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ABSTRACT

A modified form of the Lepping - Argentiero single spacecraft, shock
normal determination procedure is presented. The modified method incorporates

a simple predictor-corrector algorithm which allows a faster convergence rate
and the use of average values of the parameters for the starting vector.

INTRODUCTION

A technique and associated computer program developed by Lepping and
Argentiero (1971) to least-squares fit a sub-set of the Rankine-Hugoniot

equations to shock-related plasma and magnetic field data, is modified in this
note for the purpose of increasing the program's speed and efficiency and

making unnecessary the need for multiple starting conditions in the iterative
scheme. Originally the fitting scheme employed a standard Newton-Raphson

numerical iterative procedure to solve simultaneously a set of eight nonlinear

equations, denoted equations (36) in the original paper and equations (1)

below. The iterative technique is described by Deutsch (19.65). When

convergence did not result, one was required to repeat the procedure using, a

different "starting vector" (Z ), the eight components of which constituted

the independent plasma and field variables to be adjusted. The simple

modification suggested here, as well as making the use of more than one
starting vector unnecessary, in general speeds up convergence by eliminating

occasional large "overshoots" in the iterative procedure.

Formulation

**>

We denote 1 as the exact solution of

= 0 (i = 1, ...... 8) (1).

where
11 N(i) , .. '

L(2) = I l I. - (2)I l (I. -
i=1 J=1 \ a,

with 2 = (X., X_, ... XQ), and where Y.
(lj) (i = 1, .. 11; j = 1 .. N(i)) are
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the input data for the eleven physical quantities of interest, N ( i ) data
points each, usually arranged in the following order:

B 1x« V 31z' B2x' V B22' V2y ' V V2z ' V1z» Nr N2' and V2x ' V1x

(i.e., components of the magnetic field, plasma velocity differences and
densities, where the subscripts 1 and 2 represent pre-shock and post-shock

states, respectively), and.

ai (i = 1, .. 11)

are the "sigma noise parameters" used as weights in the least squares

procedure and usually composed principally of the rms deviations of the

measured physical quantities of interest (Y.'s), and finally

Xt (i = 1, ... 8)

are the independent variables (components of Z) to be solved for, physically

representing the first eight quantities of Y^^. Note that Xg (2̂ ), XIQ (=N2)

and Xn (= 2̂x - V1x) are related to Xi (i = l, ... 8) by the three lowest

order Rankine-Hugoniot equations, which play the key role of providing a

constraint on the nonlinear least-squares process [see equations (18), (19),

and (20) in Lepping and Argentiero (1971)].

We denote Z (n = 1, n ) as an estimate of Z at iteration step n.
fj m 9 A

The components of Z , the starting vector, are commonly the averages of the

first eight components, Y.. Then at step n

When a "best estimate" of Z is obtained, the magnetic field components, i.e.,

the first six components of that estimate of Z, are used in the magnetic

coplanarity formula (Colburn and Sonett, 1966) to obtain a "best estimate" of

the shock normal.



The original computer program is described in the Appendix of Lepping and

Argentiero (1970).

Modification of Scheme

At each step n the quantity L, given by equation (2) and referred to as

the least squares "loss function", can be evaluated. Our basic purpose is to

minimize L(Z), as in equation (1). In order to avoid divergence of \&Zn\
 and

L(2), we make a slight modification of the iteration procedure by allowing a

choice of two branches in the fitting program, which are defined by the

following:

First branch - If at step n- L < L , , thenn n— i

as in the original scheme.

Second branch - If at step n- L > L , , thenn n— 1

= (Ln-1/Ln>

This continues step by step until n equals a pre-chosen integer, M say, or

until

( U 2 n l / | 2 n _ . , | ) < e (6)

for some sufficiently small e > 0. Notice that the second branch differs from

the unmodified first branch only in that the length of each step along

AZ (unmodified) is shortened according to the ratio of the new to the old loss

function.

We have found in numerous cases that this simple modification has

decreased, and sometimes significantly, the time needed to run the f i t t ing

program and/or the operator 's efforts in finding a proper starting vector. In



extreme cases, for a given t , the original program would occasionally wander

around the neighborhood of L , with there being no apparent hope of

satisfying (6) for a reasonable t, especially when the gradient of L(Z) was

shallow near L . , i.e., for poorly conditioned cases. This modification

should eliminate that problem. Although not a unique solution to the

convergence problem, this type of modification is attractively simple.

Example

Here we show the benefit of using the modified program by comparing its

results with those of the unmodified program for a somewhat poorly behaved

case; we have encountered much worse cases but they are not typical and

therefore not good examples.

We examine a shock observed on Pioneer 6 at 2058 U.T . on March 22, 1966,

which was first studied by Chao (1970); he graphically displays and discusses

the data, which are from the Goddard magnetometer and the MIT plasma probe

onboard the spacecraft. The right side ("DATA") of Table 1 shows the

tabulated data points constituting 12.5 minutes of upstream field data, 14

minutes of downstream field data (partially decimated), and ±22.5 minutes of

all plasma quantities. The analysis intervals were chosen on the basis of

apparent steadiness of the data. All data are given in an R-T-N coordinate

system, centered at the spacecraft, where ft is positive radially away from the

sun, T is perpendicular to ft , parallel to the ecliptic plane and positive in

the direction of the earth's motion about the sun, and ft = ft x T. On the left

side of the table are best estimate ( B . E . ) values from both the modified and

unmodified programs, straight averages ( A V G ) of the quantities, and the

associated sigma noise parameters (SIG), which in this case were simply rms

deviations of the data values. The modified program converged to the 3.E.

value in 3 iterations where the A V G ' s were used for the components of the

starting vector. By contrast the unmodified program required 11 steps when

again the AVG starting vector was used. In the unmodified program the loss

function L had the undersirable feature of oscillating in value, as shown in

Table 2; the table also shows the monotonically decreasing values of L that

the modified program produced, as expected. The table also gives a related

quality factor defined below the table. We stress the case where A V G ' s were



used for the starting vector, Zo, since that is obviously the easiest and most

commonly used choice, as stated above. However, for this shock several other

apparently reasonable 2 fs were attempted using the unmodified version of the

program, and some did not give convergence after 15 interation steps; the

program was set to stop at the 15th step.

It must also be emphasized that the selection of an optimum fitting

coordinate reference frame is important in assuring proper and speedy

convergence. The implementation of the modified and unmodified procedures

have included interactive facilities to conveniently rotate the data into one

of three orthogonal alignments such as to assure the optimum selection of

dependent and independent variables in the fitting procedure. In general, the

quantities exhibiting the greatest variability or uncertainty should be

selected as the dependent variables to be least-squares estimated.

The best estimate shock normal, based on the B.E. values in Table 1,

is

fig £> = <n B , nr nM) = (0.94, -0.15, 0.31 ),

and the associated 95* certainty error cone half-angle was 7.7° (Lapping and

Argentiero, 1971). [If AVG value fields had been used, the error cone

half-angle would have been 3.3 times larger!]. By comparison Chao's estimate

of the shock normal was

nCHAO = (0'84' •°'10' °'54)*

differing by 13.6° from our estimated direction. The shock was a rather

typical oblique one (at 1 AU), whose B.E. normal was 59° from the upstream

field direction § and whose magnitude ratio across the shock was

We stress how different the velocity difference vector W = ( W R , WT, WN)

is between the B.E. and AVG values, especially in the WN component, as Table 1

shows. The angle between Wg£ and W is 17.1°. If one were to use "velocity



coplanarity" (Abrahara-Shrauner, 1972) and AVG values, the resulting shock
normal would be

= (0 '69 ' -°-20- °-70) '

which differs by 26.4° from our best estimate normal; the author warns that

this method is an approximation. Our added warning is that using average
values is often inadequate. For example, we see that by using the B.E. W and

velocity coplanarity we obtain

nvel S'^BE^BE1 = (°*86' ~°'23' ° 'U 6 ) '

which is only 9.8° from n,,.,. Obviously in all of the above we have made the
DC.

tacit assumption, argued in Lepping and Argentiero (1971), that fL_ is indeed
generally the best estimated shock normal from data from a single spacecraft.

Many such examples can be found to show the desirability of using the

modified version of the 'best-fit1 technique.
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TABLE 2

Loss Function Values

Iteration Step

0 {Starting vector

1

2

3

4

5

6

7

8

9

10

11

L-unmodified (Q*)

1,095

19,360

2,985

2,749

7,336

805

5,013
1,156

1,639

127

139

108

(.295)

(.070)

(.178)

(.186)

(.114)

( .344)

(.138)

( . 287 )

(.241)

( . 865 )

( . 826 )

(.938)

L-modified (Q*)

455 (.457)

174 (.739)

111 ( . 925 )

108 (.938)

*Q = Quality = (NT /L) , where N., is the total number of data points, 95 in

this case. Either two sucessive Q's of 0.85 or larger, or Q of 0.90 or

larger, is usually considered a successful convergence, provided reasonable

"sigraa parameters" were used.
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