General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
TOPEX ORBITAL RADIATION STUDY

E. G. STASSINOPoulos
J. M. BARTH

April 1984
TOPEX ORBITAL RADIATION STUDY

E. G. Stassinopoulos
NASA-Goddard Space Flight Center
   Sciences Directorate
   National Space Science Data Center

J. M. Barth
Science Systems and Applications, Inc.

April 1984

NASA-Goddard Space Flight Center
   Greenbelt, Maryland 20771
# CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Specification of Orbit</td>
<td>1</td>
</tr>
<tr>
<td>3. Generation of Trajectory</td>
<td>1</td>
</tr>
<tr>
<td>4. Flight Path Exposure to Trapping Domains</td>
<td>2</td>
</tr>
<tr>
<td>5. Trapped Particle Environment Models</td>
<td>2</td>
</tr>
<tr>
<td>6. Orbital Flux Integrations</td>
<td>2</td>
</tr>
<tr>
<td>7. Geomagnetic Shielding and Solar Flare Protons</td>
<td>2</td>
</tr>
<tr>
<td>8. Flux Data: Type, Quality, and Variations</td>
<td>3</td>
</tr>
<tr>
<td>9. Dose and Shielding Evaluation</td>
<td>4</td>
</tr>
<tr>
<td>10. Cosmic Rays</td>
<td>4</td>
</tr>
<tr>
<td>11. Results: Presentation Description</td>
<td>4</td>
</tr>
<tr>
<td>A. Tabular Presentations</td>
<td>5</td>
</tr>
<tr>
<td>I. Spectral Profiles</td>
<td>5</td>
</tr>
<tr>
<td>II. Peaks and Totals Per Orbit</td>
<td>5</td>
</tr>
<tr>
<td>III. Time-Accounting and Exposure-Analysis</td>
<td>6</td>
</tr>
<tr>
<td>IV. Solar Proton Fluences and Exposure Factor</td>
<td>6</td>
</tr>
<tr>
<td>V. Total Dose and Components</td>
<td>7</td>
</tr>
<tr>
<td>VI. Spacecraft Exposure to Heavy Ions</td>
<td>7</td>
</tr>
<tr>
<td>VII. Cosmic Ray Spectra</td>
<td>7</td>
</tr>
<tr>
<td>B. Graphical Presentations</td>
<td>8</td>
</tr>
<tr>
<td>I. Spectral Profiles</td>
<td>8</td>
</tr>
<tr>
<td>II. Peaks Per Orbit</td>
<td>8</td>
</tr>
<tr>
<td>III. Trajectory World Map Projections</td>
<td>8</td>
</tr>
<tr>
<td>IV. Flight Path Tracing in B-L Space</td>
<td>8</td>
</tr>
<tr>
<td>V. Dose-Depth Curves</td>
<td>9</td>
</tr>
<tr>
<td>VI. Positional Flux Plots</td>
<td>9</td>
</tr>
<tr>
<td>VII. Positional Dose Plots by Geometry</td>
<td>9</td>
</tr>
<tr>
<td>VIII. Cosmic Ray Exposure Profile</td>
<td>9</td>
</tr>
<tr>
<td>IX. Cosmic Ray Accessibility Profile</td>
<td>10</td>
</tr>
<tr>
<td>X. Cosmic Ray Spectra</td>
<td>10</td>
</tr>
<tr>
<td>12. Results: Analysis and Discussion</td>
<td>10</td>
</tr>
<tr>
<td>A. Spectral Profiles</td>
<td>10</td>
</tr>
<tr>
<td>I. Protons</td>
<td>10</td>
</tr>
<tr>
<td>II. Electrons</td>
<td>11</td>
</tr>
<tr>
<td>B. Peaks and Totals Per Orbit</td>
<td>11</td>
</tr>
<tr>
<td>C. Flux-Free Time</td>
<td>11</td>
</tr>
<tr>
<td>D. Dose and Shielding</td>
<td>12</td>
</tr>
<tr>
<td>I. Decay and Degradation</td>
<td>12</td>
</tr>
<tr>
<td>II. Contamination and Interference</td>
<td>12</td>
</tr>
<tr>
<td>III. Possible Improvements</td>
<td>13</td>
</tr>
<tr>
<td>E. Galactic Cosmic Rays</td>
<td>14</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>15</td>
</tr>
</tbody>
</table>
TABLES

1-2 Orbit Integrated External Proton and Electron Spectra and Exposure Indexes: Solar Maximum
3 Predicted Peaks and Totals Per Orbit: Solar Maximum
4 Trajectory Time-Accounting and Exposure-Analysis: Solar Maximum
5 Solar Flare Proton Spectra and Geomagnetic Shielding Factors
6-8 Total Dose and Components as a Function of Shield Thickness: Solar Maximum
9 Spacecraft Exposure to Cosmic Ray Ions
10-36 Unattenuated, Attenuated, and Shielded Cosmic Ray Spectra

FIGURES

1-2 Proton and Electron Spectral Profiles: Solar Maximum
3-4 Proton and Electron Peaks Per Orbit: Solar Maximum
5 Trajectory World Map Projections
6 Flight Path Tracings in B-L Space
7-15 Dose Depth Curves by Geometry: Solar Maximum
16-17 Proton and Electron Positional Flux Profiles: Solar Maximum
18-26 Proton, Electron, and Total Positional Dose Profiles: Solar Maximum
27 Exposure Profile
28 Accessibility Curve
29-55 Unattenuated, Attenuated and Shielded Cosmic Ray Spectra
1. Introduction

At the request of the TOPEX Project Office, a comprehensive study was conducted to define the space radiation environment of the TOPEX spacecraft for a mission duration of 3 years and a tentative launch at 1989.2. For practical and economy reasons, a single trajectory was considered.

Following the precedent established with previous studies, the external (surface incident) charged particle radiation, predicted for the satellite, was determined by orbital flux integration for the specified trajectory (see section 3). The latest standard models of the environment were used in the calculations (see section 5). Because the launch epoch falls into the active phase of the solar cycle, the evaluation was performed for solar maximum conditions.

Magnetic field definitions for the nominal circular trajectory were obtained from a current field model.

Spatial and temporal variations or conditions affecting the static environment models were considered and accounted for, wherever possible.

The spacecraft exposure to cosmic rays of galactic origin is evaluated over its flight-path through the magnetosphere in terms of geomagnetic shielding effects, both for surface incident heavy ions and for particles emerging behind different material thicknesses.

Limited shielding and dose evaluations were performed for simple infinite slab and spherical geometries.

Results, given in graphical and tabular form, are analyzed, explained, and discussed. Conclusions are presented and commented on.

2. SPECIFICATION OF ORBITS

The analysis was based on nominal circular orbit with an altitude of 1334 kilometers and with an inclination if about 63 degrees.

3. GENERATION OF TRAJECTORIES

A flight path ephemeris was generated for the selected orbit with the GEODYN-BLCNV System for a trajectory of 24-hour duration defined at 1-minute intervals. The length of the simulated orbit time and the integration stepsize were especially selected so as to provide sufficient point density to insure an adequate sampling of the ambient radiation environment when flying the trajectory through the models. The trajectory was subsequently converted from geodetic polar to magnetic B-L coordinates with McIlwain's INVAR program of 1965 and the field routine ALLMAG, which now utilizes the BARRACLOUGH 1975 field model. The field computations were extrapolated to the tentative mission epoch of 1989.2 with linear time terms representing secular variations of the field.
4. FLIGHT PATH EXPOSURE TO TRAPPING DOMAINS

The investigated flight-path configuration displays a significant characteristic of high inclination orbits in magnetic L-space: they traverse the entire terrestrial radiation belt twice during each revolution, moving back and forth through regions of low L values (the inner zone: \(1.0 < L < 2.8\)), regions of high L values (the outer zone: \(2.8 < L < 12\)), and regions outside the trapping domain (external). Occasionally, some revolutions will also enter regions of space where no particle trapping can occur because of atmospheric cut-off conditions; that is, trajectory segments may have a combination of magnetic B and L values that place them outside the atmospheric cut-off limits of the models.

These excursions and the "external" visitations afford the satellite an amount of flux-free time, which may be of substantial duration (see section 12, C).

5. TRAPPED PARTICLE ENVIRONMENT MODELS

The fluxes in this study were obtained from current NSSDC models: the solar maximum AE6 for the inner zone electrons, and the interim model AEI7 for the outer zone electrons, and the solar maximum version of the new AP8 model for energetic trapped protons. It should be noted that the interim AEI7 does not reflect solar cycle variations in its present state. However, this model was issued in two versions, the AEI7-HI and the AEI7-LO, in order to account for differences in the data sets used in their construction. The AEI7-LO was used for this effort. All models describe an average static environment at a given epoch.

6. ORBITAL FLUX INTEGRATIONS

Orbital flux integrations were performed with the UNIFLUX and the SOFIP systems. UNIFLUX provided exposure times with B-L breakdown, while SOFIP provided the dose and shield data.

7. GEOMAGNETIC SHIELDING AND SOLAR FLARE PROTONS

Low inclination orbits experience a significant amount of geomagnetic shielding from cosmic rays of solar or galactic origin in the energy range \(E > 10 \text{ MeV}\). However, at 63 degree inclination, the TOPEX spacecraft will only intermittently be shielded from the unattenuated interplanetary cosmic environment, including solar flare proton intensities of all energies above 10 MeV.

Usually, geomagnetic shielding effects on geocentric missions are being evaluated with simple rigidity considerations because of substantial diurnal variations in the cutoff latitude associated with geomagnetic tail effects (2-4 degrees) and storm-induced changes (\(> 4\) degrees). The simple analysis used here assumed that energetic solar protons of all energies above 10 MeV have free access to all magnetospheric regions external to a dipole shell of \(L=5\) earth radii, which is equivalent to a cut-off latitude of about 63 degrees.
Predictions of solar flare proton fluxes at 1 AU are obtained as a function of mission duration $T$ and confidence level $Q^*$ on the basis of a probabilistic analysis\textsuperscript{10} using a modified type of Poisson statistics by a computerized model SOLPRO\textsuperscript{11} that includes the distinction between "ordinary" (OR) and "anomalously large" (AL) events and the probability of occurrence of the latter. Both AL- and OR-event fluences are non-linear functions of $Q$ and $T$.

For these predictions, only high quality comprehensive satellite measurements (not ground observations) were used, covering almost the entire 20th solar cycle. There have been indications that descriptions of the solar flare environment in interplanetary space (at 1 AU), derived from interpretations and extrapolations of ground-based measurements, have not been very accurate.

It should be noted that the statistics cannot predict when an AL event will occur; only the probability that one will occur in a given length of time. And it must be remembered that a single AL event will impart its total fluence within two to four days.

This implies that for unmanned satellites with mission durations of $T > 1$ year, OR-event fluence are not significant because probabilistic theory predicts the possible occurrence of at least one AL event, even for the lowest allowable confidence level ($Q=80\%$).

Incidentally, to a first approximation, the solar flare proton fluxes may be considered omnidirectional and isotropic, probably to within 10-15%.

8. FLUX DATA: TYPE, QUALITY, AND VARIATIONS

The trapped particle flux data available from the models represent omnidirectional, integral intensities that one would expect to obtain as average values over periods of time in excess of six months. But over most regions of magnetospheric space ($L > 2$ earth radii), short term excursions can vary from these values by factors of $10^2$ to $10^3$, depending on the particle energies and on the type and intensity of the causative event. These variations, however, do affect the TOPEX mission because its trajectory enters regions of space where $L$ is greater than 2 earth radii. Also, trapped particle populations experience changes due to: (a) local time (LT) dependence, and (b) solar cycle dependence. Both are of some consequence to TOPEX. The former is significant for spacecraft that sample regions where $L > 5$, which are visited by TOPEX. To compensate for these variations, the model provides LT-averaged values, which should yield an adequate approximation for missions of long duration ($T > 1$ year). The latter has been taken into account by selecting the appropriate solar cycle models.

Generally, solar cycle variations have opposite effects on each particle specie:

<table>
<thead>
<tr>
<th>Electron Intensities</th>
<th>Solar Min</th>
<th>Solar Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton Intensities</td>
<td>lower</td>
<td>higher</td>
</tr>
</tbody>
</table>

$Q$ denotes the degree of confidence one wishes to assign to the results; namely that for the specified mission duration the calculated fluences are the smallest values which will not be exceeded by actually encountered intensities.
The solar cycle changes, as derived from a comparison of the corresponding models, are functions of energy $E$ and magnetic parameter $L$. For the inner zone electrons, they may range from a factor of 1 to a factor of 5.

Protons are only affected in the vicinity of the atmospheric cutoff regions. No changes of consequence have been observed in the heart of the proton trapping domain. Proton changes have about the same range as those of the electrons.

It is necessary to emphasize that the calculations, although based on the best data available for the past epochs, can only serve as approximations for the future.

It also should be noted that a basic uncertainty factor of 2 is defined for the flux values of the AP8, while the AE6 is characterized by a weighted average uncertainty factor of 5 (minimum 2, maximum 10). No uncertainty factor has been defined for the interim AEI7.

9. DOSE AND SHIELDING EVALUATION

Doses were calculated from the total orbit integrated, surface incident, omnidirectional, integral fluences by existing shielding codes, as functions of various aluminum shield thicknesses and geometries.

A simple procedure was followed, not involving solid angle sectoring or three-dimensional ray tracing considerations. Instead, a simple two-dimensional geometry with 2π steradian omnidirectional incidence and a cosine law for the incident spectra, and a three-dimensional spherical geometry with omnidirectional incidence were considered. (See comment in section 12D).

Bremsstrahlung calculations were performed with the same codes.

10. COSMIC RAYS

The interplanetary galactic cosmic ray background was attenuated by the degree of geomagnetic shielding experienced by TOPEX along its trajectory through the magnetosphere.

The exposure of TOPEX to the magnetospherically attenuated cosmic rays and the interaction of the heavy ions with the spacecraft materials, in terms of equivalent aluminum thicknesses, were then evaluated for simple structural configurations; that is, a three-dimensional spherical geometry with omnidirectional incidence was considered. The shielded cosmic ray fluxes emerging behind the selected material thicknesses were calculated with state-of-the-art transport codes.

11. RESULTS: PRESENTATION DESCRIPTION

This section describes the form and format in which the results, derived from the Orbital Flux Integration (OFI) process, are presented for practical use. Except where otherwise specified, all particle data in this report relate to
integral, omnidirectional fluxes or fluences.

A. Tabular Presentations

The outcome of all calculations is summarized in Tables 1 to 36. The tables are arranged in seven sets, where every set pertains to one specific type of data. The first set has two similar members: one for trapped protons and one for electrons, in that order. The next three sets contain only one member. The fifth set contains three similar members. The sixth set contains one member. The seventh set contains twenty-seven similar members: one for each ion species considered in the study. A more detailed description of the tables is provided in the following paragraphs.

I. Spectral Profiles: Tables 1-2

Tabulation of average orbit-integrated spectral distributions. Composite spectra are given in units of: fluxes per square centimeter per second, fluxes per square centimeter per day, and total fluences per specified mission duration (3 years). For the electrons, the latter is also given in terms of inner and outer zone contributions. Functionally derived differential fluxes are listed in the last columns for both species of particles.

Total orbit-integrated spectra in percent, for energy intervals ΔE corresponding to selected energy levels are also given in terms of average instantaneous and daily intensities.

An exposure index (for energies $E_p > 5$ MeV for protons and $E_e > .5$ MeV for electrons) is listed for nine successive intensity ranges varying by one order of magnitude, in terms of processed exposure duration (in hours) and total number of particles accumulated while in that intensity range for the indicated number of hours.

II. Peaks and Totals Per Orbit: Table 3

These tables contain the absolute instantaneous peak fluxes and the total fluences accumulated during each successive revolution, as obtained from the nominal trajectory for the investigated flight duration (24 hours of mission time).

Specifically, there are nine columns on these tables. Column 1 is an orbit counting device, based on:

a) the orbit period when the trajectory is circular and lies in the equatorial plane;
b) the physical perigee in all elliptical flight-path cases; and,c) the equatorial crossing for circular inclined trajectories.

Column 2 gives the peak flux. Columns 3, 4 and 5 indicate the spacecraft position in geocentric coordinates at which the predicted peak flux was encountered. Columns 6, 7 and 8 determine respectively the relative orbit time and the magnetic B-L coordinates for this...
event. For the purpose of orbital radiation studies, all simulated trajectories start at $t_0 = \text{hours}$. Finally, the last column indicates the total predicted flux to be encountered during that particular orbit. It is advisable to disregard the last line on this table because many times that orbit is incomplete and the fluxes or positions shown do not correspond to true peaks.

III. Time-Accounting and Exposure-Analysis: Table 4

The "EXPOSURE-ANALYSIS" summary indicates what percent of its total lifetime $T$ the satellite spends in "flux-free" regions of space, what percent of its total lifetime it spends in high intensity proton and electron domains, and while so exposed, what percent of its total flux it accumulates.

In the context of this study, the term "flux-free" applies to all regions of space where trapped particle fluxes are less than one proton or electron per square centimeter per second, having energies $E_p > 5 \, \text{MeV}$, and $E_e > 0.5 \, \text{MeV}$, respectively. By definition, this includes all regions external to the Van Allen radiation belts.

The concept of "trapped particle fluxes" is meant to include stably trapped, pseudo trapped, and transient fluxes, as long as they are part of or contained in the environment models used and, in the case of transients or pseudos, their sources are considered powerful enough to supply them continuously in substantial numbers.

Similarly, as "high intensity" are defined those regions of space where the instantaneous, integral, omnidirectional, trapped-particle flux is greater than $10^3$ protons with energies $E_p > 5 \, \text{MeV}$, and greater than $10^5$ electrons with energies $E_e > 0.5 \, \text{MeV}$.

The values given in these tables are statistical averages, obtained over extended intervals of mission time. However, they may vary significantly from one orbit to the next, when individual revolutions are considered.

The "TIME-ACCOUNT" breakdown shows what percent of its total time the satellite spends in the "inner zone" ($1.0 \leq L \leq 2.8$) and in the "outer zone" ($2.8 \leq L \leq 11.0$) electron trapping domains, and also the percent of time spent in regions external to the latter ($L > 11.0$).

It should be noted that the confinement of the outer zone within the boundary of the $L=11.0$ earth radii volume is arbitrary and has no physical meaning. It is intended only as a simplification to facilitate the calculations. The region considered "external" in this study ($L > 11.0$) is still partially a domain of the outer zone, at least as far out as $L=12.0$ earth radii, according to the current environment models.

A last item on this table: the inner zone time is further subdivided into two parts: the percentage of time spent outside ($L < 1.1$) and inside ($1.1 \leq L < 2.8$) the trapping domain.
IV. Solar Flare Proton Fluences and Exposure Factor: Table 5

For the specified mission duration $T$ (printed in the sub-title), and dipole cut-off shell ($L=5$ earth radii, shown in the header), this table lists the solar proton fluence-spectra (in units of particles per square centimeter) at five discrete confidence levels $Q$ (given at the top of each column).

The exposure factors (in percent of total mission duration) obtained from the geomagnetic shielding analysis are also listed for four dipole cut-off shell values (in earth radii).

Caution: the AL-event solar flare protons are not contributed gradually over the investigated mission duration ($t = 3$ years) but are imparted in toto in a relatively short burst, that is, within approximately 2-4 days per AL event.

V. Total Dose and Components: Tables 6-8

These tables list doses in units of rads as a function of aluminum shield thickness, given in three ways: range $s$ in grams per square centimeter, depth $t$ in millimeters, and depth $t$ in mils.

Electron, bremsstrahlung, and proton contributions to the overall sumtotal dose are given separately. Electron and proton doses are further broken down into their respective constituents; namely, inner zone and outer zone (if applicable) for the former, trapped and solar flare (if applicable) for the latter.

The specific mission duration for which the doses have been calculated is indicated in the table headline.

VI. Spacecraft Exposure to Heavy Ions: Table 9

For the specified total exposure time (printed in the subtitle) and for the indicated L-Bins (listed in columns 1 and 2), this table gives the rigidity in column 3 (in units of GV), the ion cut-off energy in column 4 (in units of MeV/nucleon), and the corresponding spacecraft exposure profile and accessibility profile in columns 5, 6, 7 and 8. The exposure profile is evaluated in terms of actual time spent in each L-Bin (column 5, in units of hours) and, normalized by the total exposure time, in terms of percent exposure (column 6). The accessibility profile is given for an inverse summation of the actual time spent in the L-Bins (column 7, in units of hours) and, normalized by the total exposure time, in percent (column 8).

VII. Cosmic Ray Spectra: Tables 10-36

Tabulation of average orbit-integrated spectral distribution. One table is printed for each ion species considered in the study. The ion identification is given in the title. Ion energy is listed in column 1 in units of MeV/nucleon. Column 2 gives the unattenuated, interplanetary differential cosmic ray flux for the given ion. Column 3 gives the magnetospherically attenuated differential flux.
Columns 4 through 15 give the results of passing the attenuated cosmic ray flux through spherical aluminum shields of various radii, where column 4 contains the emerging energy (in units of MeV/nucleon) and columns 5 through 15 contain the emerging fluxes for these energies for 11 shield thicknesses (in g/cm$^2$) which are indicated in the column heading. These shielded spectra are continued on the next page. All intensities are differential fluxes in units of particles/cm$^2$·day·MeV/nucleon.

B. Graphical Presentation

Some of the tabulated data are also plotted in Figures 1 to 4, and 7 to 15 with additional Figures 5 and 6 containing plots of flight path data. Positional flux and dose data are plotted in Figures 16-26. Cosmic ray data are plotted in Figures 27-55. As with the tables, the computer plots are arranged in ten sets, where again each set pertains to one specific type of data. The first set has two similar members: one for each particle species. The next three sets (second, third and fourth) contain one member. The fifth set contains nine similar members, providing three graphs (for respective depth ranges) for each of three geometries. The sixth set contains two similar members for each trajectory: one for each particle specie. The seventh set has nine members, providing proton, electron, and total dose graphs for each of three geometries. The eighth and ninth sets contain one member. Finally the tenth set contains 27 members: one for each ion specie considered in this study.

I. Spectral Profiles: Figures 1-2

A graphical presentation of the final composite spectral distribution, obtained from the orbital integration process. The plots are semi-log graphs, where the abscissa is a linear energy scale for integral particle energies $E_i$, in MeV, and the ordinate is a logarithmic scale for the fluxes, given in daily averages for energies greater than $E_i$; the printed scale values are powers of 10.

II. Peaks Per Orbit: Figures 3-4

Here the absolute peak intensities, encountered per period (1 period = 1 revolution = 1 orbit), are plotted for the duration of the flight-time processed in the analysis. The logarithmic ordinate, with scale values in powers of 10, relates to instantaneous particle fluxes of the environment at the indicated energy thresholds, while the abscissa is a linear orbit enumeration.

III. Trajectory World Map Projections: Figure 5

This graph depicts the surface trace of the geocentrically projected subsatellite positions. The trajectory is plotted for several revolutions on a global map produced by a Miller Cylindrical Projection method. The contours of the continents have been omitted for clarity. The positions of equatorial crossing, of physical perigee, or of period commencement are indicated by numbers identifying the orbits shown in the graphs. For this trajectory, the distance between successive sequential numbers is a measure of the orbit precession. The highlighted portion of the flight path
represents the "worst-case" pass through the South Atlantic Anomaly (SAA) selected for instantaneous Positional Flux and Dose calculations (see subsequent sections 11.B.VI and 11.B.VII).

IV. Flight Path Tracing in B-L Space: Figure 6

Plot showing trajectory traces in B-L space on a semi-log scale. Several orbits are depicted, each identified by its sequential number. The magnetic equator is entered on the plot. The logarithmic ordinate relates to the field strength B in gauss; the printed values are exponents of 10. L is given in earth radii on the linear abscissa.

V. Dose-Depth Curves by Geometry: Figures 7-15

Plots of final depth-dose values for the indicated mission duration. These plots show contours of inner and outer zone electrons, trapped and solar flare protons, bremsstrahlung, and the sum total of all contributions.

For ease of use and in order to provide a greater resolution at the more sensitive range of depths (namely the thinner shields) three plots have been generated for each of the three geometries considered, for shield-ranges and subdivisions increasing by one order of magnitude.

The logarithmic ordinate, with scale values in powers of 10, relates aluminum dose in units of rads. The linear abscissa is the shield thickness, given in three different units: range s in grams per square centimeter, depth t in millimeters, depth t in mils.

VI. Positional Flux Plots: Figures 16-17

Plots of instantaneous omnidirectional trapped particle fluxes (electrons and protons) at (up to 10) specified threshold energy levels (>MeV), for a selected orbit (usually worst case revolution through heart of SAA).

The logarithmic ordinate, with scale values in powers of 10, relates to the number of particles per square centimeter per second. The linear abscissa is the relative time, in minutes or hours, from the beginning of the selected orbital pass.

VII. Positional Dose Plots by Geometry: Figures 18-26

Plots of instantaneous omnidirectional trapped particle dose values (up to 10) specified shield thicknesses (omnidirectional isotropic incidence, cosine-theta distribution) for a selected orbit (usually worst case revolution through heart of SAA). Separate plots are generated (if present) for: electron dose (including bremsstrahlung), proton dose, and total dose (no solar proton contributions are included) for dose at transmission surface of aluminum slab shields, dose in semi-infinite aluminum medium, and dose at center of aluminum spheres.
The logarithmic ordinate, with scale values in powers of 10, relates to the respective dose in units of rads-aluminum. The linear abscissa is the relative time, in minutes or hours, from the beginning of the selected orbital pass.

VIII. Cosmic Ray Exposure Profile: Figure 27

This graph shows the relative exposure time to cosmic rays, plotted as a function of mean L-Bin values. The ordinate relates to the actual time spent in each L-Bin normalized by total exposure time and given in percent. The abscissa relates to the mean L-Bin values in units of L.

IX. Accessibility Profile: Figure 28

This graph shows the normalized L-Bin summation plotted versus energy. The ordinate relates to the L-Bin summation values given in percent of the total exposure time for the orbit. The abscissa relates to the ion cut-off energy in units of MeV/nucleon.

X. Cosmic Ray Spectra: Figures 29-55

For each cosmic ray ion specie, a plot of the differential cosmic ray flux data is given. Each plot shows the unattenuated, interplanetary cosmic ray flux, the magnetospherically attenuated flux for the TOPEX spacecraft, and the shielded attenuated cosmic ray fluxes for various spherical aluminum shields of indicated thicknesses.

The logarithmic ordinate, with scale values given in powers of 10, relates to the number of particles per square centimeter per day per MeV/nucleon. The linear abscissa is the ion energy in MeV/nucleon.

12. RESULTS: ANALYSIS AND DISCUSSION

In this section, some of the presented tabular or graphical study-results are discussed, with occasional comments as to their use, limits, and applications.

A. Spectral Profiles

Characteristic features of the near earth radiation environment are strong altitude and inclination dependencies. However, as only one inclination and one altitude was considered in this study, the data do not reflect the important effect of these variables. It should be noted that at high inclination values (60° < i < 90°) small changes in either direction, up or down, will not produce significant changes in flux levels and spectral distributions. The greatest inclination dependent variations occur in the range 0° < i < 35°.

I. Protons:

In the altitude domain of TOPEX, average orbit integrated intensities rise significantly with increasing height. For the investigated trajectory the protons exhibit a relatively hard spectrum. Over the energy range from E > 30 MeV to E > 500 MeV, the proton distribution
is shown as a nearly straight line in the log-linear plot of Figure 1. It should be noted, however, that the spectrum will not continue in this manner to much higher energies because the conditions for stable trapping break down. Therefore, it is not advisable to extrapolate the spectral curves to still higher energies.

II. Electrons:

The electrons show a complex spectrum. Inner zone and outer zone average, orbit-integrated, composite intensities rise non-uniformly with altitude, particularly at energies above 2 MeV with differences reaching up to several orders of magnitude at $E_e > 5$ MeV. Spectra also extend to higher energies as height increases.

These composite electron distributions cannot be represented by either exponential or power law forms. The inner zone spectra fall rapidly off to zero flux in the energy range from 4 to 5 MeV and they are therefore more benign than their harder out-zone counterparts, which extend to energies of about 7 MeV.

B. Peaks and Totals Per Orbit

The absolute peaks per revolution have been obtained for standard processing energies: $E_p > 5$ MeV for protons and $E_e > .5$ MeV for electrons. Other energy selections produce different peak curves in an inverse relationship: lower energies yield higher intensities and more expanded contours, and vice versa.

Peak value contours of inclined circular trajectories display amplitude variations and sometimes discontinuities (flux-free time) that follow periodic patterns based on the daily cycle of revolutions. For fixed energies, peak magnitudes and discontinuities are functions of: (a) inclination $i$, and (b) altitude $h$.

Variations in either $i$ or $h$ may produce significant changes in the amplitude of the peak curves and in the duration of the discontinuities: up to several orders of magnitude for the former, and completely eliminating the latter.

C. Flux-Free Time

Some comments on this topic have been provided in the previous section and in section II/A/III. Here a more detailed discussion will be given.

Flux-free time (FFT) intervals are an important feature of certain orbital configurations. They may occur over short orbit segments (partial FFT per period) or over the entire length of a revolution (total FFT per period). In terms of geomagnetic geometry, the FFTs establish the duration for which the trajectory lies outside the trapping domain of the corresponding particle species, evaluated at the given energies. Or conversely, they are a measure of the degree to which the trajectory is exposed to the charged particle trapping domains.
One manifestation of extended FFT occurrence is the sharp drop-off of the proton peak contours to almost the zero-flux level. For some trajectory configurations, this may happen for several orbits in the investigated study-duration of 24 hours. That is, for the entire length of the respective revolutions, no Van Allen belt radiation at all is to be encountered by the satellite, according to model predictions.

The number of consecutive flux-free orbits of circular trajectories is primarily a function of altitude and inclination and to a lesser degree a function of particle energy. For the TOPEX mission, the total FFT in percent of total mission duration, which includes the contributions from partially exposed revolutions (see "Exposure Analysis," Table #5), can be summarized as follows:

<table>
<thead>
<tr>
<th>Protons</th>
<th>Electrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E &gt; 5 MeV)</td>
<td>(E &gt; 0.5 MeV)</td>
</tr>
<tr>
<td>Solar Maximum</td>
<td>46%</td>
</tr>
</tbody>
</table>

Generally, higher energies will yield longer FFT's because the more energetic particles occupy a smaller volume of space.

**D. Dose and Shielding**

At medium-to-high shield thicknesses, the calculated doses display features characteristic of the near earth radiation environment: small contributions from relatively benign and low intensity electron spectra combined with major contributions from comparatively harder proton spectra.

The trapped proton-dose dominance prevails for all shield thicknesses greater than about 120 mils of aluminum for the spherical geometry.

Significant is the fact that, for aluminum, the proton dose is only a weak function of shield thickness, as it shows very little attenuation over a large depth range. Thus, in order to get an appreciable reduction in the dose, say by a factor of 2, a nearly 7-fold increase in shield thickness is necessary. The same is true for the bremsstrahlung dose.

**I. Decay and Degradation**

The total doses obtained for the 3 year mission duration are severe. In terms of electronics damage or materials degradation, the doses to be experienced inside the satellite, that is, behind an overall (hypothetical) spherical aluminum shield thickness of about 150 mils, are approximately 32 krad, which may be catastrophic for sensitive components or equipment. Electronic parts and circuits that are not radiation hardened, may suffer serious damage. This can result in failures very early in the mission. Parts screening and testing is advisable. Selection of less sensitive parts or substantial shielding may be necessary.

**II. Contamination and Interference**

It should be remembered, that the direct or indirect effects of the
radiation environment may also be a nuisance in terms of instrument interference or measurement contamination. If such is the case, some remedies may be available (see next section).

III. Possible Improvements

In conclusion, in the event that the magnitude of total dose or the degree of radiation penetration behind the skin of the satellite is of importance to the mission, four possibilities exist to reduce the radiation effects on instruments and components:

a) build or design an instrument less sensitive to radiation and construct the on-board and/or on-ground data processing software to remove or suppress radiation-induced noise,

b) select radiation resistant parts,

c) change the orbit by any combination of the elements eccentricity, altitude, and inclination so as to achieve a more benign environment,

d) change the mission epoch: solar max for reduced proton intensities, solar min for reduced electron intensities,

e) provide increased shielding either by geometry or by weight by a combination of both:

   by geometry: perform a 3-D analysis (solid angle sectoring) and rearrange other equipment on board the satellite in order to provide maximum protection to sensitive part over greatest possible fraction of solid angle.*

   by weight: place additional shields around sensitive part as needed (spot shielding).

Clearly options (a) and (d) are good choices because they can be addressed during the early spacecraft design stages.

* Complex radiation shielding and transport calculations can now be performed at GSFC. It is now possible to address such topics as: (a) material mixtures, cross sections for protons, electrons, heavy charge particles, and neutrons, including source spectra and response functions; (b) source geometry, detector geometry, surfaces, rays, bodies, regions, body intersections, body unions, simple meshes, design bodies, spacecraft rays, with diverse features such as combinatorial options, translate-rotate-replicate capabilities, etc.; (c) heavy charged particle applications-1D transport by numerical integration, small volume pulse height (soft errors), 3D ray trace sectoring, 3D adjoint Monte Carlo; (d) electron bremsstrahlung-1D transport by numerical integration and by adjoint Monte Carlo, small volume pulse height, 3D ray trace sectoring, 3D forward and adjoint Monte Carlo, energy deposition, charging distributions. (For information and cost estimates contact: E. G. Stassinopoulos, NASA-GSFC-NSSDC, Code 601, Greenbelt, Maryland 20771, telephone 301-344-8067).
E. Galactic Cosmic Rays

For the elements from He to Ni, the plots show the unattenuated interplanetary cosmic ray spectra, the magnetospherically attenuated orbit-integrated spectra (incident on the surface of the spacecraft), and, derived from this latter, the shielded spectra of emerging particles behind selected thicknesses of spherical Aluminum geometries. Although not scientifically correct, the cosmic ray incidence may be assumed omnidirectional, for practical application purposes. The error introduced by this simplification lies, for most cases, well within the large intrinsic uncertainties associated with these types of estimates and calculations.

The most important (but predictable and expected) features of the data in Figures 29-55, are:

1. the substantial attenuation by the earth's magnetic field of all particles in the investigated energy domain (10-3000 MeV/n);

2. the insignificant effect of material shielding in the energy range from about 90 to 3000 MeV/n: no substantial decrease in fluxes even for 10 gm/cm² Al (approximately 1.5 inches);

3. the unavoidable shielding side-effect of a significant increase in the low energy (.2-50 MeV/n) fluxes for shield thicknesses > .1 gm/cm² Al.
References


### TABLE 3

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>PEAK R.U./SEC</th>
<th>POSITION AT WHICH ENCLOSED (LONGITUDE, LATITUDE) (DEG)</th>
<th>CRESC DMA (HRS)</th>
<th>FIELD (Gauss)</th>
<th>LINE (L)</th>
<th>TOTAL FLUX (Gauss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.735E-06</td>
<td>-4.177 -15.62</td>
<td>1326.23</td>
<td>1.05000</td>
<td>0.16299</td>
<td>1.35E-05</td>
</tr>
<tr>
<td>2</td>
<td>2.035E-06</td>
<td>-3.189 -15.52</td>
<td>1326.19</td>
<td>2.49964</td>
<td>0.14983</td>
<td>1.65E-05</td>
</tr>
<tr>
<td>3</td>
<td>1.465E-06</td>
<td>-5.482 -20.46</td>
<td>1326.65</td>
<td>4.80000</td>
<td>0.14167</td>
<td>1.95E-05</td>
</tr>
<tr>
<td>4</td>
<td>1.117E-06</td>
<td>-7.063 -31.05</td>
<td>1331.07</td>
<td>9.16657</td>
<td>0.17098</td>
<td>2.25E-05</td>
</tr>
<tr>
<td>5</td>
<td>1.763E-06</td>
<td>-6.610 -22.55</td>
<td>1331.37</td>
<td>12.95000</td>
<td>0.14909</td>
<td>2.55E-05</td>
</tr>
<tr>
<td>6</td>
<td>1.757E-06</td>
<td>-12.367 -22.27</td>
<td>1334.14</td>
<td>14.85000</td>
<td>0.14017</td>
<td>2.85E-05</td>
</tr>
<tr>
<td>7</td>
<td>1.626E-06</td>
<td>-4.706 -6.63</td>
<td>1334.61</td>
<td>16.08684</td>
<td>0.18444</td>
<td>3.15E-05</td>
</tr>
<tr>
<td>8</td>
<td>2.065E-06</td>
<td>-2.467 -2.74</td>
<td>1334.07</td>
<td>20.54999</td>
<td>0.17750</td>
<td>3.45E-05</td>
</tr>
<tr>
<td>9</td>
<td>6.012E-07</td>
<td>-2.413 -13.65</td>
<td>1327.00</td>
<td>21.58331</td>
<td>0.18444</td>
<td>3.75E-05</td>
</tr>
<tr>
<td>10</td>
<td>1.735E-06</td>
<td>-6.141 -11.13</td>
<td>1326.63</td>
<td>1.00000</td>
<td>0.15099</td>
<td>1.35E-05</td>
</tr>
<tr>
<td>11</td>
<td>1.735E-06</td>
<td>-6.141 -11.13</td>
<td>1326.63</td>
<td>1.00000</td>
<td>0.15099</td>
<td>1.35E-05</td>
</tr>
<tr>
<td>12</td>
<td>1.735E-06</td>
<td>-6.141 -11.13</td>
<td>1326.63</td>
<td>1.00000</td>
<td>0.15099</td>
<td>1.35E-05</td>
</tr>
</tbody>
</table>

**Note:** These values are provided for illustrative purposes and do not reflect actual data entries.
### Table 4

<table>
<thead>
<tr>
<th>Component</th>
<th>Electrons LE (E&gt;500keV)</th>
<th>Photons (E&gt;5.0meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of Total Daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flux Accumulated In High-Intensity Regions:</td>
<td>47.20 B</td>
<td>93.30 B</td>
</tr>
</tbody>
</table>

---

**Table 3 Year CIRCULAR:**

- **Inclination:** 63° DEG
- **Perigee:** 1124 km
- **Apogee:** 1124 km

# Exposure Analysis

- **Percent of Total Daily Flux Accumulated in High-Intensity Regions:**
  - **Inner Zone:** -71% : 25.25 R
    - **L:** (1.0 < L < 2.0)
  - **Outer Zone:** -70% : 29.56 R
    - **L:** (2.0 < L < 21.0)
  - **External:** -YE- : 3.73 R
    - **L:** (> 21.0)
  - **Total:** 116.30 R

**Time in Inner Zone May Be Subdivided as Follows:**

- **Outside Trapping Region:** -CL- R
  - **L:** (1.0 < L < 2.1)
- **Inside Trapping Region:** -51.25 R
  - **L:** (2.1 < L < 3.0)

---

- **< 1 particle/beam/ sec**
- **> 1.0 EE -12particles/beam/ sec or 1.0 EE -18 particles/beam/ sec**
<table>
<thead>
<tr>
<th>Energy Levels (&gt;MeV)</th>
<th>Mission Duration T=36, Months</th>
<th>Geomagnetic shielding</th>
<th>Energetic Solar Event Fluence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>10.0</td>
<td>4.52E-05</td>
<td>6.52E-05</td>
<td>4.72E-05</td>
</tr>
<tr>
<td>20.0</td>
<td>3.10E-05</td>
<td>5.10E-05</td>
<td>3.10E-05</td>
</tr>
<tr>
<td>50.0</td>
<td>1.40E-05</td>
<td>3.40E-05</td>
<td>1.40E-05</td>
</tr>
<tr>
<td>100.0</td>
<td>1.50E-05</td>
<td>3.50E-05</td>
<td>1.50E-05</td>
</tr>
<tr>
<td>200.0</td>
<td>3.10E-05</td>
<td>5.10E-05</td>
<td>3.10E-05</td>
</tr>
<tr>
<td>500.0</td>
<td>5.20E-05</td>
<td>5.20E-05</td>
<td>5.20E-05</td>
</tr>
<tr>
<td>1000.0</td>
<td>1.60E-05</td>
<td>1.60E-05</td>
<td>1.60E-05</td>
</tr>
<tr>
<td>2000.0</td>
<td>2.80E-05</td>
<td>2.80E-05</td>
<td>2.80E-05</td>
</tr>
</tbody>
</table>

Table 5
**TABLE 7**

<table>
<thead>
<tr>
<th>SPACELAB THICKNESS</th>
<th>ELECTRONS</th>
<th>BREMSSTRAHLUNG</th>
<th>PROTONS</th>
<th>TOTAL TRAPPE**</th>
<th>TOTAL SOLAR**</th>
<th>TOTAL ALL SOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MICROMETERS) T</td>
<td>INNER ZN.</td>
<td>OUTER ZN.</td>
<td>TOTAL</td>
<td>TRAPPE AL.</td>
<td>SOLAR AL.</td>
<td>AL.</td>
</tr>
<tr>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>0.06</td>
<td>0.05</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>0.02</td>
<td>0.07</td>
<td>0.04</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>0.03</td>
<td>0.15</td>
<td>0.08</td>
<td>0.19</td>
<td>0.12</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>0.05</td>
<td>0.25</td>
<td>0.13</td>
<td>0.29</td>
<td>0.18</td>
<td>0.12</td>
<td>0.03</td>
</tr>
<tr>
<td>0.07</td>
<td>0.39</td>
<td>0.20</td>
<td>0.59</td>
<td>0.34</td>
<td>0.20</td>
<td>0.03</td>
</tr>
<tr>
<td>0.09</td>
<td>0.62</td>
<td>0.33</td>
<td>1.05</td>
<td>0.59</td>
<td>0.34</td>
<td>0.03</td>
</tr>
<tr>
<td>0.10</td>
<td>0.75</td>
<td>0.40</td>
<td>1.15</td>
<td>0.59</td>
<td>0.34</td>
<td>0.03</td>
</tr>
<tr>
<td>0.12</td>
<td>1.00</td>
<td>0.50</td>
<td>1.50</td>
<td>0.75</td>
<td>0.40</td>
<td>0.03</td>
</tr>
<tr>
<td>0.15</td>
<td>1.50</td>
<td>0.75</td>
<td>2.25</td>
<td>1.13</td>
<td>0.55</td>
<td>0.03</td>
</tr>
<tr>
<td>0.20</td>
<td>2.50</td>
<td>1.25</td>
<td>3.75</td>
<td>1.88</td>
<td>1.13</td>
<td>0.03</td>
</tr>
<tr>
<td>0.25</td>
<td>3.75</td>
<td>2.12</td>
<td>5.87</td>
<td>3.09</td>
<td>2.12</td>
<td>0.03</td>
</tr>
<tr>
<td>0.30</td>
<td>6.25</td>
<td>3.25</td>
<td>9.50</td>
<td>5.50</td>
<td>3.25</td>
<td>0.03</td>
</tr>
<tr>
<td>0.40</td>
<td>10.00</td>
<td>5.00</td>
<td>15.00</td>
<td>10.00</td>
<td>5.00</td>
<td>0.03</td>
</tr>
</tbody>
</table>

---

*AE6: INNER ZONE-SOLAR MAX
  NO UNCERTAINTY FACTOR WAS APPLIED TO THE NOISE DATA

*AE7: OUTER ZONE-INTERMEDIATE MAX
  NO UNCERTAINTY FACTOR WAS APPLIED TO THE NOISE DATA

**SOLAR MAX: SOLAR FLARE PROTONS AT 1 AU

**TRAPPE: TRAPPE DISCO II SHELL 1

**SOLAR: SOLAR PLANT PROTONS AT 1 AU

**SOLAR DISCO II SHELL 2

---

**NOTE:**

1. The values in the table represent the expected ion fluence for different thicknesses of aluminum shielding.
2. The uncertainty factor applied to the noise data is not specified in the table.
3. The table includes values for different thicknesses of aluminum shielding, ranging from 0.01 to 10.00 micrometers.
4. The ion fluence is given in units of protons per square meter.

---

**REFERENCES:**


---

**FIGURES:**

- Figure A: Ion fluence as a function of aluminum thickness.
- Figure B: Spectra of solar energetic particles.

---

**TABLE 7:**

<table>
<thead>
<tr>
<th>Thickness (um)</th>
<th>Inner Zn</th>
<th>Outer Zn</th>
<th>Total Zn</th>
<th>Trappe Al</th>
<th>Solar Al</th>
<th>All Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>0.06</td>
<td>0.05</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>0.02</td>
<td>0.07</td>
<td>0.04</td>
<td>0.09</td>
<td>0.06</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>0.03</td>
<td>0.15</td>
<td>0.08</td>
<td>0.19</td>
<td>0.12</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>0.05</td>
<td>0.25</td>
<td>0.13</td>
<td>0.39</td>
<td>0.18</td>
<td>0.12</td>
<td>0.03</td>
</tr>
<tr>
<td>0.07</td>
<td>0.39</td>
<td>0.20</td>
<td>0.62</td>
<td>0.34</td>
<td>0.20</td>
<td>0.03</td>
</tr>
<tr>
<td>0.09</td>
<td>0.62</td>
<td>0.33</td>
<td>1.05</td>
<td>0.59</td>
<td>0.34</td>
<td>0.03</td>
</tr>
<tr>
<td>0.10</td>
<td>0.75</td>
<td>0.40</td>
<td>1.15</td>
<td>0.59</td>
<td>0.34</td>
<td>0.03</td>
</tr>
<tr>
<td>0.12</td>
<td>1.00</td>
<td>0.50</td>
<td>1.50</td>
<td>0.75</td>
<td>0.40</td>
<td>0.03</td>
</tr>
<tr>
<td>0.15</td>
<td>1.50</td>
<td>0.75</td>
<td>2.25</td>
<td>1.13</td>
<td>0.55</td>
<td>0.03</td>
</tr>
<tr>
<td>0.20</td>
<td>2.50</td>
<td>1.25</td>
<td>3.75</td>
<td>1.88</td>
<td>1.13</td>
<td>0.03</td>
</tr>
<tr>
<td>0.25</td>
<td>3.75</td>
<td>2.12</td>
<td>5.87</td>
<td>3.09</td>
<td>2.12</td>
<td>0.03</td>
</tr>
<tr>
<td>0.30</td>
<td>6.25</td>
<td>3.25</td>
<td>9.50</td>
<td>5.50</td>
<td>3.25</td>
<td>0.03</td>
</tr>
<tr>
<td>0.40</td>
<td>10.00</td>
<td>5.00</td>
<td>15.00</td>
<td>10.00</td>
<td>5.00</td>
<td>0.03</td>
</tr>
</tbody>
</table>
**TABLE 8**

<table>
<thead>
<tr>
<th>SHIELD THICKNESS (ALUMINUM)</th>
<th>ELECTRONS</th>
<th>PROTONS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Energy (MeV)</strong></td>
<td><strong>Inner Zn</strong></td>
<td><strong>Outer Zn</strong></td>
<td><strong>Total</strong></td>
</tr>
<tr>
<td><strong>Source</strong></td>
<td><strong>R (cm)</strong></td>
<td><strong>E (keV)</strong></td>
<td><strong>E (keV)</strong></td>
</tr>
<tr>
<td><strong>Compression</strong></td>
<td><strong>(cm)</strong></td>
<td><strong>(keV)</strong></td>
<td><strong>(keV)</strong></td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
</tbody>
</table>

* **SOLAR PROTON NOTES:**
  - AE51: INNER ZEN-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.
  - AE51: CURVE-INTERIM MODEL WITHOUT SOLAR CYCLE DEPENDENCE.
  - AE51: CURVE-INTERIM MODEL WITHOUT SOLAR CYCLE DEPENDENCE.
  - AE51: CURVE-INTERIM MODEL WITHOUT SOLAR CYCLE DEPENDENCE.
  - AE51: CURVE-INTERIM MODEL WITHOUT SOLAR CYCLE DEPENDENCE.

* **SOLAR PROTON NOTES:**
  - SCLFCE: SOLID PLATE PROTONS AT 1 AM.
  - SCLFCE: SOLID PLATE PROTONS AT 1 AM.
  - SCLFCE: SOLID PLATE PROTONS AT 1 AM.
  - SCLFCE: SOLID PLATE PROTONS AT 1 AM.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.

* **EXTRA MODEL:**
  - AE51: TRAPPED PROTONS-SOLAR MAX
  - AE51: NO UNCERTAINTY FACTOR WAS APPLIED TO THE MODEL DATA.
<table>
<thead>
<tr>
<th>L-SIN DEFINITION</th>
<th>RIGIDITY</th>
<th>ION-CUT-OFF</th>
<th>EXPOSURE PROFILE</th>
<th>ACCESSIBILITY PROFILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-RANGE</td>
<td>MEAN L-VALUE</td>
<td>(GV)</td>
<td>(NEV/A)</td>
<td>(HOURS)</td>
</tr>
<tr>
<td>0.9-1.1</td>
<td>1.6</td>
<td>18.50</td>
<td>6274</td>
<td>9.0</td>
</tr>
<tr>
<td>1.1-1.4</td>
<td>1.4</td>
<td>10.762</td>
<td>4326</td>
<td>4.283</td>
</tr>
<tr>
<td>1.5-1.7</td>
<td>1.6</td>
<td>7.622</td>
<td>2120</td>
<td>3.687</td>
</tr>
<tr>
<td>1.8-1.9</td>
<td>1.8</td>
<td>7.192</td>
<td>2120</td>
<td>1.920</td>
</tr>
<tr>
<td>2.0-2.2</td>
<td>2.2</td>
<td>7.138</td>
<td>864</td>
<td>0.900</td>
</tr>
<tr>
<td>2.3-2.4</td>
<td>2.4</td>
<td>6.226</td>
<td>285</td>
<td>0.817</td>
</tr>
<tr>
<td>2.5-2.6</td>
<td>2.6</td>
<td>4.531</td>
<td>372</td>
<td>0.853</td>
</tr>
<tr>
<td>2.7-2.8</td>
<td>2.8</td>
<td>1.192</td>
<td>245</td>
<td>0.979</td>
</tr>
<tr>
<td>2.9-2.7</td>
<td>3.1</td>
<td>1.102</td>
<td>182</td>
<td>0.633</td>
</tr>
<tr>
<td>3.0-2.9</td>
<td>3.4</td>
<td>0.991</td>
<td>126</td>
<td>0.648</td>
</tr>
<tr>
<td>3.1-3.0</td>
<td>4.1</td>
<td>0.848</td>
<td>81</td>
<td>0.400</td>
</tr>
<tr>
<td>3.2-3.1</td>
<td>4.1</td>
<td>0.794</td>
<td>64</td>
<td>0.269</td>
</tr>
<tr>
<td>3.3-3.2</td>
<td>4.1</td>
<td>0.754</td>
<td>51</td>
<td>0.269</td>
</tr>
<tr>
<td>3.4-3.3</td>
<td>4.1</td>
<td>0.724</td>
<td>42</td>
<td>0.210</td>
</tr>
<tr>
<td>3.5-3.4</td>
<td>4.1</td>
<td>0.695</td>
<td>35</td>
<td>0.167</td>
</tr>
<tr>
<td>3.6-3.5</td>
<td>4.1</td>
<td>0.630</td>
<td>26</td>
<td>0.167</td>
</tr>
<tr>
<td>3.7-3.6</td>
<td>4.1</td>
<td>0.579</td>
<td>20</td>
<td>0.167</td>
</tr>
<tr>
<td>3.8-3.7</td>
<td>4.1</td>
<td>0.538</td>
<td>17</td>
<td>0.167</td>
</tr>
<tr>
<td>3.9-3.8</td>
<td>4.1</td>
<td>0.498</td>
<td>14</td>
<td>0.167</td>
</tr>
<tr>
<td>4.0-4.0</td>
<td>4.1</td>
<td>0.458</td>
<td>12</td>
<td>0.167</td>
</tr>
<tr>
<td>4.1-4.1</td>
<td>4.1</td>
<td>0.418</td>
<td>12</td>
<td>0.167</td>
</tr>
<tr>
<td>4.2-4.2</td>
<td>4.1</td>
<td>0.378</td>
<td>12</td>
<td>0.167</td>
</tr>
<tr>
<td>4.3-4.3</td>
<td>4.1</td>
<td>0.338</td>
<td>12</td>
<td>0.167</td>
</tr>
<tr>
<td>4.4-4.4</td>
<td>4.1</td>
<td>0.298</td>
<td>12</td>
<td>0.167</td>
</tr>
<tr>
<td>4.5-4.5</td>
<td>4.1</td>
<td>0.258</td>
<td>12</td>
<td>0.167</td>
</tr>
</tbody>
</table>

* ENERGY AT MEAN L-VALUE
** NORMALIZATION BY TOTAL EXPOSURE TIME CONSIDERED IN THE ANALYSIS (TOTAL TIME)
<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>0.05</th>
<th>0.07</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
<th>0.70</th>
<th>0.80</th>
<th>0.90</th>
<th>1.00</th>
<th>1.10</th>
<th>1.20</th>
<th>1.30</th>
<th>1.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux (macroscopic)</td>
<td>1.00</td>
<td>0.95</td>
<td>0.90</td>
<td>0.85</td>
<td>0.80</td>
<td>0.75</td>
<td>0.70</td>
<td>0.65</td>
<td>0.60</td>
<td>0.55</td>
<td>0.50</td>
<td>0.45</td>
<td>0.40</td>
<td>0.35</td>
<td>0.30</td>
<td>0.25</td>
<td>0.20</td>
</tr>
<tr>
<td>Flux (spherical)</td>
<td>1.00</td>
<td>0.95</td>
<td>0.90</td>
<td>0.85</td>
<td>0.80</td>
<td>0.75</td>
<td>0.70</td>
<td>0.65</td>
<td>0.60</td>
<td>0.55</td>
<td>0.50</td>
<td>0.45</td>
<td>0.40</td>
<td>0.35</td>
<td>0.30</td>
<td>0.25</td>
<td>0.20</td>
</tr>
<tr>
<td>Flux (hemispherical)</td>
<td>1.00</td>
<td>0.95</td>
<td>0.90</td>
<td>0.85</td>
<td>0.80</td>
<td>0.75</td>
<td>0.70</td>
<td>0.65</td>
<td>0.60</td>
<td>0.55</td>
<td>0.50</td>
<td>0.45</td>
<td>0.40</td>
<td>0.35</td>
<td>0.30</td>
<td>0.25</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Table 10A
<table>
<thead>
<tr>
<th>Energy</th>
<th>0.01</th>
<th>0.03</th>
<th>0.05</th>
<th>0.07</th>
<th>0.10</th>
<th>0.30</th>
<th>0.50</th>
<th>1.0</th>
<th>3.0</th>
<th>5.0</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>3.5E-02</td>
<td>2.7E-03</td>
<td>2.0E-03</td>
<td>1.5E-03</td>
<td>1.2E-03</td>
<td>1.0E-03</td>
<td>8.1E-04</td>
<td>6.5E-04</td>
<td>5.6E-04</td>
<td>4.7E-04</td>
<td>3.9E-04</td>
</tr>
<tr>
<td>14</td>
<td>1.2E-02</td>
<td>4.0E-03</td>
<td>3.0E-03</td>
<td>2.3E-03</td>
<td>1.9E-03</td>
<td>1.6E-03</td>
<td>1.3E-03</td>
<td>1.1E-03</td>
<td>9.8E-04</td>
<td>8.2E-04</td>
<td>6.9E-04</td>
</tr>
<tr>
<td>16</td>
<td>3.1E-02</td>
<td>7.4E-03</td>
<td>5.7E-03</td>
<td>4.5E-03</td>
<td>3.7E-03</td>
<td>3.1E-03</td>
<td>2.7E-03</td>
<td>2.3E-03</td>
<td>2.0E-03</td>
<td>1.7E-03</td>
<td>1.4E-03</td>
</tr>
<tr>
<td>20</td>
<td>1.0E-02</td>
<td>2.0E-03</td>
<td>1.6E-03</td>
<td>1.2E-03</td>
<td>9.8E-04</td>
<td>8.2E-04</td>
<td>7.0E-04</td>
<td>6.0E-04</td>
<td>5.2E-04</td>
<td>4.6E-04</td>
<td>3.9E-04</td>
</tr>
<tr>
<td>25</td>
<td>9.4E-03</td>
<td>2.3E-03</td>
<td>1.9E-03</td>
<td>1.5E-03</td>
<td>1.2E-03</td>
<td>1.0E-03</td>
<td>8.5E-04</td>
<td>7.3E-04</td>
<td>6.4E-04</td>
<td>5.7E-04</td>
<td>4.9E-04</td>
</tr>
<tr>
<td>30</td>
<td>9.1E-03</td>
<td>2.3E-03</td>
<td>1.9E-03</td>
<td>1.5E-03</td>
<td>1.2E-03</td>
<td>1.0E-03</td>
<td>8.4E-04</td>
<td>7.2E-04</td>
<td>6.3E-04</td>
<td>5.6E-04</td>
<td>4.8E-04</td>
</tr>
<tr>
<td>40</td>
<td>7.1E-03</td>
<td>1.8E-03</td>
<td>1.5E-03</td>
<td>1.2E-03</td>
<td>1.0E-03</td>
<td>8.8E-04</td>
<td>7.6E-04</td>
<td>6.6E-04</td>
<td>5.8E-04</td>
<td>5.0E-04</td>
<td>4.2E-04</td>
</tr>
<tr>
<td>50</td>
<td>6.1E-03</td>
<td>1.6E-03</td>
<td>1.3E-03</td>
<td>1.1E-03</td>
<td>9.5E-04</td>
<td>8.2E-04</td>
<td>7.1E-04</td>
<td>6.1E-04</td>
<td>5.4E-04</td>
<td>4.7E-04</td>
<td>3.9E-04</td>
</tr>
<tr>
<td>60</td>
<td>5.1E-03</td>
<td>1.4E-03</td>
<td>1.2E-03</td>
<td>1.0E-03</td>
<td>8.4E-04</td>
<td>7.2E-04</td>
<td>6.1E-04</td>
<td>5.3E-04</td>
<td>4.6E-04</td>
<td>3.9E-04</td>
<td>3.2E-04</td>
</tr>
<tr>
<td>70</td>
<td>4.6E-03</td>
<td>1.3E-03</td>
<td>1.1E-03</td>
<td>9.7E-04</td>
<td>8.2E-04</td>
<td>7.1E-04</td>
<td>6.1E-04</td>
<td>5.3E-04</td>
<td>4.6E-04</td>
<td>3.9E-04</td>
<td>3.2E-04</td>
</tr>
<tr>
<td>80</td>
<td>4.0E-03</td>
<td>1.2E-03</td>
<td>1.0E-03</td>
<td>8.9E-04</td>
<td>7.5E-04</td>
<td>6.4E-04</td>
<td>5.5E-04</td>
<td>4.8E-04</td>
<td>4.1E-04</td>
<td>3.4E-04</td>
<td>2.7E-04</td>
</tr>
<tr>
<td>90</td>
<td>3.7E-03</td>
<td>1.0E-03</td>
<td>8.7E-04</td>
<td>7.5E-04</td>
<td>6.4E-04</td>
<td>5.5E-04</td>
<td>4.8E-04</td>
<td>4.1E-04</td>
<td>3.4E-04</td>
<td>2.7E-04</td>
<td>2.1E-04</td>
</tr>
<tr>
<td>99</td>
<td>3.1E-03</td>
<td>8.7E-04</td>
<td>7.4E-04</td>
<td>6.4E-04</td>
<td>5.5E-04</td>
<td>4.8E-04</td>
<td>4.1E-04</td>
<td>3.4E-04</td>
<td>2.7E-04</td>
<td>2.1E-04</td>
<td>1.7E-04</td>
</tr>
</tbody>
</table>

**Table 11b**
### Table 11B

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>0.01</th>
<th>0.03</th>
<th>0.05</th>
<th>0.07</th>
<th>0.10</th>
<th>0.30</th>
<th>0.50</th>
<th>1.0</th>
<th>3.0</th>
<th>5.0</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>3.95E-03</td>
<td>5.72E-03</td>
<td>4.80E-03</td>
<td>3.58E-03</td>
<td>2.13E-03</td>
<td>1.05E-03</td>
<td>5.25E-04</td>
<td>2.63E-04</td>
<td>1.32E-04</td>
<td>1.29E-04</td>
<td>1.40E-04</td>
</tr>
<tr>
<td>0.03</td>
<td>4.49E-03</td>
<td>6.72E-03</td>
<td>5.80E-03</td>
<td>4.58E-03</td>
<td>2.35E-03</td>
<td>1.20E-03</td>
<td>6.00E-04</td>
<td>3.00E-04</td>
<td>1.50E-04</td>
<td>1.48E-04</td>
<td>1.59E-04</td>
</tr>
<tr>
<td>0.05</td>
<td>5.92E-03</td>
<td>8.72E-03</td>
<td>7.80E-03</td>
<td>6.58E-03</td>
<td>3.35E-03</td>
<td>1.70E-03</td>
<td>8.50E-04</td>
<td>4.25E-04</td>
<td>2.13E-04</td>
<td>2.12E-04</td>
<td>2.23E-04</td>
</tr>
<tr>
<td>0.07</td>
<td>7.35E-03</td>
<td>1.07E-02</td>
<td>9.80E-03</td>
<td>8.58E-03</td>
<td>4.35E-03</td>
<td>2.25E-03</td>
<td>1.12E-03</td>
<td>5.60E-04</td>
<td>2.80E-04</td>
<td>2.79E-04</td>
<td>2.90E-04</td>
</tr>
<tr>
<td>0.10</td>
<td>8.78E-03</td>
<td>1.37E-02</td>
<td>1.28E-02</td>
<td>1.18E-02</td>
<td>6.35E-03</td>
<td>3.30E-03</td>
<td>1.65E-03</td>
<td>8.25E-04</td>
<td>4.13E-04</td>
<td>4.12E-04</td>
<td>4.23E-04</td>
</tr>
<tr>
<td>0.30</td>
<td>2.70E-02</td>
<td>4.07E-02</td>
<td>3.40E-02</td>
<td>3.18E-02</td>
<td>1.68E-02</td>
<td>8.40E-03</td>
<td>4.20E-03</td>
<td>2.10E-03</td>
<td>1.05E-03</td>
<td>1.04E-03</td>
<td>1.15E-03</td>
</tr>
<tr>
<td>0.50</td>
<td>5.50E-02</td>
<td>8.07E-02</td>
<td>6.80E-02</td>
<td>6.68E-02</td>
<td>3.48E-02</td>
<td>1.74E-02</td>
<td>8.70E-02</td>
<td>4.35E-02</td>
<td>2.17E-02</td>
<td>2.16E-02</td>
<td>2.27E-02</td>
</tr>
<tr>
<td>1.0</td>
<td>1.05E-01</td>
<td>1.55E-01</td>
<td>1.36E-01</td>
<td>1.35E-01</td>
<td>7.15E-02</td>
<td>3.57E-02</td>
<td>1.84E-02</td>
<td>9.20E-02</td>
<td>4.60E-02</td>
<td>4.59E-02</td>
<td>4.70E-02</td>
</tr>
<tr>
<td>3.0</td>
<td>3.05E-01</td>
<td>4.55E-01</td>
<td>3.86E-01</td>
<td>3.86E-01</td>
<td>2.15E-01</td>
<td>1.08E-01</td>
<td>5.44E-02</td>
<td>2.72E-02</td>
<td>1.36E-02</td>
<td>1.35E-02</td>
<td>1.46E-02</td>
</tr>
<tr>
<td>5.0</td>
<td>4.95E-01</td>
<td>7.45E-01</td>
<td>6.86E-01</td>
<td>6.86E-01</td>
<td>3.95E-01</td>
<td>2.00E-01</td>
<td>1.00E-01</td>
<td>5.00E-02</td>
<td>2.50E-02</td>
<td>2.49E-02</td>
<td>2.60E-02</td>
</tr>
<tr>
<td>10.0</td>
<td>9.95E-01</td>
<td>1.46E-00</td>
<td>1.37E-00</td>
<td>1.36E-00</td>
<td>7.95E-01</td>
<td>4.00E-01</td>
<td>2.00E-01</td>
<td>1.00E-01</td>
<td>5.00E-01</td>
<td>4.99E-01</td>
<td>5.10E-01</td>
</tr>
<tr>
<td>ENERGY</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.10</td>
<td>0.30</td>
<td>0.50</td>
<td>1.0</td>
<td>3.0</td>
<td>5.0</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>34.68</td>
<td>5.12E-03</td>
<td>5.33E-03</td>
<td>5.49E-03</td>
<td>5.62E-03</td>
<td>5.76E-03</td>
<td>5.92E-03</td>
<td>6.07E-03</td>
<td>6.23E-03</td>
<td>6.40E-03</td>
<td>6.58E-03</td>
<td>6.77E-03</td>
</tr>
<tr>
<td>34.68</td>
<td>5.12E-03</td>
<td>5.33E-03</td>
<td>5.49E-03</td>
<td>5.62E-03</td>
<td>5.76E-03</td>
<td>5.92E-03</td>
<td>6.07E-03</td>
<td>6.23E-03</td>
<td>6.40E-03</td>
<td>6.58E-03</td>
<td>6.77E-03</td>
</tr>
<tr>
<td>34.68</td>
<td>5.12E-03</td>
<td>5.33E-03</td>
<td>5.49E-03</td>
<td>5.62E-03</td>
<td>5.76E-03</td>
<td>5.92E-03</td>
<td>6.07E-03</td>
<td>6.23E-03</td>
<td>6.40E-03</td>
<td>6.58E-03</td>
<td>6.77E-03</td>
</tr>
<tr>
<td>34.68</td>
<td>5.12E-03</td>
<td>5.33E-03</td>
<td>5.49E-03</td>
<td>5.62E-03</td>
<td>5.76E-03</td>
<td>5.92E-03</td>
<td>6.07E-03</td>
<td>6.23E-03</td>
<td>6.40E-03</td>
<td>6.58E-03</td>
<td>6.77E-03</td>
</tr>
<tr>
<td>34.68</td>
<td>5.12E-03</td>
<td>5.33E-03</td>
<td>5.49E-03</td>
<td>5.62E-03</td>
<td>5.76E-03</td>
<td>5.92E-03</td>
<td>6.07E-03</td>
<td>6.23E-03</td>
<td>6.40E-03</td>
<td>6.58E-03</td>
<td>6.77E-03</td>
</tr>
<tr>
<td>34.68</td>
<td>5.12E-03</td>
<td>5.33E-03</td>
<td>5.49E-03</td>
<td>5.62E-03</td>
<td>5.76E-03</td>
<td>5.92E-03</td>
<td>6.07E-03</td>
<td>6.23E-03</td>
<td>6.40E-03</td>
<td>6.58E-03</td>
<td>6.77E-03</td>
</tr>
<tr>
<td>34.68</td>
<td>5.12E-03</td>
<td>5.33E-03</td>
<td>5.49E-03</td>
<td>5.62E-03</td>
<td>5.76E-03</td>
<td>5.92E-03</td>
<td>6.07E-03</td>
<td>6.23E-03</td>
<td>6.40E-03</td>
<td>6.58E-03</td>
<td>6.77E-03</td>
</tr>
<tr>
<td>34.68</td>
<td>5.12E-03</td>
<td>5.33E-03</td>
<td>5.49E-03</td>
<td>5.62E-03</td>
<td>5.76E-03</td>
<td>5.92E-03</td>
<td>6.07E-03</td>
<td>6.23E-03</td>
<td>6.40E-03</td>
<td>6.58E-03</td>
<td>6.77E-03</td>
</tr>
<tr>
<td>34.68</td>
<td>5.12E-03</td>
<td>5.33E-03</td>
<td>5.49E-03</td>
<td>5.62E-03</td>
<td>5.76E-03</td>
<td>5.92E-03</td>
<td>6.07E-03</td>
<td>6.23E-03</td>
<td>6.40E-03</td>
<td>6.58E-03</td>
<td>6.77E-03</td>
</tr>
<tr>
<td>34.68</td>
<td>5.12E-03</td>
<td>5.33E-03</td>
<td>5.49E-03</td>
<td>5.62E-03</td>
<td>5.76E-03</td>
<td>5.92E-03</td>
<td>6.07E-03</td>
<td>6.23E-03</td>
<td>6.40E-03</td>
<td>6.58E-03</td>
<td>6.77E-03</td>
</tr>
</tbody>
</table>

**TABLE 12B**
<table>
<thead>
<tr>
<th>ENERG (MV)</th>
<th>SHIELD THICKNESS (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>0.07</td>
<td>0.10</td>
</tr>
<tr>
<td>0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>0.17</td>
<td>0.19</td>
</tr>
<tr>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>0.20</td>
<td>0.25</td>
</tr>
<tr>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>0.30</td>
<td>0.35</td>
</tr>
<tr>
<td>0.35</td>
<td>0.40</td>
</tr>
<tr>
<td>0.40</td>
<td>0.45</td>
</tr>
<tr>
<td>0.45</td>
<td>0.50</td>
</tr>
</tbody>
</table>

**TABLE 13 A**
<table>
<thead>
<tr>
<th>ENERGY</th>
<th>0.01</th>
<th>0.05</th>
<th>0.07</th>
<th>0.10</th>
<th>0.30</th>
<th>0.50</th>
<th>1.0</th>
<th>3.0</th>
<th>5.0</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shield Thickness (g/cm²)</td>
<td></td>
</tr>
</tbody>
</table>

**TABLE 14B**
<table>
<thead>
<tr>
<th>ENERGY</th>
<th>0.01</th>
<th>0.03</th>
<th>0.05</th>
<th>0.07</th>
<th>0.10</th>
<th>0.30</th>
<th>0.50</th>
<th>1.0</th>
<th>3.0</th>
<th>5.0</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4662</td>
<td>1.17E-03</td>
</tr>
<tr>
<td>44.66</td>
<td>1.17E-03</td>
</tr>
<tr>
<td>94.02</td>
<td>1.01E-03</td>
</tr>
<tr>
<td>368.02</td>
<td>8.7E-04</td>
</tr>
<tr>
<td>736.03</td>
<td>7.8E-04</td>
</tr>
<tr>
<td>1472.04</td>
<td>6.9E-04</td>
</tr>
</tbody>
</table>

**DIFFERENTIAL FLUX EMERGING BEHIND SPHERICAL ALUMINUM SHIELDS (PARTICLES/CM²-DAY-NEV)***

**SHIELD THICKNESS (G/CMS²)**

<table>
<thead>
<tr>
<th>ENERGY</th>
<th>0.01</th>
<th>0.03</th>
<th>0.05</th>
<th>0.07</th>
<th>0.10</th>
<th>0.30</th>
<th>0.50</th>
<th>1.0</th>
<th>3.0</th>
<th>5.0</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4662</td>
<td>1.17E-03</td>
</tr>
<tr>
<td>44.66</td>
<td>1.17E-03</td>
</tr>
<tr>
<td>94.02</td>
<td>1.01E-03</td>
</tr>
<tr>
<td>368.02</td>
<td>8.7E-04</td>
</tr>
<tr>
<td>736.03</td>
<td>7.8E-04</td>
</tr>
<tr>
<td>1472.04</td>
<td>6.9E-04</td>
</tr>
</tbody>
</table>

**NOTE:** The table above provides the differential flux emerging behind spherical aluminum shields for various energies, with the shield thickness expressed in grams per square centimeter. The energies range from 0.01 to 10.0, with values in particles per square centimeter per day per energy unit (CM²-DAY-NEV). The specific values are given in each row, indicating the flux for different energies.
<table>
<thead>
<tr>
<th>Energy</th>
<th>0.01</th>
<th>0.03</th>
<th>0.05</th>
<th>0.10</th>
<th>0.20</th>
<th>0.50</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shield</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
</tbody>
</table>

**TABLE 18 A**
<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Unattenuated Flux (p/pcc^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>5.32 ± 0.02</td>
</tr>
<tr>
<td>14</td>
<td>5.45 ± 0.04</td>
</tr>
<tr>
<td>16</td>
<td>5.64 ± 0.05</td>
</tr>
<tr>
<td>18</td>
<td>5.84 ± 0.06</td>
</tr>
<tr>
<td>20</td>
<td>6.05 ± 0.07</td>
</tr>
<tr>
<td>22</td>
<td>6.26 ± 0.08</td>
</tr>
<tr>
<td>24</td>
<td>6.48 ± 0.08</td>
</tr>
<tr>
<td>26</td>
<td>6.70 ± 0.09</td>
</tr>
<tr>
<td>28</td>
<td>6.94 ± 0.10</td>
</tr>
<tr>
<td>30</td>
<td>7.21 ± 0.10</td>
</tr>
<tr>
<td>32</td>
<td>7.48 ± 0.11</td>
</tr>
<tr>
<td>34</td>
<td>7.76 ± 0.12</td>
</tr>
<tr>
<td>36</td>
<td>8.07 ± 0.12</td>
</tr>
<tr>
<td>38</td>
<td>8.39 ± 0.12</td>
</tr>
<tr>
<td>40</td>
<td>8.72 ± 0.13</td>
</tr>
</tbody>
</table>

**Table 19A**
<table>
<thead>
<tr>
<th>ENERGY UNATTENDED</th>
<th>DIFFERENTIAL FLUX EMERGING FROM SPHERICAL ALUMINUM SHELD (PARTICLES/CM²/SECOND/°/°/°/°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shield Thickness</td>
<td>(GW/CM²)</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>1.0</td>
<td>0.01</td>
</tr>
<tr>
<td>1.5</td>
<td>0.01</td>
</tr>
<tr>
<td>2.0</td>
<td>0.01</td>
</tr>
<tr>
<td>2.5</td>
<td>0.01</td>
</tr>
<tr>
<td>3.0</td>
<td>0.01</td>
</tr>
<tr>
<td>3.5</td>
<td>0.01</td>
</tr>
<tr>
<td>4.0</td>
<td>0.01</td>
</tr>
<tr>
<td>4.5</td>
<td>0.01</td>
</tr>
<tr>
<td>5.0</td>
<td>0.01</td>
</tr>
<tr>
<td>5.5</td>
<td>0.01</td>
</tr>
<tr>
<td>6.0</td>
<td>0.01</td>
</tr>
<tr>
<td>6.5</td>
<td>0.01</td>
</tr>
<tr>
<td>7.0</td>
<td>0.01</td>
</tr>
<tr>
<td>7.5</td>
<td>0.01</td>
</tr>
<tr>
<td>8.0</td>
<td>0.01</td>
</tr>
<tr>
<td>8.5</td>
<td>0.01</td>
</tr>
<tr>
<td>9.0</td>
<td>0.01</td>
</tr>
<tr>
<td>9.5</td>
<td>0.01</td>
</tr>
<tr>
<td>10.0</td>
<td>0.01</td>
</tr>
</tbody>
</table>

**TABLE 20A**
<table>
<thead>
<tr>
<th>ENERGY</th>
<th>0.01</th>
<th>0.03</th>
<th>0.05</th>
<th>0.10</th>
<th>0.30</th>
<th>0.50</th>
<th>1.0</th>
<th>3.0</th>
<th>5.0</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.62</td>
<td>3.13E-03</td>
<td>1.17E-02</td>
<td>1.65E-02</td>
<td>1.97E-02</td>
<td>1.39E-02</td>
<td>1.38E-02</td>
<td>1.55E-02</td>
<td>1.59E-02</td>
<td>1.70E-02</td>
<td>1.57E-02</td>
</tr>
<tr>
<td>44.28</td>
<td>1.62E-03</td>
<td>1.10E-02</td>
<td>1.45E-02</td>
<td>1.85E-02</td>
<td>1.15E-02</td>
<td>1.15E-02</td>
<td>1.43E-02</td>
<td>1.57E-02</td>
<td>1.69E-02</td>
<td>1.56E-02</td>
</tr>
<tr>
<td>54.38</td>
<td>1.40E-03</td>
<td>1.32E-02</td>
<td>1.82E-02</td>
<td>1.75E-02</td>
<td>1.91E-02</td>
<td>1.43E-02</td>
<td>1.78E-02</td>
<td>1.43E-02</td>
<td>1.63E-02</td>
<td>1.50E-02</td>
</tr>
<tr>
<td>58.06</td>
<td>1.07E-03</td>
<td>4.23E-02</td>
<td>5.99E-02</td>
<td>5.67E-02</td>
<td>4.94E-02</td>
<td>3.74E-02</td>
<td>4.66E-02</td>
<td>3.44E-02</td>
<td>3.76E-02</td>
<td>3.58E-02</td>
</tr>
<tr>
<td>65.57</td>
<td>1.62E-03</td>
<td>1.02E-02</td>
<td>1.52E-02</td>
<td>1.43E-02</td>
<td>1.65E-02</td>
<td>1.28E-02</td>
<td>1.65E-02</td>
<td>1.31E-02</td>
<td>1.55E-02</td>
<td>1.42E-02</td>
</tr>
<tr>
<td>70.94</td>
<td>1.36E-03</td>
<td>1.52E-02</td>
<td>2.10E-02</td>
<td>1.94E-02</td>
<td>2.22E-02</td>
<td>1.77E-02</td>
<td>2.22E-02</td>
<td>1.77E-02</td>
<td>2.04E-02</td>
<td>1.87E-02</td>
</tr>
<tr>
<td>74.06</td>
<td>2.91E-04</td>
<td>1.94E-02</td>
<td>2.75E-02</td>
<td>2.53E-02</td>
<td>2.84E-02</td>
<td>2.45E-02</td>
<td>2.84E-02</td>
<td>2.45E-02</td>
<td>2.79E-02</td>
<td>2.65E-02</td>
</tr>
<tr>
<td>81.66</td>
<td>3.45E-04</td>
<td>2.55E-02</td>
<td>3.43E-02</td>
<td>3.25E-02</td>
<td>3.57E-02</td>
<td>3.18E-02</td>
<td>3.57E-02</td>
<td>3.18E-02</td>
<td>3.51E-02</td>
<td>3.38E-02</td>
</tr>
<tr>
<td>101.67</td>
<td>3.34E-04</td>
<td>1.24E-02</td>
<td>1.77E-02</td>
<td>1.66E-02</td>
<td>1.94E-02</td>
<td>1.59E-02</td>
<td>1.94E-02</td>
<td>1.59E-02</td>
<td>1.87E-02</td>
<td>1.74E-02</td>
</tr>
<tr>
<td>126.23</td>
<td>3.10E-04</td>
<td>1.58E-02</td>
<td>2.35E-02</td>
<td>2.24E-02</td>
<td>2.61E-02</td>
<td>2.30E-02</td>
<td>2.61E-02</td>
<td>2.30E-02</td>
<td>2.61E-02</td>
<td>2.30E-02</td>
</tr>
<tr>
<td>146.20</td>
<td>3.07E-04</td>
<td>1.70E-02</td>
<td>2.60E-02</td>
<td>2.49E-02</td>
<td>3.03E-02</td>
<td>2.71E-02</td>
<td>3.03E-02</td>
<td>2.71E-02</td>
<td>3.03E-02</td>
<td>2.71E-02</td>
</tr>
<tr>
<td>164.80</td>
<td>1.80E-04</td>
<td>1.68E-02</td>
<td>2.71E-02</td>
<td>2.60E-02</td>
<td>3.10E-02</td>
<td>2.78E-02</td>
<td>3.10E-02</td>
<td>2.78E-02</td>
<td>3.10E-02</td>
<td>2.78E-02</td>
</tr>
<tr>
<td>185.90</td>
<td>1.17E-04</td>
<td>1.11E-02</td>
<td>1.64E-02</td>
<td>1.53E-02</td>
<td>1.98E-02</td>
<td>1.70E-02</td>
<td>1.98E-02</td>
<td>1.70E-02</td>
<td>1.98E-02</td>
<td>1.70E-02</td>
</tr>
<tr>
<td>209.65</td>
<td>9.81E-05</td>
<td>9.34E-03</td>
<td>9.77E-03</td>
<td>9.66E-03</td>
<td>1.06E-02</td>
<td>9.84E-03</td>
<td>1.06E-02</td>
<td>9.84E-03</td>
<td>1.06E-02</td>
<td>9.84E-03</td>
</tr>
<tr>
<td>226.20</td>
<td>7.38E-05</td>
<td>6.99E-03</td>
<td>6.97E-03</td>
<td>6.82E-03</td>
<td>7.32E-03</td>
<td>6.71E-03</td>
<td>7.32E-03</td>
<td>6.71E-03</td>
<td>7.32E-03</td>
<td>6.71E-03</td>
</tr>
</tbody>
</table>

**TABLE 20 B**
| Table 21a |

<table>
<thead>
<tr>
<th>Energy (GeV)</th>
<th>Current</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.10</td>
<td>0.14</td>
</tr>
<tr>
<td>0.07</td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>0.08</td>
<td>0.13</td>
<td>0.17</td>
</tr>
<tr>
<td>0.09</td>
<td>0.14</td>
<td>0.18</td>
</tr>
<tr>
<td>0.10</td>
<td>0.15</td>
<td>0.20</td>
</tr>
<tr>
<td>0.11</td>
<td>0.16</td>
<td>0.21</td>
</tr>
<tr>
<td>0.12</td>
<td>0.17</td>
<td>0.22</td>
</tr>
<tr>
<td>0.13</td>
<td>0.18</td>
<td>0.23</td>
</tr>
<tr>
<td>0.14</td>
<td>0.19</td>
<td>0.24</td>
</tr>
<tr>
<td>0.15</td>
<td>0.20</td>
<td>0.25</td>
</tr>
<tr>
<td>0.16</td>
<td>0.21</td>
<td>0.26</td>
</tr>
<tr>
<td>0.17</td>
<td>0.22</td>
<td>0.27</td>
</tr>
<tr>
<td>0.18</td>
<td>0.23</td>
<td>0.28</td>
</tr>
<tr>
<td>0.19</td>
<td>0.24</td>
<td>0.29</td>
</tr>
<tr>
<td>0.20</td>
<td>0.25</td>
<td>0.30</td>
</tr>
<tr>
<td>0.21</td>
<td>0.26</td>
<td>0.31</td>
</tr>
<tr>
<td>0.22</td>
<td>0.27</td>
<td>0.32</td>
</tr>
<tr>
<td>0.23</td>
<td>0.28</td>
<td>0.33</td>
</tr>
<tr>
<td>0.24</td>
<td>0.29</td>
<td>0.34</td>
</tr>
<tr>
<td>0.25</td>
<td>0.30</td>
<td>0.35</td>
</tr>
<tr>
<td>0.26</td>
<td>0.31</td>
<td>0.36</td>
</tr>
<tr>
<td>0.27</td>
<td>0.32</td>
<td>0.37</td>
</tr>
<tr>
<td>0.28</td>
<td>0.33</td>
<td>0.38</td>
</tr>
<tr>
<td>0.29</td>
<td>0.34</td>
<td>0.39</td>
</tr>
<tr>
<td>0.30</td>
<td>0.35</td>
<td>0.40</td>
</tr>
<tr>
<td>0.31</td>
<td>0.36</td>
<td>0.41</td>
</tr>
<tr>
<td>0.32</td>
<td>0.37</td>
<td>0.42</td>
</tr>
<tr>
<td>0.33</td>
<td>0.38</td>
<td>0.43</td>
</tr>
<tr>
<td>0.34</td>
<td>0.39</td>
<td>0.44</td>
</tr>
<tr>
<td>0.35</td>
<td>0.40</td>
<td>0.45</td>
</tr>
<tr>
<td>0.36</td>
<td>0.41</td>
<td>0.46</td>
</tr>
<tr>
<td>0.37</td>
<td>0.42</td>
<td>0.47</td>
</tr>
<tr>
<td>0.38</td>
<td>0.43</td>
<td>0.48</td>
</tr>
<tr>
<td>0.39</td>
<td>0.44</td>
<td>0.49</td>
</tr>
<tr>
<td>0.40</td>
<td>0.45</td>
<td>0.50</td>
</tr>
<tr>
<td>ENERGY</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>0.01</td>
<td>2.17E-03</td>
<td>2.17E-03</td>
</tr>
<tr>
<td>0.02</td>
<td>2.54E-03</td>
<td>2.54E-03</td>
</tr>
<tr>
<td>0.03</td>
<td>2.90E-03</td>
<td>2.90E-03</td>
</tr>
<tr>
<td>0.04</td>
<td>3.26E-03</td>
<td>3.26E-03</td>
</tr>
<tr>
<td>0.05</td>
<td>3.62E-03</td>
<td>3.62E-03</td>
</tr>
<tr>
<td>0.06</td>
<td>3.97E-03</td>
<td>3.97E-03</td>
</tr>
<tr>
<td>0.07</td>
<td>4.32E-03</td>
<td>4.32E-03</td>
</tr>
<tr>
<td>0.08</td>
<td>4.67E-03</td>
<td>4.67E-03</td>
</tr>
<tr>
<td>0.09</td>
<td>5.02E-03</td>
<td>5.02E-03</td>
</tr>
<tr>
<td>0.10</td>
<td>5.37E-03</td>
<td>5.37E-03</td>
</tr>
</tbody>
</table>

**TABLE 2**
<table>
<thead>
<tr>
<th>ENERGIZED</th>
<th>ATTENUATED</th>
<th>UNATTENUATED</th>
<th>ENERGY</th>
<th>ENERGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.07</td>
<td>0.10</td>
</tr>
<tr>
<td>0.30</td>
<td>1.0</td>
<td>3.0</td>
<td>5.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

**Table 22a**
### Table 22 B

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Shield Thickness (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>0.03</td>
</tr>
<tr>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>0.07</td>
<td>0.10</td>
</tr>
<tr>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>0.30</td>
<td>1.0</td>
</tr>
<tr>
<td>0.50</td>
<td>3.0</td>
</tr>
<tr>
<td>1.0</td>
<td>5.0</td>
</tr>
<tr>
<td>2.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

**Table Notes:**

- The table presents data on the energy in MeV and the shield thickness in g/cm².
- The energy values range from 0.01 to 2.0 MeV, and the shield thickness values range from 0.03 to 10.0 g/cm².

**Source:**

- The data is from a study on cosmic ray analysis during solar minimum periods.
<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Shield Thickness (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1.72E-03</td>
</tr>
<tr>
<td>10</td>
<td>1.60E-03</td>
</tr>
<tr>
<td>8</td>
<td>1.47E-03</td>
</tr>
<tr>
<td>6</td>
<td>1.35E-03</td>
</tr>
<tr>
<td>4</td>
<td>1.23E-03</td>
</tr>
<tr>
<td>2</td>
<td>1.10E-03</td>
</tr>
<tr>
<td>1</td>
<td>9.87E-04</td>
</tr>
<tr>
<td>0.5</td>
<td>8.75E-04</td>
</tr>
<tr>
<td>0.3</td>
<td>7.63E-04</td>
</tr>
<tr>
<td>0.1</td>
<td>6.52E-04</td>
</tr>
</tbody>
</table>

**Table 23a**
### Table 24.8

<table>
<thead>
<tr>
<th>C</th>
<th>O</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

**Notes:**

- **Column C:** Column for the first data point.
- **Column O:** Column for the second data point.
- **Column F:** Column for the third data point.
- **Column P:** Column for the fourth data point.
Table 25A

<table>
<thead>
<tr>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.02</td>
</tr>
<tr>
<td>0.03</td>
</tr>
<tr>
<td>0.04</td>
</tr>
<tr>
<td>0.05</td>
</tr>
<tr>
<td>0.06</td>
</tr>
<tr>
<td>0.07</td>
</tr>
<tr>
<td>0.08</td>
</tr>
<tr>
<td>0.09</td>
</tr>
<tr>
<td>0.1</td>
</tr>
</tbody>
</table>

**Note:** The table and data are not clearly visible due to the quality of the image.
<table>
<thead>
<tr>
<th>ENERGY</th>
<th>SHIELD THICKNESS (G/CMS^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>0.50</td>
<td>1.0</td>
</tr>
<tr>
<td>3.0</td>
<td>5.0</td>
</tr>
<tr>
<td>5.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

**Table 258**
<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Thickness (mm)</th>
<th>Absorption Coefficient (cm²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.03</td>
<td>1.21</td>
</tr>
<tr>
<td>0.05</td>
<td>0.07</td>
<td>1.35</td>
</tr>
<tr>
<td>0.10</td>
<td>0.10</td>
<td>1.50</td>
</tr>
<tr>
<td>0.20</td>
<td>0.20</td>
<td>1.75</td>
</tr>
<tr>
<td>0.30</td>
<td>0.30</td>
<td>1.90</td>
</tr>
<tr>
<td>0.40</td>
<td>0.40</td>
<td>2.05</td>
</tr>
<tr>
<td>0.50</td>
<td>0.50</td>
<td>2.20</td>
</tr>
</tbody>
</table>

**Table 26A**
<table>
<thead>
<tr>
<th>ENERG UNTEN</th>
<th>ATTEN</th>
<th>ENERGY 0.01</th>
<th>0.03</th>
<th>0.05</th>
<th>0.07</th>
<th>0.10</th>
<th>0.30</th>
<th>0.50</th>
<th>1.0</th>
<th>3.0</th>
<th>5.0</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1.542E-09</td>
<td>1.255E-09</td>
<td>0.20</td>
<td>0.009E</td>
<td>0.007E</td>
<td>0.005E</td>
<td>0.003E</td>
<td>0.002E</td>
<td>0.001E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
</tr>
<tr>
<td>14</td>
<td>1.75E-09</td>
<td>1.694E-09</td>
<td>0.51</td>
<td>0.004E</td>
<td>0.003E</td>
<td>0.002E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
</tr>
<tr>
<td>16</td>
<td>1.95E-09</td>
<td>1.905E-09</td>
<td>0.79</td>
<td>0.003E</td>
<td>0.002E</td>
<td>0.002E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
</tr>
<tr>
<td>18</td>
<td>2.14E-09</td>
<td>2.095E-09</td>
<td>1.23</td>
<td>0.002E</td>
<td>0.002E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
</tr>
<tr>
<td>20</td>
<td>2.33E-09</td>
<td>2.285E-09</td>
<td>2.17</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
</tr>
<tr>
<td>22</td>
<td>2.52E-09</td>
<td>2.475E-09</td>
<td>3.48</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
</tr>
<tr>
<td>24</td>
<td>2.71E-09</td>
<td>2.665E-09</td>
<td>5.24</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
</tr>
<tr>
<td>26</td>
<td>2.90E-09</td>
<td>2.855E-09</td>
<td>7.39</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
</tr>
<tr>
<td>28</td>
<td>3.09E-09</td>
<td>3.045E-09</td>
<td>9.93</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
</tr>
<tr>
<td>30</td>
<td>3.28E-09</td>
<td>3.235E-09</td>
<td>12.94</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
</tr>
<tr>
<td>32</td>
<td>3.47E-09</td>
<td>3.425E-09</td>
<td>16.37</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
</tr>
<tr>
<td>34</td>
<td>3.66E-09</td>
<td>3.615E-09</td>
<td>20.30</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
</tr>
<tr>
<td>36</td>
<td>3.85E-09</td>
<td>3.805E-09</td>
<td>24.61</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
</tr>
<tr>
<td>38</td>
<td>4.04E-09</td>
<td>3.995E-09</td>
<td>29.36</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.001E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
<td>0.000E</td>
</tr>
</tbody>
</table>

**TABLE 27 A**
<table>
<thead>
<tr>
<th>ENERGY (MeV)</th>
<th>SHIELD THICKNESS (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td></td>
</tr>
</tbody>
</table>

**Table 27b**
<table>
<thead>
<tr>
<th>SHIELD THICKNESS (MM)</th>
<th>DIFFERENTIAL FLUX EMERGING BEHIND SPHERICAL ALUMINUM SHEIELDS, (PARTICLES/CM**2 DAY MEV/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY</td>
<td>UNATTENUATED</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>1.0</td>
<td>3.39E-06</td>
</tr>
<tr>
<td>3.0</td>
<td>3.40E-06</td>
</tr>
<tr>
<td>5.0</td>
<td>3.41E-06</td>
</tr>
<tr>
<td>10.0</td>
<td>3.42E-06</td>
</tr>
</tbody>
</table>

**TABLE 28 A**
<table>
<thead>
<tr>
<th>ENERGY (MeV)</th>
<th>0.01</th>
<th>0.03</th>
<th>0.05</th>
<th>0.07</th>
<th>0.10</th>
<th>0.20</th>
<th>0.50</th>
<th>1.0</th>
<th>3.0</th>
<th>5.0</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.464</td>
<td>1.05E-06</td>
</tr>
<tr>
<td>4.707</td>
<td>1.05E-06</td>
</tr>
<tr>
<td>46.66</td>
<td>1.05E-06</td>
</tr>
<tr>
<td>5.396</td>
<td>1.05E-06</td>
</tr>
</tbody>
</table>

**TABLE 28B**
### Differential Flux Emerging Behind Spherical Aluminum Shields (Particles/cm²·day·keV·m²)

<table>
<thead>
<tr>
<th>Energy (GeV)</th>
<th>Shield Thickness (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>3.96 ± 0.44</td>
<td>4.04 ± 0.44</td>
</tr>
<tr>
<td>6.00 ± 0.44</td>
<td>6.08 ± 0.44</td>
</tr>
<tr>
<td>7.96 ± 0.44</td>
<td>8.04 ± 0.44</td>
</tr>
<tr>
<td>9.92 ± 0.44</td>
<td>9.92 ± 0.44</td>
</tr>
<tr>
<td>11.91 ± 0.44</td>
<td>11.91 ± 0.44</td>
</tr>
<tr>
<td>13.86 ± 0.44</td>
<td>13.86 ± 0.44</td>
</tr>
</tbody>
</table>

**Table 29B**
### Table 30 A

<table>
<thead>
<tr>
<th>Shield Thickness (in CHIPS)</th>
<th>0.01</th>
<th>0.05</th>
<th>0.07</th>
<th>0.10</th>
<th>0.30</th>
<th>0.50</th>
<th>1.0</th>
<th>3.0</th>
<th>5.0</th>
<th>10.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen (H)</td>
<td></td>
</tr>
<tr>
<td>deuterium (D)</td>
<td></td>
</tr>
<tr>
<td>Tritium (T)</td>
<td></td>
</tr>
<tr>
<td>Helium-3 (3He)</td>
<td></td>
</tr>
<tr>
<td>Helium-4 (4He)</td>
<td></td>
</tr>
<tr>
<td>Lithium-6 (6Li)</td>
<td></td>
</tr>
<tr>
<td>Deuterium-3 (3D)</td>
<td></td>
</tr>
<tr>
<td>Tritium-3 (3T)</td>
<td></td>
</tr>
<tr>
<td>Helium-3-3He</td>
<td></td>
</tr>
<tr>
<td>Helium-4-4He</td>
<td></td>
</tr>
<tr>
<td>Lithium-6-6Li</td>
<td></td>
</tr>
<tr>
<td>Deuterium-3-3D</td>
<td></td>
</tr>
<tr>
<td>Tritium-3-3T</td>
<td></td>
</tr>
<tr>
<td>Helium-3-3He-3He</td>
<td></td>
</tr>
<tr>
<td>Helium-4-4He-4He</td>
<td></td>
</tr>
<tr>
<td>Lithium-6-6Li-6Li</td>
<td></td>
</tr>
<tr>
<td>Deuterium-3-3D-3D</td>
<td></td>
</tr>
<tr>
<td>Tritium-3-3T-3T</td>
<td></td>
</tr>
<tr>
<td>Helium-3-3He-3He-3He</td>
<td></td>
</tr>
<tr>
<td>Helium-4-4He-4He-4He</td>
<td></td>
</tr>
<tr>
<td>Lithium-6-6Li-6Li-6Li</td>
<td></td>
</tr>
<tr>
<td>Deuterium-3-3D-3D-3D</td>
<td></td>
</tr>
<tr>
<td>Tritium-3-3T-3T-3T</td>
<td></td>
</tr>
<tr>
<td>Helium-3-3He-3He-3He-3He</td>
<td></td>
</tr>
<tr>
<td>Helium-4-4He-4He-4He-4He</td>
<td></td>
</tr>
<tr>
<td>Lithium-6-6Li-6Li-6Li-6Li</td>
<td></td>
</tr>
<tr>
<td>ENERGY (KEV)</td>
<td>0.01</td>
<td>0.03</td>
<td>0.05</td>
<td>0.07</td>
<td>0.10</td>
<td>0.15</td>
<td>0.50</td>
<td>1.0</td>
<td>2.0</td>
<td>5.0</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>30.82</td>
<td>1.29E-06</td>
<td>1.67E-06</td>
<td>1.26E-06</td>
<td>1.03E-06</td>
<td>1.26E-06</td>
<td>1.23E-06</td>
<td>1.23E-06</td>
<td>1.23E-06</td>
<td>1.23E-06</td>
<td>1.23E-06</td>
</tr>
<tr>
<td>49.48</td>
<td>1.27E-06</td>
<td>1.35E-06</td>
<td>1.24E-06</td>
<td>1.13E-06</td>
<td>1.24E-06</td>
<td>1.21E-06</td>
<td>1.21E-06</td>
<td>1.21E-06</td>
<td>1.21E-06</td>
<td>1.21E-06</td>
</tr>
<tr>
<td>80.68</td>
<td>1.40E-06</td>
<td>1.46E-06</td>
<td>1.31E-06</td>
<td>1.19E-06</td>
<td>1.31E-06</td>
<td>1.27E-06</td>
<td>1.27E-06</td>
<td>1.27E-06</td>
<td>1.27E-06</td>
<td>1.27E-06</td>
</tr>
<tr>
<td>117.76</td>
<td>1.53E-06</td>
<td>1.59E-06</td>
<td>1.46E-06</td>
<td>1.34E-06</td>
<td>1.46E-06</td>
<td>1.42E-06</td>
<td>1.42E-06</td>
<td>1.42E-06</td>
<td>1.42E-06</td>
<td>1.42E-06</td>
</tr>
<tr>
<td>154.84</td>
<td>1.62E-06</td>
<td>1.69E-06</td>
<td>1.56E-06</td>
<td>1.45E-06</td>
<td>1.56E-06</td>
<td>1.52E-06</td>
<td>1.52E-06</td>
<td>1.52E-06</td>
<td>1.52E-06</td>
<td>1.52E-06</td>
</tr>
<tr>
<td>191.92</td>
<td>1.72E-06</td>
<td>1.79E-06</td>
<td>1.66E-06</td>
<td>1.55E-06</td>
<td>1.66E-06</td>
<td>1.62E-06</td>
<td>1.62E-06</td>
<td>1.62E-06</td>
<td>1.62E-06</td>
<td>1.62E-06</td>
</tr>
<tr>
<td>228.99</td>
<td>1.81E-06</td>
<td>1.89E-06</td>
<td>1.77E-06</td>
<td>1.66E-06</td>
<td>1.77E-06</td>
<td>1.73E-06</td>
<td>1.73E-06</td>
<td>1.73E-06</td>
<td>1.73E-06</td>
<td>1.73E-06</td>
</tr>
<tr>
<td>266.06</td>
<td>1.91E-06</td>
<td>1.99E-06</td>
<td>1.88E-06</td>
<td>1.77E-06</td>
<td>1.88E-06</td>
<td>1.84E-06</td>
<td>1.84E-06</td>
<td>1.84E-06</td>
<td>1.84E-06</td>
<td>1.84E-06</td>
</tr>
</tbody>
</table>

**TABLE 3.8**
<table>
<thead>
<tr>
<th>ENERGY (MeV)</th>
<th>ATTENUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>0.20</td>
<td>0.27</td>
</tr>
<tr>
<td>0.30</td>
<td>0.37</td>
</tr>
<tr>
<td>0.40</td>
<td>0.47</td>
</tr>
<tr>
<td>0.50</td>
<td>0.57</td>
</tr>
</tbody>
</table>

**TABLE 31A**
Differential flux emerging from spherical aluminum shields (particles/cm²/ray/MeV/°N)

<table>
<thead>
<tr>
<th>ENERGY</th>
<th>0.01</th>
<th>0.02</th>
<th>0.05</th>
<th>0.07</th>
<th>0.10</th>
<th>0.30</th>
<th>0.50</th>
<th>1.0</th>
<th>3.0</th>
<th>5.0</th>
<th>10.0</th>
</tr>
</thead>
</table>

TABLE 33B
<table>
<thead>
<tr>
<th>DATE</th>
<th>0.01</th>
<th>0.03</th>
<th>0.05</th>
<th>0.07</th>
<th>0.09</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEBRUARY</td>
<td></td>
</tr>
</tbody>
</table>

*Title: Table 34 B*
<table>
<thead>
<tr>
<th>DATA POINT</th>
<th>DIFFERENTIAL, FLUX EMERGING BEHIND SPHERICAL ALUMINUM SHIELDS (PARTICLES/CM²·S·EVE/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY</td>
<td>SHIELD THICKNESS (g/CM²2)</td>
</tr>
<tr>
<td>0.01</td>
<td>1.0</td>
</tr>
<tr>
<td>0.02</td>
<td>2.0</td>
</tr>
<tr>
<td>0.03</td>
<td>3.0</td>
</tr>
<tr>
<td>0.05</td>
<td>5.0</td>
</tr>
<tr>
<td>0.10</td>
<td>10.0</td>
</tr>
<tr>
<td>0.20</td>
<td>20.0</td>
</tr>
<tr>
<td>0.50</td>
<td>50.0</td>
</tr>
<tr>
<td>0.75</td>
<td>75.0</td>
</tr>
</tbody>
</table>

**TABLE 36 A**
<table>
<thead>
<tr>
<th>TABLE 36.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIFFERENTIAL FLUX SHIELDING SPECIFICATIONS (INTENSITY-AREA PRODUCTS)</td>
</tr>
<tr>
<td>ELEVATION</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.02</td>
</tr>
<tr>
<td>0.03</td>
</tr>
<tr>
<td>0.04</td>
</tr>
<tr>
<td>0.05</td>
</tr>
<tr>
<td>0.06</td>
</tr>
<tr>
<td>0.07</td>
</tr>
<tr>
<td>0.08</td>
</tr>
<tr>
<td>0.09</td>
</tr>
<tr>
<td>0.10</td>
</tr>
<tr>
<td>0.11</td>
</tr>
<tr>
<td>0.12</td>
</tr>
<tr>
<td>0.13</td>
</tr>
<tr>
<td>0.14</td>
</tr>
<tr>
<td>0.15</td>
</tr>
<tr>
<td>0.16</td>
</tr>
<tr>
<td>0.17</td>
</tr>
<tr>
<td>0.18</td>
</tr>
<tr>
<td>0.19</td>
</tr>
<tr>
<td>0.20</td>
</tr>
<tr>
<td>0.21</td>
</tr>
<tr>
<td>0.22</td>
</tr>
<tr>
<td>0.23</td>
</tr>
<tr>
<td>0.24</td>
</tr>
<tr>
<td>0.25</td>
</tr>
<tr>
<td>0.26</td>
</tr>
<tr>
<td>0.27</td>
</tr>
<tr>
<td>0.28</td>
</tr>
<tr>
<td>0.29</td>
</tr>
<tr>
<td>0.30</td>
</tr>
</tbody>
</table>

Note: The table continues with more data points not shown in this excerpt.
FIGURE 2

PERM FLUX ENCOUNTERED PER ORBIT TOP EX 3 YEAR 65DEG
1334KM FOR SOLMAX

ORBIT NUMBER

PERM FLUX (E>5,000EV) (PROTONS/50cm/5E1)

E. G. SITNICKAUG 01.1984
RELATIVE ORBIT TIME (MINUTES)

FOLDOUT FRAME

SAA
FIGURE 16

ORBIT: TOPEX/MOST
63 DGR/1334-1334 KM

EPOCH: 1989.2

MODELS:
FIELD: BAAR/75
TRAPPED PROTONS: APB
INNER ZN ELEC: RE6
OUTER ZN ELEC: REI7-LO
MISSION DURATION: 36.00 MO
EVALUATION PHASE: SOLAR MAX
UN FACTORS: NOT APPLIED

STOP TIME ON TAPE = 15.599999

NASA-GSFC
OMNIDIRECTIONAL INTENSITIES
THRESHOLD ENERGY LEVELS (>MEV)
1.00
2.00
3.00
4.00
5.00

NORTHERN HORN

EQUATORIAL REGION

START TIME ON TAPE = 13.500000

E. G. STASSINOPoulos 1983
FIGURE 17

ORBIT: TOPEX/WOEST
63 OGR/1334-1934 KM

EPOCH: 1989.2

MODELS:
FIELD: BARR/75
TRAPPED PROTONS: APB
INNER ZN ELEC: AE6
OUTER ZN ELEC: AE17-L0
MISSION DURATION: 36.00 MO
EVALUATION PHASE: SOLAR MAX
UN FACTORS: NOT APPLIED

NORTHERN
HORN

STOP TIME ON TAPE = 15.599999

NASA-GSFC

FOLDOUT FRAME
ORIGINAL PAGE 13
OF POOR QUALITY
OMNIDIRECTIONAL INCIDENCE

SHIELD THICKNESSES (GM/CM^2)

- 0.10
- 0.50
- 1.00
- 2.00
- 4.00

EQUATORIAL REGION

INSTANTANEOUS ALUMINUM PROTON DOSE (RADS/SEC)

(SOLAR PROTON CONTRIBUTIONS ARE NOT INCLUDED)

START TIME ON TAPE = 13.500000

E. G. STASSINOPoulos - 1983

FOLDOUT FRAME
Dose at transmission surface of finite aluminum slab shields

Relative orbit time (minutes)
Figure 18

ORBIT: TOPEX/WORST
63 OGR/1334-1334 KM

EPOCH: 1989.2

MODELS:
FIELD: AARR/75
TRAPPED PROTONS: AP8
INNER ZN ELEC: AE6
OUTER ZN ELEC: AE17-LO
MISSION DURATION: 36.00 MA
EVALUATION PHASE: SOLAR MAX

UN FACTORS: NOT APPLIED

Stop Time on Tape: 15.599999

NASA-GSFC

Foldout Frame
OMNIDIRECTIONAL INCIDENCE

SHIELD THICKNESSES (GM/CM$^2$)

- 0.10
- 0.50
- 1.00
- 2.00
- 4.00

NORTHERN HORN

EQUATORIAL REGION

START TIME ON TAPE = 13,500,000

E. G. STASSINOPoulos-1983
Figure 19

Orbit: TOPEX/NORST
63 0GR/1334-1334 km

Epoch: 1989.2

Models:
Field: AAAA/75
Trapped Protons: APB
Inner Zn Elec: AE6
Outer Zn Elec: AEI7-LO
Mission Duration: 36.00 mo

Evaluation Phase: Solar Max

Un Factors: Not Applied

Northern

Stop Time on Tape: 15499993

NASA-GSFC

Foldout Frame
### Omnidirectional Incidence

<table>
<thead>
<tr>
<th>Shield Thicknesses (gm/cm²)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td></td>
</tr>
</tbody>
</table>

**Northern Horn**

**Equatorial Region**

**E. G. Stassinopoulos 1983**

**Start Time on Tape: 13,500,000**
ORBIT: TOPEX/MORST
63 DGR/1334-1934 KM

EPOCH: 1989.2

MODELS:
FIELD: AAGA/75
TRAPPED PROTONS: AP8
INNER ZN ELEC: AE6
OUTER ZN ELEC: AE17-LO
MISSION DURATION: 36.00 MA
EVALUATION PHASE: SOLAR MAX
UN FACTORS: NOT APPLIED

NORTHERN ← HORN

STOP TIME ON TAPE: 15 199999

NASA-GSFC
DOSE IN SEMI-INFINITE ALUMINUM MEDIUM

ORIGINAL PAGE IS
OF POOR QUALITY

SAA

RELATIVE ORBIT TIME (MINUTES)
ORBIT: TOPEX/WORST
63 OGR/1334-1334 KM

EPOCH: 1989.2

MODELS:
FIELD: BARR/75
TRAPPED PROTONS: AP8
INNER ZN ELEC: AE6
OUTER ZN ELEC: AE17-LO
MISSION DURATION: 36.00 MD
EVALUATION PHASE: SOLAR MAX
UN FACTORS: NOT APPLIED

STOP TIME ON TAPER = 15.593999

NASA-GSFC
OMNIDIRECTIONAL INCIDENCE

SHIELD THICKNESSES (GM/CM²)

- 0.10
- 0.50
- 1.00
- 2.00
- 4.00

NORTHERN HORN

EQUATORIAL REGION

START TIME ON TAPE = 13.50000

E. G. STASSINOPoulos 05-1983

FOLDOUT FRAME
DOSE IN SEMI-INFINITE ALUMINUM MEDIUM

ORIGINAL PAGE IS OF POOR QUALITY

SOUTHERN HORN

SAA

RELATIVE ORBIT TIME (MINUTES)
ORBIT: TOPEX/WORST
63 DGR/1334-1334 KM

EPOCH: 1989.2

MODELS:
FIELD: BARR/75
TRAPPED PROTONS: APB
INNER ZN ELEC: REG
OUTER ZN ELEC: AE17-LO
MISSION DURATION: 36.00 MO
EVALUATION PHASE: SOLAR MAX

UN FACTORS: NOT APPLIED

NORTHERN
< HORN

STOP TIME ON TAPE: 15.000.000

NASA-GSFC

FOLDOUT FRAME
DOSE IN SEMI-INFINITE ALUMINUM MEDIUM

RELATIVE ORBIT TIME (MINUTES)
OMNIDIRECTIONAL INCIDENCE

SHIELD THICKNESSES (GM/CM²)

- 0.10
- 0.50
- 1.00
- 2.00
- 4.00

EQUATORIAL REGION

INSTANTANEOUS ALUMINUM PROTON DOSE (RADS/SEC)

START TIME ON TAPE: 13500000

E. G. STASSINOPoulos-1983

FOLDOUT FRAME
ORBIT: TOPEX/MORST
6.0 DGR/1334-1334 KM

EPOCH: 1989.2

MODELS:
FIELD: RARA/75
TRAPPED PROTONS: AP8
INNER ZN ELEC: AE6
OUTER ZN ELEC: AE17-LO
MISSION DURATION: 36.00 HR
EVALUATION PHASE: SOLAR MAX
UN FACTORS: NOT APPLIED

STOP TIME ON TAPE: 15.599999

NASA-GSFC
ORBIT: TOPEX/NOEAST
63 OGR/1334-1334 KM

EPOCH: 1989.2

MODELS:
FIELD: ARRA/75
TRAPPED PROTONS: AP8
INNER ZN ELECT: A66
OUTER ZN ELECT: AE17-LO
MISSION DURATION: 36.00 MD

EVALUATION PHASE: SOLAR MAX

UN FACTORS: NOT APPLIED

NORTHERN HORN

STOP TIME ON TAPE = 15.99999

NASA-GSFC

FOLDOUT FRAME OF POOR QUALITY
DOSAGE AT CENTER OF ALUMINUM SPHERES

RELATIVE ORBIT TIME (MINUTES)

SOUTHERN HORN

SAA
Figure 26

Orbit: Topex/MORST
63 GRA/1334-1334 KM

Epoch: 1989.2

Models:
- Field: BAAA/75
- Trapped Protons: APB
- Inner ZN Elec: A66
- Outer ZN Elec: AET7-LO

Mission Duration: 36.00 Mo

Evaluative Phase: Solar Max

Un factors: Not applied

NORTHERN ← HORN

Stop time on tape: 15/08/9999

Nasa-GSFC
COSMIC RAY ANALYSIS: GEOMAGNETIC SHIELDING

EXPOSURE PROFILE

ORIGINAL PAGE IS OF POOR QUALITY

TOPEX:
\[ i = 63^\circ \]
\[ h = 1334 \text{ KM} \]
SOLAR MAX

\[ \frac{\% \text{ of relative orbit time}}{10^4} \]

EQUATORIAL DISTANCE OF DIPOLE SHELL (EARTH RAD)

E.G. STASSINOPOLLOS - 1984

NASA - GSFC

PRECEDING PAGE BLANK NOT FILMED
COSMIC RAY ANALYSIS: GEOMAGNETIC SHIELDING

ACCESSIBILITY GRAPH

TOPEX:
\[ i = 63° \]
\[ h = 1334 \text{ km} \]
SOLAR MAX

\% OF RELATIVE ORBIT TIME

E.G. STASSINOPoulos - 1984

NASA-GSFC

CUT-OFF ENERGY (MeV/\(n\))

ORIGINAL PAGE 19
OF POOR QUALITY
TOPEX COSMIC RAY ANALYSIS
MAGNETOSPHERICALLY ATTENUATED SPECTRUM FOR: O
DIFFERENTIAL FLUX EMERGING BEHIND SPHERICAL
ALUMINUM SHIELDS
Z=0
A=16.00

FIGURE 35

SOLAR MINIMUM
ORBIT: TOPEX
INCL: 88.2 DEGREES
ALT: 5888/1884 KM
MODEL: BARR
TIME: 1989.2.0
PERIOD: 1.8725

DIFF FLUXES (PARTICLES/CM²-2-DYR-KEV/MEV)

UNATTEN

E.G. STASSINOPoulos
NASA-GSFC, 1984

ORIGINAL PAGE IS OF POOR QUALITY
Figure 36

Differential fluxes (particles/cm²-sr-ev/MeV/n)

E. J. Stassinopoulos

Differential fluxes behind spherical aluminum shields
TOPEX COSMIC RAY ANALYSIS
MAGNETOSPHERICALLY ATTENUATED SPECTRUM FOR
DIFFERENTIAL FLUX EMERGING BEHIND SPHERICAL
ALUMINUM SHIELDS

ORBIT: TOPEX
INCL: 65.0 DEGREES
ALT: 1884/1884 KM
MODEL: BARR
TIME: 1984.2.0
PERIOD: 1.0725

FIGURE 37

DIFF FLUXES (PARTICLES/CM^2-SEC-MEV/N)

E (MEV/N)

1.0E-0
1.0E-1
1.0E-2
1.0E-3
1.0E-4
1.0E-5
1.0E-6
1.0E-7

UNATTEN

ATTEN

10

1

0.1

0.01

E.G. STASSINOPULOS

NASAGSFC, 1984
MAGNETOSPHERIC COSMIC RAY ANALYSIS OF DIFFERENTIAL FLUXES OF SPECTRUM FOR DIFFERENT DEGREES OF ATTENUATION.
TOPEX COSMIC RAY ANALYSIS
MAGNETOSPHERICALLY ATTENUATED SPECTRUM FOR: SI
DIFFERENTIAL FLUX EMERGING BEHIND SPHERICAL
ALUMINUM SHIELDS
Z=14
A=20.0

FIGURE 41

SOLAR MINIMUM
ORBIT: TOPEX
INCL: 65.0 DEGREES
ALT: 1854/1854 KM
MODEL: BARR
TIME: 1984.2.0
PERIOD: 1.0735

DIFF FLUXES (PARTICLES/CM²-2-DR-KEV/MeV/N)

UNATTEN

ORIGINAL PAGE
OF POOR QUALITY

E.G. STASSINOPoulos
NASA-GSFC, 1984
TOPEX COSMIC RAY ANALYSIS
MAGNETOSPHERICALLY ATTENUATED SPECTRUM FOR: V
DIFFERENTIAL FLUX EMERGING BEHIND SPHERICAL
ALUMINUM SHIELDS
Z=25 A=50.95

FIGURE 50

SOLAR MINIMUM
ORBIT: TOPEX
INCL.: 68.5 DEGREES
ALT.: 1554/1554 KM
MODEL: BARE
TIME: 1984.2.0
PERIOD: 1.0725

DIFF FLUXES (PARTICLES/CM^2-20-X-MEV/NU)

UNATTEN

ATTEN

E.G. STASSINOPoulos

NASA-GSFC, 1984