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SUMMARY

Uniformly valid equations are developed for calculating spatial derivatives of

flow quantities behind a curved shock of any strength. For steady two-dimensional

inviscid flow, explicit formulas in terms of shock curvature are derived. Those

factors which yield the equations indeterminate as the shock strength approaches 0

cancel analytically, resulting in equations which are valid for shocks of all

strengths.

An example of an application of the method is outlined for the problem of shock

coalescence in which asymmetric effects are included through derivatives in the cir-

cumferential direction. Tne solution of the coalescence problem requires values for

spatial derivatives of the flow variables behind a resulting shock which is often

very weak.

INTRODUCTION

In many flow-field computational problems, it often becomes necessary to calcu-

late spatial derivatives of the flow quantities. Numerically determining these
derivatives by finite difference or other approximations often leads to great inac-

curacies in the solution. Analytical methods of calculating spatial derivatives of

flow variables behind curved shocks are developed in references I to 3. These

methods involve taking the tangential derivative of the standard shock equations

along the shock, thus resulting in expressions relating the derivatives behind the

shock and the curvature of the shock. This approach works well and has many applica-

tions except when the shock strength approaches 0 and the equations become indetermi-
nate.

Included in this paper is a method of determining, for these derivatives,

expressions which are shown to remain finite as the shock strength approaches 0. An

equation for the jump in the derivative of a flow variable across the shock is

derived by using the flow equations in section A of part I. It is the ratios in this

derived equation which cause difficulties as the shock approaches a Mach wave. In

section B alternate expressions, which remain finite, are derived for these ratios by

using the standard shock equations.

An application for the method may be found in reference 4 where the shock-

coalescence problem with asymmetric effects is solved in a sonic boom propagation

routine. The asymmetric effects are felt through cross derivatives of the flow vari-

ables. It is in solving part of the shock-coalescence problem that it becomes neces-
sary to know the derivatives of the flow variables in both the axial and the radial

directions behind the resulting shocks. In this application, the calculations are
performed away from the disturbing body, and the shocks involved often become so weak

as to cause numericaldifficulties. In the method developedin reference4, the

approximation is made that one of the resulting shocks is so weak that the flow vari-

ables can be assumed to be continuous across the shock, thereby limiting the appli-
cability of that method to cases in which this is true.



The method developed in part I removes the need for a weak-shock approximation
in the coalescence solution and thus makes the procedure applicable to shocks of any
strength. Part II of this paper outlines the procedure for incorporating the equa-
tions derived in this paper into the coalescence system.

This work was done to satisfy in part the requirements for the Degree of Doctor
of Science at George Washington University, February 1983.

SYMBOLS

A,B dummy variables

right side of equation (11)

a speed of sound

CN = a2 _ (_ • _)2; zero for characteristic

CO defined beneath equation (7)

fl,f2,f3,f4 shock surfaces

f" f" curvature of shock surfaces
3' 4

defined beneath equation (8)

g acceleration due to gravity

H enthalpy

h slipstream surface

1 unit vector in axial direction

A

j unit vector in radial direction

defined in equation (9)

k shock curvature

m mass (see eq. (27))

n direction normal to streamline

p pressure

q velocity

R gas constant

S entropy

SI,S2,...,S20 ratios defined by using shock equations (see part I(B))
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T temperature

I second circumferential derivative of axial velocity in plane ofU_ _=0 symmetry

u,v velocity components in axial and radial directions, respectively

VI velocity

I second circumferential derivative of radial velocity in plane ofV_5_ _=0 symmetry

X(@),R(4) intersection of shock surfaces (fig. 2)

x,r,42 axial, radial, and circumferential coordinates, respectively

z vertical coordinate in Cartesian coordinate system

shock angle in general problem

63,64 shock angles of f3 and f4' respectively, in coalescence problem

y ratio of specific heats

@ flow angle

k arc length

v direction normal to shock

^

v unit vector normal to shock

p density

direction along streamline

direction tangent to shock
A

unit vector tangent to shock

Subscripts:

x,r first derivative with respect to x or r, respectively

v derivative normal to shock

derivative tangent to shock

1,2 region ahead or behind shock, respectively

4,5 regions 4 and 5 in shock-coalescence problem



Mathematical notation:

' first derivative with respect to x

" second derivative with respect to x

- vector quantity, when over symbol

[I I] jump in variable across shock, for example, [lul] = u2 - u I

. approaches

PART I

DERIVATION OF EQUATIONS FOR SPATIAL DERIVATIVES BEHIND
SHOCK IN TERMS OF CHANGES IN SHOCK ANGLE

A - Development of Ratios Needed Across Shock and Explicit
Formulas for Derivatives

There are essentially five steps involved in determining the formulas for the
needed derivatives. For ease in following the procedure, the steps are outlined
next. After the outline, the details of the derivation are given in each step.

(I) Resolve the flow equations into derivatives parallel to, 5/5_, and perpen-
dicular to, _/_v, the shock.

(2) Reduce these equations to one equation in terms of 5/5v of one variable,

say u2; that is,

CN2(_u2/_v) = R.H.S.

where R.H.S. represents the right-hand side of the equation.

(3) Repeat steps (I) and (2) for the field ahead of the shock. Form a differ-
ence between the two equations:

%2[1_/_,,I] + C_/_,,)[ICNI] -- [IR._.S.I]

where [I I] represents the jump across the shock.

(4) Solve for [l_u/Svl]; that is,

[l_u/_,,I] C-_u_/_")[ICNI]%2



The shock equations are used (see section B of part I) to show that the numera-

tors of the ratios [ICNI]/CN2 and [IR.H.S.I]/CN2 are divisible by CN2. Conse-
quently, explicit formulas can be derived for those quotients which will be finite as
the shock strength and therefore approach 0.

CN2

(5) Derive explicit formulas for the derivatives behind the shock and the curva-

ture of the streamline in terms of the slope and the rate of slope change of the
shock and of the local flow field and the derivative ahead of the shock.

Step I.- As shown in figure I, _ is defined to be the shock angle with respect
to the x-axis and e. is the flow direction, where the subscript j = 1 indicates
flow ahead of the shack and j = 2 indicates flow behind the shock. (The num-
bers (I) to (5) in the figures refer to regions I to 5.)

j,r j,r

i//(2) Shock

(i

_a 8___._ _-----_ Streamlineo ,,x o ,,,, X
e

(2) streamline

; (1)

._ Shock

a>0 a<0

Figure 1.- Coordinate system.

With these definitions, the unit vectors tangent and normal to the shock become,
respectively,

^ A A

= i cos a + j sin _ (I)

v = ( sin _- j cos _) sgn _ (2)

(where sgn represents the sign (signum) of the argument) and the first partial
derivatives with respect to x and r in terms of • and v are, respectively,

5x = 5-_cos _ +-_ sin _ sgn e (3)



a _ a sin _ a
ar a_ _ cos _ sgn _ (4)

The flow equations given in cylindrical coordinates x,r (see ref. 5) in the
vertical plane of symmetry and rederived in reference 4 are

2
(a2 - u2)u - uv(v + u ) + (a2 - v2)v = a v gv (5)

x x r r r

I aH T aS
v - u = + ---- (6)
x r q an q an

where q(a/Sn) = u(5/ar) - v(a/Sx), and a/Sn is the derivative normal to the
streamline. Applying equations (3) and (4) to equation (5) and rearranging yields

[(a2 - u2) sin _ + uv cos _]uv sgn _ - [uv sin _ + (a2 - v2) cos _]vv sgn _ = _C_

(7)

where

CO_ a2v + [-uv cos _ + (a2 - v2) sin _]v- _ + gv + [(a2 - u2) cos _ - uv sin _]ur

Likewise after applying equations (3) and (4) to equation (6) and rearranging, one
obtains

(u cos _ + v sin 5) sgn _ = -0 (8)v v

where

q\Dn - T - u sin = + v cos

Step 2.- Elimination of v from equations (7) and (8) yields the followingv
single equation for u :

v

[a2 (u sin = - v cos _)215u- _ = -_ sgn = (9)



or

[a2 (_. %)2]_u- _ = -_ sgn

where

_< = CO sin _ + 0 [uv sin _ + (a2 - v2) cos _]

As the shock approaches the characteristic, a2 approaches (_ . _)2 and hence
the right-hand side _ which goes to 0, becomes the characteristic equation. This
explains why the equations for the derivatives become indeterminate as the shock
strength approaches 0.

Step 3.- Equation (9) applies to the regions ahead of and behind the shock.
Applying it to each and forming their difference gives

la2  2]u2[a22]u2 - " _V - (ql ° %) _ = -(_2 - _<I ) (10)

Xf [II]= Jump, for example, [I_I]:_<2 - _I' then equation (10) may berewritten as

[a2 21[ulu2- " _-J +_ --Lla2 - (_q" $)21] = -[IcJ<l] sgn (:z

where use has been made of the fact that

[IABI]= A2B2 - A1B1= A2B2 - A25+ BIA 2 - B1A1 = A2[IBI]+ BI[IAI]

Step 4.- By solving for [15u/_vl], one obtains

_mu_ _ [I a2- (_[ ;I)2] _ul [1_1] sgn {x : _,4 (11)
= a2-2 (q2 ;)2 _ a2-2 (q2 " ;)2



It is now necessary to show that the right-hand side of equation (11), or _,

2 _ (q2 " _)2 . 0. If is defined as a2 (q2 _)2, thenremains finite as a2 CN2 2 - °
the first term of the right-hand side of equation (11) becomes

2 _ (ql " _)2aI
1 - (12)c

N2

/C , expand [I_I]to getTo compute [I_I]N2

2_v_)cos_][I_I]=[I_I]sin _ + [I0 l][u2v2sin _ + (a2

+01([luvl]sin_ + [la2 -v21]cos=) (13)

Expanding further gives

[IC01-----_]-1CN2 r [la2vl] + g[Ivl--]+ I_la2 -u21]CN2 CN2 CN2 cos e - [luvl] sin lu2_cN2

.[lu_l]
+ [(a_ - u_) cos _ - uIvI sin _J

N2

_/[luvl]cos [la2-v21]sin _IV2CN2 _ - CN2

,[Iv_l]
-[VlU I COS _- (a_- v2) sin _J (_ (14)

N2

and

_ [lull] [Iv_l][IOl_____]=[l(1/q)/(_./_n)l] [l_(_S/_n)l] - sin _ + cos _ (15)C C C C C
N2 N2 N2 N2 N2
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Therefore, to evaluate LI_<I]/CN2,_it is necessary to evaluate and show that

numerous ratios remain finite as CN2 . 0. These evaluations are provided later by

the shock equations in part I(B) of this section as indicated by the notation S#
beside the ratio. These ratios are

[Ivl]
C - S7
N2

[luvl][lull [Ivl]
C = _ v2 + _ Ul = S6v2 + S7ui
N2 N 2 N 2

[la2 2vl]
C = S14
N 2

2
[la 2 - u I]

C = S15

N2

[la2vl]

CN2 - S16

[l(11q)(_Hl_n)l]
C = $17
N2

[I¢T/q)€_S/_n)I]
C = $20
N2

[Iv_l]

CN2 = $13S 3

and

[IsI]
C - $I2S3

N 2



To evaluate expression (12), the first term on the right-hand side of equation (11),

2 )2- (ql"_aI
is shown to remain finite by S3.C

N2

With the definitions of the aforementioned ratios and the determination that

they remain finite, then _, the right-hand side of equation (11), is now defined
and is finite for all shock strengths.

Step 5.- The explicit formulas for the derivatives in region 2 behind the shock
are now developed. All flow quantities and derivatives in region I are known and all
flow quantities (not derivatives) in region 2 are known.

From equation (43), in the equations developed after this section,

[I5_II " _ = S2k[a_- (q2" _)2] sgn _ (16)

and from equation (46),

By definition,

= _ +_ _

Also by definition,

hSq17 5q2 5qI _q2 ^ _q2 ^ 5qI ^ 5qI ^

L[[j_ - _ _ _ • _ + _-_--• vv- 8--#-" _- _-_--" vv

= 5q • _ COS _ + _ °

 cos)+ j _-_ • % sin _ -

I0



By equating the _ and _ components in the aforementioned definitions, the follow-
ing relationships are obtained. From the _ component,

_[,u,] [l_ql] ^ [I_qll . $ sin _5_ = _ •_ cos_+

_-_--=5Z + 5q • _ cos = + _q ° V sin

By using equations (16) and (17), this becomes

5u2 5uI

5_ - 5_ + S2kCN2 cos _ sgn _ + S11CN2 sin _ (18)

Likewise from the 3 component,

0 05_ = _ ° _ sin _ - _ ° V cos

and thus

_v2 5v1

5--_-=5_ + S2kCN2 sin _ sgn _ - S11CN2 cos _ (19)

From equation (11), one obtains

5u2 5uI +_4 (20)
_v _v

and from equation (8),

5v2 1 / 5u21

5-_---= sin _ \_2 sgn _ + cos G _--j (21)

By using the derivatives in terms of _ and v, the following relationships may be
defined directly:

_u2 5u2 _u2
5x = _-_-cos e + _- sin _ sgn e (22)
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0U2 0U2 0U2
Or - 0_ sin _ - -_--cos _ sgn _ (23)

0V2 0V2 0V2
0X - _$ cos e + _--sin e sgn e (24)

0v2 0v2 0v2
Or - 0_ sin _ + _--cos _ sgn e (25)

where these four derivativesare functionsof the shock curvature k.

B - Definitions of Ratios SI to S20 by Using Shock Equations

The jump in the normal derivative across the shock is given by equation (11).

The evaluation of this equation is defined in terms of ratios SI to S20. In this
section the standard shock equations will be used to define the ratios and to show
that they remain finite as the shock approaches a characteristic.

By rewriting the shock conditions as derived in reference 2 in terms of the jump
notation [I I], the r momentum equation becomes

•%1]0 (26)

the continuity equation becomes

[Ip_•_I]= 0 Pi_1• $ = m = _2q2 • $ (27)

the x momentum equation becomes

[Ip(T_ " _')21] + [Ipl] = o m[ITq" ¢'1]+ [Ipl] = o (28)

and the energy equation becomes

lice • %)21]+2_9____R[I_I] = o (29)
y- 1

By using the equation of state

p = pRT (30)

12



and equations (27) and (28) to eliminate p and p, the following equation is
obtained:

Expanding [ITI(_•$)I]and rearranging gives

[ITAI]T2 TI TI TI_ • • ^ "_" -- • A -- -- • -- • ^ ^ •_"_ _2 _ _2 _ q2 _ _i"_ q2 _ (_2_)(_i"v)[1__]

Therefore, equation (31) may be written as

lit • oI][(_I • ¢')(_2" ¢')- RT] + R[ITI](_I • _) = o (32)

Equation (29) may be rewritten as

(_i " _'+ _2" _,)[IT_• OJ]+_ R[ITJ]= o (33)y - 1

Eliminating [ITI] from equations (32) and (33) gives

[1_"%1] (El° v)(q2 " V)- RTI -(ql ° V) -(ql " v)(q2 = 0

and since [ I_I " _l] # 0,

2yRTI = (Y + I)(qI " $)(q2 ° $) - (ql ° $)2(y _ I) (34)

or

(Y + 1)(q I " %)[Iq " _1] = 2[yRT 1 - (ql " ;)2] (35)

which becomes

(Y + 1)(q- 1 " _)[Iq " "_1] = 2a#l (ql "

2
a 1

13



or

• 2
= = $I (36)

2 )2 ^
el - (ql " v (y + l)(qI • v)

Equation (32) may be rewritten with

m A A _ _ A

(ql " v)(q2 " V) ql ° V

to obtain

or

• -2
2 2 = (q2 % = $2 (37)a2 - (q2 ° $) (Y + I) ° )

From equations (36)and (37),one obtains

2 (_i" $)2 %1• 0a 1 -

2 2 = 52 % = $3 (38)a2 - (q2 " 0)

From equations (33) and (37), one may obtain

2 2 = y("{ + 1) - - + = S4 (39)
a2 - (q2 ° %) V

and from equations (28) and (37),

[Ipl] 2m 2P2
= = = s5 (40)

2 _ 2
a2 (q2 " %) (_ + I)(q2 " %) (Y + I)(q2 %)

14



Note that

[I_•_I]=[lullcos_+[Ivl]sine = 0

[lq " Vl] = ([IUl] sin _ - [Ivl] cos _) sgn

[lull=[lq•el]cos_sgn_ + [lq"_I]sin

[Ivl]=[lq"elisin_ - [lq•_I]cos_sgn

where the first expressionsdefinedin [lull and [Ivl] go to 0. Therefore,from
equation (37),

[lul]
2 2 = S2 sin _ = S6 (41)

a2- (q2 ° _)

[ivl]
2 ° _)2 = -S2 cos _ sgn _ = S7 (42)a2- (q2

The ratios S1 to S7 are all used for the v derivatives behind the shock.
From the aforementioned expressions, it is seen that these ratios all remain finite

as the shock strength approaches 0 (i.e., a_- (q2. _)2 . 0).

The tangential derivatives of [I I] across the shock will now be developed.
If _ is defined as the arc length along the shock, then, from equation (26),

_[1_._1]=o= _ ._+[1_1].-_= -_¥k_[IEI]

since

where k is the curvature of the shock. Therefore,

171711B_ii.__ _[I_-_I]ku ,.

15



and

[i£i].
2 (_ ° _)2 = £$2k sgn _ = S8 (43)a2 - 2

From equation (37),

_[I_. $I] = _ • _ • [I_I] • k#

and since [ lql] " _ = 0, then

[I_]._h[t_-;I] : -_

Taking the 5/5_ of equation (36) yields

[!_i]._-_2 ! _(_,"_'[a_ _]
-_ y + 1 (ql _ $)2 _I_ - (ql " %)

2 I 5 [a2 (ql, $)2]+y;1_i . ;5_ I-

and dividing by a2 _ (_ • $)2 givesI

[_q ] ^ _(_ • ;)_" • V 2 1 I

2 _ (_ • _)2 %' + I (qlal 1 " 0)2 _)'_

2 1 -_ 1 - 1
-I- _ =

y + 1 7q1 . V a#- (ql " ;)2 $9 (44)

16



To show that

_L

2 (_ . _)2a I -

remains finite as a2 _ (_ • _)2 . 0, the following substitutions will be made.I I
Denote k as the arc length along the characteristic, in the same sense of
along thelshock, and 5 as the angle of the characteristic with the x-axis. Then,I

. --°

5k - cos 51 _ + sin _1
I

and

5_ - cos 5 _-x+ sin 5 5r

5r 5kI = (cos 5- cos 51)_ + (sin 5- sin 51 5r

Recall that as 5 . el' a_ - (ql • $)2 + 0. The equation

I 2 2

cos 5 - cos _1 = cos 5 + cos 51 (cos 5 - cos _I )

can be rewritten as

I (sin251 sin 2
cos 5 - cos 51 = cos 5 + cos 51 - _)

17



Multiplying and dividing by q_ gives

•cos _ - cos _I = 2 I - I

q1(c°s e + cos el)

since ql sin _1 = al and ql sin _ = ql ° %" Similarly,

sin _ sin _I- = I [(ql ° _)2 - a_l
q_(sin _ + sin _I)

Therefore,

2 (_ • %)2 (_ • %)2 a2

85 _k - 2 _--x+ 2 _-_
ql (cos _ + cos _I ) ql (sin _ + sin _1)

By substitutingthis value into the second expressionof equation (44), the following
resultsare obtained:

2 (ql " _)2 a_- (ql ° %)2a 1 -

= 2 - = $10 (45)
ql (cos _ + cos _i) q2(sin _ + sin _I )

Then, $10 remains finite as e . el" The term 5(ql • %)/5_ in equation (44) may
be expressed as

= cos _ + sin55 5x 5r

18



where

_€_" ;) _('_" ;) _'_ _'_ ;+_ sec_)x = _)_ _x - " "

= _q " V + sgn _ (k_ ° sec

and

c5r "= • v + _ • csc _ = ° V + sgn _ (k_ • csc

Therefore,

5_ - 2 " _ + sgn _ (k_ °

Equation (44) becomes

2 (ql " ;)2- y + 1 (ql ° %)2L\-_ + (k_l " _') sgn
a 1 -

2
+ S = sI (46)

(y + 1)(_ 1 • ;)2 10 1

where S11 remains finite.

By definition,

D-_q• _ = UT cos _ + v_ sin

D-_q• ; = (UT sin _ - vT cos _) sgn

19



Thus,

ur = _ • COS _ + • sin _ sgn

v_ = _ • sin _ - ° cos _ sgn

and

[lu._l] [l_/_l] • % [1_6/_1] • %
C - C cos _ + C sin _ sgn
NI NI NI

= S cos e + S sin e sgn e = S (47)8 11 12

Similarly,

[Iv l]
CN1 - S8 sin e - $11 cos _ sgn _ = S13 (48)

[la21] a2-a 2 yR[ITI]
_ _ _ yS 4

CN 2 CN 2 CN 2

[Iv21] (v3+v2)[Ivl]
_ = (vI + v2)S 7

CN 2 CN 2

[la 2 - v21] [la21] - [Iv21]
CN 2 CN 2 = yS 4 (v I - v2)S 7 $14 (49)

[ a2 _ u21]

CN2 = yS4 - (uI + u2)S6 = $15 (50)

and

[ a2vl] [la21]v 2 a_Elvl] 2
= C + C = YS4v2 + aiS7 = S16 (51)C

N2 N2 N2

20



By definition,

[l_l] =0 a<_>= 01,2

aH _H/a_

an sin(_ - e)

in regions I and 2, and

sin(_ - e) = (q • _)/q

Therefore,

[I_''- ;)I]o_¢q " =

Expanding the previous equation gives

q'_" (q " ;)2 +=q 1

When dividing by CN2, one obtains

El'i]_)H I aH I

q_n ql an [I_";I]q_ _n
- - -- $2 = $17 (52)

a2- (q2 " $)2 q2 " '_ CN2 _q2 ° _'

Also by definition in regions 1 and 2,

_s
- 0

a_

21



and

5S _S/5_ q _S

_n sin(_ - e) _ • _ _

Thus,

i _s - ;) _ _s
q_n(q " _

5S
Expanding T _ by using the expression for entropy in reference 6 gives

= -- R 5T 1 5pT_ _-I T_ - -_T_

After dividing by _ CN2CN2 , q •;_1_1/ N2 and must be evaluated.

]/ , recall from equation (28) thatTo examine the factor [15p/Szl CN2

[Ipl] + m[ITq• ;I] = o

Taking the tangential derivative and dividing by gives
CN2

• " = 0[Ipl]# + m_[t_q ;I] + m[l_ ;I]_

lip+l] [1_" ;I] m[l_" ;I]_
C - ,m_ C C
N2 N 2 N2

[1_. ;I] [1_1]_• ;
= -m_ C m C

N2 N2

22



Thus,

[ip_i]
C m_S2 - mS11 = $18 (53)
N2

1 5Tel shall be examined by first obtaining an expression forThe factor q • v _
L

R[ iTi]_ from the energy equation (eq. (29)):

R[iTI]_= Y2#I[I_"_)21]_

- _- 1.[1(_"¢,)(_• ¢,).=1]Y

After dividing by this becomes
CN2'

c - m=-![(_2¥•_)s1_+(_i"_)J2]
N2

By applying the expansion formula for [iABI](shown below eq. (10)) to

R[IT_/(q ° $)I], one obtains

' [zi]Llq" v -T_--2: _ + nT1_

R[ITI] -[1_" %1]
- +RTI(T_ " (_ "• ,_ • v) • v)2 I; I 2

23



Therefore, after substituting for R[IT l]/(q2 • _),

R[ITJ(";)I] (ql RTI
-- = ..... _S2 _

%2 11 + q2 V (ql " %)(q2 " _) S

Is (ql " ;)(_1 " ;)_- RTI!]
= _ y - 1 + S2 - - 7, -_- ] (54)

y [11 (_ql ° v)(q2 G) J = $19

Returning to the evaluation of IIT _nS_ gives

_ _ T q ° V) = - mU_-_ + _ I
c c c
N 2 N 2 N 2

! sl +--Y---s (55)= -m 8 y- I 19 = $20

The quantities SI to $20 remain finite as CN2 approaches 0 and thus provide
uniformly valid expressions for the ratios needed to evaluate equation (11) and
therefore 5u^/Sv. The solution process for the derivatives behind the shock con-
tinues with seep 5 where the spatial derivatives are determined as functions of the
curvature of the shock.

An application for this system of equations will be shown in part II, in which
the equations for shock coalescence with asymmetric effects are developed.

PART II

APPLICATION OF METHOD TO SHOCK COALESCENCE WITH ASYMMETRIC EFFECTS

The coalescence system is briefly described here. (See ref. 2 for a detailed
derivation of the governing equations of the system.) Two shock surfaces f (r,@)

and f^(r,@) coalesce to form a resultant shock surface f3(r,@), a contactlsurface
h(x,_)_ and a weak (isentropic) shock or expansion or the opposite family f.(r,@).

(See fig. 2.) The problem is first solved axisymmetrically, and at some distance
away from the body it may be treated as a two-dimensional problem, as represented in
figure 3. By assuming that all conditions in regions I, 2, and 3 are known and that

the point of coalescence is known, the unknowns for the system are u4, v4, P4'

T4' u5' v5' P5' T5' _3' and _; where _ is the shock angle with respect to
the upstream flow. The equations the system are four shock equations across f3'
four shock equations across f4 (assuming that f4 is a shock), and matching pres-
sure and flow direction at the slipstream surface h.
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Figure 2.- Three-dimensionalshock coalescence.
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(5)

/ h(x) - Slipstream

V1
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(4)

fl ( r )

(2) f2(r) (3) f4(r)
Weakshockof the

Incomingshocks oppositefamily

Figure 3.- Two-dimensional representation of shock coalescence.

The system is closed with 10 unknowns and 10 equations. To derive the asym-
metric system of governing equations, the system is treated as five intersecting
surfaces along X(@),R(@). (See fig. 2.) The governing equations are the five

intersection equations, five shock equations at f3 (continuity, energy, and three
momentum), five shock equations at f4' and three slipstream equations at h. The
second derivative with respect to _ (circumferential direction) is taken for each
of the governing equations along the corresponding surface. The equations are then

reduced to the _ = 0 plane resulting in 18 unknowns of the form _x__=0 _=0'
and so forth. The asymmetric system would be closed with 18 unknowns and 18 equa-
tions, except that it becomes necessary in deriving the asymmetric equations to know
the spatial derivatives of u, v, p, and T in both regions 4 and 5.
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The method derived in part I of this paper is applied and equations (22) to (25)
provide a method for obtaining v , , v , v , , and in

U4x' 4x U4r 4r U5x' 5x U5r V5r
terms of f" and f" respectively, which are unknown3 4'

The Euler equations in the plane of symmetry, @ = 0, are valid in regions 4

and 5 and are now applied to find relations for Px and Pr in those regions.
Using the Euler equations for Px and Pr gives

P4 = -P4u4u4 - P4v4u4
x x

I I-P5U5U5 r> (57)
P5 - - P5v5u5
x 35 x

I

P4r _ T41_P4U4V4x _ P4V4V4r- gp4) (58)

P5 - -P5U5
r 35 x r

The three equations valid at the slipstream surface h (the tangential derivative
along h of slipstream conditions) are

P4 + P4 hx = P5 + P5 hx (60)
x r x r

u4 hx + U4hxx - v4 + u4 h2x- v4 hx = 0 (61)
x x r r

u5 hx + U5hxx - v5 + u5 h2x- v5 hx = 0 (62)
x x r r

There are 15 equations which may be solved for the 15 unknowns U4x, U4r, v4x'

v4r' u5x' u5r' v5x' v5r' P4x' P4r' P5x' P5r' f_' f"4'and hxx.

To determine the derivatives for temperature T, the enthalpy relationships are
used, where enthalpy H is defined as

q2H = RT + _--+ gz
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By definition, 5H/a_ = 0 where

a a
q _-_ = U _x + V _)r

and from the shock equations derived in the previous section,

C - $17
N2

Therefore,

=q2 N2S17+ql

From the definition of enthalpy,

lu 2) aT2 au2 av25H2 aT2 1 a 2 + v2
- _ + _ m_+ u2 + v2an y- I an 2 an y- I an _

Thus,

aT2 !____[aH 2 au2 av21
a--n-= y \an - u2 a--_- v2 _-_-/

= y - 1 2 u2 au2 u2v2 au2 u2v2 av2 v225v

y _n q2 ar + q2 ax q2 ar + q2 _x/ (63)

Along the streamline,

()T2 ,{_ ii - au2 av2 _

= _\-u2 _-- - V2 _--/

u2 _u2 u2v2 _u2 u2v2 6v2 v2 6v

= _2 _ q2 6r q2 _x q2 _ Y (64)
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From the normal and streamline derivatives of T, the following relationships are
determined:

5T2 u2 5T2 v2 5T2 (65)

5x - q2 5_ q2 5n

_T2 v2 5T2 u2 5T2

5--r-= q2 5r + q2 5n (66)

Equations (65) and (66) applied in regions 4 and 5 provide the four additional equa-

tions needed to determine T4x, T4r, T5x, and T5r.

For the curvature k2 of the streamline _ = r - g2(x) behind the shock, note
that

I!

g2
k2 =

{i.[g cx)]2}312

v2/u2 =where g (x) = or v2 u2 g'(x). The derivative of this equation along the

streamline r = g2(x) yields

' " + + g2+ v2 g2 u2g2 2
V2x r x

Therefore,

k2 = + U2rg_ gu211.(g )21312v2

u2V2x + u2v2<V2r - U2x) - U2rV2= (67)

(u2 + v2)3/2

All quantities on the R.H.S. of equation (67) are known behind the shock from equa-
tions (23) to (25) and (56) to (62). Thus, the curvature of a given streamline
behind the shock may be found by using equation (67).
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CONCLUDING REMARKS

A set of uniformly valid explicit formulas for spatial derivatives of flow quan-
tities behind a shock wave have been developed in terms of the shock curvature. The

equations for jump conditions across a shock have been rearranged so that those quan-

tities which become indeterminate as the shock strength approaches 0 have been elimi-

nated analytically. The resulting formulas are therefore valid for shocks of any
strength.

In the solution of shock coalescence with asymmetric effects as applied to sonic

boom propagationi the need for spatial derivatives behind the shocks arises. Shock

strengths in sonic boom problems may vary from moderate to very weak. This problem

then has need of equations which are valid for finite shocks and also for shocks

approaching zero strength. An outline is provided to show the application of the

uniformly valid formulas developed in this paper to the shock-coalescence problem.
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Hampton, VA 23665

May 21, 1984
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