ﬁ/ﬁéﬁ T~ 552 5

NASA Technical Memorandum 58258

NASA-TM-58258 19840018260

A Representational Basis

for the Development

~ of a Distributed Expert System
for Space Shuttle Flight Control

May 1984

LIBRA®Y "0y
JUuL 3 1984

LANGLL ~ER
LIBRARY, NASA

National Aeronautics and
Space Administration

THIS DOCUMENT SUPERSEDES NASA-TM~58258 WHEREIN JSC

FORM 1424 WAS OMITTED.

A Representational Basis for the Development of a Distributed Expert System
for Space Shuttle Flight Control

John J. Helly, Jr.
Department of Computer Science, University of California, Los Angeles
and | ”
The Aerospace Corporation

William V. Bates
NASA Johnson Space Center

Mel Cutler, Steve Kelem
The Aerospace Corporation

o F
NS - R 3RY

A

dﬂ"{/ég(W/{
LIBRARY MATERIAL REQUEST / /
INSTRUCTIONS:

ey & List only gng Library Item on a form — PLEASE.
e For purchasing hooks or theses use Langley Form 125, “Purchase Request/Purchase Order.””
® Obtain approval of Section Head or higher official for classified material.

NOTICE — WARNING CONCERNING COPYRIGHT RESTRICTIONS
. . R LIBRARY INTERNAL
The copyright law of the United States (Title 17, United States Code) governs the making
of photocopies or other reproductions of copyrighted material. USE ONLY
Under certain conditions specified in the law, libraries and archives are authorized to
furnish a photocopy or other reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be "used for any purpose other than private study, Order
scholarship, or research.” 1 a user makes a request for, or later uses, a photocopy or repro-
duction for purposes in excess of “fair use,” that user may be liable for copyright infringement.
This institution reserves the right to refuse to accept a copying order if, in its judgment, On Order
fulfillment of the order would involve violation of copyright law.
- L. has hardcopy
TO BE FILLED IN BY REQUESTER (As appropriate)
Document or Book Call Number ({f available)
No Folder
Fitie o Computer and Electrical Engineering.)
AN EVALUATION OF THE DIRECTED FLOW GRAPH METHOD-)
OLOGY Final Report No Film
Wesley E. Snyder and Sarah A. Rajala May 1984 61 p Original
— contains color illustrations Borrow
(Grant NAG1-20)
[Report (NASA-CR-173593; NAS 1.26:173593) Avail: NTIS
HC A04/MF A01 CSCL 098 Call In
Source The applicability of the Directed Graph Methodology (DGM) to
the design and analysis of spacial purpose image and signal
processing hardware was evaluated. A special purpose image’ Reference
processing system was designed and described using DGM. The
DDC N design, suitable for very large scale integration (VLSI) implements Other:
A region labeling technique. Two computer chips were designed,
Journa oth using metal-nitride-oxide-silicon (MNOS) technology, as well
las a functional system utilizing those chips to perform real time
Jregion labeling. The system is described in terms of DGM primitives.
Article As it is currently implemented, DGM is inappropriate for describing .
synchronous, tightly coupled, special purpose systems. The nature LIBRARY ACTION
of the DGM formalism lends itself more readily to modeling
networks of general purpose processors. R.S.F. Being obtalned from
! tnterlibrary Loan,
Volum. —»—We _Dame Univ.. Ind.____Dept, of Electrical
l Material is charged
If Library does not have material should it be: (Check box) to you.
Borrowed from another Library Ordered
[Yes 0 No [] Yes [No [indefinite Loan [Library Copy Material is on
ROUTING indefinite loan to:
FROM o ;
1. (x proper box) [J NASA [J NON-NASA [Foreign National U.S. Citizen Yes [JNo 0 Ve is baing cafled
Requester Mail Stop No. | Date m::gr‘:':’ma'b.
sent t0 you.
Material is given to
Division—~Branch--Section or Affiliation for Non-NASA Library Patron Telephone Extension you.
2. Section Head or Higher Officiat Signature (Approval for classified material only) Other (Specity)
ITO
3. 185/LIBRARY
4,

- NASA Langley Form 31 (Rev, May 1979} . . PREVIOUS EDITIONS ARE OBSOLETE Prescribing Document LM1 2240.1

J.

Table of Contents

1 Introduction
1.1 Flight Control Team
1.1.1 Organizational Structure
1.1.2 Task Complexity and System Reliability
1.1.3 Analytic Tools
1.2 Malfunction Procedures
1.2.1 Types of Procedures
1.2.2 Development of Malfunction Procedures
2 Automation of Malfunction Procedures
2.1 Expert Systems and the Representation Probiem
2.2 Rule-based Expert Systems
2.2.1 Production Rules and the Predicate Calculus
2.3 Early Work on Systems for Flight Control
2.3.1 EXPRES
2.3.2 CRYEX
2.3.3 GENEX
2.3.4 Derived Requirements
2.4 Development of a Boolean Representation
2.4.1 Malfunction Procedures as Graphs
2.4.2 Generation of Boolean Functions
2.4.3 Assignment of Variable Names
2.4.4 Procedural Logic in Boolean Form
2.5 Software Implementation
2.5.1 Organizing Principle
2.6 Hardware Implementation
2.6.1 Generation of Hardware Descriptions
2.6.2 Reduction of Boolean Functions to Normal Form
2.6.3 Minterms, Truth-tables and PLAs
2.6.4 Interpretation of the Personality Matrix
2.6.5 True and Complement Format
2.6.6 Comparing Logical and Physical Domain Formats
2.6.7 PLA Performance Analysis
3 Distributed Architecture
3.0.1 Characteristics of Distributed Architectures
3.1 Limitations of the Current Communications Architecture
3.2 Limitations of Current On-board Processing Architecture
3.3 Effect of Limitations on SSV Autonomy
3.4 Options for System Architecture and Interconnections
4 Summary

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

List of Figures

Flight Control Team Organization

A Block Malfunction Procedure

A Special Subroutine (SSR)

A Failure Recovery Procedure (FRP)

A Pocket Checklist Procedure

Equivalent Representations of Procedural information

Design and Manufacture Sequence for VL.SI Devices

Disjunctive Normal Form Matrix and Corresponding Circuit Topology

Automated Analysis of Implementation Characteristics of CRYO 6.3a Equations.

Figure 10; Distributed Processing Architecture: Software and Hardware

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:

List of Tables

Flight Controller Functions

Some Existing Expert Systems

CRYO 6.3a (figure 2) as Boolean Expressions
Partial Listing of 63aRHS

Partial Listing of 63aLHS

Partial Listing of 63aEXP

iv

12

- 20

23
23
23

Abstract
A new representation of malfunction procedure logic which permits the automation of these
procedures using Boolean normal forms is presented. This representation is discussed in the context
of the development of an expert system for Space Shuttle flight control including software and
hardware implementation modes, and a distributed architecture. The roles and responsibility of the
flight control team as well as previous work toward the development of expert systems for flight
control support at Johnson Space Center are discussed. The notion of malfunction procedures as

graphs is introduced as well as the concept of hardware-equivalence.

1 Introduction

The purpose of this paper is to present the preliminary results of work currently underway to
automate part of the Space Shuttle Vehicle (SSV) flight control team function through the application
of resuits from automata and sequential machine theory, and expert system research. Preliminary
applications have been developed based on these results using software tools developed for the
computer-aided design (CAD) of Very-Large Scale Integrated (VLSI) circuits and a high-level
language for the implementation of expert systems. Although developed specifically for the SSV, the
approach presented here appears to have application to the larger class of problems addressed by
controi systems in general. The text describes the development of a data representation which
facilitates the automatic detection and resolution of anomalies occurring during SSV flight
operations. by introducing

1. a method for the translation to, and representation of malfunction procedures in Boolean
form,

2. the notion that malfunction procedures can be treated as graphs, and

3. the use of normal forms for the standardization of data structures to be used in computer
processing of the procedural information.

In addition to providing a data representation which will simplify software development and reduce
processor load with respect to previous approaches, we expect these improvements to

1. enhance the ability of the flight control team to detect and analyze anomalies faster and
to an extent greater than humanly possible. This is especially true for multiple dependent
failures; anomalies which are caused by one or more prior failures.

2. permit gradual transitioning from the current ground processing methods to an
increasingly automated and more distributed flight control system while preserving the
continuity and integrity of existing operational capabilities.

3. provide an environment designed to capture expert knowledge in machine-processable
form thereby preserving individual and collective expertise of the flight control team
members over time.

4. permit the arbitrary distribution of processing between the ground and the spacecraft as
well as between hardware and software.

The discussion will begin with a description of the organizational structure of the flight control team
and its responsibilities in SSV mission eperations. We shall then briefly discuss expert systems in
general terms before introducing a new representation for malfunction procedures using Boolean
logic. Following this will be a discussion of the application of VLSI design techniques used to derive,

from the Boolean representation. a disjunctive normal form matrix. The matrix representation

2

enables the processing of malfunction procedures by either software (using an expert systems
approach) or conversion to hardware in the form of programmable logic arrays (PLAs). A short
discussion of the impact this methodology can have on overall system design for space operations
follows including the selective distribution of processing to support increased vehicle autonomy as
well as reduced life-cycle costs for ground operations.

1.1 Flight Control Team

As described in [22], the modus operandi of the flight control team can be summarized, with respect
to responsibilities and activities during the operations phase of a space shuttle flight, as follows:

1. The fundamental role of the flight control team is to monitor and analyze Space Shuttle
systems for anomalous behavior, to analyze anomalies when they occur, to determine
corrective action, and to coordinate this action with the flight crew.

2. Most of the data from which these determinations and analyses are made are based on
computer processed, telemetry data originating from sensors on-board the SSV and
transmitted to the ground processing system.

Table 1 provides an abbreviated list of activities for which the flight control team is responsibie for
during an SSV mission.

1.1.1 Organizational Structure

The SSV flight control team is organized as a hierarchy as depicted in figure 1. This organization
reflects both the diversity and the discrete compartmentalization of SSV system disciplines. In
general, SSV flight operations and procedures reflect a high degree of structure and definition in that
they are:

1. precise : operational procedures are developed, tested, and reviewed under simulated
mission conditions to achieve high precision.

2. deterministic : the SSV is a well understood, although complex, finite system. On-board
computers and sensors provide telemetry data. These data in combination with SSV
system design information, make possible the determination of the global state of the
vehicle.

3. documented : Operational procedures are catalogued in printed form. SSV system
performance is analyzed in detail both during and after a mission. Problems and
corrective action (successful and unsuccessful) are reviewed and documented.

1.1.2 Task Complexity and System Reliability

The SSV is significantly more complex than prior United States manned space vehicles, primarily
due to high redundancy of vehicle subsystems and the implementation of designs which reduce

single point failures within any single subsystem. While. in terms of system design, subsystem

3

Table 1: Flight Controller Functions

Flight Dynamics Prelaunch Analysis
‘ Trajectory Monitoring
Spacecraft Tracking
Aerodynamics and Structures
Monitor Onboard Navigation State

SSV Systems Prelaunch Analysis
Manage Spacecraft Systems
Consumables Analysis
Fault Detection and Isolation
Fault Recovery

SSV Data Acquisition Manage Communication and Data Systems
Manage Flight Data

Payloads Manage Payload Activities
Manage Payloads and Support Equipment

Operations Management Policy Making
Ground Network Management
Coordinate Crew Activity Plan
Landing Operations
Medical Support
Supplemental Technical Support

redundancy can greatly improve overall system reliability it also means that a system can have a
larger number of states. The number of states is directly proportional to the degree of redundancy.
The number and characteristics of these states must be known and considered in the anafysis of
known or possible system or subsystem failures. In addition to the increase in complexity introduced
through redundancy, complexity is increased through the use of interdependent subsystems such
that failure of a single component can affect the performance of several different subsystems both
instantaneously, through total functional loss, and over time, through degraded performance. The
detection. isolation and correction of any fault in the SSV systems is extremely important in terms of
both crew safety and mission success. Not only is the detection and correction of real failures
necessary but. as pointed out in [25]. to maximize system availability. unjustified system shutdown or

pulldowns must also be minimized.

Flight Control Room Flight
Director
. ; Guidance/ Elect. Pwr. Ground
Fi Operations i Lo Computer Public
A(l:?i‘:ltilies lnFt,egration g;’f';:,':ce Booster Navigation Comr‘:tand Gen. Instr. Attairs Resources
Officer Officer Engineer Cont. Sys. ||| gngineer [f|Lighting Officer Network
ngineer ngineer anager
I | Engi { |LEngi { M
Flight Data j} Environ./ Integrated
cApcom ||| Dynamics Payioad Propulsion ||| Processingfl{ Consum. Comm. Physician
Officer Officer Engineer System Mech. Engineer
Engineer Engineer
--l------l--l------l--l-.----l-.l--.-.-.--l-.---.--.l----l-
. Medical
Staff Support Rm.
Flight Flight Vehicle S *Medical Monitor
Activities Dynamics Staﬂes:fp‘:)or‘(slizg‘:\ #1 *Biomedical Engr.
Staff Staff ¥
Support Support * ME *OMS/RCS *Sensor Ground Resources
Room Room * MPS *Control *DPS _
| (dispersed through ||
. *AERO 1 the Mission
Phase . Control Center)
Support ‘AERO 2 Payload -
*Timelines JAERO 3 Statf Support Room -
*Pointing Indat Vehicle Systems -
*FDF Mgr. *Nav “Paiiet Sysiem Staff Support Room # 2 Flight
“PF/IP *State *Payload Data Liason — T Data
*Crew “Trajectory *1US Propulsion Systems Life Support *EPS *Comm. Manager
Systems *0-Nav *IUS Vehicle Systems *Thermal *instrumentation
* ; . s
*PADS .Sg:)d/Targ *1US Navigation Systems Mechanical
Staff Support Rooms

Natural Env Support Rm.—l

Figure 1: Flight Control Team Organization

1.1.3 Analytic Tools

The detection, analysis and recovery of faults is the responsibility of the flight control team and the
flight crew. The principal tools available to flight controllers and crew to assist them in these tasks are
either pocket checklists (small binders designed to hold all the responses to any problem that
requires crew action within five minutes) or large books containing several hundred procedures, each
comprising instructions to be executed when a fault arises which does not require immediate
response. These more involved directions, known as malfunction procedures (or simply, malfs) are

critical to accurate and speedy fault detection and isolation.

1.2 Malfunction Procedures

in the current method of fault isolation, the flight crew and flight control team consult malfunction
procedures and reach a conclusion based on selected telemetry measurements and on-board
observations of switch settings (i.e., the vehicle state). Similar procedures are used to reestablish full

or partial system or subsystem function once an anomaly has been analyzed.

1.2.1 Types of Procedures

Four basic types of malfunction procedures are used by the flight teams [18]. Although they serve
differing functions they are collectively referred to as malfunction procedures. While this work
focuses primarily on system or block malfunction procedures, the methods presented in this paper
are applicable to all of the types of procedures described below.

1. System or Block Malfunction Procedures: The system malfunction procedure is a
deterministic representation of yes/no questions and crew procedures in the block and
line format of a flow chart. This form ideally lends itself to expert systems-type programs
due to its rule-based, "if-then" tree structure. Figure 2 is a representative block
procedure.

2. Special Subroutines (SSR): These are procedures that are accessed by many
different malfunction procedures. Also, the SSR is in more of a checklist format in
contrast to the block type used in the system malfunction procedures. Figure 3 is a
representative SSR.

3. Failure Recovery Procedures (FRP): The FRP is a non-deterministic procedure used
when a General Purpose Computer (GPC) failure has aiready been determined and
certain steps must be taken to reconfigure the orbiter to take advantage of any remaining
capability in the failed GPC. Normally. FRP’s are lengthier than the other malfunction
procedures. Figure 4 is a representative FRP.

4, Super Malfs: The super malf acts as a transition aid from the checklist to the
malfunction procedure itself. These procedures must be executed within five minutes of
the annunciation of an alarm and are critical to crew and mission safety. The wording
and format are identical to the ORB PCL (orbit pocket checklist) carried by the flight
crew. Figure 5 is a representative pocket checklist procedure.

6

EQs

§.3a CRYQ HZ PRES

| ne rress | —LgplTT
AT1 H2 P norm ?
i
ALARM
Any H2 P high ?
1 K ¢
H2 P
>293.8 psia Any H2 P Yow ?
< 153 psia

|

568 CRYD W2 PRES“

Nominal Config:

{013:0)

cb ESS 2CA CRYO
CNTLR H2 TK1 « ¢l
cb ESS 2CA CRYO

(0132

¢b ESS 18C (RYQ
CNTLR HZ TK2 - ¢l
cb ESS 1BC CRYO

CNTLR H2 TX3 - ¢
cb ESS 3B (RYO
QTY H2 X3 - ¢}
cb ESS 18C CRYO
CNTLR H2 TK4 - ¢)
cb _ESS 1BC CRYO
QTY H2 TX4 « ¢1

H2 MANF VLV TK1,2
ctr (tb - OP)

> 10%

H2 TK1,2,3 HTRS
A,B (six) - AUTO
11

(A11)

CRYO TK4 H2

A - AUTO

If T gty < 10%

If 1K qt

W2 T1,2,3 WIRS
AB (six) - OFF
(All)

CRYO Tka H2

A - AUTO

v
L—xsa pta ? N lﬁs’l : i I_"E%ETITI

CRYO 02(H2)
LEAK

YES

o C
TRICAL PROBLEM.
D0 NOT ATTEMPT TO
RESET cb

AK BETW
RFFECTED TK AND
CHECK VLV, LEAK

7T Deact htrs |
|In_affected tk(s

ON when pressure
in both TKs =«
217-223 psia ?

CANNOT. BE ISQLATED] o H2 TX1{2,3) HTRS
AB - OFF
or (All)
y ® CRYO TK4 HYR W2
50 get A,B (two) - OFF
T2 PRESS Alarm
arzvd/or S ngg TOT Recanf 1g ntrs
H2 PRES and A0
CRYQ 02 PRES msg per BUS LOSS SSR.
lines ? If pri ESS bus
NO lost, other alarms
LOST, THEN ONLY will be present
MSG LINES WITH NO 1f not pri bus,
F7 LTS WILL RESULT sub-buses are:
TK1: £5S2CA 0134R15
TK2: ESS;:&; Olgggls
T and/6r NO an TK3: ESS. M
,Tﬁ‘e affected tk ? _’Himeted: qty ‘ Tk4: ESSIBC MLB6B
YES £10%
T3] Operate on TK3|
»iThe TKa until qty
< 10% then:)
o H2 TK3 HTRS A,B
: (two) - OFF
cb o (A1)
affected tk (Tx1 o CRYO TK4 HIR H2
N0 Jand/or TK2)} on Pml A,B (two) - OFF
013 open ?
|ﬁ.l L——bl 28 I
‘L_#_@
TE] CHTLR b o 8o |T7T Continue to
affected tk on Pnl monitor
MLB68:6 open ? K3, TKE Wers cycle]YES

W, CONTINUE TO
PERATE TX3 AND
K4 N AUTO

NO

TR AFFECTED IR
CNTLR

71T Deact htrs 1n |
affected tk(s |

’ ¢ H2 T3 HTRS A.E
(two) - OFF
and7or

(A1)
o CRYO TK4 HTR H2
A,B (two) - OFF

v

@ Loss of ESS

bus, cb failed
open, or loss of
htr entir results
in P Xder reading
off scale Tow (145
psia) and loss of
Auto capability

@ 1f only P xder

failed low, con-
tinve Auto ops.
Auto cycling deters|
mined only by P in
other logic paired
tk, Tks 1,2 are
paired and Tks 3,4
are paired through
htr Auto logfic

QV099/ECLS/3a
BASIC REV A

Figure 2: A Block Malfunction Procedure

ECLS SSR-1 (Cont)

Tank pressures
decreasing but
not yet to alarm!
Tevel or excess
quantity
consumption

two) - OFF

e 02(H2) TK1,2,3
HIRS A,B
$1x) -~ ON

® (RYO Tk4 HTR
02(H2) A,B
two) - ON

it Py

YES

already off, go
to Block |8

(R1]
o 02(H2} TK3
HTRS A8 -

(AL1)

» CRYO TK4 HTR
02(H2) A,B -
OFF

R
[

TT When TR ¥s = |
700(160) |as1lé |

activate

4 eave n
Teaking tk off.
Other htrs config
8lock

K1, 2 Hirs

y

5

sia:

® 02(H2) TX1,2
HTRS A,B

PTTL sys 10
détermine leak
location

écord Tnitia
|pressure values.
Allow TK1 P to
decay 20(10) psi
and again record
both tk pressures.

Compare 4P

Py

Pe= —_—

AP=

Pi=Pe

TSI T
YES

] e}

|n0. &n |
20102 P = 900(250)

rwrl-ofr 3
ow L2 Ps

© 02(H2) MANF VLV
IK1 - CL

@ If only two
tks per system
are being flown,
proceed directly
to Block{Y | and
then to 8Tack{TII}

@ Smaller leaks
may be difficult
to locate with
htrs operating.
When trouble
shooting with
htrs off, do not
allow 02(H2) TX
pressures to decay
below 600(180)
psia. Fuel Cell
loads should be
balanced as
closely as
possible

@ If TK3,4 aty
depleted (QTY

< 10%), turn on
only TK1,2 Htrs

@ Since htr pwr
is not exactly
equa) between tks,
one tk may press-
urize siightly
faster than the
other

ALL VEH/ECLS/SSR~1
BASIC REV A

Figure 3: A Special Subroutine (SSR)

GPC FRP-7

DPS RECONFIG FOR LOSS OF AV BAY COOLING

(ASCENT/ORBIT)

Procedure is desi
G2, M, BFS funct

ons inte co0
G3FD and G2FD {or redundant
Av Bay GPCs and powered off, If BFS is moved,

NOTE
to protect GPCs from overheating by moving

dumped to provide good BFS for Entry

For Ascent, this FRP assumes PWRON, LOSS OF AV BAY FANS procedure
{ASC PXT) has been accompliish

If ORBIT conflg is G3 (OMS/RCS burns) or 68 (FCS €/0), substitute
for 62 where sppropriate. Major mode 301 assumed if no OPS 3

Perform steps
gm_”_‘\ “a-h el
ORBIT (62,68,63/52) t-q

led Av Bay GPCs ({f not already there).
62) functions are placed into uncooled
new BFS GPC will be

ASCENT
TritTal ASCENY Cmﬂg < kv _Bay T| | Initiar an =Rv_E3 TATET on = KV B3
0PS - G161 - BFS1 0PS 61 . 61 61 BFS 0P$ [- Gl BFsl
OUTPUT| NORM NORM NORM NORM BKUP | [OUTPUT| NORM NORM NORM NORM BKUP | |OUTPUT NORM NORM NORM NORM BKUP
MODE HALT RUN RUN HALT RUN MODE RUN _HALT RUN RUN HALT MODE RUN RUN HALT RUN RUN
CONFYGT TONFIG] T T
GPC_ {12340 GPC__]12340 GPC 112340
STRT ¢ T T T 1
2 3 2 4 2 2
3 3 3 3 3 4
L3 2 4 4 4 4
oL 1/2l 2 PL 1/2] 1 PL1/2] 1
Y 2 CRT 1T~ 1 TRTT [1
21 2 21 3 21 2
3 3 4 3 3
4 4 0 4 0
T 7 1 T C T 1
2 2 2 2
Ly Ll T T 1
2 3 2 3 2 2
Av Bay
1 2 3
a. FREEZE-ORY REASSIGMMENT......ccveesssncvossosanse SSR-5 -=w=->{CONFIGT 3 3 3
o Freeze-dry GPC MODE - STBY (tb-bp), HALT GPC__ 110000 {02000 |00300
[PR - OFF : 1! H 33
B, Secure 8FS (Av 8ay 1,3 only} 3 1 2 3
® BFS (RT,GAC,OPS 030 PRO a1 3
@ GPC 5 MOOE - HALT (tb-bp) PL1/2] O 0
. TPUT - NORM RV T [T 3
* PWR - OFF 2 1 3
® BFC CRT DISP - OFF 311 2 3
4 0 0
L Y
2 9 0
T T 3
21 1 2 3

AL YEW/DPS
FRP-7
BASIC REV A

Figure 4: A Failure Recovery Procedure (FRP)

MN BUS UNDERVOLTS/ ERSYS S|
+ FC VOLTS-AMPS

Faflure confirmed by current and either voltage out of limits:
'E IlE ACTION

VOLTS [VOLTS |AMPS

SHORT or DEGRADED FT
LOW | LOW [HIGHITT no MN BUS tied to affected FC MM BUS:
<26.4|<26 .6 {A>50 f affected FC/MN BUS connected to PIL BUS:
or 1. Go to step 14
LOW f affected FC/MN 8US not connected to P/ BUS:
A>50 2. Perfom step 3 of affected FC SHUTON, 5-8
(Cue C then:
£ FC VOLTS <) § (FC Short):
3. Affected FC REAC VLV - CL
If first FC failure:
4, Perform 8US TIE, 5-8 (Cue Card)
5. If al) MM BUSES tied, MNC TIE
or 8US - OFF

or 6. 6o to PWRDR, I.OSS of 1 FC/1 FREON
, 10-18 >

second FC faﬂure'
7. Perform affected MN BUS LOSS ACTION,
§-15, then:

8, 6Go to PWRDN, LOSS of 2ND FC 10-20 >

f FC VOLTS > 32.5 (mhor)
9. Go to affected MN BUS LOSS ACTION, 5-15 >

f bus tied to affected FC/MM BUS:

10. Untie buses

If short eliminated and MN BUS unpowered due

to bus untie:
or 11, 20120 affected MN BUS LOSS ACTION,
- »

f short not eliminated and MN BUS unpowered
due to bus untie:
-P/L PRI {three) - OFF
13 Perform 8US TIE, 5-8 {(Cue Card) -
good FC/MN BUS to unpowered bus,

then:
If affected FC/MN 8US connected to P/L BUS:
14, Disconge(é:t P/L BUS from affected

FC/MN .
If short eliminated:
or 15. 6o to P/L BUS LOSS ACTION >

f short not eliminated:
16. Go to step 2
lfpuffected FC/MN BUS -not connected to

/L BUS:
17. 6o to step 2

Figure 5: A Pocket Checklist Procedure

10

1.2.2 Development of Malfunction Procedures

Each malfunction procedure is the product of hundreds of man-hours of design, validation, and
verification. Typically, a malfunction procedure is initially designed by one or more engineers. After
the basic design has been determined, the procedure is then critiqued at a 'desktop’ review where the
malfunction procedures book manager, the author of the procedure and at least one crew member
review the procedure and check its feasibility for use on the SSV. The next step is for the procedure
to be tested by using both the Single System Trainer (SST) and the Shuttle Mission Simulator (SMS).
Both the SST and the SMS provide a simulated SSV environment in which the procedure can be
tested. In this way, simulated failures can be input into the system and crew and flight team response
to the procedure can be evaluated through integrated simulations. '

2 Automation of Malfunction Procedures

'"The factors which influence a decision to automate a taék performed by a human are
straightforward and implicitly determined by human limitations and characteristics. Not surprisingly
these factors include speed, accuracy, precision, complexity, and cost. While not all human activities
lend themselves to automation, where an activity which does exists, as is the case with maifunction
procedures, two fundamental questions must be addressed early in the process of automation. First,
what types of automata are available for use, and second, how shall the information and data
currently used by the human be represented for processing by those automata? Since we are only
considering programmable digital computers or their equivalent in this work, the ensuing discussion
will be limited to the selection and implementation of a methodology suitable for the representation,

on this class of automata, of the procedural logic embodied in malfunction procedures.

2.1 Expert Systems and the Representation Problem

Although no precise definition of an expert system exists, a great deal has been writted about them.
A comprehensive review of the subject as well as the entire field of Artificial Intelligence can be found
in[2]. Table 2 lists some of the more well-known expert systems with their particular application

domain and references. According to [2],

[expert] systems are most strongly characterized by their use of large bodies of domain
knowledge - facts and procedures. gleaned from human experts, that have proved useful
for solving typical problems in their domain.

Such systems differ from conventional programming in that they are intended as a general-purpose
aid to problem-solving within a particular domain as opposed to being dedicated to a particular

application within a domain. For example. an expert system might be used to determine which source

1Sections 2-251 are adapted from [15]

11

of tracking data is the most appropriate for use in updating a spacecraft state vector given the current
ground and vehicle status. A conventional computer program could then be used to perform the
computation from the source selected. A key problem in developing an effective expert system, as

pointed out by [24],

is how to represent and use the knowledge that human experts in these subjects
obviously possess and use. This problem is made more difficult by the fact that the expert
knowledge in many important fields is often imprecise, uncertain, or anecdotal (though
human experts use such knowledge to arrive at useful conclusions).

Function Domain System Reference
Diagnosis Medicine CASNET (32]
Medicine INTERNIST [26]
Medicine MYCIN (28]
Medicine PUFF {191
Engineering SACON [4]
Geology PROSPECTOR (10]
Search Chemistry DENDRAL {12]
Chemistry SYNCHEM [14]
Problem Mechanics MECHO (6}
Solving and Programming PECOS (3]
Planning Configuring R1 [21]
Computers
Measurement Medicine VM [11]
Interpretation
Computer-aided Electronics SOPHIE [5]
Instruction Medicine GUIDON {7
Knowledge Diagnosis TEIRESIAS 9]
Acquisition Diagnosis EMYCIN [29]
Diagnosis EXPERT [33]
System ROSIE 27
Building AGE [23]
HEARSAY 1II 1]

Table 2: Some Existing Expert Systems

12

2.2 Rule-based Expert Systems

Rule-based systems are attractive because of their modularity, uniformity and ability to express
human expert knowledge in a natural manner [2]. Expert knowledge can frequently be expressed in
the form of IF.-THEN relations; rule-based systems are designed to take advantage of this
characteristic. In particular, IF-THEN information can be satisfactorily represented as production
rules. Production rules are a computational formalism which can be used to define relationships
among variables. The relationships are structured such that the satisfaction of preconditions, called
antecedents, produce results, called consequents. Antecedents and consequents are generally

expressed using symbolic variables and logical operators.

2.2.1 Production Rules and the Predicate Calculus

The use of production rules permits us to express some kinds of expert knowledge in a formal way
and aids in the articulation of that knowledge. This formalism is also well-suited to expression in
programming languages and in the first-order predicate calculus [24], [15]. The first-order predicate
calculus is based on first-order logic (FOL) which, as the name implies, is a formal system of logic.
Use of this system permits us to manipulate expert knowledge according to logical principies and to
obtain inferences from known rules. A powerful result of this approach is the ability to form
hypotheses (or theorems) and test (or prove) them as well as to ask questions about the validity and
satisfiability of subsets of rules [24]. The representation of malfunction procedures, or for that matter

any procedures. in the form of production rules is useful to us here for the following primary reasons:

1. it provides a standard, formal structure which is easily translated into programming
languages. A familiar example of this is the IF-THEN syntax of FORTRAN although more
sophisticated programming languages are generally used for impiementation of rule-
based systems.

2. It is compatible with the constructs of first-order logic and therefore first-order predicate
calculus. These formalisms have desirable properties for the development of automatic,
rule-based deduction systems.

This paper does not address the application of FOL to malfunction procedures other than to point out
the suitability of the representation presented here to the techniques of FOL as well as some results
from abstract algebra. Our primary purpose here is to establish the equivalence of a logical
representation of procedural information to the existing representation of the same information on
paper and to point out the advantages of the logical representation. The subsequent discussion will
focus on some early work done at Johnson Space Center. and then discuss how procedural
information can be expressed using Boolean functions and describe two methods of implementing

this representation.

13

2.3 Early Work on Systems for Flight Control

A few prototype systems were developed to examine the feasibility of automating malfunction
procedures. These systems provided a good basis for experimentation and gave those involved in the
project good demonstration tools. The initial thrust was to pick different malfunction procedures from
various SSV disciplines and, by coding them in Fortran 77, determine commonalities in format, syntax,
logical structure, and so forth. The goal was to define a small family of logical operators with some
type of logical array as operands. A minimum of one type of operator was envisioned for each of the
four types of malfunction procedures. Initial work was begun in June, 1982 by analyzing the systems
d'rawings of the SSV Pressure Control System-(PCS) and constructing functional loss logic diagrams.
By combining the drawing, logic diagram, and malfunction procedure for the PCS, EXPRES was born
in October, 1982. The malfunction procedure provided the rule-based logic and interpretation of the
drawing and diagram supplied the basis for an extensive query structure.

2.3.1 EXPRES

EXPRES served its purpose as a demonstration tool quite well, but had two major shortcomings.
First, EXPRES acted as if the only inputs it had were provided by human operators, whereas,
eventually a system was hoped for which could be linked to a data bus and thereby access vehicle
telemetry directly. In other words, the human had to do a large amount of data checking in order to
answer the questions posed by the procedure. A computer should be able to do the monitoring itself.
Secondly, since it was a demonstration tool, EXPRES had the PCS malfunction procedure logic
procedurally programmed or hard-coded. This meant that if another malfunction procedure were to
be implemente the EXPRES program would require modification. This type of maintenance and
modification is costly and error-prone as well as difficult to control.

2.3.2 CRYEX

in February of 1983, CRYEX, another demonstration expert system which used the cryogenic
hydrogen pressure malfunction procedure. was designed to remove one of the shortcomings of
EXPRES. CRYEX differed from EXPRES in that CRYEX allowed the user to define the symptoms of
the problem prior to the program execution by changing the values of 'certain parameters. This
feature made the program act as if the computer were interfaced with a data bus thereby accessing
data directly from the vehicle. This showed that the computer could make many decisions without the

assistance of a human. It still had the disadvantage of being hard-coded, however.

14

2.3.3 GENEX

As a response {0 the second criticism, GENEX was conceived. GENEX was built as a generic expert
system operator. In other words, it was built to process any systems malfunction procedure.
Benefitting from the experience gained from EXPRES and CRYEX, GENEX proved more efficient and
shorter than the previous demonstration products but only partially realized its goal. The major
problem remained that each procedure had to be uniquely coded; therefore generalizing the
representation of the four types of procedures to reduce the complexity of the software was difficuit.

2.3.4 Derived Requirements

Experience with EXPRES, CRYEX and GENEX resulted in the identification of a number of

requirements for an expert system to be used to support the flight control team. The system should

1. be based on existing system diagrams, procedures and functional loss diagrams and, to
the extent possible, be traceable to these source documents.

2. make maximal use of telemetry data to reduce operator interaction with the system.

3. not require the integral hard-coding of SSV subsystem logic.

2.4 Development of a Boolean Representation

To satisfy these requirements, the approach was developed that represented.the procedures as sets
of Boolean functions. Figure 6 depicts the relationship of the source document, the original
malfunction procedure, to its Boolean equivalent. Because the procedures are generalized as
Boolean functions, one can '

1. apply the techniques of automata theory, switching theory and abstract algebra [30].

2. take advantage of two methods of implementation software and hardware, as depicted in
figure 6.

Our discussion of the first point will be relatively limited because much of this work is still in progress
[15]). With regard to the second point, not only does this approach provide a standard data structure
it also provides the system architect the ability to selectively migrate processing between software
and hardware using a single common representation, thereby offering tremendous flexibility in the
design, development. testing and implementation of automated malfunction procedures. One of the
malfunction procedures. CRYO 6.3a, has been implemented in both modes as a proof-of-concept

demonstration.

15

* Documentation

System Malfunction Procedures
Subsystem Reconfiguration Procedures
Failure Recovery Procedures

Pocket Checklists

Manual

* Boolean Expressions

63ax2 = 63axt
63ax4 = 63axic & (~63ax5) & 63ax8

Semi-

Automatic

* Production System: User, Rules and Data Interaction

Antecedents N Consequents
(63arhs) (63alhs)
\ A
Explanation |
(63aexp) -
Y
User
Automatic
Telemetry
Data

Figure 6: Equivalent Representations of Procedural Information

16

2.4.1 Malfunction Procedures as Graphs

The malfunction procedure itself can be thought of as a directed graph or digraph, G=(V,E), where
F={w.v,...v;}, a set of vertices and E'is a set of arcs such that each element of £ is an ordered pair of
vertices, (v.v;.;). An arc from v; to v;,., can be denoted as v—v;.,[16]. In this terminology the
boxes in the malfunction procedure are vertices, and the connecting lines represent arcs. A path in
the graph is a sequence of vertices v,.v....v,. &>1, such that an arc, (vy—v;,), exists for each i,

1< i< k. The path is said to be from v; t0 v;. For any vertex, v;in a path, vertices v j<i are'referred
to as predecessors of v; while vertices v;, k>i are the successors of v. The numbering of the
vertices used here should not be confused with the numbers used to name the boxes in the
malfunction procedure. The numbering of the vertices is used to indicate order; the numbering of the
boxes is used as identification and not necessarily order. An interesting note is that malfunction

procedures are not trees. As defined in [16], atree is a digraph with the properties that:

1. There exists a vertex, the root, without predecessors, from which there is a path to every
vertex.

2. Each vertex other than the root has exactly one predecessor.

3. The successors of each vertex are ordered from the left.

Malfunction procedures fail to satisfy properties two and three, as seen in figure 2. We introduce the
concept of graphs here to permit us to be more precise in our subsequent discussion as well as to
establish the groundwork for the application of other analytical methods.

2.4.2 Generation of Boolean Functions

The translation of block malfunction procedures to Boolean functions is straightforward. Failure
Recovery Procedures (FRP) present a somewhat less direct translation but are nonetheless
convertible to the representation described below for block malfunction procedures. As an example,

consider the following expression:

6339 = 63ale A\ ~63a3 A\ ~63a5 N\ 63a8 ()

Referring to figure 2, note the heavily bordered box labelled with the number, 9, in the upper left-hand
corner of the box. This box, as do others with the heavy black border, represents a termination or
diagnostic state within the procedure. When a user of the procedure reaches one of these boxes by
following the logic of the procedure, a conclusion about the state of the subsystem of interest has

been reached.

17

2.4.3 Assignment of Variable Names

To represent the logic leading to the conclusion named 9 in figure 2 in machine-processable form
we have assigned a Boolean (binary-valued) variable named 63a9 to the vertex labelled 9. In the
context of discussion in section 2.2 this variable is the consequent of the antecedent conditions on
the right-hand side (RHS) of equation (1) in section 2.4.2. When the consequent has the value 71, the
proposition within the box is true, when it is 0, the proposition is false. Since antecedent and
consequent terms are assigned names in an identical manner we will present an example of naming
only a single variable. Each vertex within a procedure is assigned a variable name composed of the
procedure name, for example 63a, and a numeric suffix which is the label of the vertex. This process
can be summarized by the following production or rewriting rules.

[0] S=A44BAC

[1] 4=112]3]4|51617]8]9.
[2] B—alb|c]..|xly|z
[3] C—B|A

These rules specify a string of literals of length four or five. The first literal, represented by the first A
in rule [0], indicates the chapter in the malfunction procedure handbook where the procedure can be
found. The second A indicates the page in the chapter. The third literal,B, indicates the proce&ure
within the SSV engineering discipline. The fourth literal,A, specifies the vertex containing the text of
the proposition. Finally, the fifth literal, C, specifies subpropositions which may be posed in
association with any single proposition as in the case of 63a7a, 63a1b, 63a7c of figure 2. When no
subpropositions are represented, this literal evaluates to null represented by A. The application of
these rules is illustrated below in the generation of the variable name 63a9. The selective application
of these rules at each step beginning with the start symbol, S, rewrites the literal string, AABAC, to the
variable name 63a9.
S—AABAC [0}

AABAC—6ABAC [1}
6ABAC—63BAC [1}
63BAC—=63aAC (2]
63aAC—=639C [1]
63a09C—63a9 [3]
The bracketed number after each step is the number of the rule applied at that step. The use of

18

rewriting rules provides a systematic method of assigning names to variables the number of which
would rapidly become unmanageable if variable names were assigned in an ad hoc fashion. These
conventions assure that each variable will have a unique name and that every reference to any given
proposition (associated with a vertex) within a malfunction procedure will be made by the same name.
This is especially important since there are cross-references to the same vertex between the

malfunction procedures whereby one malfunction procedure branches into another.

2.4.4 Procedural Logic in Boolean Form

With a method of assigning variable names, capturing the logic of the procedure as a Boolean
function is trivial. Realizing that 2 Boolean function is equivalent to a path through the graph of the
malfunction procedure makes this immediately apparent. The number of antecedent terms in the
resulting Boolean function is k~1 where k is the number of vertices in the path; the path length is
k=1. Note that the consequent term of the function is an element of the path and contributes to the
size of k. The enumeration of a set of functions which covers or spans the malfunction procedure

can be accomplished by the simple recursive procedure described below.
GENERATE(FUNCTION);
v « NAME.OF(vertex);
N « GET.NUMBER.OF.OUTPUT.ARCS;
if FUNCTION ~ = nil then LOGIC-AND « ~ A "
else LOGIC~AND « nil;
‘case 1: if N = 0 then

do;
FUNCTION « v il = It FUNCTION;
output FUNCTION;
end;
case 2: else do until (N = 0);
N « N-1;

if VALUE(arcy)
if VALUE(arcy)
call NEXT.VERTEX;
call GENERATE(FUNCTION);
end:
return;
end GENERATE;

'yes' - or nil then FUNCTION «FUNCTION IILOGIC-ANDIlv;
‘no' then FUNCTION«FUNCTION HLOGIC-AND~Ilv;

If this procedure is applied at the root of each malfunction procedure the result is a set of Boolean
functions like that in Table 3. We assume the existence of some other functions to service the
GET.NUMBER.OF.OUTPUT.ARCS, NAME.OF, VALUE. and NEXT.VERTEX calls. In particular,
GET.NUMBER.OF.OUTPUT.ARCS returns 0. 7, or 2 for the various alternatives of nil, yes, or yes and
no. NAME.OF assigns a variable name to the vertex consistent with the rules of section 2.4.3,
NEXT.VERTEX follows the arc v/~ ;. to the next vertex. This procedure is executed manually at
present although it could be implemented on a computer to support the automated design of

malfunction procedures.

19

63a2=63ala

63ad =63alc A\ 63a3

63a6=63ale A\ ~63a3 A\ 6345

63al=63a6

63a9=063alc A\ ~63a3/\ ~63a5/ 6348

63a10=6349

63al4 =63all

63al5=63ale \ ~63a3 N\ ~63a5 N\ ~63a8 A\ ~63all A 63al2 A 63al4
63a18=63alc A ~63a3 A\ ~63a5 N\ ~63a8 A 63all A63al6 A 63al7
63a19=63alc A ~63a3 A\ ~63a5 N\ ~63a8 A\ ~63all A 63al6
63a20=63alc A ~63a3 A\ ~63a5 A\ ~63a8 A 63all A63al6 A ~63al7
63421 =63al9

63a21 =63a20

63a24=63a22 \ ~63al4 A63al2 \ ~63al1 N\ ~63a8 A\ ~63a5 N\ ~63a3 A\ 63alc
63a25= ~63a22 A\ ~63al4 A63al2 A ~63all A ~63a8 A\ ~63a5 A\
~63a3 A\ 63adlc

63a27 =63a26 A\ 63a23 A 63alb

63a28 =63a25

63a28 =634al5

63a30=63a29 A ~63a26 N 63a23 A\ 63alb

63a33= ~63a32 A 63a31 N\ ~63a29 A ~63a26 A 63a23 N\ 63ald
63a35=63a32 A 63a31 N\ ~63a29 A ~63a26 A\ 63a23 A\ 63alb
63a36=63a34b A\ ~63a31 A ~63a29 A\ ~ 63a26 A 63a23 A\ 63alb
63a37=63430

63437 =63a33

63a37=63a35

63a37=63a38

63a38=63a3d4a/\ ~63a31 A ~63a29 N\ ~63a26 A\ 63a23 N\ 63alb
63a39=63436

63a42=63a41 A\ 63040 A\ ~63a23 A 63ald

63a43= ~63a41 A 63a40 A ~63a23 A\ 63alb

63044 =63a42

63a44 =63ad7

63a47=63a46 N\ 63a45 N\ ~63a40 A\ ~ 63423 A 63ald

63a47=63a46 N\ 63a45 N\ 6368 '

63a48= ~63a46 A 63a45 A\ ~63ad40 A\ ~ 63a23 A 63alb

63a48= ~63a46 N\ 63345 A 6358

63a50=63a49b A\ ~63ad5 A\ ~63ad40 A\ ~ 63423 A 63alb
63a50=63a49b A\ ~ 63a45 N 6358

63451 =63a50

63a52=63a49a A\ ~63a45 A\ ~63a40 A\ ~ 63a23 A\ 63alb
63a52=63a49a A\ ~ 63a45 A\ 63bx8

63a53=63a52

Table 3: CRYO 6.3a (figure 2) as Boolean Expressions

The conversion of the malfunction procedure to a set of Boolean expressions is equivalent to the
enumeration of the possible paths through the graph. While enumeration problems are associated

with classes of problems considered intractable [13] we are not faced. here, with the full enumeration

20

problem since the set of paths for conversion to Boolean form is small and well-defined by virtue of

having been written down. This is the same as saying that the search space of the algorithm of
2.4.4 is small.

2.5 Software Impiementation

Using the approach to variable naming and logic representation described above, a selected subset
of malfunction procedures was implemented in a convenient high-level language (HLL), ROSIE (Rule-
oriented System for implementing Expertise) [27]. As used in this work, ROSIE is implemented on a
VAX 11/780 running the UNIX operating system. It should be noted that ROSIE was selected
primarily as a matter of convenience and that this work does not require its use. Any programming
language could be used to implement the methods presented here. The principal advantages of
ROSIE are the interactive nature of the system, the existing system utilities for string manipulation,
and the relational structure of the underlying database system. These features present a powerful
development environment. The principal disadvantage is the large system overhead associated with
the interpretive ROSIE language which is itself based on a dialect of LISP, INTERLISP-D. The
dependency on INTERLISP-D also limits the variety of systems on which ROSIE may be hosted at
present.

2.5.1 Organizing Principle

To retain the terminology found in existing malfunction procedures and, at the same time, retain the
Boolean representation common to both the software and hardware implementations, the information
contained in malfunction procedures was conveniently organized into three components. This
decomposition was suggested by the form of the Boolean functions as shown in figure 6. As an
example, for the malfunction procedure, CRYO 6.3a, the rule-sets contain the following three
components:

1. 63arhs - Antecedents. Contains the logic necessary to determine the binary value of the
consequents of the Boolean expression. In general. this represents information which
must be requested from the flight controlier or the flight crew. The value of these
Boolean variables are potentially ascertainable from telemetry data. Grouping the

variables into this category essentially constructs the set of data which must be obtained
from some source external to the malfunction procdure itself.

2. 63alhs - Consequents. Contains the inferential logic which determines the binary value
of the consequents as a function of the antecedents. Consequents are associated with
either or both

a. diagnosis - the detection of a condition associated with the heavy, black bordered
boxes displayed in the original malfunction procedure document reproduced in
figure 6.

21

b. action - the detection of a condition associated with a box in the original
procedure which requires human intervention or a change of vehicle state
necessary to provide further information or ensure vehicle safety before executing
the rest of the procedure.

3. 63aexp - Explanation. Contains the logic to interpret the values of the Boolean variables
into English text for presentation to the flight controllers or crew. This category uses
exactly the wording of the original malfunction procedure itself. This ability is a major
advantage in eliminating problems associated with introducing new terminology to a
highly specialized application.
This decompoéition provides a strong organizational structure or paradigm for converting these rule-
sets into compiled, high-level languages such as FORTRAN or PASCAL as well as interpreted and
compilable languages like LISP. Tables 4, 5, 6 show the form each of these categories takes when

constructed as ROSIE rule-sets.

22

L8]
el

if H2 Press

if 63ala
if 63ala
if 63alb
if 63alb

if (63ala
if (63alc

if

if

is
is
is
is

is
is

Table 4: Partial Listing of 63aRHS

is true obtain 63ala of "H2 P Normal".

true go 63alhs.

false obtain 63alb of "H2 P High".

true obtain 63a23 of "TK3 and/or TK4 the affected tk".
false obtain 63alc of "H2 P Low".

Table 5: Partial Listing of 63aLHS

true) assert 63a2 is true.
true and 63a3 is true) assert 63a4 is true.

(63alc is true and 63a3 1is false and 63ab is true)

assert 63a6 is true.

(63a6 is true) assert 63a7 is true.

Table 6: Partial Listing of 63aEXP

f 63ala is true send {"* A1l H2 P norm",return}.
f 63alb is true send {"* HZ2 P High",return,
* ACTION: Deact htrs in affected tk(s).",return,

(R1)

H2

TK1(2,3) HTRS A,B - OFF and/or",return,

(A11) CRYO TK4 HTR H2 A,B - OFF",RETURN}.
[10] if 63alc is true send {"* H2 P low",return}.
[11] if 63a2

is

true send {"* DIAGNOSIS: C/W Failure",return}.

23

2.6 Hardware Implementation

The reason that we discuss the topic of hardware implementation at all is to point out the concept of
hardware-equivalence. By virtue of the use of Boolean formalism we are able to represent the
complete logic of the maifunction procedure as if it were a programmable logic array (PLA). This
means that procedural logic contained in the malfunction procedures can be transformed to a
bit-map which is independent of the method or language of implementation. Since the bit-map is
essentially a truth-table with a standard structure, described below, a single processor or program
can be constructed which processes these tables. By adopting this representation we eliminate the
need for a large software system which would be necessary to capture and process the logic of a
large number of malfunction procedures and permit the processing of the same procedural logic at
the level of register-register operations. This implies not only significantly reduced storage
requirements but also very high processing speeds. The next few sections summarize the steps
necessary to convert Boolean expressions to their PLA form and present the results of an actual PLA
synthesis.

2.6.1 Generation of Hardware Descriptions

Once the malfunction procedure has been specified in Boolean form, the process of creating
descriptions of hardware which are function.ally equivalent to the malfunction procedure is
straightforward. A set of Boolean equations can be translated into integrated circuits through an
automated series of translations between different intermediate representations. Each of the
representations is a description of a different aspect of the implementation process. In this case, the
Boolean equations will be converted into a truth table which is sometimes referred to as a personality
matrix. The truth table will be translated into an architecture known as an AND-OR programmable
logic array (AND-OR PLA). (In the remainder of this discussion, the term PLA will be used to mean
AND-OR PLA.) The PLA can be implemented as a custom integrated circuit. Figure 7 summarizes the
sequence of steps leading from the Boolean functions to the manufacture of the hardware device.
Most of these steps are implemented using programs developed in the University of California,
Berkeley, Computer Science Division [20]. The names of the major programs involved are listed in
figure 7 according to their role in the sequential design and manufacture of a VSLI device. Although
one can actually generate a semiconductor device which executes the logic of the malfunction
procedure, as shown below. to do so probably is impractical for most of the kinds of procedures
currently existing, due to the volatile nature of these procedures and the consequent frequent
changes made to them. While the redesign of these devices would be trivial, the manufacture and
integration of the resultant devices would not be generally cost-effective. A small subset of highly

stable procedures could possibly be identified for hardware implementation.

24

* Boolean Expressions

63ax2 = 63ax1
63ax4 = 63ax1c & (~63ax5) & 63ax8

* Bit Map

PLA Personality Matrix
Logic Minimization

eqntott
Presto

* Circuit Design & Analysis
Design Styles
Technologies
Simulation
Performance Analysis

Tpla
Mextra
esim

* Chip Manufacture
MOSIS

ARPANET

Figure 7: Design and Manufacture Sequence for VLSI Devices

25

2.6.2 Reduction of Boolean Functions to Normal Form

The design automation program eqntott generates a personality matrix suitable for PLA
programming from a set of Boolean functions that define the PLA outputs in terms of its inputs. Table
3 displays the input to egntott while figure 8 shows the resuiting personality matrix and the PLA
resulting from that matrix as described in section 2.6.4. A personality matrix is a representation of a
set of Boolean functions in disjunctive normal form (DNF) that defines a template for a circuit
implementation of those functions.

2.6.3 Minterms, Truth-tables and PLAs

Disjunctive normal form expresses Boolean functions as sums of products or minterms. The
interested reader is directed to [31] for further discussion of normal forms for Boolean functions. One
method of organizing information contained in Boolean functions in general and functions in DNF in
particular is through the use of a truth-table. The mathematical term for a row in a truth table is a
minterm. A truth table is an enumeration of the output valdes of a set of Boolean equations for a

given set of input values. For example, the truth table for the Boolean function aA (bV ¢) is

out
0

R e P, OO0 0N

R R OO OOT

OO OR, OO0
PR OO0 O

1

Each minterm is the conjunction (logical AND) of one or more terms. The second row of this truth

table is a minterm whose value isOifaisQandbisOand cis 1. Atruth table can be reduced in size
by the use of don't care terms. A don't care term is represented by ’-’ in the truth table. One possible

truth table for a A (b'V ¢) using don't care terms is
abc | out

0--1] 0
100 0
11-1] 1
1 -1] 1

The truth table representation and the PLA architecture were chosen for their close similarities.

2.6.4 Interpretation of the Personality Matrix

The personality matrix consists of a line for each sum of products term, implicant, which begins with
that implicant followed by the values of the various outputs. The implicant is composed of a single
character (0, 1. or -) for each input variable in the conventional fashion descibed in section 2.6.3.
The output values are represented by one of three characters (0, 1, or x). The PLA architecture is
physically similar to the truth table. in addition to implementing it functionally. The AND-OR PLA has

26

SRR

20=0 =0 == === = = e oo 000000000000000000000000000000001
--- 0--------1---1-000000000000000000000000000000110
--- 0--------1-1--- 000000000000000000000000000011000
—— 1--0------1----- 000000000000000000000000000100000
—— 1-1-------1----- 000000000000000000000000011000000
——————————————— 01--==-mmmmmmmmmmmmmmmm——mmmmoomoo—————= 000000100000000000000000000000000
—————————————— = mmmmmmmmmmmmmm e eeoeo—ooo= . 000000100000000000000000000000000
~0-01--0-0-0-0====F=-==== === oo m oo 000000000101000000000000000000000
“0-01--0-0-0=01==-=====-=== == 000000010000000100000000000000000
-0-01--0-0-01----- O R 000000000011000000000000000000000
-0-01--0-0-01----~- L B e 000000001000000000000000000000000
20-01-=0=01 === === 000011000000000000000000000000000
L} | § T e 001100000000000000600000000000000
T R B R e DL e Lt 010000000000000000000000000000000
“01--0-===--=--mmmmmm oo 0---==------ 0---0-=--------=--- 1- 000000000000000000000000000000110
“01--0---=---mmmmmmmm oo I 0---0-----===-- 1--- 000000000000000000000000000011000
“01--0--===--smmmmmm oo I 0--1--0---=====---- 000000000000000000000000000100000
“01--0---==-mmmmmmmm oo 0----------- 0--1-1---=--------~ 000000000000000000000000011000000
—01--0------------=------ 0---------= 1--0---=----=----=-= 000000000000000000000000100000000
“01--0----m-mmmm oo 0---=------ T e 000000000000000000000001010000000
~01--0---=-=--====mmmmn- 1--0-0-0----==-=---===--~ 1------- 000000000000000000001100000000000
-01--0---------=-------- 1-=0-0-0-=-=mmsmm e T smmms 000000000000000000010010000000000
om0 i o i R SR 1220201 =0z s auwpmem s 000000000000000001001000000000000
“01-=0=-=-m=mmmmmmmmm e 1--0-01-1-=-=---mm-mmmmmmmmmm oo 000000000000000000101000000000000
“01--0---===mmmmmeenomo 1==01--mmmmmmmmm oo m oo 000000000000000010001000000000000
=01--0------===mmmmmmm T R LS L P 000000000000001000000000000000000
e B e e L L L L L LD Db 000000000000000000000000000000001
L e Qe e i i i i i 6 R S S S 100000000000000000000000000000000
L B e 000000000000000000000000000000001
D R ettt b el bt 000000000000000000000000000000001
G (G ERE I
X > > » X > >
e e ™ N A& 1 =
0 o0 © wm
9

Figure 8: Disjunctive Normal Form Matrix and Corresponding Circuit Topology

27

two parts that are each implemented as planar portions of the (planar) integrated circuit. These
portions are called the and-plane and the or-plane. The and-plane lies adjacent to the or-plane in the
same way that the input portion of a truth table lies adjacent to the output portion. The and-plane and

or-plane have the same number of rows. Each row contains the circuitry to calculate one of the
minterms from the truth table.

2.6.5 True and Complement Format

Each pair of columns in the AND-plane contributes the true and complement of an input variable to
each of the appropriate minterms. A 1 contributes the true form of the input variable, a 0 contributes
the complement of the input variable. A minterm is calculated by anding the appropriate form of each
input variable that is selected by a 1 or a 0 in that row. An - in the truth table indicates that the input
variable does not contribute anything to the minterm. For example, the third row in the reduced truth
table above indicates that the third minterm is calculated by anding the true form of a with the true
form of b and that neither the true nor complement of ¢ is used. Each column in the OR-plane
specifies an output variable. The output from a column is the logical OR of 0 with each minterm that
is selected by the presence of a one in that column.

2.6.6 Comparing Logical and Physical Domain Formats

The reduction, by eqntott, of the set of Boolean functions into disjunctive normal form creates a
matrix (bit-map) describing the normal form which is directly comparable to the physicél realization of
the PLA in terms of integrated circuit mask layers. To illustrate this, figure 8 displays both the
truth-table for malfunction procedure CRYO 6.3a and the resulting PLA. They have been lined-up to
show the data format of the disjunctive normal form of the truth-table juxtaposed with the
corresponding circuit topology of the PLA. The ones in the left-hand part of the matrix are reflected in
a connection to the true input column in the circuit, the zeros in the left-hand part of the matrix are
reflected in a connection to the complemented input.column in the circuit, and the ones in the
right-hand part of the matrix are reflected in a connection to the output column in the circuit. The
zeroes in the right-hand part of the matrix specifies no connection to the physical output column in
the circuit.

2.6.7 PLA Performance Analysis

The circuit description can be analyzed for area, timing, and power dissipation characteristics, and
can be simulated. with esim; see figure 7. as a further validation of the conversion from procedural to

Boolean form.

28

cryob.egn
Design Style Area (square microns) Power Dissipation (W) Worst Delay (ns)
nMOS PLA (cis) 1176480 115 (.065) 29.8
nMOS PLA (trans) 1247688 115 (.065) 29.8
CMOS PLA (cis) 5031180 N/A - N/A
CMOS PLA (trans) 4374832 N/A N/A

Figure 9: Automated Analysis of Implementation Characteristics of CRYO 6.3a
Equations.

3 Distributed Architecture

Previous sections have concentrated on the representation and implementation of procedurai logic
using new approaches and new technology. Greater benefits may be realized from these techniques
than from simple machine processing. We have demonstrated the equivalence of hardware
representations to the logical representation of the original malfunction procedure. Based on these
discussions the benefits such an approach may have for the increasing distribution of mission

processing between space and ground as well as between hardware and software, are apparent.

3.0.1 Characteristics of Distributed Architectures

Distributed processing architectures have general characterstics which can be seen to be lacking
from the current SSV ADP architecture, although most of these characteristics can be found in the
operations network as a whole. Discussion here is limited to the characteristics of the ADP
architecture for mission support. As discussed in [8], these include:

- processing supported by a network which provides high-level control over inter-process
communication in a standard, network-wide protocol.

. communication strictly between asynchronous processes as opposed to mere remote
data access.

- data access accomplished via inter-process communication.

- resource sharing not limited to data-sharing and especially including sharing of
processing in support of a single task.

29

3.1 Limitations of the Current Communications Architecture

in the past, unless a space vehicle was in view of a ground-based tracking station, which was only
15-20% of the time during an orbit for manned space flights, space/ground communication was not
possible. During the time when spacecraft were blacked-out of communication with the ground, all of
the data which the craft may have been collecting regarding its on-board systems, experiments or
external sensors had to be stored on-board. Only when communication was re-established could
data be communicated (transmited/received) with the ground. This situation is changing inasmuch
as the Tracking and Data Relay Satellite System (TDRSS) is anticipated, when fully operat'ional, to
permit communication with the ground for 80-85% of a given flight.

3.2 Limitations of Current On-board Processing Architecture

Historically, the tasks performed in support of manned space flight have been distributed between
the on-board General Purpose Computers (GPCs) and the ground computers. This physical
sepgration was also a logical separation of processing responsibility, largely the result of the limited
spaée-ground communication. Tighter logical sharing of processing was restricted not merely by the
physical separation of the processors but fundamentally by the isolation resuiting from low
transmission speeds and irregular opportunity for communication due to limited ground coverage.
This approach has been perpetuated in the SSV data processing systems. Within the current system
architecture, the on-board General Purpose Computers (GPCs) perform these major functions [17]:

1. guidance, navigation and control of the SSV through ascent, on-orbit, and landing,

2. systems management which includes software to acquire, process and route data for
systems evaluation and management,

3. payload software which permits the modification of the contents of mass memory units
(MMUs), and loading of the software to support display electronics units (DEUs).

The software to support these functions must be completely prepared and loaded on the MMU prior to
launch. There is extremely limited variation of system processing once a launch has been executed.
Alteration of the MMU processing sequence can be accomplished only through the use of single
commands to the processor in the form of GPC instructions or data. These commands must be built
manually by either the flight crew or the controllers on the ground. For the purposes of malfunction
procedure processing, the GPCs act only as the interface between the flight team and the vehicle
systems and subsystems. The GPCs themselves do not have the capacity to support extensive

anomaly processing.

30

3.3 Effect of Limitations on SSV Autonomy

These two factors, limited communications and limited on-board processing, apply opposing forces
in attempts to achieve increased SSV autonomy. On the one hand limited communications makes it
desirable to provide as much stand-alone capability on-board as possible. On the other hand, the
desire for high reliability of the SSV systems, in the face of high SSV system complexity, requires the
expertise of more than just the flight crew for both nominal and off-nominal operations. The addition
of computers and software to support increased vehicle autonomy is not simple. Since the existing
computer systems are flight-critical, the alteration of their operational capabilities is an expensive
undertaking, and also subject to high schedule risk due to the nature of software development. This
is not, however, an impossible or even impractical goal. One method for additional processing
on-board, without requiring the alteration of existing on-board systems, is through the use of carry-on
micrcomputers. |f we assume that the problem of additional processing is solvable, and it is, still to be
faced is the more difficult problem of capturing the collective expertise of the flight control team in a
computing system. The improvement in space-ground communications represented by TDRSS
makes this expertise more accessible to the flight crew but does change the very labor intensive

character of mission monitoring nor does it alone increase vehicle autonomy.

3.4 Options for System Architecture and Interconnections

The ability to select the mode of implementation, software or hardware, as well as the location,
space or ground, offers four options for any given system design attempting to the flight control
function. These are indicated in figure 10. The choices are not mutually exclusive. This fact implies
the slightly more subtie point, however, that the methods presented in this paper make it possible and
relatively simple task incorporate significant increases in redundancy and autonomy for procedural
processing, with all the attendant benefits and without great cost. This can be accomplished with a
single logical representation and in an automated fashion. The importance of these results can be
seen by envisioning a spacecraft which, when normally in contact with the ground. is monitored by an
automatic malfunction processing system staffed by humans but which is capable of going

autonomous for the same function when, for any reason, it is out of communication with the ground.

31

el

Boolean
Functions

Software

AN

Hardware

/N

VAR

round

Space

Ground

N

\ /.

User

Figure 10: Distributed Processing Architecture: Software and Hardware

32

4 Summary

We have presented a new method for the representation of SSV malfunction procedures which
permit their conversion to a form suitable for processing by computers. These results are derived
from {15] which originated this representation for the development of a rule-based expert system
capable of automatic inference and the implementation of higher-level logic than that contained in the
malfunction procedures. Additionally we have presented the concept of hardware equivalence and
discussed the implications of the distribution of procedural processing between hardware and
software as-well as space and ground. The results of this work stand-alone in that this representation
can be implemented based soley on the results presented in this paper and independent of any

further work to develop an expert system based on them.

33

[1]

(2]

[3l

(4]

(5]

[10]

[11]

References

Balzer, R., Erman, L. D., Londom P. and Williams, C.
HEARSAY:-IIl: A Domain-!=dependent Framework for Expert Systems.
In Proc. First Ann. Conf. on Artificial Intelligence, pages 108-110. 1980.

Barr, A. and Feigenbaum, E. eds.
The Handbook of Artificial Intelligence.
HeurisTech Press, 1981.

Barstow, D. R.
An Experiment in Knowledge-based Automatic Programming.
Artificial Intelligence 12:7-119, August, 1979.

Bennett, J. S., Engelmore, R. S.
SACON: A Knowledge-Based Consuitant for Structural Analysis.
In Proc. of Sixth Intl. Joint Conf. on Artificial Intell., pages 47-49. August, 1979.

Brown, J. S., Burton, R.R., Bell, A. G. ,

SOPHIE: A Sophisticated Instructional Environment for Teaching Electronic Troubleshooting
(An Example of Al in CAl).

Technical Report F41609-73-C-006, Bolt, Beranek, and Neuman Inc., 1974.

Bundy, A. et al.
Solving Mechanics Problems Using Meta-Level Inference.

In D. Michie (editor), Expert Systems in the Microelectronic Age, . Edinburgh University Press,
1978.

Clancey, W. J., Shortliffe, E. H., Buchanan, B. G.
Intelligent Computer-Aided Instruction for Medical Diagnosis.
In Proc. of 3rd Symp. on Computer Application in Medical Care. 1979.

Davies, D. W.
Applying the RSA Digital Signature to Electronic Mail.
Computer :55-62, February, 1983.

Davis, R.
Interactive Transfer of Expertise: Acquisition of New Inference Rules.
Artificial Intelligence 12:121-157, August, 1979,

Duda, R., J. G. Gaschnig, and P. E. Hart.
Model Design in the Prospector Consultant System for Mineral Exploration.

In D. Michie (editor), Expert Systems in the Microelectronic Age, . Edinburgh University Press,
1979.

Fagan, L., J. Kunz, E. A, Feigenbaum and J. Osborn.

Representation of Dynamic Clinical Knowledge: Measurement Interpretation in the Intensive
Care Unit.

In Proc. of the Sixth Conf. on Artificial Intelligence. 1979,

Feigenbaum. E. A., B. G. Buchanan. and J. Lederberg.
On Generality an Problem Solving: A Case Study Using The DENDRAL Program.
In B. Meltzer and D. Michie (editor). Machine Intelligence 6,. American Elsevier, 1971.

34

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

{24]

Garey, M., Johnson, D.

Mathematical Sciences: Computers and Intractability. A Guide to the Theory of NP-
Completeness.

Freeman, San Francisco, 1979.

Gelernter, J. L. et al.
Empirical Explorations of SYNCHEM.
Science :1041-1049, September, 1977.

Helly, J. J., Jr.
A Distributed Expert System for Space Shuttle Flight Control.
PhD thesis, University of California, Los Angeles, in preparation.

Hopcroft, J., Uliman, J.
Computer Science: Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, Massachusetts, 1979.

Suffredini, M.

Data Processing System Overview Workbook

DPS OV 2102 Advanced Training Series edition, NASA Flight Training Branch, NASA JSC,
Houston, TX 77058, January 1984.

NASA.
System Malfunction Procedures Requirements

Final, Rev. B edition, Flight Operations Division, Lyndon B. Johnson Space Center, Houston,
TX 77088, June 15, 1882. '

Kunz, J. et al.

A physiological rule-based system for interpreting pulmonary function test results..
Technical Report HPP-78-19, Stanford University, 1978.

Robert N. Mayo, John K. Qusterhout, and Walter S. Scott, editors.

1983 VLSI Tools.

Technical Report UCB/CSD 83/115, University of California, Berkeley, Computer Science
Division (EECS), March, 1983.

McDermott, J.
R1: An Expert in the Computer Systems Domain.
In Proc. of the First National Conf. on Artificial Intelligence. 1980.

Flight Operations Directorate: Crew Training and Procedures Division.
JSC-12770 Shuttle Flight Operations Manual

NASA Johnson Space Center, 1978.

Preliminary.

Nii. H. P., and N. Aiello.

AGE (Attempt to Generalize). A knowledge-based program for building knowledge-based
programs.

IJCAI :645-8655, 1979.

Nilsson. N.
Principles of Artificial Intelligence.
Tioga. 1980.

35

(28]

[26]

(27]

28]

[29]

(30]

[31]

[32]

(33]

L. F. Pau.

Control and Systems Theory. Volume 11: Failure Diagnosis and Performance Monitoring.
Marcel Dekker, inc., New York, 1981,

Pople, H.

The formation of composite hypotheses in diagnostic problemsolving-an exercise in synthetic
reasoning.
IJCAI:1030-1037, 1977.

J. Fain, D. Gorlin, F. Hayes-Roth, S. Rosenschein, H. Sowiziral, D. Waterman.
The ROSIE Language Reference Manual
RAND Corporation, 1981.

Shortliffe, E. H. .
Computer-based medical consultations: MYCIN.
American-Elsevier, New York, 1976.

Shortliffe, E. H.
Computer-Based Medical Consultations: Mycin.
Elsevier, 1976.

T. L. Booth.

International Series in Applied Mathematics. Sequential Machines and Automata Theory.
John Wiley and Sons, inc., New York, New York, 1967.

R. Thomas. .
Kinetic Logic. A Boolean Approach to the Analysis of Complex Regulatory Systems.
In Lecture Notes in Biomathematics. European Molecular Biology Organization, 1979.

Weiss, S. M., C. A, Kulikowski, A. Safir.

A model-based consultation system for the long-term management o glaucoma.
IJCAI :826-832, 1977.

Weiss, S. M., C. A. Kulikowski.
EXPERT: A system for developing consultation nodes.
IJCAI :642-947, 1979,

36

* US. GOVERNMENT PRINTING QFFICE: 1984--769-013/6281

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

TM 58258

4. Title and Subtitle 5. Report Date
A representational basis for the development of a distributed May 1984

expert system for Space Shuttle flight control 6 Performing Orawmiation Cooe

7. Author(s) - . .
ngsmr(j. He]]y. Jr. UCLA, Aerospace Cor‘p. 8. Performing Organization Report No.
William V. Bates JSC $-533

L__Mel Cutler, Steven Kelem __Aerospace Corp. 10. Work Unit No

9. Performing Organization Name and Address 561-85-00~00-72

NASA Lyndon B. Johns 11. Contract or Grant No.
Houston, TX 77058 on Space Center

. 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics & Space Administration ”

Washington, D. C. 20546 - Sponsoring Agency Code

115, Supplementary Notes

16. Abstract

A new representation of malfunction procedure logic which permits the automation of these
procedures using Boolean normal forms is presented. This representation is discussed in the
context of the development of an expert system for Space Shuttle flight control including
software and hardware implementation modes, and a distributed architecture. The roles and
responsibility of the flight control team as well as previous work toward the development
of expert systems for flight control support at Johnson Space Center are discussed. The
notion of malfunction procedures as graphs is introduced as well as the concept of hardware-
equivalence. : '

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Malfunctions Distribution unclassified~- unlimited
Flight control (Property) subject category: 61
Space Shuttles Architecture
Computer Systems Programs (Computers)
Hardware Failure
System failures
19, Security Classif, (of this report) 20. Security Classif, (of this page) 21. No. of Pages 22. Price®
unclassified unclassified 38

" *For sale by the National Technical information Service, Springfield, Virginia 22161

JSC Form 1424 (Rev Nov 75) - NASA - ISC

