responsibilityof the flightcontrolteam as well as previouswork towardthe development
of expertsystemsfor flightcontrolsupportat JohnsonSpace Centerare discussed. The
notionof malfunctionproceduresas graphsis introducedas well as the conceptof hardware-
equivalence.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Malfunctions Distribution unclassified-unlimited
Flightcontrol (Property) subjectcategory: 61
Space Shuttles Architecture
ComputerSystemsPrograms (Computers)
Hardware Failure
Systemfailures

19. _urity Cla_if. (of this report) 20. Security Cla_if. (of this _) 21. No. of Pa_s] 22. Price"

unclassified unclassified 38 I m

"For _le by the National Techni_l InforrYlation_ice, Springfie{d0Virginia 22161

JSC ForrT_ 1424 (R_ Nov 75} _ NASA _C

