
d/,_s,z).-7--_1-_5 78_q

NASA Technical Memorandum 8 5 7 8 4

NASA-TM-85784 19840018272

AN OPERATING SYSTEM FOR FUTURE

AEROSPACE VEHICLE COMPUTER

SYSTEMS

Edwin C. Foudriat, W. J. Berman,

Ralph W. Will and W. L. Bynum

Fo_ E__r-z_zxrcE

_!oT.7__zzam_,_.aoz.:has r,oo=

April 1984

'!" " 1_£4'-'. /. E

NASA L',NGLEYRES EARCH,; E.I_RLJSRARY,NASA

National Aeronautics and HAr,:?IO_,J,VIRGIN_A
Space Administration

LangleyResearchCenter
Hampton, Virginia 23665

SUMMARY

The requirements for future aerospace vehicle computer operating
systems are examined in this paper. The computer architecture is
assumed to be distributed with a local area network connecting the
nodes.

Each node is assumed to provide a specific functionality for the
space vehicle and as such it can maintain a degree of independence. The
network provides for communication so that the overall tasks of the
vehicle are accomplished. Hence, the computer architecture and
operating system structure implement a "cooperative" autonomous concept
which is both flexible and extensible as required for future space
vehicles like the space station.

A distributed operating system structure is developed to support
the system autonomy based upon the concept of objects. Common service
objects that exist at all or most nodes are identified as resource
managers (memory, secondary storage, communication, and user
interface). The concept for integrating node unique service objects
with the common service objects in order to implement both the autonomy
and the cooperation between nodes is developed.

The requirements for time-critical performance and reliability and
recovery are discussed. Time-critical performance impacts al___lparts of
the distributed operating system from its structure, to the functional
design of its service objects, to the language structure used for its
implementation. Throughout the paper the tradeoffs -- concurrency,
language structure, object recovery, binding, file structure,
communication protocol, programmer freedom, etc., -- are considered to
arrive at a feasible, maximum performance design.

Reliability of the network system is considered. A parallel
multipath bus structure is proposed which enables the control of
delivery time for time-critical messages. The architecture supports
time controlled message delivery over a wide range of message loading.
The same architecture supports almost immediate recovery for the
time-critical message system after a communication failure with
considerable redundancy to handle multiple failures. Techniques to
enable programmer control of recovery as a result of system or service
object malfunction are incorporated into the system design.

Because of the freedom provided to the programmer, the user
interface structure at program development must contain debug
capability. With the understanding that the finding and fixing of
errors in concurrent, distributed systems is extremely difficult, debug
features are provided at the operating system, user interface level to
enable the programmer to monitor and control tasks both within and !
between nodes.

I_ INTRODUCTION

The change from central to distributed computing (networks) taking
place in ground systems can be extended to future aerospace vehicles.
Networking may be especially applicable for evolutionary systems like
those proposed for the future space station. [i, 2] Many of the
requirements, and hence, the features, of distributed ground-based
systems will be adaptable with modification to their aerospace
counterparts. However, since many of the space-borne utilizations and
applications differ significantly, the a posteriori modification of
primarily ground based systems is not usually feasible.

The task of developing software for a space system is enormous.
[2] In this article we will attempt to examine only one small but very
critical aspect of that software, the operating system (0/S) for the
distributed network. It is small because the operating system uses
only a small portion of the compuher resources onboard; critical,
because the basic assumptions about the network system structure and
operating system characteristics have a significant effect on the
remainder of the software system.

The objective of this paper is to examine future aerospace
computer operating systems software, how this software will be
influenced by networking and distribution of tasks, and how it can be
made flexible to the evolution (explosion) of future computer
ca[2lility. In this task, it is necessary to make some initial
assumptions bounding the character of future aerospace computer systems
in order to clarify the structure of their O/S features.

A. Future Aerospace Vehicle Computer Systems

A NASA critical need for future aerospace vehicles is for highly
reliable, time-critical, semi-autonomous computer systems. Autonomous
subsystems aboard a future space station will provide attitude control,
environmental control, navigation and guidance, imagery, etc. The basic
structure and many of the hardware devices for a particular subsystem
will be germane to that subsystem. However, to function viably in the
completion of specific system tasks, these subsystems must be suitably
linked to cooperate with each other. The fundamental question is the
implementation of this cooperation, that is, how the general purpose
components should connect the special purpose components together to
achieve "cooperative" autonomy with maximum flexibility in development,
operation, and extension of the capability of the spacecraft.

Figure 1 illustrates the concept of "cooperative" autonomy for
some typica! spacecraft subsystems. It can be seen that the subsystems
themselves may be local networks, e.g., the stability and control (S&C)
system with distributed components such as actuators and sensors. The
subsystems cooperate by sharing information and resources via data
busses which make up the network. For example the S&C subsystem, even
though it performs its own function in an autonomous manner, also
provides spacecraft attitude and orientation information to an onboard
experiment. With proper authority the experiment can command a specific
attitude profile. This paper is concerned with the time-critical

network components and software which implement this information
sharing and command capability.

J ctrl I I power I
....l I..... I I
I I comp I l<--local net. I sys. I
I I bus

l
] act J I sensorl I

I i I i
I net I

I I I node I

.....I net I I
I node I I

I
I I
I time-critical network I

I
I

I net node I

I

I experiment I
I I

-- 0

Figure i.- Cooperative Autonomous Network Structure

There is considerable freedom in choosing this interface. For
example, the interface could allow the complete autonomy of each
subsystem. Here, each subsystem defines its information content and
structure at the network interface. The subsystem side of the
interface then is strictly controlled by the designers of that
subsystem. If this freedom were permitted, it is possible that
additional or modified information at the interface could be extremely
difficult and costly to obtain once the subsystem were completed.
Alternatively, each subsystem could be required to use common computer
hardware and software, making modification to system information easy
at the cost of performance (present and future). For a space station,
the cost of supporting 15-20 year old hardware architecture needed for
the sake of standardization or commonality is clearly unacceptable.
Hence, the interface is a compromise which permits specific component
functional integration into the system while identifying the common
elements between subsystems.

For our design, the space vehicle system is assumed to be
implemented with each autonomous subsystem occupying a computer node.
All nodes have general purpose computing capability. Autonomy is

obtained as a result of special purpose peripheral and/or computational
devices (e.g., inertial platform) integrated at a node. The nodes are
linked by a parallel multipath network. There are two levels of
parallelism for redundant operation. First, there are parallel busses
so if one link should fail another will quickly replace it, at least
for the critical communications. Second, there are multiple sets of
paralle! busses, so that communication between nodes is available along
different routes. [3] Nodes can be grouped by association; e.g., those .
most frequently communicating are placed on the same bus.

There are general features of the system which need to be
considered in the design. They are:

a. Time-critical performance - during the actual execution of a
task, speed of computation and utilization of concurrency to enhance
that speed are extremely important. Most design tradeoffs will weigh
speed most heavily. Also, in a time-_ritical system some mechanism must
be available to attain message delivery within a specified time, at
least for the class of messages that are critical.

b. Transparency - transparency implies that lower level
implementation features are hidden from the user. At the network level
this means that a distributed system would appear as though it were a
single computer to the user. This is an important feature in many
distributed systems [34] where the user wishes his job completed but
do&_ not care how it is done. It is given a lesser weight in our system
when tradeoffs with performance are concerned. Since many nodes provide
unique services, transfer of computation to another node is generally
not feasible. Also transfer of computation may result in subtle but
important changes, so transparency in this system may be limited to
situations that are not time-critical.

c. Target design - The system is intended for use in a space
vehicle like a space station. In this environment, it is assumed that
very litele program development will take place in space because of
dollar cost of operation. Hence, the design investigated here is not
targeted to the final operational system environment but rather to the
program deve!opment environment, which contains both the final system
and the capability to develop and debug code to be run in the final
environment.

The most critical design goals are to define:

I. An interface which will support the operation of
semi-autonomous systems (special computations and devices) within a
common network system structure. This interface must be both extensible
and flexible.

2. A structure that will support reliable, time-critical
performance within and between nodes which make up the system.

B, Review of Related Work

During the last few years, the volume of work related to
distributed and networked systems has been extensive. [4 - 18]

4

Features relating to distributed systems include languages [6, 7, 8,
16, 18, 26, 27, 29], operating systems [9, I0, 17], data bases [ii,
12], as well as networking, protocols [13, 14], and information
systems. This document is not meant to be a survey of the literature in
distributed computing. Instead, we intend to discuss the salient
features of our design in comparison with current related research.

The language feature most prevalent in the literature for
distributed systems is the remote procedure call (RPC). [6, 14, 16]
This, coupled with a message system to support RPC bidirectional
con_nunication, is the basic structure enabling distribution. A widely
used alternative is the send/reply (signal/wait) protocol for
communicating sequential processes. [16, 35] While one of these two
features appears in virtually all distibuted system implementations,
the implied structure behind them and the resultant efficiency differ
drastically.

One structure evolving from distributed database research uses

objects and actions. [Ii, 12, 15] Objects are encapsulations of
information, i.e., storage containers, with well defined mechanisms for
manipulation of the data within. The precise features of an object
(location, replication, entry, defined activity, locking, etc.) differs
among users. Similar encapsulations [17], e.g., Guardians, [6, 18] have
been employed by other reseachers. Actions (transactions) represent
tasks or units of work which via their agents (processes) manipulate
objects. Generally, actions are atomic when viewed by their user in
that they are indivisible; i.e., either the total action takes place
and a new system state results, or the action aborts and the initial
state remains (or is restored, depending on viewpoint). Splitting the
atom has become common practice among Computer Science professionals in
that nested actions, subatomic actions, actions within atomic actions,
etc., are readily considered. [12, 15, 19]

Actions naturally lead to the question of abort (the inability to
successfully complete the top level action) and recovery.
"Recoverability" as stated by Allchin [12] "is sufficient to guarantee
that the system can maintain totality of an action at all times." As
Allchin notes, nesting of atomic actions makes recovery eminently more
difficult. In database research, recovery after abort is viewed as
replacement or rollback to the state existing prior to the beginning of
the top level action. Other researchers dealing with recovery and
reliability of computer processes have looked at recovery in a somewhat
different manner [19, 20] and have evolved the concept of conversation
blocks. [21] Conversations restrict the transfer of information and
hence the domino effect of rollback, to those processes explicitly
involved. If an abort takes place and rollback is required, the data
needed to restore the initial state is defined by scope and the
rollback point is strictly specified. Hence conversations have the
effect of reintroducing atomicity into the fractured atomic action.
[20]

The concepts of recovery and synchronization interact in subtle
ways. To quote Allchin [12] : "The amount of concurrency may be limited
by the choice of recovery." Thus, one needs to deal effectively with
both process and atomic synchronization. Most systems assume, because

5

of the user's inability to deal with concurrent communicating processes
or his difficulty in locating concurrency errors, that actions need
synchronization built in for protection. For example, Guardians are
basically for the naive user in that no user programming for
synchronization and recovery of objects is possible.

The idea of built-in protection, whether due to user ability,
difficulty in error detection, desire for transparency, or whatever the
reason advanced, prevails in the distributed systems field to the point
where very little research has been devoted to distributed debugging.
References [22, 36 - 39] are the only activities known to the authors.
Only the CHILL program development environment [39] has implemented
debugging tools into a real system.

Debugging concurrent tasks is a frustrating, manpower-intensive
job. Even in the simple case where a single CPU is interfacing its
device drivers in an interrupt drive[, mode, debugging is difficult at
best. Error conditions which depend upon sequencing can occur in a
transient fashion and can be extremely hard to capture. The imposition
of trace or dump information may change timing sufficiently to mask the
error completely. In a system where performance is desired so that
programmers have the capability to trade off concurrency for
transparency, distributed debugging in the programming environment is
necessary.

This survey, while extremely limited, does show the centra! theme
of the basic design philosophy for our time-critical operating system
and illuminates where this system differs from the systems investigated
by others. Here objects are used to encapsulate and share information.
Since performance is foremost, minimal synchronization and recovery
restrictions are imposed on objects by the language or operating
system. Alternately, the ability for the programmer to provide the most
effective synchronization and recovery mechanism for his particular
situation is emphasized. To enable him to use this freedom, thread of
control _recing of object use and extensive distributed debugging
capacity are incorporated into the functional design of the network
system.

C. Format of the Paper

In the following section of the paper, the structure of the
operating system is discussed. The level structure of the O/S is
considered along with the general system components that must exist at
every node in order for the network to provide the systems interface.
The technique used to integrate the unique features in the form of
objects into the general O/S structure is considered so that nodes can
provide unique services and hence cooperate autonomously.

The need for language structure and the selection of appropriate
language features needed to implement the operating system is then
considered. The importance of specific features on performance is -
stressed. In the last section of the paper, the four general O/S
components, storage management, memory management, communications
system, and user interface are discussed. A functional design for each
is presented and the interfaces between components is considered. The

mechanization of each to fulfill the basic requirements for
time-critical, reliable performance is stressed.

II, STRUCTURE OF THE OPERATING SYSTEM

The basic structure of the operating system is shown in Figure 2.
The first portion of the operating system is very conventional. The
kernel provides both the basic language support used to construct the
remainder of the O/S and the run-time support for standard intra-node
features. The device drivers map the peripheral device hardware to the
system and handle hardware interrupts. Device drivers have been
separated from the O/S support layer in the Figure 2 to illustrate that
they are hardware configuration dependent. Most hardware drivers at
this level are closely allied to the specific O/S resources to which
they relate, e.g., device drivers will exist for the console connected
with the user interface, for the mass storage devices under control of
the storage management system, etc. Structurally they are integrated
into the O/S support layer subsystem to which they are related.

I i
I kernel i
I I

I

i system i
i drivers I

O/S I communicationi memory I storage J user I
Support I system i manage- I manage- I interface J
Layer I i ment I ment J I

I t
I service objects i
i I

I

I application programs I

Figure 2.- Operating System Structure

The heart of the operating system is provided by the O/S support
layer, which for performance is integrated as a single layer. This
differs drastically from vertically layered operating systems [10, 25]
and the standard ISO reference model which has seven layers of
abstraction to support the total network protocol. [46] The O/S support
layer is designed to handle all resources which are common across the
nodes, i.e., communication, primary memory, secondary memory and user
interface. A major portion of the paper will describe the requirements

7

and functional design of these four resource managers and the decisions
made in order to support time-critical performance and interface to the
node specific subsystems.

A few observations are in order concerning the choice of an
integrated structure over a layered abstraction structure as noted
above. Abstract layers require an interface between each level and each
level hides the details of how services are actually implemented. For
each level to perform independently and at its own pace buffering is
required between layers. Buffering implies copying and the cost for
copying is degraded performance. In order to minimize the need for
copying, a minimal layered structure is selected and services are
shared in an integrated fashion. The price for this structure is that
changes in functionality or format of an O/S layer service impact other
service elements. Spector [47] reaches a similar conclusion as
justification for integrating his communication primitives.

The next layer supports service objects. Service objects
incorporate the node-specific services which exist for a particular
node because specific hardware devices are located there or
computations can be efficiently implemented at that node. Hence, nodes
will derive their autonomy based upon the nature of their service
objects. Service object features will be detailed in section IV, but in
general they are objects in that they encapsulate information and have
specific mechanisms to manipulate their internal data. In essence, one
ca _nvision service objects as part of the O/S support layer since the
support layer subsystems are constructed in a manner identical to the
node-unique service objects. Thus, Figure 2 indicates that the
autonomous system-network interface exists at the O/S support-service
object layer of the node. In the final layer, the application layer,
programs use common and unique service objects to complete specific
tasks or activities implemented by the spacecraft distributed computer
system.

Unique features of this design are flexibility and extensibility.
Common hardware is needed only for the communication system protocol
and its interface to the CPU. Identical CPU hardware is not needed as
long as the structure is capable of handling the software kernel,
device drivers, and common O/S support service objects. Common O/S
structure allows the nodes to function in a distributed manner and
allows new nodes to integrate easily into the system. A unique feature
which enables good performance is that special node service objects are
readily incorporated directly at the O/S resource support layer. Hence,
in the development mode a new node (service oriented or general
purpose) can be brought on line easily once the kernel, device drivers,
and common resource service objects are targeted. Once a node is on-
line, its special device features and hence, its "autonomy" can be
implemented.

III. LANGUAGE FOR THE TIME-CRITICAL OPERATING SYSTEM

Most recent operating systems are developed within the context of
a programming language. [29, 40, 41] Features of that language play an
important part in the features of the operating system. While it is not
impossible to implement features diverse from those supported by the

language [24], sometimes these features are cumbersome or the utility
of a particular feature is not apparent if not language-related.

Since performance as implied by user-implemented concurrency is
the foremost objective, the language should support concurrent tasking
and complex synchronization under programmer control. Since information
encapsulation is critical for implementing resource sharing and
services, objects are necessary. However, objects should not cause
undue restrictions on their user. For example, objects in Clouds [43]
have action-related items specifically for recovery built within their
structure. While this concept may be suitable for many objects in our
operating system, at this point it is best that recovery control be
left to the programmer. Since the system is distributed, some form of
remote procedure call with the inherent restriction of data scoping and
implied message generation is necessary. Since the O/S structure is
large, the language should support separate compilation. Since the
operating system structure is not completely decided, the language
should be modifiable so that new or altered syntax and semantics can be
implemented when common linguistic properties are identified. Finally,
the language should be transportable.

Modula 2 [28, 29] comes close to meeting these requirements. Its
major weaknesses are its lack of complex synchronization structures and
of syntax that distinguishes between remote and local procedure calls.
Ada would meet the requirements except that it lacks an explicit
distributed structure. This causes all process calls (local o_ remote)
to be messages, which in turn causes message handling to be implemented
at the kernel level. [32] This coupled with Ada's complex thread of
control [7] makes tasking expensive to implement, reduces performance,
and makes it difficult to transport. Rigid control (no subsets or
supersets) makes Ada difficult and costly to employ in an experimental
mode.

The language chosen for the implementation is Path Pascal. The
major justifications include the unique features discussed below and
its flexibility in an experimental environment. Most of the features
needed have been investigated for incorporation into the language. [8,
25, 30, 31] Source for the system is easily available, the compilation
stages well known, and because Pascal is widely used, competent
programmers are available.

Path Pascal provides unique, advantageous features for
constructing a distributed operating system. [8] First, the language is
object oriented. Particular care has been taken to construct distinct
features for the two major language uses for objects, encapsulation of
information at compilation and runtime. MODULES provide objectivity for
separate compilation. Complete Path Pascal structure, i.e., constants,
data types, runtime objects, variables, and subroutines, are available
externally simply by naming within an interface section or can be
hidden for local use only by declaration outside the interface section
(package concept in Ada [29]). Sharing of variables globally and
subroutine calls at any level are implemented totally at link time
using fairly standard naming techniques so modules create no additional
runtime expense.

9

The runtime encapsulation is OBJECT. Runtime features provide
access to the data in objects through controlled entry only. Objects,
as opposed to processes [29] or modules [27], contain synchronization
using path expressions. Since objects are a Pascal data type, all the
Pascal data capability, e.g., nesting, static or dynamic instantiation,
explicit or implicit naming, etc., are available. Because of nesting,
the problem for path expressions, noted by Andrews [16] "(they) provide
elegant notation for expressing synchronization constraints
operationally, they are poorly suited for specifying condition
synchronization," is not applicable to Path Pascal. Using nested
objects and scope rules, condition constraints are easily implemented
as variable test conditions and lower level operational constraints.
With explicit naming, extremely complex synchronization is readily
constructed.

The service object, suggested in this paper as the basic O/S
mechanism for distributed autonomy, is a direct extension of the Path
Pascal OBJECT with different scoping rules and access related to remote
calls. This feature is provided by adding REMOTE syntax to an object.
[8, 26] Compile and/or runtime binding are readily incorporated.
Hence, the construction of common and unique objects at a node for use
by it or other nodes in order to create a distributed "cooperative"
autonomous computer system is a direct and logical extension of the
Path Pascal programming language.

Research into language structure has provided additional features
in P_th Pascal that are useful in time-critical systems. DEADLINEs [31]
are used very successfully in an environment where time critical
activities are important. Also, the storage of initial states (caching
concept) in DEADLINEs provides a convenient mechanism to implement
rollback for recovery. CAPABILITY [25] is easily implemented in a Path
Pascal environment if security is needed.

The ability for objects to be remote or local and hence their
entry point calls to be distinct provides an additional feature which
may sig_Lificantly aid O/S structure and performance. In Path Pascal
processes are the mechanism for implementing concurrency. Local calls
are implemented without implied message traffic. Therefore, the
language structure is concurrent at the kernel level so that a local
process can be used in a driver, for example. The concurrency is
implemented without a complex pseudo message system necessary at the
kernel level (as in Ada), so processes can be recursive, appear at any
level, are effectively synchronized by sharing objects, and are
implemented and context switched rapidly through simple kernel calls
(30-50 assembly language statements). Conversely, if the object is
truly remote, then remote calls (procedure or process) use the
communication system, Figure 2, at the O/S support layer. The
implementation at this level will be discussed later.

IV. REQUIREMENTS AND FUNCTIONAL DESIGN OF THE O/S SUPPORT LAYER

Figure 2 shows that the four node subsystems that make up the
common O/S deal with the four resources that are common to every (or
most) nodes. The following sections will discuss the requirements and
functional design features of each subsystem.

I0

A. Storaqe Manaqement Subsystem

The storage management subsystem, or file system, manages the
permanent storage and use of information created by the distributed
system. This includes the services provided by the file system as well
as the demands made by the file system on other system components. The
following definitions are necessary:

file "virtual memory segment", i.e., completely
unstructured or flat. Addressable units
(bytes) labelled 0,I n-l.

disk Generic direct access storage device.
Conceptually flat with each block addressable
by number: 0,In-l.

device Physical peripheral unit.

volume Fixed or removable medium.

on-line File is located on a mounted volume, i.e.,
volume is on some device.

I. Requirements

The file system will provide for storage and retrieval of
information created by experiments, of status logging, and of other
operational data involved with operating the space station and will
provide for program development, execution, testing, etc., in the
ground environment. Separate file structures, designated as RT (real
time) and TS (time share) respectively, are provided.

2. Architecture

Several approaches are appropriate for satisfying both the RT and
TS aspects of the file system. The two most viable approaches are shown
in figure 3. The first approach assumes two distinct physical filing
systems each with a separate server. The second approach employs a
layered structure with one physical filing system and one or more
virtual filing systems. These two architectures are functionally
equivalent and offer similar advantages.

Ii

i l I l
J USER I I USER i
l i l l

I i I
l I I

I i I
l t
I I I I

I TS I
i l l I i l
l RT l l TS J
I i I I I

l i I
I

I DISK i I DISK I I RT I
i l

l
I

I DISK]

(a) (b)

Figure 3.- File System Approaches

Specifically, the advantages of either file system approach are the
following:

a. The RT server is brought up early and used for all
applications including system development.

b. The TS server is developed on the early prototype system. It
is implemented and tested on a noninterfering basis.

c. When the TS server is available, all appropriate files are
moved from RT volumes to TS volumes.

d. The experience gained from implementing the TS server is used
to implement other filing systems or filing system emulators.

The second approach, figure 3b, offers the following additional
advantages:

a. The TS server is smaller, and because it interfaces with the
virtual disk defined by the RT server, it need not contain device
drivers. The TS server is also more device independent.

12

b. The disk format of all volumes is the same at the lowest
conceptual level. This offers the opportunity to write one set of
common utilities (e.g., file dump and garbage collection).

These advantages which accrue while retaining the performance
desired for RT applications and sufficient performance for TS
applications, are reasons to favor the latter approach.

3. Name Server

The basic function of the name server is to provide information
about the services and data available across the network. [23, 33] The
reason that this information is provided by a name server rather than a
sophisticated information search at run time is to speed up the
execution of running programs and services. Hence, the name server is a
sophisticated global system directory.

The name server provides information for a number of program
activities. For the compiler, it provides the location and access
information for the module interface. Information concerning module(s)
accessed across the network will be retained by the compiler to be used
for consistency checking at load time.

The name server responsibility at load time is to check the
consistency of the information requested, i.e., has the module used
been modified since it was used by the compiler. Since modules can use
other modules, the name server must provide the location and access
information for these secondary modules. The information is provided so
that the loader can formulate load request messages.

The name server requirement for the edit function is to provide
information concerning location and access rights of the file requested
by the editor. The editor can then formulate file transfer request
messages to access the file for its intended purpose.

Finally, the name server provides runtime support for the Path
Pascal IMPORT standard procedure. [26] While it is intended that most
execution will use compile-load time binding for execution speed, the
capability exists for runtime binding using IMPORT. The name server
provides the location and access information of the requested service
to the IMPORT . The IMPORT routine then takes the actions necessary to
access and use the requested service.

The major name server problems are that of; a) defining precisely
the information needed by the name server to fulfill its required
functions, and b) maintaining consistency across the nodes of the
network in a timely and efficient manner.

4. Name Server / File System Interaction

The name server is a critical element in the operation of the
system. It provides the location of files by unique name throughout the
system. To access an on-line file, F, a request of the form (Filename,
byte) must be mapped to (node, device, volume, file, offset). It is

13

assumed that the network name server maintains information about the
current network configuration. The specific information of interest
here is:

volume V is mounted on device D at node N.

The name server can be used by the file system to ascertain
whether V is mounted and if so, the user can be connected to node N. It
can now be determined whether F exists. The precise nature of the file
system and name server interaction can best be explained by means of an
example. Figure 4 shows a conceptualized sequence of events resulting
from the execution of the file system command

open(V, F)

by an application program. The arc labels indicate the order in which
communication takes place.

I USER t I USER]

i i
1 1

] FSI l l FSI l
I i

I v i v
I i

2 I i NS I 2 i i NS i
i i
V V ^

i
l RTS I l TSS i

3
I

4 I
v

I RTS]

(a) (b)

Figure 4.- Sequence of Events Opening File

In figure 4a the "open" command refers to a RT file. This is
implicit by the parameter V. The file system interface (FSI)
interprets the open command and requests the appropriate RT server "
(RTS) from the name server (NS). The name server locates (or
instantiates) the proper server and establishes the communication link.
Next the file system interface asks the RT server to open F.

14

Figure 4b shows the effect of an "open" on a TS file. (Again, the
file type is implicit in the paramater V.) The sequence of events is
exactly the same as above up to the request by the file system
interface asking the TS server (TSS) to open F. At this point, the TS
server is aware of the fact that V is a virtual volume and maps V to
V', the appropriate RT volume. A request is then made of the name
server to locate the proper RT server. When the RT server is made
available, the TS server can open F using the RT server's capabilities.

The communication links established by the name server remain in
existence until a "close" is issued by the process holding the link or
until some unusual event takes place. In the case of a failed "open"
or "create" command, the file system can request that the name server
remove the links. In the event of a crash, the name server must assume
the responsibility of removing or recovering communication links.

Although not shown in the figure, it is clear that the name server
communicates with the loader, which in turn has access to the file
system. This implies that at least one file server must be established
at cold boot time.

It should be noted that Figure 4 is not intended to imply any
specific system topology. In particular, there may be more than one
name server and the indicated processes may run on one or more
processors.

5. User Interface to File System

In dealing with a TS file, the file system interface is similar to
a conventional non-distributed file system (e.g., UNIX [10, 40]). The
main addition is the inclusion of an exception processing capability to
handle communication or node failures.

The RT file system, on the other hand, will be quite different in
that the user must specify all system requirements (e.g., file
contiguity, communications bandwidth, etc.) explicitly during file open
or create operations. Furthermore, since the file system cannot
guarantee a given performance level during file open or create, a real-
time program must open/create all files prior to initiating real-time
operations. Deadlock situations will be resolved by using a
probabilistic time-out in attempting to open/create all necessary
files.

6. File System Services

The basic component of the filing system is the RT file system.
This component provides contiguous storage allocation for maximum
performance under real-time conditions. In addition, this component
defines a virtual disk upon which other file systems can be
implemented.

The particular services provided by the file system are the following:

a. A real-time file system providing contiguous storage
allocation.

15

b. A time-shared file system (built on the RT system) providing
hierarchical directories and dynamic storage allocation (probably
similar to the UNIX file system [40]).

c. A uniform interface to all file servers (e.g., RT, TS and
possibly others) which is independent of the underlying storage
techniques. This interface will provide the usual file manipulation
commands (e.g., create, delete, rename, copy, move, etc.) as well as a
common set of file access commands (e.g., open, close, read, write,
etc.).

d. Files can be opened in read, write, append, read/append or
update (read/write) modes. In general, files may have multiple readers
and/or multiple appendors, or a single writer.

e. The user may specify the degree of urgency (i.e., access is
time-critical) when a file is op_ned, since continuous I/O in a real
time environment demands high performance. In the limiting case, a
device may have to be dedicated to a process in order to achieve
sufficient performance.

f. The user may specify the degree of desired contiguity when a
file is created.

g. A facility for redundant storage will be provided.

B. Memory Manaqement Subsystem

The memory management system consists of (I) the linker, which
prepares programs and service objects (subsequently referred to as
tasks) by combining the code for local modules and preparing link
tables for the remote service objects; (2) the loader, which assigns
memory spaces for the code and data for the local task and which
establishes that all called remote service objects are installed on
their assigned node; and (3) the runtime system, which controls the
execution of the tasks by handling, in conjunction with the
communication and file systems, the control and transfer of
information between the different nodes.

i. Requirements for the Memory Management Subsystem

Linker

The linker creates executable modules from the translator and
assembler segments of Path Pascal compiler. These modules contain
linkages to all permanent runtime support such as the kernel and the
O/S support layer service objects, and to a table containing linkages
to all remote service objects, including entry points and the
information formats for the input and return parameters. This
information is made available at the MODULE level at compile time
through the name server and file system.

The linker requests originate from remote or local sources. At
present they come only from a programmer's terminal activity, but

16

consideration is given to linking based directly on program activity.

Loader

The tasks accomplished by the loader are the following:

a. to load code and reserve data space in memory for execution of
a task.

b. to release code space from a dormant task in order to load more
critical code. Future consideration will be given to reusing,
archiving, and reloading of data space, although the present Path
Pascal implementation requires that data reoccupy its space in core.
Therefore, this feature may be implemented on systems where hardware
implemented virtual memory management is available.

c. to overlay code upon suspension and reassignment of code space.

d. to provide for loading all service objects prior to execution.

The loader requests come from a programmer specifying the
execution of a program or from another program's load request to
ascertain the existence and availability of service objects at a
particular node. The former comes from programmer terminal activity;
the latter is a result of programmer activity through the communication
network (local or remote) and is formulated by the loader at the
programmer's node.

Runtime System

The runtime system supervises the execution of tasks. It handles
call/return activity to service objects on remote nodes by constructing
the necessary information for the transfer. In addition, the runtime
system maintains a thread of control between programs and service
object calls. This information consists of caller/called links and the
status of the call and is sufficient to trace the system state and to
provide for recovery of the system to an acceptable state.

The runtime system requests come from the loader, which begins the
execution of a particular program or initializes a service object, or
from the communication system, which handles message information to and
from other nodes on the system.

2. Functional Design of the Memory Management System

Linker

The basic objectives of the linker are the following:

a. To provide an executable code file and the necessary
information for the loader-memory management unit to subsequently
handle the object code. The linker provides the following:

I) The total object code length for this task.

17

2) The total data length required for this task.

3) All entry point information for service objects. This
includes information to locate the entry point code source and to
format the input and return information for the runtime manager
when a call/return occurs. The linker provides all links to the
runtime kernel and standard runtime objects.

4) The ability to relocate code.

5) Any additional information like priority, usage, time
constraints, etc., that may be critical to the loader during
loading or execution and to the program monitor(debugging) system.
At present the debugging system requires program variable symbol
table information and statement boundaries to enable variable and
execution control of the Path Pascal source.

6) The ability to determine and communicate to the program
monitor system any deficiencies in the executable code such as
unresolved externals.

b. The linker should obtain its information from the translator
and assembler system. This information includes a file with the
relocatable code, its relocation points, and its starting address. In
addition, this file contains symbol table information on modules
seDarately compiled, variables, remote objects, including their
complete entry point information, and any subroutine call points in
order that the code can be reloaded in a new location and executed
properly.

Loader

The basic objectives of the loader are the following:

a. To !oad new tasks in the following manner:

i) If the request is for a service object, the runtime status
information tables are checked to see if the service object is
loaded. If the service object is already loaded, the loader binds
the new request to the present service object runtime format
including the newly established communication links.

2) If the request is not a service object or is a service
object which is not available, the size of the code and data space
necessary to run the object is ascertained from the load source. In
order to make the loader decisions, priority and time-critical
information is needed.

3) Ascertain from the loader memory tables whether sufficient
space is available. (Depending upon virtual memory facilities)

4) If data and code space are available, the free space is
allocated to the task. If data space is available but code space is
not, the runtime status information on each process is scanned (see
2. below). If a task(s) exists whose priority is lower and whose

18

activity is minimal, code space for the task(s) is tested to see if
it is sufficient for loading the new code. If so, the task(s) is
deactivated and the freed space is allocated as above.

5) If no data space and/or code is available, the requestor is
informed that the task cannot be loaded.

6) If space is obtained, as in 4) above, then the loader
fetches the source code from the disk, corrects any relocatable
code information, creates the necessary entry point information if
the code is a service object, and !oads the code into core.

7) The loader creates the information necessary to enable the
runtime system to execute the task. This includes creating the
entry in the runtime status information table. If the request is to
load a program, the loader creates a process descriptor at the base
of the data space including the code starting point. The pointer to
the process descriptor is passed to the Path Pascal kernel to be
linked onto the ready queue system. If the request is to load a
service object, the loader formats the service object entry table
system. The loader then formats a message to the requesting program
that the service object is available and binds in the communication
port for message traffic. If service object initialization is
needed, the appropriate entry into the runtime status table is
made.

b. To perform memory management by releasing code space from a
dormant and/or low priority task(s). This is done by scanning the
runtime status table for the lowest priority - least used task(s). If
priority is less than or equal to the priority of the code to be
loaded, the task is deactivated as in a4) above.

c. To provide reloading for tasks which have been suspended. A
task's code can be deactivated as in b. above. Inactive code results
from task calls to another service object (local or remote). A
procedure call suspends the calling program until the call is completed
or a time-out occurs. Alternately, a low priority program can be
deactivated because of a lack of activity. Upon freeing space at the
termination of another task or upon receipt of a return to the calling
task, the deactivated task is reloaded. Reloading is implemented in a
manner similar to the initial loading, although many of the load time
bindings are preserved in the suspension. The reloaded program is
passed to the runtime manager to continue execution.

d. To provide for the loading and binding of all service object
calls before execution begins in order to gain runtime efficiency. To
accomplish this the loader, in conjunction with the name server,
formulates and sends a load message to another node requesting that the
service object be loaded. The loader will then wait for
acknowledgement. If the remote node is not able to load the service,
duplicate or redundant service through the name server can be checked
and an alternate load request issued. When all remote services are in
place the program commences execution.

19

Runtime system

The basic objective of the runtime system is to support the
execution of tasks by maintaining the remote linkage and creating
information and control for remote calls.

The runtime system maintains the information status table created
by the loader for each task existing on the node. This information
includes status, e.g., deactivated, code in core, etc., a pointer to
each code and data block, a pointer to each code file on local storage,
and other information needed to maintain the activity of each operating
unit.

The runtime system supervises the execution of all tasks. In order
to execute, a task must be in a ready-to-run status as reflected by
being on the ready-to-run queue. In addition, each task contains a
ready queue linking its processes which are ready to run. Both queues
are maintained on a priority ba3is. In order to obtain a runable
process, the runtime system scans the ready-to-run queue checking each
task's ready queue until it finds an executable process. Task processes
are removed and added to the queues in the standard Path Pascal
fashion. [8]

The runtime system maintains linkage and control for calls to
remote service objects. Two activities considered by the runtime system
are:

a. at the calling site a) set up the remote entry call including
the parameters and b) receive the remote entry return for the calling
program and,

b. at the called site a) establish the called entry procedure or
process execution and b) set up the return information transfer at
completion of the execution.

This situation assumes successful completion of the remote call
activity. If the remote object cannot be run, the runtime system
handles the completion protocol by sending a return message.

The following structures and protocols are used to facilitate the
runtime system operation:

a. At the local node, the remote service call causes the standard
activation record and a remote call data record to be established. The
specific service object call is identified by location in the remote
entry table which contains remote objects, remote entry points for that
object, and local port pointer established at load time. The message
format, which includes identifiers for the remote object, remote entry,
local task, local procedure, unique ID (pointer to the call activation
record), and data to be passed, is given to the communication system
port. The port assigns and retains a unique message ID by which the
return message can be identified. The pending message information is
stored at the task stack location.

2O

b. At the receiving node, the port provides the message to the
runtime system. The runtime system then instantiates the call entry
point on the global service object stack. In order to maintain
consistency, i.e., to enable a service object to receive and execute
multiple entry calls, the entry point procedures and process calls will
take the format of Path Pascal processes (slightly modified) so that
they can be effectively suspended. This will permit service objects to
handle multiple entries based upon their path expression
synchronization protocol. The message data is then placed on the called
entry point stack and the process is placed on the queue.

The runtime system also stores the calling message information in
order to make the return call. Upon return, the remote task
designation, remote entry designation, local service object, local
entry point, message number, and data are formatted into a
communication message and shipped to the orginal site.

c. When the return message is received, the message is passed from
the port to the runtime system. It transfers the data to the proper
activation record, including the setting of any value-return data. The
standard return from a call is executed and the process put back on its
ready queue.

The final task of the runtime system is to free data and code

space at the termination of the task call. On termination, the code and
data space are returned to the deallocated memory table, and the
information status table entry is eliminated. Any service objects and
communication ports used by the terminating operation are notified of
termination.

C. Network Communication Subsystem

I. Requirements

The network communication system requirements can be divided into
two portions: those for the network control and those for the message
service provided to the other operating system and application
programs. The requirements for the network control are the following:

a. The communication system is responsible for maintaining the
topology information about the network. [13] This includes all
necessary information and routing decisions for the parallel multipath
system. The network routing is configured to provide a controlled
maximum delivery time in a probabalistic s@nse, kSIGMA, for a message,
based upon the average message traffic per bus. This control should be
maintained for a wide range of message loadings.

b. The topology information is capable of dynamic updating, i.e.,
it incorporates new nodes as they come on line and deletes nodes or
links that go inactive or fail. For failed linkages, rerouting of
messages is handled by the communication system.

c. The communication system provides an emergency message
capability, i.e., the ability to interrupt normal message traffic

21

including controlled kSIGMA delivery time, to send and receive
emergency messages.

The communication system provides a message system capability to
the remainder of the operating system and applications tasks. The
requirements for this service include the following:

a. To provide message transfer between two nodes in a virtual
circuit format. [14,43] The virtual circuit is established at load time
between tasks running on different nodes. A method for unique
identification and matching of call-return pairs [6] is maintained. To
reduce the creation and handling of orphans (unwanted messages which
are associated with a crashed task), the message service provides
assured single delivery with controlled kSIGMA delivery time when
proper priority is assigned. Finally, the message service handles
variable length uninterpreted data.

b. To provide a multicast service, the delivery of the same
message to more than one destinaeion. [13,37] This service is needed
because certain spacecraft nodes provide system status information
across the network, hence the need for a one-to-many (or all) service.
The message system does not have to maintain information on which nodes
are registered for particular multicast information. This information
will be kept by the service object source of the status data. Since the
service is dynamic, the message system will handle multicast changes.
Th.s message service does not provide guaranteed delivery to each node
because of the complexity involved in the retransmission logic which is
required.

2. Functional Design of the Communication System

To fulfill the requirement that the network system maintain the
system topology, each node contains a table which describes the
topology of the entire network. This global topology model was selected
over a "lo_al knowledge" scheme for reasons of operational efficiency
in the environment where message path selection is done at load time.
In this case, complete bus selection including gateway nodes can be
accomplished within the framework of the local node. The global model
requires more storage and a search for the best path at communication
request (task load) time, but it does eliminate message traffic between
nodes and gateway nodes during path selection.

The following information is maintained by each node:

a. The unique name of the node incorporating its instantiation
number to determine when a node fails and is brought up again.

b. A list of busses to which the node is connected and its device
number on that bus - each bus designator is 8 bits (256 busses) and the
device number is 8 bits (256 devices/bus) making 2 bytes per bus. The
list is i0 elements long (each node connects to a maximum of I0 busses)
for a total of 20 bytes.

c. Status byte

22

The system operates in the following manner:

a. A new node simply obtains its global table from a neighboring
node, adds an entry for itself, and broadcasts an "I'm here" message
containing its own table entry (alternatively, it could broadcast the
new tables) so that all other nodes can add it to their tables.

b. A new hookup (new link of an existing node to another bus)
broadcasts an "I'm here" message which updates all other nodes'
tables.

c. For a dead node, the node detecting the failure through a
diagnostic routine broadcasts a notification of a dead node (or new
tables) which removes that node from all nodes' global tables.

d. When a node discovers a dead link to a particular bus with the
aid of diagnostic routines, it will broadcast a new "I'm here" (or new
tables) message which reflects the changed linkage.

The network communication requirements to handle and deliver
messages is fundamental to the performance of the distributed system.
Especially important is the concept of controlled kSIGMA delivery time
for critical time (process control type) applications. However, this is i_
an extremely difficult feature to provide in a network environment.
Absolute guarantees of response may be impossible because of the random
nature of events on a network; therefore, a statistical estimate of
expected delivery may be the best that can be provided. Trying to
guarantee message delivery via ring network polling (time slice)
techniques can impose a large penalty on system performance and
efficiency. Even then, if one node has multiple critical messages to
send over a short period of time or if a new node is added, the
guarantee is lost or altered.

A more reasonable technique, which preserves system efficiency,
uses path selection and runtime monitoring and control of message
traffic to insure that a message gets the required service. Routing
algorithms assign the route based upon the fewest links. For
time-critical messages, the topology system maintains the currently
established maximum traffic load on a particular bus. As a result, bus
access time is controlled. With this information, the expected delivery
time of a message between network nodes can be calculated.

The message traffic on the critical busses is monitored to assure
that expected time response can be met. Based upon prior statistical
evaluations of bus message traffic verses access time, critical bus
access time can be changed (within limits) in order to accommodate a
particular distribution that requires different delivery times. Hence,
by proper system control and scheduling, kSIGMA delivery is maintained
and controlled.

By monitoring the message traffic, periods of slack bus activity
can be detected. During these periods non-time-critical messages can be
placed upon the critical bus without causing delays in excess of the
bus delivery schedule. In this way, the routing algorithm avoids
creating message bottlenecks by blindly overloading a particular bus,

23

and the communication monitor can increase system efficiency by taking
advantage of unused time-critical bus capacity.

For system reliability, the network bus structure is redundant.
This parallelism is used to advantage by segregating the time-critical
messages from those which can tolerate some delay. This insures minimum
interference with time-critical communications. Busses are designated
as either time-critical or normal message paths with each node linked
by at least one of each type bus, and with as much parallelism as
feasible between the time-critical and normal bus structure. Routing
algorithms will assign busses depending on the type of message.

By assigning parallel critical and normal busses, flexible message
delivery control is possible. The critical bus is used to relieve some
of the normal bus traffic during periods of heavy normal message
activity, if the critical bus has slack activity. Furthermore, during
peak periods of critical activity, the normal bus can be used to handle
critical messages, first, by a priority scheme and second, by actually
assigning more than one parallel bus to be critical. With such
flexibility, it should be possible to control expected delivery time
effectively for a wide range of traffic conditions.

Finally, an emergency message capability is imposed upon the
system. When an emergency arises, any node with proper authority can
take over the bus without the normal bus arbitration scheme. By
prc,'_ding a silence signal or other message override, that node causes
all nodes on that bus to immediately cease transmission of messages and
access control. Then after a suitable silenc_ delay, the node can
transmit its emergency message which may be propagated throughout the
system or be directed to specific destinations.

Using the above parallel bus configuration, a virtual circuit
message system is accomplished by the following communications concept.
At load time, a virtual circuit is established between tasks. Each
service object referenced by the task being loaded has a separate port.
These ports remain for the lifetime of the task and can be used to
service all entry points of the remote object. Figure 5 shows a
conceptual diagram of the message transmission path.

24

I sending I i receiving I
I program I I program I
I I I I

I ^
i I
v flow I i

i source i i flow I controll Idestinationl
i port i--->Icontrol -->Iswitching --> and i->l port I
i I i I checksi [I

I
t

<...... HOST I > l <..... HOST 2 >
I gateway I
l node I
I i

local local I
network A network B I

[
<..... communication system >

Figure 5.- Message transmission path

The ports are established by a dialogue between the loader and the
communication system. The request from the loader is a combined request
to load the service object on the remote node and to establish the
virtual circuit. Hence, a unique ID for the service object, including
its node, is passed to the communication system. Additional information
concerning priority, message timing, and message length will be
provided. The communications system provides the routing, prepares a
message that includes the request for a remote port to be established,
and sends the message. Time stamping can be used to check that timing
constraints are fulfilled.

Upon receipt of the message, the remote node passes the request to
its loader. An affirmative load request return causes the remote node
port to be confirmed and the virtual circuit complete. When the
initiating node receives the affirmative load message, the
communication system retains knowledge of its remote port pair and
passes the message to the loader along with a pointer to its local port
address. If all load requests are established successfully, the task is
transferred to the runtime manager with all its ports ready.

A negative load request return causes the remote node port to be
cancelled and a message posted to the initiating node. The initiating
node then cancels its port and passes the message to the local loader
which must handle the rejection. If alternative task capability does
not exist, the loader cancels all its local ports as if termination had
occurred. The ports then cancel their remote pair.

During task runtime, the system handles remote procedure or
process calls directly with the port. Since all virtual circuit
connectivity is established, the port only needs to attach its

25

predefined header information to the message, packetize it, and place
it in the communications channel. The ports provide the necessary
sequenced packet control structure to assure single delivery of each
message. It should be noted that the remote procedure call is not
implemented identically to single machine procedure calls as in
reference [48] in that the RPC provides a time-out mechanism. It is
felt that the distributed environment differs from that of a single
machine since the calling process is independent of the callee and can
proceed even though the callee has problems. In the single machine
environment, caller and callee are the same machine so this is usually
not feasible. At termination the task cancels all of the ports under
its control. This in turn cancels the remote port and remote service "
object.

As a result of the virtual circuit with identifiable ports
interconnecting remote services, it is possible to retain a complete
thread of control.

In order to control buffer size, a maximum length message is
established. For large files, the transfer is done by blocks in which
each block is considered a separate message. Blocking will be the
responsibility of the task using the message service.

The network is responsible for transfer between busses through
gateways with special gateway ports established for this transfer.

Si_e the routing information is available locally, the necessary
inter_lediate gateway ports can be provided in the header constructed at
load time. Gateway ports have control over intermediate headers as
necessary to route the message.

The requirement for a multicast system is satisfied using concepts
which are in many ways simpler than virtual circuits. In the spacecraft
system, multicast will be primarily used to provide system status and
event notification. It is assumed that each node wishing particular
multicast information will make a request to the service object
surrounding that information. These may be general node related tasks
or specific application programs. The loader checks if that service
object information is already at the node, and if not, the loader
request is processed similarly to that in the virtual circuit system
above, i.e., a receiving port is set up. The port determines the
routing based upon the parameters specified. At the remote node, the
service request status is checked and if the status information system
is active, the new node request is added to the sending port address
list.

The multicast address nodes are provided to the service object
port at message time. Receiving node addresses are translated to the
message header address. Special ports at gateway nodes are provided for
the transfer of messages from one bus to another. These ports operate
for both virtual circuit and multicast transfers. These ports, which
are constructed as the system is created and new busses are added to
gateway nodes, accept messages from one bus and output them on
(an)other bus(es). For virtual circuit (point-to-point) messages, a
table designating the output bus and the eventual receiving node is
used. Table entries based upon eventual destination node are

26

constructed at the time the virtual circuit is created. For multicast,
similar table entries are created but are based upon the sending node.
The tables indicate to the gateway node which nodes on a particular bus
receive the multicast message.

The multicast system, unlike the virtual circuit, does not provide
assured delivery of a single copy. Instead it is a one-way system with
reasonable best effort to deliver the copy.

D. User Interface Subsystem

I. Requirements of the User Interface Subsystem

Three distinct user interfaces are supported -- experimenter,
operator, and debugger. Each successive level of user interface has
all of the capabilities of the preceding levels plus new capabilities
necessary to accomplish the tasks of that level.

Experimenter Interface

The experimenter interface is the least defined since the
requirements are most variable. Support is provided for multiple
windows and graphics on output as well as non-keyboard data entry
devices such as a mouse. The exact interface requirements must be
specified by the designer of the experiment. Therefore, the implemented
experimenter interface is designed to support the variability, simplify
the development of particular experimenter interfaces, and insure a
degree of commonality among all such interfaces.

Operator Interface

The operator interface allows additional system monitoring and
controlling. An interactive command language (based upon our previous
experience with the Interactive Software Invocation System) [45] gives
the operator extensive capabilities to initiate, monitor, and interact
with various programs running in the system. This language also allows
the operator to perform such common tasks as file manipulation
(creation, deletion, transfer, etc.) and direct transmittal of messages
using the communications server.

Debugger Interface

The debugger interface allows a programmer to gain direct control
over a program running on the system. Using this facility, the
programmer can initiate program execution, monitor program progress,
"break" the execution of the program based upon the occurrence of
sequences of events occurring within the program, interactively
interrogate, and, if necessary, modify various data structures within
the program, or terminate program execution. Since debugging is a
critical aspect of this research project, it is discussed in more
detail below.

27

2. Functional Design of the Debugging System

The debugging problem is to identify and correct programming
mistakes. This is particularly difficult in real-time, multi-node,
concurrent systems. First, the number of possible execution sequences
is, for all practical purposes, infinite. This means that no amount of

testing can guarantee that all error-producing execution sequences have
been attempted. Second, even if such an error-producing sequence is
detected, it may be very difficult to reconstruct exactly. Real-time
systems are notorious for producing irreproducible results. Finally,
even after an error has been detected, resolving the exact mistake(s)
that cause that error can be quite difficult. Locating the cause of an
error is an art that depends upon the skill of the programmer and the
ability of the debug system to allow the programmer to specify very
precisely the information that he believes will be of assistance.

In order to detect and correct both language errors (violations of
the rules of the underlying progr._m_ing language and operating system)
and logical errors (violations of the logic required to solve the
problem), a variety of techniques is used. In general, language errors
will be detected by the compiler or by special error-checking code
generated by the compiler. Logical errors must be detected by testing;

! however, once such an error has been identified, a sophisticated
runtime debugger must be available to locate and resolve the error.

%he debugger is designed to assist the programmer at the program,
server, and system levels.

Program Debugging

The key concept in program debugging is that the programmer
specifies a particular sequence of events, using a debug expression,
that is used to trigger the asynchronous calling of a Path Pascal
subroutine (the debug action). Since the events of which the debugger
is normaliy aware are the entry and exit of subroutines (Path Pascal
PROCEDUREs, FUNCTIONs and PROCESSes), a debug expression is a modified
form of path expression [44]. Several different debug expressions may
be in place at any time, and each of these will have its own debug
action.

A debug action has access to all of the data structures of the
program that are in existence at the time it is invoked, as well as to
the current status of the program's execution. Thus, the designer of a
debug action has considerable flexibility in examining these various
data structures and reporting their status to the user. In addition,
the debug action may include a "break" statement, causing a temporary
interruption of the program and allowing the programmer to enter
interactive debugging commands.

The debugging commands include the standard operator's
capabilities plus the ability to display and modify various aspects of
the current computation either in terms of the source code or, if a
more machine-oriented view is required, in terms of hexadecimal
addresses and bytes. This language allows the user to view and change
the values in data structures including the counting semaphores used to

28

implement Path Expressions, and to directly call subroutines and
processes. Furthermore, the debugger allows the user to single step a
statement at a time through any process currently active in the
program. Finally, the user is able to formulate and modify the debug
expressions and debug actions at any breakpoint.

Another important feature of the debugger is that all commands
issued at breakpoints are stored in a journal. This allows the user to
review these commands at a later time if necessary. In addition to
this journal, the progran%mer may request a snap-shot or post-mortem
dump for later analysis. This dump may be a symbolic listing of various
data structures Within the program or a crude hexadecimal image of
memory.

Server Debugging

Entry/exit of servers usually represent major points in the
execution of a program; hence, debug expressions may refer to these
events. In addition, it will be important to be able to make inquiries
of these various servers while at a breakpoint. On the other hand, when
debugging a program, a server's internal operation is considered to be
atomic and, therefore, invisible to the debugger. This allows the
INTERRUPT PROCESSes typically found in device servers to continue to
operate normally.

Indeed, it is these INTERRUPT PROCESSes that make debugging of
servers special. In general, it is necessary to be able to take
control of the entire node, not just a single program running on that
node. The key difference is that the kernel itself must be suspended
in order to allow the user to view the details of the processing of an
interrupt or a sequence of interrupts. While this level of debugging
should not predominate, it is vital that at least minimal support be
available.

System debugging

Once the software system reaches the stage of operating across a
network of nodes, it is vital that there be a debug node. This debug
node will have access to all messages within the system [37], yet it
will not appreciably change the timing of the messages. It simply
records all of the messages (or all of the messages that have been
designated as interesting) for later review or replay, or examines
these messages looking for a user-specified pattern.

Debugger Implementation

While the generation of error-detection code is a significant
contribution of the compiler to the debugging effort, an even more
important contribution is the generation of tables that facilitate
other aspects of the debugging system. The symbol table includes all
CONST and TYPE information as well as the locations of all global,
parameter, and local variables. The statement table provides the
starting address of each statement in the software, any special
information such as register usage, and a pointer into the source code.
The path expression table describes all path expressions.

29

V. CONCLUDING REMARKS

Future aerospace vehicle computer systems which use distributed
networks of computers to implement "cooperative" autonomous subsystems
have requirements which distinguish them from their ground-based
counterparts. Features of their operating systems are unique. Simply,
two of the mo_:t important general requirements are time-critical
performance and reliable networking. The network and operating system
functional design specifications are tailored to meet these
requirements.

Time-critical performance impacts a number of areas including the
following:

I. Performance is enabled by using concurrency, that is, the use
of parallel processing to gain speed. In order to take advantage of
concurrency, the programmer must be provided with considerable freedom
to design and manipulate local and remote services. This translates to
programmer-controlled synchronization and recovery in contrast to
structure imposed by either the programming language or the operating
system. Concurrent language and adequate synchronization structure are
needed to implement concurrency throughout the O/S support, service,
and program layers of the system Ln a Higher Order Language without
undue penalty.

2. Performance is enabled by proper file system structure and
activity. In order to achieve the ability to read and store rapidly, an
underlying real-time file system is implemented. The RT system is
designed to incorporate normal file utilities and superimpose a
time- _hared structure above it. While such a file system may degrade TS
performance during program development, the fact that it enhances
time-critical performance is overriding.

3. Performance is enabled by compile-link-load time binding as
opposed to runtime binding. While flexibility in many network TS
systems is important, it is sacrificed for runtime efficiency here. The
design demonstrates that not only can all normal binding take place
before runtime, but much of the message traffic routing, porting, and
virtual ci:;cuit assignments can be accomplished before execution
begins. In fact, the only activity besides call-return pairs handled by
the runtime system during normal execution is the dynamic thread of
control needed for recovery.

4. Performance is enabled by time controlled message delivery. The
proposed system with parallel bus and multipath connections provides a
flexible, unique structure to handle message traffic. With the
redundancy of message routes, critical message traffic can be handled
by a bus specifically designated to provide time controlled delivery.
With message virtual circuitry established prior to runtime, messages
are handled with little system delay.

5. Performance is enabled by programmer freedom. This is a freedom
fraught with frustration during program development and test.
Distributed system reliability is a research area which to date has
been attacked mainly by formal structure. However, the formal structure
impacts performance. Hence, in a free environment, the ability to
monitor, trace, control, resequence, restart, etc., activity across the
network in order to detect and correct faults and/or to determine

30

correct execution is vital. This report provides design details for
implementing this debug structure into the programming environment.

6. Performance is enabled by an integrated operating system as
opposed to a layered structure. By integrating the common and unique
node services at one level, the O/S support level; by differentiating
between local and remote access; and by providing the node unique
services with direct access to the node hardware and software
structure, speed is enhanced and the need for buffering reduced. The
price paid for this efficiency is that changes in functionality of the
O/S components may not be transparent to other O/S support, service and
application programs.

Reliable networking impacts a number of areas. The network
operating system deals with the following:

I. Point 5 above, stresses that the absence of errors, including
distributed sequencing and timing errors, is critical. In a system with
the absence of control structure as presently designed, superior
debugging tools are vital to reliable execution.

The network operating system does not deal with the object and
action structure which are used for attaining reliable distributed
sequencing and timing. It does, however, provide sufficient flexibility
in language and O/S implementation that, if or when such structure
becomes necessary, it can be incorporated. It also allows such
structure to be readily implemented by system and application
programmers and allows them to take advantage of any control structure
built into specific service objects.

2. Reliable networking is enabled by redundant communication
paths. The network system provides a parallel bus, multipath structure
with superior redundancy characteristics. With this structure a wide
range of message traffic loading can occur without serious degradation
in controlled delivery time. If a failure of the time-critical message
path should occur, the regular message path serves as an immediate
backup. The regular message traffic system is then forced to find a new
route. Hence, as long as a regular traffic route exists, the critical
message route has a backup.

Finally, the network structure and operating system design are
feasible. They provide a common structure and interface for building
autonomous subsystems into a cooperative system and for incorporating
extensibility, by easily permitting the addition of new nodes with new
services.

31

VI, REFERENCES

I. Swingle, W. L.; MoKay, C. W. : "Space Station Information
Systems," Proc. of AIAA Symp. on Space Station, July 1983.

2. Garman, J. R. : "Forecasting Trends in NASA Flight Software
Development Tools," AIAA Conference on Aerospace Computers, Oct. 1983.

3. Wittie, L. D. : "Communication Structures for Large Networks of
Microcomputers," IEEE Trans. on Computers, Vol. C-30, No. 4, April
1981, pp. 264- 273.

4. Feldman, J. A.: "High Level Programing for Distributed
Computing." Comm. of ACM, Vol. 22, No. 6, June 1979, pp. 353-363.

5. Wulf, W. A.; Levin, R.: Ha_bison, S. P.: HYDRA/C.MMP; An
Experimental Computer System, McGraw Hill, N. Y., 1981.

6. Liskov, B.; Herlihy, M.: "Issues in Process and Communication
Structure in Distributed Programs," 3rd Symp. on Reliability in
Distributed Software & Data Base Systems, IEEE Comp. Soc. Press, Oct.
17-19, 1983, pp. 123- 132.

7. Cook, R.: "_MOD - A Language for Distributed Programing," IEEE
Tr_s. on Software Engineering, Vol. SE-6, No. 6, Nov. 1980, pp.
563-571.

8. Campbell, R.: "Distributed Path Pascal," Distributed Computinq
Systems, Academic Press, London, 1983, pp. 191-223.

9. Wittie, L. D.; Van Tilborg, A.: "MICROS - A Distributed
Operating System for MICRONET - A Reconfigurable Network Computer,"
Tutorial, Microcomputer Networks, ed H. A. Freeman & K. J. Thurber,
IEEE Press, 1981, pp. 138-147.

I0. Brownbridge, D. R.; Marshall, L. F.; Randell, B.: "The
Newcastle Connection or UNIXes of the World Unite," Software Practice
and Experience, Vol. 12, No. 12, Dec. 1982, pp. 1147-1162.

II. Bernstein, P.; Goodman, N.: "Concurrency Control in
Distributed Data Base Systems," Computing Surveys, Vol. 13, No. 2, June
1981, pp. 185-221.

12. Allchin, J. E.: "A Suite of Robust Algorithms for Maintaining
Replicated Data Using Weak Consistency Conditions," 3rd Symp. on
Reliability in Distributed Software and Database Systems, IEEE Comp.
Soc. Press, Oct. 17-19, 1983, pp. 47-55.

13. Internet Transport Protocols, Xerox System Integration
Standard, Xerox Corp.; Stamford, Conn., 1981.

14. Courier; The Remote Procedure Call Protocol, Xerox System
Integration Standard, Xerox Corp.; Stamford, Conn., 1981.

32

15. Moss, J. E. B. : "Nested Transactions: An Approach to Reliable
Distributed Computing," Tech Rpt. MIT/LCS/TR-260, MIT, Cambridge,
Mass., 1981.

16. Andrews, G. R.; Schneider, F. B.: "Concepts & Notions for
Concurrent Programing," Computing Surveys, Vol. 15, No. I, March 1983,
pp. 3-43.

17. Lui, M. T.;Lian, R. C.: "Cells: An Approach to Design of a
Fault- Tolerant Network Operating System," 3rd Symp. on Reliability in
Distributed Software and Data Base Systems, IEEE Comp. Soc. Press, Oct.
17-19, 1983, pp. 163-172.

18. Liskov, B.; Scheifler, R.: "Guardians and Actions: Liguistic
Support for Robust, Distributed Programs," Proc. of 9th Annual ACM
Symp. on Princples of Programing Languages, Jan. 1982, pp. 7-19.

19. Campbell, R. H.; Randell, B.: "Error Recovery in Asynchronous
Systems," UIUCDCS-R-83-1148, Univ. of Ili. at Urbana-Champaign, Urbana,
Ill., Dec. 1983.

20. Jalote, P.; Campbell, R. H.: "Fault Tolerance Using
Communicating Sequential Processes," UIUCDCS-R-83-1149, Univ. of Ill.
at Urbana-Champaign, Urbana, Ill., Dec. 1983.

21. Kim, K. H.: "Approaches to Mechanization of the Conversation
Scheme Based on Monitors," IEEE Trans. on Software Engineering, Vol.
SE-8, No. 3, May 1982, pp. 189-197.

22. Wittie, L. D.; Curtis, R.: "Debugging Distributed Real-Time
System," Workshop on Real-Time Operating Systems, Niagara Falls, N. Y.,
Aug. 1983.

23. Oppen, D. C.; Dalal, Y. K.: "The Clearinghouse: A
Decentralized Agent for Locating Named Objects in a Distributed
Environment," ACM Trans. on Office Information Systems, Vol. 1, No. 3,
July 1983, pp. 230-253.

24. Wittie, L. D.; Palumbo, M. J.; Frank, A. J.: "Overview of the
Stand Alone Modula-2 System," Dept. of Computer Sci.; SUNY/Stony Brook,
Stony Brook, N. Y., Draft Rept., June 6, 1983.

25. McKendry, M. S.: "Language Mechanisms for Context Switching
and Protection in Level Structured Operating System," Ph.D. Thesis,
Univ. of Ill. at Urbana-Champaign, Urbana, Ill., 1982.

26. Kolstad, R. B.: "Distributed Path Pascal: A Language for
Programing Coupled Systems," Ph.D. Thesis, Univ. of Ill. at
Urbana-Champaign, Urbana, Ill., 1982.

27. Wirth, N.: Modular2, 2nd Ed. Tech. Rpt. Institut for
Informatik ETH, No. 36, Zurich, 1982.

28. Wirth, N.: Proqramminq in Modula-2, Springer Verlag, N. Y.
1982.

33

29. Ada Proqraminq Lanquaqe, ANSI/MiI-Std-1815A, 22 Jan. 1983.

30. Campbell, R. H.; Kolstad, R. B.: "An Overview of Path Pascal's
Design and Path Pascal User Manual," SIGPLAN Vol. 15, No. 9, pp. 13-24.

31. Wei, A. Y.: "Real-Time Programming With Fault Tolerance," PH.
D. Thesis, Univ. of Ill. at Urbana-Champaign, Urbana, Ill., 1981.

32. Feyock, S.: "Definition of the Operational Semantics of Ada
Tasking," Final Rept. Grant NAG-I-62, College of William & Mary,
Williamsburg, Va., 1981.

33. Wittie, L. D.; Curtis, R.: "Naming in Distributed Systems,"
SUNY/Stony Brook, Stony Brook, N. Y. ; C. S. Tech. Rept. 83/056, Sept.
1983.

34. Ellis, C. S.; Floyd, R. A.: "The ROE File System," 3rd Symp.
on Reliability in Distributed Software & Data Base Systems, IEEE Comp.
Soc. Press, Oct. 17-19, 1983, pp. 175-181.

35. Hoare, C. A. R. : " Communicating Sequential Processes," Comm.
of ACM, Vol. 21, No. 198, August 1978, pp. 666-677.

36. Bates, P.; Wileden, J.: "EDL: A Basis for Distributed System
Debu99ing Tools," Proc. 15th Hawaii Int. Conf. on System Sciences, pp.
1986-93.

37. Curtis, R.; Wittie, L. D.: "BUGNET: A Debugging System for
Parallel Programming Environments," Proc. IEEE 3rd Int. Conf. Dist.
Comp. Sys., Oct. 1982, pp. 394-399.

38. LeBlanc, R. : "Interactive Debugging of Distributed Programs,"
Symp. on High-Level Debugging, March 1983.

39. Rietschote, H. F.: "Debugging in a CHILL Oriented Program
Development System," Phillips' Telecom. Industries, Neth., 2nd CHILL
Conference, Chicago, Ill., March 1983.

40. Richie, D. M.; Thompson, K.: "The UNIX Time-Sharing System,"
Comm. of ACM, Vol. 17, No. 197, July 1974, pp. 365-375.

41. CCITT, "CHILL Language Definition," CCITT Recommendation
Z.200, Nov. 1980.

42. Allchin, J. E.; McKendry, M. S.: "Support for Objects and
Actions in Clouds: Status Report," Tech. Rept. GIT-ICS-83/II, Georgia
Inst. of Tech., Atlanta, Ga., May 1983.

43. Postel, J. B.: "Internetwork Protocol Approaches," IEEE -
Transactions on Communications, Vol. COM-28, No. 4, April 1980.

44. Bruegee, B.; Hibbard, P.: "Generalized Path Expressions: A
High Level Debugging Mechanism," Preliminary Draft, ACM-
0-89791-11-3/83/008/0034, 1983 pp. 34-44.

34

45. Berman, W. J.: "Development of a Prototype Multi-processor
Interactive Software Invocation System," NASA CR -- 172210, Cont. No.
NASI-16985, Sept. 1983.

" 46. Tanenbaum, A. S.: Computer Networks, Prentice-Hall, Englewood
Cliffs, N. J.: 1981, Ch I.

J

47. Spector, A. Z.: "Performing Remote Operations Efficiently on a
Local Computer Network," Comm. of ACM, Vol. 45, No. 4, April 1982, pp.
246-260.

48. Birrell, A. O ; Nelson, B. J.: "Implementing Remote Procedure
Calls," ACM Trans. on Comp. Sys., Vol. 2, No. I, Feb. 1984, pp. 39-59.

35

I r

'T

II

1. ReportNo. 2. GovernmentAccessionNo. 3. Recipient'$CatalogNo.
NASA TM-85784

4. Title and Subtitle 5. Report Date

AN OPERATING SYSTEM FOR FUTURE AEROSPACE VEHICLE April 1984
6. Performing Organization Code

COHPUTER SYSTEHS 505-37-03-01

7. Author(s) 8. Performing Organization Report No.
Edwin C. Foudriat, W. J. Berman*, Ralph W. Will
and W. L. Bynum**

10. Work Unit No.
9. Performing Organization Name and Address

NASA Langley Research Center '11. Contractor GrantNo.
Hampton, VA 23665

13. Typeof ReportandPeriodCovered
12. Sponsoring Agency NameandAddress

Technical Hemorandum
National Aeronautics and Space Administration
Washington, DC 20546 14. Sponsoring Agency Code

15. Supplementary Notes

*Advanced Programming Techniques, Inc., Charlottesville, Virginia

**College of William and Mary, Williamsburg, Virginia

1g. Abstract

The requirements for future aerospace vehicle computer operating systems are
examin_ _n this paper. The computer architecture is assumed to be distributed with a

local area network connecting the nodes. Each node is assumed to provide a specific
functionality. The network provides for communication so that the overall tasks of the
vehicle are accomplished.

The O/S structure is based upon the concept of objects. The mechanisms for inte-

grating node unique objects with node common objects in order to implement both the
autonomy and the cooperation between nodes is developed.

The requirements for time-crltical performance and reliability and recovery are

discussed. Time-critical performance impacts al___lparts of the distributed operating

system; e.g., its structure, the functional design of its objects, the language struc-

ture, etc. Throughout the paper the tradeoffs--concurrency, language structure, object

recovery, binding, file structure, communication protocol, programmer freedom, etc.--are
considered to arrive at a feasible, maximum performance design.

Reliability of the network system is considered. A parallel multipath bus
structure is proposed for the control of delivery time for tlme-critical messages. The

architecture also supports immediate recovery for the tlme-critlcal message system after

a communication failure. Techniques to enable programmer control of recovery are incor-

porated into the system design. Because finding and fixing errors in concurrent, dis-

tributed systems are extremely difficult, debug features are provided at the operating
system, user interface level to enable the programmer to monitor and control tasks both
within and between nodes.

17. KeyWords(Suggestedby Author(s)) 18. DistributionStatement '

Networks, operating system, distributed Unclassified - Unlimited
computer systems, real-time computer,
aerospace computer

Subject Category 62

19. SecurityClassif.(ofthisreport) 20. SecurityClat4if.(of thispage) 21. No. of Paget 22. Price
Unclassified Unclassified 36 A03

N-30S ForsalebytheNationalTechnicalInformationService,Sprin£field,Virginia22161

