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1.0 SUMMARY

The main objectives of the NASA Dilution Jet Mixing Phase II

Program were to extend the data base on the mixing of a single-

sided row of jets in a confined cross flow (Reference 5) and to

quantify the mixing of opposed jets in confined cross flow.

Parametric tests were performed to determine the effects of the

following on dilution jet mixing characteristics:

o Orifice spacing to diameter ratio, S/D

o Duct height-to-diameter ratio, HQ/D

o Momentum flux ratio, J

o Non-uniform mainstream profile upstream of the dilution

orifices

o Flow area convergence.

The general conclusions derived from the Phase II efforts are:

o Jet penetrations for two-sided injections are less than

those for single-sided injections, but the jet spread-

ing rates are faster for a given momentum flux ratio

and orifice plate.

o The jet spreading rate in the transverse direction is

faster with an in-line configuration than with a stag-

gered arrangement for a given momentum flux ratio and

orifice plate.

o For constant momentum flux ratio, the optimum ratio of

orifice spacing to duct height, S/Hg, with in-line



injections is one-half of the optimum value for single-

sided injections. For staggered injections, the opti-

mum S/HQ ratio is twice the optimum value for single-

sided injection.

The temperature distribution in the jet mixing regions

is strongly influenced by the mainstream profile up-

stream of the injection point. A superposition of the

mainstream profile on the correlations for uniform

cross flow conditions yields good agreement with data.

Flow area convergence generally enhances mixing. The

two-sided jet mixing characteristics with asymmetric

and symmetric convergence are very similar.

The jet mixing characteristics of square orifices are

similar to those of circular orifices with the same

geometrical area and orifice spacing.

The jet penetration and mixing characteristics of an

equivalent slot are very similar to those for the ori-

fice plate with S/D =2.

The correlations developed in this program predict the

temperature distributions within engineering accuracy.

They provide a useful tool for predicting thermal tra-

jectory and temperature profiles in the dilution zone

with two-sided jet injections.



2.0 INTRODUCTION

Advanced aircraft propulsion gas turbine engines for civil

and military applications require increased thrust or horsepower

per unit airflow. The increased power density often results in

higher average combustor discharge temperature with attendant

reduction of the available dilution air. Effective use must be

made of the available dilution air to tailor the combustor dis-

charge temperature distribution.

The combustor discharge temperature quality is influenced by

nearly all aspects of the combustor design and in particular by

the dilution zone. To tailor the combustor discharge temperature

pattern, the discharge temperature distribution must be charac-

terized in terms of the dilution zone geometric and flow parame-

ters. Such characterization requires an improved understanding of

the dilution jet mixing processes.

The present program has been undertaken to acquire a data

base of dilution jet mixing characteristics to develop empirical

jet mixing correlations and to validate combustor analytical

design models.

The penetration and mixing characteristics of jets injected

into a cross-stream have been investigated by many researchers

and jet trajectories and mixing models have been developed empir-

ically. In most of these cases the jets have been limited to

single jets or one-sided rows of jets. In the gas turbine sys-

tems, a number of dilution jet orifices in single or multiple

rows are used on both sides of combustor liners. The existing

correlations for dilution jet mixing are not applicable to prac-

tical combustion systems. The availability of experimental data

in practical combustor geometries is limited, which results in

only qualitative application of the models in actual design prac-

tice.
3



The efforts reported in References 1 through 5 for a single-

sided row of jets injected into a confined cross-flow provided

the basis for Phase II of the Dilution Jet Mixing Program. The

major part of this test program was directed toward studying the

mixing characteristics of an opposed row of dilution jets (two-

sided) injected into a confined cross flow. The nominal cross-

stream test conditions in this study were: Um = 15 meters/second

(m/sec); Tm = 650°K. The dilution jet velocities (Vj) varied

over a range of 25 to 110 m/sec with the jets at an ambient tem-

perature of 300°K. The test conditions had a range of jet-to-

mainstream momentum flux ratio (J = Pj Vj2/pmum
2) between 6 and

110.

The main objectives of the NASA Dilution Jet Mixing Phase II

Program were as follows:

o Extend the Phase I data base on mixing of a single-

sided row of jets in a confined cross flow to square

holes and 2-D slots

o Quantify the effects of J, HQ/D, and S/D on penetration

and mixing rows of jets injected from two opposite

sides into a confined cross-flow. Investigate both in-

line and staggered configurations

o Determine the effects of non-uniform cross-stream temp-

erature and velocity profiles upstream of the dilution

orifices on the mixing characteristics of two-sided jet

injections in a duct

o Quantify the effects of cross-stream flow area conver-

gence (accelerating cross-stream) with two-sided jet

injections



o Develop empirical correlations for two-sided injec-

tions.

The Phase II experimental effort was divided into the fol-

lowing four test series:

o Series 5: In-line and staggered jet mixing in a con-

stant area duct with uniform cross-stream

profile

o Series 6: Two-sided jet mixing in a constant area

duct with nonuniform (profiled) cross-

stream upstream of the injection point.

o Series 7: Two-sided jet mixing in a symmetrically

converging duct

o Series 8: This test series included:

- Two-sided injections in an asymmetric convergent

duct

- In-line jets with unbalanced momentum flux ratios

- Single-sided jet mixing characteristics of two-

dimensional slots and a row of square holes.

The description of the experimental setup is presented in

Section 3.0. Data acquisition and reduction details are pre-

sented in Section 4.0. Test results and the predictions obtained

from the correlations are presented in Section 5.0. The details

of the correlation are presented in Section 6.0 and conclusions

and recommendations are provided in Section 7.0.
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3.0 TEST RIG AND FACILITY DESCRIPTION

3.1 Test Rig

The jet mixing test rig schematic layout is presented in

Figures 1 and 2. A partially assembled rig is in Figure 3. The

mainstream airflow is ducted from the test cell main air supply

through a 15.24 centimeter (cm) internal diameter pipe. A tran-

sition section connects the inlet pipe to a rectangular cross

section of constant width (30.48 cm) and adjustable height.

A perforated plate with 25 holes of 1.43-cm diameter pro-

vides a relatively uniform airstream upstream of the profile gen-

erator plenum. The profile generator duct incorporates an

adjustable bottom wall to match the test section inlet height,

which can vary from 10.16 to 15.24 cm.

A separate air supply is used for the profile generator to

provide the desired radial profile of temperature and velocity

upstream of the jet-injection plane.

A third air supply feeds the dilution jet orifices on the

top and bottom walls of the test section. Separate flow control

valves facilitate independent control of the top and bottom jet

velocities. The supply temperatures of the top and bottom jets

are the same in this arrangement.

The rig walls are insulated with a 2.54-cm thick layer of

Kaolite insulation to mimimize the rig heat losses.

In addition to a traversing Pt/Ps/T rake, as shown in Fig-

ure 2, the rig instrumentation includes a number of wall static

pressure taps and flow thermocouples.



A brief description of the profile generator, test sections,

and dilution orifice plates is provided in the following para-

graphs.

3.1.1 Profile Generator

A profile generator (Figure 4) provides a desired radial

profile in the mainstream. This is achieved by varying indepen-

dently the flow conditions of the approaching mainstream and the

flow injected from the profile generator. As shown in Figure 2,

a separate air supply is used to vary the temperature and veloc-

ity of the air supplied to the profile generator slot (2.54-cm

high and 29.2-cm wide). The supply-air duct dumps the air into a

rectangular plenum (or settling chamber) of 30.48 x 16.75 x

12.7-cm dimensions. The slot is fed uniformly through an

inclined perforated plate having 50 orifices of 1.47-cm diameter

(Figure 4).

Three wall static pressure taps and one thermocouple were

used to control the plenum air pressure and temperature levels.

3.1.2 Test Sections

Three different test section configurations (Figure 5) were

used in the present investigation. The dimensional parameters of

these test sections are summarized in Table 1.

Test Section I has a constant channel height (Kg = 10.16 cm)

and slightly more than 2H0 length to allow radial profile mea-

surements at X/HQ = 0.25, 0.5, 1.0, and 2.0.

8



TABLE 1. DEFINITION OF TEST SECTIONS

Test
Section
Number

I

II

III

Description

Constant
Height

Symmetric
Convergence

Asymmetric
Convergence

Test Section
Height (cm)

Injection
Plane

10.16

10.16

10.16

Exit
Plane

10.16

5.08

5.08

Jet
Injection
Angle
(Degrees)

Top

90.0

104.0

116.6

Bottom

90.0

104.0

90.0

Test
Section
Conver-
gence
Rate
-dh
dx

0

0.50

0.50

Test Section II is symmetrically converging with a conver-

gence rate (defined as -dh/dx)of 0.5; the corresponding inclina-

tion angle is 14.0 degrees for both top and bottom walls. The

jet injection angle is 104 degrees. The test section injection

to exit plane area ratio is 2.0. The duct height at the injec-

tion plane is 10.16 cm.

Test Section III is an asymmetric convergent duct with a

convergence rate equal to that of Test Section II. The bottom

wall of Test Section III is horizontal and the top wall inclina-

tion is 26.6 degrees with an attendant jet injection angle of

116,6 degrees.

All test sections have a 10.16-cm channel height at the

injection plane. The inlet channel heights of the Test I Section

is 10.16 cm whereas that of Sections II and III is 15.24 cm. To

match these inlet heights, the profile generator section height

was adjusted by means of a moveable bottom wall.



To provide a well-controlled boundary layer profile at the

injection plane, a boundary-layer trip (0.41-cm high and 0.33-cm

wide) was welded to the four walls of the test sections. The

trip is located 15.24 cm upstream of the jet injection plane.

A number of static pressure taps are installed on the four

walls of the test sections. As delineated in Figure 6 for Test

Section I, a total of 32 wall taps were used to measure static

pressure distribution. Four thermocouples (two thermocouples

extending from the top wall and two through the bottom wall) were

used for monitoring the mainstream gas temperature levels. These

thermocouples were immersed 1.27 and 3.81 cm from the bottom and

top walls, respectively.

3.1.3 Dilution Orifice Plate Geometry

Five circular dilution orifice configurations were used in

this investigation. Table 2 gives the important dimensions of

the orifice plates. Some of these orifices are illustrated in

Figure 7. These plates are designated by 3-set numerals indicat-

ing aspect ratio, S/D and Hg/D. The aspect ratio is unity for

circular orifices.

These orifice plates gave the following variations in the

orifice sizes (D), S/D and Hg/D:

D 1.27, 1.80, and 2*54 cm

S/D 2.0, 2.83, and 4.0

HQ/D 4.0, 5.67, and 8.0

Where Hg (test section height) =10.16 cm

10



TABLE 2. DESCRIPTION OF DILUTION ORIFICE PLATES

Designation

01/02/04

01/04/04

01/02/08

01/04/08

01/03/06

Orifice
Diameter, D

(cm)

2.54

2.54

1.27

1.27

1.80

Number of
Orifices

6

3

12

6

6

i

S/D

2

4

2

4

2.83

HO/D

4

4

8

8

5.67

S/H0

0.50

1.00

0.25

0.50

0.50

S = Orifice center-to-center spacing

HQ = Test section height at the jet injection point

In addition to the above orifice plates, tests were also

performed with two-dimensional slots and a row of square holes.

These tests were limited to single-sided jet injections. The

length of the slots used in these tests was 29.7 cm. The widths

of the two slots investigated were 0.5144 and 1.024 cm, respec-

tively. The orifice plate with square holes had 3 orifices with

center-to-center orifice spacing of 9.0 cm. The sides of the

square holes had the dimension of 2.25 cm. This orifice plate

has the same orifice geometrical flow area as Plate No. 01/04/04.

3.2 Test Facilities

The test rig was installed in Combustion Test Cell C-100.

Three separate nonvitiated air supplies were used to control flow

conditions of the mainstream, profile generator, and dilution

jets.

11



The mainstream air temperature was regulated from ambient to

725K. For the majority of the test cases the mainstream nominal

temperature and flow rate were 644K and 0.27 ki log ram/second

(kg/sec), respectively. The mainstream temperature was measured

by thermocouples located at the test section entrance. A stan-

dard ASME orifice section installed in a 15-cm inside diameter

pipe was used for measuring the mainstream airflow rate.

A second, separately controlled air supply was used for the

profile generator, which can be installed in either the top or

bottom walls of the test rig. The mainstream profile was

adjusted by varying the pressure drop across the profile genera-

tor and the attendant airflow rate. The airflow rate was mea-

sured by an ASME orifice in a 7.62-cm inside diameter pipe.

A third air supply was used for controlling the top and bot-

tom dilution jet flow conditions. Additional flow control valves

were installed in the top and bottom dilution jet flow lines to

facilitate independent control of the jet flow rates. The dilu-

tion jet temperature was maintained at the ambient temperature

and no external heater was required for the test cases. The

dilution air flow rates were measured using a standard bellmouth

nozzle section.

12



4.0 DATA ACQUISITION AND REDUCTION

4.1 Data Acquisition

The dilution jet mixing characteristics were determined by

measuring temperature and pressure distributions within the test

section at different axial stations. A traversing probe (Figure

8) was used for this purpose.

The probe consists of a 20-element thermocouple rake sur-

rounded by 20 total-pressure sensors on one side and 20 static-

pressure rakes on the other side. The nominal transverse spacing

between the thermocouple rake and the total pressure rake is

0.508 mm. The spacing between the thermocouple and the static

pressure elements is 0.508 mm.

The height of the probe between the top and the bottom ele-

ments is 9.35 cm. The first element is located 0.405 cm from the

top wall of the constant-height test section (Test Section I).

All the elements are equally spaced in the vertical direction,

providing a nominal spacing of 0.492 cm.

The total-pressure sensor elements are made of Inconel tubes

with an outside diameter of 0.16 cm and a wall thickness of

0.023 cm. The internal conical design of the tube at the inlet

provides a ±15 degree flow insensitivity angle. The static pres-

sure tubes, similar to the total pressure sensors, are dead-ended

with four bleeding holes of 0.03-cm diameter 90 degrees apart and

0.7 cm from the tip. The total temperature sensors are type K

thermocouple wires with insulated junctions encased in 0.10-cm

inside diameter tubes, supported by 0.21 cm inside diameter enve-

loping tubes. The insulated junction tubes exposed to the air

stream are 0.76-cm long. The sensing elements have a straight

length of 1.52 cm or more before the first bend to the probe core

13



where all tubes are inserted in a rectangular probe shield, 4.32

x 0.67 cm.

The probe is mounted on a traversing system (Figure 9) that

allows travel in three directions. This system allows for a

30.48 cm traverse in the X-direction (mainstream flow direction)

and 22.86 cm in the radial (Y) and transverse (Z) directions with

an accuracy of ±0.015 percent. The flow field mapping in the Z

direction is done over a distance equal to 1.0 or 1.5 times the

hole spacing (S) for in-line or staggered configurations, respec-

tively. The measurements in the Z direction for single-sided

injections and in-line configurations with two-sided injection

were made at the eleven transverse planes identified by Z/S =

-0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, and 0.5,

where Z/S = 0 denotes the center of the orifice. For the stag-

gered configuration with two-sided injection, the measurements

were for a total of sixteen transverse planes made at Z/S = -0.5

to 1.0 at intervals of 0.1. The measurements in the X-direction

were made at the four axial planes X/Hg = 0.25, 0.5, 1.0, and

2.0. The probe was traversed over a matrix of 11 x 4 survey

locations for in-line orifice configurations and 16 x 4 for stag-

gered configurations.

The temperature and pressure values from the test rig

instrumentation were recorded on magnetic tape through a central

computerized data acquisition system. An on-line data display

system provided real-time information on selected raw data for

monitoring the flow conditions. The raw data from the magnetic

tape was later used for detail data reduction, analysis, and cor-

relation.
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4.2 Data Reduction

The rectangular grid network at which the measurements were

made can be described with the aid of Figures 1 and 10. The

X-axis is the axis along the length of the duct in the direction

of the bulk flow. The X=0 station is located at the jet injec-

tion plane. The Y-axis (radial direction) is the direction along

the jet injection direction. The Y=0 plane is located at the top

jet orifice exit plane. The Z-axis is in the cross-stream direc-

tion. The Z=0 plane is the vertical X, Y plane at a jet center-

line. The streamwise (X) and radial (Y) distances are nondimen-

sionalized by HQ, the channel height at the jet injection plane.

The lateral distance, Z, is nondimensionalized by S, the dilution

orifice spacing.

The measured gas temperature distributions are presented in

a nondimensionalized form as:

Tm - T(X, Y, Z)
0(X, Y, Z) = m - _ M .

where,

Tm or TMAIN = Mainstream stagnation temperature

Tj or TJET = Average jet stagnation temperature

T(X, Y, Z) = Stagnation temperature at the point (X, Y, Z) in

the flow field.

6 is a measure of the temperature change due to the jet at

any point (X, Y, z) compared to the maximum possible temperature

change and can vary from 0.0 to 1.0. 0 is equal to zero when the
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local temperature equals the mainstream temperature; and 9 is

1.0 when the local temperature equals the jet temperature. When

the jet and the mainstream are perfectly mixed, the local tem-

perature reaches ideal equilibrium temperature, TEB/ given by

mm Tm

The ideal equilibrium temperature difference ratio (0£B or

THEB) is defined as

0TO - Tm - TEB

The parameter, OEB^ provides a measure of the quality of the jet

mixing. The arithmetic average temperature (Tav) at any X plane

and the corresponding 0av /= TnT Tav\ar(a also presented with the
\ Tm~ Tj /

reduced data to provide the information on the average value of

the temperature field at that plane.

The measured 9 values are presented in three-dimensional

(oblique) plots at each X-station. The oblique plots provide a

convenient means of presenting the jet trajectory and mixing.

The measured 0 values are also presented in the form of isopleths

for each X-station for the purpose of detailed comparison with

correlations. These plots are presented over a 2S span in the Z

direction by assuming symmetry of the 0 distribution with respect

to the midplane between two orifices. This assumption was

invoked only for the purpose of improving the clarity of visual

presentation of the temperature distribution. The accuracy of

this assumption depends upon the uniformity of flow distribution

across the jet orifices. Preliminary tests were performed to

16



ensure that the jet mass flow was uniformly distributed over the
entire orifice plate configuration. A comparison of the data and

correlations is presented in a radial profile of 6 versus Y/HO
along the jet centerplane at each of the measured X/H0 stations.

The pressure recordings from the probe rake were used to
compute the "velocity V(X,Y,Z) at the point (X,Y,Z). An inter-

polation scheme was used to compute pressure (Ps) values at the
point where probe thermocouples are located. From these total

and static pressures, a nondimensionalized velocity, V(X,Y,Z)/Vj,
was computed. V(X,Y,Z) is obtained from

V(X,Y,Z) = {2 [pt (X,Y,Z) - Ps (X,Y,Z)]/p(X,Y,Z)} 1/2

The jet velocity, V j, is calculated from

Vj = 4 fflj / ( PJ N7rD2 CD)

where D is the orifice diameter, N is the number of orifices, Pj

is the jet density (Pj/RTj), and CD is the orifice discharge

coefficient.

The orifice discharge coefficients were determined by mea-

suring the pressure drop across the orifice plate (without cross-
flow) for a range of mass flow rates. The discharge coefficient,

CD/ was obtained from the relation

A? = 1.99
P

wc

where, WG ^s ^he corrected flow rate in lbm/sec and A is the geo-

metric area of the orifices in square inches.

XT fc « T(°R) , . P(Psi)Note: wc = wa —r-l 0 = ̂ fr and 6= i4.696
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The velocity vector in the vicinity of the jet injection

plane is predominantly in the radial direction. In such regions,

the velocity values obtained from the rake probe are not expected

to be accurate. For the sake of brevity, the measured velocity

distributions are not presented in this report. However, tables

of nondimensional velocity distribution, V(X,Y,Z)/Vj, in addition
to total and static pressure distributions, are provided for each

test case in the Comprehensive Data Report (CDR) on this program.

An important parameter relevant to the jet description is

the jet momentum flux ratio, J, defined as

j = PjVj2 / (PmVra2)

where

Pj = Jet density

Pm = Mainstream density = Pm/(
RTm)

Vj or VJET = Jet velocity at the orifice Vena Contracta

Vm or VMAIN = Mainstream Velocity = mra/(pmAm)

Am = Effective mainstream flow area.

Other flow parameters of interest are:

Mass flux ratio (blowing rate), M or BLORAT = PjVj/pmVm

Temperature ratio, TRATIO = Tj/Tra

Density ratio, DENRATIO = Pj/Pm

18



Velocity ratio = Vj/Vm

The geometric parameters of importance associated with the ori-

fice configuration are: S/Dj and HQ/Dj» where Dj is the effective

jet diameter defined by

The quantities described in this section define the geomet-

ric and flow conditions of each test and are reported along with

the reduced data.

The average mainstream velocity, Vm and the average jet

velocity, Vj, are mass weighted average values for the test.

They represent the correct momentum flux for the mainstream and

the jet respectively. For the two-sided injections, this pro-

cedure is adopted for the top and the bottom injections while

reducing the test data. The results are presented in non-

dimensional form for the two-sided injection as:

T - T

where, Tj = (TjT +
 TjB) /2

with Tj_, and Tj being the stagnation temperatures of the top and

bottom jets, respectively.
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5.0 EXPERIMENTAL DATA DISCUSSION

The Phase II test program was divided into four test series

(Series 5 through 8). Series 1 through 4 testing was conducted

during the Phase I program(S). For each of the Phase II test

series the measured data and predictions obtained from the cor-

relations are discussed in the following paragraphs.

5.1 Series 5 Tests

The purpose of this test series was to investigate the jet

penetration and the mixing characteristics of two-sided dilution

jets injected into an isothermal, hot confined cross-flow in a

straight duct (Test Section I) with a channel height of 10.16 cm.

The jet configurations studied in this series included in-line

and staggered arrangements. A total of 12 tests were performed.

The orifice geometrical description and the nominal flow condi-

tions are listed in Table 3.

Test No. 1 used two identical orifice plates (01/02/08) in

an in-line configuration. The momentum flux ratio of the top jet

(JT) was 6.81, whereas that of the bottom jet (Jg) was 6.88.

Figure 11 illustrates the measured distribution of non-

dimensional temperature difference (6).

The top part of Figure 11 shows the oblique plot of the 0

profiles at four axial stations of X/Hg = 0.25, 0.5, 1.0, and

2.0. The bottom part of the figure shows the measured contours

for the corresponding stations.

The mixing performance for any given configuration can be

estimated from the deviation of 6 distribution about #EB' A

small deviation from 0EB characterizes nearly complete mixing of

the jet and the mainstream. The #EB value for Test 1 is 0.1982,

21
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which corresponds to Contour 4. In Figure 11, the #EB contours

are deformed by the penetration of the jets. This deformation is

gradually smoothed out farther downstream. The location of the

jet centerline can be identified from the centroid of the largest

contour value. For Test 1, at X/HQ = 0.25, the jet centerline is

inside Contour 10, which is at Y/Hg = 0.20.

The jet spreading in the transverse (Z) direction can be

inferred from the smoothness of the contour shapes. For Test No.

1, the presence of the individual jets can be seen at X/Hg = 0.25

and the jets rapidly merge with adjacent jets beyond X/Hg = 0.5.

The mixing in the radial (Y) direction is substantially slower

than that in the transverse direction.

The predicted theta distributions for Test No. 1 obtained

from the correlations are illustrated in Figure 12. The details

about the correlations are described in Paragraph 6.1.1. In Fig-

ure 12, the top part shows the predicted theta contours, while

the bottom part illustrates the comparison between measured and

predicted centerplane theta profiles. The predictions are repre-

sented by solid lines and the data by symbols. The correlations

accurately predict the centerplate theta profiles in the region

of interest. However, the correlations underestimate the jet

mixing in the transverse direction as shown by the bottom part of

Figure 11 and the top part of Figure 12.

Figure 13 shows the measured theta distributions for Test

No. 2 with orifice plates 01/02/08 in an aligned configuration at

JT = 24.95 and JB = 24.76. At this test condition, the jets

penetrate to about 30 percent of the duct height at X/HQ =0.25.

At this axial station, the jets have not merged with the adjacent

or the opposing jets. At X/HQ = 0.5, the jets begin to interact

with each other and approach the equilibrium theta value, #EB =

0.3179 (contour 6) at X/Hg = 1.0. For this case, mixing in both
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radial and transverse direction is rapid, and the mixing rates

are faster than that seen in Test 1.

Test No. 2 uses the same orifice geometry as is used in Test

No. 5 in Reference 5, at comparable momentum flux ratio. How-

ever, the test with two-sided injection (Test No. 2) has twice

the jet flow rate. Comparison between the data for two-sided

injections (Figure 13) and single-sided injection (Figure 20 of

Reference 5) shows that the jet penetration is reduced, however,

the mixing rate is faster for two-sided injections compared to

the single-sided row of jets.

The predicted theta distributions for Test No. 2 are pre-

sented in Figure 14. At X/HQ = 0.25, the correlations accurately

predict the transverse as well as radial theta variations. Fur^

ther downstream, the model slightly underestimates mixing rates

in the transverse and the radial directions.

Figure 15 presents the measured theta distributions for Test

No. 3 with orifice plates 01/02/08 in an aligned configuration at

JT = 101.83 and JB = 104.31. For this test case, the jets

impinge against each other near mid-channel at X/HQ =0.25. As a

result of this impingement, the jets are well mixed with the

neighboring jets thereby resulting in little variation in the

transverse direction. The jet mixing in the radial direction

continues beyond X/HQ =1.0.

The predicted theta distributions for Test No. 3 are illus-

trated in Figure 16. The predicted theta contours are in good

agreement with the data (bottom part of Figure 15) throughout the

region of interest. The jet spreading in the radial direction is

slightly underpredicted.
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Test 4 used orifice plates 01/02/08 in a staggered arrange-

ment with JT = 6.53 and JB = 6.59. The measured theta distribu-

tions are presented in Figure 17. The jet penetration in Test 4

is approximately 20 percent of channel height at X/HQ = 0.25.

Comparing Figures 11 and 17 shows that the mixing characteristics

for orifice plate 01/02/08 are similar for both the in-line and

staggered arrangements. For small orifice spacings (S/D < 2),

the jet interactions produce little temperature variations in the

transverse (Z) direction. Therefore, the differences between

characteristics for in-line and staggered configurations are

minimal for orifice plate 01/02/08.

The predicted theta distributions for Test No. 4 are pre-

sented in Figure 18. The predictions for staggered injection are

obtained by superimposing the correlations for one-sided injec-

tions from the top and the bottom. The description of the corre-

lations is given in Paragraph 6.1.2. The radial profiles shown

in Figure 18 are for the X-Y plane in-line with the top jet. The

correlations overpredict the jet penetration and the mixing in

the radial direction. The predicted jet spreading rate in the

transverse direction compares well with the data.

The correlations for staggered injections show poor agree-

ment with the data for orifice plate 01/02/08. Test No. 4 (with

staggered injections) has comparable momentum flux ratio with

Test No. 1 (with in-line injections) . Comparisons of the theta

distributions for these two tests (Figure 18 and Figure 11) show

similar characteristics. Due to the similarities between the

two, in-line correlations were used to obtain predictions for

Test No. 4. These results are shown in Figure 19. The predicted

centerplane theta profiles for this case are in good agreement

with the data. Comparing Figures 17 and 19 shows that the corre-

lations underestimate the mixing in the transverse direction.
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The in-line correlations give better agreement than do the super-

imposed correlations.

Figure 20 shows the measured theta distributions for Test

No. 5 with orifice plates 01/02/08 in staggered arrangement with

JT = 25.17 and JB = 24.7. At X/HQ = 0.25, the jets penetrate to

about 35 percent of the local channel height. Beyond this axial

station, the jet mixing continues gradually. Relatively uniform

stream condition is approached at X/HQ = 2.0. Comparing Figures

13 and 20 shows that at the comparable momentum flux ratio, the

difference in the mixing characteristics between in-line and

staggered configurations are negligible for closely spaced (S/D =

2) small orifices (D = 1.27 cm).

The predictions obtained from the superimposed correlations

for Test No. 5 are illustrated in Figure 21. At X/Hg = 0.25, the

correlations underestimate the peak 6 values but correctly pre-

dict the jet penetration. The predicted jet spreading in the

transverse direction is faster th'an that indicated by the data.

The agreement between predicted and measured radial profiles pro-

gressively improve with increasing axial distance.

The predicted theta distributions for Test No. 5 using the

correlations for in-line injections are illustrated in Figure 22.

An improved agreement is achieved (Figure 22), compared to the

results shown in Figure 21.

Figure 23 shows the measured theta distributions for Test

No. 6, (orifice plates 01/02/08) in staggered arrangement (J-p =

99.3 and Jg = 97.3). For this case, even though the jets are in

staggered arrangement, the measured theta profiles are similar to

that of in-line jets presented previously in Figure 15. There is

little difference in the mixing characteristics between in-line

and staggered configurations at the high momentum flux ratio.
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This conclusion was also reached for the low and medium momentum

flux ratios with orifice plate 01/02/08.

Figure 24 shows the predicted theta distributions from

superimposed correlations for Test No. 6. For this case, the
correlations slightly underestimate the mixing in the radial

direction at X/HQ = 0.25. Further downstream, the agreement

between data and correlations is very good.

Figure 25 shows the theta distributions for Test No. 6 pre-

dicted by the correlations for in-line injection. The predicted

and measured centerplane profiles are in good agreement through-

out the region of interest. For this high momentum flux ratio

(J = 99), the correlations show smaller differences between in-

line and staggered configurations than those observed for the low

and medium momentum ratio test cases.

Tests Nos. 1 through 6 were performed with orifice plate

01/02/08 which has S/D = 2, HQ/D = 8, and D = 1.28 cm. Tests

Nos. 7 through 12 were performed with orifice plate 01/04/08 (S/D

= 4, HQ/D = 8 and D = 1.28 cm). These tests included both in-

line and staggered orifice configurations.

Figure 26 displays the measured theta distributions for Test

No. 7 with orifice plates 01/04/08 in aligned configuration with

JT = 7.85 and JB = 7.81. At X/HQ = 0.25, the jets penetrate up

to about 30 percent of local channel height. At this axial sta-

tion, the jets do not interact with each other. Beyond X/Hg =

0.25, the jets gradually mix with the mainstream and the adjacent

jets and approach equilibrium theta value of 0.1121 at X/HQ =

2.0. Comparing Figures 26 and 11 shows that with increasing S/D,

the mixing rate in the transverse direction is reduced and the

jet spreading rate in the radial direction is increased.
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The predicted theta distributions for Test No. 7 are shown

in Figure 27. The correlations slightly overestimate the jet

penetration and peak theta values. The jet spreading in the

radial and the transverse direction are accurately predicted by

the correlations. Comparing Figures 12 and 27 reveals that the

correlations also show an increased mixing rate with increasing

S/D.

Figure 28 shows the measured theta distributions for Test

No. 8 with orifice plates 01/04/08 in aligned configuration with

JT = 27.92 and JB = 27.32 (medium momentum flux ratio). For this

test case, the jets impinge with the opposing jets near mid-

channel at X/HQ = 0.25. At this station the adjacent jets have

minimum interaction. Further downstream an increasing level of

jet interaction can be seen. The jets gradually mix in the

radial and the transverse direction and approach the equilibrium

conditions (0EB = 0.1896). Comparing Figures 13 (S/D = 2.0) and

28 (S/D = 4.0) shows temperature uniformity in the transverse

direction is achieved at X/HQ =0, whereas the radial temperature

gradients exist even at X/HQ = 2.0. The jet penetration and the

mixing rates in the radial direction are enhanced by increasing

jet spacing from 2D to 4D.

The predicted theta distributions for Test No. 8 are shown

in Figure 29. The correlations slightly overestimate the jet

penetration and the spreading in the radial direction. The pre-

dicted and measured jet spreading in the transverse direction are

in good agreement. The overall agreement between data and corre-

lations is good.

Figure 30 gives the measured theta distribution for Test

No. 9 with orifice plates 01/04/08 in aligned configuration with

JT = 108.3 and JB = 107.0 (high momentum flux ratio). The jets

injected from the two sides of the duct impinge against each
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other near mid-channel at X/Hg = 0.25, and the variation in the

transverse direction is small. The jets gradually mix with the

mainstream and reach equilibrium theta value of 0.3271 at X/Hg =

2. Comparing Figures 15 (S/D = 2.0) and 30 (S/D = 4.0) shows

that, for S/D = 2.0f the theta isopleths are essentially hori-

zontal lines, while for S/D = 4.0, the theta isopleths show

larger variation in the transverse direction. This demonstrates

that with increasing S/D ratio, the mixing rate in the transverse

direction is decreased.

The predicted theta distributions for Test No. 9 are pre-

sented in Figure 31. The correlations for this test case

slightly underestimate the jet spreading in the transverse direc-

tion. The correlations correctly estimate the mixing in the

radial direction.

Figure 32 presents the measured theta distribution for Test

No. 10 with orifice plates 01/04/08 in staggered configuration

(JT = 5.97 and JB = 6.14). At X/H0 = 0.25, the jets penetrate to

about 0.25 channel height. They share little interaction with

adjacent or opposing jets. The jets gradually mix with the main-

stream and the adjacent jets and approach equilibrium conditions

(#EB = 0.1019) at X/HQ = 2.0. Comparing the relative performance

of in-line (Figure 26) and staggered (Figure 32) two-sided injec-

tions with momentum flux ratio (J % 7.0) shows that the

asymptotic theta distribution is similiar and that at the initial

stations, the contours are displaced in the transverse direction

in the staggered configuration.

Figures 17 (S/D = 2.0) and Figure 32 (S/D = 4.0) show the

effect of orifice spacing on mixing characteristics for staggered

jets with low injection velocities. Better transverse-direction

mixing is achieved with closely spaced orifices even though the

jet momentum flux ratio is low (approximately 6.0).
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The predicted results for Test No. 10 are presented in Fig-

ure 33. At X/HO = 0.25, the predicted mixing rates are faster

than measured data. The predicted peaks of 6 are approximately

half of the measured peaks. The correlation progressively

improves with increasing axial distance, i.e., X/HQ.

Figure 34 shows the measured theta distributions for Test

No. 11 with orifice plates 01/04/08, in staggered configuration

(JT = 25.68 and JB - 25.69). At X/HQ = 0.25, the jets penetrate

to about 40 percent of the channel height. The jets have sig-

nificant interaction with opposing and adjacent jets. At the

downstream stations, the jets rapidly mix with the mainstream and

approach equilibrium conditions (#EB = 0.1888). Comparing the

mixing performances of in-line (Figure 28) and staggered (Figure

34) configurations shows that for the staggered injections, the

jet spreading rate in the radial direction is faster than that of

the in-line arrangement. However, the jet spreading rate in the

transverse direction for the in-line configuration is faster than

that for the staggered injections.

The predicted theta distributions for Test No. 11 are shown

in Figure 35. At X/Hg = 0.25, the predicted radial profile shows

relatively large deviations in theta values from the data. How-

ever, the predicted results correlate well with the data at the

downstream stations. The correlations underestimate the jet

spreading in the transverse direction. The overall agreement

between data and predictions is good.

Figure 36 presents the measured theta distributions for Test

No. 12 with orifice plates 01/04/08 in staggered configurations

(JT = 103.1 and JB = 104.3). At X/HQ = 0.25, the jets impinge on

the opposite wall. The mixing rate is enhanced beyond that sta-

tion. Comparing the mixing characteristics between in-line and

staggered injections (Figures 30 and 36, respectively) shows sub-
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stantial differences between the two arrangements for X/HQ < 2.0.

However, at X/HQ = 2.0, both in-line and staggered injections

give nearly uniform theta distributions with values corresponding

to equilibrium conditions (0EB)•

The predicted theta distributions for Test No. 12 are shown

in Figure 37. The correlations underestimate the jet penetration

and the maximum theta value. The agreement between data and cor-

relations for this case is poor. For this test case, the jet to

mainstream mass flow rate ratio is 0.47, which is too high for

practical situations.

5.1.1 Test Series 5 Conclusions

Test Series 5 was performed with a constant cross-sectional

area duct and uniform mainstream temperature. Two orifice plates

(01/02/08 and 01/04/08) were used to study the mixing charac-

teristics in two-sided, aligned and staggered dilution jet con-

figurations. Model correlations have been obtained for two-sided

injections and predictions were compared with test data. The

following conclusions are made from these efforts:

o The jet penetration for two-sided in-line jet configu-

rations is less than that for single-sided jet injec-

tion. However, the jet spreading rates in the radial

and transverse directions are faster for two-sided

injection at a given momentum flux ratio.

o The jet spreading rate in the transverse direction is

faster with inline configuration than with the stag-

gered arrangement of jets for a given orifice plate and

momentum flux ratio.
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The jet mixing characteristics with in-line and stag-

gered configurations for the orifice plate 01/02/08

(S/D = 2, HQ/D = 8) , are almost identical at a given

momentum flux ratio.

The mixing characteristics for orifice plate 01/04/08

(S/D = 4, HQ/D = 8) with in-line arrangement is sub-

stantially different from the staggered arrangement.

The jet spreading rate in the radial direction is

slightly faster with orifice plates in staggered con-

figuration.

The correlations developed in this program predict the

temperature distribution within engineering accuracy

and provide a very useful tool for predicting the

thermal trajectory and temperature profiles for opposed

jet injections into a confined cross flow. The corre-

lations predict the temperature field accurately for

in-line configuration of jets. The correlations for

staggered arrangements gives only qualitative agree-

ments with data and further efforts are needed to

refine the correlations.

For in-line injections, with equal momentum flux ratios

for the opposing jets, the effective channel height is

half of the duct height.

For a constant momentum flux ratio, comparison between

data for single-sided and two-sided injections shows

that the optimum ratio of orifice spacing to duct

height with in-line injections (S/H) is 1/2 of the

optimum value for single-sided injection. For stag-

gered injections, the optimum S/H ratio is twice the

optimum value for single-sided injection. The optimum
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value of S/H for single-sided injection has been shown

to be (Reference 14}

(S/D)opt =* 2.5A/5".

5.2 Series 6 Tests

The objective of this test series was to investigate the

mixing characteristics of two-sided, in-line and staggered jet

injections with a confined cross-flow having non-uniform tempera-

ture and velocity distribution upstream of the jet injection

plane. In this test series, the non-uniform mainstream tempera-

ture was generated by using a profile generator described in Sec-

tion 3.0. A total of six tests were performed, with orifice

geometries and flow conditions as listed in Table 4. The profile

generator was located near the top wall of the test section and

the resulting mainstream profiles are referred to as "top cold."

Tests 13 through 15 were conducted with orifice plate 01/02/08

and Tests 16 through 18 were performed with orifice plate

01/04/08.

The mainstream temperature profiles generated in this test

series are illustrated in Figure 38 in a non-dimensional form,

0p:

T " Vy)P

where

_

Tmax - Tj

Tmax = Maximum value of the profiled mainstream

stagnation temperature.
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T (y) = Local value of the mainstream stagnation tem-

perature upstream of the jet injection plane.

T. = Average jet stagnation temperature.

The nondimensionalized temperature variable, 0, represents

the ratio of actual temperature change due to the dilution jets

to the maximum possible temperature change for any given flow

condition. The value of 9 will always be bounded between 0 and

1. For Test Series 6 cases, the 0 definition was modified to:

0(x,y,z) =
T - Tmax

The NASA/Garrett correlations for these test cases were also

modified to be consistent with this theta definition. Details of

these modifications are presented in Paragraph 6.1.3.

Figure 39 shows the measured theta distributions for Test

No. 13, with top cold profile (J? = 24.63, JB = 24.72, S/D = 2

and Hg/D = 8) . For this test case, the orifice plates were in an

aligned configuration. The test data shows that the jets pene-

trate to about 30 percent of the duct height at X/HQ = 0.25.

Beyond that axial station, the jets gradually spread in the

transverse and radial directions. At X/HQ = 2, the theta distri-

butions show little variation in the transverse direction, yet

the radial profiles retain a shape similar to that of the main-

stream theta profile (Figure 38) . Comparing the data for the

isothermal mainstream (Figure 13) and the profiled mainstream

(Figure 39) with the same orifice plate and comparable momentum

flux ratio shows that the jet penetration and mixing characteris-

tics for the two cases are similar. The shape of the theta dis-

tributions with profiled mainstream suggests that accurate pre-

dictions may be obtained by superimposing the mainstream theta
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profile on the correlations for isothermal mainstream tempera-

ture.

Figure 40 shows the predicted theta distributions for Test

No. 13. The precicted results were obtained by superimposing

the mainstream theta profile, 0p(y), on the NASA/Garrett correla-

tions for two-sided jet injections with uniform mainstream tem-

perature. A detailed description of this method is described in

Paragraph 6.1.3. The predicted theta profiles are in good agree-

ment with the data in the regions close to the injection plane.

Beyond X/HQ = 1, the predictions show profiles very similar to

the data, but the quantitative agreement between data and corre-

lations is poor. Perhaps a suitable scaling parameter is needed

to improve the agreement between data and correlations. These

results demonstrate the dominance of the mainstream theta profile

and the validity of the superposition scheme.

Figure 41 displays the measured theta distributions for Test

No. 14 with top cold mainstream profile and orifice plates

01/02/08 in staggered configuration (J-p = 6.02 and JB = 6.21).

At X/HQ = 0.25, the jets penetrate to about 20 percent of the

channel height. They gradually spread in the transverse direc-

tion at the downstream stations. At X/HQ = 2.0, the theta pro-

files have a shape very similar to the mainstream theta profile

(Figure 38).

The predicted theta distributions for .Test No. 14 are shown

in Figure 42. The predicted theta profiles were obtained by

superimposing the mainstream profile on the correlations for

staggered injection with constant mainstream temperature. The

correlations show the same trends as seen in the data. It is

recalled, that for orifice plate 01/02/08 with uniform mainstream

conditions, the mixing characteristics for staggered configura-

tion were very similar to those for the in-line arrangement.
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Therefore, an attempt was made to obtain predictions for Test No.

14 using correlations for the in-line arrangement. These results

are presented in Figure 43. Comparing Figures 42 and 43 shows

that an improvement over the radial profiles is obtained by using

the correlation for in-line injection for orifice plate 01/02/08.

Figure 44 presents the measured theta distributions for Test

No. 15 with orifice plates 01/02/08 in staggered arrangement (J«p

= 23.77 and JB = 23.44). The mixing characteristics for in-line

(Figure 39) and staggered (Figure 44) injections into a profiled
*.

cross-flow have almost identical theta distributions at the same

momentum flux ratio.

The predicted theta distributions for Test No. 15 are shown

in Figure 45. The predicted results overestimate the mixing in

the transverse direction. The predicted radial profiles are in

qualitative agreement with the data. In view of the similarities

of theta profiles between the in-line and staggered arrangements,

predictions were also obtained from the correlations for the in-

line arrangement. These results, shown in Figure 46, are in

better agreement with the data than the correlations presented in

Figure 45. The correlations overestimate the jet centerline

theta values, but the jet half-widths are correctly predicted.

Figure 47 shows the measured theta distributions for Test

No. 16 with orifice plates 01/04/08 in aligned configurations,

(JT = 23.6 and JB = 24.16). At X/H0 = 0.25, the jets penetrate

to about 35 percent of channel height. They have little inter-

action with adjacent jets. At the downstream stations, the jet

spreading rate is faster in the transverse direction than in the

radial direction. The lateral jet spreading rate on the hot side

(bottom) is faster than that in the cold side (top); of the duct.

The mainstream profile has a dominant influence on the mixing

characteristics. Comparing the data for S/D = 2.0 (Figure 39)
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and S/D = 4.0 (Figure 47) shows that as S/D increases, the gradi-

ents in the transverse direction also increase. However, at X/HQ

= 2, the differences between the profiles for S/D = 2 and S/D = 4

are minimal.

The predicted theta distributions for Test No. 16 are shown

in Figure 48. The predictions overestimate the mixing in the

radial direction. The jet spreading rate in the transverse direc-

tion, however, is more accurately estimated by the correlations.

The overall agreement between data and predictions is poor.

c

Figure 49 represents the measured theta distributions for

Test No. 17 with orifice plates 01/04/08 in the staggered config-

uration, (Jip = 23.62 and Jg = 24.08). The momentum flux ratios

for this test case are almost the same as that for in-line injec-

tions (Figure 47). Comparing Figures 49 and 47 shows that

although some similarities exist between the two theta profiles,

the staggered arrangement has a slower jet spreading rate in the

transverse direction and a faster spreading rate in the radial

direction than those for in-line injections.

The predicted theta distributions for Test No. 17 are

presented in Figure 50. The predicted theta distribution over-

estimates the jet spreading in the transverse direction. The

predicted radial profiles are in good agreement with data in

regions close to the jet injection station. Poor agreement

exists between the two profiles at X/HQ = 2, even though the

trends are correctly predicted.

Figure 51 portrays the measured theta distributions for

Test No. 18 with orifice plates 01/04/08 in staggered configura-

tion, (JT = 99.52 and JB = 99.27). At X/H0 = 0.25, the jets

impinge on the opposite wall. The jets rapidly mix with the

mainstream and the adjacent jets and approach equilibrium condi-
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tions at X/HQ = 2.0. The ratio of total jet to mainstream mass

flow rate for this test case is 0.47. This ratio is much higher

than the practical combustor operating conditions. Because of

the high mass flow ratio, the mixing process in this case is

influenced by the mainstream profile to a lesser extent than at

the lower momentum flux ratio test conditions.

The predicted theta distributions for Test No. 18 are pre-

sented in Figure 52. The correlations underestimate the jet

penetration. Due to the high ratio of jet-to-mainstream mass

f^Low rate, the validity of the superposition scheme used in the

correlations is questionable. Consequently, the comparison

between data and correlations is poor.

5.2.1 Test Series 6 Conclusions

The Test Series 6 were performed with constant cross-sec-

tional area duct and top cold mainstream temperature distribu-

tion. Two orifice plates (01/02/08 and 01/04/08) were used to

study the mixing characteristics of two-sided, aligned and stag-

gered configurations. The NASA/Garrett correlations have been

extended in the case of profiled mainstream. The following con-

clusions are made from these efforts:

o The mainstream profile has a dominant effect on the

radial profiles downstream of the injection plane at

low to moderate momentum flux ratios.

o The temperature distributions with in-line and stag-

gered arrangements are similar for orifice plate

01/02/08 at a given momentum flux ratio.

o The jet spreading rate in the radial direction is

faster for staggered injections than the in-line injec-
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tions with orifice plate 01/04/08 at moderate momentum

flux ratios.

o The jet spreading characteristics with profiled main-

stream are very similar to those with uniform main-

stream temperature.

o The correlations for in-line configurations are in

agreement with data. The correlations for staggered

injections show only qualitative agreement with mea-

surements. Further work is needed to improve the cor-

relations for staggered injections.

o The superposition procedure used for modifying the

NASA/Garrett correlations is sufficiently accurate for

dilution zone design purposes. The predicted results

for staggered injections are in relatively poor agree-

ment with the data, and further refinement of the cor-

relations is needed.

5.3 Series 7 Tests

The objective of Test Series 7 was to investigate the jet

penetration and mixing characteristics of two-sided dilution jets

injected into a hot-isothermal cross flow in a converging duct.

These tests were performed in a symmetrically converging duct

(Test Section II) with 4 orifice plate geometries and two flow

conditions for each geometry. The orifice plate configurations

and flow conditions used in Test Series 7 are listed in Table 5.

The convergent test section area ratio used in this test (Figure

5) was AQ/Amin = 2, where Ag is the duct area at the jet injec-

tion plane and Amin is the minimum area of the duct. The test

duct channel height was reduced from 10.16 cm (4 in.) to 5.08 cm
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(2.0 in) over a length of 10.16 cm (4 in.), i.e., 0.5 cm per cm

of length.

The jet injection angle in this case was 104 degrees. The

measurements for this test series were made at X/Hg = 0.25, 0.5,

and 1.0.

The Test Series 7 were performed with uniform mainstream

temperature profiles. The definition of theta needed to analyze

the data is

9-

where

Tm = Mainstream stagnation temperature.

T = Local stagnation temperature.

fj = Average jet stagnation temperature.

Figure 53 represents the measured theta distributions for

Test No. 19 with symmetrically convergent duct, and orifice

plates 01/02/08 in aligned configuration (J^ = 25.98, and JB =

25.56). At X/Hg = 0.25, the jets penetrate to about 35 percent

of local duct height. At X/Hg = 0.25 and 0.5, the data shows a

lack of symmetry. This is due to the interpolation procedure

used in generating the contour plots, in addition to possible

slight misalignments of the orifice plates. Comparing the data

for straight (Figure 13) and convergent ducts (Figure 53) at a

comparable momentum flux ratio with the same orifice plate con-

figuration shows that, with the flow area convergence, the mixing

rate is enhanced, especially in the transverse direction.
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The predicted theta distributions for convergent duct test

cases were obtained by modifying the NASA/Garrett correlations.

These modifications consider the effects of injection angle as

well as flow area convergence by using an equivalent momentum

flux ratio Jeq. Details of these modifications are described in

paragraph 6.1.4.

The predicted theta distributions for Test No. 19 using the

modified NASA/Garrett correlations are presented in Figure 54.

The predicted results underestimate the jet penetration and mix-

ing in both radial and transverse directions. The correlations

overestimate the peak theta values by about 25 percent. At

X/HQ = 1, however, the centerplane radial profiles are predicted

well. These correlations correctly predict the shapes of the

theta profiles throughout the region of interest.

Figure 55 presents the measured theta distributions for Test

No. 20 using the symmetrically convergent duct with orifice

plates 01/02/08 in aligned configuration (J-p = 106.1 and Jg =

105.9). For this flow condition, the jets impinge against each

other near the center of the duct at X/HQ = 0.25. Consequently,

the theta profiles are almost invariant in the transverse direc-

tion. At the downstream stations (X/Hg = 0.5 and 1.0), the theta

profiles have a nearly uniform value corresponding to equilibrium

conditions (#EB = 0.5019). Comparing the data for straight

(Figure 15) and convergent ducts (Figure 55) shows that the flow

area convergence enhances mixing in both radial and transverse

directions.

The predicted theta distributions for Test No. 20 are shown

in Figure 56. As observed in Test No. 19, the correlations

underestimate the jet penetration and the mixing in the radial

and transverse directions. The predicted radial theta profiles

are within 20 percent of the data.
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Figure 57 (Test No. 21) depicts the measured theta distribu-

tions, using symmetrically convergent duct with orifice plates

01/04/08 in staggered arrangement, (J^ =25.92 and JB = 24.86).

At X/HQ 0.25, the jet penetration is about 40 percent of local

channel height. The jets gradually spread in the radial and

transverse directions and approach equilibrium theta value

(#EB = 0.1929) at X/HQ = 1.0. Comparing the data for straight

(Figure 34) and convergent ducts (Figures 57) shows that conver-

gence tends to improve the mixing in the radial direction.

The predicted theta variations for Test No. 21 are shown in

Figure 58. The predicted radial profiles at X/HQ =0.25 are

smaller in magnitude compared to the data. But the agreement

between data and correlations are good at X/HQ = 0.5 and 1.0.

The predicted theta contours compare favorably with those corres-

ponding to the measurements.

Figure 59 represents the measured theta distributions for

Test No. 22 with orifice plates 01/04/08 in staggered configura-

tion (JT = 107.9 and JB = 109.6). At X/H0 = 0.25, the jets

impinge on the opposite wall and the theta profiles are nearly

uniform with the equilibrium theta value 9EB = 0.326. The

enhanced mixing due to convergence is demonstrated by comparing

the data for straight (Figure 36) and convergent ducts (Figure

59).

The results obtained from the correlations for Test No. 22,

shown in Figure 60, underpredicts the jet penetration and the jet

mixing at X/Hg = 0.25. Consequently, the predicted radial pro-

file at X/HQ = 0.25 is in poor agreement with the data. However,

at the measurement stations downstream, the agreement between

correlations and the data is within 25 percent.
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Test No. 23 was performed with a syitunetically convergent

duct (Test Section II), orifice plates 01/04/04 (S/D = 4,

Hg/D = 4) in staggered arrangement, having momentum flux ratios

of JT = 6.78 and Jg = 6.91 for the top and bottom dilution jets,

respectively. The diameters of the dilution jets were 2.54 cm.

The measured theta distributions for this test case are presented

in Figure 61. At X/Hg = 0.25, the jets penetrate to about 40

percent of local duct height with minimal interaction with other

jets. At the downstream stations, the jets gradually interact

with the mainstream and the adjacent jets and approach the equil-

ibrium conditions (#EB = 0.1994).

The predicted theta distributions for this test case are

shown in Figure 62. At X/Hg = 0.25 and 0.5, the predicted peak

theta values are underestimated by about 25 percent. However,

the predicted jet penetration is in good agreement with data. At

X/HQ = 1.0 the jet penetration is overestimated and the correla-

tions are in inferior agreement with the data.

Figure 63 shows the measured theta distributions for Test

No. 24 (with Test Section II) , orifice plates 01/04/04 in stag-

gered configuration (Jip = 25.84 and JB = 25.98). At X/Hg = 0.25,

the jets impinge against the opposite wall, followed by rapid

mixing in the radial and transverse directions. At X/Hg = 1.0,

the theta distribution is nearly uniform with equilibrium theta

value, 0£B = 0.3272.

The predicted theta distributions for Test No. 24 are pre-

sented in Figure 64. The correlations underestimate the jet

penetration and the mixing rates in the radial as well as the

transverse direction. These characteristics were observed in

cases where the jets overpenetrated to the opposite wall. Such

flow conditions are not encountered often in practical combustor

dilution zones.
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Test No. 25 represents two-sided dilution jet injections

into Test Section II with orifice plates 01/02/04 (S/D = 2,

HQ/D = 4, D = 2.54 cm) in aligned configuration (Jy = 6.69 and

JB = 6.71) . The measured theta distributions for this test case

are shown in Figure 65. At X/HQ = 0.25, the jets penetrate to

about 30 percent of local channel height with little interaction

with the opposing jets. However, the jets interact with the

adjacent jets issuing from the same side of the duct. At the

downstream stations, the jets gradually interact with the main-

stream and approach equilibrium conditions (#EB = 0.3283).

The predicted theta distributions for Test No. 25 are shown

in Figure 66. The correlations overpredict the peak theta

values. Furthermore, the jet penetration and the spreading rate

in the transverse direction are overestimated by the model. Fur-

ther refinement of the correlations are needed to improve the

quantitative predictions.

Figure 67 represents the measured theta distributions for

Test No. 26 with Test Section II, orifice plates 01/02/04 in

staggered configuration J^ = 25.68 and JB = 25.97. At

X/HQ = 0.25, the jets impinge with the opposing jets at mid-chan-

nel, with the attendant enhancement in the transverse mixing

rate. At the downstream stations, the jets gradually spread in

the radial direction and approach the equilibrium conditions

(0EB = 0.4810) .

The predicted theta distributions for Test No. 26 are pre-

sented in Figure 68. At X/HQ = 0.25, the predicted and measured

radial theta profiles are in excellent agreement. However, the

lateral mixing rate at that axial station is underestimated by

the correlations. At X/HQ = 0.5 and 1.0, the predicted radial

jet spreading rates are slower than the data and the predicted
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maximum theta values are smaller than the data. The jet spread-

ing rates in the transverse direction are also underestimated by

the correlations.

5.3.1 Test Series 7 Conclusions

The mixing characteristics of two-sided jets with isothermal

cross-flow in a symmetrically convergent duct were investigated.

Four orifice geometric configurations and two flow conditions for

each orifice plate were considered. The following conclusions

are drawn from these tests:

o Mixing is generally enhanced by flow area convergence.

In convergent ducts, the jet spreading in radial and

transverse directions occurs within a shorter distance

from the jet injection plane than in the case of the

straight duct.

o When the jets are injected upstream, the jet spreading

rate in the transverse direction is enhanced. A simi-

lar effect is also seen for impinging opposed jets.

o The modified NASA/Garrett correlations with equivalent

momentum flux ratio (Jeq(
x)) yield qualitatively good

comparison with data. This provides a very useful

design tool, even though .the predicted theta values are

not accurate. These correlations are not applicable to

situations where jets overpenetrate to the opposite

wall of the duct. Further refinements in the correla-

tions are needed to improve the quantitative predic-

tions.
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5.4 Series 8 Tests

The Series 8 tests consisted of the orifice plate configura-

tions and flow conditions of interest based on the tests per-

formed in Series 1 through 7. These tests included the following

orifice plate geometries:

o Two-sided injection, in a straight duct with orifice

plate 01/04/04 (S/D = H/D = 4) in aligned and staggered

configurations

o Single-sided injection with a two-dimensional slot

(slot width, w = 0.5144 and 1.024 cm)

o Single-sided injection in a straight duct with square

holes having 2.25 cm sides

o Two-sided jet injections in a straight duct with ori-

fice plate 01/02/08 in aligned configuration, having

unbalanced momentum flux ratios from the top and bottom

walls

o Two-sided jet injections in an asymmetrically conver-

gent duct (Test Section III) with four orifice plate

configurations and two flow conditions for each con-

figuration

o Two-sided injections in a straight duct with orifice

plates 01/02/04 in aligned configuration

o Single-sided injection in a straight duct with orifice

plate 01/03/06 (S/D = 2.83, H/D = 5.67, D = 1.796 cm).
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The orifice plate configurations, test section geometries, and

the flow conditions for test Series 8 are listed in Table 6.

Test 27 corresponds to two-sided jet injections into a con-

stant cross-sectional area duct, with staggered 01/04/04 orifice

plates and JT = 6.76 and JB = 6.69. The measured theta distri-

butions for this case are presented in Figure 69. At this sta-

tion, the interaction between the opposing jets is minimal. Com-

paring the single-sided injection (Figure 16, Reference 5) and

two-sided injection (Figure 69) shows that the jet penetrations

for the two cases are comparable. However, the mixing of the

jets with the cross-stream is significantly faster with two-sided

injection compared to single-sided injection. Comparing the data

for a straight (Figure 69) and symmetrically convergent duct

(Figure 61) shows that the mixing rate in a converging duct is

faster than in a constant cross-sectional area duct.

The predicted theta distributions for Test 27 are shown in

Figure 70. The predicted jet penetrations are in good agreement

with the data. But the magnitude of maximum theta is underesti-

mated by the correlations. The correlations also underestimate

the jet spreading rates in the radial direction. The overall

agreement between the data and correlations for this test case is

poor.

Test 28 was performed with two-sided jet injections into a

constant cross-sectional area duct using orifice plates 01/04/04

in staggered configurations, J>j> = 26.42 and JB = 26.10. The mea-

sured theta distributions for Test 28 are shown in Figure 71. At

X/HQ = 0.25, the jets overpenetrate to the opposite wall. At the

downstream stations, the jets gradually mix with the mainstream

and reach equilibrium conditions (#EB = 0.3271) at X/HQ = 2.0.

Comparing the data for a straight duct (Figure 71) and a symme-
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trically convergent duct (Figure 63) shows that mixing is

enhanced due to flow area convergence.

The predicted theta distributions for Test 28 are presented

in Figure 72. The predicted jet penetration is smaller than the

data at X/Hg = 0.25 and 0.5. The predicted jet spreading rates

in the radial direction is slower than the data. The overall

agreement between data and correlations for this test case is

poor .

Figure 73 represents the measured theta distribution for

Test 29. Test 29 corresponds to two-sided in-line injections

into a crossflow with a constant cross-sectional area duct using

orifice plates 01/04/04 (JT = 26.86 and JB = 26.49). For this

test condition, at X/Hg = 0.25, the opposed jets impinge at the

center of the duct, with attendant enhanced transverse mixing

downstream. Comparing the data for in-line (Figure 71) and stag-

gered (Figure 73) orifice configuration shows that the mixing

rates are faster with stagered injections.

The predicted theta distributions for Test 29 are shown in

Figure 74. In the region near the jet injection plane, the cor-

relations are in good agreement with data. Beyond X/HQ = 0.5,

the predicted theta values are larger than the data. The corre-

lations slightly overestimate the mixing in the transverse direc-

tion.

Test 30 corresponds to two-sided in-line injection with a

cross-flow in a constant area duct using orifice plates 01/04/04

having JT - 106.9 and JB = 107.3. The measured theta distribu-

tions for Test 30 are shown in Figure 75. At X/Hg = 0.25, the

theta distributions are similar to those for Test 29 (Figure 73).

However, at the downstream stations, the theta distributions for

the two test cases are significantly different. The mixing in
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the radial and transverse directions are substantially faster at

higher momentum flux ratio.

0

The predicted theta distributions for Test 30 are shown in

Figure 76. The predictions underestimate the jet mixing in the

radial and transverse directions in the region upstream of X/HQ =

1.0. At X/HO = 2.0f the predicted and measured radial theta pro-

files are in very good agreement. The overall agreement between

the data and correlations for this test case is good.

Test 31 corresponds to one-sided injection into an isother-

mal cross flow in a constant area duct using a 0.5144 cm-wide two-

dimensional slot. The geometrical area of this two-dimensional

slot is the same as orifice plates 01/04/04 and 01/02/08. The

tests were performed at three different momentum flux ratios,

6.63, 26.13, and 104.5.

In these tests the slotted jet was injected from the top

wall. Measurements were made at four axial stations and five

transverse locations. Figure 77 represents the measured theta

distributions for Test 31 (a) with J = 6.63. For this case, at

X/HQ = 0-25, the jet penetration is about 20 percent of the chan-

nel height. At the downstream stations, the jet penetration

gradually decreases and at X/Hg = 2, the jet reattaches on the

injection wall. The ratio of jet to total mass flow rate for

Test 31(a) is 0.1213. Comparing Figure 77 and those for orifice

plate 01/04/04 at a comparable momentum flux ratio (Figure 16 of

Reference 5) shows that the mixing rates are significantly

reduced for the two-dimensional slot. The predictions for this

case were obtained using the NASA/Aerojet correlations (Reference

5), with S/D = 1.0 and S/D = 2.0. The predicted theta distributions

for Test 31 (a) are shown in Figure 78, where the solid lines

represent the correlations for S/D = 1.0 and the broken lines cor-

respond to the predictions for S/D = 2.0. The symbols in Figure
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78 correspond to data. For this test case, in the initial region

with X/H = 1.0, the correlations with S/D = 1.0 show good agree-

ment with the data. At X/H = 2.0, the correlations with S/D =

2.0 show excellent agreement with measured data.

The measured theta distributions for Test 31(b) with

J = 26.13 are shown in Figure 79. The ratio of jet to total mass

flow rate for this test is 0.213. At X/HQ = 0.25, the jet pene-

tration is 40 percent of the channel height. The jet penetration

gradually increases to 50 percent of the duct height at X/HQ = 1.

The radial jet spreading rate towards the injection wall is much

faster than that in the opposite direction. Comparing the theta

distributions for slotted jet the 2-D slot (Figure 79) and those

for orifice plate 01/04/04 (Figure 18 of Reference 5) at the com-

parable momentum flux ratio shows the substantially reduced mix-

ing rate for the 2-D slot. The 0.5144 cm wide slot has the same

geometrical area as orifice plate 01/02/08. Comparing the theta

distributions for slotted jet (Figure 79) and those for orifice

plate 01/02/08 (Figure 20 of Reference 5) reveals very similar

characteristics. This suggests that the 2-D slot has mixing

characteristics very similar to the orifice plate with S/D = 2.0,

that has the same geometrical area.

The predicted theta distributions for Test No. 31(b) using

the NASA/Aerojet correlations for one-sided injection with S/D =

1 and S/D = 2 are presented in Figure 80. At X/HQ = 0.25, the

predicted jet penetration is about 35 percent less than the mea-

sured value. The predicted theta profiles are in poor agreement

with the data throughout the region of interest.

Figure 81 shows the measured theta distributions for Test

31 (c) with J = 104.49. The ratio of jet-to-total mass flow rate

for this case (equal to #EB) *s 0.352. The measured jet penetra-

tion at X/HQ = 0.25 is 50 percent of the channel height. The

54



slotted jet penetrates to about 65 percent of the channel height

at X/HQ = 1.0. Comparing the 2-D slot data (Figure 81) and those

for orifice plate 01/02/08 at a comparable momentum flux ratio

(Figure 22 of Reference 5) shows similar mixing characteristics,

especially in the regions away from the jet injection plane

The predicted theta distributions for Test 31 (c) are pre-

sented in Figure 82. The predicted jet penetration at

X/HQ = 0.25 is about 20 percent smaller than the data. The pre-

dicted radial profiles show a reattachment of the jets towards

the injection wall with little radial jet spreading in the

opposite direction. The overall comparison between data and cor-

relations is poor.

Test 32 corresponds to one-sided jet injection into an iso-

thermal cross-flow in a constant area duct using square holes

with 2.25 cm sides. The holes are spaced at a distance of 4

times the hole side. The geometric flow area of this orifice

plate is the same as that of the 01/04/04 plate. The momentum

flux ratio for Test 32 was 26.10. Figure 83 represents the mea-

sured theta distributions for Test 32. At X/H0 = 0.25, the jet

penetration is approximately 70 percent of the channel height,

with little interaction between the adjacent jets. At

X/HQ = 0.5, the jets penetrate to the opposite wall, followed by

rapid mixing, especially in the transverse direction. Comparing

Figure 83 and the data for circular holes (Figure 18 of Refer-

ence 5) shows that the mixing characteristics for the square and

circular orifices are similar. The effect of the orifice geom-

etry are confined to the regions near the injection plane

(X/H0 <0.5).

The predictions for this test case were obtained by using

the NASA/Aerojet correlations, presented in Figure 84. The cor-
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relations underestimate the jet penetrations at X/Hg = 0.25 and

0.5. The difference between circular and square holes are seen

in the centerplane profiles at X/Hg = 0.25 and 0.5 near the

injection wall (top) (see Figure 84 and Figure 19 of Reference

5) . The theta profiles for circular holes have monotonic reduc-

tion in theta values near the top. The theta profiles for the

square holes show the effects of hole shape at X/Hg = 0.25 and

0.5. The correlations underestimate the jet spreading rates in

the transverse direction. The predicted radial profiles beyond

X/HQ = 0.5 are in good agreement with the data.

Test 33 was performed with orifice plates 01/02/08 in

aligned configuration, in a constant area duct having unbalanced

momentum flux ratio of J«p = 40.9 and Jg = 14.7. The measured

theta distributions for Test 33 are shown in Figure 85. At

X/HO = 0.25, the measured jet penetrations for the top and bottom

jets are 35 and 20 percent of the channel height, respectively.

The jets show little interaction with the opposing jets. The

jets gradually mix with the mainstream and reach equilibrium con-

ditions (0EB = 0.3201) at X/HQ = 2*°- Tne momentum flux ratios

for the top and bottom jets in Test 33 deviate by an equal amount

about the average between the jets. (Compare with Test 2 for the

average momentum flux ratio, shown in Figure 13). Comparing Fig-

ures 85 and 13 shows similarities in the theta distribution with

the exception that the equivalent channel height (location of

minimum theta value) for the two test cases are different. For

Test 33, the equivalent channel height is 0.6 Hg for the top jet.

For the test case with balanced momentum flux ratio, the equivalent

channel height is 0.5 Hg.

The predicted theta distributions for Test 33 are presented

in Figure 86. At X/Hg = 0.25, the predicted radial theta profile

is in good agreement with the data. The predicted equivalent

channel height (0.6 Hg for the top injections) correlates well
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with the data. At X/Hg = 0.5 and 1.0, the correlations underes-

timate the jet spreading rate in the radial direction. The pre-

dicted theta variations in the transverse direction are larger

than the measured variations. The overall agreement between data

and correlations is good.

Test 34 corresponds to the same orifice configuration as

Test 33. However, in Test 34 the momentum flux ratios for the

top and bottom jets were 58.4 and 6.7., respectively. This test

case provides a larger variation of momentum flux ratios about

the average than those obtained in Test 33. The measured theta

distributions for Test 34 are shown in Figure 87. At

X/HQ = 0.25, the jet penetrations for the top and the bottom

injections are, respectively, 45 and 10 percent of the duct

height. The interaction between the opposing jets is minimal at

this station. Comparing the data for Test 33 (Figure 85) and

Test 34 (Figure 87) shows similar theta distributions with the

exception of the location of minimum theta values (equivalent

channel height, Heq). The equivalent channel height for this

case was 0.75 HQ for the top injection.

The ratio of jet-to-mainstream mass flow rate and the nomi-

nal momentum flux ratios in Tests 33 and 34 are comparable to

those in Test No. 2 (Figure 13). In Test 2, the two opposed rows

of jets had equal momentum flux ratios. Comparison between

Figure 13 (Test 2) and Figures 85 and 87 (Tests 33 and 34,

respectively) show similar temperature distributions beyond X/HQ

= 1.0. In the regions closer to the jet injection plane, the jet

penetrations for the top and the bottom injections are quite dif-

ferent for the three test cases. These test cases also have the

same jet-to-mainstream mass flow rate as Test No. 6 of the Dilu-

tion Jet Mixing Program Phase I (Figure 22, Reference 5). In the

latter, the same orifice plate was used with single-sided injec-

tion, having a momentum flux ratio of 107.8. The theta distribu-
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tions for single-sided injection are substantially different from

those for opposed injection with a comparable ratio of jet-to-

mainstream mass flow rate.

The predicted theta distributions for Test 34 are presented

in Figure 88. The predicted results underestimate the jet

spreading rates in the transverse and radial directions. At

X/HQ = 0.25 and 0.5, the predicted and measured radial theta

profiles are in good agreement. At X/HQ = 0.25, the predicted

and measured theta profiles show the location of mimimum theta

values at about 75 percent of duct height. Beyond X/Hg = 0.5,

the predicted theta values are within 20 percent of the measured

values. The overall agreement between data and correlations is

good.

Tests 35 through 42 involve two-sided jet injection in an

asymmetrically convergent duct (Test Section III). The orifice

configuration and flow conditions for these tests are listed in

Table VI. The configuration of Test Section III is shown in Fig-

ure 5. In these tests, the bottom wall of the test section was

flat and the top wall inclined. The jet injection angles for the

top and bottom injections were 116.6 and 90 degrees, respec-

tively.

Test 35 was performed with orifice plate 01/02/08 in an

aligned configuration having Jrp = 26.24 and JB = 25.93. The mea-

sured theta distributions for Test 35 are shown in Figure 89. At

X/HQ = 0.25, the jet penetration from the top is about 40 percent

of the channel height, while the bottom jets penetrate to about

25 percent of the local duct height. The jets gradually interact

with the adjacent jets and the mainstream and reach equilibrium

conditions (0EB = 0.3185). Comparing the data for symmetric

(Figure 53) and asymmetric ducts (Figure 89) shows that the theta

distributions for the two convergent ducts are similar. This is
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different from the characteristics observed for one-sided injec-

tion in Phase I of this program. The mixing characteristics for

symmetric and asymmetric convergence with single sided rows of

jets were different, especially with jet injection from inclined

walls. The mixing characteristics for single-sided injection

from flat walls were similar to those in a symmetrically conver-

gent duct.

The predicted theta distributions for Test 35 are shown in

Figure 90. The predictions were obtained from the correlations

for converging cross-stream passages. Details of these correla-

tions are given in Section 6.1.5. The predictions show deeper

jet penetration from the flat wall injections (bottom jets) than

from the inclined wall injections. However, the measured data do

not show this trend. The predictions underestimate the jet mix-

ing in the transverse direction. The predicted maximum theta

values are larger than the data at X/Hg = 0.25 and 0.5. At

X/HQ = 1, the data and correlations are in good agreement.

Figure 91 represents the measured theta distributions for

Test 36. Test 36 was performed with orifice plates 01/02/08 in

aligned configuration in Test Section III with JT = 107.4 and

JB = 107.8. At X/HQ = 0.25, the jets impinge against each other

at mid channel followed by rapid mixing towards eguilibium

(0EB = 0.4902). Comparing the data for symmetric (Figure 55) and

asymmetric duct (Figure 91) cases show that the mixing character-

istics for the two cases are similar. The convergent duct

results also show enhanced mixing compared to the constant area

duct.

The predicted theta distributions for Test 36 are shown in

Figure 92. The correlations underestimate the jet penetration at

X/HQ = 0.25. The predicted results show deeper jet penetration

for the flat wall injection. The correlations underestimate the
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jet spreading rates in both radial and transverse directions.

The predicted centerplane radial profiles correlate well with

data at X/H0 =1.0.

Test 37 corresponds to two-sided injections (orifice plates

01/04/08) in a staggered arrangement (J«p = 25.7 and JB = 26.1).

The measured theta distributions for Test 37 are shown in Figure

93. The ratio of jet-to-total mass flow rate for this case is

0.1929. At X/HQ = 0.25, the jet penetration is about 50 percent

of local channel height for the bottom and top row of jets. The

jets gradually mix with the mainstream and approach near equilib-

rium conditions (0EB = 0.1882) at X/H0 =1.0.

The predicted theta distributions for Test 37 are shown in

Figure 94. The predicted theta distributions show larger

gradients in the transverse direction compared to the data. The

predicted centerplane theta profile also shows larger radial

gradients than the measured values. The predicted radial theta

profile at X/Hg = 1 gives good correlation with the data.

Test 38 was performed with orifice plates 01/04/08 in a

staggered arrangement in the asymmetrically convergent duct, with

JT = 109.2 and JB = 110.0. The ratio of jet-to-total mass flow

rate (equal to #EB) was 0.3245. The measured theta distribution

for this test case are presented in Figure 95. At X/HQ = 0.25,

the jets overpenetrate and impinge on the opposite wall. The

theta distribution at the downstream stations rapidly reach equi-

librium values. The measured theta values corresponding to the

bottom jets are larger than those for the top injection at

X/HQ = 0.25. This is perhaps due to the improved mixing associ-

ated with the upstream injection from the top wall.

The predicted theta distributions for Test 38 are shown in

Figure 96. The predicted results underestimate the jet penetra-
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tion at X/HQ = 0.25. However, the radial profiles at X/HQ = 0.5

and 1.0 are in good agreement with the data. The predictions

underestimate the mixing in the transverse direction. This trend

has been observed in most of the test cases discussed so far.

Test 39 corresponds to two-sided injection with orifice

plates 01/04/04 in staggered configuration in an asymmetric con-

vergent duct. The momentum flux ratios for Test 39 are JT = 6.69

and JB = 6.74. The measured theta distributions for this test

case are presented in Figure 97. AT X/HQ = 0.25, the jet pene-

trations from the top and bottom injections are about 30 percent

of the local channel height. At X/HQ = 1.0, the theta profiles

show significant deviations from equilibrium theta (#EB =

0.1994). For this test case, at X/Hg = 0.25 and 0.5, the mea-

surements did not extend below Y/H = 0.3. The contour plotting

routine extrapolates the profiles to obtain the theta distribu-

tion below Y/H = 0.3. This extrapolation method erroneously

shows smaller jet penetration for the top injections. At the

downstream stations, the jets gradually mix with the mainstream

and the opposing jets. Note that the injections from the top

(inclined) wall have a faster mixing rate compared to the bottom

jets. The theta distributions are similar to those in a sym-

metrically convergent duct (Figure 61).

The predicted theta distributions for Test 39 are shown in

Figure 98. The predicted theta distributions indicate smaller

jet penetration for the injections from the top and underestimate

the mixing rates in the transverse direction. The predicted cen-

terplane radial profiles correlate well with the data.

Figure 99 depicts the measured theta distributions for

Test 40. Test 40 corresponds to orifices plates 01/04/04 in a

staggered configuration in Test Section III (J-p = 25.99 and JB =

25.05). For this case, the jets overpenetrate to the opposite
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wall at X/HQ = 0.25. At the downstream stations, the jets

rapidly mix with the mainstream and approach equilibrium condi-

tions (#EB = 0.3247). The theta distributions are similar to

those for a symmetric convergent duct (Figure 63).

The predicted theta distribution for Test 40 are presented

in Figure 100. The correlations underpredict the jet penetration

at X/HQ = 0.25 and 0.5. As a result, the predicted centerplane

theta profiles are in poor agreement with the data throughout the

region of interest.

Tests 41 and 42 are two-sided injections with orifice plates

01/02/04 in aligned configuration using the asymmetrically con-

vergent duct. Test 41 was performed with JT = 6.64 and JB = 6.68.

The measured theta distributions for Test 41 are shown in Figure

101. At X/HO = 0.25, the jets penetrate to about 25 percent of

the local channel height. The jets show little interaction with

the opposing or adjacent jets. The jet spreading rate in the

radial direction is faster than that in the transverse direction.

Comparing the data for symmetric (Figure 65) and asymmetric con-

vergent duct (Figure 101) shows the similarities in the mixing

characteristics between the two convergent ducts.

The predicted results for Test 41 are shown in Figure 102.

At X/HQ = 0.25, the measured radial profiles shows deeper jet

penetration for the top injection (0.4H) than the bottom jets

(0.254). The predicted maximum theta values at X/HQ = 0.25 are

higher than the data. But the radial profiles show good qualita-

tive agreement with the data. The agreement between the pre-

dicted and measured radial profiles improves at the downstream

stations. The predicted jet spreading rates in the transverse

direction are also in good agreement with data.
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Figure 103 represents the measured data for Test 42. Test

42 corresponds to inline injections with orifice plates 01/02/04

in Test Section III, having J-p = 26.25 and JB = 26.34. For this

test, the jets impinge against each other near midchannel at

X/HQ = 0.25, followed by enhanced mixing at X/Hg = 0.5 and 1.0.

The theta distributions for Test 42 (shown in Figure 103) are

similar to those in a symmetically convergent duct (Figure 67).

The predicted theta distributions for Test 42 are presented

in Figure 104. The predicted results underestimate the radial

spreading of the jets. At X/Hg = 0.25, the data shows deeper jet

penetration for the inclined wall injection. The inclined wall

jets are injected into a region where the mainstream momentum is

lower. Hence, the penetration of the inclined wall jets are

deeper than the flat wall injections. The predicted radial pro-

files are only in qualitative agreement with the data for this

test case.

The test cases discussed above correspond to two-sided

injections into an isothermal mainstream in an asymmetrically

convergent duct. The following two test cases were performed

with single-sided injections into asymmetrically convergent duct

with profiled mainstream. In these two test cases (Test 43 and

44) a "top hot" profile was used and the jets were injected from

the flat wall with orifice plate 01/02/04. Test 43 corresponds

to a momentum flux ratio of 6.26. The measured theta distribu-

tions for Test 43 are presented in Figure 105. At X/HQ = 0.25,

the peak theta value (jet centerline) is located approximately at

40 percent of the local duct height away from the flat wall. The

jets gradually mix with the mainstream at the downstream sta-

tions. At X/HQ = 1.0, the theta profiles have nearly uniform

distribution in the transverse direction. The radial theta pro-

files at that station are strongly influenced by the mainstream

theta profile.
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The predicted theta distributions for Test 43 are shown in

Figure 106. In obtaining the predictions, the mainstream theta

profiles were superimposed on the theta distributions given by

the NASA/Aerojet correlations. At X/Hg = 0.25, the predicted jet

penetration is in good agreement with the data. But, at this

axial location, the data shows slightly lower values for the cen-

terplane theta. The predicted and measured half inlets are in

good agreement at this plane. At X/HQ = 0.5 and 1.0, the pre-

dicted radial profiles do not agree exactly with the data. Most

of the differences between data and correlations occur near the

fan wall where the mainstream is colder. The predicted results

show a slower mixing rate in the transverse direction compared to

the measurements.

Test 44 corresponds to the same orifice configuration as

Test 43, but the momentum flux ratio is 24.24. The measured

theta distributions for Test 44 are shown in Figure 107. At

X/HQ = 0.25, the peak theta value is located at about 60 percent

of the local duct height. For this test case, the jet spreading

rate in the transverse direction is much faster than that in the

radial direction. The dominating influence of the mainstream

temperature profile is clearly seen in the oblique plots. The

predicted theta distributions for Test 44 are presented in Figure

108. At X/HQ = 0.25, the predicted jet penetration (peak theta

location) agrees well with the data. The predicted centerplane

theta profile is also in excellent agreement with the measure-

ments. At X/HQ =0.5 and 1.0, the predicted centerplane theta pro-

files show slower radial mixing compared to measurements. The

predicted results also show a slower mixing rate in the trans-

verse direction compared to the measurements.

Test 45 corresponds to single-sided injection into an iso-

thermal cross-flow in a constant area duct (Test Section I) using

1.024 cm-wide two-dimensional slot. This slot has the same geo-
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metrical area as orifice plate 01/02/04. Three different momen-

tum flux ratios were studied in this test case. Test 45 (a) cor-

responds to the case with a momentum flux ratio of 6.66. The

measured theta distributions for this test are presented in Fig-

ure 109. At X/HQ = 0.25, the slotted jet penetrates to about 30

percent of the duct height. The jet penetration does not in-

crease beyond 0.3 HQ at the downstream stations. The width of

the slot in Test 45 is twice the slot width used in Test 31.

Comparing Tests 45(a) (Figure 109) and 31(a) (Figure 77) shows

that the jet penetration with the 1.024 cm-wide slot is about 50

percent higher than that for the 0.5144 cm-wide slot. Further-

more, in Test 45 (a), the ratio of jet-to-total mass flow ratio

(equal to #EB) is 0.2179 while the corresponding value in Test

31(a) was 0.1213.

The 1.024 cm-wide 2-D slot has the same geometrical area as

orifice plate 01/02/04. A comparison of the theta distributions

for the 2-D slot (Figure 109) and those for orifice plate

01/02/04 at comparable momentum flux ratio (Figure 12 of Refer-

ence 5) shows similar mixing characteristics, especially in

regions beyond X/H_ =1.0.

The predicted theta distributions for Test 45(a) are shown

in Figure 110. The predictions were obtained from NASA/Aerojet

correlations with S/D = 1 and S/D =2. In Figure 110, the solid

lines represent the correlations for S/D = 1.0 and the broken

lines correspond to predictions with S/D = 2.0. The symbols in

this figure correspond to the data. The predicted jet penetra-

tions are higher than the data. The predicted peak theta values

are much higher than the measured values. However, the differ-

ences between data and predictions become less with increasing

downstream distance, X/HQ.
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Figure 111 represents the measured theta distributions for

Test 45(b) with J = 25.34. At X/HQ = 0.25, the jet penetrates to

approximately 40 percent of the duct height. The jet penetration

increases to 50 percent of duct height at X/HQ = 1. The mixing

characteristics at this momentum flux ratio are similar to those

at J = 6.6. The comparison of the data for 1.024 cm-wide slot

(Figure 111) and that for 0.5144 cm-wide slot (Figure 79) show

that the jet penetrations for the wider slot at a comparable

momentum flux ratio is the same as that of 0.5144 cm-wide slot.

However, the peak theta values are different, since the jet-to-

total mass flow ratio in Test 45(b) is 0.3462, while the corres-

ponding value for the narrow slot is 0.2129.

Figure 111 and Figure 14 of Reference 5 show the differences

in the mixing characteristics of a 2-D slot and orifice plate

01/02/04, respectively. For both of these plates, the radial

profiles are similar at X/H. = 2.0. But, in the regions closer

to the jet injection plane, orifice plate 01/02/04 has larger

gradients in the theta values in both radial and transverse

directions compared to those observed for the 2-D slot.

The predicted theta distributions for Test 45(b) are shown

in Figure 112. The predicted results overestimate the jet pene-

tration by about 50 percent of the data at X/H_ = 0.25. However,

the agreement between the predicted and measured radial profiles

improve in the downstream stations. At X/HQ = 2.0, the predicted

radial profile correlates well with the data.

Test 45 (c) corresponds to a momentum flux ratio of 78.33

with a 1.024 cm-wide slot. The measured theta distributions for

this test case are presented in Figure 113. The jet penetration

at the momentum flux ratio of 78.33 increases from 45 to 60 per-

cent of the duct height, between X/H. = 0.25 and 1.0. At this

momentum flux ratio, the jet spreading rate in the regions away
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from the injection wall is much larger than those observed at

lower momentum flux ratios. The ratio of jet-to-total mass flow

rate for this test case is 0.482. The comparison between the

data for wide (Figure 113) and the narrow slots (Figure 81) at

comparable momentum flux ratios shows very similar theta distri-

butions for the two cases.

The predicted theta values for Test 45(c) are presented in

Figure 114. The predicted jet penetrations are much higher than

those given by the measurements at X/H- = 0.25 and 0.5. The pre-

dicted peak theta value at X/HQ =0.25 agrees well with the data.

Beyond X/HQ = 1.0, the predicted radial profile is in good agree-

ment with the data. The correlations for the narrower slot give

good results for low momentum flux ratios, but for the high

momentum flux ratios the predictions are in better agreement with

the data in the regions closer to the jet injection plane. The

predicted results for the wider slot give better correlations

with the data at the higher momentum flux ratios, and the pre-

dicted profiles are in better agreement with the data in regions

away from the jet injection station.

Tests 46 through 48 correspond to two-sided injection, with

orifice plates 01/02/04 in aligned configuration. The jets from

the two sides had equal momentum flux ratios and were injected

into an isothermal cross-flow in a constant area duct. Test 46

represents the test case with JT = 6.70 and Jfi = 6.70. The

measured theta distributions for Test 46 are shown in Figure 115.

At X/H- = 0.25, the jets penetrate to about 30 percent of channel

height. They show little interaction with the opposing jets. In

this test case, the jet spreading rate in the transverse direc-

tion is much higher than that in the radial direction. At

X/H_ = 2, the theta distribution is nearly constant with the

equilibrium value (()„-. = 0.3299). Comparing the mixing charac-
EiO

teristics in the constant area (Figure 115) , asymmetric conver-
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gent (Figure 101) and symmetrically convergent ducts (Figure 65)

shows that the constant area duct has slower mixing rates than

the convergent ducts, especially in the transverse direction.

The predicted theta distributions for Test 46 are shown in

Figure 116. The predicted jet penetrations are much higher than

the data. However, the predicted peak theta values compare

favorably with the data. The jet spreading rate in the radial

direction is underpredicted by the correlations. The overall

agreement between the data and correlations for Test 46 is poor.

Figure 117 presents the measured theta distributions for

Test 47, using orifice plates 01/02/04 in aligned configuration

with JT = 25.56 and JB =25.74. At X/HQ = 0.25, the jets impinge

with the opposing jets at midchannel. The transverse mixing rate

at the downstream stations are enhanced. The comparison between

the data in the constant area (Figure 117) , asymmetric convergent

(Figure 103) and symmetric convergent duct (Figure 67) demon-

strates the enhanced mixing due to flow area convergence.

The predicted results for Test 47 are shown in Figure 118.

The agreement between predicted and measured theta distributions

for this case is very good throughout the region of interest.

Figure 119 represents the measured theta values for Test 48.

Test 48 was performed with orifice plate 01/02/04 in aligned con-

figuration (JT = 84.18 and Jfi = 83.92). At X/HQ » 0.25, the

opposing jets impinge against each other at midchannel, followed

by enhanced mixing in the transverse direction. At X/H_ = 2, the

theta values are nearly constant at the equilibrium value (#EB =

0.6327).

The predicted theta distributions for Test 48 are shown in

Figure 120. The predictions slightly underestimate the radial
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jet spreading rates. The jet spreading in the transverse direc-

tion is correctly predicted by the correlations. The overall

agreement between data and correlations for this test case is

very good.

In the NASA Dilution Jet Mixing Program Phase I (Reference

5) , it was observed that for single-sided jet injections, the

mixing characteristics of orifice plates with the same S/H ratio

were similar. This observation was based upon the data from two

orifice plates (01/02/04 and 01/04/08), with S/H = 0.5. To

increase the data base for S/H = 0.5, it was considered essential

to study the mixing characteristics of single-sided injection in

a straight duct with orifice plate 01/03/06. For this orifice

plate, the orifice diameter was 1.796 cm with orifice spacing of

5.08 cm, (S/D = 2.83 and H/D = 5.67). Test 49 was performed with

orifice plate 01/03/06, having J = 6.49. The measured theta dis-

tributions for Test 49 are presented in Figure 121. At

X/HO = 0.25, the jet penetration is about 35 percent of duct

height. The jets have little interaction with the adjacent jets

at this station. At the downstream stations, the jet penetration

increases to 40 percent of duct height with attendant spreading

in radial and transverse directions. The comparison between the

theta distributions for orifice plates 01/03/06 (Figure 120) and

01/02/04 (Figure 12 of Reference 5) show similar theta distribu-

tions. The similarity in the theta distributions is also seen

between orifice plates 01/03/06 (Figure 120) and 01/04/08 (Figure

25 of Reference 3) . Since both of these orifice plates have the

same ratio of orifice spacing to duct height, S/H_, of 0.50, then

mixing characteristics are also expected to be similar (see Ref-

erence 5) .

For Test 49, the predicted theta distributions were obtained

from NASA/Garrett correlations. The predicted results for Test

49 are shown in Figure 122. The predicted jet penetrations and
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the jet spreading rates are accurately predicted by the correla-

tions. The predicted radial jet spreading rate correlates well

with the data. The correlations slightly overestimate the peak

theta values. The overall agreement between the data and cor-

relations is good within engineering accuracy.

The measured theta distributions for Test 50 are shown in

Figure 123. Test 50 was performed with orifice plate 01/03/06 at

J = 25.48. The jet penetration at X/HQ = 0.25 is about 55 per-

cent of the channel height. The jets gradually interact with the

mainstream and approach equilibrium conditions ($„„ =0.2054) at
CiJU

X/HQ = 2.0. The comparison between orifice plates 01/03/06

(Figure 123), 01/02/04 (Figure 14 of Reference 5) , and 01/04/08

(Figure 24 of Reference 5) show similar theta distributions.

Although these three test cases have comparable momentum flux

ratios for the same S/H ratio, the values of jet-to-total mass
• •

flow rates, m-i/mr0tal
 are different. Orifice plate 01/04/08 has

the smallest value (0.1048) of jet-to-total mass flow rate, while

the orifice plate 01/02/04 has the largest value (0.2705). Con-

sequently, the peak theta values for the three cases are also

different. The peak theta values are proportional to the ratio

of jet-to-total mass flow rate.

The predicted theta distributions for Test 50 are shown in

Figure 124. At X/HQ = 0.25, the predicted radial profile is in

good agreement with the data. The predicted jet penetrations at

X/HO = 0.25 to 1.0 are less than the data. The peak theta values

are overpredicted by the correlations. The overall correlation

between data and predictions is good.

During the Phase II test results evaluation, another test

case was selected. This test (Test 51) was performed with ori-

fice plates 01/04/04 in an aligned configuration, using the con-

stant cross-sectional area duct, having momentum flux ratios
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JT = 6.67 and JB = 6.58. The measured theta distributions for

this test case are shown in Figure 125. At X/HQ = 0.25, the jet

penetrations are about 35 percent of the duct height and the jets

interact with the opposing jets. However, little interaction

exists with adjacent jets from the same side the theta contours

show similar characteristics between X/HQ = 0.25 and 1.0. Beyond

X/H- = 1.0, the mixing is enhanced in the transverse direction.

The comparison between in-line (Figure 125) and staggered injec-

tions (Figure 69) at the low momentum flux ratio of 6.7 shows

that the mixing rate for the in-line configuration is signifi-

cantly slower than that for the staggered arrangement.

The predicted theta distributions for Test 51 are shown in

Figure 126. At X/HQ = 0.25, the jet penetrations are over-esti-

mated by the correlations. The correlations predict jet impinge-

ment at X/HO = 0.25, while the data does not show such character-

istics. However, at the downstream stations, the predicted cen-

terplane radial theta profiles are in good agreement with the

data. The jet spreading rates in the transverse direction are

underestimated by the model. The overall correlation between

data and predictions for Test 51 is good.

One of the important parameters in the dilution jet mixing

problem is the turbulence intensity. Detailed flow field cal-

culation of dilution jet mixing flow field requires initial con-

ditions of turbulence intensities. In order to define the ini-

tial profiles of turbulence kinetic energy, it was deemed essen-

tial to measure the turbulence intensities of the cross flow using

hot-wire probes.

Hot-wire measurements were made in the constant area duct

(Test Section I) using a TSI X-wire probe (TSI Model 1050 sys-

tem) . The tests were conducted with the profile generator

installed in the rig. The mainstream flow was set at 0.4982 kg/
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sec at an average temperature of 319°Kr resulting in an average

mainstream velocity of 14.9 M/S. The flow through the profile

generator was set to zero. The turbulence measurements were made

at a station upstream of the jet injection plane (X/H. = -1.625).

The measured non-dimensionalized turbulence intensities ~u2 and w2

are presented in Figure 127. This figure shows an increased tur-

bulence intensity caused by the wake behind the profile generator

lip. The turbulence intensity profiles show an anisotropic tur-

bulence structure in that region. In the region corresponding to

the core of the mainstream, the turbulence structure is essen-

tially isotropic with a turbulence intensity of about 6.5 per-

cent. Although the turbulence intensities are higher in the wake

region behind the step, they are not expected to change the tem-

perature distributions significantly in the mixing region. This

was demonstrated in one of the tests in Phase I. It is also

important to note that the higher values of turbulence intensi-

ties in the region behind the profile generator will be reduced

significantly if the profile generator lip were removed.

5.4.1 Test Series 8 Conclusions

Confined jet mixing characteristics were studied for a num-

ber of orifice plate configurations. These tests included two-

dimensional slots, square holes and other orifice plate config-

urations of interest that were not included in Test Series 1

through 7. The following conclusions are obtained from these

tests.

o Mixing is enhanced with a staggered arrangement as com-

pared with an aligned configuration for two-sided

injections using orifice plate 01/04/04.

o The mixing characteristics of square orifices are simi-

lar to those for circular orifices of the same flow
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area and orifice spacing. The effects of orifice

shapes are confined to regions near the jet injection

plane (X/HQ<I).

o The mixing characteristics with two-sided injections in

an asymmetrically convergent duct are similar to those

in a symmetrically convergent duct. The penetration of

the jets injected from the inclined wall is slightly

deeper than these for the jets issuing from the flat

wall.

o For all orifice plates tested in this program, the flow

area convergence enhances mixing, due to the effects of

a strong favorable pressure gradient.

o The mixing characteristics for in-line orifice configu-

rations with unbalanced momentum flux ratios are very

similar to those for the same configurations with

balanced momentum flux ratios, having the same ratio of

jet-to-total mass flow rate. The major difference be-

tween the balanced and unbalanced configurations is the

location of minimum theta (H ). The correlations ac-

curately predict the equilvalent duct height, H , for

the test cases investigated.

o The jet penetration and mixing characteristics for two-

dimensional slots are similar to those for orifice

plate with S/D = 2, having the same geometrical area as

the two-dimensional slot. This is especially true in

the far field (X/HQ>1) of the mixing zone. In the

regions near the injection plane, the two-dimensional

slot has significantly reduced mixing rates as compared

to a row of discrete circular jets with the same geo-
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metrical area. The jet penetrations for 2-D slots are

deeper than those for a row of discrete circular jets.

o For single-sided injection into a convergent duct with

profiled mainstream, the mixing characteristics are

strongly influenced by the mainstream temperature pro-

file.

o The mixing characteristics of orifice plate 01/03/06

(S/D = 2.83, HQ/D = 5.66) are similar to those for the

01/02/04 plate (S/D = 2f H./D =4) at the same momentum

flux ratio.

o The correlations developed in this program for two-

sided injections predict the theta distributions to

first order accuracy. They provide a useful dilution

zone design tool. However, improvements in their

accuracy are needed for applications involving flow

area convergence and staggered injections.

o For single-sided injections, the NASA/Aerojet correla-

tions are applicable and provide a useful design tool

for practical combustors.

o For two-dimensional slots, the NASA/Aerojet correla-

tions using S/D = 1 predict the radial profiles within

first-order accuracy.
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6.0 JET MIXING CORRELATION DEVELOPMENT

A number of empirical and semiempirical models are available

in the literature (References 6 through 14) for predicting jet

interaction with cross flow. Most of these models are applicable

only to a limited range of geometrical and flow parameters. Some

of the models (References 8, 10, 12, 13, and 14) have been shown

to give trajectory predictions that are in agreement with experi-

mental data. These models provide insight into the entrainment

and jet spreading characteristics, but rarely provide sufficient

information to quantify the flow field in the coordinates of

interest.

Due to the rapid advances in computational fluid dynamics,

multidimensional Navier-Stokes Solutions are available (Refer-

ences 16 and 17) for complex flows, such as jets-in-cross-flow.

These models are in the developmental stage and need further

extensive validation efforts. The multidimensional models are

time consuming and are not cost-effective for the designer at

present.

Empirical models are available in the literature (References

2, 4, and 17) for applications to combustor dilution zones.

These models are limited within the geometrical and flow param-

eters of the generating experiments and must be used with caution

outside the range of their applicability. Among these models,

the correlations developed by Holdeman, et al (Reference 2) are a

useful and powerful tool for designing the dilution zone of prac-

tical combustors. The correlations obtained in Reference 2 were

applicable to a single-sided row of jets injected into a confined

cross flow. These correlations have been used to identify and

optimize the major geometrical and flow parameters for single-

sided injection of jets into a confirmed cross flow. A review of
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the measured effects of momentum flux ratio, mainstream tempera-

ture profile, flow area convergence, and configurations of

opposed jet injections are provided in Reference 19. For opposed

rows of jets in aligned configurations with equal momentum flux

ratios, the centerplane of the duct can be assumed to be the

plane of symmetry. The effective duct height for this configura-

tion becomes 0.5 HQ. By using the effective duct height, the

correlations developed in Reference 2 can be used to predict the

temperature distributions for opposed jet injections. In the

present program, these predictions with effective duct height

were found to give poor agreement with the data. By further

modifying the correlations obtained in Reference 2, it is pos-

sible to improve their agreement with the data. The correlations

developed in this program are derived from the NASA/Aerojet model

and are described in Paragraph 6.1.

6.1 NASA/Garrett Correlations

The correlations developed in this program use the same

nomenclatures as those employed by Holdeman and Walker (Reference

2) and are applicable to both in-line and staggered orifice con-

figurations. Paragraph 6.1.1 describes the correlations applic-

able to in-line arrangements with isothermal mainstream condi-

tions. Paragraph 6.1.2 describes the correlations for staggered

injections. The correlations for non-uniform mainstream profiles

are discussed in Paragraph 6.1.3 while converging duct correla-

tions are given in Paragraph 6.1.4. In the correlations with

two-sided injection, the subscript "T" refers to the top injec-

tions and the subscript "B" refers to the bottom injections.
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6.1.1 Correlations for In-line Injections into Isothermal

Cross Flow

The parameter used to describe the temperature distribution

is the nondimensional temperature difference, theta (6), defined
as

T_ - T
(1)

Tm - Tj

where:

0 = Theta, nondimensional temperature difference at a

point in the flow field

T = Mainstream stagnation temperature

T. = jet stagnation temperature

T = stagnation temperature at a point in the flow

field

Theta is a measure of the temperature suppression in the flow

field. The value of theta can vary from one, when measured

temperature equals the jet temperature, to zero, when the
measured temperature equals the main stream temperature. The

largest values of theta in any profile correspond to the coolest

regions of the flow.

If complete mixing of the jet and mainstream flow occurs,

the value of theta will be constant and the temperature will be

everywhere equal to the ideal equilbrium temperature between jet

and mainstream. Thus,
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V V
where:

is the ideal equilibrium theta.

*jm TJT + *JB
 TJB + m T

TEB ' ST m. . A 5L-S <3>
J (Tl R

The mixing characteristics for in-line injections are similar to

those with single-sided injections, with the duct height reduced

to an equilvalent height, Hea-
 For tne toP row of Jets, the

equivalent duct height has been obtained by Wittig (Reference 20)

as

"BV ~B

where:

HQ = Duct height at the jet injection plane.

A.J, = Effective area of the top injections,

and A^ = Effective area of the bottom injections.

= H0 " (Heq}T (5)

The theta distribution in the duct is then defined by
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eB for 5
Y
H, 1.0 (7)

The empirical model for the three-dimensional flow is ex-
pressed in nondimensionalized self-similar form as:

- Y
-In2

W1/2,
(8)

This expression is applicable to both top and bottom injec-

tions. In this equation, 0 , 0~ ._, Y_, and W~ /0 are scalingc in in c JL/ «
parameters as shown in Figure 128. 6 is the maximum temperature

G
difference ratio in the radial (vertical) profile, and Y is its

represents the position of the jet centerline.

min anu 0~min are the minimum dimensionless temperature
difference beyond and before the jet centerline, respectively.

location.

Here, 0+
Yc
and 6'

Since the flow is confined, the entrainment characteristics

of the jets are not necessarily symmetrical about the jet center-

lines. Thus, the half widths W+ and W~ are different for top
J./ £. JL/ f,

and bottom injections. But, for the temperature profile to be
continous,

(9)

The correlations describe the scaling parameters as functions of

independent variables J, S/D, He_/D, X/HorT, and Z/S. The scaling-, X/H , and Z/S.

parameters are nondimensionalized by using the effective jet dia-

meter, D. = D 'd*
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Correlations for Predicting Centerplane Temperature Profiles;

(A) Jet Centerline Trajectory

1.17
e"b (10)

where,

b = 0,•°91 (02 '!!eg VST
S " 3.5

,= Min 0.3575 [1+ £ 0.715]

' J

Reconunended value in Reference 2 was a, = 0.539.

(B) Centerline Temperature Difference Ratio;

c,o (11)

where,

"2 •• S/Heq

Recommended value in Reference 2 was a, = 1.452,

- THere, EB
EB EB

T T

m m. + m .
DT DB

(12)
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(C) Centerplane Half Width

"
*-*• = 0.1623 [̂
3 V j

g\ 0.27 /H\ 0.5 / v\ 0.12 0.15

}i/ \DD/ «)
(D) Minimum Centerplane Temperature Difference Ratio

(15)

Reconunended value in Reference 2 was a^ = 0.038

The above modification ensures that when the jets penetrate

close to Heg, the Gaussian curve for the positive part of the
theta profile (Figure 128) approaches a nearly flat profile.

Furthermore, when the jets penetrate close to Heg, the test data

shows that the value of 0~min also approaches the value of ^CfQ.
This characteristic is modeled by the following expression:
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c,o
= . 1 - e (18)

where,

C = C
D. Dj

<!!SS
-

(19)

C = CoQ
if l-f*= +

/-• —'

Q = exp 0.22 H.
_
5 Heq

(20)

(E) Off-Centerplane Penetration

c,Z
Yo,o

(21)

where,

,0.67 /S

'̂
0.54

(22)

= 0.227

(F) 0£f-Centerplane Maximum Temperature Difference Ratio

, -d (23)
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where,

0.53 / \-1.53 /Y \ 0.83
d - «s J (fM £- (24)

QS = 0.452

Furthermore, -"IJ-"^ = "x"f" (25)

For obtaining 9^ or 0B in equations (16) and (17), the

appropriate values of JT or JB and (Heg)T or (H )B are used in

the equations (10) through (24).

6.1.2 Correlations for Staggered Injections

For staggered injections,

<Heq>T = (Heq>B = HO <26>

rn _ rn T — T

Let 0T = ̂—S , « = !a_̂  (27)

Tm - Tj Tm - Tj

where TT and Tfi are the local temperature due to top or bottom

injections only.

Assumption; Let T be the actual local temperature due to both

top and bottom injections.
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Pm - Ti \nL. + m,

1 *•r m + m.2 m

mm + ranm +
 ra- ' " (28)

For the .top and bottom jets, T™ is obtained from
CiD

(29)

(30)

For staggered injections, equations 10 through 24 can be

used to predict the theta distributions. The equivalent channel

height for staggered injection is equal to the duct height. The

following modifications of the empirical constants are

recommended to improve the agreement between data and

correlations by assuming that the effective orifice spacing for

staggered injections is S/2.

a2 = 1.506 (31)

a4 = 0.454 (32)

The correlations presented in Paragraphs 6.1.1 and 6.1.2 are

applicable only for isothermal mainstream conditions. They

provide a useful design tool for predicting radial profiles. The

correlations for staggered injections need further refinements.
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6.1.3 Correlations for Nonuniform Mainstream Temperature
Profiles

The NASA/Garrett correlations described in Paragraph 6.1
were derived for a uniform flow area and uniform mainstream
condition. When a nonuniform mainstream temperature profile

exists, the NASA/Garrett correlations for theta, 0NG* can be
assumed to represent the changes in the local mainstream
temperature distribution by dilution jets. In other words,

0NG = (Tm(y) ~ T) / (Tm(y) ' Tj) (33)

Here, 6. represents the results from equation (8).

For flows with nonuniform profiled mainstream, the ratio of

actual temperature change to the maximum possible temperature
change due to the jets is obtained from the following definition

of nondimensionalized temperature difference ratio:

= <Tmax * T> / <Tmax -V (34)

where:

T™ = Maximum stagnation temperature of the undisturbed
luclX

mainstream profile

T = Local stagnation temperature

T. = Jet stagnation temperature.

Using equation (34), the profiled mainstream theta,

can be defined as

(35)
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From equations (33), (34), and (35) it is seen that

e 7NG (36)

Equation (36) is used to generate the predicted theta values

for test cases in Series 2 and 4. It is important to note that

the variation of the nondimensionalized temperature, 9, is

conveniently scaled between 0.0 and 1.0. The nondimensional

temperature distribution, #NG, is obtained from the NASA/Garrett

correlations (Equation 8).

6.1.4 Correlations for Inclined Wall Injections

For inclined wall injections, the following sketch sche-

matically represents the generalized injection configurations

with wall inclinations being ct- and an for the top and bottom
1 D

walls, respectively.
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Mass injected upstream = m. sin or_ + m. sin ot (37)
3 B

Assuming this component completely mixes with the
n

by

mainstream, the average mainstream temperature, T_ . . is givenilia, in

m T •+ m. sin a-, T. + m. sin a T.
main ~ • ;—> : ;—• : —HL. + m- sin o;_ + m. sin o;

From the measured mainstream pressure and T . , the main-
stream density is computed.

Total cross flow rate = m + m. sin ct^ + n»j sin «B (39)

From equation (39), U is computed.

At the injection plane, the effective momentum flux ratios

for top and bottom jets are:
i- V. (COS « )2/ A.

Jm Jrp x Jm

<^'e« ' Pro .„*

and ' m. V. (COS ot )2/ A.
Dp, Dn ° Dn/ T \ D D D

^2

The effective momentum flux ratios are used in the
correlations to predict the theta distributions.

At low Mach numbers, the average mainstream velocity

increases by the relation

- umo
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where UmQ and A are the mainstream velocity and cross-sectional
area at the jet injection plane, respectively.

Thus,

(43,

and the equivalent momentum flux ratio, j

iV
or.

(44)

The convergence tends to improve the mixing, especially in
the transverse direction. To correctly model this effect, the
constant a^ in equation (24) should be increased by the
expression,

°-452 <45>
For convergent ducts, J^-Cx) is used in the place of J ineq

the NASA/Garrett correlations and equation (45) is used f or ag .

This approach was found to give improved agreement with the data.
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7.0 CONCLUSIONS AND RECOMMENDATIONS

Phase II of the NASA Dilution Jet Mixing Program was

directed towards a better understanding of the mixing process in

the dilution zone of gas turbine combustion systems. The tests

performed in this program provide a data base for developing

analytical models. An improved correlation based on these test

data has been developed for two-sided jets injected into a con-

fined cross-flow. The following conclusions are drawn from these

tests:

o The jet penetration for two-sided injections are less

than that for single-sided injections, but the jet

spreading rates are faster at a given momentum ratio

for the same orifice plate.

o The jet spreading rate in the transverse direction is

faster with in-line configuration than with staggered

arrangement for a given orifice plate.

o For the orifice plate with S/D = 2 and HQ/D = 8, the

mixing characteristics with in-line and staggered con-

figurations are very similar at a given momentum ratio.

This is due to the small orifice spacing (S/D = 2).

o The mixing characteristics for orifices with S/D = 4

show substantial differences between in-line and stag-

gered configurations: the jet spreading rate in the

radial direction is slightly faster for staggered

arrangement compared to that for in-line configuration.

o For constant momentum ratio, the comparison between

data for single- and two-sided injections shows that

for in-line injections, the optimum ratio of orifice

spacing to duct height, S/H_, is one-half of the opti-
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mum value for single-sided injections. For staggered
injections, the optimum S/HQ ratio is twice the optimum
value for single-sided injection. The optimum value of
S/HO for single-sided injection has been shown to be
(Reference 15)

=2'5/ J

The temperature -distribution in the jet mixing region
with two-sided injections is strongly influenced by the
mainstream temperature profile. The jet spreading

rates with profiled mainstream are similar to those
with uniform mainstream. This suggests that a super-
position scheme may be used to predict the temperature
distributions with profiled mainstream.

Jet mixing is enhanced by flow area convergence. The
jet spreading rates in the radial and transverse direc-
tion, of a convergent duct, occurs within a shorter
distance from the jet injection plane than in the case
of a straight duct. This is due to the acceleration
caused by favorable pressure gradients.

The jet mixing characteristics with asymmetric conver-
gence are very similar to those in symmetrically con-
vergent duct with the same area reduction. For the
asymmetrically convergent duct with two-sided injec-
tion, the jet penetrations from the inclined wall are
slightly deeper than that issuing from the flat wall.

The mixing characteristics for in-line configurations
with unbalanced momentum ratio are very similar to
those with balanced momentum ratio with the same ori-
fice plate. The major difference between the two con-
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ditions lies in the value of equivalent channel height,

The jet mixing characteristics of square orifices are

very similar to those of circular orifices with the

same geometrical area and orifice spacing to diameter

ratio, S/D.

The jet penetration and mixing characteristics of two-

dimensional slots are very similar to those for the

orifice plate with S/D = 2, having the same geometrical

area as the two-dimensional slot. This is especially

true in the far field (X/HQ > 1) of the mixing region.

In the regions near the jet injection plane, the two-

dimensional slot has reduced mixing rates compared to

the equivalent area orifice plate with S/D = 2.

For single-sided injection into a convergent duct with

profiled mainstream, the mixing characteristics are

strongly influenced by the mainstream temperature pro-

file.

The jet mixing characteristics for orifice plate

01/03/06 (S/D = 2.83, HQ/D = 5.66) are similar to those

for orifice plate 01/02/04 (S/D = 2, HQ/D = 4) at the

same momentum ratio.

The correlations developed in this program predict the

temperature distributions within first-order accuracy.
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The correlations are quite accurate for in-line config-

urations. For staggered arrangements of jets, the cor-

relations give qualitatively correct results, but

further efforts are needed to improve their quantita-

tive agreement with the data.

o For in-line injections, the expression suggested by

Wittig (Reference 20) for equivalent channel height is

in good agreement with the tests performed in this pro-

gram.

o For the tests with profiled mainstream, the superposi-

tion of mainstream profile on the NASA/Garrett correla-

tions for isothermal mainstream conditions yields re-

sults that are in agreement with the data within

engineering accuracy.

o For the tests involving flow area convergence, the

modified NASA/Garrett correlations with equivalent

momentum ratio, Jeq/ provide improved predictions of

temperature distributions. However, this model does

not correctly account for the effects of jet injection

angle. Further refinements of the correlations are

needed to address this deficiency.

o For single-sided injections, the NASA/Aerojet correla-

tions predict qualitatively correct theta distributions

for situations involving flow area convergence and pro-

filed mainstream. Those correlations (using S/D = 1)

accurately predict the far field (X/HQ > 1) radial pro-

files for two-dimensional slots. The correlations

using S/D = 1 give better agreement than those obtained

by using S/D = 2.
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The correlations developed in this program are based on the

NASA/Aerojet correlations for single-sided injections. They pro-

vide a very useful and simple analytical tool for designing the

dilution zone of a combustor. These correlations are applicable

to a wider range of combustor configurations. However, addi-

tional work is needed to improve the accuracy of the correla-

tions.
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LIST OF SYMBOLS

A Test section cross-sectional area at survey plane

D Geometric orifice diameter

D. Effective orifice diameter

H Duct height at the jet injection plane

H Local duct height at the survey plane

HEO Local equivalent channel height

2 / 2
J Momentum flux ratio P-?V- /Pm

v
m

P. Stagnation pressure

PS Static pressure

S Orifice spacing

T Temperature

V Velocity

X x direction, parallel to duct axis

Y y direction, parallel to orifice centerline (radial direc-
tion)

Z z direction, normal to duct axis (transverse direction)

Greek

0 Temperature difference ratio

p Density

a Jet injection angle

Subscripts

av average

EB Equilibrium value

j Jet property
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max Maximum

m Cross-flow property, average value

T Top dilution jets

B Bottom dilution jets
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VJT = JET VELOCITY

COORDINATE ORIGIN IS LOCATED AT CENTER OF ORIFICE
um- Pm- Tm = MAINSTREAM VELOCITY. DENSITY. AND TEMPERATURE

Vj. P\. TJ = INITIAL JET VELOCITY. DENSITY. AND TEMPERATURE

H0 . = TEST-SECTION HEIGHT AT INJECTION PLANE

H = TEST-SECTION HEIGHT AT ANY X-Y PLANE

S = ORIFICE SPACING ALONG Z (TRANSVERSE) DIRECTION

0 = ORIFICE DIAMETER

DJ = X/CD D

ZTS = TEST-SECTION TRANSVERSE DIMENSION = 305mm

Figure 1. Multiple Jet Study Coordinate System and
Important Nomenclature.
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Figure 3. Partially Assembled Dilution Jet Mixing Test Rig.
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Figure 4. Profile Generator
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REFERENCE
PLANE TO
ALL TEST SECTIONS

SIDEWALL
STATIC NUMBERS

THERMOCOUPLES

BOTTOM WALL
STATIC

SIDEWALL STATIC
NUMBERS

Figure 6. Wall Statics and Thermocouples for Test Section I
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PLATE 01/04/04

El PLATE 01/02/04

E PLATE 01/04/08

CD PLATE 01/02/08

Figure 7. Dilution Orifice Plate Configurations.
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1

Figure 8. Total Pressure, Thermocouple, and Static
Pressure Rake.
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Figure 9. X-Y-Z Actuator with the Rake Mounted Thereon.
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Figure 10. Jet Mixing Rig as Viewed from Rig Discharge End,
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S =0.0254 METERS S/OJ=2.452 HO/OJ = 9.810 VMRIN = 15.5 M/SEC VJET = 28.1 K/SEC TURIN = 645.9 K TJET = 310.4 K THEB = 0.1983 BLORfiT=3.848 DENRRTIO= 2.087 TRflTIO=0.480

X/HO - 0.250
X/DJ = 2.45

X/HO = 0.500
X/DJ r 4.90

iTrtUH-Ti/fTmm-TJ) ; (TnniN-ri/irmiN-Tj)

MEASURED THETfl PROFILES FOR TEST NO.l. TEST SECTION I.TM=CONST (INL)

X/HO = 1.000
X/OJ - 9.81

J =.6.81 . S/D =2-00 . H/D = 8.00

X/HO = 2.000
X/DJ r 19.62

CONTOUR
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r H i

t r
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10

0.5000

t r ~ t ~ t
-0.5 l.S -0.5 1.5

rRflNSVERSE OIST. H/S TRBNSVERSE DIST. l/S

MERSURED THETfl CONTOURS FOR TEST NO-1. TM=CONST (INL). J=6.81. S/D=2.0.

11

0.6000

L

TRANSVERSE OIST. Z/S

Figure 11. Measured Theta Distributions for Test No. 1.
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TRftMSVESSE 01ST. H/S

10

0.5000

11

0.6000
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PREDICTED THETfl CONTOURS FOR TEST NO. 1, TM=CONST. J=6-81, S/D=2.0. H/D=8-0
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COMPHRISON BETWEEN OflTfl flND CORRELflTIONS FOR TEST NO. 1. TEST SECTION I. TM=CONST ( I N L ) . J = 6.81 . S/D =2-00 . H/D =8.00

Figure .1.2. Predicted Theta Distributions for Test No. 1.
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Ill

TRANSVERSE DIST. Z/S



f T
TRflNSVERSE OIST, Z/S

CONTOUR

VRLUE

1.5

1 2 3 4 5 6 7 8 9 1 0 1 1

0.0500 0.1000 0.1500 0.2000 0.2500 0.3179 0.3500 0.4000 0.4500 0.5000 0.6000

J i i i__

-0.5
t T

TRflNSVERSE OISI. Z/S

1.0

r t
~°'6 TRflNSVERSe DIST. Z/S

PREDICTED THETfl CONTOURS FOR TEST NO. 2, TM=CONST. J=24.96, S/D-2.0,

s
o

si

i
i

T T

0.0

1.0

5
TRHNSVER8E OI8T. Z/S

S/DJ = 2.48

X/H = 0.25 X/OJ

OJO OJO

OJU 0.0 O.W 040 040 I JO

(TMfUN-T)/(TMflIN-TJJ

HO/DJ = 4.96 VRflTIO = 3.42

X/H = 0.50 X/DJ =4.96

TRflTIO = 0.474

00.00 040 0.40

0410 0-tO 0.40 040 040 tJJO

(TMflIN-T)/(TMflIN-TJ)

DENRflTIO=2.135 TURIN = 646.6 K

X/H =1.00 X/DJ =S.92

[040 040 0.40 040

040 040 0.40 040 040 140

(TMflIN-T)/(Tf1fiIN-TJJ

TJET = 306.8 K THEB = 0.318

X/H = 2.00 X/DJ =19.84

fiO.00 040 0.4

04B O.t0 0.40 040 040 1J10

(TMflIN-T)/(TMflIN-TJ)

COMPRR1SON BETWEEN DflTfl flND CORRELflTIONS FOR TEST NO- 2. TEST SECTION I. TM=CONST ( I N U . J = 24.95 . S/D r2-00 , H/D =8-00

Figure 14. Predicted Theta Distributions for Test No. 2.
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S =0.0254 METERS S/OJ = 2.461 HO/OJ = 9.844 VMfllN = 16.6 fl/SEC VJET = 30.0 M/SEC TWIN = 648.9 K TJET = 325.7 K THEB = 0.1890 8LORRT= 3.686 OENRfiTlO= 1.998 TRflTIOrO.S02
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MEflSURED THETfl PROFILES FOR TEST NO.4. TEST SECTION I.TM=CONST CSTG) . J =6-53 , S/D = 2-00 . H/D = 8-00
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Figure 17. Measured Theta Distributions for Test No. 4. ]
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Figure 18. Predicted Theta Distributions for Test No. 4.
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S =0.0254 METERS S/DJ = 2.462 HO/DJ = 9.848 VMRIN = 16.3 M/SEC VJET = 56.7 M/SEC TURIN = 646.2 K TJET = 314.5 K THEB = 0.3186 BLORfiT= 7.393 DENRflTIO= 2.086 TRflTIO=0.487
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Figure 20. Measured Theta Distributions for _Te_st No. 5.
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S =0.0254 METERS S/DJ = 2.481 HO/DJ = 9.924 VMRIN = 16.4 M/SEC VJET = 110.2 M/SEC TURIN = 645.2 K TJET = 313.5 K THEB = 0.4845 BLORRT= 15.063 DENRHTIO= 2.195 TRflTIO=0.486
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MEflSURED THETfl PROFILES FOR TEST NO.6, TEST SECTION I,TM=CONST (STB) . J =99-29 , S/D - 2-00 . H/D r 8-00
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Figure 23. Measured Theta Distributions for Test No. 6.
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S =0.0508 METERS S/OJ = 4.888 HO/DJ = 9.776 VMRIN = 15.2 M/SEC VJET = 30.2 fl/SEC TURIN = 645.4 K TJET = 326-3 K THE8 = 0.1120 BLORRT= 3.867 DENRRTIO= 1.984 TRflTIOrO.506
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Figure 26. Measured Theta Distributions for Test No. 7.

124



CONTOUR

VHLUE

o.o

TRflNSVEFSE OIST. Z/S

1

0.0500

2

0.1121

L

3

0.1500

4

0.2000

5

0.2500

0.0

6

0.3000

3A 1.0

7

0.3250

I

8

0.3500

L

9

0.4000

o.o

1.0

-0.6 1.6
i T

1.6 -0.6
TRANSVERSE OIST. Z/S TRRNSVERSE OIST. Z/S

PREDICTED THETfl CONTOURS FOR TEST NO 7. TM=CONST( INL) ,J=7.85.S/D=4.0. H/D=8-0

1 T
TRHNSVERSE DIST. Z/S

S/OJ =

X/H = 0.25 X/OJ =2.44

4.89

B040 0.40 040

0^0 040

(T(1flIN-T)/(TMflIN-TJ)

HO/DJ =4.89 VRflTIO = 1.99

X/H = O.SO X/DJ =4.89

TRRTIO = 0.506

8-

040 040 0^0 040 040 140

(TMflIN-T) / (TMflIN-TJ)

DENRPTIO= 1.984 TURIN = 645.4 K
i

X/H = 1.00 X/DJ =9.78

gOJO QJO 00 04

TJET = 326.3 K THEB = 0.112

X/H = 2.00 X/DJ =19.55

040 " 040 0.40 040 040 140

CTMRIN-T)/(TURIN-TJ)

|040 040 0.40 040

\

040 040 0.40 040 040 140

(TMflIN-T)/tTMflIN-TJ)

COMPflRISON BETWEEN DflTfl flND CORRELflTIONS FOR TEST NO. 7. TEST SECTION I. TM=CONST(INL). J = 7.85
Figure 27. Predicted Theta Distributions for Test No. 7.

. S/D =4.00 . H/0 =8.00

125



S =0.0508 METERS S/OJ = 4.961 HO/0J = 9-921 VMflIN = 15-0 M/SEC VJET = 55.7 M/SEC TWIN = 644.1 K TJET = 322-5 K THEB = 0.1896 BLORflT= 7.373 DENRHTIOr 2.027 TRRTIO=0.501
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CONTOUR

VflLUE

TRANSVERSE 0161. Z/S

6

0-2500

7

0.3000

J

8

0.3500

1

9

0.4000

10

0.5000

o.o

11
O.SOOO

1.0

-O.S -O.S 1.5
T T

. .
TRANSVERSE DIST. Z/S TRANSVERSE OIST. H/S

MEflSURED THETfl CONTOURS FOR TEST NO. 8. TftCONST (INL). J=27.92. S/D=4.0. H/D=8.

TRANSVERSE OIST. Z/S

Figure 28. Measured Theta Distributions for Test No. 8.
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Figure 29. Predicted Theta Distributions for Test No. 8.
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S =0-0508 METERS S/DJ = 4-961 HO/DJ = 9.921 VMRIN = 15-8 tVSEC VJET = 110-9 M/SEC TWIN = 644-2 K TJET = 31T .0 K THEB = 0-3291 BLORRT= 15-691 OENRRTlOr 2-184 TRRTIO=0-492
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Figure 31. Predicted Theta Distributions for Test No. 9.
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S =0.0508 METERS S/DJ = 4.888 HO/DJ = 9.776 VMflIN = 15.8 M/SEC VJET = 27.6 M/SEC TMflIN = 646.6 K TJET = 329.1 K THEB r 0.1019 BLORf)T= 3.502 DENR9TIO= 1.971 TRflTIO= 0.509

Mi "Hf » .4.
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X/HO = 1.000
X/OJ = 9.78

X/HO = 2.000
X/OJ = 19.55

MEflSURED THETfl PROFILES FOR TEST NO-10, TEST SECTION I.TM=CONST (STG) , J =5.97 ,5/0= 4-00 . H/D = 8-00
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MEflSURED THETfl CONTOURS FOR TEST NO. 10, TM=CONST (STG), J=5-97, 5/0=4-0, H/D=8.0

Figure 32. Measured Theta Distributions for Test No. 10.
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COMPRRISON BETWEEN DflTfl flND CORRELflTIONS FOR TEST NO- 10. TEST SECTION I,TM=CONST(STG).
Figure 33. Predicted Theta Distributions for Test No. 10.

J = 5-97 , S/D =4-00 . H/D =8-00
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S =0.0508 METERS S/DJ = 4.925 HO/DJ = 9.851 VMRIN = 15.7 M/SEC VJET = 55.8 M/SEC TURIN = 645.0 K TJET = 322.2 K THEB = 0.1888 BLORRT= 7.368 DENRfiT10= 2.033 TRRTIO= 0.500
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MEflSURED THETfl PROFILES FOR TEST NO.ll, TEST SECTION I.TM=CONST (STDO . J =25-68 , S/D = 4 - 0 0 , H/D = 8.00

-0,B
TRBNSVERSE OIST. Z/S

CONTOUR

VflLUE

1 2 3 .4 5 6 7 8 9 10 11

0.0500 0.1000 0.1888 0.2000 0.2500 0.3000 0.3500 0.4000 0-5000 0-6000 0-7000

^_J 1 i

TRANSVERSE OIST. Z/S TRflNSVERSE OIST. Z/S

MEflSURED THETfl CONTOURS FOR TEST NO.ll. TM=CONST (STG). J=25.68. S/D=4.0. H/D=8.

Figure 34. Measured Theta Distributions for Test No. 11.
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Figure 35. Predicted Theta Distributions for Test No. 11.
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S =0.0508 METERS S/OJ = 5.000 HO/DJ = 10.000 VMBIN = 16.0 M/SEC VJET = 109.9 M/SEC TMRIN = 645.9 K TJET = 317.9 K THEB = 0.3187 BLORRT= 15.291 DENRRTIO= 2.178 TRflTIO=0.492

X/HO = 0.250
X/DJ =2.50

X/HO = 0.500
X/OJ =5.00

X/HO = 1.000
X/OJ = 10.00
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MERSURED THETfl PROFILES FOR TEST .NO. 12, TEST SECTION I.TM=CONST (STGJ , J = 103.07 . S/D = 4-00 . H/'D = 8-00
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MEflSURED THETfl CONTOURS FOR TEST NO-12. TM=CONST (STG), J=103.1. S/D=4.0. H/D=8.

Figure 36. Measured Theta Distributions for Test No. 12.
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Figure 37. Predicted Theta Distributions for Test No. 12.
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S =0.0254 METERS S/DJ = 2.540 HO/DJ = 10.159 VttflIN = 18.9 M/SEC VJET = 69.3 M/SEC TMflIN = 559.3 K TJET = 309.9 K THEB = «.64»2 8LORflT= 7.081 OENRflTIO= 1.825 TRflTIO=0.554
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Figure 39. Measured Theta Distributions for Test No. 13.
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COMPflRISON BETWEEN DflTfl FIND CORRELRTIONS FOR TEST NO- 13. TEST SECTION I.TOP COLD(INL).

Figure 40. Predicted Theta Distributions for Test No. 13.

J = 24.63 . S/D =2.00 . H/D =8.00
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S =0.0254 METERS S/DJ = 2.500 HO/OJ = 10.000 VMflIN = 19.0 tt/SEC VJET = 35.5 tt/SEC TMflIN = 553.9 K TJET =

X/HO = 0.250
X/DJ = 2.50

X/HO = 0.500
X/DJ =5.00

321.7 K THEB = •.S990 BLORflT= 3.457 OENRflTIO= 1.725 TRflTIO=0.581

u "O •<•
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X/HO = 2.000
X/OJ r 20.00

MEflSURED THETfl PROFILES FOR TEST NO. 14. TEST SECTION I.TOP COLD (STGO. . J =6-02 . S/D = 2.00 . H/D = 8.00
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Figure 41. Measured Theta Distributions for Test No. 14.
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Figure 42. Predicted Theta Distributions for Test No. 13.

J = 6.02 . S/D =2.00 . H/D =8.00

140



CONTOUR

VflLUE

1 8 10

1 f

TRANSVERSE DIST. 1/6

0.0

I
11

0.1000 0.2000 0.3000 0.4000 0.4500 0-5000 0.5500 0.5990 0.6500 0.7000 0.7500

I i I 1 j

-0.6
f t

. . 1 .5 -O.E
TRANSVERSE DIST. 1/6 j TRANSVERSE DIST. Z/S

PREDICTED THETfl CONTOURS FOR TEST NO 14. TOP COLD. J=6.02, S/D=2.0(STGO . H/D=8.0

t T
TRANSVERSE DIST. Z/S

S/OJ =

X/H =0-25 X/DJ =2-50

2.46

3040 04D 040 04D

OJO OJO 040 IJO

HO/DJ =5.04 VRflTIO = 1.87 TRflTIO = 0.581.

X/H = 0.50 X/OJ =5.00

040 040 040

(Tt1flX-T)/tT»1flX-TJ)

040 040 040 040

ITmX-TVlTIWX-TJ)

DENRflTIpr 1.725 TMfllN = 553.9 K
!•

X/H = 1.00 X/DJ =10-00

TJET = 321.7 K THEB = «.S9M

X/H =2.00 X/DJ^SO.OO

040 04D

i_,
il

040 040 140

lTMBX-T)/(T(1ftX-TJ)

COMPflRISON BETWEEN DRTP flND CORRELflTIONS FOR TEST NO. 14. TEST SECTION I.TOP COLD(STG).
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Using Correlations for In-line Injections.

J = 6.02 . S/D =2.00 . H/D =8.00
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S =0.0254 METERS S/DJ = 2.520 HO/DJ = 10.080 VMflIN = 18.9 M/SEC VJET = 69.6 M/SEC TMflIN = 554.6 K TJET = 318.5 K THEB = 6.6541 BLORflT= 6.942 DENRflTIO= 1.758 TRflTIO=0.574
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Figure 44. Measured Theta Distributions for Test No. 15.
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Figure 45. Predicted Theta Distributions for Test No. 15. i
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Figure 46. Predicted Theta Distributions for Test No. 15
Using Correlations for In-line Injections.
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S =0.0508 METERS S/OJ = 5.000 HO/DJ = 10.000 VMflIN = 18.6 H/SEC VJET = 68.5 M/SEC TMftlN = 549.9 K TJET = 321.3 K THEB = e.68t7 BLORflTr 6.892 DENRflTIO= 1.733 TRflTIO=0.584
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Figure 47. Measured Theta Distributions for Test No. 16.
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Figure 48. Predicted Theta Distributions for Test No. 16.
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S =0.0508 METERS S/DJ = 5.017 HO/DJ = 10.033 VMflIN = 18.8 H/SEC VJET = 68.7 M/SEC TMflIN = 548.1 K TJET = 315.4 K THEB = 9.6084 BLORRT= 6.980 DENRflTIO= 1.759 TRflTIO=0.57S
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MEflSURED THETfl PROFILES FOR TEST NO.17. TEST SECTION I.TOP COLD (STD) , J =23i62 . S/D = 4-00 . H/D = 8-00
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Figure 49. Measured Theta Distributions-for Test No. 17.

147
I

TRANSVERSE DIST. Z/S



CONTOUR

VRLUE

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

0.1000 0.1500 0.2000 0-2500 0.3000 0-3500 0-4000 0-4500 0-5000 0-6004 0-7000 0-8000

i

T t
-o.s

TRflNSVERSE OtST. Z/S TRflNSVERSE DIST. Z/S

PREDICTED THETfl CONTOURS FOR TEST NO 17,TOP COLO, J=23-62, S/0=4-0(STG), H/D=8-0

TRBNSVERSE DIST. Z/S

S/OJ -

X/H = O.ZS X/DJ =2.51

4.89

gOM D.40 C.GC

0,00 Q.2Q 0.*€ C.tQ O.UC t-00

(TMflX-T)/(TMflX-TJ)

HO/DJ=9.78 VRHTIO=3.6S TRRTIO-0 -575

X/H = 0.50 X/DJ =5.02

B1|O.CO 0.20 C.<0 C.GC

0.00 0.20 0.40 o.eo o-so i.ca

(TMflX-n/ITMflX-TJ)

DENRflTIO=I-759 TURIN = 548.1 K

X/H = 1-00 X/OJ =10-03

TJET = 315-4 K THEB = 6.6M4

X/H = 2-00 X/DJ =20-07

cjQ.CC 0.20 O.«0 0*0

o.zo c.40 o.eo o.eo t.co

(TMRX-T)/(rmX-TJ)

8
a
I

ŝ-
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Figure 50. Predicted Theta Distributions for Test No. 17.

J = 23-62 , S/D =4-00 , H/D =8-00
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S =0.0508 METERS S/DJ = 5.040 'HO/DJ = 10.080 VMflIN = 18.9 M/SEC VJET = 137.7 M/SEC TURIN = 551.1 K TJET = 313.5 K THEB = «.6S89 BLORflTr 14.698 OENRBTIO= 1.873 TRflTIO=0.569
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MEflSURED THETfl PROFILES FOR TEST NO. 18, TEST SECTION I,TOP COLD (STG) . J =99-;52 , S/D - 4.00 , H/D = 8-00
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Figure 51. Measured Theta Distributions for Test No. 18.
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J = 99.52 . S/D =4.00 , H/D =8-00
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S =0.0254 METERS S/DJ = 2.475 HO/DJ = 9.899 VttflIN = 16.5 M/SEC VJET = 56.5 M/SEC TMftIN = 644.8 K TJET L 298.2 K THEB = 0.3253 BLORRT= 7.560 OENR.qTIO= 2.201 TRRTIO=0.463
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Figure 53. Measured Theta Distributions for Test No. 19.
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Figure 54. Predicted Theta Distributions for Test No. 19.
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S =0.0254 METERS S/OJ s 2.475 HO/OJ = 9-899 VrtRIN = 16.4 H/SEC VJET = 1U.3 M/SEC TMflIN = 644.6 K TJET = 297.0 K THEB = 0.5019 BLORflT= 15.664 OENRflTIOr 2.305 TRflTIO=0.461
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MEflSUREO THETfl PROFILES FOR TEST NO.20. TEST SECTION II. TM=CONST( INL) . J =106.05 , S/D = 2.00 . H/0 = 8.00
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Figure 55. Measured Theta Distributions for Test No. 20.
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Figure 56. Predicted Theta Distributions for Test No. 20.

J = 106.05 . S/D =2.00 . H/D =8.00
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S =0.0508 METERS S/OJ = 5.000 HO/DJ = 10.000 VMfllN = 16.4 M/SEC VJET = 57.1 M/SEC THflIN = 644.6 K TJET = 302-9 K THEB = 0.1929 BLORflT= 7.464 OENRRTIO= 2.149 TRflTIO=0.470
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X/DJ =5.00

X/HO = t .000
X/OJ = 10.00

MERSURED THETfl PROFILES FOR TEST NO.21. TEST SECTION II. TM=CONST(STG) , J - 25|i92 , S/D = 4 - 0 0 . H/'D = 8-00
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Figure 57. Measured Theta Distributions for Test No. 21.
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Figure 58. Predicted Theta Distributions for Test No. 21.

. S/D =4.00 , H/D =8.00
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S =0.0508 METERS S/DJ = 5.040 HO/DJ = 10.080 VMfllN = 16.4 M/SEC VJET = 112.8 M/SEC TMflIN = 644.2 K T JET = 298.5 K THEB = 0.3260 BLORHT= 15.640 DENRRTIO= 2.272 TRflTIO=0.463
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MERSURED THETfl PROFILES FOR TEST NO. 22. TEST SECTION II, TM=CONST(STG) . J =107.91 . S/D = 4-00 . H/D - 8-00
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Figure 59. Measured Theta Distributions for Test No. 22.
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Figure 60. Predicted Theta Distributions for Test No. 22.

J = 107.91 , S/D =4.00 , H/D =8-00
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S =0.1016 METERS S/DJ = 4.886 HO/DJ = 4.886 VMflIN = 16.5 M/SEC VJET = 29.7 M/SEC TMfllN = 644.9 K TJET =
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Figure 61. Measured Theta Distributions for Test No. 23.
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Figure 62. Predicted Theta Distributions for Test No. 23.

. S/D =4.00 . H/D =4-00
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S =0.1016 METERS S/DJ = 4.969 HO/OJ = 4.969 VMflIN = 16.4 M/SEC VJET = 56.8 M/SEC TfffllN = 644.5 K TJET = 304.2 K THEB - 0.3272 BLORHT= 7.449 OENRflTIOr 2.154
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MEflSURED THETH PROFILES FOR TEST NO-24. TEST SECTION II. TM=CONST(STG) . J =25-84 . S/D = 4.00 . H/D = 4.00
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Figure 63. Measured Theta Distributions for Test No. 24.
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Figure 64. Predicted Theta Distributions for Test No. 24.
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S =0.0508 METERS S/OJ = 2.471 HO/DJ = 4.942 VMflIN = 16.4 M/SEC VJET = 28.9 M/SEC TMflIN = 645.1 K TJET = 300.4 K THEB = 0.3283 BLORRT= 3.791 DENRflTlO= 2.156

nfB ... i. '

TRfiTIOr0.466

X/HO = 0.250
X/DJ = 1.24

X/HO = 0.500
X/DJ =2.47

X/HO = 1.000
X/DJ = 4.94

MEflSURED THETfl PROFILES FOR TEST NO.25. TEST SECTION II, TM^CONSTt INL) , J -6-'69 , S/D = 2-00 , H/D - 4.00
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Figure 65. Measured Theta Distributions for Test No. 25.
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Figure 66. Predicted Theta Distributions for Test No. 25.

J = 6.69 . S/D =2.00 . H/D =4.00
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S =0.0508 METERS S/DJ = 2.520 HO/DJ = 5.039 VrlflIN = 16.4 M/SEC VJET = 56.4 M/SEC TURIN = 644.7 K TJET = 300.8 K THEB = 0.4810 BLORflT= 7.456 DENRflTIO= 2.174 TRflTIOr 0.467

X/HO = 0.250
X/DJ = 1.26 Cp-

X/HO = 0.500
X/DJ = 2.52

s & *»
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MEflSURED THETfl PROFILES FOR TEST NO.26. TEST SECTION II.'TM=CONST(INL) . J =25-68 . S/D =2.00 . H/D = 4.00
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Figure 67. Measured Theta Distributions for Test No. 26.
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Figure 68. Predicted Theta Distributions for Test No. 26.

, S/D =2.00 . H/D =4.00
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S =0.1016 METERS S/DJ = 4.905 HO/DJ=4.905 VMHIN = 16.6 M/SEC VJET = 30.1 M/SEC TMflIN = 646.3 K TJET = 313.4 K THEB = 0.1993 BLORRT= 3.734 DENRHT 10= -2.067 TRRTIO=0.485

y«. .» "fg ... .. ,«. >, "tg „

X/HO = 0.250
X/DJ = 1.23

X/HO = 0.500
X/DJ = 2.45

X/HO = 1.000
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MEflSURED THETfl PROFILES FOR TEST NO.27. TEST SECTION I. TMrCONST (STG) . J =6 -76 . S/D = 4-00 , H/D - 4-00
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Figure 69. Measured Theta Distributions for Test No. 27.
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COMPflRISON BETWEEN OflTfl RND CORRELRTIONS FOR TEST NO. 27. TEST SECTION I , T M = C O N S T ( S T G ) . J = 6.76 . S/D =4.00 . H/D =4-00
Figure 70. Predicted Theta Distributions for Test No. 27.
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S r 0.1016 METERS S/DJ = 4.974 HO/DJ = 4.974 VMfllN = 16.9 M/SEC VJET = 59.4 H/SEC TMflIN = 644.7 K TJET = 307.4 K THEB = 0.3271 BLORflTr 7.490 DENRflTIOr 2.125 TRflTIO=C.477

X/HO = 0.250
X/DJ = 1.24

ITIWIM-D/ITmiN-TJ)
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MERSURED THETfl PROFILES FOR TEST NO.28. TEST SECTION I. TftCONST (STG) . J = 26 .'42 . S/D = 4-00 . H/D r 4.00
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MEASURED THETfl CONTOURS FOR TEST NO.28. TM=CONST (STG). J=26-42. S/D=4.0, H/D=4.

Figure 71. Measured Theta Distributions for Test No. 28.
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COMPflRISON BETWEEN OflTfl flND CORRELflTIONS FOR TEST NO. 28. TEST SECTION I,TM=CONST(STG),

Figure 72. Predicted Theta Distributions for Test No. 28.

J = 26.42 . S/D =4.00 . H/D =4.00
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S =0.1016 METERS S/DJ = 4-980 HO/OJ = 4-980 VMfllN = 16.5 M/SEC VJET = 58-6 M/SEC TURIN = 645.4 K TJET = 307-5 K THEB = 0-3253 BLORflT= 7.548 OENRflTlOr 2.122 TRflTlO=0.476

X/HO = 0.500
X/OJ = 2.49

X/HO r 1.000
X/OJ r 4.98

X/HO = 2.000
X/OJ = 9.96

MEflSURED THETfl PROFILES FOR TEST NO-29. TEST SECTION I, TM^CONST (INL) . J =26-86 . S/D =4.00 , H/D = 4.00
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Figure 73. Measured Theta Distributions for Test No. 29.
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Figure 74. Predicted Theta Distributions for Test No. 29.

J = 26.86 . S/D =4.00 . H/D =4-00
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S =0.1016 METERS S/DJ = 5.000 HO/DJ = 5.000 VMflIN = 16.6 M/SEC VJET - 114.9 M/SEC TMflIN = 645.4 K TJET = 306.9 K THEB = 0.4936 BLORflT= 15.403 DENRflTIOr 2.220 TRflT!0=0.47S
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MEflSURED THETfl PROFILES FOR TEST NO.30, TEST SECTION I. TM^CONST {INL) . J =106-94 , S/D - 4.00 , H/D - 4-00
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Figure 75. Measured Theta Distributions for Test No. 30.
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Figure 76. Predicted Theta Distributions for Test No. 30.

J = 106.94 . S/D =4.00 . H/D =4.00
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S =0.0051 METERS S/DJ = 1.152 HO/DJ = 22.763 VMRIN = 16.8 fi/SEC VJET = 29.9 M/SEC TURIN = 646.1 K TJET = 310.5 K THEB - 0-1213 BLORflT= 3-719 DENRRTIO= 2.088

.. <va » ,-
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Figure 77. Measured Theta Distributions for Test No. 31.
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Figure 78. Predicted Theta Distributions for Test No. 31A.
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S =0.0051 METERS S/OJ = 1.167 HO/DJ = 23.043 VMRIN = 16.7 M/SEC VJET = 58-4 h/SEC TMflIN = 646.8 K TJET r 308.6 K THEB = 0.2129 BLORRT= 7.464 DENRflTIO= 2.134
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Figure 79. Measured Theta Distributions for Test No. 31.
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COMPflRISON BETWEEN DflTfl flND CORRELPTIONS FOR TEST N0.31B. TEST SECTION I, TM=CONST (SLOT) . J = 26.13 . S/D =2.00 . H/D =19.75

Figure 80. Predicted Theta Distributions for Test No. 31.
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S= 0-0051 METERS S/DJ = 1.183 HO/DJ = 23.360 VMfliN = 16.8 fi/SEC VJEF = 113.8 M/SEC TURIN = 646-3 K IJET = 305.1 K THEB = 0.3520 BLORflT= 15.406 OENRH710= 2.273 rRflTIO= 0.472
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MEflSURED THETfl PROFILES FOR TEST NO.31, TEST SECTION I. 2-D SLOT . J = !104.49 , S/D = 1-00 . H/W = 19-75
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Figure 81. Measured Theta Distributions for Test No. 31.
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Figure 82. Predicted Theta Distributions for Test No. 31.
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S =0.1016 METERS . S/OJ = 5.618 HO/DJ = 5.618 VttfllN = 16.8 M/SEC VJET = 59-1 M/SEC TMflIN = 646.5 K TJET = 311.0 K THEB = 0.1902 BLORflT= 7.409 DENRflTIO= 2.105 TRRTIO=0.481
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MEflSURED THETfl PROFILES FOR TEST NO.32. TEST SECTION I. SQUflRE HOLES , J =26.10 , S/D = 4-00 . H/D = 4-00
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Figure 83. Measured Theta Distributions for Test No. 32.
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Figure 84. Predicted Theta Distributions for Test No. 32.
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S =0.0254 METERS S/DJ = 2.S20 HO/DJ = 10.080 VfWIN = 16.6 fl/SEC VJET = 72.3 M/SEC TWIN = 645-1 K TJET = 303.7 K THEB = 0.3201 BLORflT= 9.388 DENRflTIOr 2.157 TRflTIO=0.471
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MEflSURED THETfl PROFILES FOR TEST NO.33. TEST SECTION I. TMrCONST (INL) . JTOP±40.9. JBOT=14.7, S/D=2.0. H/D=8.0
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Figure 85. Measured Theta Distributions for Test No. 33.
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Figure 86. Predicted Theta Distributions for Test No. 33.
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S =0.0254 METERS S/DJ = 2.520 HO/DJ = 10.080 VMRIN = 16.6 M/SEC VJET = 85.7 M/SEC TMRIN = 645.3 K TJET = 303.2 K THEB = 0.3201 BLORRTr 11.291 DENRRTIO= 2.185 TRRTIO=0.470
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MEflSURED THETR PROFILES FOR TEST NO-34. TEST SECTION I. TM=CONST (INL) . JTOP-58.4. JBOT=6.47. S/D=2.0. H/D=8.0
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Figure 87. Measured Theta Distributions for Test No. 34.
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Figure 88. Predicted Theta Distributions for Test No. 34.
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S =0.0254 METERS S/DJ = 2.514 HO/OJ = 10.057 VMRIN = 16.4 H/SEC VJET = 57.2 M/SEC TWIN = 645-0 K TJET = 303.4 K THEB = 0-3185 BLORflT= 7.512 DENRflTlOr 2.155 TRflTIO=0.470

X/HO = 0-250
X/DJ = 2-51

X/HO = 0-500
X/OJ = 5.03 I

X/HO = 1-000
X/OJ = 10.06

<n«m-t)/cTwui-Tj) <Tnmn-T)/(Tr*UN-Tj> t iTmiM-n/iranw-TJi

MEASURED THETfl PROFILES FOR TEST NO.35, TEST SECTION III. TM=CONSTUNL), J =26-24 , S/D =2-00 . H/D = 8-00
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Figure 89. Measured Theta Distributions for Test No. 35.
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Figure 90. Predicted Theta Distributions for Test No. 35.
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S =0.0254 METERS S/DJ = 2.520 HO/DJ = 10.080 VrWIN = 16.4 M/SEC VJET = 112.8 M/SEC . TURIN = 644.5 K TJET = 301.1 K THEB = 0.4902 BLORflT= 15-590 DENRflTIOr 2.275 TRflTIO=0.467
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MEflSURED THETfl PROFILES FOR TEST NO.36. TEST SECTION III. TM=CONSTlINL). J =-107.44 , S/D =2-00 . H/D = 8-00
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Figure 91. Measured Theta Distributions for Test No. 36.
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Figure 92. Predicted Theta Distributions for Test No. 36.
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S =0.0508 METERS S/OJ = 4.993 HO/DJ = 9.987 VMfllN = 16.4 M/SEC VJET = 57.5 M/SEC TMRIN = 645.6 K TJET = 310.7 K THEB = 0.1882 BLORflT= 7.343 OENRRT 10= 2.100 TRflTIO=0.481

X/HO = 0.250
X/DJ = 2.50
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X/HO = 0.500
X/OJ = 4.99
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MEASURED THETfl PROFILES FOR TEST NO.37, TEST SECTION III,TM=CONST(STG) , J =25.70 , S/D = 4-00 . H/D = 8-00
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Figure 93. Measured Theta Distributions for Test No. 37.
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Figure 94. Predicted Theta Distributions for Test No. 37.

192



S =0.0508 METERS S/DJ = 5.040 HO/DJ = 10.080 VMflIN = 16.4 M/SEC VJET = 113.8 M/SEC TMflIN = 645.6 K TJET = 303.3 K THEB = 0.3245 BLORflT= 15.678 DENRflT 10= 2.260 TRflTIO=0.470
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Figure 95. Measured Theta Distributions for Test No. 38.
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Figure 96. Predicted Theta Distributions for Test No. 38.
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S =0.1016 METERS S/DJ = 4.862 HO/DJ = 4.862 VMflIN = 16.5 M/SEC VJET = 29.7 M/SEC TMfltN = 645-6 K TJET = 311.9 K THEB = 0.1994 BLORflT= 3.726 DENRflTIO= 2.075

V«b UP °B> lu. ,.

TRflTIO=0.483

X/HO = 0.250
X/DJ = I.22

X/HO = 0.500
X/DJ =2.43

X/HO = 1.000
X/DJ =4.86

(nfllN-TJ/ITHRIN-TJ)

MEflSURED THETfl PROFILES FOR TEST NO.39, TEST SECTION III.TM=CONST(ST&) . J =6.69 . 5/0 - 4.00 . H/D = 4-00
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VRLUE 0.0500 0.1000 0.1500
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8

0-4000

g
o'.sooo

^^S, , •N^_Y'X'— ' 1-0

TRmSVERSE OIST. 1/8 oisr. z/s

MERSURED THETfl CONTOURS FOR TEST N0.39,TM=CONST (STG). J=6.694. S/D=4.0. H/D=4.0

Figure 97. Measured Theta Distributions for Test No. 39.
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PREDICTED THETfl CONTOURS FOR TEST NO 39.T.S.III. J=6.69. S/Dr4.0(STG). H/D=4.0
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COMPflRISON BETWEEN DflTfl RND CORRELflTIONS FOR TEST NO. 39. TEST SECTION III ,TM=CONST(STG). J = 6-69 . S/D =4-00 . H/D =4-00

Figure 98. Predicted Theta Distributions for Test No. 39.
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S =0.1016 METERS S/DJ = 4.977 HO/DJ = 4-977 VrlflIN = 16.6 H/5EC VJET = S7.4 M/SEC TURIN = 645.7 K TJET, = 302.7 K THEB = 0.3247 BLORHTr 7.493 DENRflTIO= 2.164 TRRTIO=0.469

X/HO = 0.250
X/DJ = 1.24

X/HO = 0.500
X/OJ = 2.49

X/HO = 1.000
X/DJ = 4.98

<Tnnm-T>/<Ti*!w-Tj> t™w-T>/tTmw-Tj> irwro-Ti/cnwiN-Tj)

MERSURED THETfl PROFILES FOR TEST NO.40. TEST SECTION III,TM=CONST(STG) . J -25-99 . S/D = 4-00 . H/D - 4-00

-0.5

CONTOUR

VflLUE

TIM4SVERSC OIST. Z/S

1

0.0500

2

0.1000

3

0.1500

8

0-4000

9

0.5000

TRRNSVERSE OIST. Z/S

MEflSURED THETfl CONTOURS FOR TEST NO-40.TM=CONST (STG). J=25-99, S/D=4-0. H/D=4-0

Figure 99. Measured Theta Distributions for Test No. 40.

TRANSVERSE OIST. Z/S
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PREDICTED THETR CONTOURS FOR TEST NO 40, T .S - I IHSTGO ,J=25.99, S/D=4.0. H/D=4.0
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X/H = 0.25 X/DJ =1.24

i040 040 0.40 0.60

HO/DJ =4.98 VRflTIO = 3.47 TRflTIO = 0.469

X/H = 0.50 X/DJ =2.49

DENRHTIO=2.164 TURIN = 645.7 K TJET = 302.7 K THEB = 0.3247

X/H = 1-00 X/DJ =4.98
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0.10 0^0 040 040 140

(TMflIN-T)/(TMflIN-TJ)

COMPflRISON BETWEEN DflTfl RND CORRELflTIONS FOR TEST NO. 40. TEST SECTION III,TM=CONST(STG). J = 25-99 , S/D =4-00 . H/D =4-00

Figure 100. Predicted Theta Distributions for Test No. 40.
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S =0.0508 METERS S/DJ r 2.462 HO/DJ = 4.924 VMflIN = 16.5 M/SEC VJET = 29.2 M/SEC THPIN = 645.6 K TJEf = 305.5 K THEB = 0.3272 BLORflT= 3.747 DENRflTIO= 2.122 TRRTIO=0.473

X/HO = 0.250
X/OJ = 1.23

X/HO = 0.500
X/OJ = 2.46

X/HO = 1.000
X/DJ =4.92

MEflSURED THETfl PROFILES FOR TEST NO.41. TEST SECTION 111 ,TM=CONST(INL) , J -6-64 . S/D = 2-00 , H/D = 4-00

0.0500

2
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0.4000

19

O'.SOOO

-O.S
T T

TRANSVERSE OIST. Z/S "" TRRNSVERSE OIST. Z/S "" TRANSVERSE OIST. Z/S

MEflSURED THETfl CONTOURS FOR TEST NO.41,TM=CONST (INL). J=6.63B. S/D=2.0. H/D=4.0

1.S

Figure 101. Measured Theta Distributions for Test No. 41.

199



CONTOUR

VflLUE

1

0.0500

2
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PREDICTED THETfl CONTOURS FOR TEST NO 41. T.S.IIH INU ,J=6.64, S/D=2.0. H/D=4.0

TRflNSVERSE OIST, 2/S

S/OJ = 2.46

X/H = 0.25 X/DJ =1.23

B04D 040 0.40 040

HO/DJ =2.60 VRflTIO = 1.77 TR9TIO = 0.473

X/H = 0.50 X/DJ r2.46

040 0.40 040 040 IAD

iTMRIN-T)/ (TMflIN-TJ. )

fe?
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(TMflIN-T)/ tTMfiIN-TJ)

TURIN = 645.6 K TJET = 305.5 K THEB = 0.3272

X/H = 1.00 X/DJ =4.92

aOJJO 040 Q*4O 0-80

040 0^0 040 040 140

(TMHIN-T)/(TMflIN-TJ)

COMPflRISON BETWEN DflTfl flND CORRELflTIONS FOR TEST NO- 41. TEST SECTION III , T M = C O N S T ( I N L ) . J = 6.64 . S/D =2-00 . H/D =4-00

Figure 102. Predicted Theta Distributions for Test No. 41.
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S =C.0508 METERS S/DJ - 2.540 HO/DJ = 5.080 VMfilN = 16.4 M/SEC VJET = 57.2 M/SEC TURIN = 644.8 K TJET = 302.5 K THEB = 0.4774 BLORflT= 7.518 DENRflTIO= 2.164

Jf y. °tg ... .«

TRflTIO=0.469

X/HO = 0.250
X/DJ = 1.27

(T!«ro-T)/l™IM-TJ>

X/HO - 0.500
X/DJ = 2.54

X/HO = 1.000
X/DJ = 5.08

tmnm-Ti/iTtttw-TJ)

MERSURED THETfl PROFILES FOR TEST NO.42. TEST SECTION III,TM=CONST(INL) . J =26-25 , S/D =2-00 . H/D = 4-00

CONTOUR 1 2 3 4 5 . 6 7 8 , 9 1 0 1 1

VRLUE 0-0500 0-1000 0-1500 0-2000 0-2500 0-3000 0-3500 0-4000 014773 0.6000 0.7000
i

i i a i_a i B i i.

0

TRRNSVERSE DIST.

f f

TKWSVER6E DIST. I/S
1.5

TRANS'/ERSE OiST. Z/S

MEflSUREO THETfl CONTOURS FOR TEST NO -42.TM=CONST (INL), J=26-25. S/Dr2-0. H/D=4-0

Figure 103. Measured Theta Distributions for Test No. 42.
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t r
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0-1500
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t f
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PREDICTED THETfl CONTOURS FOR TEST NO 42. T-S-III, J=26.25, S/D=2.0(INL). H/D=4.0

T T
TRANSVERSE DIST. Z/S

5/DJ = 2.54 HO/DJ =2.68

X/H = 0.25 X/DJ =1.27

oOJtt OJO 0-40 0.60

VRfiTIO = 3.48 TRflTIO = 0.469 DENRflTIO=2.164 TMflIN = 644.8 K TJET = 302.5 K THEB = 0.4774

X/H = 0.50 X/DJ =2.54 X/H = 1.00 X/DJ =5.08

us1

040 040 0.40 040 040 140

ojo ô a

D 0.40 040 040

(TMflIN-T)/(TMflIN-TJ)

40 ' 0.40 040 040 140

(TMflIN-T)/(T«flIN-TJ)

COMPflRISON BETWEEN DflTfl RND CORRELATIONS FOR TEST NO. 42. TEST SECTION III ,TM=CONST(INL). J = 26.25 . S/D =2.00 . H/D =4.00

Figure 104. Predicted Theta Distributions for Test No. 42.
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S =0.0508 METERS S/DJ = 23.546 HO/0J = 47.091 VMflIN = 17.9 M/SEC VJET = 34.9 M/SEC TURIN = 506.5 K TJET = 310.2 K THEB = 0-4907 BLORflT= 3-581 OENRflTIO= 1.648

+ y. °jg y. .,.

TRflTlO=0.6l2

X/HO = 0.250
X/DJ = 11.77

X/HO = 0.500
X/DJ = 23.55

(Tl«X-r)/in«X-TJ) (TWX-TI/iniRX-TJ)

PREDICTED THETfl PROFILES FOR TEST NO-43. FLRT WRLL JET, TOP HOT

X/HO = 1.000
X/DJ = 47.09

. J =6.26 , S/D = 2.00 . H/D = 4-00

I
CONTOUR 1 2 3 4 5 6 7 8:9 10 11 12

VflLUE 0-1000 0.2000 0-3000 0.4000 0.4500 0-5000 0-5500 0-5873. 0-6000 0-6500 0-7000 0-8000

i. . ! i i

TRfNSVERSE OI3T. Z/8 TKRNSVERSE DISI. Z/8

PREDICTED THETfl CONTOURS FOR TEST NO 43. TOP HOT , J=6.26, S/D=2-0. H/D=4.0

TRHNSVERSE DIST. Z/S

Figure 105. Measured Theta Distributions for Test No. 43.
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PREDICTED THETfl CONTOURS FOR TEST NO.43. TOP HOT, J=6.26, S/D=2-0. H/D=4-0

S/DJ

X/H = 0.25 X/DJ=1.23

2.45 HO/DJ = 4.90 VRflTIO = 1.95 TRflTIO - 0.612 DENRRTIO=1.648 TURIN = 506.5 K TJET = 310.2 K THEB = -0.001

X/H = 0.50 X/DJ =2.45 X/H = 1.00 X/DJ =4.90
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r
fefi

ff 0^0 04B Q4O 140

(TMflX-T)/(TMnX-TJ)

COMPflRISON BETWEEN DRTfl RND CORRELRTIONS FOR TEST NO.43. FLRT WflLL INJECTION. TOP HOT, J = 6-26

Figure 106. Predicted Theta Distributions for Test No. 43.

. S/0 =2.00 . H/D =4.00
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S =0.0508 METERS S/DJ = 23.546 HO/DJ = 47.091 VMRIN = 17.9 M/SEC VJET = 67.9 M/SEC TMfllN = 508.4 K TJET r 307.9 K THEB = 0.4847 BLORRTr 7.147 DENRflTIO= 1.698 TRRTIO= 0-606

X/HO = 0-250
X/DJ = 11.77

w M Mi Mi im

IIHBX-T)/ITmX-IJ)

v- .-

X/HO = 0.500
X/DJ = 23.55

(TlMC-Tl/imHX-TJ)

PREDICTED THETfl PROFILES FOR TEST NO.44. FLRT WflLL JET. TOP HOT

X/HO = 1.000
X/DJ = 47.09

. J ='24.31 . S/D = 2.00 . H/D = 4-00

CONTOUR

VflLUE

1 8

TRANSVERSE DIST. Z/S

0-1000 0.2000 0.3000 0-4000 0-4500 0.5000 0-5500 0-6000 0.6460 0-7000 0-7500 0-8000

1 ,

10 11 12

-0.6 1.6 -0.6
TRflNSVERSE OIST. Z/S

PREDICTED THETfl CONTOURS FOR TEST NO 44, TOP HOT . J=24.31, 5/0=2-0, H/D=4-0

TRflNSVERSE OIST. Z/S

Figure 107. Measured Theta Distributions for Test No. 44.
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8

0.6000

9

0.6460
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PREDICTED THETfl CONTOURS FOR TEST NO.44, TOP HOT. J=24.31. S/D=2.0. H/Dr4.0

s/oj =

X/H = O.ZS X/DJ =1.24

2.48 HO/DJ =4.96 VRfiTIO = 3.78 TRflTIO = 0.606

X/H = 0.50 X/DJ ^.48
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COMPARISON BETWEEN DflTfl flND CORRELflTIONS FOR TEST NO.44. FLflT WflLL INJECTION. TOP HOT. J = 24-31 . S/D =2.00 . H/D =4.00

Figure 108. Predicted Theta Distributions for Test No. 44.
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S =0.0102 METERS S/DJ = 0.189 HO/DJ = 1.876 VMflIN - 16.5 M/SEC VJET = 29.4 . M/SEC TMflIN = 644.7 K TJET'= 307.8 K THEB = 0.2179 BLORflT= 3.744 DENRflTIO= 2.104

* .? °ta v ...

TRRTIO=0.477

X/HO = 0.2SO
X/OJ = 0.47

X/HO = 0.500
X/DJ = 0.94

(TtBIN-Tl/ITmiH-TJ) !TnBlM-T)/tmflIM-TJ) (IW1I»-T)/III»!II*-TJ!

MEflSURED THETfl PROFILES FOR TEST N0-45fl, TEST SECTION I. 1-02 CM SLOT . J =6

i i i
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MEflSURED THETfl CONTOURS FOR TEST NO 45R. SLOT . J=6.66, S/W=1.0. H/W=9.92

11

0.7000

4_

X/HO = 2.000
X/DJ = 3.75

J I
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Figure 109. Measured Theta Distributions for Test No. 45A.
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COMPflRISON BETWEEN DflTR RND CORRELRTIONS FOR TEST N0.45R. 10-24 MM SLOT. TM=CONST. T-S. I.J = 6.66 . S/D =2-00 . H/D =9-92
I

Figure HO. Predicted Theta Distributions for Test No. 45A.
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S =0.0102 METERS S/DJ = 0.192 HO/OJ = 1.905 VMRIN = 16.6 M/SEC VJET = 57.3 . M/SEC TURIN = 644.4 K TJET, = 308.7 K THE8 = 0.3462 BLORRT= 7.335 DENRRTIOr 2.125

y. °H> «, t.

TRHTIO=0.479

X/HO = 0.250
X/DJ = 0.48

X/HO = 0.500
X/DJ = 0.95

ItmiM-D/ITIBIN-TJI

X/HO = I.000
X/DJ = 1.90

(TW)IN-T)/(TI«IN-TJ)

X/HO = 2-000

X/DJ = 3.81

MERSURED THETfl PROFILES FOR TEST NO-45B. TEST SECTION I. 1.02 CM SLOT . J =25.34 , S/D = LOO , H/D = 9-92
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MEflSURED THETfl CONTOURS FOR TEST NO 45B. SLOT , J=25-34. S/W=1-0, H/W=9.92

Figure 111. Measured Theta Distributions for Test No. 45B.
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Figure 112. Predicted Theta Distributions for Test No. 45B.
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S =0.0102 METERS S/DJ = 0.194 HO/DJ = 1.926 VMfUN = 16.7 M/SEC VJET = 98.9 H/SEC TURIN = 643.9 K TJET = 307.5 K THEB = 0.4820 BLORflT= 13.185 DENRflTIOr 2.223 TRf)TIO=0.478

X/HO = 0.500
X/DJ = 0.96

X/HO = 1.000
X/DJ = 1.93

X/HO = 2.000
X/DJ = 3.85

MEflSURED THETfl PROFILES FOR TEST N0.45C, TEST SECTION I. 1.02 CM SLOT . J =78-33 , S/D =1.00 , H/0 = 9.92
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Figure 114. Predicted Theta Distributions for Test No. 45C.
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S =0.0508 HETERS 6/OJ = 2.451 HO/OJ = 4.902 VHflIN = 16.5 H/SEC VJET = 29.4 H/SEC TURIN = 644.3 K TJETj' = 304.8 K THEB = 0.3299 BLORflT= 3.767 DENRRTIO= 2.119 TRflTIO=0.473
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Figure 115. Measured Theta Distributions for Test No. 46.
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Figure 116. Predicted Theta Distributions for Test No. 46.
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S =0.0508 METERS S/DJ = 2.488 HO/0J = 4.977 VMRIN = 16.6 M/SEC VJET r 57.0 M/SEC TMflIN = 644.3 K TJET = 302.2 K THEB = 0.4846 BLORRT= 7.423 DENRflTIO= 2.157 TRflTIO=0.469
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Figure 117. Measured Theta Distributions for Test No. 47.
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Figure 118. Predicted Theta Distributions for Test No. 47.
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S =0.0508 METERS S/DJ = 2.500 HO/DJ = 5.000 VMflIN = 16.5 M/SEC VJET = 101.4 M/SEC TMftIN = 644.1' K TJE;T r 302.5 K THEB = 0.6327 BLORflT= 13.704 DENRflTIO= 2.232 TRflTIO=0.470
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Figure 119. Measured Theta Distributions for Test No. 48.
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Figure 120. Predicted Theta Distributions for Test No. 48.
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S =0.0508 METERS S/DJ = 3.322 HO/DJ = 6.644 VMfilN = 16.7 H/SEC VJET = 29.4 M/SEC TMfllN = 644.4 K TJET = 309.5 K THEB = 0.1159 BLORflTr 3.682 DENRBTIOr 2.090 TRflTlO=0.480
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Figure 121. Measured Theta Distributions for Test No. 49.
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Figure 122. Predicted Theta Distributions for Test No. 49.
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S =0.0508 METERS S/OJ = 3.369 HO/DJ = 6.737 VMRIN = 16.5 M/SEC VJET = 56.3 tl/SEC TMRIN = 644.9 K TJET = 299.5 K THEB = 0-2054 BLORRTr 7.468 OENRHTIO= 2.191
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Figure 123. Measured Theta Distributions for Test No. 50.
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Figure 124. Predicted Theta Distributions for Test No. 50.
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S =0.1016 METERS S/DJ = 4.869 HO/DJ - 4.869 VMflIN - 16.5 H/SEC VJET = 29.2 M/SEC TMfllN = 644.3 K TJET = 305.6 K THEB = 0.2014 BLORflTr 3.757 DENRflTIOr 2.116 TRflTIO=0.474
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Figure 125. Measured Theta Distributions for Test No. 51.
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Figure 126. Predicted Theta Distributions for Test No. 51.

. S/D =4.00 . H/D =4.00
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