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ABSTRACT

The standard model for extragalactic variable radio sources comprises an

isotropically expanding plasmoid with "frozen" magnetic flux and an electron

distribution which evolves adiabatically. This model leads to the following

relation between the peak luminosity Lv,m and the relevant frequency	 vm. •

which are functions of time: L
v,m	 m

a v N where N = (7n + 5)/(4n + 5).	 In

this expression, n is the spectral index in the optically thin part of the

s pectrum, where L
v 

a v- 
n. 

For n in the range 0.5 to 1.5, the standard model

yields N in the range 1.2 to 1.4. By contrast, analysis of observational data

yields estimates of N in a small range about the mean value 0.4, in clear

contradiction with the standard model.

The model is here modified to comprise finite flux tubes, either rooted

in a parent object or forming closed toroids. The expansion rate along the

flux tube may differ from the expansion rate transverse to the flux tube. The

electron distribution	 is assumed to remain isotropic and to evolve

adiabatically.	 This model yields a good match to the above observational

relation in the case that the flux tubes expand along their length but not in

the transverse direction.

Subject Headings: radio sources: galaxies - quasars - radio emission

lAlso Department of Applied Physics, Stanford University
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EXTRAGALACTIC VARIABLE RADIO SOURCES

I. Introduction

It has been known, since the observations of Dent (1965), that radio

emission in the millimeter and centimeter range from quasars and some radio

galaxies is variable on a time scale of years, months, and sometimes shorter

intervals.	 Soon after these variations were discovered, it was suggestd by

Shklovsky (1965) that the varying components are sources of synchrotron

radiation which are initially optically thick but, as they expand, become

optically thin at progressively longer wave lengths.

This proposal was analyzed in more detail by van der Laan (1966), who

analyzed the properties of a model comprising a uniform and spherical cloud of

magnetic field and relativistic electrons. 	 The electron distribution was

assumed to be isotropic, with a power-law dependence on energy. The magnetic

field was assumed to be "frozen" in the cloud so that magnetic flux is

conserved.	 The expansion was assumed to be spherically symmetric so that

there is no change of topology of the magnetic field and the electron

distribution	 remains	 isotropic.	 A further assumption was that the

relativistic gas cools adiabatically during expansion.

This model was compared with observational data by Kellermann and

Pauliny-Toth in 1968, and the agreement was quite satisfactory. However, the

situation has changed in recent years.

Andrew, MacLeod, Harvey and Medd (1978) have analyzed results of a ten

year study of extragalactic variable sources at centimeter wavelengths. They

examined 99 variable sources and found that bursts of particle acceleration

it
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occur in the average variable source about once every one and one-half to two

years.

At any time in the evolution of the source, the flux (per unit frequency)

F 
	 has a maximum value Fv'm (t) at a frequency vm (t).	 Andrew et al.

(1978) found that, for any source, these quantities vary in such a way that

they satisfy approximately the relation

Fv'm (t) a [v m (t)I
	

(1.1)

They found that observationally determined values of N fall in a narrow range

centered on 0.4:

N = 0.4±0.25
	

(1.2)

By performing a similar analysis of data compiled by Altschuler and Wardle

(1976, 1977), Andrew et al. (1978) determined N values in the range N = 0.4 ±

0.15.

According to the SVDL (Shklovsky-van-der-Laan model), N should be related

to n, the power-law index of the radio emission, by the relation

7n+5

N	 =	 (1.3)
4n+5

Hence, for n = 0.5, 0.75, 1.0, 1.5, we expect than N = 1.21, 1.28, 1.33, 1.41,

respectively.	 It is clear that this prc^:rcy of the SVDL model is

incompatible with the observational data summarized by Andrew et al. (1978).
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II. Flux-tube Model

Since the properties of the SVDL model are broadly consistent with

observational data, it seems reasonable to explore minor modifications of this

basic model. The simplest variant which came to mind is that the expansion is

anisotropic with respect to the magnetic field. This is the possibility which

will be explored in this article.

If one is to consider the possibility that the expansion is anisotropic

with respect to the magnetic field, it is clear that one shculd also consider

the possibility that the electron distribution is anisotropic. Discussion of

this possibility is deferred for a subsequent article. For the time being, we

consider that the electron distribution remains isotropic, due either to

particle-particle scattering or to scattering by magnetic fluctuations, or to

some other process.

We consider a single magnetic flux tube of uniform radius R and length

L.	 The flux tube may be rooted in an accretion disk, in which case it is to

be assumed that the detailed geometry is such as to provide mirror action at

the ends of the tube (Fig. 1(a)). Alternatively, the flux tube may be in the

form of a toroid, in which case L measures the perimeter (Fig. 1(b)). As an

additional simplification, we assume that the transverse component of the

magnetic field (transverse to the major direction measured by L) is small

compared with the longitudinal component of the magnetic field (in the

direction measured by Q.

We assume that L and R vary with time t according to relations

L = L1 f', R = R 1 fQ	(2.1)

:1



n = n f
-(X+2p 

)
1

(2.4)
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where f(t) is an arbitrary function of time and L 1 , R 1 , etc., are the values

of L, R, etc., at t = t 1 , assuming that f(t 1 ) = 1.	 For unaccelerated

expansion, f(t) = t/t 1 .	 For any reasonable assumption concerning the

conductivity of the plasma, we find that the total flux of the tube is

constant so that the magnetic field strength B varies as follows,

	

B = B 1 f
-2p
	 (2.2)

For a relativistic gas with an isotropic pressure p, the pressure varies

with density n according to the relation

	

p a n4/3	 (2.3)

The pressure of electrons with energy in a small range about the value E (eV),

is proportional to nE. Hence, noting that

we see that

	

E a f - ( 1 / 3 ) (a +^ )	
(2.5)

We suppose that the total number of relativistic electrons in the plasmoid has

a power-law distribution of the form

	

dN = KE -mdE .	 (2.6)
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Since the total number of electrons is fixed, and since the evolution of

energy with time is taken to be the adiabatic form (2.5), we find that

(1^3)(a +2a)(m-1)K(t)	 = K 1 f 	 (2.1)

If the lower and upper limits of `he power-law spectrum (2.6) are taken to be

E L (t) and E U (t), respectively, we see from Eq. (2.5) that

-( 1 /3)(a+2p) -(1/3)( a +2pE L = EL,lf	 , EU	 EU'lf	 )	 (2.8)

One may verify from (2.6), (2.7) and (2.8) that the total number of electrons

is fixed, being given by

K 1 	 -(m-1) -	 (m-1)	 11	 (m-1)

NT	
m	 1 ^

E L 1	 EU,1	 I	
m	 1 

E L '1	
(2.9)

-	 - 

III. Radiation

We now consider the synchrotron radiation produced by the electron

distribution proposed in § II. 	 For simplicity, we represent the radiation	 j

	spectrum of a single electron	 S 1 (erg s -1 Hz_ 1 )	 by the delta-function

approximation

S1,v = 2A 1 E2 B 26(v-v p). Al - 
10-26.1	 (3.1)

where
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V p = A 
2 

E 
2 
B , A2 - 10-5.3 .	 (3.2)

On combining these equations with Eq. (2.6), we obtain the standard result

that the total luminosity spectrum L v (erg s -1 Hz -1 ), defined by	 i

L 
	 = fdN S 

1,V	
(3.3)

is given by

= A A 
KB

n-1n+lv
-n

L
v	 1 2	

(3.4)

where

	

n = 2 (m - 1)	 (3.5)

The lower and upper bounds of this power-law spectrum are given by	 ; !

v L = A2E2B, v 0 = A2 E2B	 (3.6)

Following van der Laan (1966) and Scheuer (1967), we estimate the

radiation in the self-absorbed part of the spectrum by noting that the

brightness temperature cannot exceed the equivalent temperature of electrons

chiefly responsible for the synchrotron radiation at any given frequency. On

using the Rayleigh-Jeans formula for the self-absorbed form of the surface

emissivity Fv,SA (erg cm -2 5 -1 Hz -1 ) ,

t.
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Fv,SA - A3 Ev 2 , A3 c 10-32.0	 (3.7)

and using Eq. (3.2) to express E in terms of v, we obtain the relation

Fv,SA = 
A4B-1/2v 5/2^ A4 a 10-30.3 0	

(3.8)

If L and R remain comparable in magnitude for all time, we are

effectively considering isotropic expansion, that is, we are reconsidering the

SVDL model.	 It is not possible that L should be much less than R. Hence, we

consider only the case that L >> R. With this inequality, the effective area

of the plasmoid is effectively 2irRL, so that the self-absorbed part of the

luminosity spectrum is given by

Lv ,SA = AS LRB
-1/2v 5/2 ^ 

AD	

10-29.5	
(3.9)

We assume that the actual spectrum is given by (3.9) up to the frequency

V m for which expressions (3.4) and (3.9) are equal, and by expression (3.4)

for values of v above v 	 We then find that the frequency v m of peak

luminosity is given by

1

V	 A A
n-1 A-1 K L-' R-l Bn+3/2 n+5/2	

(3.10)m	 12	 5	 1	 '

and the peak luminosity L
v ,m 

{c given by
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OF POOR QUALITY

E

1

L	
^q5/2q(5/2)(n-1)AnK5/2LnRn,2n+5/2 	̂ n+5/2

(3.I1)v,m	 1	 2	 5

On	 using Eqs.	 (2.1),	 (2.2),	 (2.7)	 and	 (3.5),	 we	 find	 that	 vm (t) and
i

Lv m (t) depend on time, through the	 function f(t), as follows: i

2/3 n+l	 (10/3)n+4

--- —-- Pn+5/2	 n+02
v	 v	 f

m	 m,l
(3.12)

s

and
-	 2/3 nn -	 19/3 n+5 0

n+	 n+5/2Lv'm	 =	 Lv'm ^ 1	 f (3.13) 

where

1 y
vm,l	 =	 [AlA2-lA5?k1Ll1g1+3/2^n+5/2 (3.14)

and

s

1 ^	 ^

L	
^g5/2A(5/2)(n-1)	 nK5/2LnRng2n+5/2^n+5/2

2 (3.15)v,m ' 1	 1	 2	 111
s

We see from t he above equations that there should be a power-law relation
i
4

between Lv	 and v m ,	 which we write as
•m

Lv'm(t)	 -	 [v m ( t )) N (3.16)
G

where

II
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N =	 __
.p	 (2n + 3)a + (10n + 12)p
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IV. Discussion

We may readily verify that the case a - 1, p = 1, corresponding to

isotropic expansion, yields

1n+5
N 1 ^ 1	=	 (4.1)

4n+5

This reproduces the familiar relationship between L V'm , and v 	 for the SOL

model (van der Laan, 1966).

We now consider two other special cases. The case x - 0, p 	 1 corre-

sponds to a toroidal plasma for which the perimeter is fixed but the minor

radius grows progressively. 	 It is clear that such a model would eventually

break down, since the radius would at some stage exceed the perimeter.

Nevertheless, we note that this model yields the following value of N:

19n + 15
N0 ^ 1 	=	 (4.2)

lOn + 12

We also consider the case that 	 a = 1, p = 0,	 corresponding to toroidal

plasma of constant cross section, which increases progressively in length

2n

N 1.0 =
2n+3	

(4.3)

...	 • ;,no ►

Z
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i

We list  the values of the above formulas for a range of values of n in

Table 1.	 It is clear that the second c-.se , N0,1 , provides an even worse fit
	

:f

to observational data than does the SVDL model, N1,1 . On the other hand, the

third mciel, characterized by N 1,O , appears to provide a quite acceptaule fit

to observational data. We see that for N in the range 0.65 < n c 1.50, N is

in the range 0.3 < N < 0.5.

It is clearly of interest to pursue the case that a = 1, p = 0. 	 For

this case, Eq_. (3.12) and (3.13) yield the following dependence of v 	 and

Lv m on f(t):

vm = v m.l f -r	 (4.4)

and

Lv'm = l v'm'1 f -A	 (4.5)

where

4n+6

r =	 (4.6)
6n + 15	 i

and	 1

4n

A	 (4.7)
6n + 15

Values of these indices are given, for a range of values of n, in Tab -le 2. We

see that A varies only over the range 0.44 - 0.52 as n covers the range 0.5

- 2.0, whereas A varies frorr 0.11 - 0.30 over the same range of values of n. 	
d

C12arly, one cannot infer from these relations the expected dependence of

and L	 on t unless one can determine the w cted de ndence of f
m	 v ,m

e pe	 pe	 upon	

1
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t. If it c°n be argued that L increases linearly with time, so that

f(t) a t then we see from Table 2 that, to fair approximation, v m	
t1/2.

As tests of the proposed model, it is desirable to examine cases for

which individual bursts are well identified to trr to check the dependence of

N upon n, given by Table 1, and the dependence of v ia and Lv m on t, ciiven by	 }s

Table 2.

Finally, we inquire into mechanisms w: .,j might produce plasmoids which

expand progressively in length, while the cross section remains substantially

constant.	 We first consider the property that the rrdius of the flux tubes

does not change, or changes only slightly, during the evolution of the

plasmoid. This is equivalent to the requirement that the r:iean magnetic field

strength reoains constant.	 If the dominant stress in the plasmoid is the

magnetic stress, this condition is equivalent to constant pressure, implying
t

that the plasmoid is moving in a constant-pressure medium.
r

There are at least three processes which might lead to a progressive

increase in the length of the flux tube, as indicated schematically in Fig.

2.	 If the flux tube is rooted in an accretion disk, t;ien differential 	 j

rotation of the disk may lead to a progressive stretching of the loop, as

indicated in Fig. 2(a).	 If, on the other hand, the plasmoid comprises a

toroid ejected from the disk, the steady increase +n length may be due to an

initial velocity of expansion of the toroid (Fig. 2(b)). This expansion could

possibly Le due to centrifugal motion, if the formation of the toroid is

accomplished by flare action and if, as is the case in solar flares, the flare

process leads to the formation of a dense flare plasma in the plasmoid created

by the flare.	 however, the centrifugal force would decrease with time more

rapidly than the radially inward force due to magnetic tension, so that the

9
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expansion would ultimately be reversed.	 If the toroidal plasma is created

with a high velocity in the radial (major radius) direction, we again find

that magnetic tension would eventually reverse the expansion.

A third possibility which comes to mind is that the plasmoid is

turbulent, and that - as is well known - the turbulence leads to progressive

stretching of magnetic field lines. If the external pressure is substantially

constant, the magnetic field strength will remain constant. For any portion

of the total flux tube comprising the plasmoid, the behavior is as described

in this article. However, the total geometry is quite different: the overall

shape may be spherical and the overall expansion may be spherically

symmetric. Hence the model would be similar to the SVDL model except that the

magnetic field strength re.tiains constant rather than decreasing with time.

This model is currently being examined.
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Table 1

Dependence of N upon n

n
Ni'0	

iNi 91
0,1

0.5 1.21 2.72 0.25

0.75 1.28 1.5 0.33

1 1.33 1.54 0.4

1.5 1.41 1.61 0.5

2 1.46 1.66 0.57
i

j

r
t

`	 i
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Table 2

Dependence of r and A on n

n

0.5 0.44 0.11

0.75 0.46 0.15

1 0.48 0.19

1.5 0.5 0.25

2 0.52 0.3

i
a

r

i
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Figure Captions	 in

Fig. 1. (a) Schematic model of flux tube rooted in accretion disk.

(b) Schematic toroidal flux tube ejected from accretion disk.

Fig. 2	 (a)	 Differential rotation in accretion disk leads to stretching of

flux tube.	 (b)	 Schematic representation of toroidal flux tube,

ejected from disk, that expands in major radiL's but not in minor

radius.
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