
Progress Report RSC-4242-4-2

DEVELOPMENT OF LAND BASED RADAR

POLARIMETER PROCESSOR SYSTEM

by

C. W. Kronke

A. J. Blanchard

September 1983

Supported by

National Aeronautics and Space Administration,
Goddard Space Flight Center
Greenbelt, Maryland 20771

TEXAS A&M UNIVERSITY
REMOTE SENSING CENTER

COLLEGE STATION, TEXAS

Progress Report RSC-4242-4-2

DEVELOPMENT OF LAND BASED RADAR

POLARIMETER PROCESSOR SYSTEM

by

C. Kronke

A. J. Blanchard

September 1983

Supported by

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

Contract No. NAG 5-31

ABSTRACT

The processing subsystem of a land based radar polarimeter was

designed and constructed. This subsystem is labeled the Remote Data

Acquisition and Distribution System (RDADS). The radar polarimeter, an

experimental remote sensor, incorporates the RDADS to control all

operations of the sensor. The RDADS uses Original Equipment Manufac-

turers (OEM) industrial standard components including an 8-bit micro-

processor based single board computer, analog input/output (I/O)

boards, a dynamic Random Access Memory (RAM) board, and power sup-

plies. A high-speed digital electronics board was specially designed

and constructed to control range-gating for the radar. A complete

system of software programs was developed to operate the RDADS. The

software uses a powerful real-time, multi-tasking, executive package as

an operating system. The hardware and software used in the RDADS is

presented here in detail. Also, recommendations for future system

improvements are made.

11

TABLE OF CONTENTS
Page

ABSTRACT ii

TABLE OF CONTENTS iii

LIST OF TABLES vi

LIST OF FIGURES vii

PROJECT BACKGROUND 1

Remote Sensing 1

The Radar Polarimeter System 2

STATEMENT OF WORK 8

Radar Electronics 8

Microwave Transceivers 9

IF Section and Multiplexer 11

Other ROADS Interfaces 15

HARDWARE 17

Design Approach 17

RDADS Computer 18

Central Processor 19

Serial I/O, Timers, and Interrupts 21

Parallel I/O 23

Analog I/O Interface 31

Random Access Memory 35

RDADS Chassis and Power Supply 36

IF Controller 37

TABLE OF CONTENTS (Continued)
Page

Processor I/O Interface 39

Timing Network 41

Cycle Control 44

Programmable Transmit Pulse Generator 48
\

Fixed Delay Generator 50

Programmable Range Delay Generator 52

Programmable Gate Pulse Generator 54

I/O Expansion in the IFC 56

SOFTWARE 57

Structured Programming 57

Modular Programming 58

Limited Constructs 58

Development Support 59

Software Design 61

Problem Statement 61

Radar Control and Data Acquisition 61

RDADS Communication 62

Design Approach 63

ROU Commands 65

LOCAL Command 67

TXPOL and RXPOL Commands 68

MODE Command. . . 69

HEAD or BAND Command 71

RANGE and GATE Commands 73

IV

TABLE OF CONTENTS (Continued)
Page

IFGAIN Command 74

Radar Task 75

Radar Task Operation 75

Digital Automatic Gain Control Implementation 78

Real-Time Multi-Tasking 81

The RMX-80 Executive Package 83

RMX-80 Nucleus 86

RMX-80 Terminal Handler 88

RMX-80 Command Line Interpreter 90

Analog Input Handler 93

Utility Packages and Libraries 94

ROADS Utilities Library 95

System Utilities Library 97

Remote Operations Command Tail Interpreter 99

Remote Operations Data Formatting and Transmission 101

Remote Operations Main Utility 103

PROJECT SUMMARY 105

Future Consideration and Recommendations 106

REFERENCES 110

APPENDIX A. IF CONTROLLER CIRCUIT BOARD ELECTRICAL DIAGRAMS
AND PRINTED CIRCUIT LAYOUT 112

APPENDIX B. ROADS SOFTWARE SOURCE LISTINGS 124

LIST OF TABLES
TABLE Page

1 Port Addresses for the 80/24's Parallel I/O (Hex) 24
. ̂

2 Cal/Op Control Port Signal Assignments 25

3 Indicator Enable Port Signal Assignments 26

4 Indicator Circuit Read Port Assignments 27

5 Interpretation of Indicator Circuit Data 30

6 RF Head Common Control Port Signal Assignments 30

7 iSBC-80/24 Parallel I/O Summary 32

8 iSBX-311 Analog Input Signal Assignments 34

9 Memory Map for the ROADS iSBC-80/24 Processor 35

10 Processor Port Assignments for IFC Interface 40

11 IFC Channel Assignments 43

12 IFC Control Channel (2) Signals 43

LIST OF FIGURES
FIGURE Page

1 Elevation Angle for Radar Polarimeter Antennas 4

2 Azimuthal Angle of Radar Polarimeter Boom 5

3 Block Diagram of the Radar Polarimeter System 6

4 Block Diagram of Radar Hardware 10

5 Microwave Transceiver Circuit Transfer Switches
Controlled by RDADS 12

6 Block Diagram of IF Section of the Radar 13

7 Indicator Circuits for a Single Radar Head 28

8 RDADS Computer Block Diagram 38

9 Processor I/O Interface on the IFC 42

10 IFC Timing Network 45

11 Cycle Controller for the IFC 46

12 IFC Programmable Transmit Pulse Generator 49

13 IFC Fixed Delay Generator 51

14 Programmable Range Delay Generator 53

15 Programmable Gate Pulse Generator 55

16 Simple Block Structure Diagram 58

17 Structure Diagram for the Remote Operations Utility
Package 64

PROJECT BACKGROUND

The Remote Sensing Center (RSC) at Texas ASM University was con-

tracted by NASA Goddard Space Flight Center to design, build, and put

into operation a mobile land based radar polarimeter [1]. The formal

name of this experimental remote sensor is the Radar Polarimeter System

(RPS). The sensor was constructed for use in soil moisture and other

agricultural remote sensing experiments. An integral component of the

RPS is an electronic control and data acquisition system. This major

RPS subsystem receives commands from and sends information to a master

processing computer. The control and data acquisition electronics will

hereafter be referred to as the Remote Data Acquisition and Distribu-

tion System or ROADS. It was the objective of this effort to design

and construct the ROADS.

Remote Sensing

Remote Sensing is a science dealing with obtaining information

about objects through measurements made without coming into contact

with the objects. Currently this science is providing valuable

information to those involved in agriculture, forestry, hydrology,

mineral exploration, and land use management. For many years theorists

and scientists have been interested in the depolarization effects of

natural terrain on electromagnetic energy (Blanchard [2], Fung [3]

Leader [4], Rouse [5], Beckman [6], Blanchard [7], etc.). The phenom-

enon of the depolarization of radar backscatter has been established as

having potential application in the remote sensing of soil moisture

content (Blanchard [8], Hi rosawa [9], Ulaby [10], etc.). There is,

however, a need for controlled experimentation investigating the effect

of target parameters on cross polarized radar measurements. The ground

based radar polarimeter was constructed for use in this type of experi-

mentation.

The Radar Polarimeter System

The RPS consist of two vehicles, a computer data van and a radar

boom truck. The data van houses and transports a computer used for

automatic control of the ROADS, data acquisition and storage, and com-

putational support. Data van subsystems are all part of the main pro-

cessor. These subsystems include the Central Processor Unit (CPU),

program and data storage equipment, and the Operator's I/O console.

The radar truck is a flatbed truck with a tandem boom mounted on

the bed. The boom is used to position the polarimeter radar equipment

and antennas over a test site. Subsystems of the radar boom truck

include,the radar, the Antenna Positioning System (APS), and the Remote

Data Acquisition and Distribution System (ROADS). The radar subsystem

acquires polarized microwave backscatter measurements. Antenna orien-

tation and position are controlled by the APS. The radar and APS are

both controlled by the RDADS. Moreover, the ROADS acts as the smart

interface between the RPS subsystems and the data van computer.

Because of the nature of the radar polarimeter and the measure-

ments to be made with it, the radar antennas must be translated over an

azimuthal arc during operation. This azimuthal scan is accomplished by

turning the boom at its base. In addition, data must be acquired at

different elevation angles in order to observe the effect of incidence

angle on radar backscatter measurements. Figures 1 and 2 present draw-

ings of the radar boom truck from two different views to illustrate the

two angular freedoms of movement. Each of these angular position para-

meters (azimuth and elevation) is controlled by the ROADS through the

APS interface hardware.

Microwave measurements are made by radar hardware mounted on the

boom truck. The radar is composed of the RF, IF, and video electronics

required to make the microwave backscatter measurements. The radar

operates at frequencies in three different bands (X, L and C). This

allows effects of frequency on target sites to be studied. Individual,

dual-polarized transmit and receive antennas for each microwave band

are part of the radar's RF equipment. These antennas allow mea-

surements to made for four different combinations of transmit and

receive polarization. IF and video electronics are used for range

gating and integration of radar measurement signals. All radar cir-

cuitry is controlled and monitored by the RDADS.

Figure 3 presents a block diagram of the entire Radar Polarimeter

System showing each of the subsystems mentioned above. This document

describes the design and development of the RDADS. The next section

covers the interface and operational requirements of .the system. The

design and development are then covered in two sections, one on

t/1
0}

c
01

s_
<u
•M
O)

*r~
s_
<r
"o
o.
5-
<O

TO
«3
Ci.

>»-
O

O)

C
o

(O
>
QJ

Truck Normal Vector

f

Shown
here at

0°

Figure 2. Azimuthal Angle of Radar Polarimeter Boom.

NOH-VOLATILE
DATA

STORAGE

OPERATOR
I/O

»-
V
/

- Y

CENTRAL
PROCESSOR

UNIT

DATA VAN

BOOM.TRUCK

SERIAL
COMMUNICATIONS
HARDWARE

_ f _ _ _
-J — ~

"S^SERIAL L I N K
- -\1/

SERIAL
COMMUNICATIONS

HARDWARE

f.\
/

REMOTE DATA
ACQUISITION

. AND
DISTRIBUTION

x̂

k -

^ J

ANTENNA-
POSITIONING
SYSTEM

RADAR
SYSTEM

Figure 3. Block diagram of the Radar Polarimoter System.

hardware and one on software. A final section summarizes the design

and recommends future work.

STATEMENT OF WORK

The objective of this project was to design, implement, and docu-

ment the Remote Data Acquisition and Distribution System (RDADS). This

effort included the hardware required to interface and control the

radar equipment and the APS electronics. Hardware was also required

for communicating with the main processor. The work also included all

software required to operate the radar and to communicate with the main

processor. Development of the APS hardware and the RDADS software used

to control it were not a part of this work. The development of radar

RF, IF, and video electronics were also not a part of this project.

The primary function of RDADS was to control and monitor the

functions of the radar electronics. The system allows for automatic

operation of the radar under the data van computer's direction. This

section will review the radar electronics of the RPS to identify the

interface and control requirements for the RDADS.

Radar Electronics

Radar Hardware mounted on the boom truck accomplishes the actual

microwave measurements performed by the RPS. This hardware consists of

three separate microwave transceivers multiplexed into a single Inter-

mediate Frequency (IF) processing section. Each RF head operates at a

specific frequency, namely 1.6 GHz for L-band, 4.75 GHz for C-band, and

lO.OGHz for X-band. The radar system uses a pulse compression tech-

nique to achieve high range resolution. The IF section generates an

8

FM signal centered at 60 MHz. This phase coded expanded pulse is up

converted to microwave frequencies in each radar head. The IF section

also accepts the signal received by the RF head once it has been con-

verted back to the 60 MHz IF range. Pulse compression, video amplifi-

cation, range-gating, and integration are performed in sequence on the

return signal by the IF receiver. The RDADS computer controls and

monitors the operation of these radar components. Figure 4 presents a

block diagram of the radar hardware.

Microwave Transceivers

The RF heads transmit electromagnetic microwave energy to the tar-

get through dual polarized antennas. Identical antennas are used to

receive the microwave energy reflected by the target. For each of the

microwave transceivers there is a pair of antennas, one transmit and

one receive. Each antenna has two coaxial feed connections, one for

vertical polarization and one for horizontal polarization.

A mechanical microwave switch is used to select which feed, and

therefore which polarization, is used for the transmit and receive

antenna. These switches, referred to as Polarization Transfer Switches

(PTS), are controlled by the RDADS. They are controlled by a single

TTL level signal such that a high level selects the vertical feed and a

low level selects the horizontal feed.

A four-port microwave switch is used in each RF head to allow an

internal calibration measurement to be made. This Calibration Transfer

Switch (CTS) is used to bypass the head's antennas by feeding the

transmit signal directly into the receiver circuit. This switch is

<_>
UI
oc

3CDE O

oo ce ui
• oox

Z 3: O
< mo <
en r* oc ui
i «o z

/\

< m o <
oo r*. cc. ui

i •<-> z

/\

\/
C9

3*
P

V

•-• o
UIto

<u

to

J_
fO

10
o;

<o

(J
o

CO

(U

o>
•r—u.

î̂ ~^IS
3 i-^

10

controlled by the RDADS through two TTL signal lines. A pulse on one

signal line causes the CIS to switch to the internal calibration loop.

A pulse on the other line switches the CIS to allow transmission

through the antennas. Each transfer switch has an internal single-

pole, double-throw indicator switch that operates in conjunction with

the microwave switch. These electrical indicator switches are used by

the RDADS to monitor the state of each Polarization Transfer Switch and

Calibration Transfer Switch.

Placement of the RF switches in the microwave circuitry is shown

in Figure 5. This figure is a circuit diagram for a single RF head.

The microwave source for each head determines its frequency of opera-

tion. The individual components in each head are either broadband

devices or designed for operation in the frequency range of that head.

IF Section and Multiplexer

The IF section of the radar generates a swept frequency pulse that

is directed to a selected RF head through the analog multiplexer. This

FM pulse is then up converted by the selected head to the proper RF

frequency and transmitted to the target. The reflected signal received

by the RF head is down converted back to the IF range. The IF section

will receive this down converted signal via the analog multiplexer and

estimate the return energy. An analog signal whose voltage level is a

function of return energy is output by the IF section.

Figure 6 shows a block diagram of the IF section of the radar.

The transmitter portion generates the swept frequency pulse that is

centered at 60 MHz. A square pulse of approximately 50 nS duration is

11

Q
cr

5 =
»- O

oc
LtJ <
U. |
l/^ 1

N <

— oe52_i _jo <

o
4->

O
O

in
<u

CO
ft

3:
O,
i.-
•r*
O

S-

O)
u
I/)
c
(O

Ol
>
(T3

01
s_

12

s-
•* ^
* i!V) ^

«y
c
0>

(/)
c
o

rO 1

= V
P
I/I
iJ

C
u
3
P
0)t:
at
D

TJ
c

•a
c
<o

s s
s s> 0»

<u
1 «

c

1 ^1

•o
*o
z
00

<u
»—
a.
•a

CO

ut

ro
c
a>
to

o
4->
c
o
o

to
4->

o>
o

t.
<u
X
OJ

3

=1
a.

e</\
c
m

Vn

A

{_
% <u
* 2«" ^

A

<u
«/i

a.

i-
<u
0.
fO

•.c:
oo

ce.
<u

c
o

<J

Nl <U
z o21 ^
o o
V£> CO

C7>
<O

O
O

OJ

to
o
<
o
a:

13

required as an input to the IF transmitter. This pulse is used to

generate a 60 MHz tone burst of the same duration. When the 60 MHz

pulse is applied to the SAW filter device a Frequency Modulated (FM)

pulse is produced. This swept frequency pulse is then upconverted by

the RF transmitters.

The receiver portion of the IF section requires several input

signals for proper operation. The 7-bit digital attenuator is used to

control the gain of the IF receiver. This attenuator is controlled

automatically by the RDADS. A range-gating pulse must be input to the

IF receiver to control the gating of received signals into the Video

Integrator. By providing the range-gating signal at the proper time

and duration, the receiver can reject unwanted reflections and noise.

The time of occurrence of the gate signal with respect to the occur-

rence of the IF transmit pulse will vary depending on the distance to

the target and for internal calibration measurements. In addition, the

duration of the gate signal varies with changes in the incidence angle

of the electromagnetic energy on the target. The RDADS provides the

range-gating signal at the proper time and of the proper duration,

dependent on elevation angle and when the RF head is in calibrate mode.

The RDADS also supplies a "sample-and-hold" control signal and an

"integrator reset" signal to the IF receiver. These signals are

applied to allow integration of several received pulses and sampling

of the resulting integrator output which is held as the IF section's

analog output. The RDADS measures the analog output by converting it

to a digital count.

14

The analog multiplexer used to select between radar heads uses

mechanical switches identical to those used for polarization control.

Two switches with the common port of one connected to one of the

switched ports of the other are used to multiplex three lines to one.

One switch pair is used for switching the IF transmitter's output to

one of the three RF heads. The return signal of each head is connected

to another switch pair to multiplex these into the IF receiver. Two

TTL level signals, one for each switch, are required for each pair.

These switches also have indicators that are used to monitor their

state. The ROADS controls and monitors both multiplexer switch pairs.

Other RDADS Interfaces

The RDADS must also provide interface capability for use by the

APS. Both analog input and output are required for the control and

monitoring of antenna position. Analog outputs are used to signal

D.C. motor control drive circuits to set the motor speed. Angular

position information is input as an analog signal. Digital control

lines are also used by the APS to control direction of movement and

braking functions. The RDADS has provisions for these analog I/O and

digital output signals.

The RDADS computer communicates with the data van computer through

a serial RS232 data link. The RDADS has an asychronous communications

channel used for this purpose. The main processor sends instructions

for controlling the operations of the RPS to the RDADS through this

link. The RDADS provides automatic functions that support and simplify

the control operations. Data obtained by the RDADS are transmitted to

the data van over the same serial data link. D.C. power for the boom

15

truck sub-systems is provided by the RDADS. This power is generated

using D.C. power supplies that operate off of a 115 volts 60 Hz power

source.

The interface and operational requirements of the RDADS have been

identified. Of these, the most important is the radar interface since

it is the means by which the polarimeter measurements are made. Pro-

visions were identified for interfacing to the APS hardware developed

external to this project. Operations controlled by the RDADS are done

so under direction of the main processor in the data van. Instructions

from the main processor and data returned by the RDADS are passed

through a serial data link between the two systems. The next section

will describe the hardware used to implement the RDADS.

16

HARDWARE

This section presents the design and implementation of the ROADS

hardware. A short presentation of the design philosophy adopted for

this project will be given. Following this, a complete description of

the hardware installation will be given with details on interfaces to

other RPS subsystems.
•v

Design Approach

To obtain the best time wise execution of this project and still

maintain .high degrees of reliability and flexability, proven components

and technology were utilized wherever possible. Industrial grade com-

ponents were chosen from available "off-the-shelf" hardware to meet

the RDADS operational requirements. These Original Equipment Manufac-

turer (OEM) designated products simplified the design by providing

flexible, high level functions. Whenever a requirement could not be

met with available industrial products, an original design was imple-

mented.

A single board, microprocessor based, computer is the center of

the system's hardware. This computer controls the operations of the

RDADS under direction by the data van computer. The RDADS computer

board also provides capability for interfacing directly to other RDADS,

Radar, and APS hardware. Since the design uses a microprocessor, most

of the system's operation was defined in software. This allowed a

large degree of flexibility in the design. In addition, operations

17

that would be complex or difficult to implement in hardware were more

easily accomplished in software. Other OEM products utilized in the

design were analog I/O boards, a memory expansion board, a cardcage

providing a bus backplane, and several D.C. power supplies. Collec-

tively, these components were labeled the ROADS Computer.

The range gating function of the IF receiver presented a special

design problem for the project. The required speed of operation for a

controller could not be met using any available OEM products. An

original design utilized Schottky TTL integrated circuit devices (ICs)

to accomplish high speed control functions. The design was implementnd

on a single printed circuit board labeled the IF Controller or IFC.

This circuit also expanded the ROADS Computer's parallel I/O capabil-

ity in the IF section.

RDADS Computer

The Remote Data Acquisition and Distributi-on System computer

controls the operation of boom truck subsystems. This stand alone

processor has the following duties:

o Communicate with the data van CPU.

o Control the IF and RF hardware.

o Control the antenna elevation and boom scan.
X

o Acquire radar data.

Interfaces to other RPS subsystems are an integral part of the

RDADS hardware. These interfaces required the computer to have both

digital and analog I/O capabilities. The hardware of the RDADS

18

computer can be broken down into the following components:

o Central Processor with digital I/O capabilities.

o Analog I/O Interface.

o Random Access Memory.

o Chassis and Power Supply.

Selections made for each of these components will be discussed in the

following sections.

Central Processor

The central processor controls all activity of the RDAOS. Intel

Corporation's iSBC-80/24 Single Board Computer System was chosen for

use as the central processor. The 80/24 is a single printed circuit

board that uses an Intel 8085A-2 microprocessor. Since the 80/24 is

designed for general applications, it is very versatile and can be

configured in a number of different ways. The board has many jumper

selectable component interconnects and set-up optrons. Several I.C.

components on the board have software programmable functions. The

80/24 also accommodates connection directly to special configuration

circuit boards.

The 80/24 is compatible with the IEEE-796 Bus Standard (known com-

monly as the Multibus). The board provides a system clock, parallel

data communications lines, a serial communications channel, firmware

(EPROM) sockets, programmable interval timers and event counters, and

interrupt control circuitry. General specifications for the iSBC-80/24

are as follows:

o Complete computer system on a single 6.75 by 12.0

19

inch printed circuit board,

o An Intel 8085A-2 microprocessor operating at 4.8

MHz.

o Sockets for 4K bytes (using 2708 or 2758), 8K bytes

(using 2716), 16K bytes (using 2732), or 32K bytes

(using 2764) of EPROM.

o 4K bytes of Random Access Memory on board,

o Multimaster-Multibus bus arbitration logic,

o Bus addressable to 64K.

o USART with RS232C line drivers and receivers for

serial I/O up to 38,400 baud,

o Three programmable BCD or binary timers and event

counters,

o 19.35, 9.68, 4.84, 2.15 and 1.075 MHz on board

clock signals,

o Programmable control logic for up to 12 levels of

vectored interrupts,

o Forty-eight programmable parallel I/O lines with

sockets for I/O line drivers and terminators,

o Two iSBX bus Multimodule interface connectors.

For complete details on operation and use of the board see the

"iSBC-80/24 Single Board Computer Hardware Reference Manual" [11].

The 8085 microprocessor controls all functions of the 80/24. The

board was configured for installation of up to four 2732 EPROMs through

jumper selections. Three 2732 EPROMs were used to store a control

program for the 8085. This resident software directs all operations of

20

the RDADS. It utilizes the 4K on-board RAM of the 80/24 for variable

storage. The 64K bus addressing capability of the 80/24 was used to

install an expansion RAM board. With this set-up, the processor has up

to 16K bytes of constant program memory and 48K bytes of dynamic read/

write storage.

Serial I/O, Timers, and Interrupts

The serial channel of the 80/24 was used for communicating with

the Data Van CPU. This channel was configured for a standard RS232 set

up so that no special interfaces were required for connection of the

serial data link. On-board line drivers and receivers convert 0 to +5

(TTL) voltage levels to and from the standard RS232 +12 to -12 voltage

levels. The serial interface was set up for loop-back of all RS232

hand-shaking signals, thus it required only three connections. These

were Transmit Data (TxD), Receive Data (RxD) and a signal ground.

Serial communication is controlled by an 8251A Programmable Communica-

tions Interface (PCI) I.C. The 8085 sends and receives data through

the 8251 in a parallel format. Conversion of the parallel data to and

from serial data formats is handled by the 8251 PCI.

An 8253 Programmable Interval Timer (PIT) chip on the 8024 pro-

vides three independent programmable timers. Timer 2 of this device is

used as a baud rate generator for the serial communications channel.

The input to Timer 2 is the on-board 1.075 MHz clock signal. The timer

is programmed for square wave, divide by 7, operation so that it out-

puts a 153.6 KHz clock signal. This signal is applied to both the

receive and transmit clock inputs of the 8251 PCI. The 8251 was

21

programmed for an asynchronous communications rate multiplier of 16 so

that the baud rate of the serial interface is 9.6 KHz or 9600 Baud.

Since both the 8251 and the 8253 are software programmable the baud

rate for the system can easily be adjusted.

The 1.075 MHz clock signal was also input to Timer 0 of the 8253

PIT. This timer was programmed to divide the input by 53,750 in order

to produce a pulse output rate of 20 Hz. The output of Timer 0 was

tied to the IR1 pin of the 8259A Programmable Interrupt Controller

(PIC). This provided a Level 1 Hardware Interrupt every 50 mS for

timing various system functions. Again, since the PIT is software pro-

grammable, this real time clock rate can be modified.

An output from the IF section is used to syncronize the RDADS

processor's data acquisition with the analog output from the radar.

This output was the IF Service Request (IFSR) signal. IFSR tells the

processor when the analog output of the receiver is ready for conver-

sion. To reduce the radar data rate, IFSR is input' to Timer 1 of the

8253. Timer 1's output was then applied to IR2 of the 8259A PIC. The

timer was programmed for divide by 21 operation. IFSR cycled at a

fixed rate of 2.5 KHz so that a Level 2 interrupt occurred every 8.4 mS

when enabled. During radar data acquisition the Level 2 interrupt

triggers the analog data conversion done by the processor. The analog

data acquisition rate is approximately 119 samples per second. The

software that programs the operation of Timer 1 of the 8253 can easily

be changed to obtain a different data acquisition rate.

Two other interrupt levels are used in the RDADS processor. These

are utilized for interrupt driven serial I/O: Level 6 interrupt for

22

serial input and Level 7 for serial output. The Receiver Ready (RxR)

signal output by the 8251A PCI was tied to IRS of the PIC. Transmitter

Ready (TxR) from the PCI was connected to IR7 of the PIC. With these

two interrupts, the processor did not have to poll the PCI during I/O

operations. Instead the processor could send data to the 8251A and

then do other work while the 8251A output the data. The processor

could also be interrupted during non-critical operations when data was

received by the 8251A.

Parallel I/O

Parallel I/O lines of the 80/24 were used for hardware control

and monitoring. This parallel communications is accomplished on the

80/24 by two 8255A Programmable Peripheral Interface I.C.s. Each 8255A

PPI has three 8-bit programmable I/O ports. Ports A and B can be pro-

grammed independently as either input or output. Port C is programmed

independently as either input, output, half input and half output, or

as handshaking signals for I/O operations of Ports A and B. Also, when

programmed for output, signals from Port C can be controlled indivi-

dually through bit set/reset commands issued to the 8255A's control

port. The two 8255A's on board the 80/24 provide a total of 48 paral-

lel I/O lines divided into six ports. Port addresses for all six ports

are summarized in Table 1.

Ports E8, E9, and EA were used for communicating with the RF hard-

ware. Port E8 was programmed as output and used to control the cali-

brate/operate (Cal/Op) transfer switches in the RF heads. A Cal/Op

switch has two positions and requires two signals to control it. A

23

TABLE 1

Port Addresses for the 80/24's Parallel I/O (Hex)

8255A Port

A

B

C

8255A No. 1

E4

E5

E6

8255A No.

E8

E9

EA

2

pulse on the switch Control 0 signal would set the switch to the

calibrate position. Likewise, a pulse on Control 1 would place the

switch in the operate position. Each had to be controlled independent-

ly so that only one selected head would be in operation at any given

time. Designating Port E8's eight bits for Cal/Op control allowed for

connection to the three existing radar heads and one additional backup

or expansion connection. The assignment of the output signals for

Port E8 are given in Table 2.

The two control signals for a Cal/Op switch energize two respec-

tive coils internal to the switch. The switch assembly has an internal

electronic circuit that automatically turns either coil off after it

accomplishes its internal mechanical operation. This means that the

controlling signal can be a level rather than a pulse which simplifies

the algorithm used to drive the port. The only requirement is that the

two signals applied to a Cal/Op switch must never both be high at the

same time. This approach also supports the use of transfer switches

that have a single level sensitive control input.

The radar head numbers specified in Table 2 were used during

24

TABLE 2

Cal/Op Control Port Signal Assignments

Port E8 Bit Assignment

0 Head 1 Cal/Op Control 0

1 Head 1 Cal/Op Control 1

2 Head 2 Cal/Op Control 0

3 Head 2 Cal/Op Control 1

4 Head 3 Cal/Op Control 0

5 Head 3 Cal/Op Control 1

6 Head 4 Cal/Op Control 0

7 Head 4 Cal/Op Control 1

development when the actual microwave band assignment was of no

concern. These head numbers were assigned to particular bands in the

final system as follows:

Head 1 - X Band (10.0 GHz).

Head 2-1 Band (1.75 GHz).

Head 3 - C Band (4.75 GHz).

Head 4 - Reserved for future use.

This assignment was purely a matter of choice and had no impact on the

design. It is presented here for clarity.

I/O Port E9 on the 80/24 was used in monitoring the status of all

microwave switches in the radar heads. This port was programmed for

output operation and used to control the multiplexing of switch state

indicator circuits. Each switch assembly has an electrical single-

25

pole, double-throw indicator switch that is set according to the

current state of the microwave switch. Output signals from Port E9

drive the common pole of individual indicator switches or pairs of

switches. Within an RF head the common poles of both the Cal/Op and

the Transmit Polarization (Tx. Pol.) switches are connected to the

same output bit of Port E9. Each pair was connected to a different

bit, one bit for each head. The common pole for each Receive Polariza-

tion (Rx. Pol.) switch is connected to other bits of port E9, again one

for each head. These signals out of Port E9 are called the Indicator

Circuit Enables and the specific assignments are given in Table 3.

TABLE 3

Indicator Enable Port Signal Assignments

Port E9 Bit Indicator Circuit Assignment

0 Head 1 Tx. Pol. and Cal/Op

1 Head 1 Rx. Pol.

2 Head 2 Tx. Pol. and Cal/Op

3 Head 2 Rx. Pol.

4 Head 3 Tx. Pol. and Cal/Op

5 Head 3 Rx. Pol.

6 Head 4 Tx. Pol. and Cal/Op

7 Head 4 Rx. Pol.

26

The upper half (Bits 4 through 7) of Port EA was programmed for

input and used to read the status of the microwave switches.

Assignments for these input lines are given in Table 4. Two are used

for polarization switch indicator monitoring and two for Cal/Op switch

indicator monitoring. Each pair consist of one line labeled Indicator

0 and one line labeled Indicator 1. The polarization indicator pair

connects to both the Tx. Pol. and Rx. Pol. indicator switches in every

radar head. Likewise, the Cal/Op indicator pair connects to the Cal/Op

indicator switch in each head. All connections to indicator switch

terminals are made through a signal diode, one diode for each terminal,

with the anode end tied to the terminal. The cathode end of the diode

ties to either Indicator 0 or 1 dependent on how the switch's RF ports

are connected. The upper four bits of Port EA are pulled to a high

level through IK ohm resistors on-board the 80/24. Indicator circuits

for a single radar head are illustrated in Figure 7.

TABLE 4

Indicator Circuit Read Port Assignments

Port EA Bit Indicator Read Function

4 Polarization Indicator 0

5 Polarization Indicator 1

6 Cal/Op Indicator 0

7 Cal/Op Indicator 1

27

TO/FROM iSBC-80/24

INDICATOR
ENABLE
SIGNALS

INDICATOR

CAL/OP POLARIZATION

1 0 1 - 0
^* ~-

1 1 1

\>

i

7

/

+5v

1
f
Rx.Pol.

f
Tx.Pol

&
rCal/Op

1> '

1

+5v

A
+5v /

i !
N
\/\

NlO

WW

N
1x1

hiM

N
W

^ inoiuc. jmiun

ASSEMBLY

^ Rx. Pol.

Tx. Pol.

Cal/Op

^

To Other
Radar Heads

From Other
Radar Heads

Figure 7. Indicator Circuits for a Single Radar Head

28

Normally, the Indicator Circuit Enable outputs are at a high

level. An indicator circuit can be read by the processor to determine

the status of any switch in the radar heads as follows:

o The Indicator Circuit Enable output for the desired

head and desired switch (or switch pair) is driven

low. Only one output of Port E9 should be low at

any time or results of the read are unspecified,

o The Indicator Read Port (upper half of Port EA) is

input to the processor. The status of the selected

switch is then determined from the data read.
•\

The Indicator Read data can be divided into two separate 2 bit binary

values, one for polarization and one for Cal/Op. Indicator 0 would be

the least significant bit of the 2 bit value and the value would range

from 0 to 3. Table 5 defines the meaning of data returned by an

indicator circuit read. This table shows an open circuit failure as

Failure I and a short circuit failure as Failure II.

The lower half of Port EA was programmed for output operation.

Bits 2 and 3 were used to control the transmit and receive polariza-

tions. Polarization switches required a single TTL level control

signal. The microwave antennas were connected so that a low level

signal corresponded to horizontal polarization and a high level signal

corresponded to vertical. Since only one RF head can be operating

(transmitting) at a time, the polarization transfer switches in each

head were controlled simultaneously. This was accomplished using the

two signals (bits 2 and 3) of Port EA. Bit 2 controls all transmit

29

TABLE 5

Interpretation of Indicator Circuit Data

INDICATOR

1

L

L

H

H

LINE

0

L

H

L

H

INDICATOR

Cal/Op

Failure II

Calibrate

Operate

Failure I

PAIR

Polarization

Failure II

Horizontal

Vertical

Failure I

polarization switches and Bit 3 controls all receive polarization

switches. The two remaining output bits of Port EA were also routed to

every radar head. These bits provide spare common control signals to

the RF heads reserved for future expansion or modification. The bit

assignments of the lower half of Port EA are summarized in Table 6.

TABLE 6

RF Head Common Control Port Signal Assignments

Port EA Bit Control Function

0 Reserved RF Control 0

1 Reserved RF Control 1

2 Transmit Polarization

3 Receive Polarization

30

Parallel Ports E4 and E6 of the 80/24 were used for monitoring and

control of the IF section. Port E4 was utilized as a bidirectional

data port for I/O operations to the IF Controller board. Port E6 was

programmed for output and used primarily to control the I/O operations

of Port E4. Both of these ports and their assignments will be dis-

cussed in more detail in the second part of this section that covers

the IFC.

Port E5 was reserved for use by the Antenna Positioning System.

Interfaces to the APS were developed external to this project. For

information on the use and assignment of signals of Port E5, documenta-

tion on the APS should be consulted. The use of all parallel I/O ports

on the 80/24 is summarized in Table 7.

Analog I/O Interface

A unique feature of the 80/24 is that it is Multimodule compati-

ble. The two iSBX bus interface connectors allow two iSBX Multimodule

boards to be mounted directly on the 80/24 board. The 80/24 can be

specially configured for different applications through the use of

available Multimodule boards. Intel currently supplies several Multi-

module boards for a variety of applications. Two such boards where

obtained for analog I/O functions.

This part of the ROADS processor actually consists of two compo-

nents: an analog input board and an analog output board. Each of these

boards are Intel Multimodule boards that mount directly on the

iSBC-80/24 board. This requires the use of both of the 80/24's Multi-

module connectors.

31

TABLE 7

iSBC-80/24 Parallel I/O Summary

Port Address Assigned Function

E4 IFC Data I/O

E5 Reserved (APS)

E6 IFC I/O Control

E8 Cal/Op Control

E9 Indicator Control

EA Lower RF Head Control

EA Upper Indicator Read

The analog input board selected for use in the ROADS was the

iSBX-311 Analog Input Multimodule board. The specifications for this

board are as follows:

o Eight differential or sixteen single-ended analog

inputs.

o Resistor selective gain (1X-250X).

o -5 to +5 volt bipolar or 0 to +5 volt unipolar

input range,

o 12 bits Resolution (11 bits plus sign for +/-

volts),

o Accuracy of +/-0.035% of full scale range +/- 1/2

LSB.

o 20 megohms input impedence with input protection to

30 volts.

32

o Typical conversion time of 50 microseconds.

o 18K conversions per second sample rate.

The iSBX-311 was used in its factory configuration of single ended, bi-

polar operation with a IX gain setting. This set-up provided 16 analog

inputs with an input range of -5 to +5 volts and input resolution of

2.44 millivolts. Complete details on the iSBX-311 can be found in the

board's hardware reference manual [12].

The analog inputs provided by the 311 are used to measure the

radar output signal, antenna elevation angle, and supply voltage

levels. Some of the inputs to this board were left unused and are

reserved for future expansion or modifications. The signal assignments

for the 311 are itemized in Table 8. All D.C. supply voltage levels

were divided down using trimming potentiometers (trimpots) to produce

the monitor levels input to the analog converter. The 117 volt A.C.

level was conditioned using a low voltage transformer, single wave

rectifier, and R-C filter. This produced a D.C. voltage level

corresponding to the average peak magnitude of the A.C. line voltage.

The peak level signal was also divided down using a trimpot before

input to the iSBX-311. The trimpots are adjusted to calibrate supply

voltage monitoring.

The iSBX-328 Analog Output Multimodule board was chosen for use

as the analog output interface. The 328's specifications are listed

be 1ow:

o Eight independent analog voltage level or current

loop (individually selectable) outputs.

o Output ranges of -5 to +5 volts bipolar level, 0 to

33

TABLE 8

iSBX-311 Analog Input Signal Assignments

Channel Input Signal

0 IF Analog Data Signal

1 APS Position Signal 1

2 APS Position Signal 2

3-6 Reserved (Not Connected)

7 117 Volt A.C. Monitor

8 Reserved IF Analog Signal

9 +5 Volt Supply Monitor

10 -5 Volt Supply Monitor

11 +15 Volt Supply Monitor

12 -15 Volt Supply Monitor

13 +12 Volt Supply Monitlor

14 -12 Volt Supply Monitor

15 +28 Volt Supply Monitor

+5 volts unipolar level, and 4 to 20 milliampere

current loop,

o 12 bit resolution,

o Accuracy of at least 0.17% of full scale voltage

range,

o Output slew rate of 0.1 volt per microsecond

minimum.

o 5 KHz single channel and 800 Hz eight channel

34

through put rates,

o Voltage mode current output +/- 5 milliamperes

maximum.

This board provides analog output for APS motor control functions. All

outputs are reserved for use by the APS and future modification or

expansion. For details on the operation and use of the iSBX-328 con-

sult the hardware reference manual [13]. This project did not use any

outputs from the 328.

Random Access Memory

Chrislin Industries' CI-8080 64K Dynamic Random Access Memory

(RAM) board is used to provide the RDADS processor with additional pro-

gram and data storage space. This board contains 64K bytes of RAM and

is Multibus compatible. Due to on-board memory of the iSBC-80/24 the

processor can address only 44K bytes of the CI board. The remaining

20K bytes can be used by other boards (added in the future) that are

connected to the Multibus. Table 9 gives a breakdown of the 80/24's

address space in terms of on-board memory and memory on the CI-8080.

TABLE 9

Memory Map for the RDADS iSBC-80/24 Processor

Address Range Location Storage Function

0 - 3FFF 80/24 Constant Program

4000 - EFFF CI-8080 Dynamic Program & Data

FOOO - FFFF 80/24 Program Variables

35

RDADS Chassis and Power Supply

The Multibus boards discussed above where installed in a card cage

chassis. Electronic Solution's ESBC-604G was used for this purpose.

The 604 is a four slot card cage with a Multibus backplane. It allows

connection of a power supply directly to the bus backplane for power

distribution to all cards installed in the chassis. Use of the four

slots in the ESBC-604G was as follows:

Slot 1 - iSBC-80/24 Computer with two iSBX

Multimodule boards mounted on it.

Slot 2 - Not available due to iSBX Multimodules

on 80/24.

Slot 3 - CI-8080 64K RAM board.

Slot 4 - Available for future use.

Note that there is an extra slot available for future needs. The 604

also has an expansion connector on the bus backplane that allows an

expansion card cage to be mounted directly to the 604.

Power is supplied to the card cage by Power One's CP-291A computer

grade D.C. power supply. The 291 supplies all power needed by the

80/24, the Multimodule boards, and the CI-8080. Power from the 291 is

also used by other subsystems of the RDADS. This supply outputs +/-5

volts and +/-12 volts. Three additional power supplies are used to

provide +/-15 volts and +28 volts to the RDADS. Lambda's LUS-10-15

switching power supply is used for a +15 volt power source. Power

One's HA15-0.5 D.C. power supply provides -15 volts. And Electro-

static's Model 30-28 supplies +28 volts to the RDADS.

36

Figure 8 presents the component breakdown of the ROADS Computer.

The figure shows how the components interconnect to each other and to

other parts of the RDADS and RPS subsystems. The sections above have

described the components of the RDADS computer. The next part of this

section will present the IF Controller design.

IF Controller

A special function board was designed and developed by this pro-

ject for controlling the radar range gating in the IF section of the

RPS. The IF Controller (IFC) is a high speed (60 MHz) digital circuit

with many programmable features. The IFC inherently controls the radar

transmission and receiver data acquisition in the IF section. In

addition the board provides the RDADS processor with expanded I/O

capability in the IF section.

The IFC circuit board can be broken down into the following major

subdivisions:

o Processor I/O Interface

o Timing Network

o Cycle Control

o Programmable Transmit Pulse Generator

o Fixed Delay Generator

o Programmable Range Delay Generator

o Programmable Gate Pulse Generator

o Digital Attenuator I/O Interface

o Band Multiplexer Control Interface

Each of these IFC sub-circuits will be discussed in the next sections.

37

EXPANSION

IMMEDIATE EXPANSION

Power
/to other RPS x

___/Sub-systems. x iSBX-311

8 Analog
Outputs

Reserved
APS

IFC I/O
Interface

RF Head
Control

1
\J -
i -

> Analog
Inputs
APS
Radar

- P.S.

Figure 8. ROADS Computer Block Diagram.

38

Processor I/O Interface

As noted in the section on the ROADS processor's parallel I/O,

Ports E4 and E6 are used for communicating with the IFC. Port E4 is

used as a bidirectional bus port for data I/O to and from the IFC. Be-

fore the processor can perform an I/O operation through Port E4, it

must first program the port for either input or output operation,

whichever is appropriate. Port E6 is used to control the I/O

operations to the IFC. Three bits of port E6 are used to select

between different register pairs on the IFC board. Another bit is used

to tell the IFC whether the processor is doing input or output. Two

other bits are used to enable IFC output or strobe IFC data latching.

Of the remaining two bits, one is used as a master reset output by the

processor to the IFC and the other is reserved for future needs. Table

10 presents the IFC/Processor Interface parallel I/O assignments.

The names listed under "Signal" in Table 10 are the formal signal

names used in the circuit diagrams. Processor communication to the IFC

is either to a data latch or from a tri-state buffer. Latches and buf-

fers are arranged as register pairs on the IFC and each pair is re-

ferred to as a channel. There is a total of 6 channels used in the

circuit. The three select lines are used to choose one of the 6 chan-

nels. The IOC signal is used to select either the latch or buffer of

the, selected channel. These four signals combined are input into a

74154 4-to-16 Decoder I.C. on the IFC board. Six of the outputs of the

74154 are used as strobe signals to the six latches. Six others are

used as output enable (OE) signals to the six tristate buffers. The

remaining four outputs are not used. The PS/E and SS/E signals are

39

TABLE 10

Processor Port Assignments for IFC Interface

Port

E4

E4

E4

E4

E4

E4

E4

E4

E6

E6

E6

E6

E6

E6

E6

E6

Bit

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

IFC Function

Data I/O - Bit 0

Data I/O - Bit 1

Data I/O - Bit 2

Data I/O - Bit 3

Data I/O - Bit 4

Data I/O - Bit 5

Data I/O - Bit 6

Data I/O - Bit 7

Data I/O Control

Channel Select - Bit 1

Channel Select - Bit 2

Channel Select - Bit 3

Reserved Control Bit

Reset Signal

Secondary Strobe/Enable

Primary Strobe/Enable

Signal

DO

Dl

02

03

04

D5

06

D7

IOC

SEL1

SEL2

SEL3

n.a.

RST

SS/E

PS/E

40

applied to the Gl and G2 enable inputs of the 74154. The outputs of

the 74154 are all high until the device is enabled by the PS/E and SS/E

signals. When enabled the selected output goes low to strobe or enable

the proper device. With this configuration the IFC registers all share

a common data bus connection to the processor through Port E4. Figure

9 details the I/O interface for the IFC. The assigned select addresses

for each IFC channel are given in Table 11.

Channel 2 was used for general control in the IFC. Control infor-

mation written to Latch 2 is used by various other parts of the IFC

circuit. The outputs of this latch are also tied to the inputs of the

tristate buffer it is paired with. The processor can read the contents

of the latch through the buffer. Output bits from the latch are listed

in Table 12 along .with their assigned signal name. These signals are

explained in the discussion on the sub-circuit identified in this

table.

Timing Network

To provide synchronous operation with the other parts of the IF

section, the IFC's clock signal is derived from the 60 MHz IF
. v

oscillator. The oscillator's output is brought on-board the IFC

through an SMA connector. This signal is applied to a Schmitt Trigger

Inverter to provide a clock signal of sufficient amplitude to the rest

of the board. This signal is buffered once again to provide a clock

signal of opposite phase. For lower frequency timing functions on the

IFC, the buffered 60 MHz clock is sent through a set of cascaded 74S196

Divide-by-10 Counters. Three 74S196's are used to give a total clock

41

PSE >

SSE >

4 Select
Lines

IOC&SEL1-0

8 I/O Data
Lines

DO - D7

•/

4 to 16
DECODER

STB & EN Signals
To 5 Other Channels.

\

Strobe

LATCH

'"V

Output
Enable

BUFFER
/-

Control or
Parametric
Output
(8 Bits)

Status or
Feedback
Inputs
(8 Bits)

Figure 9. Processor I/O Interface on the IFC.

42

TABLE 11

IFC Channel Assignments

Channel Register Selected

0-1 Not used.

2 General Control

3 Transmit Pulse

4 Range Delay

5 Gate Width

6 Digital Attenuator

7 Multiplexer

TABLE 12

IFC Control Channel (2) Signals

Bit

0

1

2

3

4

5-7

Signal

TNE

TxLL

SRC

FDA

RxLL

_ — — —

Sub-circuit

Timing Network

Cycle Control

Cycle Control

Fixed Delay

Fixed Delay

Not Used

43

frequency division of 1000. Each counter in the timing network has

four outputs, all at a different frequency.

The 60 MHz buffered clock was labeled CKO and the twelve outputs

from the Divide-by-1000 counter were labeled CK1 through CK12 (CK1 = 30

MHz and CK12 = 60 KHz). A two phase 30 KHz signal (CK13) was produced

by clocking a toggle Flip/Flop (F/F) with the 60 KHz CK12 signal. Fig-

ure 10 shows the timing network of the IFC. Note that CK1, CK9, CK10,

and CK12 are the only clock signals output by the Divide-by-1000 count-

ers that are used. Figure 10 also shows the introduction of the Reset

(RST) signal into the IFC. This signal is buffered to provide reset

signals to the timing network and other parts of the circuit. The

Timing Network Enable (TNE) from the control latch, must be high for

the circuit to operate.

Cycle Control

To control the cycling operations performed by other parts of the

IFC, a Cycle Control circuit was designed. This circuit is presented

in Figure 11. This circuit performs the following functions period-

ically:

o Tell the Transmit Pulse Generator when to load and

when to run (TxSLC).

o Provide a service request interrupt signal to the

processor (EOC).

o Tell the Analog Sample and Hold device when to

sample and when to hold (S/H).

o Tell the Analog Integrator when to reset and when

to integrate (R/I).

44

Note: (TOOK) ± 100KHz

K>
V

TNE > >

60 MHz
Local
illator >

CLR

T 10

f 10

f 10
>

Figure 10. IFC Timing Network

CK13

(30K)

CK13

CK1 (30M)

-> CKO
(60M)

45

n
H" "\\ ji n

EOC

TxSLC

CK13

n
luiniiuiniuuMa

•IMM^^
RST ////

SRC

RST >

CK13>

CK13>

TxLL>

CLR

T 12

EOC

R / I

) ^ S /T

> EOC

J > TxSLC

Figure 11. Cycle Controller for the IFC,

46

The circuit uses the bi-phase clock signal CK13 as a base clock for its

operation. The divide-by-twelve counter is used to generate an overall

cycle timing function for the IFC.

The cycle control circuit sends pulses to the Transmit Pulse Gen-

erator at the rate of CK13 or 30 KHz. The integrator will normally

integrate ten radar return pulses to obtain each analog output data

value. The circuit allows the processor to select either ten or four

integration cycles per datum with the SRC, Sample Rate Control, signal.

SRC originates from the general control register (Channel 2). The four

integration cycle selection could prove useful if return signals are

too large and saturate the integrator when ten cycles are used. In

addition to these integrator cycles, two more cycles of CK13 are used

for sampling the integrator output and resetting the integrator. When

SRC is low, selecting ten integrator cycles (12 overall), the I PC's

overall cycle rate is 2.5 KHz which corresponds to an analog sample

available every 0.4 mS. SRC high selects four cycles' (6 overall) for a

cycle rate of 5 KHz or a 0.2 mS cycle time.

Figure 11 also presents a timing diagram for the cycle control-

ler. Note that during integrator sampling and reset operations, the

Transmit Shift Load Control (TxSLC) is inhibited to prevent radar

output. TxSLC also may be inhibited by a low level on Transmit Load

Lock (TxLL). TxLL is another signal from the general control regis-

ter. The inverse of the End of Cycle (EOC) signal is used to enable

the range gating function of the IFC. This way, range gating is

inhibited during the integrator sampling and reset operations. The

timing diagram also shows that the Sample/Hold control signal (S/H)

47

precedes the Integrator Reset Signal, (R/I), by half a cycle of CK13 or

16 microseconds. This gives the Sample and Hold device time to enter

the HOLD mode. Note from the timing diagram that the number of integ-

ration cycles is unspecified for the first IFC cycle after a board re-

set (RST). The first EOC interrupting the processor after a reset

should therefore be ignored. All cycles after the first are valid.

Programmable Transmit Pulse Generator

The IF transmitter requires a signal from the IFC to tell it when

to transmit a radar pulse and for how long. The Transmit Pulse Genera-

tor does just that. Figure 12 is a block representation of the gener-

ator circuit. The 8-bit shift register in the circuit is parallel

loaded with a pattern obtained from the latch of IFC Channel 3. The

pattern is shifted out of the register serially to produce the transmit

pulse. The shift register can be clocked at either 60 MHz or 30 MHz

depending on which clock signal is jumper selected, 'CKO or CK1. Normal

configuration is 60 MHz. The circuit is told when to load and when to

shift by the TxSLC (Transmit Shift Load Control) signal output by the

Cycle Controller. The register is loaded when TxSLC is low and begins

to shift after the rising edge.

The processor must load the Channel 3 latch with the proper pat-

tern for the circuit to operate. By using a programmable shift regis-

ter the generated transmit pulse can be adjusted to accommodate switch-

ing characteristics of the mixer used to produce the 60 MHz radar

pulse. The processor has the ability to read the contents of the

shift register through the buffer of Channel 3. The shift register can

48

Channel 3 Buffer

TxSLC >

— Parallel Out

> SHIFT REGISTER
Serial In Serial Out

Parallel In

Channel 3 Latch

-> PTP

Figure 12. IFC Programmable Transmit Pulse Generator,

49

be read "on the fly" or if TxLL is low the loaded value can be read

and confirmed. TxLL is set low through the general control latch

(Channel 2).

Fixed Delay Generator

After generation of a transmit pulse, the IFC must wait a fixed

amount of time corresponding to the minimal delay before the radar sig-

nal is returned to the input of the integrator. The Fixed Delay

Generator accomplishes this function. The CK9, CK10, CK12 and CK13

clock signals are combined to produce this fixed delay output signal,

FDS. Figure 13 shows the Fixed Delay Generator circuit and the timing

of its output with respect to TxSLC.

The FDS signal is "OR"ed with Receiver Load Lock (RxLL) to produce

the output signal Programmable Delay Count Load Control (PDCLC). PDCLC

is applied to the next stage of the IFC, the Programmable Range Delay

Generator. RxLL is one of the general control bits from IFC Channel

2's latch. This gives the processor a way of stopping the action of

the next two stages of the IFC (Range Delay and Gate Pulse genera-

tion). The Fixed Delay Adjust signal (FDA) also originates from the

control latch. This gives the processor a way of adjusting the fixed

delay that is generated by the circuit. When FDA is low CK9 is in-

cluded in the generator circuit and the fixed delay is approximately 13

microseconds. If FDA is high CK9. is ignored and the generated delay is

approximately 11 microseconds. Note also that the two biphase CK13

clock signals can be switched by jumper selection to choose whether the

falling or rising edge of CK13 starts the fixed delay. Fine

50

PDCLC

FOS

Reset.

Set . _1T~L

CK12 T

CK13~L

CK13_[

1_

CK13>

TDA >

RxLL >

FDS

PDCLC

Figure 13. IFC Fixed Delay Generator.

51

adjustments are handled by the programmable feature of the Range Delay

Generator.

Programmable Range Delay Generator

Operation of the radar system at varying elevation angles has two

effects on the radar return signal in terms of range gating. The re-

turn signal delay varies with changes in distance to the target due to

the electromagnetic waves propagation time. In addition, the width of

the return radar pulse varies due to changes in the incidence angle of

the wave on the target. The signal is spread through time as the tar-

get scene area increases. To accommodate for such changes and still

provide a good noise rejection to the receiver, the range gate signal

must be as narrow as possible and must occur at the proper time to

"catch" all of the return signal. The Programmable Range Delay and

Gate Pulse Generators allow the proccessor to adjust the range gating

function for such changes.

The range delay generator is shown in Figure 14. This circuit

uses a programmable counter that is loaded from the output by the' latch

of IFC Channel 4. The counter is clocked by CKO at 60 MHz. The F/F in

the circuit catches the rising edge of the most significant bit out of

the counter. The output of this F/F is the generated delay signal,

PCS. By writing the proper value out to Channel 4 of the IFC, the

processor can adjust the range delay that is generated. The genera-

tor's operation cycle is based on the signal provided by the Fixed

Delay Generator, PDCLC (Prog. Delay Count Load Control). When PDCLC is

low the counter is loaded and the F/F is cleared. After the rising

52

PDCLC > CLR

CKO >

"0 "7

Channel 4 Latch

C / L

PARALLEL
LOADABLE
COUNTER

PDS

Channel 4 Buffer

Figure 14. Progammable Range Delay Generator.

53

edge of PDCLC, the counter begins operation marking the start of the

programmed delay. Note that the output of the counters can be read by

the processor through the buffer of Channel 4. As with the Tx. Pulse

Generator, the read is either "on the fly" or if RxLL is high the load-

ed value is read.

Programmable Gate Pulse Generator

The Programmable Gate Pulse Generator function is produced using

the same circuit used for range delay. The only difference is that the

circuit's function is controlled by PDS rather than PDCLC. PDS acts as

the count load signal for the gate pulse generator. The rising edge of

the Programmable Gate Signal (PGS) that is produced actually marks the

end of the gate pulse. The rising edge of PDS marks the start of the

gate pulse. By ANDing the PDS signal with the inverse of the PGS sig-

nal, the desired Programmable Gate Pulse signal, PGP, is generated.

This signal is ANDed with EOC and inverted to produce)the actual signal

used to control the integrator gating circuit. Including EOC in the

signal inhibits range gating while the integrator is being sampled and

reset. Figure 15 presents the combined Range Delay and Gate Generator

circuits and a timing diagram that illustrates how the circuits produce

the gate pulse. The gate width is programmed and checked through IFC

Channel 5. For reading the loaded value of the Gate Generator, the

RxLL signal should be high.

54

PGP

PGS

PDS

PDCLC
(FDS)

PTP

Fixed
Del ay .
Programmable Delay

Programmable Gate

EOC >

PDCLC >-
PDS

C / L

PROGRAMMABLE
DELAY

GENERATOR

CKO

C / L

Q
PROGRAMMABLE

GATE '
GENERATOR

_i

PGS

PGP

Figure 15. Programmable Gate Pulse Generator.

55

I/O Expansion in the IFC

The processor interface scheme used in the IFC provided an easy

way to expand the processor's I/O capability in the IF section. Two

additional IFC Channels are used to accomplish this expansion. Channel

6 is used for controlling the Digital Attenuator in the IF receiver.

The output of Channel 6's latch is returned through the buffer of that

channel to allow the processor a method of checking the attenuator's

setting. Channel 7 is used to control and monitor the RF Head Multi-

plexer in the IF section. Switches identical to those used in the RF

polarization control are used for the multiplexing function in the IF

section. Monitoring of the multiplexer switches is accomplished the

same way that monitoring of RF polarization switches was done.

A complete set of detailed circuit diagrams for the IF Controller

circuit board can be found in Appendix A. The IFC was first prototype

on a special Schottky TTL wire wrap board. Once made operational, the

final circuit was produced in the form of a printed circuit board. A

print of the circuit layout can also be found in Appendix A along with

a component placement diagram.

When combined, the RDADS Processor and the IF Controller provided

all the hardware needed to control and operate the RPS. Since most of

the hardware functions are under software control, the operation of the

RPS can easily be adjusted or modified. The next section presents the

software developed for the RDADS.

56

SOFTWARE

RDADS hardware was selected and designed to permit flexibility in

the system's implementation. This flexibilty was achieved through a

microprocessor based system design. The polarimeter's functional

operation was defined primarily through the microprocessor software.

This section presents the design and development of the RDADS software.

The RDADS is a complex processing system that performs a number of

functions during operation. The software design problem had to be

divided into smaller problems and organized for development. A struc-

tured programming approach was taken for the design and development of

RDADS software. This section will begin by briefly presenting the pro-

gramming techniques that were chosen and how they fulfill the project

requirements. Emphasis and elaboration will follow in a discussion of

the actual software.

Structured Programming

Appearance of a computer program, its readability, comprehensibil-

ity, and "style", is the principal aspect of "structured programming"

[14]. Structured programs are readable, easily understood, and well

organized. Modular programming and limitation of program constructs

are two important concepts used in developing programs that are struc-

tured.

57

Modular Programming

Modular design and implementation breaks the programming problem

down into levels and blocks. Levels refer to hierarchical divisions

within an installation. At each level the entire installation can be

divided into blocks with independent characteristics. Blocks and their

hierarchical levels are commonly illustrated by block structure dia-

grams. An example of a structure diagram is shown in Figure 16. Here

the entire problem is represented by Block A at Level I and is broken

down into Blocks B, C, and D at Level II. The problem breakdown can be

carried through as many levels as required. this modular breakdown

allows the problem and solution to be viewed in terms of simpler compo-

nents and in an organized fashion.

LEVEL I

Ffgure 16. Simple Block Structure Diagram.

Limited Constructs

A second requirement for structured programming is the concept of

limiting the number of basic program constructs [14, 15, 16, 17], A

program construct can be defined as a structure element or pattern used

to express logic in a program. There are three basic constructs

58

necessary to fulfill all programming requirements. These basic

constructs, referred to as sequence, selection, and iteration, can be

combined in any fashion to accomplish any logical task [18].

The construct of sequence is a succession of selection structures,

iteration structures, and individual process steps. To express

sequence, statements are written one after the other, as follows:

Input X and Y

Add X and Y

Output result

Selection is a construct in which a process is broken into

options. The execution of these options is dependent on a specified

condition. To illustrate selection, terms like IF, THEN, and ELSE are

commonly used, as in:

IF X > Y THEN MAXVAL is X

ELSE MAXVAL is Y

Repetition of a process is accomplished asing the third

construct, iteration. A DO loop is the common example of iteration

such as:

DO I from 1 to 10

Add X(I) to SUM

End DO

With these basic programming patterns any logical process can be

implemented. Processes more complex than those illustrated above are

effected by combining these basic constructs.

Development Support

Both of the above conceptual components are fundamental to the

59

structured programming philosophy. Many available software development

tools and programming languages directly support the design and

implementation of structured programs through the use of these

concepts. Programming languages usually provide a means of directly

implementing the three basic constructs required. This allows the

design portion of the development process to be virtually language

independent. A software design can be entirely depicted in pseudo-code

which is an informal method of expressing the steps of a process in

terms of the basic constructs. Since these constructs are supported

directly in most languages, the implementation phase is accomplished

through simple conversion of pseudo-code to actual source code. A pro-

gramming language can be chosen at the time of implementation without

affecting the logical design of the program.

Modularity is promoted not only in languages but also by support

tools such as program library facilities, module linkers, and pre-

developed modular process utilities. Most all languages directly

support modularity by providing for some type of subprogram, function,

or procedure implementation. Once developed, program modules can be

stored as individual units or as part of a library of modules. An

entire software installation is obtained by combining individual

modules together through the use of an object linker. The linker also

provides the function of "looking-up" and extracting needed modules

from libraries. Commercially available process utilities can be also

linked with user modules to provide the complete system installation.

These and other software design tools and products support and simplify

the development of structured programs.

60

Software Design

In this section a statement of the software problem will be

given. Some of the specific requirements on the software installation

will be itemized. This will be followed by a general description of

the design approach taken. Refinement of the design problem and des-

criptions of solution implementations will be given later in this

section.

Problem Statement

ROADS software was required to perform three basic functions.

These were:

o Communicate with the main computer in the data van,

o Control radar operation and data acquisition,

• o Position the RPS antennas.

The first two functions are explained here. Antenna positioning soft-

ware was developed external to this project.

Radar Control and Data Acquisition

Radar operations can be divided into three categories. Two of

these are the microwave transceiver control operations and the IF sec-

tion control operations. The third is the acquisition of data from the

radar.

Transceiver operation is controlled with RF switches. There are

three RF switches under computer control in each microwave transceiv-

er. These are the CAL/OP switch and the transmit and receive

61

polarization transfer switches. All microwave switches are controlled

and monitored through parallel I/O operations from the processor.

IF section operations include setting and checking the control and

parametric registers of the IF Controller. IF Controller registers

include a general control/status register, a transmit pulse register,

the range and gate width registers, a digital attenuator register, and

a transceiver multiplexer register. IFC communications are also per-

formed through parallel I/O by the processor.

Radar data acquisition is accomplished primarily through conver-

sion of the analog signal output by the IF section. The IF Controller

board signals the computer when the analog signal is ready for conver-

sion. The computer then converts the analog signal to a digital count.

It can determine from this measurement if the Digital Attenuator

should be adjusted. Control of the attenuator is performed automati-

cally by the processor to implement a Digital Automatic Gain Control

(DAGC) function for the receiver.

ROADS Communication

Operation of the ROADS is normally controlled by the data van CPU.

The RDADS can also be controlled directly by the user. ROADS com-

munication was designed to allow for two different operational set-ups.

The first is the normal set-up of communicating with the data van in a

remote fashion. The second is a local set-up using a console terminal

in place of the data van CPU. Using a terminal to communicate with the

RDADS allows the system to operate in a stand alone configuration

instead of being a slave device to the main CPU. This local set-up was

62

devised to provide for testing, maintenance, and calibration. Commun-

ication software was designed not only for the basic operational

requirements, but also for flexibility and utility in testing and main-

taining the RPS.

Design Approach

The approach to the design of the software installation was to

develop an operating system that allowed interactive control of prede-

fined functions. Interaction was to be either directly through a con-

sole terminal or indirectly through the data van CPU. A general command

list was defined that would provide for all the required operations.

Each command task was broken down into steps needed in accomplishing the

overall function. By breaking each level of tasks down into a subor-

dinate level, the actual operational requirements of each task were

divided into simpler components. This breakdown continued until the

sub-divisions of a task reached a point where they could be implemented

easily.

The operating system for the ROADS is called the Remote Operations

Utility (ROU). Figure 17 presents a task structure diagram of the ROU.

Each task performs a command function except for the Radar Task which is

a free running task used to acquire the radar measurement data. Each of

the command tasks will be presented here by describing the format of the

command entries and the actions they perform. This will be followed by

a discussion of the radar task's logical operation.

63

REMOTE
OPERATIONS
UTILITY

en

RxPOL
COMMAND

RANGE
COMMAND

TxPOL
COMMAND

HEAD
COMMAND

LOCAL
COMMAND

MODE
COMMAND

GATE
COMMAND

GAIN
COMMAND

RADAR
TASK

Figure 17. Structure Diagram for the Remote Operations Utility Package

ROD Commands

The following rules apply to all the descriptions of the Remote

Operations Utility commands:

1. Keywords are shown in upper case and must be entered as

shown. Any abbreviation of the keyword is acceptable but

should contain at least enough characters to distinguish it

from any other keyword used in the command. Command key-

words may be abbreviated but also must contain enough char-

acters to distinguish them from other commands. Failure to

do this may cause unwanted results. Ambiguity among key-

word entries is resolved by order of appearance in the for-

mat description. Ambiguity among command keywords is

resolved by order of appearance in the command table.

Abbreviations are formed by entering the first characters

of a keyword in the same order that they appear in the key-

word. Any number of characters is acceptable as long as no

intermediate characters are omitted.

2. Command keywords are always the first keyword in a command

format. Everything that follows the command keyword is

referred to as the command tail. The command keyword and

its command tail constitute a command string or command

entry.

3. All keywords, symbols, and variable entries must be separa-

ted from other keywords, symbols, and variable entries with

one or more spaces.

65

4. Braces, " { } " group alternatives in which one and only

one alternative must be chosen.

5. Parenthesis, " () " group alternatives in which one or

more must be chosen. At least one alternative must be

chosen but two or more can be used.

6. Brackets, " [] " group options which may be omitted

entirely. Underlined options are assumed if all options of

the group are omitted.

7. The "or" symbol, " I " separates command options or alter-

natives.

8. Braces, parenthesis, brackets, and the "or" symbol are used

to identify options or alternatives only and are not

intended to be entered as part of the command string during

operation.

9. Rules indicated by symbols that enclose groups apply only

at the level of the group they are enclosing. When an

option or alternative is a group, the rules of the outer

group apply to the nested group as a unit. Uithin a nested

group the rules of that group apply.

10. Lower case letters are used as symbols for variable en-

tries. Permissible values or ranges for the variable are

specified following the command's format description. A

value for the variable must be entered unless the entire

option in which it appears is omitted.

11. Several commands have a query option that is selected

either by following the command keyword with a question

66

mark, " ? ", or by default. If the command keyword is

entered by itself or followed by a question mark it is

interpreted as a query only and has no effect on the cur-

rent setting of the hardware or software entity that the

command controls. The result of a query is simply a res-

ponse of information on the current setting or status of

the related entity.

LOCAL Command

RDADS remote communications were designed to be performed withi
either the data van CPU or a console terminal. In keeping with this

approach it was decided to use two modes of operation for ROADS output.

LOCAL mode designates that the ROADS processor is to communicate with a

console terminal. REMOTE mode is used for communications with the main

CPU. The only difference in operation for these two modes is the

format of output data. In LOCAL mode the ROU provides processes for

the screen formatting of data displayed on the console. This format-

ting was intended to aid in testing, maintenance and calibration. In

the REMOTE mode of operation data are sent with a unique two character

ASCII introducer string that identifies the data. The data follows

this string in a preset format and is terminated with a standard

sequence consisting of a carriage return and line feed. To select

between the two modes of operation the LOCAL command is used. The

format of the LOCAL command is as follows:

LOCAL [OFF I ON]

67

The user enters the command name followed by the desired setting of

either ON or OFF. If the selection is omitted, ON is assumed. By

default, at system start-up time, the ROU is in the local-off or REMOTE

mode. When local-on is specified using the LOCAL command the ROU out-

puts control sequences that initialize the console terminal screen.

The console is divided into two sections, one for display of system

parameters and status and one for command entry and responses. When

the LOCAL command is used to set the communications mode a mode flag

(SDL$MODE) is set to identify the currently selected mode. The flag is

set to either REMOTE (literally OFFH) or LOCAL (literally 0). This

flag is then used to control the output of responses to command quer-

ies. In the LOCAL mode, response to any command query usually appears

in the section of the screen reserved for parametric and status

information. When mode is set to REMOTE (local-off), query responses

are sent with an ASCII introducer followed by the desired information

and a standard termination sequence.

TXPOL and RXPOL Commands

Two commands, TXPOL and RXPOL, control and monitor the polariza-

tion settings of the microwave transceivers. Both commands are identi-

cal in format and operation. Transmit polarization for all of the

microwave transceiver heads is controlled and checked with the TXPOL

command. The RXPOL command performs this function for receive polari-

zation. Polarization settings for both transmit and receive are set

the same for all microwave heads. This has no impact on operation

since only one head is in operation at any given time. The format for

68

these two commands is:

{ TXPOL I RXPOL } [= {HORIZONTALJVERTICAL} | ?]

To set the transmit or receive polarization, the proper command keyword

is entered followed by an equal sign, "=" and the desired setting spec-

ified as either HORIZONTAL or VERTICAL. The current setting of the

transmit or receive polarization can be checked by entering the command

keyword alone or followed by a question mark. The response to a query

when in the REMOTE mode would be introduced by the letters "TP" for

transmit polarization or "RP" for receive polarization. This is fol-

lowed by a character that indicates the current status, either an "H"

for horizontal or a "V" for vertical. The response is terminated by

the standard sequence. When in LOCAL mode the response is written to a

reserved location on the console screen.

MODE Command

To provide for desired operational capabilities, four different

modes of operation were designed for the radar system. These four mode

settings were actually four different combinations of two mode charac-

teristics. Each characteristic could assume two possible states. The

first mode characteristic refers to the physical operational setting of

the microwave transceiver. Each head can be set into either a CALI-

BRATE or OPERATE mode. CALIBRATE is used for taking an internal cali-

bration measurement through the transceiver. OPERATE provides for set-

ting the transceiver in a mode that enables transmission and reception

through the transceiver's antennas. Actual target scene measurements

are accomplished in the OPERATE mode. A second radar mode character-

69

istic involves the repetition of measurement acquisition. The two set-

tings for this were SINGLE and CONTINUOUS. To acquire one measurement

return value the radar was placed in SINGLE mode. CONTINUOUS mode pro-

vided for multiple radar measurement acquisitions. When in CONTINUOUS

mode the radar measurements are made continually until the mode is

reverted back to SINGLE. The MODE command was developed for selecting

the various radar modes of operation. Its format is as follows:

MODE [= ((CALIBRATE|OPERATE} | {SINGLEJCONTINUOUS}) | _?]

In order to specify or change the mode settings of the radar system,

the command keyword MODE is entered, followed by an equal sign. After

the equal sign either or both of the desired modal characteristics can

be entered. As an example the radar could be set to

OPERATE-CONTINUOUS with the following command string:

MODE = OPERATE CONTINUOUS

The mode could then be set to OPERATE-SINGLE by entering the following:

MODE = SINGLE

Since the mode was already set to OPERATE, only SINGLE had to be

specified. To change to CALIBRATE-SINGLE the command string that

follows could be used:

MODE = CA

Note that CALIBRATE was abreviated here to CA. "C" alone would be

ambiguous since CONTINUOUS also begins with the same letter, so "CA"

was the minimal abbreviation.

The effect of the MODE command is to set the currently selected

transceiver (see HEAD command below) into the specified calibrate or

operate mode. All other heads are set into calibrate to effectively

70

turn off those transmitters. In addition the range delay and gate

width parametric registers in the IF Controller are set to the current

values saved for the specified mode (see RANGE and GATE commands

below). The effect of specifying SINGLE or CONTINUOUS in the MODE com-

mand is to set the radar task into that particular mode of operation.

How this affects the radar operation will be discussed in the descrip-

tion of the radar task.

To check the current mode setting, the MODE query command can be

used. This is simply the command keyword alone or followed by a ques-

tion mark. The response to a MODE query in the LOCAL mode would be to

print the word CALIBRATE or OPERATE followed by the word SINGLE or CON-

TINUOUS in a reserved location on the console screen. In the REMOTE

mode the response would be "MO" followed by two letter characters to

indicate the current mode combination. The first letter would be

either a "C" or "0" to indicate CALIBRATE or OPERATE respectively. The

second letter would be either an "S" or "C" to indicate SINGLE or CON-

TINUOUS respectively. It is up to the user to know the first "C" would

refer to CALIBRATE and the second would refer to CONTINUOUS. The

remote response is terminated with a carriage return and line feed.

HEAD or BAND Command

Selection of a microwave tranceiver head was provided for with the

HEAD or BAND command. This is one command with two valid command key-

words. Either keyword can be used with the same effect. Both were

provided for clarity to the user. Original testing was done with

transceiver interconnections assigned a number 1 through 4 for handling

71

up to four microwave heads. The actual frequency band associated with

each of these head numbers was not assigned until the final installa-

tion of the transceivers. Each band is referred to by a band letter

"X", "L" or "C" which were assigned to the head interconnects "1", "2"

and "3" respectively. Interconnect "4" was assigned the letter "R" for

a reserved band designation. The command string for selecting the

transceiver to be used is entered with either command keyword, HEAD or

BAND, followed by the intended selection specified using either the

numeric or letter designation assigned to the desired head. The

command format is:

{ HEAD | BAND } [= k | _?]

where k is one of the numerals 1, 2, 3, or 4 or one of the letters X,

L, C, or R. There are two effects of this command when a transceiver

selection is specified. First the transceiver multiplexer is set to

select the specified transceiver. Secondly, the selected transceiver

is placed in either the calibrate or operate mode as specified by the

current mode setting for the radar. All other transceivers are placed

in the calibrate mode to disable transmission from those bands. The

command will also respond to a query with the current setting of the

command's entity. In the REMOTE mode this response is "HE" followed by

the head number that indicates the current setting. This is followed

by the standard termination sequence. In the LOCAL mode the number

and letter are both displayed in reserved locations on the console

screen labeled "HEAD = " and "BAND = " respectively.

72

RANGE and GATE Commands

Setting and checking the range delay and gate width parameters of

the IF Controller board were provided for with two commands, RANGE and

GATE. Each of these commands has associated with it two software

parameter entities. One is for a calibration value of the parameter

and the other is for an operation value of the parameter. There are

then four values in all that are saved internally: Calibrate Range

Delay, Operate Range Delay, Calibrate Gate Width, and Operate Gate

Width. The current radar mode setting determines which range and gate

values are used in the IFC's parametric registers. When the mode is

changed, the range and gate parameteric registers are automatically set

to the proper value as determined by the current value saved for the

associated parameter. The RANGE and GATE commands have basically the

same format. It is as follows:

{ RANGE | GATE } [[CALIBRATE[OPERATE] = n I _?]

Here "n" should be replaced with an integer value ranging from 0 to

255. This value is the number of 16.67 nS time divisions that the

specified parameter is to be set to. To specify the setting for a

range delay or gate width, the proper command keyword is entered

first. This is followed by a keyword to identify that either the

calibrate or operate value is being set. If the second keyword is

omitted OPERATE is assumed. Next an equal sign should appear in the

entry followed by the integer value desired. The effect is to store

this value in the proper parameter variable as specified. If the value

is specified for the current mode of operation then the command also

73

sets the associated IFC parametric register to the specified value.

The current settings of both the calibrate and operate values for

the range delay or gate width parameters can be obtained from the sys-

tem using the query version of the RANGE and GATE commands. For

either command the response to a query in LOCAL mode is to write both

the calibrate and operate values for the specified parameter in a

reserved location on the console screen. The value that corresponds

to the current setting of the related IFC parametric register is under-

lined for emphasis. In the REMOTE mode the response will begin with an

introducer of either 'RD' for range delay or 'GW for gate width. This

is followed by the calibrate value. A semicolon, ";" is then added as

a delimiter followed by the operate value also. Both of the response

values are sent as ASCII encoded hex values that range from 0 to OFFH.

As always the REMOTE response has the standard terminator.

IFGAIN Command

The IFGAIN command was devised to provide the capability to set

the IF receiver gain manually. This command allows the operator to

program the gain setting of the IF receiver directly without using the

automatic gain control feature of the radar task. IFGAIN has its pri-

mary use in system testing and adjustment. For any practical use the

radar must be in single mode of operation before the IFGAIN command is

used. Since the radar task changes the gain for data acquisition, the

gain setting entered using the IFGAIN command is valid only while the

radar task is disabled (ie. SINGLE mode). The format of the IFGAIN

command is:

IFGAIN [= i I _?]

74

where "i" is replaced by an integer value ranging from 0 to 127. The

actual gain is the integer value multiplied by 1/2 dB. When the gain

value is specified using the IFGAIN command, the value is directed to

the IFC where it is used to set the digital attenuator. This attenua-

tor as discussed in the previous section is a 7 bit digital attenuator

that has settings ranging from 0 to 63.5 dB in 1/2 dB steps.

In response to the IFGAIN command query while in LOCAL mode the

gain setting of the IF receiver is displayed at a reserved location on

the console screen. When in REMOTE mode the response is "GN" followed

by the gain setting in ASCII encoded hex (0 to 7FH) and a carriage

return/line feed termination.

Radar Task

The radar data acquisition task is covered in this section. A

description of the task is given explaining its logical execution. The

primary aspect of the radar task, the Digital Automatic Gain control

function, is covered in detail.

Radar Task Operation

Radar data acquisition, the primary function of the RPS, is

handled by a stand alone free running task. This task, the radar task,

falls under the control of the operator via the MODE command. It can

be enabled or disabled by setting the radar mode of operation proper-

ly. Once enabled, the task runs a data acquisition process to obtain a

radar data value. A return data value is obtained for each pass or

iteration of the task's data acquisition process loop. The task can be

75

enabled for either a single pass or for continual iterative passes on

this loop. This equates to obtaining either a single radar return

value or obtaining return values continuously. Once in the continuous

mode, data acquisition can be halted by returning to the single mode.

In single mode the radar task acquires a single data value and disa-

bles itself. It remains disabled until it is re-enabled by the MODE

command task. Thus for single mode the radar is in operation only long

enough to acquire one data point and then it returns to an idle state.

The logical execution flow of the Radar Task is presented by the

descriptive pseudo-code that follows:

o Initialize the Radar Task's software data

structures and necessary hardware,

o Begin a DO-FOREVER loop.

o Get mode specification from the MODE command.

o Do while mode is SINGLE or CONTINUOUS: -

o If mode is SINGLE set to OFF.

o Obtain radar data value,

o Display radar data value,

o Get new Radar Mode if available from MODE

command.

o End of Do-while,

o End of Do-forever.

This task has the general task format. It begins with an initializa-

tion section that is executed once. This is followed by the operation

section which is a loop that is executed indefinitely.

The first step of the operation section is to obtain the radar

76

task mode that is provided by the MODE command. This mode is either

o Display radar data value.

o Get new Radar Mode if available from MODE

command.

o End of Do-while,

o End of Do-forever.

This task has the general task format. It begins with an initializa-

tion section that is executed once. This is followed by the operation

section which is a loop that is executed indefinitely.

The first step of the operation section is to obtain the radar

task mode that is provided by the MODE command. This mode is either

SINGLE, CONTINUOUS, or OFF. Execution of the next step of the opera-

tion loop is based on this mode setting. When the mode is OFF the task

does nothing for the remainder of the loop. When the loop is repeated

it will execute based on whatever the mode setting is at that time. If

the mode is SINGLE or CONTINUOUS the task operates to obtain radar

data.

There are several steps involved in obtaining a radar data value.

As explained in the IF Hardware Description section, the IF receiver of

the radar has a computer controlled digital attenuator that is used to

vary the receiver's gain. The receiver provides an analog DC voltage

level output from a sample and hold device to the RDADS processor's

analog converter that is proportional to the radar return energy. The

converter digitizes the analog signal to obtain an integer value

representative of the signal's voltage level. In order to operate the

77

radar, it is necessary to control the IF gain to maintain the receiv-

er's operation in a linear region and keep it out of saturation. The

basic concept is to maintain the output voltage within a window that is

known to be a linear region of operation for the receiver. To do this

the analog output is monitored by the computer and, based on the sig-

nal's level, the gain is controlled via the digital attenuator. This

is an iterative process in which, based on the signal level returned

for the previous gain setting, the gain is changed until the signal

level is driven to the desired operational limit. The steps needed to

accomplish one iteration of this gain setting process would be to

first set the gain to some prescribed value, that is to either an

initial value or a value based on resulting return level of the pre-

vious settings. Next the return level for this new gain setting must

be measured through the use of the analog converter. Finally the value

obtained from this measurement is compared to preset values to deter-

mine how the gain should be adjusted for the next iteration. Until the

gain is set to a value that forces the return voltage level into the

desired window, the gain changing process is repeated. This technique

of controlling the gain is a Digital Automatic Gain Control (DAGC)

function. The particular method used to accomplish the DAGC function

will be discussed in the next section.

Digital Automatic Gain Control Implementation

The DAGC performs a dual purpose. The function not only controls

the gain of the IF reciever but it also provides the radar return

data. The DAGC function was designed as a procedure that executes a

controlling process each time it is called. The function returns, as a

78

procedure output, the gain setting that the control process generated.

This gain setting is recorded as a single radar data point.

Recall that the digital attenuator effects a gain control on the

receiver of 63.5 dB in 0.5 dB steps. This is accomplished by switching

stages of various attenuation in or out of the input line. There are

seven stages of fixed attenuation (32, 16, 8, 4, 2, 1, and 0.5 dB).

The window chosen as the target for the IF receiver's operation was a

narrow band centered in the middle of the negative voltage dynamic

range of the analog input board. It was assumed that a change in

gain of 0.5 dB at this operational point would effect a change of 0.25

volts in output from the receiver. This corresponded to an analog out-

put voltage from the IF receiver between -2.375 volts and -2.625 volts.

It was determined that this range would correspond to linear operation

for all of the analog circuitry in the receiver section. The negative

voltage output from the receiver section increases in absolute magni-

tude for increases in gain setting for a constant load on the micro-

wave transceiver. To clarify the discussion absolute magnitudes will

be used. Recall that the output values of the radar receiver are

always negative. The window of concern was therefore between 2.4 and

2.6 volts in absolute magnitude.

It was initially attempted to implement the DAGC process as a

binary search through the allowable differential gain settings to find

the one setting that placed the receiver output into this window. In

the binary search technique the gain was initially set to half of its

maximum value (highest order bit high and all others low). The analog

return was then compared to the operation window. If the voltage was

79

found to be of lesser magnitude than 2.4 volts, it would indicate that

the gain had to be increased. If it were of greater magnitude than 2.6

volts then a gain decrease was in order. To increase the gain the high

order bit remains high and the next lower bit is also set high. To

decrease the gain the high order bit is reset to low and the next

lower bit is set high. This corresponds to a change in gain of either

plus or minus one half of the previous gain adjustment. With this new

gain setting the entire process is repeated to determine if the gain is

high or low for the desired operation. This bit-wise gain setting

process is continued until all seven bits of the gain are set to the

proper state that places the receiver's output into the desired range.

Ideally this approach would be the most efficient since it takes only

seven iterations for any possible gain setting. This approach worked,

but only in certain cases. It was discovered that intermediate gain

settings for relatively large radar return signals caused the video

amplifier of the receiver section to "shut-down" which produced ambigu-

ous analog input signals. These ambiguous signals completely invalida-

ted the DAGC binary search control scheme. Another approach had to be

developed.

A change of 1/2 dB in gain was experimentally determined to effect

a change of at most 0.25 volts when the receiver was operated in the

linear region. A new DAGC process was developed that made use of this

fact. The process started by setting the receiver gain to a minimum.

The gain is then increased in 4 dB steps until the receiver output is

above 0.4 volts. The gain is next increased by steps of 1/2 dB until

the output is above 2.4 volts. The output is at this point in the

80

desired window of operation so the gain setting is returned. This

approach assumed that the maximum increase in output for a change in

gain of 4 dB would be no more than 2.0 volts when the receiver output

is below 0.4 volts. It also assumes that a 1/2 dB increase in gain

will not increase the output more than 0.25 volts when the output is

less than 2.4 volts in magnitude. As long as these two assumptions are

correct the DA6C function should control the receiver gain within the

1/2 dB gain resolution to maintain the output as close as possible to

2.5 volts.

Real-Time Multi-Tasking

A real-time system is one in which events and processes take place

in an asynchronous fashion. This means that events are not scheduled

and occur at any time. These asynchronous events must be handled as

the need arises, that is in a "real-time" fashion. Systems such as

this are common in meeting the requirements of a physical world appli-

cation. A real-time system must be flexible, changing its activities

in response to unpredictable changes in its physical environment. When

system processes handle asynchronous events, it is often necessary to

be able to accommodate several events at once. In order to do this, it

is required that multiple processes be able to take place at the same

time. With regards to software, processes are sometimes called tasks

and software systems that execute multiple processes concurrently are

referred to as multi-tasking systems. The radar system is a real-time

physical system with multiple events occurring asynchronously, requir-

ing multi-tasking service. In the design approach given for the radar

operating software, the installation consists of several command

81

tasks and a free-running radar task. This approach fits well into the

framework of a multi-tasking system.

It is physically impossible to have more than one program or task

running at any given time in a hardware system that has a single pro-

cessor. It is, however, possible for the computer to share its

resources with many tasks in such a way as to make it seem to the out-

side world that the tasks are running concurrently. To accomplish this

there are three important requirements [19]:

1. There must be a means of notifying an executing system when

important events occur in the physical environment.

2. The computer must accommodate more than one program in its

memory simultaneously.

3. There must be provisions for stopping the execution of one

program and starting the execution of another, and it is

necessary to do this quickly and at any time. It must also

be possible to resume a program at the 'point were it was

stopped.

Less obvious is the fact that activities of one program often depend

upon the activities of another. A means of communicating between pro-

grams must be provided to allow for these dependencies. Also, some

programs can be more important than others, so a program priority

scheme is required. Higher priority programs, however, must stop run-

ning to allow lower priority programs time to accomplish their task.

Finally, it is desirable that an executing system make the fullest use

of the processor's time. Typically, in a system where program sched-

uling is non-flexible, there are time periods when the processor is not

82

doing useful work (i.e. during I/O operations). Allowing other pro-

grams to run during these periods improves the processor's efficiency.

A software operating system that provides for these requirements

is referred to as a Real-Time, Multi-Tasking Executive. There are

several commercially available Real-Time, Multi-Tasking Executive

packages sold to meet the typical needs of a real-time system. These

"off-the-shelf" software pakages will usually provide many additional

utilities that may or may not be required for any given application.

Such utilities are provided to ease the program development job. By

providing commonly used utilities as part of the package, program

development efforts can be more effectively directed toward meeting

requirements of the specific application. For these reasons the use of

an "off-the-shelf" executive software package is extremely

advantageous. One such package made available for use on this project

was RMX-80, a product of Intel Corporation.

The RMX-80 Executive Package

RMX-80 provided many useful functions and utilities that made the

program development process less cumbersome. Fundamentally, the

executive provided for multiple independent tasks which compete with

each other for system resources including CPU time. Three basic task

interactions were accommodated with the use of RMX-80. Specifically

these were:

1. Communication - The transfer of information from one task

to another.

83

2. Synchronization - Executional sychronization of a task's

activity with an external event, with the activity of

another task, or with system timing.

3. Resource Management - Mutual exclusion of access to a

hardware or software resource in order to prevent

concurrent or disruptive use of the resource.

Tasks interact in RMX-80 through the use of exchanges which are data

structures that are functionally a "mailbox" through which information

is sent and recieved by tasks. This information is transferred in the

form of a second data structure called a message. When information is

to be transferred from one task to another, the sending task sends a

message containing the information to an exchange. The other task goes

to the exchange and waits to receive the message. Each exchange has

associated with it a queue for messages sent to the exchange by any

number of tasks and a queue for tasks waiting to receive a message at

the exchange. Delivery of messages at an exchange is handled in a

first-in-first-out (FIFO) fashion. A task can receive a message at an

exchange in three different modes. These modes pertain to the time

that the task will wait for the message. A waiting task can either

wait indefinitely for a message, wait for a specified number of system

time units, or not wait at all. In the latter case the request for a

message is handled by checking to see if there is a message available

at the specified exchange during the time the request is made. If the

message is available it is returned to the requesting task; otherwise

the request is ignored.

84

This message exchange concept allows for the first task interac-

tion given above, that of communication. Information can be passed

from one task to another in the form of a message. The second inter-

action, synchronization, is also handled through exchanges. To illus-

trate, suppose task A reaches a point where it is to signal another

task B to perform a function. If task B is waiting indefinitely at an

exchange, task A can initiate the operation of task B's function by

sending a message to that exchange. RMX-80 translates the occurrence

of hardware interrupt into a message sent to a special exchange called

an interrupt exchange. This allows a task's activity to be sychronized

with external hardware events in the same fashion as with internal

software activity. Sychronization with system timing is provided by

the timed wait feature of message exchanges. The third task interac-

tion, resource management, is handled through the use of exchanges by

using a message reserved for a given resource. Thi's "key" message is

initially sent to an exchange also reserved for that resource. Tasks

competing for the resource simply wait at that exchange for the mes-

sage. With this protocol only one task will possess the message at any

given time and therefore possess the key to that resource. Other tasks

are prevented from using the resources until the "key" message is

returned by a task using the resource, effectively saying it has com-

pleted its use of the resource for that time. The three fundamental

interactions between tasks, communication, synchronization and resource

management, are all provided for by RMX-80 through its message exchange

facilities.

85

RMX-80 Nucleus

Operations In an RMX-80 installation center around an operating

system known as the Nucleus. This software "core" of activities man-

ages the entire system. Multi-tasking is supported by maintaining a

record of each task's execution state. The RMX-80 Nucleus controls the

allocation of CPU resources to tasks and performs the required house-

keeping for starting and stopping task execution. The Nucleus manages

all activity at exchanges including maintaining queues and providing

timing of specified wait periods. It also maintains the interrupt sys-

tem by sending messages in response to hardware interrupts to an inter-

rupt exchange. Additional general task management functions are sup-

plied as part of the RMX-80 Nucleus. Functions are provided for the

creation and deletion of tasks and exchanges in the executing system.

The suspension and resumption of tasks are also accommodated. Initial-

ization of the executing system is provided for so as to allow a pre-

determined set of tasks and exchanges to be defined and initialized for

a system start-up. Tasks in RMX-80 have an assigned priority that is a

measure of the importance of the task's operation. The Nucleus recog-

nizes the priority of tasks and schedules their execution accordingly.

There are eight principal services provided by the RMX-80 Nucleus

in the form of callable procedures. Their names and basic functions

are, the following:

1. RQSENO - Send a message to an exchange.

2. RQWAIT - Wait for a message at an exchange.

3. RQSUSP - Suspend a task.

86

4. RQRESM - Resume a suspended task.

5. RQCTSK - Create a task.

6. RQDTSK - Delete a task.

7. RQCXCH - Create an exchange.

8. RQDXCH - Delete an exchange.

Through the use of these system services and other task and message

management facilities of the RMX-80 Nucleus, an entire system can be

accommodated by RMX-80. All the requirements of a real-time, multi-

tasking system as described in the previous section are met:

o There can be multiple tasks.

o Each task has an associated priority.

o Tasks can be stopped by waiting at exchanges, use of the

suspension service, or slow I/O delays.

o When one task is stopped another can be started.

o Tasks are allowed to interact through the use of exchanges

and messages to accomplish a variety of end's.

o The executing system can respond to an external event.

The RMX-80 Nucleus acts as a combination task traffic cop and arbiter,

coordinating the concurrent activities of an executing RMX-80 based

application system. The most important feature of a software instal-

lation that utilizes RMX-80 is that the system is event driven where

the driving events are external, in the form of interrupts, and

internal in the form of messages exchanged between tasks under a system

timing scheme.

RMX-80, in addition to providing the Nucleus as the application's

operating system, provides pre-developed optional tasks for performing

87

some common duties associated with a real-time, multi-tasking installa-

tion. These tasks include a Terminal Handler, a Free Space Manager, a

Disk File System, a Bootstrap Loader, Analog Handlers, a Command Line

Interpreter, and a Debugger. The resources or services provided by

these tasks are accessed by application tasks through the use of the

RMX-80 message exchange facilities. Only two of these optional tasks

were utilized in the ROADS application, the Terminal Handler and the

Command Line Interpreter. The function and operation of these two

tasks will be discussed individually in the following sections. For

more detailed information on RMX-80 consult the RMX-80 User's Guide

[20].

RMX-80 Terminal Handler

A software interface between application tasks and an operator's

terminal is provided for in an RMX-80 based installation by the RMX-80

Terminal Handler. The Terminal Handler is supplied as a collection of

tasks that support basic and advanced serial communications through

some type of terminal console. Although this support is directed pri-

marily towards use as an interface between an operator and the execut-

ing system, it is not limited to this. A smart device such as another

processing system can be substituted for the operator in the interface

scheme. Therefore, the terminal Handler provides a driver for inter-

facing the RDADS system to either the Data Van Computer of the RPS or

to a stand alone terminal console.

From the viewpoint of the programmer, use of the Terminal Handler

is accomplished through special exchanges associated with terminal

88

input and output. When a task wants to receive data from the terminal

input stream, it sends a request message to a special input-request ex-

change. The Terminal Handler responds by returning input data to the

requesting task in the form a message sent to an exchange specified by

the requesting task. In a similar fashion, a task wanting to output

data to the terminal output stream would send a request message to a

special output-request exchange. The Terminal Handler transmits the

data and returns to the requesting task a message that signals the com-

pletion of the output operation.

The RMX-80 package supplies four different versions of the Termin-

al Handler. These provide for 1) full input and output operation, 2)

full output only operation, 3) minimal input and output operation, or

4) minimal output only operation. The ROADS installation required both

input and output operations. Since the minimal version used consider-

ably less code space than the full version, which provided no advan-

tages for this application, it was decided that the minimal version

would be used. Therefore the minimal input and output operation ver-

sion of the Terminal Handler was incorporated in the RDADS installation

to act as the interface to the either target device, the remote Data

Van computer or a local console terminal.

The input portion of the Terminal Handler provides for basic line

inpijt to the system with some useful line editing features. Additional

detail on the Terminal Handler's input facilities are presented in the

next section on the Command Line Interpreter. The output portion of

the Terminal Handler provided for basic string output to the target.

In order to provide some additional output utilities and formatting

89

functions, a package of software procedures was developed and labeled

the Remote Operations Data Formatter And Transmission (RODFAT) pack-

age. More specifically, ROOFAT provided routines for the formatting

and display of character strings, numeric values, and other various

types of displayed elements such as lines and boxes. It also provided

specific routines for the display or output of command response data.

In order to accomplish many required data conversions and manipula-

tions, a second package ~of general system utilities was developed.

This package was actually developed as a procedure library labeled the

System Utilities (SYSUTL) Library. Conversion routines supplied by the

library provided for converting data between various representations

such as ASCII, hex, decimal, and ASCII encoded hex, decimal and

binary. Another important procedure supplied in the SYSUTL Library was

a routine that provided a simple interface to the RMX-80 Terminal

Handler output facilities. This routine called DISPLAY made it

possible for an application to output data through the Terminal Handler

via a single procedure call. The source listings for both the RODFAT

Utilities Package and the SYSUTL Library are included in Appendix B.

These listings contain extremely adequate comments for explanation of

the procedures and data structures included in them.

RMX-80 Command Line Interpreter

The RMX-80 Command Line Interpreter (CLI), supported through the

RMX-80 Terminal Handler, was designed to allow an operator at the sys-

tem console to initiate activities of user supplied application tasks.

This is accomplished by entering a keyword command followed by an

90

optional command tail at the terminal. The Command Line Interpreter

compares the command keyword with entries in a command table. When a

match is found the table identifies an exchange assigned to that com-

mand. A message, containing the command tail if entered or a null tail

indication, is sent to that command exchange to signal to the command

task that the command was entered at the console. The command task

executes a specific function either on the basis that the command alone

was entered or optionally as directed by the command tail. For each

and every command task in the system there is an associated command

keyword and command exchange in the Command Line Interpreter's command

table.

In the RDADS installation the command tasks are those already

identified earlier in the discussion of the RDAOS design. Each of the

command task's command keywords were incorporated in the Command Line

Interpreter's command table along with an assigned exchange. Each com-

mand task was developed as a program task that executes under RMX-80

Nucleus control. Every command task follows a general logical flow

pattern that is common to all the command tasks. This logic is best

illustrated as follows:

o Initialize the task's software data structures and

hardware constituents.

o Begin a DO FOREVER loop:

o Wait for the input of the command via the

Command Line Interpreter.

91

o Interpret the command tail.
•

•

o Perform operations based on the command

tail interpretation and other pertinent

factors.

o Send data response to console terminal.

o Send message to Command Line Interpreter

that signals completion of the commands

execution,

o End of loop.

The first part of the task simply initializes the command's data vari-

ables and the hardware that the command controls. The second part of

the command task is a loop that is executed once for each time the com-

mand keyword is entered at the terminal.

The Terminal Handler directly supports the Command Line Interpret-

er. In fact, when the CLI is included in an RMX-80 installation, all

terminal input is directed to the CLI. It has already been noted in

the previous section that the Terminal Handler acts as the interface

from the ROADS to either the data van or a local terminal. It should

be evident then that the source of command input to the Command Line

Interpreter can be the remote computer in the RPS Data Van or the local

terminal attached in its place.

92

Input from the terminal is supplied to the CLI in the form of a

logical line. A logical line is a series of characters terminated by a

break sequence which is usually a carriage return and line feed. This

equates to a line entry from the input source such as the console key-

board. When the CLI is used the line entry is a command line. The CLI

interpreter tries to identify the first word in the command line as a

command keyword. This is done by finding a match with an entry in its

command table from which it can identify an associated exchange. The

CLI would then send a message to that exchange to .inform a command

task that a command keyword had been entered. The remainder of the

command line (the command tail) is sent in this message to the receiv-

ing command task. It is the job of that task to interpret the meaning

of the command tail. The command tail, as discussed in the section on

Command Tasks previously, is a means by which options of a specific

command are specified to the task. To facilitate the interpretation of

the command tail, a set of functions and procedures were designed.

They were developed and implemented as a package of utilities named the

Remote Operations Command Tail Interpretation Package which is

discussed in the next division of this section.

Analog Input Handler

In order to obtain analog data from the IF receiver, a software

driver for the iSBX-311 Multimodule Analog Input board was required.

Although the RMX-80 Executive package provided analog I/O handlers,

they could not be used since they did not support the Multimodule

board. An analog Input Handler task similar to those provided by

93

RMX-80 was written for driving the iSBX-311. This task was labeled

AIHTSK (for Analog Input Handler TaSK). AIHTSK was designed to service

requests for analog input data made through a reserved exchange, AIREQX

(for Analog Input REQuest exchange). Request messages sent to this

exchange followed the standard format of an RMX-80 message as outlined

in the RMX-80 User's Guide. Documentation of the logical operation

of this task and guidelines for its use are included as comments in the

source listing. This source is included in the software listings of

Appendix B.

Utility Packages and Libraries

Several routines were developed as callable procedures or func-

tions to provide for some needed software operations. Hardware commun-

ications in the RDADS were handled by special routines developed for

that purpose. These routines were included in 3 software library

labeled the RDADS Utilities Library. Utilities for general data

conversion and manipulation were developed and stored in a library

labeled the Systems Utilities Library. Interpretation of command tails

was provided by a package of utilities called the Remote Operations

Command Tail Interpreter. Finally, formatting of data to be displayed

on a console terminal or to be sent to the data van CPU was accom-

plished using a package called the Remote Operations Data Formattor.

Each of these four packages will be discussed in the following sections

where all the routines they provide will be itemized.

94

ROADS Utilities Library

This library provides routines for communications with the ROADS

hardware, including the RF transceivers and the IF Controller. It also

included general analog communications which was accomplished by

including the AIHTSK routine described previously.

RF head communication routines were developed as a single source

file labeled HEDCON.SRC (for head control). All RF head control and

monitoring is accomplished through routines provided by this file.

Routines developed included:

1. INIHED - Sets up the programmable peripheral interface

(PPI) used for communicating with RF Heads and initializes

the ports it controls.

2. RXDCON - Sets the receiver polarization transfer switch

to the specified polarization.

3. TXPCON - Sets the transmitter polarization transfer

switch to the specified polarization.

4. RFOCON - Sets Reserved RF Control 0 signal as specified

(On or Off).

5. RF1CON - Sets Reserved RF Control 1 signal as specified

(On or Off).

6. GENPAT - Generates a bit pattern used in setting a

control port or enabling an indicator circuit.

7. ENBIND - Enables a specified indicator circuit for a

specified radar head.

95

8. GETPOL - Reads a specified polarization indicator circuit

for a specified radar head to determine the state of that

polarization transfer switch.

9. GETCAL - Reads the calibration indicator circuit for a

specified radar head to determine the state of that

calibration transfer switch.

10. COPCON - Set the Cal./Op. Transfer switch of a specified

radar head.

More detailed explanations of each of the routines and guidelines on

their use can be found in the source listings in Appendix B.

The IF I/O Driver routines source file, IFIODR.SRC, provided all

necessary communication drivers for interfacing to the IF Controller

board. Routines found in this source file are:

1. INIFIO - Sets up the PPI used for communicating with the

IFC board, initializes these parallel ports, and issues a

reset signal to the IFC.

2. IFGSEL - Sets the IF Group Select lines to select a

specified parameteric register-buffer pair.

3. IFINEN - Places IFC into transmit mode to enable the

currently selected transmitter (parametric buffer).

4. IFSEON - Turns on both the primary and secondary

Strobe/Enable signals to the IFC.

5. IFSEOF - Turns off both the primary and secondary

Strobe/Enable signals to the IFC (complement function to

IFSEON).

96

6. IFDBTX - Sets the IFC Data Bus (port) Into the transmit

mode of operation (configures the port for data output to

IFC).

7. IFDBRX - Sets the IFC Data Bus (port) into the receive

mode of operation (configures the port for intput of data

from the IFC).

8. IFWRIT - Outputs a data byte to a specified target

parameteric register on the IFC.

9. IFREAD - Inputs a data byte from a specified source

parametric buffer on the IFC.

Of these routines IFWRIT and IFREAD are the most important since they

are the only routines called for the output or input of IFC data. All

of the other routines with the exception of INIFIO are used by IFWRIT

and IFREAD to accomplish their operations. Source listings of all the

above routines can be found in Appendix B.

All of the routines described in this section were included in the

final Remote Operations Installation by linking the ROADS library with

the main program module. The library was labeled ROADS.LIB and was

created under the Intel ISIS-II Librarian facilities.

System Utilities Library

Utilities for the conversion and manipulation of data in the ROU

were included in a library file called SYSUTL.LIB. Routines 1n this

library provide functions for converting between different data types

such as ASCII, hexadecimal, and decimal and for manipulating data

97

between different storage variables such as nibble, byte, address, and

string variables. Also the package provides a simple to use interface

to the RMX-80 Terminal Handler's output facilities. This library's

routines were useful mainly in the formatting of input and output

data. They are:

1. ASCLO - Converts the digit in the low nibble of a byte

value to its ASCII code.

2. ASCHI - Converts the digit in the high nibble of a byte

value to its ASCII code.

3. ASCI12 - Converts two digits expressed in a byte value to

a pair of ASCII codes.

4. ASCII4 - Converts four digits expressed in an address

value to a string of four ASCII codes.

5. PACK - Combines two nibbles (digits) into a single byte
«

value.

6. COMB - Combines two byte values into a single address

value.

7. HEX - Converts an ASCII code into a single Hexidecimal

digit (0-F) with a check for valid inputs.

8. B2D - Converts a Binary integer into a Binary Coded

Decimal (BCD) integer. Input and output are both address

values.

9. D2B - Converts a BCD integer into a Binary integer. Input

and output are again both address values.

10. BLANK - Scans an ASCII buffer for leading zeros and

converts them to blanks.

98

11. DISPLAY - Outputs an ASCII buffer of specified length to

the RMX-80 Terminal Handlers output stream.

12. INITDSP - Initializes the data structures used by

DISPLAY.

13. CROUT - Outputs a Carriage Return and Line Feed via

DISPLAY.

Source listings for each of these routines can be found in Appen-

dix B. The listings document the use and operation of the routines in

detail.

Remote Operations Command Tail Interpreter

The RMX-80 Command Line Interpreter actually interprets only the

command keyword of the command line. The remainder of the command

line, the command tail, is passed to the command task for it to pro-

cess. To facilitate the processing of command tails the Remote Opera-

tions Command Tail Interpreter (ROCTIP) was developed. This is a

package of procedures that processed an ASCII buffer to do such things

as search for the occurrence of keywords or convert ASCII information

to flag settings or numeric data. It was developed as a single source

file labeled ROCTIP.SRC.

ROCTIP processes a command tail by first setting its data pointers

and length variables to correspond to the current command tail. The

package provides a routine to accomplish this. Other routines are then

used to scan the command tail buffer for pertinent information. The

routines included in ROCTIP are the following:

1. RST$CCLIB - Resets pointers and lengths as specified by

99

information obtained from the RMX-80 Command Line

Interpreter.

2. SAVE$SAB - Saves the current buffer position and character

count.

3. RESTOR$SAB - Restores previous buffer position and

character count saved by SAVE$SAB.

4. SCAN - Advances to next character position.

5. SCAN$BAK - Backs up to previous character position.

6. SKIP - Advances past blanks to first non-blank character.

7. CCLIB$MT - Checks to see if buffer is empty.

8. VALIO$DEL - Checks for occurrence of a valid delimeter

(blank or carriage return).

9. SEARCH - Scans the buffer for the occurrence of a

specified string or a valid abbreviation of the string.

10. SPOTEQ - Checks for the occurrence of an equal sign in the

buffer.

11. SPOTQM - Checks for the occurrence of a question mark in

the buffer or equivocally an empty buffer.

•12. SCAN$NUM - Scans the buffer for an ASCII string

representing a numeric data value and returns the value

found.

13. ID$HED - Checks for the occurrence of a head specifier (RF

Head number or Band character).

14. REC$CAL - Checks for the keyword "CALIBRATE" or any

abbreviation of it.

100

15. REC$OP - Checks for the keyword "OPERATE" or any abbrevia-

tion.

16. REC$CONT - Checks for the keyword "CONTINUOUS" or any

abbreviation.

17. REC$SING - Checks for the keyword "SINGLE" or any abbrevia-

tion.

18. IO$POL - Checks for and identifies an optional

polarization specifier in the command tail.

All of these routines were utilized in processing the command tails of

the command task itemized earlier. Their design directly supports con-

ditional execution on the results of their operation. This made logi-

cal design of the command tasks processing simple and straightforward.

Complete details on the ROCTIP routines can be found in the listing in

Appendix B.

Remote Operations Data Formatting and Transmission

Output of information from the ROADS as stated earlier was intend-

ed to be received by either the Data Van CPU or a console terminal.

These two setups present very different operational requirements. Out-

put for the first setup is processed at the receiving end by the data

van CPU and should be concise. This output requires very little

special processing and needs to be human readable only enough to allow

for ease in testing and trouble shooting. This means that data can be

transmitted in any form as long as it is ASCII encoded to allow human

recognition at a terminal. Data output for the second setup is very

different. This output is intended to ease testing, trouble

101

shooting, maintenance, and calibration. Therefore, it should be easily

viewed and interpreted by an operator.

The Remote Operations Data Formatting and Transmission utility

(RODFAT) provided routines that output command response information for

either communication setup. Each routine's actions are dependent on

the current setting of the communications mode set during operation.

Output provided by them follows the format specified earlier in the

description of the command tasks. Other routines are included in the

formatter for the display of boxes and labels on the console terminal

when in the LOCAL mode of operation. Also included are routines that

display the current status information in reserved locations on the

console which supports the command response output in LOCAL mode.

These routines were developed as a single source file labeled

RODFAT.SRC. Routines included in RODFAT are the following:

1. BOX - Draws a box of specified length and height at a

specified console screen location.

2. DSP$NUM - Displays the decimal representation of a

specified hex value at a specified console screen location.

3. DSP$RANGE - Outputs the current Range Delay values for

both Calibrate and Operate modes (format dependent on

current communication mode).

' 4. DSP$GATE - Same as DSP$RANGE except for Gate Delay

values.

5. DSP$MODE - Outputs the current radar mode setting (comm.

mode dep.).

102

6. DSP$GAIN - Outputs the current gain value (comm. mode

dep.).

7. DSP$HEAD - Outputs the current RF Head selected (comm.

mode dep.).

8. DSP$POL - Outputs current polarization for specified RF

circuit section (comm. mode dep.).

9. CMD$ERR - Outputs "Command Tail Error" message.

10. INI$CRT - Initializes console terminal by displaying logo,

boxes, labels, and current parameter settings.

There are other routines included in RODFAT but they are intended only

for use internally to that package. They are not listed here but do

appear in the source listing of RODFAT in Appendix B. All RODFAT

routines can be found in this listing along with comments on their use

and function.

Remote Operations Main Utility

All of the command tasks identified earlier are defined in the

Remote Operations Main Utility (ROMAIN) along with the Radar Task. The

source file is under the name ROMAIN.SRC and a -listing appears in

Appendix B. All of the utility packages and libraries discussed above

were linked with this main utility along with the necessary RMX-80

Libraries to provide the final software installation.

All software developed for the RDADS installation was designed

using structured programming techniques. The approach was to develop

an operating system, namely the Remote Operations Utility, that con-

sisted of command and operation tasks. These tasks accomplished all

103

the necessary functions of the RDADS. Development of the ROU was

facilitated by the use of RMX-80, a Real-Time Multitasking Executive

package. Individual subprogram and function utility packages were

developed for hardware interfacing, data conversion and manipulation,

command line interpretation, and data formatting and display.

104

PROJECT SUMMARY

The design and implementation of the Remote Data Acquisition and

Distribution System (ROADS) have been described. The RDADS is a sub-

system of the RPS experimental remote sensor developed by the Remote

Sensing Center at TAMU. This sensor is a two truck system that is used

in field experimentation for soil moisture remote sensing.

The RDADS is a stand alone processor system that supports opera-

tion under the direction of a main computer. The system also allows

connection of an ANSI standard ASCII CRT terminal (CIT-101 or equiva-

lent) in place of the main computer for testing, calibration, and main-

tenance. In either configuration, a set of predefined operation com-

mands allow for the interactive control of the radar's electronics.

The RDADS performs complex operations for the user through the use of

predeveloped hardware and software functions.

The RDADS hardware features an 8085 microprocessor based single

board computer, special analog I/O interface boards, and a dynamic RAM

board installed in an industrial standard computer card cage. This

hardware makes up a stand alone computer labeled the RDADS processor.

The hardware used in the RDADS processor provides flexibility and

expansion capability to allow changes in the system architecture. A

special high-speed digital electronics board was designed and developed

to control range-gating for the radar. This IF Controller board, uses

Schottky TTL integrated circuits to provide a time resolution of 16.67

nS for the range-gating function. The IFC also provides other program-

105

triable functions for controlling the transmission and reception of

radar signals through the IF section of the radar. The RDADS processor

controls the IFC and other radar hardware through parallel digital I/O

ports.

Software developed for the RDADS processor defines most of the

functions that the RDADS performs. This RDADS software was developed

as modular blocks. Each module provides either independent tasks or

shared support utilities. New tasks and support utilities are easily

added without changing existing modules. Individual existing modules

are also easily modified without changing or affecting other existing

modules. RMX-80, a real-time, multi-tasking, executive package, is

used as the operating system software to control the system tasks.

Future Considerations and Recommendations

The IF receiver gain is controlled by the RDADS through a software

algorithm. This algorithm is a Digital Automatic Gain Control (DAGC)

function. Due to the way the DAGC algorithm is implemented, a total of

234 analog measurements are required for each radar data point

obtained. This limits the radar data acquisition rate to one data

point every 1.4 seconds. If this proves to be too slow for future

needs, several steps can be taken to improve the DAGC's operation.

Analog input signals are averaged by software at the rate of eight

analog conversions per return value. This averaging is a software

filtering of the analog input signal. A hardware filtering approach

could possibly be implemented to speed up the radar acquisition rate by

as much as 8 times faster. Another approach would be to modify the

106

DAGC algorithm to allow it to track the receiver gain. If each execu-

tion of the DAGC algorithm utilized the gain value obtained by the

previous cycle, the number of analog acquisitions per DAGC iteration

could be reduced. The overall radar acquisition rate could be improved

by a factor of up to 26. The drawback to this approach is that the

system would not be able to track large changes in received signals.

The current approach allows any changes that stay within the dynamic

range of the radar receiver. Limiting the response of the system to

small perturbations in signal level may be desirable, however. Such an

approach would provide an inherent filtering in the receiver and

possibly improve the system's noise rejection. The improvement in

acquisition rate that can be obtained by a tracking DAGC is limited by

the amount of change in radar signal level that the algorithm is

designed to accommodate. If the allowable change is limited to 1/2

dB the rate could be improved by the upper limit of 26 times faster.

Almost every hardware component that is interfaced to the ROADS

processor has some type of feedback or is capable of being monitored.

Software was written to support these hardware monitor functions at

the interface driver level. The upper level commands, however, do not

support these monitor functions. Included are the monitoring of supply

voltage levels, checking of RF switch settings, and confirmation of

data written to the IFC. A future improvement to the system would be

to enhance existing control software to automatically monitor hardware

through these available feedback facilities. Making such changes would

increase the reliability of the system's performance. Adding commands

to the system to support testing and maintenance may also be a desired

107

future improvement. As an example, adding commands for writing direct-

ly to and reading directly from the IFC's I/O channels might prove use-

ful in maintenance of the IFC and other IF section hardware.

In general the system performs well in accomplishing the tasks for

which it was programmed. The flexibility of both the hardware and

software allows easy modification of the existing system to enhance

its performance or upgrade its capabilities. The ROADS was developed

to provided the control and data acquisition functions needed to

operate the Radar Polarimeter System. The system supports the opera-

tion of four radar bands, three of which are currently implemented.

Also, since the ROADS is flexible and expandable, it could easily be

used for operating new sensors and support equipment added to the boom

truck in future expansions. Interfacing additional equipment could be

accomplished at moderately low cost in hardware by using the currently

available expansion slot in the ROADS processor's card cage. A combin-

ation I/O and EPROM expansion card would provide additional control and

data acquisition channels and added program memory space. Software is

easily modified to support new equipment by adding new modular program

tasks that are controlled by the existing operating system software.

If speed of processing is a limiting factor in a desired expansion or

modification, a second single board computer such as the iSBC-80/24

could be added in the availabe card cage slot instead. The iSBC-80/24

has full Multibus/Multimaster bus arbitration logic on-board so that

two processors could operate independent of each other. Shared access

to the existing Dynamic RAM board could be utilized to pass information

between the two processes, if this approach was chosen. The most

108

important point is that the system has more capability than is cur-

rently utilized and can be expanded to provide even more. This fact

should not be overlooked in future planning and design of new sensors

and support equipment.

109

REFERENCES

[I] Texas A&M Research Foundation Project No. 4242-4 "Development of
Remote Sensing Techniques for Measuring Soil Moisture," sponsored
by NASA - Goddard Space flight Center, NASA Grant No. NAG5-31.

[2] A. J. Blanchard and B. R. Jean (1981), "Antenna Effects in
Depolarization Measurements," Technical Report RSC-119, Remote
Sensing Center, Texas A&M University, College Station, Texas.

[3] A. K. Fung, (1966), "On depolarization of electromagnetic waves
backscattered from a rough surface," Planetary Space Science, 14,
563-568.

[4] J. C. Leader, (1971), "Bidirectional scattering of electromag-
netic waves from roughsurfaces," J. Appl. Phys., 42, 4808-4816.

[5] J. W. Rouse, Jr., (1972), "The effect of the subsurface on the
depolarization of rough-surface backscatter," Radio Science,
7(10), 899-895.

[6] P. Beckmann, (1968), The Depolarization of Electromagnetic Waves,
pp. 144-162, Golem Press, Boulder Colorado.

[7] A. J. Blanchard, (1977), "Volumetric effects in the depolariza-
,, tion of electromagnetic waves scattered from rough surfaces,"

Technical Report RSC-83, Remote Sensing Center, Texas A&M Univer-
sity, College Station, Texas.

[8] A. J. Blanchard, R. W. Newton, L. Tsang and B. R. Jean (1981),
"Volumetric effects in cross polarized airborne radar data,"
Technical Report RSC-120, Remote Sensing Center, Texas A&M
University, College Station, Texas.

[9] H. Hirosawa, S. Komiyama and Y. Matsozaka (1978), "Cross polar-
ized radar backscatter from moist soil," Remote Sensing of
Environment. 7, 211-217.

[10] F. T. Ulaby, P. P. Batlivala and M. C. Dobson (1978), "Microwave
backscatter dependence on surface roughness, soil moisture, and
soil texture, part I: bare soil," IEEE Trans. Geosci. Electron.,

. Vol. GE-16, Oct.

[II] iSBC-80/24 Single Board Computer Hardware Reference Manual.
(1981), Intel Corporation, 3065 Bowers Avenue, Santa Cl ara,
California 95051.

110

[12] iSBX-311 Analog Input Multimodule Hardware Reference Manual,
(1 9 8 1) I n t e l C o r p o r a t i o n , 3 0 6 5 B o w e r s A v e n u e , S a n t a C l a r a ,
California 95051.

[13] iSBX-311 Analog Output Multimodule Hardware Reference Manual,
(1 9 8 1) I n t e l C o r p o r a t i o n , 3 0 6 5 B o w e r s A v e n u e , S a n t a C l a r a ,
California 95051.

[14] Edward Yourdon, and L. L. Constantine (1979), Structured Design,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

[15] R. C. Camp, T. A. Smay, and C. J. Triska (1978), Microcomputer
Systems Principles Featuring the 6502/KIM, Matrix Publishers,
Inc., Portland, Oregon.

[16] L. P. Meissner and E. I. Organick (1980), Fortran 77: Featuring
Structured Programming, Addison-Wesley Pub l i sh ingCompany ,
Reading, Massachusetts.

[17] J. K. Hughes, (1979), PL/1 Structured Programming, John Wiley &
Sons, New York, N.Y.

[18] R. J. Rader, (1978), Advanced Softward Design Techniques,
Petrocelli Books, Inc., Princeton, N. Y.

[19] Introduction to the iRMX 80/88 Real-Time Multitasking Executives,
(1981), Intel Corporation, 3065 Bowers Avenue, Santa Clara,
California 95051.

[20] iRMX-80 User's Guide, (1981), Intel Corporation, 3065 Bowers
Avenue, Santa Clara, California 95051.

Ill

APPENDIX A

IF CONTROLLER CIRCUIT BOARD ELECTRICAL DIAGRAMS

AND PRINTED CIRCUIT LAYOUT

112

•H5v
4 <

-15v

H2V

•»-28vin ^

1,3,5,7,

1547,19, "
21,23,25

DSG
*ffl <" ,

J_C5

• 25v

J_C6

- 25v

C7

4" 25v

X 50v

••

4

J2
> 6

> 8

> 10

113

U4-8283 AVcc
^Ji t

R 0 - R 7

.114

UIO
7400

_ ^/3
i*—

Avcc
11*

*

t
Eix-̂ *

16

**a

«" *"* I/2W

J 7<<LS7t>
K

I

r

SHA FlMige
Jteunt Plug»

fALlCi(nSHI.6

7S"]CK13SMI,6

/

•L

4

Viy^

o

r#
1
I
t—rt13

1 1

3

to
4

f̂t

•CLOOC2 A

^ OD
UOUnT/uQAO

0 Ofvc
C U6

a "iMSf*^ a.

>CLO(X 1 QA

;
CLO(X2

Jr7

>

^IJ

2

4.

3

*

fL
r
L
rL
r

1/4U3 L

/ -vHJ)>H;

fAX CK4

"ATTCK3

7T]CK2

STKIM*

BT^KD s*.

ITJCKOsHi

115

Vcc f g Vcc

SHS

116

RST AJ]
5H3 '

i

SH3

CKI
SH3

sna

BC

1

T
J

"7ft_-y<jc
166

n f

bo
0^

b4- 7

*-

'la

C

TH

b3 '
b2 7

b(•
b0 •*

^ *
9

v>

^ il

WJD"* vtc ^
p

B 74S/9')'" \~j\jj
& /^ft Qc

t' <0

K /IIUA O*laNO

4s

t *
r U'2 0,
ft 74SI95"
. Q,A ***•

**• Oa
J

K GND n

.Is

u

b7
11

b6
u ^

b5
14

W
iy

u

b3
12

b2
15 ~"

bl
(t

15

!

1
I

A

P7 r

DO J1 r " V

L ^srff vu.W o

MIIJ^
WL?

BE83

n| IV-ji/(1/9*
oe. -6*
'P I

— 1

3
b7

b<?L

0

UI4

SHE

5HZ

07

prp

117

SH3

SHE

SH3 CK13[AL

^U2(7^L$02

SHa R^LfAE"
BLJPDCLC

8

118

rjBMj PD55H6

119

SHE ST

£A131 U

I "«—M)

120

SH2
00-07 fz

24 «*

, P7 q

j
a

*

M

l«» I*
ST9 Ytt

PI 04

U3*
^253

PI PO

oe 600

v * ' '<

•

ftxAve
TxWE

nuxcwri
mxcA/ro

«i«.A
r — — — — ---.- jn *T*

rL_J1
r\

MUXSWINDI

20 MVXSW2WM

18-*-

EN5
5H?

JW

-6

UJ5
8Z&7

°7

121

iiiiini 1 miiiiif(*V

mmiimmimiiiiii
iiiiiiiiiiiniiiiiiiiii

122

utfiimiifimimim
iiiiiiiiiiiiiiiiiiiiiiii

123

APPENDIX B

RDADS SOFTWARE SOURCE LISTINGS

124

APPENDIX B

SOFTWARE SOURCE LISTINGS

ROMAIN: 00;

/*

REMOTE OPERATIONS
MAIN MODULE

SINCLUDE
SINCLUDE
SINCLUDE
SINCLUDE
SINCLUDE
SINCLUDE
SINCLUDE
SINCLUDE

/*
/*
/*
/*
/*

(:F2:RMXGEN.INC)
(:F1:ROCTIP.EXT)
(:F1:RODFAT.EXT)
(:F1:HEDCON.EXT)
(:F1:IFIODR.EXT)
(:F1:DISPLA.EXT)
(:F1:AIHTSK.ELT)
(:F1:AIREQX.EXT)

DECLARATIONS

7
*/
*/
*/

DECLARE (BAND, HEAD, TXP$CHAR, RXP$CHAR,
TXPOL$NUM, RXPOLSNUM, SDL$MODE,
RDRSMODE, TEMPSNUM, INSTR, SCRAP,
IFCSCONTROL, GAIN$VAL) BYTE PUBLIC;

DECLARE (RADARSRET, ELEVATION, WINDOW$BOT,
WINDOWSTOP, TEMPSWORD, RDR$RET) ADDRESS PUBLIC;

DECLARE (GATESVAL, RANGE$VAL) (2) BYTE PUBLIC;
DECLARE PULSBM ADDRESS EXTERNAL;

DECLARE RDRSMSG STRUCTURE(

125

MSG$HDR,
REPS BYTE);

DECLARE REPS BYTE PUBLIC AT (.RDR$MSG.REPS);

DECLARE (LOCALX, RXPOLX, TXPOLX,
MODEX, RANGEX, GATEX,
HEADX, RDR$TSX, GAINX,
RDR$RSX, IFAIRX) EXCHANGE$DESCRIPTOR PUBLIC;

DECLARE IFAIRM AIHMSG$DESCRIPTOR PUBLIC;
DECLARE RQL2EX INT$EXCHANGE$DESCRIPTOR PUBLIC;
DECLARE RQCLID TASK$DESCRIPTOR EXTERNAL;

DECLARE POLAR (2) BYTE DATA('HV');
DECLARE TXC LITERALLY '0'
DECLARE RXC LITERALLY '!'
DECLARE CAL LITERALLY '0'
DECLARE OPR LITERALLY '!'
DECLARE SNGL LITERALLY '!'
DECLARE CONT LITERALLY '2'
DECLARE DA$CHAN LITERALLY '6'
DECLARE TP$CHAN LITERALLY '3'
DECLARE CS$CHAN LITERALLY '2'
DECLARE RD$CHAN LITERALLY '4'
DECLARE GP$CHAN LITERALLY '5'
DECLARE MX$CHAN LITERALLY '?'
DECLARE IFC$SRI LITERALLY '2'
DECLARE RD$CAL LITERALLY '38H
DECLARE GP$CAL LITERALLY '7BH
DECLARE LOCAL LITERALLY '0'; /*SDL
DECLARE REMOTE LITERALLY 'OFFH'; /*

/*Digita1 Attenuator */
/*Transm1t Pulse */
/*Control and Status*/
/*Range Delay*/
/*Gate Pulse*/
/*Multiplexer*/
/*IFC Sevice Req. Intr.
; /*Range Delay for Cal.
; /*Gate Pulse for Cal

Level*/
*/

V
Mode Flag for Local*/
SDL Mode for Remote*/

/** /
/* */
/* FUNCTION ROUTINES */

/************************ poi_$CTI ***********************/

POL$CTI: PROCEDURE BYTE;
/*. -.

126

CALL RST$CCLIB;
IF SPOTEQ THEN

RETURN ID$POL;
IF SPOTQM THEN

RETURN 2;
RETURN OFFH;

END POL$CTI;
/************************ NUM$REC ***********************/

NUM$REC: PROCEDURE (RET$VAL$PNTR, MAX$VAL) BYTE;
/*

Recognize a number specification or query.

Scans the current command line for a valid number
specification that must start with an equal sign.
Check for valid number is done using SCAN$NUM.

Return:
0 - Valid Spec -> RTRN$VAL changed.
1 - Valid Query
80 - Invalid.

*/

DECLARE (RETVALPNTR, NEWNUM, MAXVAL) ADDRESS;
DECLARE RET$VAL BASED RET$VAL$PNTR ADDRESS; .

IF SPOTEQ THEN
DO;

IF SCAN$NUM(.NEW$NUM) THEN
DO;

IF NEW$NUM <= MAX$VAL THEN
DO;

RET$VAL = NEW$NUM; •
RETURN 0;

END;
END;

RETURN 80H;
END;

ELSE IF SPOTQM THEN
RETURN 1;

ELSE
RETURN 80H;

END NUM$REC;

/************************ QSjCTI ************************

DS$CTI: PROCEDURE (RET$VAL$PNTR) BYTE;

127

/*
Delay Specification CTI.

This routine checks for a valid delay specification in the
current command line at the current position.

RTRN$VALPNTR:
Valid spec, returned to this address.

Return:
0 - Normal Valid Spec.
1 - Normal Valid Query
2 - Valid Calibration Spec.
3 - Valid Calibration Query
80H or 82H - Invalid Tail

DECLARE (RETVALPNTR, NEW$NUM) ADDRESS;
DECLARE RET$VAL BASED RET$VAL$PNTR ADDRESS;
DECLARE (RET$INST, KWS$PRESENT) BYTE;
DECLARE VAL$KWB (*) BYTE DATA('VALUE');

KWS$PRESENT = FALSE;
CALL RST$CCLIB;
IF REC$CAL THEN

KWS$PRESENT = TRUE;
ELSE

SCRAP = REC$OP*
RET$INST = NUM$REC(RETVALPNTR, OFFH);
IF KWS$PRESENT THEN

RETURN (RET$INST + 2);
RETURN RET$INST;

END DS$CTI;

/ft************************ ***********************

IFGAIN: PROCEDURE (GAIN) BYTE;_

IF Gain setting procedure.

Form of call:
- flag = IFGAIN(gain$val)

where,
gain$val is a byte value for the desired
IF Receiver gain in absolute hex (0=roin.
to FF=max).

and

128

flag is a value returned to indicate the
success of the attempted communication to
the IFC.

NOTE: There are currently only 7 bits used to
control the gain making 7F the actual max gain.
The flag is returned TRUE (OFFH) to signal failure
and FALSE (0) to indicate succes.

*/
DECLARE GAIN BYTE;

CALL IFWRIT(DA$CHAN,GAIN);
IF GAINOIFREAD(DA$CHAN)

THEN RETURN OFFH;
ELSE RETURN 0;

END IFGAIN;

/************************ RQRSIG ************************/

RDRSIG: PROCEDURE ADDRESS;

RDRSIG is a procedure for reading the Analog
Radar Return signal via the analog input task
AIHTSK.

Form of call:
return$val = RDRSIG;

where;
return$val is the value of the returned
signal in signed binary (not 2's
compliment!).

/* -- Wait for IFC Service request interrupt -- *'/
SCRAP = RQWAIT(.RQL2EX,0);

/* — Flash 80/24 Diagnostic Lamp to indicate
operation." — */
OUTPUT(OD6H) = 0;

/* ~ Send request for Analog Signal — */
CALL RQSEND(.AIREQX,.IFAIRM);

/* — Wait for response from AIHTSK. « */
SCRAP = RQWAIT(.IFAIRX.O);

/* , — Return the aquired value — */
RETURN RDR$RET;

END RDR$SIG;

/********************** RADAR$ERROR *********************/

RADAR$ERROR: PROCEDURE (ERROR$CHAR);

129

/*
Displays the radar error character (number) passed
followed by the message " - RADAR ERROR<CRXLF>".

DECLARE ERROR$CHAR BYTE;

CALL DISPLAY(.ERROR$CHAR,1);
CALL DISPLAY(.(' - RADAR ERROR',ODH,OAH),16);
RETURN;

END RADAR$ERROR;

/********************* AVGRDRSIG **********************/

AVGRDRSIG: PROCEDURE ADDRESS;

This routine skips 1 radar return value and
accumulates the next 8 values. The routine
will return the integer sum of the 8 values.

DECLARE SUMRDRSIG ADDRESS;
DECLARE I BYTE;

/* -- Skip the first two returns to insure gain is
set for the entire sample. — */

SCRAP = RQWAIT(.RQL2EX,0);
SCRAP = RQWAIT(.RQL2EX,0);

/* — Reset the signal total to 0. — */
SUMRDRSIG = 0;

/* -- Accumulate 8 RDR$SIG return values. -- */
DO I = 1 TO 8;

SUMRDRSIG = SUMRDRSIG + RDR$SIG;
END;

/* - — Return the total. ~ */
RETURN SUMRDRSIG;

END AVGRDRSIG;

/************************* OAQC *************************

130

DA6C: PROCEDURE BYTE;
/*

Digital Automatic Gain Control Implementation
Routine.

Form of call:
gain$val=DAGC;

where,
gain$val is the value of the gain setting
that placed the IF analog output level
into the acceptable window.

*/

DECLARE READ$TIMES BYTE;
DECLARE FINE$THRESH ADDRESS DATA(2338H); /*-2.4V*/
DECLARE RUF$THRESH ADDRESS DATA(3D40H); /*-0.4V*/
DECLARE (GAIN,I,SEEK) BYTE;
DECLARE NEXT$BIT BYTE;

/* ~ Initialize data. — */
READ$TIMES = 0;
GAIN = 0;
SCRAP = IFGAIN(GAIN); .
RADAR$RET = AVG$RDR$SIG;
DO WHILE RADAR$RET > RUF$THRESH AND READ$TIMES < 16;

/* — Increment to rough threshold. -- */
GAIN = GAIN + 8; /* Corresponds to an

increment of 4dB. */
/* — Output gain setting to IFC — ' */

SCRAP = IFGAIN(GAIN);
/* -- Get the Analog return value from the IFC. --*/

RADAR$RET = AVG$RDR$SIG;
READ$TIMES = READ$TIMES + 1;

END;
IF RADAR$RET > RUF$THRESH THEN

CALL RADAR$ERROR('1');
DO WHILE RADAR$RET > FINE$THRESH AND READ$TIMES < 26;

GAIN = GAIN + 1; /* Corresponds to an
increment of l/2dB. */

SCRAP = IFGAIN(GAIN);
RADAR$RET = AVG$RDR$SIG;
READ$TIMES = READ$TIMES + 1;

END;
IF RADAR$RET < FINE$THRESH THEN

DO WHILE READ$TIMES < 26;
SCRAP = AVGRDRSIG;
READ$TIMES = READ$TIMES + 1;

END;

131

ELSE CALL RADAR$ERROR('2') ;
— Reset gain in IF to zero to guard against

saturation. The previous setting may have
saturated the amps. — */

SCRAP = IFGAIN(O);
SCRAP = ROR$SIG; /* Scrap analog value,

allow to settle. */
IF GAIN > 7FH THEN

GAIN = 7FH;

RETURN GAIN;

END DAGC;

/le*** /
/* */
/* COMMAND ROUTINES */
/* */
/it***/

/************************* LOCAL ************************/

LOCAL$CMD: PROCEDURE PUBLIC;
/*

This command will be used to put the Remote Operations
Utility into the Local (CRT Present) Mode of operation.

CALL INITDSP;
SDL$MODE = REMOTE;
DO FOREVER;

CLIMSGPNTR = RQWAIT(.LOCALX.O);
CALL RST$CCLIB;
IF SEARCH(.('OFF'),3)

AND CCLIB$MT THEN
DO;

SOL$MODE = REMOTE;
CALL DISPLAY(.('REMOTE1,CR,LF),8);

END;
ELSE IF CCLIB$MT OR

(SEARCH(.('ON'),2) AND CCLIB$MT) THEN
DO;

SDL$MODE = LOCAL;
CALL INICRT;

132

CALL DSP$MODE;
CALL DSP$GAIN;
CALL DSP$RAN6E;
CALL DSP$GATE;
CALL DSP$HEAD;
CALL DSP$POL(TXC);
CALL DSP$POL(RXC);

END;
ELSE

CALL CMD$ERR;
CALL RQSEND(CLI$MSG.RESPONSE$EXCHANGE,

CLIMSGPNTR);
END;

END LOCAL$CMD;

/************************* TXPOL ************************/

TXPOL$CMD: PROCEDURE PUBLIC;
/*

TXPOL - Command used to set or check the Transmit
polarization.

CALL INIHED;
TXP$CHAR = 'H';
TXPOL$NUM = 0;
CALL TXPCON(O);

DO FOREVER;
CLIMSGPNTR = RQWAIT(.TXPOLX.O);
INSTR = POL$CTI;
IF INSTR <> OFFH THEN
DO;

IF INSTR < 2 THEN
DO;

CALL TXPCON(INSTR);
TXPOLNUM = INSTR;
TXP$CHAR = POLAR(INSTR);

END;
CALL DSP$POL(TXC);

END;
ELSE

CALL CMD$ERR;
CALL RQSEND(CLI$MSG.RESPONSE$EXCHANGE,

CLIMSGPNTR);
END;

133

END TXPOL$CMD;

/************************* RXPOL ************************/

RXPOL$CMD: PROCEDURE PUBLIC;

RXPOL - Command used to set or check the Receiver
polarization.

RXP$CHAR = 'H1;
RXPOL$NUM = 0;
CALL RXPCON(O);

DO FOREVER;
CLIMSGPNTR = RQWAIT(.RXPOLX.O);
INSTR = POL$CTI;
IF INSTR <> OFFH THEN
DO;

IF INSTR < 2 THEN
DO;

CALL RXPCON(INSTR);
RXPOLNUM = INSTR;
RXP$CHAR = POLAR(INSTR);

END;
CALL DSP$POL(RXC);

END;
ELSE

CALL CMD$ERR;
CALL RQSEND(CLI$MSG.RESPONSE$EXCHANGE,

CLIMSGPNTR);
END;

END RXPOL$CMD;

/*********************** MODE$CMD ***********************/

MODE$CMD: PROCEDURE PUBLIC;
/*

MODE - Command used to select between calibrate or
operate mode and between single or continuous operation.

*/

DECLARE (NEW$MODE, NEW$REPS) BYTE;

134

RDR$MSG.LENGTH = 10;
RDR$MSG.TYPE = 140;
RDR$MSG.RESPONSE$EXCHANGE = ,RDR$RSX;
RDR$MSG.REPS = SNGL;

RDR$MODE = CAL;
NEW$MODE = OFFH;
NEW$REPS = OFFH;
CALL COPCON(l.CAL);
CALL COPCON(2,CAL);
CALL COPCON(3,CAL);

DO FOREVER;
CLIMSGPNTR = RQWAIT(.MODEX.O);
CALL RST$CCLI8;
IF SPOTEQ THEN
DO;

IF REC$CAL THEN
DO;

NEW$MODE = CAL;
CALL PULSBM;

END;
ELSE IF REC$OP THEN

DO;
NEW$MODE = OPR;
CALL PULSBM;

END;
IF REC$CONT THEN
NEW$REPS = CONT;

ELSE IF REC$SNGL THEN
NEW$REPS = SNGL;

IF (NEW$MODE = OFFH) AND
(NEW$REPS = OFFH) THEN

CALL CMD$ERR;
ELSE IF CCLIB$MT THEN
DO;

IF NEW$MODE < OFFH THEN
DO;

RDR$MODE = NEW5MODE;
NEW$MODE =.OFFH;
CALL IFWRIT(RD$CHAN,

NOT(RANGE$VAL(RDR$MODE)+80H));
CALL IFWRIT(GP$CHAN,

NOT(GATE$VAL(RDR$MODE)+80H));
CALL COPCON(HEAD,RDR$MODE);

END;
IF NEW$REPS < OFFH THEN
DO;

SCRAP = RQWAIT(.RDR$RSX,0);

135

REPS = NEW$REPS;
NEW$REPS = OFFH;
CALL RQSEND(.RDR$TSX,.ROR$MSG);

END;
CALL DSP$MODE;
IF SDL$MODE = LOCAL THEN

00;
CALL DSP$6ATE;
CALL DSP$RANGE;

END;
END;

ELSE
CALL CMD$ERR;

END;
ELSE IF SPOT$QM THEN

CALL DSP$MODE;
ELSE

CALL CMD$ERR;
CALL RQSEND(CLI$MSG.RESPONSE$EXCHANGE,

CLIMSGPNTR);
END;

END MODE$CMD;

/*********************** RANGE$CMD **********************/

RANGE$CMD: PROCEDURE PUBLIC;
/*

RANGE - Command used to set the calibrate and operate
values of the IFC Range Delay parameter.

DECLARE OUT$VAL BYTE;

RANGE$VAL(OPR), RANGE$VAL(CAL) = NOT(RD$CAL) + 80H;
CALL IFWRIT(CS$CHAN,OBH);
CALL IFWRIT(TP$CHAN,70H);
CALL IFWRIT(RD$CHAN,RD$CAL);

DO FOREVER;
CLIMSGPNTR = RQWAIT(.RANGEX.O);
INSTR = OS$CTI(.TEMP$WORD);
OUT$VAL = NOT(LOW(TEMP$WORD)+80H);
IF INSTR < 4 THEN
00;

DO CASE INSTR;
00; /* Case 0 */

IF RDR$MODE = OPR THEN

136

CALL IFWRIT(RD$CHAN,OUT$VAL);
RANGE$VAL(OPR) = TEMP$WORD;

END;
/* Case 1 */

DO; /* Case 2 */
IF RDR$MODE = CAL THEN
CALL IFWRIT(RD$CHAN,OUT$VAL);

RANGESVAL(CAL) = TEMP$WORD;
END;
; /* Case 3 */

END;
CALL DSP$RANGE; /* All Cases */

END;
ELSE
CALL CMD$ERR;

CALL RQSEND(CLI$MSG.RESPONSE$EXCHANGE,
CLIMSGPNTR);

END;

END RANGE$CMD;

/*********************** GATESCMD ***********************/

GATE$CMD: PROCEDURE PUBLIC;
/*

GATE - Command used to set the calibrate and operate
values of the IFC Gate Width parameter.

DECLARE OUT$VAL BYTE;

GATE$VAL(OPR), GATE$VAL(CAL) = NOT(GP$CAL) + 80H;
CALL IFWRIT(GP$CHAN,GP$CAL);

DO FOREVER;
CLIMSGPNTR = RQWAIT(.GATEX.O);
INSTR = DS$CTI(.TEMP$WORD);
OUT$VAL = NOT(LOW(TEMP$WORD)+80H);
IF INSTR < 4 THEN
DO;

DO CASE INSTR;
DO; /* Case 0 */

IF RDR$MODE = OPR THEN
CALL IFWRIT(GP$CHAN,OUT$VAL);

GATE$VAL(OPR) = TEMP$WORD;
END;
; /* Case 1 */

137

DO; /* Case 2 */
IF RDR$MODE = CAL THEN

CALL IFWRIT(GP$CHAN,OUT$VAL);
GATE$VAL(CAL) = TEMP$WORD;

END;
; /* Case 3 */

END;
CALL DSP$GATE; /* All Cases */

END;
ELSE

CALL CMD$ERR;
CALL RQSEND(CLI$MSG.RESPONSE$EXCHANGE,

CLIMSGPNTR);
END;

END GATE$CMD;

/*********************** HEAD$CMD ***********************/

HEAD$CMD: PROCEDURE PUBLIC;
/*

HEAD or BAND - Commands that select what RF head will
be used.

DECLARE MUX$XREF (*) BYTE DATA(0,1,0,2,3);
DECLARE BAND$CHAR (*) BYTE DATA (' (PXLCR');

BAND = 'X1;
HEAD = 1;
CALL IFWRIT(MX$CHAN,MUX$XREF(HEAD));

DO FOREVER;
CLIMSGPNTR = RQWAIT(.HEADX.O);
CALL RST$CCLIB;
IF SPOTEQ THEN
DO;

TEMP$NUM = ID$HED;
IF TEMP$NUM = OFFH THEN
CALL CMD$ERR;

ELSE
DO;

CALL COPCON(HEAD,CAL);
HEAD = TEMP$NUM;
CALL COPCON(HEAD,RDR$MOOE);
BAND = BAND$CHAR(TEMP$NUM);
CALL IFWRIT(MX$CHAN,MUX$XREF(HEAD));

138

CALL DSP$HEAD;
END;

END;
ELSE IF SPOTQM THEN

CALL DSP$HEAD;
ELSE
CALL CMD$ERR;

CALL RQSEND(CLI$MSG.RESPONSE$EXCHANGE,
CLIMSGPNTR);

END;

END HEAD$CMD;

/*********************** QAIN$CMD ***********************/

GAIN$CMD: PROCEDURE PUBLIC;
/* ;

IFGAIN - Command used to set IF Digital attenuator (and
thereby the IF Gain) manually.

f/

GAINSVAL = 0;
CALL IFWRIT(DA$CHAN,0);

DO FOREVER;
CLIMSGPNTR = RQWAIT(.GAINX,0);
CALL RST$CCLIB;
INSTR = NUM$REC(.TEMP$WORD,07FH);
IF INSTR < 2 THEN
DO;

IF INSTR = 0 THEN
DO;

GAIN$VAL = TEMP$WORD;
SCRAP = IFGAIN(GAIN$VAL);

END;
CALL DSP$GAIN;

END;
ELSE

CALL CMD$ERR;
CALL RQSEND(CLI$MSG.RESPONSE$EXCHANGE,

CLIMSGPNTR);
END;

END GAIN$CMD;

/************************ RDR$TSK ***********************,

139

RDR$TSK: PROCEDURE PUBLIC;
/*

RDR$TASK - Free running data acquistion task invoked by
the MODE command entries.

*/

DECLARE RDR$REPS BYTE;
DECLARE NEW$MSG ADDRESS;
DECLARE PIT$CNTRL$WORD BYTE DATA(01110110B);
DECLARE PIT$COUNT$LO BYTE DATA(15);
DECLARE PIT$COUNT$HI BYTE DATA(O);

RDR$MODE = CAL;
/* — Initialize the Analog Input Handler Request

Message used to acquire measurement of the
Radar return signal. -- */

IFAIRM.LENGTH = 14;
IFAIRM.TYPE = AI$SNGL$TYPE;

- IFAIRM.RESPONSE$EXCHANGE = .IFAIRX;
IFAIRM.CHANNEL = 0;
IFAIRM.DATA$PNTR = ,RDR$RET;
IFAIRM.COUNT = 1;

/* — Initialize Counter 1 of the PIT for divide by
50 operation. This effectively reduces
the data acquisition rate by 50. */

OUTPUT(ODFH) = PIT$CNTRL$WORD;
OUTPUT(ODDH) = PIT$COUNT$LO;
OUTPUT(ODDH) = PIT$COUNT$HI;

CALL RQSEND(.RDRRSX,.RDRMSG);

DO FOREVER;
SCRAP = RQWAIT(.RDRTSX.O);
RDR$REPS = RDR$MSG.REPS;
CALL RQSEND(.RDRRSX,.RDRMSG);
CALL RQELVL(IFC$SRI);
DO WHILE RDR$REPS = SNGL OR RDR$REPS = CONT;

IF RDR$REPS = SNGL THEN
RDR$REPS = 0;

GAIN$VAL = DAGC;
CALL DSP$GAIN;
NEW$MSG = RQACPT(.RDRTSX);
IF NEW$MSG > 0 THEN
DO;

RDR$REPS = RDR$MSG.REPS;
CALL RQSEND(.RDRRSX,.RDRMSG);

END;
END;

140

CALL RQDLVL(IFC$SRI);
END;

END RDR$TSK;

END ROMAIN; /* End of module. */

EOF

141

ROCTIP: DO; ,

/*

REMOTE OPERATIONS
COMMAND TAIL INTERPRETATION PACKAGE

*/
$INCLUDE (:F2:RMXGEN.INC)

/**/
/* */
/* GLOBAL DECLARATIONS */
/* */
/**/

DECLARE CCLIB$PNTR ADDRESS PUBLIC;
DECLARE (SCANNER, BALANCE, MARKER) BYTE PUBLIC;
DECLARE CCLIB BASED CCLIB$PNTR (117) BYTE;
DECLARE (MARK, PREV$BAL) BYTE PUBLIC;

DECLARE CLIMSGPNTR ADDRESS PUBLIC;
DECLARE CLI$MSG BASED CLI$MSG$PNTR STRUCTURE(

MSG$HDR,
COUNT ADDRESS,
BUFF$ADR ADDRESS);

DECLARE NEXT$CHAR LITERALLY 'CALL SCAN1;
DECLARE PREV$CHAR LITERALLY 'CALL SCAN$BAK';
DECLARE SAVE LITERALLY 'CALL SAVE$SAB';
DECLARE RESTORE LITERALLY 'CALL RESTOR$SAB';

/**/
/* */
/* GLOBAL PROCEDURES */
/* */
/**/

/********************** RST$CCLIB ***********************/

RST$CCLIB: PROCEDURE PUBLIC;
/* ; •

RST$CCLIB will reset the values of SCANNER, BALANCE, and
CCLIB$PNTR based on the current values in the CLI$MSG
structure (pointed to by CLIMSGPNTR).

142

Form of call:
CALL RST$CCLIB;

mordoc

SCANNER = 0;
BALANCE = CLI$MSG.COUNT;
CCLIB$PNTR = CLI$MSG.BUFF$ADR;
RETURN;

END RST$CCLIB;

/ft********************** SAVE$SAB ********************•***/

SAVE$SAB: PROCEDURE PUBLIC;
/*

SAVE$SAB can be used to save the current values for
SCANNER and BALANCE in MARK and PREV$BAL respectively.

Form of call:
CALL SAVE$SAB;

or
SAVE; (in this module)

MARK = SCANNER;
PREV$BAL = BALANCE;
RETURN;

END SAVE$SAB;

/********************** R£STOR$SAB **********************/

RESTOR$SAB: PROCEDURE PUBLIC;

This routine performs the inverse of SAVE$SAB by restoring
the values of SCANNER and BALANCE to the values saved in
MARK- and PREV$BAL.

Form of call:
CALL RESTOR$SAB;

or
RESTORE; (in this module)

143

SCANNER = MARK;
BALANCE = PREV$BAL;
RETURN;

END RESTOR$SAB;

/************************* SCAN *************************/

SCAN: PROCEDURE PUBLIC;
/*

SCAN will advance the position in the CCLIB by simply
incrementing SCANNER and decrementing BALANCE.

Form of call:
CALL SCAN;

or
NEXT$CHAR; (in this module)

SCANNER = SCANNER + 1;
BALANCE = BALANCE - 1;
RETURN;

END SCAN;

/ft********************** SCAN$BAK ***********************/

SCAN$BAK: PROCEDURE PUBLIC;
/*

This procedure performs the inverse of SCAN (backs up one
character in the CCLIB).

Form of call:
CALL SCAN$BAK;

or
PREV$CHAR; (in this module)

SCANNER = SCANNER - 1;
BALANCE = BALANCE + 1;
RETURN;

END SCAN$BAK;

144

/*********************** SKIP ***************************/

SKIP: PROCEDURE BOOLEAN PUBLIC;
/*

SKIP will advance the CCLIB pointer, SCANNER, to the first
non-blank character in the CCLIB.

Form of call:
flag = SKIP;

where,
"flag" is a boolean (byte) variable used to
signal that the SKIP operation encountered
the "end-of-line" (break sequence) before
any other non-blank character was found.

The procedure will return a true (OFFH) if successful with-
out encountering the "end-of-line" and false otherwise.
SCANNER is assumed to index the starting position in CCLIB
at entry and will be set to index the non-blank character
at exit. BALANCE is decremented by the number of spaces
skipped. MARKER is not changed.

*/

IF BALANCE = 0 THEN /* Important Step ! ! ! */
RETURN FALSE; /* Do Not Delete ! ! ! */

DO WHILE BALANCE > 0
AND CCLIB(SCANNER) = ' ';

NEXT$CHAR;
END;

IF CCLIB(SCANNER) = CR
OR BALANCE = 0

THEN RETURN FALSE;
ELSE RETURN TRUE;

END SKIP;

/*********************** CCLIB$MT ***********************/

CCLIB$MT: PROCEDURE BOOLEAN PUBLIC;
/*_

CCLIB$MT checks the CCLIB to see if it is empty.

Form of call:
flag = CCLIB$MT;

where,

145

"flag" is a boolean variable set true if
the CCLIB is empty or false otherwise.

The CCLIB is considered to be empty if BALANCE is zero or
the break sequence (carriage return) is the next non-blank
character in the buffer. The effects of CCLIB$MT on the
position in CCLIB (values for SCANNER and BALANCE) are the
same as for SKIP (SKIP is used in the determination).

*/

RETURN NOT(SKIP);

t END CCLIB$MT;

/********************** VALID$DEL ***********************/

VALIO$DEL: PROCEDURE BOOLEAN PUBLIC;
/*

This routine will check the next character in the CCLIB to
see if it is a valid delimeter (blank or carriage return).

Form of call:
flag = VALID$DEL;

where,
"flag" is a boolean flag set to indicate
success (true or OFFH) or failure (false
or 0).

The globals SCANNER, BALANCE, and MARKER are not affected
by VALID$DEL.

IF CCLIB(SCANNER) = ' '
OR CCLIB(SCANNER) = CR

THEN RETURN TRUE;
ELSE RETURN FALSE;

END VALID$DEL;

/************************ SEARCH *****•*******************

SEARCH: PROCEDURE (PNTR.LEN) BOOLEAN PUBLIC;
/*

SEARCH will scan the CCLIB for a specified string.

146

Form of call:
flag = SEARCH(pntr.len);

where,
"pntr" is an address pointer to the string

"len" is a byte value of the number of
characters in the string

and
"flag" is a boolean flag that signals the
success or failure of the operation.

SEARCH will return a true if the operation is a success
and a false if it is a failure. The routine signals a
success if the first non-blank character string matches
the string specified or an abbreviation of the string.
An abbreviation is one or more characters of the string
followed by a space or carriage return (CR). A failure is
signaled if the matched string is not terminated with a
blank or CR or a match is not found. SCANNER is assumed to
index the starting position at entry to this procedure.
If successful SCANNER is set to point to the terminating
character. If unsuccessful SCANNER is set to point to the
first non-blank character it encounters. BALANCE is set
to reflect the change in position in CCLIB and MARKER is
not changed.

*/

DECLARE (I, LEN) BYTE;
DECLARE PNTR ADDRESS;
DECLARE STRING BASED PNTR (1) BYTE;

I = 0;
IF SKIP THEN

DO;
SAVE;
DO WHILE CCLIB(SCANNER) = STRING(I)

AND I < LEN
AND BALANCE > 0;

1 = 1 + 1;
NEXT$CHAR;

END;
IF I = 0 THEN

RETURN FALSE;
IF VALID$DEL
AND BALANCE > 0
THEN

RETURN TRUE;
RESTORE;

147

END;
RETURN FALSE;

END SEARCH;

/A*********************** SPOTEO ************************/

SPOTEQ: PROCEDURE BOOLEAN PUBLIC;
/*

SPOTEQ will check the CCLIB for the occurrence of an equal
sign ignoring leading blanks.

Form of call:
flag = SPOTEQ;

where,
"flag" is a boolean value set true if the
operation is a success and false if it is
a failure.

SCANNER is first set to skip leading blanks (via SKIP).
If the next character is an equals sign it is set to point
to the character just after it. Otherwise it will point
to the non-blank character. BALANCE is adjusted to show
this change of position in the CCLIB. MARKER remains
unchanged.

*/

IF SKIP THEN
DO;

IF CCLIB(SCANNER) = '=' THEN
DO;

NEXT$CHAR;
RETURN TRUE;

END;
END;

RETURN FALSE;

END SPOTEQ;

/************************ SPOTQM ************************/

SPOTQM: PROCEDURE BOOLEAN PUBLIC;

SPOTQM will check CCLIB for the occurrence of a question
mark ignoring leading blanks.

Form of call:

148

flag = SPOTQM;
where,

"flag" is a boolean value set true if the
operation is a success and false if it is
a failure.

SCANNER is first set to skip leading blanks (via SKIP).
If the next character is a question mark and is the last
logical character then SCANNER is set to index the break
sequence and the routine returns OFFH (true). Otherwise
SCANNER will point to the first non-blank character found
and 0 (false) is returned. BALANCE is adjusted to show
this change of position in the CCLIB. MARKER remains
unchanged.

IF SKIP THEN
DO;

IF CCLIB(SCANNER) = '?' THEN
DO;

SAVE;
NEXT$CHAR;
IF CCLIB$MT THEN

RETURN TRUE;
RESTORE;

END;
RETURN FALSE;

END;
RETURN TRUE;

END SPOTQM;

/*********************** SCAN$NUM ***********************

SCAN$NUM: PROCEDURE (PNTR) BOOLEAN PUBLIC;

The SCAN$NUM routine will scan the CCLIB for an ASCII
string representing a constant value.

Form of call:
flag = SCAN$NUM(num$addr);

where,
"num$addr" is an address pointer to an
address sealer where the resulting value,
if obtained, is to be stored.

and
"flag" is a boolean value set to indicate
the success of the operation (TRUE) or the

149

failure of it (FALSE).

If "flag" is returned FALSE then the contents of the
address sealer pointed to by "num$addr" is undefined.

The constant value can be entered as either decimal, hex,
octal, or binary. All entries require a radix descriptor
except for decimal values for which the radix is optional.
In other words entries without a descriptor are assumed to
be decimal. The following show the characters used as the
radix descriptors for each base and the maximum allowable
entry.

Base Radix Descriptor Maximum Entry*

Decimal "T" 65536D
Hex "H" FFFFH

Octal "Q" 1777770
Binary "Y" 1111111111111111B

* All maximum values equate to the same numerical limit.

When the routine is successful SCANNER and BALANCE are
adjusted so that the CCLIB position is at the delimiting
character that terminated the string. Otherwise it will
be positioned to the first non-blank character found.
Note also that MARKER is changed by this routine.

_*/

DECLARE PNTR ADDRESS;
DECLARE NUMBER BASED PNTR ADDRESS;
DECLARE DIGITS (*) BYTE DATA('0123456789ABCDEF');
DECLARE (NEWNUM, OLDNUM) ADDRESS;
DECLARE (RADIX, I, CHAR) BYTE;

IF SKIP THEN
DO; /* Found a string. */

SAVE;
MARKER = SCANNER;
CHAR = CCLIB(SCANNER);
DO WHILE ((CHAR >= '0' AND CHAR <= '9')

OR (CHAR >= 'A1 AND CHAR <= 'F1))
AND BALANCE > 0;
NEXT$CHAR;
CHAR = CCLIB(SCANNER);

END;
IF CHAR = 'H1 THEN

RADIX = 16;
ELSE IF CHAR = 'Q1 THEN

150

RADIX = 8;
ELSE IF CHAR = 'Y' THEN

RADIX = 2;
ELSE IF CHAR = T OR VALID$DEL THEN

RADIX = 10;
ELSE /* Bad character */

DO;
RESTORE;
RETURN FALSE;

END;
NEWNUM, OLDNUM = 0;
DO WHILE MARKER < SCANNER;

I = 0;
DO WHILE CCLIB(MARKER) <> DIGITS(I);

I = 1+1;
END;
IF I >= RADIX THEN

DO;
RESTORE;
RETURN FALSE;

END;
NEW$NUM = OLD$NUM*RADIX + I;
IF NEW$NUM < OLD$NUM THEN

DO;
RESTORE;
RETURN FALSE;

END;
OLD$NUM = NEW$NUM;
MARKER = MARKER + 1;

END;
NUMBER = NEW$NUM;
IF RADIX <> 10 OR CHAR = 'T' THEN

NEXT$CHAR;
IF VALID$DEL THEN

RETURN TRUE;
RESTORE;

END;
RETURN FALSE;

END SCAN$NUM;

/************************ ID$HED ************************/

ID$HED: PROCEDURE BYTE PUBLIC;
/*

This routine will try to identify the next non-blank
character in the CCLIB as a head specifier.

Form of call:

151

hed$num = ID$HED;
where,

"hed$num" is a byte value set to indicate
the appropriate head number or lack of one.

ID$HED will first scan CCLIB for the first non-blank
character in it. That character is then compared to the
permissible head specifiers for a match. Failure to find
a non-blank character or failure to find a valid match
that is properly terminated returns OFFH. A proper match
will return the following values:

Specifiing Character Return Value

X o r l 1
L o r 2 2
C o r 3 3
R o r 4 4

DECLARE VALID$CHARS (8) BYTE DATA('X1L2C3R4');
DECLARE I BYTE;

IF SKIP THEN
DO;

I = 0;
DO WHILE CCLIB(SCANNER) <> VALID$CHARS(I)

AND I < 8;
1 = 1 + 1;

END;
IF I < 8 THEN

DO;
NEXT$CHAR;
IF CCLIB$MT THEN

RETURN (I/2)+l;
END;

END;
RETURN OFFH;

END ID$HED;

/***,********************* R£C$CAL ***********************/

REC$CAL: PROCEDURE BOOLEAN PUBLIC;
r
REC$CAL will recognize the presence of the keyword
"CALIBRATE" in the CCLIB.

152

Form of call:
flag = REC$CAL;

where,
"flag" is a boolean value set to indicate
the presence of the keyword (true) or the
absence of it (false).

As usual if the keyword is found and is properly terminated
SCANNER will index the delimiter at completion. Otherwise
it will index the first non-blank character found. Also
BALANCE is properly adjusted and MARKER remains unchanged.

*/

DECLARE KEY$WORD$BUF (*) BYTE DATA('CALIBRATE1);

RETURN SEARCH(.KEY$WORD$BUF,LENGTH(KEY$WORD$BUF));

END REC$CAL;

/************************ R£C$OP ************************/

REC$OP: PROCEDURE BOOLEAN PUBLIC;

REC$OP will recognize the presence of the keyword
"OPERATE" in the CCLIB.

Form of call:
flag = REC$OP;

where,
"flag" is a boolean value set to indicate
the presence of the keyword (true) or the
absence of it (false).

As usual if the keyword is found and is properly terminated
SCANNER will index the delimiter at completion. Otherwise
it will index the first non-blank character found. Also
BALANCE is properly adjusted and MARKER remains unchanged.

*/

DECLARE KEY$WORD$BUF (*) BYTE DATA('OPERATE') ;

RETURN SEARCH(.KEY$WORD$BUF,LENGTH(KEY$WORD$BUF));

END REC$OP;

/•ft********************** RECSCONT ***********************/

153

REC$CONT: PROCEDURE BOOLEAN PUBLIC;
/*

This routine will recognize the presence of the keyword
"CONTINUOUS" in the CCLIB.

(For details see REC$CAL above.)
*/

DECLARE KEY$WORD$BUF (*) BYTE DATA('CONTINUOUS');

RETURN SEARCH(.KEY$WORD$BUF.LENGTH(KEY$WORD$BUF));

END REC$CONT;

/*********************** REC$SNGL ***********************/

REC$SNGL: PROCEDURE BOOLEAN PUBLIC;
/*

This routine will recognize the presence of the keyword
"SINGLE" in the CCLIB.

(For details see REC$CAL above.)
*/

DECLARE KEY$WORD$BUF (*) BYTE DATA('SINGLE');

RETURN SEARCH(.KEY$WORD$BUF.LENGTH(KEY$WORD$BUF));

END REC$SNGL;

/************************ ID$POL ************************/

ID$POL: PROCEDURE BYTE PUBLIC;

This procedure can be used to identify an optional polar-
ization specifier in the CCLIB.

Form of call:.
pol$spec = ID$POL;

where,
"pol$spec" is a byte variable set to
indicate the presence and type of the
polarization specifier.

154

ID$POL will return a value of 0 if the next non-blank
character in the CCLIB is an "H" and a 1 if the character
is a "V". Either character must be properly terminated
(VALID$DEL). The absence of both characters or lack of
proper termination returns a value of OFFH. When 0 or 1
is returned SCANNER is set to index the delimeter other-
wise it is set to index the first non-blank character or
break sequence. BALANCE is set to reflect the adjustment
of position in the CCLIB. MARKER remains unchanged.

DECLARE POL$NUM BYTE;

IF SKIP THEN
DO;

IF CCLIB(SCANNER) = 'H1
THEN POL$NUM = 0;

ELSE IF CCLIB(SCANNER) = 'V
THEN POL$NUM = 1;

ELSE RETURN OFFH;
NEXT$CHAR;
IF VALID$DEL
THEN RETURN POL$NUM;

PREV$CHAR;
END;

RETURN OFFH;

END ID$POL;

/*=«================================

END ROCTIP; /* End of module. */

EOF

155

RODFAT: DO;

/*

REMOTE OPERATIONS
DATA FORMATTER AND TRANSMISSION PACKAGE

This package provides routines for the formatting and
display of character strings, numeric values, and other
types of various structures such as lines and boxes.

There is a basic logical concept common to most all of the
procedures included in this package. The output of data
to the CRT (assumed to be a VT-100, CIT-101, or equ.) is
accomplished in two steps. The first step is to fill a
data buffer with various combinations of character strings
and control sequences that are needed to accomplish the
desired display operation. This buffer is then output to
the console via the DISPLAY routine found in SYSUTL.LIB.
Many of the following procedures perform the function of
placing some type of ASCII data in the display buffer,
DSP$BUF, and that is all. There are routines provided that
will actually send the contents of the display buffer to
the console. Most of the procedures perform very simple
yet important and useful tasks. The following description
of the package's data structures and the descriptions that
accompany the routines should provide all the required
information for using this package.

DATA STRUCTURES AND KEY DATA VARIABLES.

DSP$BUF - Display Buffer used to hold ASCII data
as it is formatted and assembled for
output to the system console device.
This is a byte array with a maximum
capacity of 256 characters.

NDEX - A byte value used to index the current
position in DSP$BUF. DSP$BUF(NDEX)

156

refers to the current character or byte
of DSP$BUF. NOTE: In this package the
string "CHAR" is literally equivalent to
the string "DSP$BUF(NDEX)" and is used
in its place.

MUM - A byte value used by some routines to
hold hex or decimal values that are con-
verted to ASCII and stored in DSP$BUF.

NUM$3 - An address value used by routines for
the same purpose as MUM but for a larger
range of values.

COOR$STR - This is a data structure with three (3)
members:

ROW - byte,
COL - byte,
ATTRIB - byte.

The structure is used to hold the row
and column coordinates of a position on
the CRT screen in ROW and COL respect-
ively. It also holds a cursor attribute
in ATTRIB.

BOX$SPEC$STR - This is a data structure with five (5)
members:

ROW - byte,
COL - byte,
ATTRIB - byte,
LEN - byte,
HGT - byte.

This structure is used to hold data for
specifing the location (ROW and COL),
display attribute (ATTRIB), length (LEN),
and hieght (HGT) of a box to be displayed
on the console. The coordinate location
is assumed to be that of the top-left
corner of the box. The length and height
are inside dimensions of the box (ie. do
not include the box lines) and the overall
dimensions are two greater for each value.

DATA$COOR$STR - This data structure has two (2) members:
ROW - byte,
COL - byte.

This is used to hold row and column coor-
dinates for data placement on the screen.

LABEL$STR - This structure has four (4) members:

157

ROW - byte,
COL - byte,
COUNT - byte,
PNTR - address.

This structure is used to hold data for
the placement of a character string at a
location on the screen specified by ROW
and COL. The begining of the string is
pointed to in memory by PNTR and is COUNT
characters long.

*/

$INCLUDE
$INCLUDE
$INCLUDE
$INCLUOE
SINCLUDE
SINCLUOE
SINCLUDE

(:F1:ASCLO.EXT)
(:F1:ASCHI.EXT)
(:F1:ASCII4.EXT)
(:F1:ASCI 12.EXT)
(:F1:BLANK.EXT)
(:F1:DISPLA.EXT)
(:F1:B2D.EXT)

/**/
/* */
/* GLOBAL DECLARATIONS */
/* */
/**/

DECLARE (TXP$CHAR,RXP$CHAR,RDR$MODE,6AIN$VAL,
HEAD,BAND,REPS,SDL$MODE) BYTE EXTERNAL;

DECLARE (RAN6E$VAL,GATE$VAL) (2) BYTE EXTERNAL;

DECLARE VALDAT ADDRESS EXTERNAL;
DECLARE TRUE LITERALLY 'OFFH';
DECLARE FALSE LITERALLY 'OOH';
DECLARE BOOLEAN LITERALLY 'BYTE1;
DECLARE FOREVER LITERALLY 'WHILE 1';
DECLARE LOCAL LITERALLY '0';
/* SPECIAL ASCII CHARACTERS */
DECLARE

NULL LITERALLY 'OOH'
CONTROLSC LITERALLY '03H'
CONTROL$E LITERALLY '05H'
BELL LITERALLY '07H'
BS LITERALLY '08H'
TAB LITERALLY '09H'
LF LITERALLY 'OAH'
VT LITERALLY 'OBH'
FF LITERALLY 'OCH'

158

CR
CONTROLS?
CONTROUQ
CONTROL$R
CONTROLSS
CONTROL$X
CONTROLSZ
ESC
QUOTE
SPACE
LCA
LCZ
RUBOUT

DECLARE CAL
DECLARE OPR
DECLARE SN6L
DECLARE CONT
DECLARE TXC
DECLARE RXC

DECLARE DSP$BUF (256) BYTE;
DECLARE (NDEX, NUM) BYTE;
DECLARE (NUM$3) ADDRESS;

LITERALLY
LITERALLY
LITERALLY.
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

'ODH'
'10H'
'11H'
'12H'
'13H'
'18H'
'1AH'
'IBM'
'22H1

'20H'
'61H'
'7AH1
'7FH'

'0'
'!'
T
'2'
'0'
'!'

/*•/*
* * * > W A R N I N G < * * *

This package makes frequent use of liter-
ally declared data strings that may make
the programs hard to read. The reader is
advised to become familiar with the fol-
lowing in order to avoid confusion.

DECLARE CHAR
DECLARE NEXT
DECLARE STUFF
DECLARE ESCP
DECLARE INTRO
DECLARE DLMT
DECLARE CRNR
DECLARE HLINE
DECLARE VLINE
DECLARE CMPLT
DECLARE JUMP
DECLARE LFBS

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

'DSP$BUF(NDEX)';
'CALL NXNDEX1;
'CALL PUT$CHAR';
'CALL ESCAPE1;
'CALL CSI';
'CALL DLIMIT';
'CALL CORNER';
'CALL HOR$LINE';
'CALL VER$LINE';
'CALL COMPLETE';
'CALL JUMP$UP';
'CALL DLDIAG1;

159

/

DECLARE VL
DECLARE HL

LITERALLY '170Q1 ;
LITERALLY '161Q';

/* Vertical Bar Line *
/* Horizontal Line */

DECLARE NORM
DECLARE ASCII
DECLARE GRAPH
DECLARE ALTER
DECLARE SPEC

LITERALLY '0';
LITERALLY 'I1;
LITERALLY '2';
LITERALLY '3';
LITERALLY '4';

/* Normal Character Set */
/* ASCII Character Set */
/* Graphics Character Set */
/* Alternate Character Set */
/* Special Graphics Set */

*/
DECLARE LR
DECLARE UR
DECLARE UL
DECLARE LL
DECLARE XL
DECLARE LT
DECLARE RT
DECLARE BT
DECLARE TT

CORNER and Line Intersection Specifiers.

2 8 1

UUluu
LITERALLY '0';
LITERALLY '!';
LITERALLY '2';
LITERALLY '3';
LITERALLY '4';

*/
*/
*/
*/

'5'; /LITERALLY
LITERALLY '6';
LITERALLY '?';
LITERALLY '8';

/* Lower Right
I* Upper Right
/* Upper Left
/* Lower Left
/* Crossing Lines */

Left Tee
/* Right Tee
/* Bottom Tee
/* Top Tee

*/
*/
*/
*/

DECLARE COOR$STR LITERALLY 'STRUCTURE(
ROW BYTE,
COL BYTE,
ATTR BYTE)1;

DECLARE BOX$SPEC$STR LITERALLY 'STRUCTURE(
ROW BYTE,
COL BYTE,
ATTR BYTE,
LEN BYTE,
HGT BYTE)';

DECLARE LABEL$STR LITERALLY 'STRUCTURE(
ROW BYTE,
COL BYTE,
COUNT BYTE,
PNTR ADDRESS)';

160

DECLARE DATA$COOR$STR LITERALLY 'STRUCTURE(
ROW BYTE,
COL BYTE)1;

DECLARE SEP$LINE COOR$STR DATA(9,1,1);
DECLARE SCROLL$RE6 COOR$STR DATA(lO.l.O);
DECLARE LOGO$COOR COOR$STR DATA(2,1,0);

DECLARE LOGO (*) BYTE DATA
(' vbfn }w vbfn ~~}w w} nftT'.CR,

LF,' wwww gwwwxvffe wwww vfffe effvxwww',CR,
LF,' bfn~}{wo ow{} nb');

DECLARE LINE$0 (59) BYTE DATA
('R E M 0 T E'.ESC.'CB'.ESC.TISDO P E R A T I 0 N S',
ESC.'CB'.ESC.'CieDU T I L I T Y1);

DECLARE LINE$1 (6) BYTE DATA
('Mode =');

DECLARE LINES2 (24) BYTE DATA
('IF Gain = x 1/2 dB');

DECLARE LINES3 (39) BYTE DATA
('(16.67 nS)

',ESC,'[4mOperate',ESC,'[2CCalibrate' ,ESC,'[Om');
DECLARE LINE$4 (32) BYTE DATA

('Range Delay:',ESC,'[B1,ESC,'[12DGate Width:1);
DECLARE LINE$5 (43) BYTE DATA

('Head = Band = TxPol = RxPol =');

DECLARE LINE$LBL (6) LABEL$STR DATA(
2,56,59,.LINE$0,
7,3,6,.LINE$1,
7,38,24,.LINE$2,
2,85,39,.LINE$3,
3,84,32,.LINE$4,
7,69,43,.LINE$5);

DECLARE COSCOOR DATA$COOR$STR DATA(7,10);
DECLARE GN$COOR DATA$COOR$STR DATA(7,48);
DECLARE RD$COOR (2) DATA$COOR$STR DATA(3,107,3,98);
DECLARE GP$COOR (2) DATA$COOR$STR DATA(4,107,4,98);
DECLARE HED$COOR DATA$COOR$STR DATA(7,76);
DECLARE BND$COOR DATA$COOR$STR DATA(7,87);
DECLARE TXP$COOR DATA$COOR$STR DATA(7,100);
DECLARE RXP$COOR DATA$COOR$STR DATA(7,113);

DECLARE BOX$SPEC (9) BOX$SPEC$STR DATA(
1,1,1,77,3,
1,82,0,32,3,
6,1,0,29,1,
6,35,0,28,1,

161

6,67,0,47,1,
4,123,0,1,1,
3,121,1,5,3,
2,119,0,9,5,
1,117,1,13,7);

/**/

/* */
/* GLOBAL PROCEDURES */
/* */
/**/

/************************ RESTRT ************************/

RESTRT: PROCEDURE PUBLIC;

Reset the index variable NDEX to 0;
*/

NDEX = 0;
RETURN;

END RESTRT;

/************************ NXNDEX ************************/

NXNDEX: PROCEDURE PUBLIC;

Increment the NDEX index parameter.

NOTE: In this package "NEXT" is literally "CALL NXNDEX".
*/

NDEX = NDEX + 1;
RETURN;

END NXNDEX;

/*********************** PUTJCHAR ***********************/

PUT$CHAR: PROCEDURE (USR$CHAR) PUBLIC;
/*

Store character in the display buffer DSP$BUF.

NOTE: In this package "STUFF" = "CALL PUT$CHAR".

162

DECLARE USR$CHAR BYTE;

CHAR = USR$CHAR;
NEXT;
RETURN;

END PUT$CHAR;

/************************ ESCAPE ************************/

ESCAPE: PROCEDURE PUBLIC;
/* _

Place Escape character in the output display buffer.

NOTE: In this package "ESCP" = "CALL ESCAPE".
_ */

STUFF(ESC);
RETURN;

END ESCAPE;

/************************** QSJ *************************/

CSI: PROCEDURE PUBLIC;
/*

Place the common Control Sequence Introducer (ESC[) tn
the display buffer.

NOTE: In this package "INTRO" = "CALL CSI".

ESCP;
STUFF('C');
RETURN;

END CSI;

/************************ DLIMIJ ************************

DLIMIT: PROCEDURE PUBLIC;
/*_

Put the semicolon delimiter in the display buffer.

163

NOTE: In this package "DLMT" = "CALL DLIMIT".
*/

STUFFC;1);
RETURN;

END DLIMIT;

/*********************** PUTNUM1 **********************/

PUTNUM1: PROCEDURE PUBLIC;
/*

Place the ASCII code for the low nibble of NUM in the
display buffer.

*/

STUFF(ASCLO(NUM)J;
RETURN;

END PUTNUM1;

/*********************** PUTNUM2 **********************/

PUTNUM2: PROCEDURE PUBLIC;
r
Put the ASCII code for the high nibble of NUM followed
by the ASCII code for the low nibble in the display
buffer.

• */

STUFF(ASCHI(NUM));
CALL PUTNUM1;
RETURN;

END PUTNUM2;

/*********************** pUTNUM3 **********************/

PUTNUM3: PROCEDURE PUBLIC;

Place the ASCII for the last three nibbles of the address
parameter NUM$3 in the display buffer in order from left
to right.

* * * > NOTE: This routine destroys the
contents of NUM.

*/

164

NUM = HIGH(NUM$3);
CALL PUTNUM1;
NUM = LOW(NUM$3);
CALL PUTNUM2;
RETURN;

END PUTNUM3;

/************************* SAVEC ************************/

SAVEC: PROCEDURE PUBLIC;

Place the Control Sequence to save the current cursor
position and attributes in the display buffer.

___*/

ESCP;
STUFF('7');
RETURN;

END SAVEC;

/ft*********************** RESTORC ***********************/

RESTORC: PROCEDURE PUBLIC;
/*

Place the control sequence for restoring the saved
cursor position and attributes in the display buffer.

' */

ESCP;
STUFF('8');
RETURN;

END RESTORC;

/*********************** COMPLETE ***********************/

COMPLETE: PROCEDURE PUBLIC;
/*

Output the display buffer via DISPLAY.

NOTE: In this package "CMPLT" = "CALL COMPLETE".
*/

CALL DISPLAY(.DSP$BUF,NDEX);

165

RETURN;

END COMPLETE;

/************************ STRTUP ************************/

STRTUP: PROCEDURE PUBLIC;
/*

Makes calls to RESTRT and SAVEC for convenience.
*/

CALL RESTRT;
CALL SAVEC;
RETURN;

END STRTUP;

/************************ PNSHUP ************************/

FNSHUP: PROCEDURE PUBLIC;
r
Make calls to RESTORC and COMPLETE for convenience.

*/

CALL RESTORC;
CMPLT;
RETURN;

END FNSHUP;

/************************ AjyRiB ************************/

ATTRIB: PROCEDURE PUBLIC;
/*

Put the Control Sequence for setting the cursor attribute
specified by the current contents of NUM into DSP$BUF.

*/

INTRO;
CALL PUTNUM1;

- STUFF('ra');
RETURN;

END ATTRIB;

/•ft********************** POSITION ***********************/

166

POSITION: PROCEDURE (ROW,COL) PUBLIC;
/*

Control sequence for moving the cursor to the absolute
row and column position is entered into the display
buffer.

*/

DECLARE (ROW,COL) BYTE;

INTRO;
NUM = B2D(ROW);
CALL PUTNUM2;
DLMT;
NUM$3 = B2D(COL);
CALL PUTNUM3;
STUFF('H');
RETURN;

END POSITION;

/************************ JUMPUP ************************/

JUMPUP: PROCEDURE (PNTR) PUBLIC;
r
The code for the following is placed in the display
buffer:

Position to the coordinates given in the
Coordinate structure (COOR$STRC) pointed to by
PNTR.

Set the cursor to the attribute specified in
COOR$STRC.ATTR.

NOTE: In this package "JUMP" = "CALL JUMPUP".

DECLARE PNTR ADDRESS;
DECLARE COOR BASED PNTR COOR$STR;

CALL POSITION(COOR.ROW, COOR.COL);
NUM * COOR.ATTR;
CALL ATTRIB;
RETURN;

END JUMPUP;

/*********************** HOR$LINE ***********************/

167

HOR$LINE: PROCEDURE (LEN) PUBLIC;
/*

Codes for drawing a horizontal line of length LEN at the
current position are entered into the display buffer.

NOTE: In this package "HLINE" = "CALL HOR$LINE".

DECLARE (I, LEN) BYTE;

DO I = 1 TO LEN;
STUFF(HL);

END;
RETURN;

END HOR$LINE;

/************************ OLDIAG ************************/

DLDIAG: PROCEDURE PUBLIC;
r
Down and Left Diagonal Move codes placed in-DSP$BUF by
this routine.

NOTE: In this package "LFBS" = "CALL DLDIAG".
LFBS stands for Line Feed and Back Space.

*/

STUFF(LF);
STUFF(BS);
RETURN;

END DLDIAG;

/*********************** VER$LINE ***********************/

VER$LINE: PROCEDURE (HGT) PUBLIC;

Same as HOR$LINE except for vertical line of height HGT.

NOTE,: In this package "VLINE" = "CALL VER$LINE".
*/

DECLARE (I, HGT) BYTE;

DO I = 1 TO HGT;

168

LFBS;
STUFF(VL);

END;
RETURN;

END VER$LINE;

/************************ CORNER ************************/

CORNER: PROCEDURE (TYPE) PUBLIC;
r
Place the code for the specified type graphics corner or
line intersection in the display buffer.

NOTE: In this package "CRNR" = "CALL CORNER".

DECLARE TYPE BYTE;
DECLARE BAS$CRNR LITERALLY '152Q';
DECLARE BAS$TEE LITERALLY '164Q1;

IF TYPE < 5 THEN
STUFF (BA'S$CRNR + TYPE);

ELSE
STUFF(BAS$TEE - 5 + TYPE);

RETURN;

END CORNER;

/************************ SELECT ************************/

SELECT: PROCEDURE (CHAR$SET) PUBLIC;
/*

Put the seqeunce for designating the character set into
the display buffer.

CHAR$SET Character Set Selected

0 UK
1 ASCII
2 Graphics
3 Alternate
4 Special Graphics

DECLARE CHAR$SET BYTE;
DECLARE CS$SEL (*) BYTE DATA('AB012');

169

ESCP;
STUFFCC);
STUFF(CS$SEL(CHAR$SET));
RETURN;

END SELECT;

/************************** gQX *************************/

BOX: PROCEDURE (PNTR) PUBLIC;

Draw a box as specified in the BOX$SPEC$STR pointed to
by PNTR. See the description of BOX$SPEC$STR at the start
of this package. This routine will actually send the box
to the console. The cursor is restored to its initial
position and attributes.

*/

DECLARE PNTR ADDRESS;
DECLARE BOX$S BASED PNTR BOX$SPEC$STR;

CALL STRTUP;
JUMP(PNTR);
CALL SELECT(GRAPH);
STUFF(' ');
HLINE(BOX$S.LEN);
CRNR(UR);
VLINE(BOX$S.HGT);
JUMP (PNTR);
CRNR(UL);
VLINE(BOX$S.HGT);
LFBS;
CRNR(LL);
HLINE(BOX$S.LEN);
CRNR(LR);
CALL FNSHUP;
RETURN;

END BOX;

/************************* CRLF *************************/

CRLF: PROCEDURE;

CALL DISPLAY(.(CR),1);
CALL DISPLAY(.(LF),1);
RETURN;

END CRLF;

170

/************************ STRING ************************/

STRING: PROCEDURE (PNTR,COUNT) PUBLIC;

Transfer the ASCII string pointed to by PNTR and of length
given by COUNT into the display buffer.

*/

DECLARE (COUNT,I) BYTE;
DECLARE PNTR ADDRESS;
DECLARE DAT$BUF BASED PNTR (1) BYTE;

DO I = 0 TO (COUNT-1);
STUFF(DAT$BUF(I));

END;
RETURN;

END STRING;

/************************ DSP$LBL ***********************/

DSP$LBL: PROCEDURE (PNTR) PUBLIC;
/*

Place the position control sequence and ASCII data needed
to display a character string at a specific screen location
in the display buffer. The position coordinates and the
length and pointer for the ASCII string are given by the
contents of the LABEL$STR pointed to by PNTR. See the
description of LABEL$STR at the beginning of this package.

*/

DECLARE PNTR ADDRESS;
DECLARE LBL BASED PNTR LABEL$STR;

CALL POSITION(LBL.ROW.LBL.COL);
CALL STRING(LBL.PNTR,LBL.COUNT);
RETURN;

END DSP$LBL;

/************************ NUMBER ************************/

NUMBER: PROCEDURE (NMB) PUBLIC;

First convert the 16 bit hex value in NMB to decimal then
convert the resulting four decimal digits to ASCII. Blank

171

the leading zeros in the ASCII representation and transfer
the result into the display buffer.

*/

DECLARE NMB ADDRESS;
DECLARE DAT$BUF (4) BYTE;

CALL ASCII$4(B2D(NMB)..DAT$BUF);
CALL BLANK(.DAT$BUF,3);
CALL STRING(.DAT$BUF,4);
RETURN;

END NUMBER;

/*********************** p|_ACE$NM8 **********************/

PLACE$NMB: PROCEDURE (PNTR.NMB) PUBLIC;

Place a position control sequence followed by the ASCII
representation of the value of NMB in the display buffer.
The position control sequence will effectively place the
value of NMB at the screen coordinates given by the
DATA$COOR$STR pointed to by PNTR. See description of
this structure earlier. '

*/

DECLARE (PNTR.NMB) ADDRESS;
DECLARE NUM$COOR BASED PNTR DATA$COOR$STR;

CALL POSITION(NUM$COOR.ROW,NUM$COOR.COL);
CALL NUMBER(NMB);
RETURN;

END PLACE$NMB;

/•ft*********************** QSP$NUM ***********************/

DSP$NUM: PROCEDURE (PNTR.NMB) PUBLIC;

Display the decimal representation of the hex value stored
in NMB at the screen coordinates given by the DATA$COOR$STR
pointed to by PNTR. This routine actual outputs the value
to the console. The initial cursor position and attributes
are restored.

*/

DECLARE (PNTR.NMB) ADDRESS;

172

CALL STRTUP*
CALL PLACE$NMB(PNTR,NMB);
CALL FNSHUP;
RETURN;

END DSP$NUM;

/*********************** DSP2NUMS **********************/

DSP2NUMS: PROCEDURE (COOR$PNTR,VAL$PNTR) PUBLIC;
r
Display the 2 values in the 2 byte array pointed to by
VAL$PNTR at the respective coordinates specified by the
2 structure array pointed to by COOR$PNTR.

*/

DECLARE (COOR$PNTR,VAL$PNTR) ADDRESS;
DECLARE COOR BASED COOR$PNTR (2) DATA$COOR$STR;
DECLARE VAL BASED VAL$PNTR (2) BYTE;

CALL STRTUP;
IF RDR$MODE = CAL THEN

DO;
NUM = 4;
CALL ATTRIB;

END;
CALL PLACE$NMB(.COOR(0),VAL(0));
IF RDR$MODE = CAL THEN

NUM = 0;
ELSE

NUM = 4;
CALL ATTRIB'
CALL PLACE$NMB(.COOR(1),VAL(1));
CALL FNSHUP;
RETURN;

END DSP2NUMS;

/*********************** DSP$RANGE **********************/

DSP$RANGE: PROCEDURE PUBLIC;
/*

Display the range delay data at its proper coordinates.
*/

DECLARE RANGE$CHAR ADDRESS;

IF SDL$MODE = LOCAL THEN

173

CALL DSP2NUMS(.RD$COOR,.RANGESVAL);
ELSE

DO;
CALL DISPLAY(.('RD'),2);
RANGE$CHAR = ASCII$2(RANGE$VAL(0));
CALL DISPLAY (.RANGE$CHAR,2);
RANGE$CHAR = ASCII$2(RANGE$VAL(1));
CALL DISPLAY (.RANGE$CHAR,2);
CALL CRLF;

END;
RETURN;

END DSP$RANGE;

/*********************** DSP$GATE ***********************/

DSP$GATE: PROCEDURE PUBLIC;
/*

Display the gate width data at its proper coordinates.
*/

DECLARE GATE$CHAR ADDRESS;

IF SDL$MODE = LOCAL THEN
CALL DSP2NUMS(.GP$COOR,.GATE$VAL);

ELSE
DO;

CALL DISPLAY(.('GW'),2);
GATE$CHAR = ASCII$2(GATE$VAL(0));
CALL DISPLAY (.GATE$CHAR,2);
GATE$CHAR = ASCII$2(GATE$VAL(1));
CALL DISPLAY (.GATE$CHAR,2);
CALL CRLF;

END;
RETURN;

END DSP$GATE;

/ft********************** DSP$MODE ***********************/

DSP$MODE: PROCEDURE PUBLIC;
/*_____

Display information on current radar mode of operation at
its proper screen coordinates.

*/

DECLARE CALSBUF (*) BYTE DATA('CALIBRATE1);
DECLARE OPR$BUF (*) BYTE DATA(' OPERATE ');

174

DECLARE CONT$BUF (*) BYTE DATA(' CONTINUOUS');
DECLARE SNGL$BUF (*) BYTE DATA(' SINGLE ');

IF SDL$MODE = LOCAL THEN
DO;

CALL STRTUP;
CALL POSITION(CO$COOR.ROW,CO$COOR.COL);
IF RDR$MODE = CAL THEN

CALL STRING(.CAL$BUF,LENGTH(CAL$BUF));
ELSE

CALL STRING(.OPR$BUF,LENGTH(OPR$BUF));
IF REPS = CONT THEN

CALL STRING(.CONT$BUF,LENGTH(CONT$8UF));
ELSE

CALL STRING(.SNGL$BUF,LENGTH(SNGL$BUF));
CALL FNSHUP;

END;
ELSE

DO;
CALL DISPLAY(. ('MO') ,2) ;
IF RDR$MODE = CAL THEN

CALL DISPLAY(.('C') ,1) ;
ELSE

CALL DISPLAY(. ('0 ') ,1) ;
IF REPS = CONT THEN

CALL DISPLAY(. ('C ') ,1) ;
ELSE

CALL DISPLAY(. ('S ') ,1) ;
CALL CRLF;

END;
RETURN;

END DSP$MODE;

/*********************** DSP$GAIN ***********************/

DSP$GAIN: PROCEDURE PUBLIC;
/*

Display the current gain value at its proper coordinates.
*/

DECLARE GAIN$CHAR ADDRESS;
DECLARE BSWING BYTE;

IF SDL$MODE = LOCAL THEN
CALL DSP$NUM(.GN$COOR,GAIN$VAL);

ELSE
DO;

IF RDR$MODE = CAL THEN

175

CALL DISPLAY(.('GC'),2);
ELSE

DO;
CALL VALDAT(.BSWING);
IF BSWING THEN

CALL DISPLAY(.('GO'),2);
ELSE

END;
GAIN$CHAR = ASCII$2(GAIN$VAL);
CALL DISPLAY (.GAIN$CHAR,2);
CALL CRLF;

END;
RETURN;

END DSP$GAIN;

/*********************** OSP$HEAD ***********************,

DSP$HEAD: PROCEDURE PUBLIC;

Display the head and band information at the proper screen
coordinates.

*/

DECLARE HEAD$VAL BYTE;

IF SDL$MODE = LOCAL THEN
DO;

CALL STRTUP;
CALL POSITION(HED$COOR.ROW,HED$COOR.COL);
STUFF(ASCLO(HEAD));
CALL POSITION(BND$COOR.ROW,BND$COOR.COL);
STUFF(BAND);
CALL FNSHUP;

END;
ELSE

DO;
HEAD$VAL = ASCLO(HEAD);
CALL DISPLAY(.('HE'),2);
CALL DISPLAY(.HEAD$VAL,1);
CALL CRLF;

END;
RETURN;

END DSP$HEAD;

/************************ QSP$POL ***********************/

176

DSP$POL: PROCEDURE (CRCT) PUBLIC;
/*

Display the current polarization at its proper coordinates
for the specified circuit (Tx or Rx).

*/

DECLARE CRCT BYTE;

IF SDL$MODE = LOCAL THEN
DO;

CALL STRTUP;
IF CRCT = TXC THEN

DO;
CALL POSITION(TXP$COOR.ROW,TXP$COOR.COL);
STUFF(TXP$CHAR);

END;
ELSE
DO;

CALL POSITION(RXP$COOR.ROW,RXP$COOR.COL);
STUFF(RXP$CHAR);

END;
CALL FNSHUP;

END;
ELSE

DO;
IF CRCT = TXC THEN

DO;
CALL DISPLAY(.('TP'),2);
CALL DISPLAY(.TXP$CHAR,1);

END;
ELSE

DO;
CALL DISPLAY(.('RP'),2);
CALL DISPLAY(.RXP$CHAR,1); .

END;
CALL CRLF;

END;
RETURN;

END DSP$POL;

/************************ CMD$ERR ***********************/

CMD$ERR: PROCEDURE PUBLIC;

Display the "Command Tail Error" message on the console.
*/

177

CALL DISPLAY
(.('^Command Tail Error.1,CR,LF,'%'),0);

RETURN;

END CMD$ERR;

/************************ INJCRT ************************/

INI$CRT: PROCEDURE PUBLIC;
/*

Initialize the consol display.
*/

DECLARE K BYTE;

CALL DISPLAY(.(I%',ESC,'[2J' ,ESC,'[10;24r',
ESC,'[?3h%'),0);

CALL RESTRT;
JUMP (.SEP$LINE);
CALL SELECT(GRAPH);
HLINE (115);
CALL SELECT(SPEC);
JUMP (.LOGO$COOR);
CMPLT;
CALL DISPLAY(.LOGO,LENGTH(LOGO)};
00 K = 0 TO LAST(BOX$SPEC);

CALL BOX(.BOX$SPEC(K));
END;

CALL RESTRT;
CALL SELECT(NORM);
DO K = 0 TO 3;

CALL DSP$LBL(.LINE$LBL(K));
END;

CMPLT;
CALL RESTRT;
DO K = 4 TO LAST(LINE$LBL);

CALL DSP$LBL(.LINE$LBL(K));
END;

JUMP (.SCROLL$REG);
CMPLT;
CALL DISPLAY(.('%REMOTE OPERATIONS UTILITY',

1 - RMX 80 CLI Vl.O'.CR.LF,
'—> Local Mode'.CR.LF.'X'J.O);

RETURN;

END INI$CRT;

/***

178

END RODFAT; /* End of module. */

EOF

179

*/
*/
V

Developed by C. Kronke *//* System Utilities Library

ASCI 12: DO;
/* */
C O M B : P R O C E D U R E (HI$BYTE,LO$BYTE) ADDRESS EXTERNAL;

DECLARE (HI$BYTE,LO$BYTE) BYTE;
END COMB;

ASCLO: PROCEDURE (DIGIT) BYTE EXTERNAL;
DECLARE DIGIT BYTE;

END ASCLO;
ASCHI: PROCEDURE (DIGIT) BYTE EXTERNAL;

DECLARE DIGIT BYTE;
END ASCHI;

/* */
ASCII$2:PROCEDURE (DIGSJVAL) ADDRESS PUBLIC;

/* - —
Converts a two digit input value into two ASCII
code bytes and returns the combined results.

Form of call:
ascii$words = ASCII$2(in$val)

where,
in$val is a byte variable containing the two
digit value to be converted,

and
ascii$word is an address variable that will
be given the resulting two codes.

The returns codes are in reverse order to the way they
are input. This is so that when they are actually
stored in ascii$words they will be in the correct order.

- - */
DECLARE DIGS$VAL BYTE;

/*
— Convert both digits to ASCII and combine

the results to get the return value. —
*/

RETURN COMB(ASCLO(DIGS$VAL),ASCHI(DIGS$VAL));
/* V

180

/*
END
EOF

ASCI
/*
ASCI

/*

/*-.

END

ASCII2;

14: DO;

I$2:

END

ASCI

ASCII$2;

/* End of module. */

PROCEDURE (DIGS$VAL) ADDRESS EXTERNAL;
DECLARE DIGS$VAL BYTE;

ASCII$2;

I$4: PROCEDURE (WORD,BUF$ADDR) PUBLIC;

*/

* /

*/

This procedure will convert a four digit value to
the four ASCII codes that represent the digits.

Form of call:
CALL ASCII$4(word,buf$addr)

where,
word is an address variable containing the four
digit value to be converted to ASCII,

and
buf$addr is an address variable that points to
the beggining of a four byte buffer where the
converted data is to be stored.

- */
DECLARE (WORD, BUF$ADDR) ADDRESS;
DECLARE BUFFER BASED BUF$ADDR (2) ADDRESS;

/*
— Convert the high byte to two ASCII codes

and store them first.
*/

BUFFER(O) = ASCII$2(HIGH(WORD));
/*

— Now convert the low byte to two ASCII codes
and store them in next two bytes. ~

*/
BUFFER(l) = ASCII$2(LOW(WORD));

/* */
RETURN;

/* */
END ASCI I$4;

/* ; */
END A S C I I 4 ; / * End of module. */
EOF

181

ASCHI: DO;
/*

/*
/*
/*-—

ASCLO: PROCEDURE (DIGIT) BYTE EXTERNAL;
DECLARE DIGIT BYTE;

END ASCLO;

ASCHI: PROCEDURE (DIGIT) BYTE PUBLIC;

*/
*/

This procedure performs the same operation as
ASCLO except the high nibble of the input digit
is converted to ASCII instead of the low nibble.

Form of call:

ascii$code = ASCHI(digit$val)
where,

ascii$code and digit$val are the same as in
ASCLO above except that the digit to be
converted is taken from the upper four bits
of digit$val.

DECLARE DIGIT BYTE;

— Put digit to be converted into
the lower bit positions and
use ASCLO to get ASCII code. —

*/
/* *
/*
END
EOF

END

ASCHI;

RETURN

ASCHI;

/* End

ASCLO(SHR(DIGIT,4));

*
of Module */

DISPLA: DO;
$INCLUDE (:F2:RMXGEN.INC)
$INCLUDE (:F2:THDINO.EXT)
/*

DECLARE CWRRQMSG THREQMSG PUBLIC;
DECLARE WRIT$RESP$X EXCHANGE$DESCRIPTOR PUBLIC;

/*--
INITDSP: PROCEDURE PUBLIC;

/*
INITDSP is a routine that must be called prior to the
use of DISPLAY (next procedure). This procedure will
set up the message header needed for DISPLAY, create

182

a response exchange for that message, and send a dummy
response message to the write response exchange so that
DISPLAY will not have to wait the first time.

Form of call:
CALL INITDSP;

.____ */
CWRRQMSG.LENGTH = 17;
CWRRQMSG.TYPE = WRITE$TYPE;
CWRRQMSG.RESPONSE$EXCHANGE = .WRIT$RESP$X;
CWRRQMSG.STATUS = 0;
CALL RQCXCH(.WRIT$RESP$X);

/*<3

§*/

/*

/*

CALL RQSEND(.WRIT$RESP$X,.CWRRQMSG);

RETURN;

END INITDSP;

DISPLAY: PROCEDURE (BUF$ADDR, COUNT) PUBLIC;
/

DISPLAY is a utility that will be used to output
an ASCII buffer to the system console.

Form of call:
CALL DISPLAY(buf$addr,count)

where,
buf$addr is an address that points to the buffer
to be output,

and
count is a byte variable that acts as either a
control character or buffer length count.

If the value of count is zero the first character in
the buffer is taken as a delimeter and the input buffer
is output untill the delimiter is encountered a second
time. Note that the delimiters are not output. If the
value of count is non-zero then the value is equivalent
to the number of characters that will be output.

DECLARE COUNT BYTE;
DECLARE BUF$ADDR ADDRESS;
DECLARE BUFFER BASED BUF$ADDR (1) BYTE;
DECLARE SCRAP BYTE;

— Test count for zero. --

183

IF COUNT = 0 THEN
/* — If count is zero find actual count by

by scanning buffer for delimiters. --*/
DO;

COUNT = 1;
DO WHILE BUFFER(COUNT) <> BUFFER(0);

COUNT = COUNT+1;
END;

COUNT = COUNT-1;
BUF$ADDR = 8UF$ADDR+1;

END;
/* -- Wait for the Request Message to be

available for use. --*/
/*e

SCRAP = RQWAIT(.WRIT$RESP$X,0);
©*/
/* — Set-up output request message data. —*/

CWRRQMS6.BUFFER$ADDR = BUF$ADDR;
CWRRQMSG.COUNT = COUNT;

/* — Now send the request to the Terminal
Handler output exchange. --*/

CALL RQSEND(.RQOUTX,.CWRRQMSG);
/*• -- Wait for the Request Message to be

available for use. —*/
SCRAP = RQWAIT(.WRIT$RESP$X,0);
RETURN;

/* */
END DISPLAY;

/* V
END DISPLA; /* End of module. */
EOF

PACK: DO;
/*

PACK:
/*

PROCEDURE (HINIB,LONIB) BYTE PUBLIC;
*/

This procedure will pack two nibbles together into
one byte.

Form of call:
byte$value = PACK(hi$nib,lo$nib)

where,
hi$nib and lo$nib are byte variables containing
the nibbles to go into the high and low nibbles
of the result respectively,

and
byte$value is an address variable to which the
result is to be returned.

184

The nibbles are assumed to be in the low half of both
input variables. The high half of the inputs is mask
off and thus ignored.

DECLARE (HINIB,LONIB) BYTE;

— Simply shift hi$nib to proper bit
coordinates, mask the nibbles,
and return them combined.

*/
/* */

END
/*
END PACK;
EOF

RETURN (SHL(HI$NIB,4) OR (LO$NIB AND OFH));

PACK;

/*
*/

End of module. */

NAME

CSE6

COMB

Function COMB - Combine Bytes Routine

Inputs: C - High byte of data.
E - Low byte of data.

Outputs: HL - Combined word.
Calls: Nothing.
Destroys: HL.
Description: This routine will provide a simple PL/M function

that combines two byte parameters into a single
address parameter.

PL/M Call Syntax:

addr$var = COMB(hi$byte,lo$byte)
where:

and

PUBLIC

hi$byte and lo$byte are the byte values to be
combined,

addr$var is an address variable in which the
resulting address value is to be returned.

COMB

185

COMB:
MOV L,E ; E to low byte of HL
MOV H,C ; and C to high byte of HL.
RET ; Its that simple.

END
B2D: DO;
/* */
C O M B ! P R O C E D U R E (HI$BYTE,LO$BYTE) ADDRESS EXTERNAL;

DECLARE (HI$BYTE,LO$BYTE) BYTE;
END COMB;

/* _ */
B2D: PROCEDURE (BIN) ADDRESS PUBLIC;

/*
This procedure converts a binary integer (BIN) to a
binary coded decimal integer. The input value is
expected to be a binary integer between 0 H and
270F H. The output value will therefore be a
binary coded decimal integer in the range of 0 to
9,999.

Form of call:
decnum = B2D(binnum)

where,
binnum is an address variable with the
binary value to be converted

and
decnum is an address variable to which
the decimal value is to be returned.

Note: No check is made for the validity of the input.
*/

DECLARE BIN ADDRESS, (LODIGS.HIDIGS) BYTE;
/*

— Calculate the thousands decimal digit. --
*/

HIDIGS = SHL(LOW(BIN/1000),4);
BIN = BIN MOD 1000; /* The remainder */

/*
-- Next find the hundreds decimal digit and

combine it with the thousands digit. --
*/

HIDIGS = HIDIGS OR LOW(BIN/100);
BIN = BIN MOD 100; /* The remainder */

/*
-- Calculate the tens and ones decimal

186

digits and combine them as above. —
*/

LODIGS = SHL(LOW(BIN/10),4)
OR LOW(BIN MOD 10);

/*
~ Combine the two high order digits with

the two low order digits to form the
return value. —

*/
/* */

END
/*
END B2D;
EOF

RETURN COMB(HIDIGS, LODIGS);

B2D;

/* End of module. */
*/

HEX: DO;

/*
HEX: PROCEDURE (DIGIT) BYTE PUBLIC;

/*

*/

This procedure will convert an ASCII code to its
HEX or BCD value. A check is made for valid inputs.

Form of call:
hex$digit = HEX(ascii$code)

where,
ascii$code is a byte value containing the
ASCII code of the proposed hex digit. The
code will be tested to determine if it is
a valid input. If so then the hex digit
will be returned in hex$digit. If it is not
then OFFH will be returned in hex$digit.

DECLARE DIGIT BYTE;
/*

~ If ASCII code is greater then '@' then
digit should be A-F so subtract bias of 7. —

*/
IF DIGIT > 40H THEN

DIGIT = DIGIT - 7;
/*

-- If not greater then '@' but is greater
then '9' then input is invalid. --

*/
ELSE IF DIGIT > 3AH THEN

GOTO ERROR;

187

/*
~ If adjusted code is inside valid range
subtract final bias and return the result. —

*/
IF DIGIT < 40H AND DIGIT > 2FH THEN

RETURN (DIGIT - 30H);
/*

-- Else the input is invalid. —
*/

ERROR:
RETURN OFFH;

END HEX;
END;
BLANK: DO;
/*___ m f */

BLANK!PROCEDURE (BUF$ADDR,COUNT) PUBLIC;
/* ,

BLANK scans an ASCII buffer for leading zeros and
converts them to the ASCII code for a blank.

Form of call:
CALL BLANK(buf$addr,count)

where,
buf$addr is an address variable that points to
the buffer to be scanned, and count is the max.
number of leading zeros to be blanked.

- - */
DECLARE BUF$ADDR ADDRESS, (COUNT, I) BYTE;
DECLARE BUFFER BASED BUF$ADDR (10) BYTE;

Note; Although the above declare is for a buffer of
only ten bytes the buffer to be scanned is not limit
to ten since BUFFER is a based variable.

-- Iterate until! non-zero code encountered
or untill the count expires. —

I = 0;
DO WHILE (BUFFER(I) = '0') AND (I < COUNT);

BUFFER(I) = ' ';
I = 1+1;

END;
RETURN;

/* */
END &LANK;

/* */
END BLANK; /* End of module. */
EOF

188

ASCLO: DO;
/*

ASCLO: PROCEDURE (DIGIT) BYTE PUBLIC;
/*

This procedure converts a single Hexadecimal or
Binary Coded Decimal digit stored in the lower
nibble of a byte variable to its ASCII code.

Form of call:
ascii$code = ASCLO(digit$val)

where,
digit$val is a byte variable that contains
the actual digit to be converted in its lower
four bits,

and
ascii$code is a byte variable in which the
resulting ASCII code is to stored.

The upper four bits are automatically mask off.

DECLARE DIGIT BYTE;
/*

— Mask off upper nibble and add
ASCII base offset of 30H. —

*/
DIGIT = (DIGIT AND OFH) + 30H;

/*
-- Now adjust result if input was

Hex digit greater than 9.
Return the proper value.

*/
IF DIGIT > 39H THEN

. RETURN (DIGIT +7);
ELSE

" RETURN DIGIT;
/* */

END ASCLO;
/*
END ASCLO; /* End of module. */
EOF

CROUT: DO;
/*
DISPLAY: PROCEDURE (BUF$ADDR,COUNT) EXTERNAL;

DECLARE COUNT BYTE;
DECLARE 8UF$ADDR ADDRESS;

END DISPLAY;

189

/* */
CROUT: PROCEDURE PUBLIC;

/* -
Output Carraige return and line feed to terminal.

- */
CALL OISPLAY(.(ODH,OAH),2);
RETURN;

/* */
END CROUT;

/* */
END CROUT; /* End of module. */
EOF

D2B: DO;

/* */
D2B: PROCEDURE (BCD) ADDRESS PUBLIC;

/*- -
This procedure converts a binary coded decimal
integer (BCD) to a binary integer The input
value is expected to be a decimal integer between
0 and 9,999. The output value will be the
corresponding binary integer for that number
and would therefore range from 0 H to 270F H.

Form of call:
binnum = DZB(decnum)

where,
decnum is an address variable with the
decimal value to be converted

and
binnum is an address variable to which
the binary value is to be returned.

Note: No check is made for the validity of the input.

— '- - */
DECLARE (BCD,BIN) ADDRESS, DIGIT BYTE;
DECLARE THOUS (10) ADDRESS DATA

(0,1000,2000,3000,4000,5000,6000,7000,
8000,9000);

DECLARE HUNDS (10) ADDRESS DATA
(0,100,200,300,400,500,600,700,800,900);

DECLARE TENS (10) BYTE DATA
(0,10,20,30,40,50,60,70,80,90);

/*
-- Find the binary value for the

thousands digit and save in BIN. --

190

*/
DIGIT = SHR(HIGH(BCD),4);
BIN = THOUS(DIGIT);

/*
-- Find the binary value of the hundreds

digit and add it to BIN.
*/

DIGIT = HIGH(BCD) AND OFH;
BIN = BIN + HUNDS(DIGIT);

/*
-- Find the binary value of the tens and

ones digits and add these values to
BIN to get the returned binary value. «

*/
DIGIT = SHR(LOW(BCD),4);

/* */
RETURN (BIN + TENS(DIGIT) + (LOW(BCD) AND OFH));

/* */
END D2B;

END; /* end module */
EOF

191

NAME HEDCON
HEDCON: Head Control Software

**
* *
*
*

The following routines provide the required code
for controlling up to four radar heads on the
Land Based Radar Polarimeter System. Utilities
provided include software for controlling and
monitoring transfer switches in the radar heads.
These switches are intended for use in selecting
transmit and receive polarizations and for
setting the heads in calibrate or operate modes.

**
* *
**

Port Address Equates

CALCON EQU

INDENB EQU

RFHCON EQU

OE8H

OE9H

OEBH

Calibration Control - Port A of
the 8255 programmed for Mode 0
output operation.

Indicator Enable - Port B of
the 8255 programmed for Mode 0
output operation.

RF Head General Control - Port
C (lower half only) of the 8255
programmed for Mode 0 output.
[NOTE: OEBH is not the address
of Port C! It is intended to
use the Bit Set/Reset feature
of the 8255 and OEBH is there-
fore the address of the 8255's
control port.)

INDRET EQU

PPICON EQU

OEAH

OEBH

; Indicator Return - Port C (upper
; half only) of the 8255 set for
; Mode 0 input operation.

; Programmable Peripheral Interface
; Control Register - Command port
: of the 8255 device.

192

Constant Equates

PPICMD EQU 10001000B PPI Command Word used to program
8255 as follows:

GROUP A - Mode 0
Port A - Output
Port C Upper - Input

GROUP B - Mode 0
Port B - Output
Port C Lower - Output

Horizontal Receive Polarization
control word used to reset the
Receive Polarization Control bit
(Port EA, Bit 3, J2-18) to off,
selecting horizontal polarization.

VERRXP EQU 00000111B ; Vertical Receive Polarization
; control word used to set the
; Rx. Polarization Control bit to

selecting vertical pol.

HORRXP EQU 00000110B

HORTXP EQU 00000100B

VERTXP EQU 00000101B

RF10FF EQU 00000010B

RF10N EQU 00000011B

RFOOFF EQU OOOOOOOOB

RFOON EQU 00000001B

on,

; Horizontal Transmit Polarization
; control word used to reset the
; Tx. Pol. Control bit (Port EA,
; Bit 2, J2-20) to off, selecting
; horizontal pol.

; Vertical Transmit Polaization
; control word used to set the
; Tx. Pol. Control bit to on,
; selecting vertical pol.

; Control word used to turn the
; Reserved RF Control 1 signal
; bit (Port EA, Bit 1, J2-22) off.

; Control word used to turn the
; Reserved RF Control 1 signal
; bit on.

; Control word used to turn the
; Reserved RF Control 0 signal
; bit (Port EA, Bit 0, J2-24) off.

; Control word used to turn the
; Reserved RF Control 0 signal

193

bit on.

UTILITIES

Public Declarations

PUBLIC HEDCON, INIHED, RXPCON, TXPCON, RFOCON
PUBLIC RF1CON, GENPAT, ENBIND, GETPOL, GETCAL
PUBLIC COPCON

Start of HEDCON Module

CSEG
HEDCON: ; Label to identify start of module.

INIHED - Initialize the PPI.

No inputs or outputs. Must be called prior to
using any of the other routines that use the 8255.

INIHED:
MVI

OUT

MVI
OUT

OUT

OUT

RET

A.PPICMD ; Simply load output register with
; command word defined above.

PPICON ; Output the command to the Control
; register of the 8255 PPI.'

A,0 ; Load output register with zero.
INDENB ; Output to Indicator Enable port to

; disable all indicator circuits.
RFHCON ; Output to RF Head General Control

; port to turn all those bits off.
CALCON ; Output to Calibration Control port

: to turn off all bits.

RXPCON - Receive Polarization Controller

Function: Set the receiver polarization transfer
switch to desired polarization.

Inputs: C - Desired Polarization: 0 = Horizontal,
Not 0 = Vertical

Outputs: None.
Destroys: A and Flags.

194

; Calls:

RXPCON:

Nothing.

RXPC05:

MOV A,C
ANA A
JZ RXPC10

MVI A,VERRXP

RXPC10:

OUT

RET

MVI

OUT
RET

RFHCON

A.HORRXP

RFHCON

Transfer desired pol. to A.
Test for A = 0 (Horizontal).
If it is 0 then set polarization
to horizontal.

Else set to vertical.
Load output register with bit
set control word for the Rx Pol.
control bit.

Output the control word to the
8255 control port.

All done, return.

Load output register with bit
reset control word.

Output word to 8255 control port.
Al 1 done, Return.

TXPCON - Transmit Polarization Controller

Function: Set the transmitter polarization transfer
switch to desired polarization.

Inputs: C - Desired Polarization: 0 = Horizontal,
Not 0 = Vertical

Outputs: None.
Destroys: A and Flags.
Calls: Nothing.

TXPCON:

TXPC05:

TXPC10:

MOV A,C ; Transfer desired pol. to A.
ANA A ; Test for A = 0 (Horizontal).
JZ TXPC10 ; If it is 0 then set polarization

; to horizontal.
Else set to vertical.
Load output register with bit

; set control word for the Tx Pol.
; control bit.

RFHCON ; Output the control word to the
; 8255 control port.
; All done, return.
•

A,HORTXP ; Load output register with bit
; reset control word.

RFHCON ; Output word to 8255 control port,
; Al 1 done, Return.

MVI A,VERTXP

OUT

RET

MVI

OUT
RET

195

RFOCON - RF Reserved Signal 0 Controller

Function:

Inputs:

Outputs:
Destroys:
Calls:

Set the Reserved RF Control 0 signal to the
desired level (ON or OFF).

C - Desired level: 0 = OFF (low level),
Not 0 = ON (high level).

None.
A and Flags.
Nothing.

RFOCON:

RFOC05:

RFOC10:

;

MOV
ANA
JZ

MVI
OUT
RET

MVI
OUT
RET

A,C
A
RFOC10

A,RFOON
RFHCON

A.RFOOFF
RFHCON

Transfer desired level to A.
Test for A = 0 (OFF).
If it is zero set signal to off.
Else set signal to on.
Load bit set control word.
Output to 8255 control port.
All done, return.

Load bit reset control word.
Output to 8255 control port.
All done, return.

RF1CON - RF Reserved Signal 1 Controller

; Function:

; Inputs:

; Outputs:
; Destroys:
; Calls:

RF1CON:

RF1C05:

RF1C10:

MOV
ANA
JZ

MVI
OUT
RET

MVI
OUT
RET

Set the Reserved RF Control 1 signal to the
desired level (ON or OFF).

C - Desired level: 0 = OFF (low level),
Not 0 = ON (high level),

None.
A and Flags.
Nothing.

A,C ; Transfer desired level to A.
A ; Test for A = 0 (OFF).
RF1C10 ; If it is zero set signal to off.

; Else set signal to on.
A.RF10N ; Load bit set control word.

RFHCON ; Output to 8255 control port.
; All done, return.

A.RF10FF ; Load bit reset control word.
RFHCON ; Output to 8255 control port.

; Al 1 done, return.

196

GENPAT - Generate Circuit Control Bit Pattern

Function:

Inputs:

Outputs:
Destroys:
Calls:

Description:

Used to translate a Head No. and Circuit
No. to a specific bit pattern which can be
used to turn on a corresponding circuit
(port bit) and turn all others (bits) off.

C - Desired Head No. (1, 2, 3, or 4).
E - Desired Circuit No. (0 or 1).
A - CCBP (Circuit Control Bit Pattern).
A, C and Flags.
Nothing.

This subroutine will convert the Desired
Head No. and Circuit No. into a Shift
Count which will in turn be used to create
a Circuit Control Bit Pattern (CCBP).
The following table shows the CCBPs for
the range of inputs.

Head No. Circ. No. Shift Count CCBP

1
2

3

4

0
1
0
1
0
1
0
1

0
1
2
3
4
5
6
7

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

GENPAT:
MOV
OCR

MOV
MOV
ANI
ADD
MOV

A,C
A

ANI 0000001IB
ADD A

C,A
A,E

0000000IB
C
C,A

GENP10:
MVI A.00000001B

RZ

Transfer desired head no. to A.
Subtract 1 to change 1-4 to 0-3.
Mask off to reject 4 thru F Hex.
Double number to translate 0, 1,
2, & 3 to 0, 2, 4, & 6.

Save result in C fo a moment.
Transfer Desired Circuit No. to A.
Mask off to reject 2 thru F Hex.
Add this result to previous result
to get Shift Count and save in C.
Load register with basic pattern.

If Shift Count is zero return this
pattern.

197

RLC
OCR
JMP GENP10

Rotate Pattern to left one bit.
Decrement Shift Count.
Repeat till done.

ENBIND - Enable Indicator Circuit

Function:

Inputs:

Outputs:
Destroys:
Calls:

Description:

ENBIND:
CALL

OUT

NOP
NOP
NOP
NOP
RET

Enable a specified indicator circuit for a
specified radar head.

C - Desired
E - Desired

Head No. (1,
Circuit No.:

2,
0
1

3, or
= Tx.
= Rx.

Pol./Cal
Pol.

None.
A, C, and Flags.
GENPAT - Generate Pattern.

The routine first calls GENPAT to aquire a
pattern used to enable the desired indicator
circuit. This pattern is output to INDENB,
the Indicator Enable port, to effectively
turn on the desired indicator circuit and
disable all others. A low level voltage,
0 volts, is required to enable an indicator
circuit and a high level, 5 volts, would
disable the circuit. This requires that
the output buffers used on the INDENB port
be inverting type buffers (see GENPAT for
patterns generated).

GENPAT

INDENB

Get pattern for setting up
indicator enable circuit.

Output the pattern to the
Indicator Enable port.

Delay
to allow

circuit to

Al1 done, return.
settle

GETPOL - Get Polarization

Function: Read the polarization indicator return
for a specified circuit and specified
radar head.

Inputs: C - Desired Head No. (1, 2, 3, or 4).

198

Outputs:

Destroys:
Calls:

E - Desired Ci rcuit No

A - Indication Value:

,: 0 = Tx. Pol.
1 = Rx. Pol.

0 = Horizontal,
1 = Vertical,
2 = Failure 1,
3 = Failure 2.

A, C, E, and Flags.
ENBIND - Enable Indicator.

Description:
This routine will first enable the specified indica-
tor circuit for the specified radar head by calling
ENBIND with the required parameters. Next it will
read the Indicator Return port, INDRET, and test the
return signal to determine the state of the desired
transfer switch. A low voltage on an indicator
return signal would indicate a completed circuit.
A completed circuit on Indicator 0 should appear for
a switch in the horizontal state. Like wise on
Indicator 1 for a vertical state. If both Indicator
0 and 1 indicate the same state (closed or open) the
indicator system has failed. Failure 1 indicates
both indicators are open circuits and Failure 2
indicates both are closed circuits.

GETPOL:
CALL ENBIND ; Enable the proper indicator

; for the desired head.
IN INDRET ; Read the indicator return signal.
ANI 001100008 ; Strip out the Pol. Ind. bits and
RRC ; put them
RRC ; in 1st &
RRC ; 2nd bit
RRC ; positions,
OCR A ; Convert: OOB to 3, 01B to 0,
ANI 00000011B ; 10B to 1 and 118 to 2.
RET ; Return the value in A as the

; indication value.

GETCAL - Get Calibrate/Operate State

Function:

Inputs:
Outputs:

Read the Cal. Xfer
a specified radar

Indicator circuit for
head to determine the

state of that Cal./Op.
C - Desired Head No.
A - Indication Value:

Transfer switch.
(1, 2, 3, or 4).
0 = Calibrate,
1 = Operate,
2 = Failure 1,

199

3 = Failure 2.
Destroys: A, C, E, and Flags.
Calls: ENBIND - Enable Indicator.

Description:
Operation of GETCAL is much the same as GETPOL
except that it operates specifically for the
Cal. Xfer Indicator circuit. A closed circuit
on Indicator 0 should indicate a switch is in
the calibrate position and a closed ciruit on
Indicator 1 should indicate a switch is in the
operate position. Failure indications are the
same as for GETPOL.

GETCAL:
MVI E,0 ; Set Desired Circuit No. to 0

; for Cal. Xfer Indicator.
CALL ENBIND ; Enable Cal. Xfer Ind. circuit.
IN INDRET ; Read the indicator return signal.
ANI 11000000B ; Strip out the Cal. Xfer Ind. bits
RLC ; & put them in 1st
RLC ; & 2nd
OCR A ; Convert: 008 to 3,
ANI 0000001 IB ; 108 to 1 and 118
RET ; Return the value in

; indication value.

bit positions.
018 to 0,

to 2.
A as the

COPCON

Function:

Inputs:

Outputs:
Destroys:
Calls:

- Calibrate/Operate Controller

Operate the Cal./Op. Transfer switch for
a specified radar head into a specified
position.
C - Desired Head No. (1, 2, 3, or 4).
E r Desired State: 0 = Calibrate mode,

1 = Operate mode.
None.
A, C, and Flags.
GENPAT.

Description:
First the routine generates the require bit pattern
needed to set the Cal. Xfer Control port, CALCON,
to the proper state and then outputs this pattern
to the port. The effect is to turn all bits off for
the CALCON port except the required bit. Since the
output buffer on that port is expected to invert the
signals the pattern is complemented before output.

200

COPCON:
CALL GENPAT ; Generate the required pattern

; based on input values.
OUT CALCON ; Output the control pattern to the

; Cal. Xfer Control port.
RET : All done so return.

END

201

NAME
CSEG

IFIODR

* *
* IF I/O DRIVER *
* *

This package provides the basic input and
output drivers needed to communicate with the
IF Controller board.

Public Declarations.

PUBLIC INIFIO, IFWRIT, IFREAD

The following shows the I/O port designations
for all data lines, device select lines, and
control lines used to communicate with the IF
Controller.

Port Bit Signal Description

; E4
; E6
; E6
; £6
; E6
; E6
; E6

; Decl

INICMD EQU

0-7
0

1-3
4
5
6
7

Data Line Bits 0 thru 7
Select Bit 0 / Data I/O Control
Select Bits 1 trhu 3
E4 On-board Buffer I/O Control
Reset Signal
Secondary strobe/enable signal
Primary strobe/enable signal

are Control Words and Addresses.

10000000B ; Initial Command to I/O

IOCNTR EQU OE7H

IFCOMC EQU OE6H

control device (8255):
Port E4 - Mode 0 Output
Port E5 - Mode 0 Output
Port E6 - Mode 0 Output

Command Register Address for
I/O Control Device (8255).

IF Communications Control

202

APSCNT EQU OE5H

IFDATA EQU OE4H

; Port Address.

; APS Control Port Address.

; IF Data Bus I/O Port Address.

RSTCMD EQU 00100000B ; RESET Command for the IFC
; (sent thru IFCOMC).

INIFIO - Initialize Controller I/O Ports

Inputs:
Ouputs:
Destroys:

None.
None.
A.

INIFIO:
MVI A.INICMD

OUT IOCNTR

MVI A,RSTCMD

OUT IFCOMC

RET

Send the initial command
word to the IF's I/O port
controller (8255).

Output RESET signal to IF
Controller and disable
all of its recivers and
transmitters.

Return to calling routine.

; IFGSEL - IF Group Select Group Routine.
»
; Function: Send a 3-bit group select integer
; to the IF board via the IF Comm.
; Control port (IFCOMC).
; Input: C - Integer in the range 0 to 7.
; Outputs: None.
; Calls: Nothing.
; Destroys: A, H, L, and Flags.

IFGSEL:

IFGSdS:

MVI L.00000110B ; Start with bit 3 of IFCOMC.
MVI A,00000100B ; Initial bit mask set to get

; third bit of integer.

MOV H,A ; Save bit mask in H.
ANA C ; Mask out one bit of integer.
JZ IFGS10 ; If bit was zero use the bit

; reset command.
MVI A,l ; Else, the bit was one so use

203

the bit set command.
IFGS10:

XRI
ORA

OUT

OCR
OCR
RZ
MOV
RRC
JMP

00000001B
L

IOCNTR

L
L

A,H

IFGS05

; Compliment the set/ reset bit.
; Combine bit select no. with
; bit set/ reset command.
; Send Bit Set/Reset control
; word to the I/O Controller.
; Set IFCOMC bit select no. for
; next lower bit.
; If no. more bits then return.
; Else, adjust bit mask to get
; next lower bit of integer.
; Repeat till finished.

IFINEN

Function:

- IF Input Enable Operation.

Set required bits of the IF Comm.
Control Port (IFCOMC) to put IFC
into transmit mode and enable the
currently selected transmitter.
A.Destroys:

No Inputs or Outputs. Calls nothing.

IFINEN:

- First set IFC in Transmit Mode. -

MVI A, 000000018 ; Control word to set the IOC
; Bit (bit 0) of IFCOMC.

OUT IOCNTR ; Send the bit set control
; word to the I/O Controller.

- Then enable the selected transmitter. -

CALL IFSEON

RET

Use the IF Strobe/Enable set
routine.

Return to calling routine.

IFSEON - IFC Strobe/Enable Set Routine.

Function: Turn on both the primary and secondary
Strobe/Enable Signals of the IFC.

Destroys: A.

No Inputs or Outputs. Calls nothing.

204

IFSEON:
MVI A.00001101B

OUT IOCNTR

MVI A.00001111B

OUT IOCNTR

NOP
NOP
NOP
NOP
RET

Control word
Bit (bit 6)

Send the bit
word to the

Control word
Bit (bit 7)

Output it to

to set the PS/E
of IFCOMC.
set control
I/O Controller.
to set the SS/E
of IFCOMC.
the I/O Cntr.

Delay
a short

period
of time.

Return to caller.

IFSEOF - IFC Strobe/Enable Reset Routine.

Function: Turn off both the primary and secondary
Strobe/Enable Signals of the IFC.

Destroys: A.

No Inputs or Outputs. Calls nothing.

IFSEOF:
MVI A.00001100B

OUT IOCNTR

MVI A.00001110B

OUT IOCNTR

RET

; Control word to reset the PS/E
; Bit (bit 6) of IFCOMC.
; Send the bit reset control
; word to the I/O Controller.
; Control word to reset the-SS/E
; Bit (bit 7) of IFCOMC.
; Output it to the I/O Cntr.
»
: Return to caller.

IFDBTX - IF Data Bus Tx Mode Operation.

Function: Set the IFC Data Bus into the Tx.
Mode.

Destroys: A and B.

No Inputs or Outputs. Calls nothing.

Description: The program first reads the status
of output port E5 to see what is
currently written to it. Next the
I/O Controller is reprogrammed to

205

IFD8TX:
IN

put port E4 in Mode 0 output oper.
(ports E5 & E6 remain in Mode 0
output operation). Then the status
of port E5 is restored by sending out
the previously read data.

Input the status of port
E5 (APS Control Port).

Save this info, in 8.
Output Mode Control word to
the I/O Controller (8255).
Get back APSCNT port data &
restore the data to the port

MOV
MVI
OUT
MOV
OUT
RET

8, A
A.10000000B

IOCNTR
A,B
APSCNT

IFDBRX - IF Data Bus Rx Mode Operation.

Function: Set the IFC Data Bus into the Rx.
Mode.

Destroys: A and H.

No Inputs or Outputs. Calls nothing.

Description: The program first reads the status
of output port E5 to see what is
currently written to it. Next the
I/O Controller is reprogrammed to
put port E4 in Mode 0 input oper.
(ports E5 & E6 remain in Mode 0
output operation). Then the status
of port E5 is restored by sending out
the previously read data.

IFDBRX:
IN APSCNT

MOV H,A
MVI A.10010000B
OUT IOCNTR
MOV A,H
OUT APSCNT
RET

Input the status of port
E5 (APS Control Port).

Save this info, in H.
Output Mode Control word to
the I/O Controller (8255).
Get back APSCNT port data &
restore the data to the port,

IFWRIT - IF Write Routine

206

Function: Output data to the selected IF
device.

Inputs: C - Destination Device Select Number.
E - Data Byte to be output.

Outputs: None.
Destroys: A, H, L, Flags.
Calls: IFDBTX, IFGSEL, IFSEON, & IFSEOF.

Description: The following sequence is performed
for a write operation to the IF
Controller -

1) Program the 8255 to set up the IF data port
(IFDATA) for output. This inherently resets
the IF Communications Control Port which has
the following consequences:

a) Disable all IF Receivers (Rx) and
Transmitters,
b) Select Group 7 of the 8 IF Rx/Tx
pairs,
c) Set the I/O control bit for Output
which sets IF data transceiver in the
transmit mode and puts IFC into the
receive mode.

2) Transmit Device Seclect Number to the IF
Controller.

3) Output data byte to IFC

4) Send strobe signal to IFC.

IFWRIT:
; i)

; 2)

; 3)

; 4)

t

CALL

CALL

MOV
OUT

CALL
CALL
RET

IFDBTX

IFGSEL

A,E
IFDATA

IFSEON
IFSEOF

; Program Data Bus for Tx.

; Set the select bits of IFCOMC
; for the proper destination

; Place data on IF Data Bus.
j

; Turn the strobe line on.
; Turn the strobe off.
; All done.

•

IFREAD - IF Read Routine.

207

; Function: Input data from a selected source
; device in the IF Controller.
; Inputs: C - Source Device Select No.
; Outputs: A - Data read from Source Device.
; Destroys: A, H, L, and Flags.
; Calls: IFD8RX, IFGSEL, IFINEN, & IFSEOF.
>
; Description: The following sequence is performed
; for a read operation from the IFC -
>
; 1) Program the 8255 to set up the IF data port
; (IFDATA) for input. This inherently resets
; the IF Communications Control Port which has
; the following consequences:
; a) Disable all IF Receivers (Rx) and
; Transmitters (Tx),
; b) Select Group 7 of the 8 IF Rx/Tx
; pairs,
; c) Set the I/O control bit for Output
; which sets IF data transceiver in the
; transmit mode and puts IFC into the
; receive mode.
; d) Remove the reset signal that may
; have been present on the IFCOMC port.
; (bit 5 of IFCOMC).
»
; 2) Send Source Device select no. to the IFC.
»
; 3) Set the I/O Control Bit for Input (which sets
; the IF data transceiver in the receive mode and
; puts the IFC in the transmit mode) and send the
; transmit enable signal to IFC.
•
>

; 4) Read the data in from the IFC Data Bus.•>
; 5) Remove the enable signal from the IFC.

IFREAD:
; i)

CALL IFDBRX ; Program the IF Data Bus for
; reception from the IFC.

; 2)-
CALL IFGSEL ; Transmit the source device

; select no. to the IFC.
; 3)

CALL IFINEN ; Enable the selected IFC
; transmit device.

208

IN IFDATA ; Read the IFC Data bus.
MOV H,A ; Save Data in H.

; 5)
CALL IFSEOF ; Turn the IFC Enable off.

9

MOV A,H ; Put data back in A and return.
RET

END

209

$TITL£('AIHTSK: Analog Input Handler Task, CWK-82')

AIHTSK: DO;
/*

Name: AIHTSK - Analog Input Handler Task.
Priority: 130.

Message From/To Via Comments
Receives: AIREQM Any Task AIREQX Request for

AIH Services.
Sends: AIREQM Requesting User Response to

Task Exch. Task when done.

Pub. Procs. Used: RQCXCH, RQWAIT, RQSEND

Function: This task services requests for analog input
from the iSBX-311 Multimodule Analog Input
board. The task will convert a single channel
once or repetitively up to 256 times or scan a
group of channels one time only.

Request:
The requesting task must build a message in memory

in order to request the AIHTSK service. The message must
be sent to AIHEX6. The following must be passed in it:

LENGTH:
TYPE:

HOME EXHG:
RESPONSE EXCH:

CHANNEL:

DATA POINTER:

COUNT:

ACTUAL:

14.
AI$SNGL$TYPE = 100 for single channel conversion
AI$SCAN$TYPE = 101 for multi-channel scan conv.
Not Used.
Address of user defined exchange to which
AIHTSK will send the request message to
when it has finished the requested service.
Channel No. to be converted. For TYPE=101
this is the 1st channel of the group and
others are sequential no.s greater than this.
(One Byte.)
Address of array that is to receive the data.
The elements of the array should equal COUNT
and each element is two bytes. Only the lower
twelve bits contain data (upper 4 are zero).
(Two Bytes.)
Number of times that a single channel is to be
repetitively converted for TYPE=100 or number of
channels to be converted for TYPE=101.
(One Byte.)
Number of data elements that were obtained by
AIHTSK. This value is returned by AIHTSK, If

210

not same as COUNT then a failure occured.
(One Byte.)

**
*/
$EJECT
/*

> RMX/80 LITERALS
*/
$INCLUDE(:F2:EXCH.ELT)
$INCLUDE(:F2:MSG.ELT)
$INCLUDE(:F2:COMMON.ELT)
$INCLUDE(:F1:AIHTSK.ELT)
/*

> EXTERNAL RMX/80 PROCS.
*/

/* RQSEND AND RQWAIT */
$INCLUDE(:F2:SYNCH.EXT)

/* RQCXCH */
$INCLUDE(:F2:OBJMAN.EXT)
/*

> EXTERNAL RDADS PROCS.
*/

/* COMB */
COMB: PROCEDURE (HIB,LOB) ADDRESS EXTERNAL;

DECLARE (HIB,LOB) BYTE;
END COMB;

/*
> EXCHANGES

*/
DECLARE AIREQX EXCHANGE$DESCRIPTOR PUBLIC; '

/*
> LOCAL VARIABLES, CONSTANTS, AND LITERALS.

V
DECLARE SBX$BASE$ADDR LITERALLY 'OCOH1 ; /* 05 on iSBC-80/24

*/
DECLARE SBX$NEXT$ADDR LITERALLY 'OC1H';
DECLARE HI$DAT LITERALLY 'SBX$BASE$ADDR';
DECLARE STATUS LITERALLY 'SBX$NEXT$ADDR';
DECLARE LO$DAT LITERALLY 'SBX$NEXT$ADDR';
DECLARE CHAN$SEL LITERALLY 'SBX$BASE$ADDR';
DECLARE AIREQM$PNTR ADDRESS;
DECLARE (HIVAL,LOVAL,I,CHAN) BYTE;
DECLARE OATABUFPNTR ADDRESS;
DECLARE WHOLE$VAL ADDRESS;
DECLARE DATA$BUF BASED DATA$BUF$PNTR (1) ADDRESS;
DECLARE EOC$MASK LITERALLY '00000001B1;
DECLARE NOT$EOC LITERALLY '= EOC$MASK';

/*
> MESSAGES

211

*/
DECLARE AIREQM BASED AIREQM$PNTR AIHMSG$DESCRIPTOR;

/* */
$EJECT
AIHTSK: PROCEDURE PUBLIC;
/*

> Start Up Initialization for AIHTSK.
*/

HI$VAL = INPUT(HI$DAT); /* Reset the EOC/ bit of 311 */
/*

> Main Processing Loop.
*/

DO FOREVER;
/* Wait indefinetly for request. */
AIREQM-SPNTR = ROWAIT(.AIREQX,0);
AIREQM.ACTUAL = 0;
DATABUFPNTR = AIREQM.DATA$PNTR;
CHAN = AIREQM.CHANNEL;
I = 0;
/* Check for proper message type. */
IF AIREQM.TYPE = AI$SNGL$TYPE
OR AIREQM.TYPE = AI$MULT$TYPE
/* Perform repetitive conversions or multi-

channel scan. */
THEN DO WHILE I < AIREQM.COUNT AND CHAN < 16;

/* Command SBX311 to convert a channel. */
OUTPUT(CHAN$SEL) = CHAN;
DO WHILE (INPUT(STATUS) AND EOC$MASK) NOT$EOC;

; /* Wait for EOC signal from 311. */
END;

LO$VAL = INPUT(LO$DAT); /* Input the data. */
HI$VAL = INPUT(HI$DAT); /* Inherent EOC/ reset. */
WHOLE$VAL = COMB(HI$VAL,LO$VAL);
/* Transfer data to the users buffer. */
DATA$BUF(I) = SHR(WHOLE$VAL,4);
AIREQM.ACTUAL =!:=!+!;
IF AIREQM.TYPE = AI$MULT$TYPE THEN CHAN = CHAN + 1;

END;
/* All through so send response to user. */
CALL RQSEND(AIREQM.RESPONSE$EXCHANGE,AIREQM$PNTR);

END; /* * * End of Main Processing Loop. * * */
/* */
END AIHTSK; /* End of Analog Input Handler Task Procedure. •*/
/* */
END; /* End of AIHTSK Module. */

212

The REMOTE SENSING CENTER was established by authority of the Board of Directors of
the Texas A&M University System on February 27, 1968. The CENTER is a consortium of four
colleges of the University; Agriculture, Engineering, Geosciences, and Science. This unique
organization concentrates on the development and utilization of remote sensing techniques and
technology for a broad.range of applications to the betterment of mankind.

