
Progress Report

Experimental Study Using Nearfield Acoustical Holography of Sound
Transmission through Fuselage Sidewall Structures

NASA Grant NAG 1-216

J. D. Maynard
Department of Physics

The Pennsylvania State University
University Park, PA 16802



This report describes the work accomplished in the project "Experimental

Study Using Nearfield Acoustical Holography of Sound Transmission through

Fuselage Sidewall Structures" (NASA grant NAG 1-216) beginning October 15,

1983. Briefly, the project involves the development of the Nearfield

Acoustic Holography (NAH) technique (in particular its extension from single

frequency to wideband noise measurement) and its application in a detailed study

of the noise radiation characteristics of several samples of aircraft side-

wall panels. With the extensive amount of information provided by the NAH

technique, the properties of the sound field radiated by the panels may be

correlated with their structure, mounting, and excitation (single frequency or

wideband, spatially correlated or uncorrelated, structure-borne or air-borne).

As discussed in the renewal proposal of August 1983, the work accomplished

at the beginning of this grant period included:

1) Calibration of the 256 microphone array and test of its accuracy.

2) Extension of the facility to permit measurements on wideband noise

sources. The extensions included the addition of high-speed data

acquisition hardware and an array processor, and the development of

new software.

3) Installation of motion picture graphics for correlating panel motion

with structure, mounting, radiation, etc.

4) Development of new holographic data processing techniques.

A summary of the effort expended since the beginning of the current grant

period is presented below:
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1. 'Publications and presentations.

Considerable time was spent in the preparation of papers and talks

describing the new features (listed above) of the NAH technique and its

applications. A list of the papers, etc. (not including colloquia and

seminars) is as follows:

a) A plenary session talk was presented at the 106th meeting of the

Acoustical Society of America in San Diego (November 1983). The

title was "Nearfield Acoustical Holographic Techniques Used to

Visualize Radiated Sound Fields."

b) A paper providing a general review of the NAH technique in theory,

development, and application has been submitted to J. Acoust. Soc.

Am. The title is "Nearfield Acoustic Holography (NAH): I. Theory

of Generalized Holography and the Development of NAH." This paper

reviews much of our progress relevant to this grant; rather than repeat

the discussion of the technical accomplishments here, a preprint of

the paper is presented in Appendix I.

c) A technical paper presenting the details of the NAH holographic

reconstruction algorithms has been prepared for J. Acoust. Soc.

Am. The title is "Nearfield Acoustic Holography (NAH): II.

Computer Algorithms." A preprint of this paper will be forwarded in

the near future, pending editorial corrections.

d) A master's thesis entitled "Test of the Nearfield Acoustical Holography

Technique Using an Unbaffled Uniformly Oscillating Disk" has been

completed by Todd Beyer. A paper will be prepared from this thesis.

e) Six talks were presented by the graduate students and research

associate working on the NAH project at the 107th meeting of the

American Acoustic Society in Norfolk (May 1984). The titles of these

talks were:
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The Implementation of Nearfield Acoustic Holography with an

Array Processor.

Experimental Studies of Acoustic Radiation for Unbaffled Complex

Planar Sources with Nearfield Acoustic Holography.

Advances in Nearfield Acoustical Holography (NAH) Algorithms I.

Green's Functions.

Advances in Nearfield Acoustical Holography (NAH) Algorithms II.

Zoom Imaging.

Holographic Reconstruction of Odd-shaped 3-D Sources.

Nearfield Holography for Wideband Sources.

For further details on this work, see the abstracts in Appendix II.

2. Controlled noise synthesizer.

In order to begin controlled studies of noise sources, it was necessary

to construct a noise synthesizer to produce well characterized types of noise.

As discussed in the original proposal, we wish to be able to vary both the

temporal and spatial coherence of the forces driving a panel in order to

observe how coherence effects the radiated sound field, in particular we wish

to see how both types of coherence effect circulating energy flow patterns

(which always occur with single frequency point excitation) and radiation

efficiency.

Graduate student Donald Bowen has constructed an electronics unit which

contains a computer and clock interface and four identical channels consisting

of read/write memory, digital-to-analog (D/A) converters, and filters. Through

the computer interface, number sequences having a preselected coherence are

loaded into the memories of the four channels. The clock interface is connected

to the data acquisition clock of the NAH array so that readout of the noise

sequence through the D/A converters to the drivers (as many as four, spatially
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distributed) exciting the panel(s) is synchronized with the hologram recording.

An extra advantage of using this separate noise synthesizer (rather than using

the computer's D/A directly) is that the computer is free to perform the re-

constructions of the previous hologram, while the current hologram recording

occurs off-line.

It should be noted that this device is ideally suited for determining the

most efficient method for active cancellation of panel radiation; both the panel

excitation (possibly wideband) and the cancellation signal may be preselected in

order to permit a controlled study of the radiated field.

3. Measurements with structure-borne excitation.

Upon completion of the new data acquisition system and programing of the

new array processor, a program of measurements on several samples of ribbed

panels,was initiated. The panels were point excited at a number of resonance

frequencies, and vibration patterns, maps of the acoustic vector intensity

field, and radiation efficiencies were obtained in each case. Research Associate

Yongchun Lee, whose Ph.D. research was in structure vibration, wrote a computer

program foe modeling the vibration and radiation from simulated ribbed panels.

The computer modeling is now being used to search for systematic behavior in the

correlation between the properties of the panel and the properties of the radiated

sound field. The results of this work were reported at the Norfolk ASA meeting

(see relevant abstract in Appendix II).

4. Air-borne sound excitation facility.

One of the major tasks of the original proposal was to compare the radiated

sound fields between panels driven with structure-borne sound and with air-borne

sound. When making measurements while driving with air-borne sound, it is

of course necessary to isolate the driving field from the re-radiated

(transmitted) field, as in a conventional transmission loss measurement.

Usually such measurements are made with two rooms separated by a massive wall
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containing the test panel. Rather than try to transport our holographic array

to such a facility, we decided to construct a less elaborate device, based on

one used to test aircraft panels at NASA Langley. This device, shown in the

attached figure, uses the sound pressure in a relatively small, carefully

sealed chamber to drive the aircraft panel. The sound pressure in the chamber

is driven by nine loudspeakers in the wall of the chamber. The sound from the

backside of the speakers is prevented from diffracting into the radiated field

of the panel by nine sealed boxes, packed with fibreglass wool, enclosing the

backs of the speakers.

Nearfield holographic measurements of the samples of aircraft panels

driven with airborne sound are now in progress. Tests of the panels driven

with structure-borne sound will be repeated with the panels mounted in the

new device, since the boundary conditions at the edges of the panels will be

different from the earlier measurements with free-edge conditions. Once all

the holographic reconstructions are complete, they will be examined for systematic

features relating panel structure, mounting, and excitation to the radiated

sound field.
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APPENDIX i

Nearfield Acoustic Holography (NAfl)

I. Theory of Generalized Holography and the Develoment of NAH

J. 0. Maynard, E. G. Williams,* and Y. Lee

The Pennsylvania State University

Department of Physics

University Park, PA 16802

Because its underlying principles are so .fundamental, holography has been

studied and applied in many areas of science. Recently a technique has been

developed which takes the maximum advantage of the fundamental principles

and extracts much more information from a hologram than is customarily associated

with such a measurement. In this paper the fundamental principles of holography

are reviewed, and a sound radiation measurement system, called Neatfield

Acoustic Holography, which fully exploits the fundamental principles, is described.

•Present address: Naval Research Lab.
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I. INTRODUCTION

Since the time of its conception around 1950, holography1 has become an increas-

ingly powerful research tool. However, in conventional optical and acoustical

holography the full potential of the technique has not been realized. In

acoustical holography one can obtain much more information from a hologram

than is customarily associated with such a measurement. In this paper we outline

the fundamental theory and experimental and signal processing requirements for

what we refer to as "generalized holography" which fully exploits the potential of

the technique. We also describe the practical application of generalized

holography in an actual experimental measurement system called Nearfield Acoustical

Holography (NAH).

On a fundamental level, the great utility of holography arises from its

high information content; that is, data recorded on a two-dimensional surface

(the hologram) may be used to reconstruct an entire three-dimensional wavefield,

with the well-known result of obtaining three dimensional images. A popular

science magazine once noted that if a picture is worth a thousand words, then a

hologram is worth one-thousand to the three-halves power, or approximtely 32,000

words. In the case of digitally processed holograms this statement is literally

correct; if a sampled two-dimensional hologram contains 1000 digital words of

data, and if the reconstruction is performed for a cubical three-dimensional region,

then the resulting reconstruction will contain lOOO^/z digital words of data. An

actual digitally-sampled hologram may contain hundreds of thousands of words of

data, and the amount of reconstruction data is limited only by the restriction

of computation time. In generalized holography, the reconstruction may be

expanded in other ways as well. For example, in Nearfield Acoustic Holography,

the recording of the sound pressure field on a two-dimensional surface can be

used to determine not only the three-dimensional sound pressure field but also

the particle velocity field, the acoustic vector intensity field, the surface
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velocity and intensity of a vibrating source, etc. Furthermore each data point

in the hologram need not be simply phase information from single frequency

radiation, but may be a complete time sequence recording from incoherent "white-

light" or noise radiation; in this case one may not only reconstruct a three-

dimensional field, but may also observe its evolution in time. An interesting

application would be the visualization of energy flow from a transient source.

Generalized holography also removes the generally assumed limitations of conven-

tional holography, such as the resolution of a reconstructed image being limited

by the wavelength of the radiation^"6 and the limited field of view resulting

from conventional recording requirements.
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II. EXAMPLE OF APPLICATION

Before describing the theory and implementation of generalized holography,

it would be worthwhile to motivate its development by discussing a fundamental

research area in acoustics which dramatically illustrates the utility of the

technique.7 This research area is the study of the radiation of sound into a

medium, such as air or water, by a complex vibrator. The basic objective in this

area is to correlate properties of the vibrator [such as structural features,

modes of vibration, implementation of quieting techniques, etc.] with properties

of the radiated sound field [such as the total power radiated, the farfield

radiation pattern, the vector intensity field, etc.]. From the standpoint of

acoustic fundamentals, this is a very difficult problem even in the simplest

cases. For example: although the sound field of a plane, rectangular vibrator

in an infinite rigid baffle is easily calculated, the sound field of such a

vibrator in free space, without the baffle, is impossible to determine analytically

and can only be approximated with formidable calculations on a large computer.

If the vibrator is made more complex with the addition of ribs, etc., the

precise calculations become more difficult, and we are left with little on which

to establish an understanding of how the vibrator couples acoustic energy into

the medium.

Correlating vibrator features with sound field properties is a difficult

problem also from the standpoint of acoustic measurement. Consider for example

the simple case of a rectangular plate vibrating in a normal mode with some

definite nodal line pattern. The plate may have some nominal displacement amplitude

producing some nominal particle velocity amplitude vo and pressure amplitude

Po in the medium around the plate. If the plate is below coincidence8 [with

the acoustic wavelength in the medium larger than the typical plate dimension],

then relatively little acoustic energy will be radiated into the farfield. However,
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another plate, also producing a similar velocity amplitude v0 and pressure Po

may be above coincidence and subsequently radiate a relatively large amount of

acoustic energy into the farfield. The point here is that a measurement of only

vibrator displacements, particle velocity, or sound pressure around a vibrator

is not sufficient to determine how the vibrator delivers energy into the sound

field. At high frequencies, well above coincidence, there is not much problem

because areas of the vibrator which have large displacements are probably the

major energy producing sources. However, many sound sources such as rotating

machinery, musical instruments, etc. radiate at low frequencies such that the

radiated wavelengths are larger than the typical dimensions of the vibrator's

features. In this case, areas of large displacements or large pressure amplitudes

are not necessarily energy sources and may in fact be large sinks of acoustic

energy.

The quantity which is necessary for determing how a vibrator radiates sound

-»• ->•
is the acoustic intensity vector field S(r), which (for radiation at a single

frequency) is given by the product of the pressure amplitude, the velocity
_-»-->• i_ -»•-*•-»•

amplitude, and the cosine of the phase between them:' S(r) = •=• P0(r)vo(r) cos 9.

As a vector field, it gives, at each point in space, the rate and direction

of acoustic energy flow. At points on a vibrator where the normal component
«_

of this field is large, the location of a valid energy source may be assumed.

Because of this property of the intensity field there has been much interest

in its measurement, and methods such as the "two-microphone" technique^ have

been developed. However, such techniques are limited because they measure the

vector intensity [actually only one component of it] at a single point in space,

or in an average over some region in space. With such limited data one may

mistakenly identify an area as a radiating source when it may in fact be a part

of a circulating energy flow pattern.7 That is, energy may leave a part of a
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vibrator only to quickly [within a wavelength] turn around and flow back into

another part of the vibrator, subsequently being returned through the vibrator

back to the "source" area. Such a circulation represents real energy flow and

not a reactive type of energy as would be represented by the product of the

out-of-phase parts of the pressure and particle velocity fields. In order to

measure with confidence the sound energy radiation from a complex vibrator it

is necessary to obtain a detailed map of the energy flow field so as to correctly

identify possible circulating flow patterns. Mapping the vector intensity

field at tens-of-thousands of points in space with a point-by-point probe is

impractical; however, with Nearfield Acoustic Holography such information is

readily obtained. As will be discussed in more detail later, the features

of the actual NAH system are:

1) The technique involves only a single, non-contact measurement. The

system uses an open array of microphones positioned uniformly over a two-dimensional

surface.

2) It is a high-speed technique. With our prototype system we can put a

test source under the microphone array and produce displays of its sound radiation

within a matter of minutes. Such a fast turn-around time permits the researcher

to spend more time studying the vibrator/radiation relationship rather than

making tedious measurements.

3) The measurement covers a large area. With our prototype system we

can pinpoint acoustic energy sources within an area of nearly 10 m^-

4) The measurement area subtends a large solid angle from the sources.

This means that multidirectional sources can be measured without missing informa-

tion.

5) The technique has high spatial resolution; our prototype system can

pinpoint energy sources to within ~5 cm.



6) The output of the technique can be computer graphic displays of: .

a) The sound pressure field, from source to farfield.

b) The particle velocity field, from source to far field.

c) Modal structure of a vibrating surface (determined from the normal

particle velocity evaluated at the surface).

d) The vector intensity field, which can be used to locate the energy

producing sources and to map the energy flow throughout the

sound field.

e) The farfield radiation pattern.

f) The total power radiated.

For either single frequency, transient, or wideband noise sources, the fields

a) - e) listed above may be observed to evolve in real time through the use of

motion picture computer graphics. With such a complete set of visualized

information, one may more readily gain insight into the salient fetaures

(effects of fluid loading, for example) of the otherwise obscure interaction

between a complex vibrating structure and the acoustic medium. How generalized

holography permits so much information to be obtained efficiently is discussed

in the following section.
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III. CONVENTIONAL AND GENERALIZED HOLOGRAPHY .

In holography, localized sources, which may be scattering (or diffracting)

objects or active sources, produce a unique wavefield in a three-dimensional

region. Measurements of the wavefield are made on a two-dimensional surface,

usually a plane surface (the hologram plane), and this data is used to re-

construct the wavefield throughout the three-dimensional region; large amplitudes

in the reconstruction provide an image of the source object. That the data on

the two-dimensional surface is sufficient to reconstruct the three-dimensional

field is due to the fact that the field obeys the wave equation, and a known

Green's function (as will be discussed subsequently) can be used. It is worth

noting that in acoustics, holography is the only measurement technique which

takes full advantage of the simple but powerful fact that the field being measured

obeys the wave equation.

The description of holography in the paragraph above provides a basic

definition of generalized holography, and it might seem to be an appropriate

description of conventional holography as well. However, whereas the notions

of generalized holography are comprehensive and exact, conventional holography

has significant restrictions and limitations. In most applications of conventional

holography:

1) The hologram is recorded with monochromatic (single frequency) radiation

only. The conventional technique is not usually applied to incoherent white-light

or noise sources.

2) The hologram is recorded with a reference wave and primarily phase

information only is retained with a "square-law" detector.

3) The spatial resolution of the reconstructed image is limited by the

wavelength of the radiation;2-6 that is, two point sources cannot be resolved if

they are closer together than about one wavelength. In optical holography this
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is not a serious limitation since the optical wavelengths are so small. In

acoustics, however, the radiated wavelengths may be considerably larger than the

typical dimensions of the source features, and in this case it would be impossible

to pinpoint those features which might be relevant to the energy radiation. Thus

conventional acoustical holography must be rejected as a means of studying a large

class of long wavelength radiators such as vibrating machinery, musical instruments,

etc.

4) If the hologram records a particular scalar field, then only this scalar

field can be reconstructed. Thus in acoustical holography, if the sound pressure

field is recorded, then one cannot reconstruct an independent particle velocity

field or the vector intensity field, and one cannot image the true energy producing

sources or map the flow of acoustic energy. The dramatic advantages of the

technique described in the preceding section are not present in conventional

holography.

5) In order for the conventional holographic reconstruction process to

work, the hologram must be recorded in the Fresnel or Fraunhofer zone of the

wavefield (i.e., many wavelengths from the source).̂  Because of the practical

limitation of finite hologram size, the hologram may subtend a small solid

angle from the source. If the source is directional, some important information

may be missed by the hologram.

If the causes of the above limitations are examined, it is found that they

are not intrinsic to the fundamental theory of holography, but rather are due

to experimental limitations which are always present in optical holography,

but are not necessarily present in acoustical holography. In the past,

the techniques of acoustical holography were adopted from the technology of

optical holography, and methods of removing the limitations in long-wavelength

acoustical holography were not pursued.
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IV. FUNDAMENTALS OF GENERALIZED HOLOGRAPHY

A. General

As discussed in the preceding sections, generalized holography involves

the measurement of a wavefield on an appropriate surface and the use of this

measurement to uniquely determine the wavefield within a three-dimensional

region. This description indicates that generalized holography is equivalent

to the use of a Dirichlet boundary condition^ on a surface for which the

Green's function is known. One usually imagines boundary value problems as

having boundary conditions determined by a source (for example, a vibrating

surface in an acoustics problem); such problems are difficult because the

source may provide conditions for which there is no known Green's function.

In generalized holography, one simply measures a uniform (Dirichlet or Newman)

boundary condition on a surface for which there is a known Green's function.

The holographic reconstruction process is then simply the convolution (or

deconvolution) of the measured boundary values with the Green's function.

In theory this is a straightforward process; in practice some care must be

taken in order to identify and avoid the limitations of conventional holography.

The causes of the limitations occur in the method of measuring the boundary

data, in the formulation of the Green's function, and in the evaluation of the

convolution integral. These areas will be discussed in subsequent sections.

In later sections the calculation of quantities other than the measured wavefield

will be discussed. We begin with a description of the formal assumptions

required for generalized holography.

The basic assumption is that some sources are creating a wavefield <Kr,t)

[a function of position r in a three-dimensional region of space and time t]

which, within a three-dimensional region of interest, satisfies the homogeneous

wave equation
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v v - 2 (1>
C ^^ 2O t

Here 2 is the Laplacian operator and C is a constant propagation speed. It

is further assumed that:

1) There is a surface S enclosing the three-dimensional region of interest

for which there is a known Green's function G(r|rs) satisfying the homogeneous

Helmholz equation for r inside S and vanishing [or having a vanishing normal

derivative] for r = rg on S. Part of S may be at infinity; in practice the part

of S not at infinity will be a level surface of some separable coordinate system

which is in close contact with the sources.

2) There is a surface H (the hologram surface) which may coincide with S

or have a level surface parallel to S for which MrH,t) lor its normal derivative]

can be measured or assumed for all rjj on H and all t.

If the above conditions are met, then i|;(r",t) for r inside S can be uniquely

determined from i|;(rjj,t) with rjj on H. The exact procedure and a discussion

of the consequences resulting from deviations from the assumptions are presented

in the following subsections.

B. Time dependence

The first step in finding i£>U,t) from (̂rfj,t) is to Fourier transform in

time:

${r,u) = [ <M?,t)e1Wt dt (2)
1 —00

and

$<r ,u) = I <M?H/t)e
ia)t dt . (3)

H J-eo H

The symbol ~" indicates a complex field having an amplitude and phase depending

on r. The wave equation becomes the Helmholz equation

V2iJ5(r,u)) + k2(p(r,w) = 0
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with wavenumber k = w/c. It should be noted that formally the boundary data

(rg,t) must be measured for all time - °°<_ t <^ °°. ̂ Us't) may be measured
-V

within a finite time window of duration T if tpUs/t) is known to be periodic

with period T. For a noise source, one may assume that there exists .a time

scale T for which statistical averages become stationary within specified

limits of fluctuation;^ in this case also a finite Fourier transform is sufficient.

For most noise sources a reasonable T can be used; however there are exceptions

where T may be so large as to preclude the acquisition of a manageable amount

of data. An example would be a high frequency transient in a highly reverberant

room. In digital holography, (̂rjj,t) is sampled at N discrete points in

time tn - tf + nT/N (noting that the starting time tf may be different for

different positions on the surface H) . It is assumed that the sampling is

accomplished at the Nyquist rate to prevent aliasing in the time domain.

Expression (3) becomes

iw
m r

L / UJ /
H m ~ e

H
N-l

I
i2Tmm/N

n=0 n
T_
N (5)

with 4n = 27Tm/T and m is a non-negative integer less than N/2. The summation

in brackets can now be accomplished with a fast-Fourier-transform (FFT)

computer algorithm. The errors associated with the approximation (5) are not

unique to holography but are common to all signal processing involving

discrete, finite-window sampling. Since discussions of these errors can be

found in any text on signal processing,^4 we shall not concern ourselves with

them here; the more interesting aspects of generalized holography are found in

the spatial, rather than the temporal, signal processing. For the purpose of

the spatial analysis in the next sections, it can be assumed that the sources

are driven at frequencies 0% *• 2inn/T with m(< N/2) some integer and T and N
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fixed. For most sources it can be assumed that the wavefield generated by

these harmonic sources doesn't differ significantly from the actual wave-

field. If the actual operating frequency of the source is known, then signal

processing techniques can be used to correct (̂rg,tOjn). At any rate, for sources

operating at the set of frequencies (%, expression (5) becomes exact.

For the spatial analysis we consider a fixed value of co so that there is

a fixed wavenumber k = w/c and a single characteristic wavelength X = 2irc/o).

•N« V

The spatial problem is now to find the complex field $(r) satisfying the

homogeneous Helmholz equation

V2ij;(r) + k2ij;(r) = 0 (6)

- » • 7 " * " " * "
for r within the three-dimensional region of interest, given (̂rg) for rg

on the hologram surface H.

At this point the source of one of the limitations of optical holography

can be discussed. In order to carry out the spatial processing it is necessary

to use the complex field ']J(rH) , amplitude as well as phase, for each temporal

frequency. In theory fy(r-g) can be found from i|;(r{j,t); however, in optics there

is no detector fast enough to record the real time development of the wavefield.

Instead the recorded wavefield must contain only a single temporal frequency,

the source wavefield must be mixed with a reference wave, and the resultant

is recorded with a square-law detector.H The contributions to this (zero-

frequency) recording which come from the cross-terms in the mixed wavefield can

be used to obtain some information about ijXcg) ; however the amplitude and phase

information have become irretrievably intermixed. In practice, optical holograms

are measured many wavelengths from the source (in the Fresnel or Fraunhofer

zone) where the amplitude information has become unimportant (having a simple

spherical wave dependence on distance from the source) and only the phase

information is significant. The phase information contained in the optical
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~ •+•
hologram cross-terms can be processed as ̂ (r̂ ); however the lack of precise

amplitude and phase information and the requirement of recording in the Fresnel

or Fraunhofer zone results in the limitations of conventional optical holography

as described in Section II. These limitations will be discussed further in
-V

a later subsection. For generalized holography it is assumed that fy(rH) is

known.

In acoustical holography it is possible to record (̂rj£,t) with conventional

experimental techniques and precisely determine ij;(rjj) . It is interesting to

note that early implementations of acoustical holography were copies of optical

systems in that reference waves were used and square-law recordings were made

in the farfield of the source.15

C. Spatial processing
->- -V

Since it is assumed that the Green's function G(rlrg) satisfying the

homogeneous Dirichlet condition on the surface S is known, then the solution
~ -»•

(̂r) for Equation (6) can be found with a surface integration:1^

,± , 3G ,

where G/ n is the normal derivative of G with respect to rg. If the surface

S is the same as the surface H where ̂ (rjj) is measured or assumed then the
~ ->-

determination of '̂ (r) is complete. If H lies inside S then processing proceeds

as follows:

In practice, the Green's function G is known provided that the part of S

not at infinity is the level surface of a separable coordinate system. We denote

the three spatial coordinates of this system as £]_, £2* and £3' with the level
C

surface given by £3 = 53 , a constant. According to the assumptions of generalized
ti

holography (in Section II) the hologram surface is given by £3 = £3 , where
*» C

the constant £3 > £3 describes a surface inside S. In terms of Cl» C2' and £>3

Equation (7) becomes
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JJ
but this cannot be evaluated directly because $(CirC2»C3) known instead of

S H
$ (Ci»C2»?3) • *f expression (8) is evaluated for £3 = £3 we obtain

(8)

where GgcfafB) = (-!/%) 8G/9 n(a,8»n) I a -• The right-hand-side of
n = ̂ « - rS

c,3 t,3
Equation ^9^ ^s a two~dimensional convolution; by using the convolution theorem

S H
Equation (9) can be inverted to obtain $( Ej.,C2'£ 3) in terms of

Denoting a two-dimensional spatial Fourier transform by ~ and its inverse

by F~l, we have from Equation (9) and the convolution theorem:

^Solving for $(C]_,C2,C3) yields:

r[l (5?)= p—- I ifi (f"\-fl ~ I (ID

S H
Once '3(?i»C2'C3) is found from the hologram data $(Cif £2^3) » then equation (8)

is used to reconstruct $(£]_, C2'?3) over the entire three-dimensional region

inside S. It should be noted that, the two-dimensional Fourier transforms

used in Equations (10) and (11) may be in the form of decompositions in terms

of a complete set of eigenf unctions appropriate for the coordinate system used.

In fact, the Green's function is usually only known in terms of such a

decomposition. This feature will become evident in subsequent subsections.

If instead of $(rs) one determines its normal derivative with respect

- * • - * • 1 2
to rs, 3i|>/3n(rs), then Equation (7) is replaced by

where the Green's function G now must satisfy a homogeneous Neuman condition on

S. Processing in terms of a separable coordinate system proceeds as before.
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Derivatives of the field 'J'(r) with respect to the three spatial coordinates

may be transferred to the Green's functions in Equations (7) and (12), so

that calculations of such quantities simply involve processing with a different

kernel.

It is important to note that all of the formulations discussed above

[Equations (7)-(12)] are exact; there have been no approximations which would

lead to resolution limits, etc. Equations (7) and (12) are not approximate

expressions of Green's theorem nor are they approximate solutions to the Helmholz

integral equation; they should not be confused with the approximate formulas

used in diffraction problems.^ The Green's functions in Equations (7) and (12)

should not be confused with the free-space Green's function even though in some

cases it has an identical form. Historically Equations (7) and (12) are referred

to as the first and second Rayleigh integrals.16
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D. Plane generalized holography

In conventional holography, holograms are usually recorded on plane surfaces,

and in generalized holography the processing of plane holograms is the easiest

from a computational point of view. Other hologram surfaces (cylindrical,

spherical, etc.) can be used when they more closely conform to the shape of

the sources. When the sources have odd shapes which do not conform to the

level surface of a separable coordinate system, then plane generalized holography

may use in conjunction with a finite-element technique; this will be discussed

in the section of Further Developments. In any case the features of plane

generalized holography represent all forms of generalized holography. The

discussion of plane holography given below will present the basic equations

underlying the actual Nearfield Acoustic Holography computation algorithms,

and will illustrate in detail the departures from conventional holography and

the sources of problems in real applications of generalized holography.

For plane holography the separable coordinate system is of course the

cartesian system with rectangular coordinates (x,y,z). The surface 3 (described

in section A above) is taken to be the infinite plane defined by z = zs (a

constant) and the infinite hemisphere enclosing the z > zs half-space. It is

assumed that the sources lie in a finite region just below the zg plane, and

that the field which they generate obeys the Sommerfeld radiation condition^

[i.e. ,r (8(Jj/8n - iki|J) vanishes on the hemisphere at infinity]. As an aid in

understanding, it is useful to assume that the sources are planar, such as

vibrating plates, etc., lying in the zs plane; non-planar sources and depth

resolution below the zs plane will be discussed later.

For expression (7) relating <|>(x,y,z) to ̂ (x,y,zs), we need the Green's

function which satisfies the homogeneous Dirichlet boundary condition on zg»
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this is given

G(x,y,z|x',y',z') =
(Z-Z')

2 ik'(x-

/(x-x')2 + (y-y')2 + (z-z')2

The normal derivative (3/3z') at z' = zg is

-4TT G'(x-x',y=y',z-z ) =

(y-y')2 + (z+z'-2zc)
2

O

(13)

(x,y,z|x',y',zs) = - 2

so that Equation (7) becomes

ik/(x-x')2+ (y-y')2

(y-y')' 2
(14)

a=(z-zs)

~
•4)(x',y',z_)G'(x-x',y-y',z-z(,)dx

/dy'
S b

(15)

It should be noted that expression (13) is not the free space Green's function*-^

which has just one term in the form exp(ikR)/R. Although expression (14) follows

this form, the free space Green's function is not used in this boundary value

problem. Equation (15) is not an approximate form of Green's theorem with one

of the free-space Green's function terms dropped, as is sometimes mistakenly

assumed.

«_ Usually the hologram data is not recorded on the sources (z = zg) but

rather on a plane z = zg > zg above and parallel to the source plane. Evaluating

Equation (15) with z = ZH yields

(*'>y',z )G'(x-xf,y-y',z -z )dx'dy' (16)
O £\ A

where $(x,y,zH) is the hologram data (assumed to be available for all x and y

in the zg plane). Since zg - zg is a constant. Equation (16) is a two-dimensional

convolution, and $(x',y,zg) can be found in terms of $(x,y,zH) with the convo-

lution theorem. We denote the two-dimensional spatial Fourier transform as jp:

•If
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ff°° T/ . "i(kxx +
,k ,z ) = i]>(x,y,z )e

c y H JJ H

y
f̂ dx dy (17)

.and the inverse transform as F~^. With the convolution theorem we can rewrite

Equation (15) as

$(x,y,z) = F
'1

,k ,z )
A y o

,k ,2-z (18)

and Equation (16) can be written as:

Solving Equation (19) for $(kx,ky,zg) and substituting in Equation (18) yields:

-\

$(x,y,z) = F
"1 G ' ( k ,k ,z-z

^ y (20)

Equation (20) is the expression which gives the holographic reconstruction of

the three-dimensional field $(x,y,z) in terms of the (Fourier transformed)

hologram data ij}(xfy,zjj) .

From Equation (14) the two-dimensional spatial Fourier transform G' can

be found explicitly:

f , _/,_2 .2 ,2
_ 2 _i_T_ 2- s* \f*-

G' (k x , k y , z )=

2-k2-k2
x yJ

-z42+k2-k2
x v

x y

k2+k2

x y

(21a)

(21b)

The interpretation of G'(kxky,z-zs) and its role in Equation (18) is as follows:

The source plane at z = zg is considered as a superposition of surface

waves exp(ikxx + ikyy) with amplitudes <jXkx,ky,zg) . Since there are no restrictions

on the nature of the sources, then $(kx,ky,zs) can have non-zero values for any

point in the two-dimensional k-space (kx,ky). In fact, if the sources are of

finite extent in the zs plane, then $(kxfkyrzg) must be nonzero for arbitrarily
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large values of kx and ky.̂ -7 one must then consider both forms of G' (kx,ky,z-zg)

in Equation (21) and their role in Equation (18). When kx * ky £ k
2, then the

surface waves in the zg plane simply couple to ordinary propagating plane waves

in the three-dimensional region z > zs. These plane waves have amplitudes

(kx,kv,zg), travel in the direction given by the wavector (kx,ky, k2- kx - ky),

and have wavevector maganitude k so as to satisfy the original Helmholz Equation

(6). The kernal or "propagator in Equation (18), G"'(kx,ky,z-zg) = exp[i(z-zs)

k - kx - ky], simply provides the plane-wave phase change in going from the

zg plane to the z plane. The propagating plane wave emerges from the zg plane at

just such an angle so as to exactly match the surface wave in the zs plane.

When kx + ky > k , then there is no way that one can add a real z-component

to (kx,ky) and form a three-dimensional plane wave with wavevector magnitude k.
« A f\

If kx + ky > k then the length of the surface wave is shorter than X = 2tr/k;

having a three-dimensional plane wave (of wavelength X) emerging from the zg

plane at some angle can only match surface waves which have two-dimensional

wavelengths greater than or equal to X. Surface waves with kx + ky > k
2 must

be matched with evanescent waves^-^ which have imaginary z-components in their

wavevector, and which exponentially decay in the z-direction as exp[-(z - zs)

'kx + ky - k
2]. This is correctly represented in Equation (18) with the form

of G' in Equation (21b). The boundary in k-space which separates the propagating

plane wave region from the evanescent wave region is the "radiation circle,"

defined by kx + ky = k
2.

The situation described above is illustrated in Fig. 1. In this figure

the "FT" dashed lines represent the two-dimensional forward Fourier transform

going from an (x,y)-plane in real space to the (kx,ky)-plane in k-space, the "IFT"

dashed lines represent the inverse Fourier transform, and kz = Mk
2 - kx - kyl.

Features of the source in the zs plane which vary in space more slowly than X
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get mapped by the FT to points in k-space lying inside the radiation circle;

features of the source which vary in space more rapidly than X get mapped to

points in k-space lying outside the radiation circle. The wavefield in a plane

a distance z above the zg plane is determined in k-space by multiplying the

amplitudes $(kx,yv,zg) inside the radiation circle by exp(ikzz) }thus surface

waves varying more slowly than X simply undergo a phase change in moving to a

plane away from the sources), and by multiplying the amplitudes outside the

radiation circle by exp(-kzz) (so that surface waves varying more rapidly than

A suffer an exponential decay in amplitude in moving to a plane away from the

sources).
/̂

Having discussed the role of the propagator G' [Equation (21)] in radiation

from the Zg plane [Equation (18)], we now consider its action in the expression

for holographic reconstruction, Equation (20) . By inserting the expression
St.

for G' [Equation (21)] into Equation (20) we obtain:

iji(x,y,z) = F
-1 ,k ,

e
ik (z-zu) k2 + k 2<k 2

z H , x y
(22)

•k (Z~ZRX

x y

When z > zg, then Equation (22) is analogous to Equation (18) , and it represents

the phase change of the propagating plane wave components and the exponential

decay of the evanescent wave components in going from the zjj plane outward

(away from the sources) to the z plane. When z < z^, then the factor

exp[-ikz(ZH-Z)] reverses the phase change of the propagating plane waves, and

the positive exponential exp[+kz(zH-z)] restores the decayed evanescent wave

amplitudes to their original values in the z plane.

It should be noted that zg does not appear in Equation (22), nor will it

occur explicitly in any final reconstruction expressions. The role of the

surface S in the derivation of generalized holography is only to establish
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rigorously the region of validity of the final expressions. In real applications

of generalized holography, the 25 surface is the one parallel to the zg surface

which just touches the physical sources or scattering objects.

If we redefine kz to be a complex function of kx and ky as

(23)

then Equation (22) becomes, with

> k'

explicitly expressed:

-ik z
H

(2 TT)'

Equation (24) is of the form
fOO

(21t)

i (k x + k y + k_z)
dk dkx y (24)

i(kx kz)
(25)

which is the general solution of the Helmholz Equation (6) which one would obtain

using the method of separation of variables in cartesian coordinates. The two

constants of separation are kx and ky, the mode labels are kx and ky, and the

product solutions (eigenfunctions) are the propagating plane waves and the

evanescent waves:

;x,y,z) = -,

ik x iky izMc2 - k2 - k2

*» —' x y
e *

x ye e J

ik x ik y
X y2

e e •* e
k2 - k2

(26)

k 2 + k 2 > k 2

The reconstruction expressions of generalized holography may be derived quickly

from general solutions such as Equation (25). One simply evaluates the general

solution at the hologram coordinate, z = ZH, and then uses the orthogonality

of the product solutions to uniquely solve for the coefficients A(kxkv) in

terms of the hologram data $(x,y,Zg). The result is an expression of the form

of Equation (24). This separation of variable and eigenfunction technique
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will be used to derive the expressions of generalized holography for coordinate

systems other than cartesian; in non-cartesian coordinate systems the Green's

function is known only in terms of an eigenfunction expansion so that no

convolution expressions analogous to Equation (15) are available, and only

expressions analogous to Equation (25) can be used. For the derivation of the

expressions of plane generalized holography [Equation (18) - (22)], it would

have been easier to use separation of variables in cartesian coordinates and

expansions in terms of the eigenfunctions of Equation (26); however, the use

of the real-space Green's function G'(x-xf,y-y',z-zs) [Equation (14)] in the

convolution expression (15) will be necessary in dealing with the problem of

a finite hologram aperture in real applications of plane generalized holography.

At this point the wavelength resolution limit of conventional holography

should be discussed. The "resolution" of a field refers to how rapidly the

field varies in space. It may be quantitatively measured by Fourier transforming

the field in some direction (for example the x-direction) and then examining

the amplitudes for the different "spatial frequencies" kx. If in any direction

there are no amplitudes larger than some pre-defined cutoff value for spatial

frequencies beyond some value kmax, then the minimum distance over which the

field varies in space, or the resolution distance, is R E 2Vkmax. In generalized

holography the resolution is determined by the values of kx and ky for which

^(k^kyjZg) has a significant magnitude. As already discussed, if there are no

limits on the nature of the sources, then (̂kx,ky,zg) may have finite amplitudes

for arbitrarily large values of kx and ky. In the reconstruction expressions of

generalized holography (e.g., Equation 24) the intergrals in k-space extend over

the infinite domain, so that generalized holography has no intrinsic resolution

limit; as already stated the reconstruction expressions of generalized holography

are exact. The actual resolution limits of practical generalized holography
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will be discussed in the section on actual implementation; however the resolution

limit of conventional holography may be obtained immediately. In typical conven-

tional holography, holograms are recorded at a distance d in the Fraunhofer or

Fresnel zone of the sources (many wavelengths away from the sources, d » A) so
/N

that the hologram represents the Fourier transform of the sources (̂kx/d,ky/d,zs)̂ .

That is, the forward Fourier transform of generalized holography is performed by

the field propagation itself. However, what is wrong here (and ignored in most

textbooks on holography) is that this procedure does not work for the evanescent

wave components. The reasons that the evanescent waves are ignored is because they

decay (by the factor exp[-kz(z-zs)]) to an unmeasurable level in the Fraunhofer or

Fresnel zone. Taking 2-n/A as a typical value for kz, and taking 2A for (z-zs) ,

we have exp[-(2TT/A) (2X)1 = exp(-47i) « 10~*>, so that the evanescent waves

may decay by six orders of magnitude within only two wavelengths from the source.

On the other hand the propagating wave components maintain their amplitudes and

only change phase in traveling to the farfield (thus phase is more important in

conventional holography). In conventional holography (optical and acoustical)
s\

only the propagating wave components (ii(kx,kv,zg) with k£ + ky <_ k
2) are measured,

and only these are used in the reconstruction.2'5 With only these components

the^ maximum spatial frequency is kraax = k = 2ir/A, and the resolution distance is

R = Vkmax = A/2; thus the resolution of conventional holography is limited by

the wavelength of the radiation. If better resolution is to be obtained in

generalized holography, then the evanescent wave components must be measured;

furthermore, the reconstruction expressions (including the Fourier transforms)

must be evaluated numerically, since there are no techniques in Fourier optics

which can reconstruct the evanescent wave components.
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E. Calculation of other quantities

1. Field gradient (particle velocity field)

Once the three-dimensional wave field <jJ(x,y,z) has been determined, other
-*•

quantities such as the field gradient Vi;i can be determined. In acoustics,

where $ is the sound pressure field, the particle velocity field can be calculated

from

V(r) = (27)

where y is the fluid mass density. By taking the gradient operator inside the

integral in Equation (24), the expressions for the three particle velocity

components V rj = x,y,z, become

Vn(x,y,:
4iryc

x + k y)
x vy dk dkx y (28)

It is important to remember that in expressions such as (24) and (28), kz is a

complex function of kx and ky.

At this point it is worth considering solving Equation (20) for ijj(kx,kyZfj) in

terms of V2(x,y,zs)
 and using this in Equation (24). The result is

uc

4TT

ikz(z-zs)

x y

i(k x + k y)
e y dk dkx y X29)

which is the same result which would be obtained if the original problem had

been specified with Neuman instead of Dirichlet boundary conditions. [This

is the expression which would be used to predict the radiation from a planar

vibrator; the surface velocity vz(x,y,zg) might be determined from a structural

analysis program.] The important thing to notice here is the appearance of

kz (written out as k2 -kx-ky in Equation 29) in the denominator of the kernal
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(the term in brackets); on the radiation circle (k£ + ky = k
2) the kernal is

singular. This singular behavior must be kept in mind when one attempts to

evaluate Equation (29) using conventional computer techniques; this will be

discussed further in the section on actual implementation.

As already mentioned, finite aperture effects may be more readily handled

if one uses real-space convolution expressions rather than the Fourier transform

expressions such as Equation (29). If the convolution theorem is applied to

Equation (29) and the kernel is transformed analytically, then one obtains

<Mx,y,z) = — iuck V (x',y',z )
/(x-x')2+(y-y')2+(z-zs)

2
dx'dy' (30)

Equation (30) is the real-space convolution expression for the solution to the

Neuman boundary value problem, i.e., Equation (12) in cartesian coordinates;

the term in brackets is the Green's function evaluated at zs, and

iyck vz(x',y',zs) - 3̂ /3z on zs-

2. Farfield directivity pattern

A farfield directivity pattern can be determined if the cartesian coordinates

are written in terms of spherical coordinates r, 9, 4> defined by

x = r sinS cos® (31a)

y = r sin6 cos<j> (31b)

z = z = r cos9 (31c)
O

A complex directivity function D(0,<j)) may be defined by

5(r sin9 cos<j), r sin9 sincji, r cos9) TJ^

If expression (30) is used for $ with the large r approximation
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Ax-x') 2+ (y-y') 2+ (z-zs)
 2 * r - x' sin6 cos<|» - y' sin6 sin<J> (33)

then one obtains

}>) = iyck V (k sin9 cos<J>, k sin9 sin<(>, z ) . n<nz S \-j^i

Using Vz from the Fourier transform of Equation (28) (with z = zs) yields

-ik cos9(z -z_)
D ( 9 , d > ) =k cos9 ijj(k sin0 coscj), k sin6 sin<j>, z )i

ti
(35)

Thus the far field directivity pattern can be found from the Fourier transform of

the hologram data. Usually the phase factor is ignored. It is important to note

that since (k sin9 cos<|>}2+ (k sin6 sin*}))2 = (k cos8)2 _£ k2, then the farfield

directivity pattern depends only on those components 4>(kx,kv,z ) which lie inside

the radiation circle.

3. Second order quantities (acoustic vector intensity field, total power radiated)

From the three-dimensional field ty and its gradient vij; second-order products

may be determined. A particularly important example is the acoustic vector

intensity field, defined by

S(r) = i|;(r,t)V(rft)dt (36)
Jt0 •

«• ->-
where ty and V are the sound pressure and particle velocity fields, and T is a

suitable time scale^ for noise sources or the period for harmonic sources. With

the assumptions required to make Equation (5) an equality (i.e., harmonic sources),

then Equation (34) becomes a sum of independent frequency terms, each contributing

to the intensity field an amount:

S(?) = Re [£u)V*(rH (37)

This can be calculated from the hologram data using Equations (22) and (28).
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By integrating the normal component of the intensity field over a suitable

surface, the total power radiated may be obtained. For plane holography, the

total power radiated into the half-space away from the source plane is

P = ~ Re | t£(x,y,z)V*(x,y,z)dxdy (38)
— CO

for any z > zg. For some sources it may be known that ty or vz vanishes except

over some finite region, so that Equation (36) may be evaluated numerically. In

any case, Equation (36) may be rewritten using the identity

$(x,y,z)V*(x,y,z)dxdy = -±- 'j)(k ,k ,z)V*(k ,k ,z)dk dk (39), , ,
_„ Z 4TT2 J J -oo Y z * y xy

so that

= — Re if
2 J j _ o

(k ,k ,z) V*(k ,k , z ) d k d k (40)
X Y Z X y x y

From Equation (24) we have

ik . (z-z )
,k ,z) = $(k ,k z )e Z H (41)

x y x y n

and from Equation (28) we have

kz ikz(z~V
6 (42)

Keeping in mind that kz = /k2-k^-ky is a complex function, we have

(43)

... >k2
x y.

k 2 > k 2

Mow

P T~ ' :L" ( k + k ) / k ^^ (44)

Sir p

Like the farfield directivity pattern, the total power radiated depends only
s*.

on the components $(kx,kyzH) which lie inside the radiation circle. When
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Equations (33) and (42) ace evaluated numerically using actual hologram data,

care must be taken to insure that there is a sufficient density of data points

inside the radiation circle. This will be discussed further in the section on

actual implementation.

P. Cylindrical holography

As demonstrated by Equations (24) and (25) , the expressions of generalized

holography may be found by using separation of variables to find the general

solution to the Helmholz Equation (6) and then using the hologram data and the

orthogonality of the eigenf unctions to find the unique solution. In cylindrical

coordinates (P, <J>,z) the general solution (for sources contained just inside the

surface S given by P = PS and radiating outward) is

°° f° ' m ^
'}(p,<f>,z) =1 A (k )eim'e 2 H (k p) dk

m=-co J-oo
 m z m p

(45)
m z

where m is an integer, A^kj) are the eigenf unction amplitudes to be determined

from the hologram data, kp = k2-kz is a complex quantity analogous to kz

in Equation (23), and H^k P) is the Hankel function (when k2 < k ) or modified
P ~~

Hankel function (when kz > k ) behaving asymptotically as exp(i^k
2-k| p) or

<_ _̂̂ _̂_
exp(-^kz-k

2 P) . The modified Hankel function solutions are analogous to the

evanescent wave components of the cartesian coordinate eigenfunctions.

The eigenfunction amplitudes Am(kz) in Equation (43) can be found from

hologram data measured on the surface P=Pg, where Pg >_ Ps. The orthogonality

of the eigenfunctions is such that

r f2dz
J —00 ' ,

1

e e
, ik'z
i>e - 4ir26 6(k -k') (46)mm' z z

' -oo i „

Evaluating Equation (43) at P = Pg and using Equation (44) to solve for

yields
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(47)

where

-ik z,00 f

P (k fp ) = ~- dzm z n 2TT i j
d<J> $(p ,(J),z)e" ^e . ' (48)u

o

Substituting Ani(kz) in Equation (43) yields

00 .00

, _ 1 r I ? i]

m=-°° J -CO

, ik z
^e Z

H (k p )m p u
dk (49)

which is the analog of Equation (24). Again it should be kept in mind that

k = *k -kz is a complex function of kz. Other quantities such as the field gradient,

etc. may be calculated from 5(p,<J>,z) as for the cartesian coordinate solution.

The solution (47) is valid for p >_ PS» where p = PS is the smallest cylindrical

surface which just touches the physical sources or scattering surfaces.

G. Spherical holography

In spherical coordinates (r,8,o)/the general solution (for sources contained

within a spherical surface S defined by r = rs and radiating outward) is

i
£(r,e,4>) = [ I • A. Yg (8,d))h0(kr) '(50)

£=0 m=-2, 2* ** • I

where£ and m are integers, the Y£m(8,4)) are the spherical harmonics, and h (kr)

is the spherical Bessel function behaving asymptotically as exp(ikr). It is

interesting to note that there are no exponentially decaying functions in this

solution. The eigenfunction amplitudes Aom can be determined from hologram data

on a spherical surface t ** rH, with rH > rs, by using the orthonormalization

of the spherical harmonics. One obtains
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where

Substituting Ao

•TT f2TT

Sin9 d6 d* ̂ H'8'4
0 J 0

into Equation (48) yields

(6,4.)
hn(kr)

(51)

(52)

(53)

I

which is the analog of Equations (24) and (47).
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V. ACTUAL IMPLEMENTATION

A. General

The implementation of generalized holography in an actual system involves

acquisition of the hologram data and evaluation of the various expressions of

generalized holography. Because the features of the (hardware) system used

for actual data acquisition depend on many extraneous design variables, few

general comments may be made about data acquisition. On the other hand a number

of interesting general general comments can be made concerning the numerical evaluation

of the holography expressions. The following paragraphs discuss the general

features, problems, limitations, etc., associated with the actual implementation of

generalized holography. In these paragraphs it should be assumed that the comments

are about plane holography in particular but may be generalized to other coordinate

systems unless otherwise stated. The aspects of a particular hardware system

(used for data acquisition and processing) will be described in the section on

Nearfield Acoustic Holography.

B. Data acquisition

Concerning data acquisition, it can be assumed that the major temporal

frequency components are sampled at the Nyquist rate or faster, and that any other
*.

components at higher frequencies are filtered to a sufficiently small "noise"

level. The time-sampled data may then be analyzed to produce the temporal

frequency complex amplitudes '̂ (rg), as discussed in Section IV.A. In theory, the

hologram data must be known as a continuous function (i.e., known at all points

-̂
rg) over the hologram surface H which may be infinite in extent (spherical

holography being one exception). In practice, the hologram data can only be

sampled at discrete points on a surface of finite extent (referred to as the

hologram aperture). As far as the discrete sampling is concerned, one must be
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certain that the field ij;(rH) is being sampled at the spatial Nyquist rate. It

should be recalled that any spatial frequencies of the source which exceed

those of the characteristic radiated wavelengths exponentially decay with

distance from the source. Thus spatial sampling is provided with a natural

filter; as an empirical rule-of-thumb, we find that if the hologram sampling

is done at a distance d from the source, then the distance between sampling

points should be no larger than d [see section Example of Implementation: Nearfield

Acoustic Holography]. Discrete spatial sampling does not result in any

unusual problems in generalized holography. On the other hand, the finite

hologram aperture does result in fundamental problems which require special

processing techniques. Of course, the holography expressions which involve

integrals over infinite domains in space (as in plane and cylindrical holography)

necessitate that some assumption be made about the hologram (or source) data which

lies outside the finite hologram aperture. Practical limitations notwithstanding,

it can be assumed that the hologram aperture may be made sufficiently larger than

the sources (of finite extent) so that the field on the surface beyond the aperture

is not significantly different from zero. This is a reasonable assumption for

laboratory studies, but other techniques may be required for field measurements,

as discussed in the section on Further Developments. The special processing

required even when the field is zero outside the aperture is discussed in

subsection D below.

In addition to being finite and discrete, the actual measured hologram data

will contain some intrinsic error including background sound, electronic noise,

calibration errors, etc. The error level may be characterized by a dynamic range

D definied by

D = 20 logi0(
M/E) (54)
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where M is the maximum field amplitude which is measured and E is the amplitude

of the error. It is interesting that this dynamic range plays a role in determining

the spatial resolution of generalized holography, as discussed in the next sub-

section.

C. Resolution

A discussion of the resolution of the reconstructed fields of generalized

(plane) and conventional holography was presented in section IV.D. The

minimum resolvable distance is on the order of R = T/kmax' where kmax is the

highest spatial frequency for a measurable Fourier component ij; (kxkv,Z{j) . In

conventional optical and acoustical holography no evanescent waves are used in

the field reconstructions so that kmax = k and R = ̂ /2. In actual implementations

of generalized holography, the hologram is uniformly sampled at discrete

points in space; from the Nyquist theorem kmax <_^/a, were a is the distance

between the spatial sampling points, so that R >__ a. The sampling lattice

contstant a is only a lower limit for R because kmax may be further limited

by the ability of the hologram recording medium to measure all of the necessary

evanescent wave components, as discussed below.

In order for generalized holography to surpass conventional holography

in resolution, it is necessary to measure some evanescent wave components so

that kmax will exceed k. The evanescent wave components decay rapidly with

distance from the source, and some of the components, in traversing the distance

from the source to the hologram, will decay to a level below the error level

E of the hologram recording system. These evanescent wave components cannot

be used in the reconstruction, and this sets a limit on k̂ a*. In order to

quantify this, we assume that the source, at zg, has propagating and evanescent
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wave components with equal amplitudes; that is A = (typical 1$(kx,ky,zs>') *
s tne

same for some kx +• ky ̂ _ k as for some kx + ky > k . Since the propagating

wave components maintain their amplitude in traveling to the hologram plane,

then A <_ M, where M is defined in subsection B above. On the other hand, the

evanescent wave components in the hologram plane zg > zg will have amplitudes

/2 2 2
A exp[-"kx + ky - k (ZH - ZQ)]. In order for these to be used in the reconstruction

the amplitude must be above the error level E:

A exp _[- (55)

Using Equation (54) defining the dynamic range D of the hologram recording

system and the relation A < M, we obtain

(k2 + k2) < k2 +x y
D £n 10

_2 0 ( 2H"ZS )_
(56)

The expression on the right hand side of the inequality (56) is the upper limit

of usable values of (k2, + ky) and hence is kmax. The minimum resolvable distance

= ̂  Amax is now

D in 10
2V 1/2

(57)

Since the dynamic range term is usually much larger than 4/A , we have

R =
D in. 10

Thus in actual implementation of generalized holography, good resolution is

obtained by having a precise recording system (large dynamic range D) and by
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measuring as close to the sources as possible (small ZH-ZS). Measuring close

to the sources is no problem in generalized holography since no use is made of

Fourier optics and there is no requirement for recording in the Fraunhofer or

Fresnel zone.

D. Finite aperture effects: Wrap-around error

As already mentioned, practical data acquisition results in the hologram

being finite in size and discretely sampled. The processing of the hologram

field must also be finite and discrete in nature; that is, even if the hologram

data could be assigned some assumed a' priori values outside the data acquisition

range, the time and space limitations of the data processing hardware would still

restrict the hologram field to be finite in size. This finite aperture

restriction leads to interesting effects, in particular an error referred to

as wrap-around,1^ which fortunately can be controlled with proper processing

techniques. The wrap-around error and the techniques used to avoid it are

discussed in this section.

To emphasize that the wrap-around error results from improper data processing

rather than insufficient data acquisition, we shall assume that the actual

field in the hologram plane is negligible for points (x,y) outside the square

region defined by x = _+ L/2 and y = _+ L/2. Thus ij](x,y,zH) for (x,y) within the

finite L x L aperture accurately represents the full hologram plane.

The expressions of plane and cylindrical holography involve Fourier transforms

which are of course numerically evaluated with finite Fourier transforms and

with the FFT computer alogrithm in particular. The field tjj(x,y,zg) inside the

L x L hologram aperture is represented by the discrete series:

2ir . .
oo co „ i ~ (mx + ny)

\<*-"*H> -' I * *..„ "H". m=0 n=0
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/\ ~
where ̂ m>n(zH) is proportional to $(kx,kvzg) with kx = (m-N/2)7r/L, and

ky 3 (n-N/2)ir/L, and N is an integer limited by reasonable computation

times. This series evaluates to^(x,y,zg) exactly at a set of points inside the

L x L aperture, but outside the aperture it represents not the actual (negligibly

small) hologram field but rather the periodic extension of the field inside the
V

aperture. This periodic extension is illustrated in Fig. 2a; the small center

square represents the L x L aperture and the localized hologram field within

it, and the set of nine duplicate squares represents a portion of the infinite

periodic extension. This extended field looks like a field generated by the

actual source and an infinite number of image sources.

Equation (16) shows that propagation of the field away from a plane

involves the convolution of the Green's function with the field in that plane. The

Green's function, of approximate form exp(ikR)/R (illustrated in Fig. 2b) has

infinite extent (indicated by the arrows in Fig. 2b). If this is convolved with

the periodic extension of the field (Fig. 2a), then contributions from the

images outside the L x L aperture will leak, or "wrap-around," into the

reconstructed field inside the aperture. That is, the Green's function propagates

the field from not only the original source, but from all the image sources as

well. If one .is reconstructing the field in a plane close to the hologram plane

[|z - ZH| « L] then there is negligible error. However, when (z - ZH) ~ L,

then considerable wrap-around error may result.

How the wrap-around error may be eliminated is illustated in Fig. 2c and

2d. The first step, shown in Fig. 2c, is to surround the L x L aperture with

a "guard-band" of zeroes, forming a 2L x 2L aperture. The discrete series

representing this field is

2N 2N „ ' i - (mx + ny)

*2L(*,y,zH) = I • I Vn<V
e <60)

. . m=0 n=0
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which has images as ̂  has, but they are farther apart. However, pushing the

images farther away does little to solve the wrap-around problem because there

are an infinite number of images, and they may constructively interfere inside

the reconstruction aperture. What solves the problem is the use of truncated

Green's function defined by

fG'(x,y,z) if -L < x < L and -L S y £ L
GT(x,y,z) = J (61)

1 0 otherwise

which is illustrated in Fig. 2d. For points (x,y) inside the original L x L

aperture one has

£(*' »y' 'ZjG' (x-x' ,y-y' ,z-z )dx'dy'
-00 " H

I7L
= Jj ?2L(x',y',zH)GT(x-x',y-y',z-zH)dx'dy' (62)'

With -L/2 £ x £ L/2 and -L/2 <_ y <_ L/2, then the truncated Green's function GT

ignores the images of '̂2L- Thus calculating-the finite convolution on the right-

hand side of Equation (62), which involves the discrete series ̂ 2L' yields exact

reconstructions, with no wrap-around error, so long as one only reconstructs

inside the "duct" enclosing the original L x L hologram.

In performing actual calculations, the convolution on the right-hand-side

of Equation (62) is put into discrete form and evaluated using forward and inverse

FFT's. Making the convolution integral discrete involves some approximations

and these introduce small errors in the reconstructions. The actual numerical

processing of the other quantities which can be determined with generalized

holography also involve approximations and small errors. There are a number of

different ways of making these approximations and it is found that some

procedures result in smaller errors. The development of the techniques to minimize

the wrap-around and other errors, and the optimization of their computer algorithms

has been accomplished by graduate student W. A. Veronesi20 and will be published

in a second paper.
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E. Zoom imaging

As discussed in the previous section, the wrap-around error can be avoided

if the reconstruction volume is confined within a duct enclosing the L x L

aperture. For reconstructions in the nearfield of the sources the size of this

area is usually more than adequate. However for reconstructions out to the

farfield a much larger aperture would be desirable. Furthermore, having a

larger aperture means that there is a higher density of discrete points in k-space

[the distance between points in k-space is TT/L] , and this may be necessary for

calculating quantities such as the farfield directivity and the total power

radiated. It should be recalled that these quantities involved i(kxky,zg)

at points only inside the radiation circle. For low frequency sources, the

hologram aperture may be only a few wavelengths in size, and this means that

there may be only a few discrete (kx,kv) points inside the radiation circle,

as illustrated in Fig. 3a; such a low density of points inside the radiation

circle may be inadequate for calculating the directivity pattern and the total

power radiated.
*

In order to increase the aperture size one could increase the size of the
t

guard band of zeroes, making the effective aperture size KL, x KL. Equivalently,
/N

one could convolve 4> (kx,.ky,zg) in k-space with a sina/ct type function
14 in order

to "intersperse discrete points in k-space. Unfortuntely the first technique

would require a two-dimensional FFT on a very large data set, and the second

would require multiplication by an even larger matrix; both would necessitate

prohibitively long computation times.

However, it should be noted that the calculations which require a larger

aperture (or higher density of points in k-space) only require a higher density

of k-space points inside the radiation circle (since reconstructions beyond a few

wavelengths contain virtually no evanescent waves). It is possible to reformulate

the k-space convolution technique so that it only intersperses data points within
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the radiation circle, as shown in Fig. 3b. In a reasonable amount of computation

time all of the original N^ It-space points (as in Fig. 3a) may be relocated

inside the radiation circle (as in Fig. 3b.) With this high density of k-space

points, a much larger aperture may be obtained beyond the nearfield. The

procedure for enlarging the aperture size is referred to as zoom imaging;21- a

paper describing the computer algorithm for this process is in preparation.
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VI. EXAMPLE OP IMPLEMENTATION: NEARFIELD ACOUSTIC HOLOGRAPHY

A. Introduction

In this section we shall describe a sound radiation measurement system,

called Nearfield Acoustic Holography (NAH), which utilizes the principles of

generalized holography. At The Pennsylvania State University two NAH systems,

one for airborne sound and the other for underwater sound, are being used for a

wide range of research studies. Several NAH systems are being, or have been,

constructed at other laboratories by graduate degree candidates trained at Penn

State: Earl Williams has developed a system at the Naval Research Laboratories

in Washington, D.C., Bill Strong is constructing a facility at Steinway Piano,

and Toshi Mitzutani is developing a system at the Technics Company in Japan.

Each system has its own data acquisition features and innovations, but all share

the common feature of digital reconstructions based on the principles of generalized

holography. Another system employing generalized holography in spherical

coordinates has been independently developed by G. A. Weinreich22 at the University

of Michigan, Ann Arbor. The use of FFT methods for modeling sound radiation im

cartesian and cylindrical geometries has been studied by Stepanishen and Chen.2^

B. The NAH system for airborne sound

The Penn State NAH system for airborne sound uses a large two-dimensional

open array of microphones. An early system, constructed with the assistance

of research associate E. G. Willilams and graduate students W. Y. Strong, T. B.

Beyer and D. J. Bowen, had data acquisition electronics which were adequate

for only single frequency sound radiation measurements and had data processing

algorithms which were relatively slow and inefficient. Recently the data

acquisition and processing system has been completely rebuilt24 so that real-

time measurements on wide-band noise sources are now possible; with this

system one may study the effects of noise source temporal and spatial coherence
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on the acoustic vector intensity field (energy flow patterns) for application

in panel design, radiation cancellation, etc.

Figure 4 shows a representation of the NAH airborne sound system. The

microphone array is constructed with a square aluminium I-beam frame,

approximately 3 m on a side. Attached to the frame is a 16 x 16 lattice-work

of 0.8 mm steel wires. The microphones (256 identical units) are located at

the intersections of the wires. With a microphone size of -1 cm (much smaller

than the typical 1 m wavelengths studied) and a spacing of 0.18 m, a suitably

open (transparent) array is formed. The sound source to be studied is located

just a few centimeters below the microphones, so that the array is in the extreme

nearfield of the source and can measure the evanescent wave components. The

sources are typically ~1 m in size, so that the 3 m array at a distance of

~2 era subtends a large solid angle (< 2rr steradians) from the sources. Thus

the source directivity and total power radiated into the half-space above the

source can be adequately measured.

The signals from the microphones are routed through a multiplexer to a

4 MHz analog-to-digital converter, and the digitized data are stored in a high-

speed buffer memory. The digitized data set consists of 256 time sequences

recorded simultaneously at the 256 microphone sites. Once the hologram is

recorded (in a fracation of a second) the contents of the buffer memory is

transferred through an on-line minicomputer to an attached array processor.

A temporal FFT is performed on each of the time sequences producing a two-

dimensional (over the hologram (x,y) spatial coordinates) complex data set

for each of the temporal frequencies. Each of the 2-D spatial data sets is

processed as described in the theory sections. The array processor greatly

reduces the time required not only for the temporal and 2-D complex FFT's,

but also for the calculation of the Green's functions, window functions, and three-

. dimensional graphics hidden-line plots. The graphics output is transmitted to
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a vector-graphics system which has a much higher resolution and drawing rate

than conventional raster-scan systems; with the vector graphics system hidden-

line plots may be redrawn in 1/60 second, thus permitting motion-picture

views of the holographic reconstructions. This is particularly useful for

viewing the motion of a virating structure (in slow motion and with exaggerated

displacements) and correlating this motion with features of the holographically

reconstructed radiated sound field.24

For most sound sources, the density of data points can be greatly increased

by spatially interspersing measurements. That is, after recording one set of

data, the entire microphone array is translated one-eighth of the distance

between the microphones and data are again recorded; the array is then translated

another one-eighth distance, data is recorded, and this is repeated in an

8x8 pattern in the square areas between the microphones. The result is

a 128 x 128 data set with a distance of only ~2 cm between sample points in

space. The microphone array translation is carried out completely under the

control of the on-line minicomputer using the system of servo motors illustrated

in Fig. 4; this system was developed by graduate student Toshi Mizutani.

As indicated in Fig. 4, the timing of the signal multiplexing and digitizing

is controlled by separate electronics rather than by the on-line minicomputer.

This arrangement permits data acquisition and data processing to be performed

in parallel.

In order to record a hologram for a wide-band noise source, the signals

from the microphones must be digitized simultanesously, at least on the acoustic

time scale of -0.3 ms. Having 256 individual cables connecting the array

microphones to 256 analog-to-digital (A/D) converters would be cumbersome and

impractical; a multiplexing system is used instead. Bach microphone unit in

the array has its own 60 dB amplifier, remotely selectable 20 dB attenuator

(to prevent clipping of loud sources), low pass filter, and an output multi-

plexing switch. In the array, the switches from a column of 16 microphones
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are connected in parallel to a "signal" cable, and the gates of 16 switches in

a row (orthogonal to the columns) are connected in parallel to a "gate"

cable. When one of the gate cables is activated, the signals of the 16 micro-

phones in that row appear on the 16 signal cables. A second stage of multi-

plexing (located at the corner of the array frame in Fig 3) directs each signal

cable in turn to the A/D converter. Repeating this process for each of the 16

gate cables samples the entire array. One such sampling of the array produces

one sampling point in each of the 256 time sequences; the array sampling is

repeated every 0.3 ras to produce the complete time sequence. The low pass filters

in the microphone units prevent time domain aliasing beyond the Nyquist frequency.

In order to sample the entire array in ~0.3 ms the microphone signals must

be switched and allowed to settle within ~lys. In designing the multiplexing

electronics great care must be taken to prevent switching transients from inducing

large errors in the microphone signals. The gates of the multiplexing switches

are controlled by digital circuits which induce large transients in the ground

lines; this digital ground must therefore be isolated from the analog ground

of the microphone array. Also, steps must be taken to prevent ringing in the

long cables used in the array. After considerable effort Penn State graduate

student Donald Bowen^S Was able to develop a data acquisition system which

settled to within the digitizing precision (-0.1%) within the 1 us time limit.

Another important factor in the microphone array operation is calibration.

When performing reconstructions back toward the sources, the positive exponential

factors of the inverse Green's function magnify any calibration error in the

hologram data; thus the microphones in the array must be calibrated so as to

have a high relative precision in amplitude and phase. The microphones in the

Penn State array were calibrated in situ (using the actual data recording signal

paths) using a Bruel and Kjaer microphone coupled to the array microphone with

a small leak-tight bellows activated chamber. The calibration data is stored



44

and used during data acquisition to normalize each hologram data set so that

it appears as though it were recorded with the single Bruel and Kjaer microphone,

duplicated at each of the 256 array sites. The rather extensive and careful

calibration and its test using a theoretically tractable (but non-trivial) source

was the project of graduate student Todd Beyer.26

With the high-speed data acquisition electronics and computer controlled

array transtation system, the Penn State NAH system can record, transform (from

the time domain to frequency domain), and calibrate a 64 x 64 point hologram

in just a few minutes. In order to match the speed and precision of the data

acquisition, fast and efficient computer programs had to be developed for the

digital holographic reconstructions. Graduate student Bill Veronesi20 performed

a thorough survey of all the various types of Green's functions, approximations,

and computing algorithms in order to determine the best combination for a

particular reconstruction. Research associate Yongchun Lee^7 wrote the computer

programs which take the maximum advantage of the array processor in all phases

of the computations.

For all of the features of the NAH system discussed above (array construction,

data acquisition, array calibration and testing, and computer algorithms)

comprehensive, detailed papers will be published in the near future.

C. «- Examples of NAH reconstructions

Figure 5a shows the reconstruction of two point sources, simulated by

the low frequency radiation from the ends of two 2.5 cm diameter pipes driven

at resonance. The spacing between the ends of the pipes was only 6 cm, whereas

the wavelength of the radiation was 3 m. Figure 5b shows the reconstruction

of the two point sources using conventional holography which does not include

the evanescent waves; the reconstruction shows only a single broad maximum,

roughly a wavelength (3 m) in diameter. The NAH reconstruction in Fig. 5a

easily pin-points the two sources with a resolution of a few centimeters; with
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NAH the resolution is improved by a factor of -50. One might suppose that

reconstructing point sources is easy because of their singular behavior. How-

ever, Fig. 5a is a reconstruction of the z-component of the acoustic intensity

at the point sources; the intensity of an ideal point source is a product of an

infinite pressure amplitude, an infinite velocity amplitude, and the cosine of

90*, giving a finite result. In order to avoid pathological behavior in dealing

with large amplitudes and phases close to 90s, the hologram data must be

precisely measured, calibrated, and processed. The results in Fig. 5a are

a non-trivial test of NAH.

Figure 6 shows a plot of a projection of the vector intensity field in

a plane containing the two point sources and perpendicular to the hologram

plane. The acoustic energy from the two sources flows together within a distance

of only .05 wavelengths.

Figure 7 shows the reconstructed surface velocity of a rectangular plate

vibrating in a normal mode which has four nodal lines traversing the width of

the plate and two nodal lines traversing the length. By using the vector

graphics display, we may observe the actual motion of the plate and visually

detect the subtle shifts in phase occurring between the various sections

of the plate. For a plate vibrating below coincidence, these phase shifts

will have a dramatic effect on the vector intensity pattern above the plate surface.

Figure 8 shows a top view of the vibrating plate of Fig. 7, with different

symbols indicating the surface velocity amplitude and approximate relative

phase A<J>, where cos A<J> = _+_ 1. The (4,2) nodal line pattern is clearly evident.

Figure 9 shows a plot of the normal component of the acoustic intensity at

the surface of the plate of Fig. 7. The interesting features are the regions

of negative intensity which cancel the positive intensity regions and greatly
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diminish the total radiated power. Figure 10, giving the projected acoustic

intensity in a plane through the centerline of the plate and perpendicular to

the plane of the plate, shows that the positive and negative intensity regions

of the plate are portions of circulating energy flow patterns as discussed in

Section II. The circulating energy flow occurs within a fraction of a wave-

length of the vibrating plate surface. These circulating patterns are always

present for plates vibrating in a normal mode below the coincidence frequency.

Figure lib shows the holographically reconstructed surface intensity of

a plate vibrating in a (2,2) mode; since the plate was below coincidence positive

and negative intensity regions are evident. Figure lla shows the theoretically

predicted surface intensity for the (2,2) mode of a plate (with free edges)

vibrating in an infinite rigid baffle; the center and edge regions of the baffled

plate are quite different from those of the holographically measured plate,

which was not baffled. A theoretical calculation of the surface intensity of an

unbaffled plate using an iterative computer alogrithm developed by E. G. Williams^

is shown in Fig lie; this figure shows good agreement with the experimental

result in Fig. lib. Comparing Fig. lie with lla illustrates the significant

difference in the surface intensity between a baffled and unbaffled vibrating

plate.

Figure 12 is a plot of the surface intensity a plate, thicker than that of

Fig. 7-10, which is also vibrating in a (4,2) mode but at a frequency which is

above coincidence. In contrast to Fig. 9, the high intensity regions of Fig. 12

are all positive, consistent with the higher radiation efficiency of a plate

above coincidence.

Figure 13 shows the intensity field projected onto a plane through the

centerline of a rib-stiffened vibrating plate. This plate had a heavy rib

bonded across its width as shown by the edge-view of the plate illustrated
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in Fig. 13; the cib is located at one-quarter of the length of the plate. The

plate is driven at a resonance below coincidence at a point in the center of

the plate. The intensity field shows that acoustic energy is transferred to

the air at the driver (due to the distortion of the plate by the point force)

and near the rib (which also disturbs the bare plate motion so as to lessen

cancellation and promote radiation). Figure 14 shows a side view of the same

intensity field, projected in the plane containing the rib; the end view of the

plate illustrated in Fig. 14 shows the rib extending across the width of the

plate. Rather than having a uniform intensity pattern along the rib, the plate

has a circulating energy region at the right-hand side. This was a mystery

until a close examination of the plate revealed that the epoxy bonding the

rib to the plate had come loose along the right-hand section. The circulating

flow pattern resulting from the faulty epoxy bond was present at all driving

frequencies. It should be noted that the spatial resolution represented in the

intensity field plots of Figs. 13 and 14 is considerably smaller than the radiated

wavelength. Thus nearfield acoustic holography may be used to pinpoint defects

for low frequency non-destructive testing.
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V. FURTHER DEVELOPMENTS

A. General

Generalized holography can be a powerful measurement tool when applied to

radiation sources or scattering objects which conform to the requirements imposed

by a practical data acquisition system. There are numerous types of sources

for which the limitations of finite aperture size and dynamic range produce

negligible error. There are, of course, sources and environments for which the

application of a generalized holography system is impossible or impractical,

and other techniques must be used for these sources. However, there are some

sources which do not conform to the ideal conditions of generalized holography,

but for which the technique may be extended so as to make useful measurements

possible. Such sources and environments may occur when generalized holography

is used in the field and/or applied to sources or scatters which have a low-

symmetry shape, not readily conforming to the level surface of a separable

coordinate system. These situations and possible extensions of the technique

will be briefly discussed in the next subsections.

B. Development of a field measurement tool

With current technologies, a reasonably-sized microphone array and portable

data acquisition electronics may be constructed and used for field measurements

of noise sources. Problems which might be encountered in field measurements

include:

a) Sources having a physical extent exceeding the size of the array.

b) Reverberent environment

c) Sources having low-symmetry shape

For sources which extend beyond the hologram aperature, it may be possible to

make several measurements and combine them in a mosaic. Some assumptions must be

made concerning the spatial and temporal coherence of the sources. The mitigating
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factor would be that each measurement will be made in the extreme nearfield

of the local sources, so that the direct radiation from these sources will

dominate each reconstructed field. Once major sources have been quantified,

this information can be used as a priori knowledge in artifically extending the

aperture of a single hologram. In general, a priori knowledge of the physical

configuration of a radiation source may be used to artifically extend the aperture.

Computer simulations of this technique are currently in progress.

Field measurements in a reverberent environment may be possible if one

has some knowledge of the environmental characteristics. For example, if

measurements are made on a source near a rigid wall, then the hologram data

might be processed with eigenfunctions cos kz(z-zwall) rather than exp(ikzz).

Also a system of images may be used in an iterative or variational processing

technique in order to find a field solution consistent with the hologram mea-

surement and the environment. Finally, hologram measurements may be made on

two closely spaced parallel surfaces, so that the processing can distinguish

between outgoing waves from the source and incoming waves from reflections.

This technique has already been successfully employed by G. Weinreich.22

Although the discussion above may give the impression that field measurements

with holography are difficult, they are no more so than with other techniques.

Nearfield holography has the advantage that measurements are made as close to

the source as possible, so that the direct field of the source dominate the data.

In this case holography provides the fastest, most thorough amount of radiation

information available per unit effort.
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C. Holography for low-symmetry objects; depth resolution

As discussed in section IV.C, generalized holography can be used to reconstruct

the wavefield in a three-dimensional region bounded by the level surface S of

a separable coordinate system, where S just touches the physical source.

Ideally, one would want the surface of the physical source to coincide with

the level surface S, so that generalized holography can be used to reconstruct

the normal velocity and intensity directly at the source; in this case a detailed

correlation between the properties of the source and the radiated field could

be obtained. However, many sources (certainly sources encountered in the field)

have shapes which do not conform to level surfaces and which may have important

radiating surfaces beyond the level surface S. For example, in plane generalized

holography one cannot reconstruct an "image" of the source beyond the plane

(parallel to the hologram plane) which just touches the physical source region.

It would of course be advantageous to obtain "depth resolution" for holographically

reconstructing beyond the surface S.

The reason that generalized holography is restricted to level surfaces of

separable coordinate systems is because the Green's functions (for the boundary

value problems) are known only for such systems. In order to reconstruct down

to the surface of an odd-shaped or low-symmetry source, one must find the Green's

function satisfying a homogeneous condition on the source surface. Since in

actual implementations of holography the measured and reconstructed fields are

discrete and finite, then one may use linear analysis to determine a Green's

function matrix. If finite element techniques2^ are combined with the principles

of generalized holography, then the size of the matrices and the time required

for computations can be significantlly reduced. A hybrid holography/finite-

element technique is currently being developed by graduate student Bill Veronesi.^O

An outline of the technique is as follows:
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Foe sound radiation research (as opposed to acoustic imaging) the physical

shape of the soruce is assumed known. The surface of the source S' is divided

into a two-dimensional network of finite elements and nodes, as in the conventional

technique. Shape functions for both the surface velocity v(r"s/)
 and surface

pressure PUg/) are then constructed using coordinates conforming to the local

curvature of the source surface. Linear expansions of the surface velocity and

pressure in terms of the shape functions are then inserted into the surface Helmholz

integral equation: 31

F f ' 9G
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where Go is the free-space Green's function and the prime on the second integral

indicates the principal value. Evaluating the integrals in Equation (63) over the

shape functions produces a set of linear equations relating the surface velocity

and pressure expansion coefficients.

The next step is to use Green's surface integral to find the pressure at a

field point in terms of the surface velocity and pressure: H

- -
This expression is evaluated at hologram data points, r = rH , and the integrals

are evaluated over the shape functions. Requiring that the resulting expressions

for P(rg) least-squares fit the hologram data produces another set of linear

equations for the expansion coefficients. The two sets of equations can be solved

for the coefficients which then give the source surface velocity and pressure.

All other quantities of interest can be calculated from these.

This work is supported by the Office of Naval Research, Physics Division,

and the National Aeronautics and Space Administration.
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FIGURE CAPTIONS

Pig. 1. Schematic representation of the holographic reconstruction process,

illustrating propagating and evanescent waves.

Pig. 2. The wrap-around problem, a) Periodic repetition of the source caused

by its representation by a discrete Pourier series, b) The Green's

function to be convolved with the source, c) The source with a guard-

band of zeroes, d) The truncated Green's function.

Pig. 3. Zoom imaging, a) The finite hologram aperture may result in only a

few data points falling within the radiation circle, b) For calculation

of farfield quantities, a higher density of data points may be mapped

into the radiation circle.

Fig. 4. The Penn State Nearfield acoustic Holography system for airborne

sound radiation research. Illustrated are the 256 microphone array,

the data acquisition electronics, and the data processing and display

equipment.

Fig. 5. Holographic reconstruction of the intensity of two point sources,

a) Nearfield holography, b) Conventional holography.

Fig. 6. Acoustic intensity vector field from two point sources.

Fig. 7. Nearfield Acoustic Holography reconstruction of the surface velocity of

a rectangular plate vibrating in a (4,2) mode.

Fig. 8. Top view of the plate in Fig. 7. The different symbols indicate

approximate amplitude and phase.

Fig. 9. Normal component of the acoustic intensity at the surface of the plate

of Fig. 7.

Pig. 10. Projected acoustic intensity in a plane through the center line of the

plate of Pig. 7.



Pig. 11. Surface intensity of a plate vibcating in a (2,2) mode, a) Theoretical

unbaffled plate, b) Experimental result from Nearfield Acoustic

Holography (unbaffled plate), c) Theoretical baffled plate.

Fig. 12. Surface intensity of a thick plate vibrating in a (4,2) mode above

coincidence.

Pig. 13. Acoustic intensity in a plane through the centerline of a center-

driven, rib-stiffened plate.

Pig. 14. Acoustic intensity in a plane through the rib of the plate of Pig. 13.

The circulating energy flow pattern locates faulty bonding of the rib.
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APPENDIX II

Advances in N'earfield Acoustical Holography (HAH) algorithms I. Green's

functions. William A. Veronesl and J. P. Maynard (Deparcnent of Physics

and the Applied Research Laboratory, The Pennsylvania State University,

University Park, PA 16802 )

For efficiency, the spatial proccestng algorithms of t?AH, based on

Rayleigh's Integrals, utilize the Fast Fourier Transform (FFT). In N'AH,

the FFT has been treated as an approximation to the continuous Fourier

Transform, and with this view, work has been done to reduce the errors

introduced by the finite and discrete FFT. In this paper, it is shown

that, by using the exact discrete convolution capabilities of the FFT and

Inverse FFT, as opposed to its approximate correspondence to the

continuous Fourier Transform, algorithms yielding more accurate results

are obtained. The essential step -is to replace che continuous field over

the surface frorc wich the data was cathered with a piece-wise constant

field, each patch having the constant field value as at" a contained,

measured point. V.'ith the fielH so replaced, Rayleigh's Integral is

reduced to a finite, discrete convolution of che reasured data with the

integrals of the kernel, or Green's function, over each patch. Most

importantly, this process totally elininates the effects of inage

sources. Conditions for validity of this nodel are presented, and

results for a baffled piston source demonstrate the accuracy of this

approach. [Work supported by ON'R and MASA]

Technical committee: Physical Acoustics
Subject Classification numbers: 43 .20.Rz,43.60.Gk
Telephone number: (814) 865-7841
Send acceptance or rejection notice to:

W. A. Veronesi
104 Davey Lab Box fl6
University Park, PA. 16802



i
Advances in Nearfield Acoustical Holography (NAH) algorithms II: Zoom

u'

imaging. Yanrain Huang, William A. Veronesi,' and J. n. Maynard

(Department of Physics and the Applied Research Laboratory, The

Pennsylvania State University, University Park, PA 16802 )

In HAH, it is often desireable to increase the density of points in

the transform space beyond the density produced by a simple 2-D discrete

Fourier Transform of the input data array. Two equivalent methods of

increasing the density of points are presented. The two methods are:

augmenting the original data with zeroes before transforming, or

convolving the transform of the unaugnented data array with the transform

of a two dimensional square unit step function. Augmenting with zeroes

and the equivalent convolution approach are based on the assumption that

surface. Although the hologram and its transform are two-dimensional,

the density increasing schemes can be cast in a one dimension at a time

form resulting in a great reduction in computation time. This technique

has great utility when restricted to increasing the density of points

inside the Radiation Circle . -Then the Padiation Circle originally

contains relatively few points, the direct convolution is faster, also

this method is not limited to power of two increases in density. Results

for propagating the pressure field from a baffled piston source are

given. [t-'ork supported by OK?, and N'ASA]

Technical corr»ittee: Physical Acoustics
Subject Classification numbers: 43.20.Rz,43.60.Ck
Telephone number: (814) 865-7841
Send acceptance or rejection notice to:

W. A. Veronesi
104 Davey Lab Box P6
University Park, PA. 16802



The Implementation of Nearfield Acoustic Holography with an

Array Processor. Yongchun L'ee and J.O. Maynard (Pept. of

Physics and Applied Research Laboratory, The Pennsylvania State

University, University Park, PA 168C2)

The data reduction capabilities of our Nearfield Acoustic

Holography (NAH) system have been greatly enhanced through the

developoent of efficient computer algorithms utilizing an array

processor with a ainicomputer. The array processor accelerates

not only the FFT computation, but also the Green's function

calculation, data windowing, graphics display generation, and

zoom imaging. In this paper, the various technique, which have

reduced the NAH processing time by a factor of ~20, will be

discussed. This new processing system speeds data collection and

processing .and will permit neasurement of radiation from wideband

noise sources with a large nunber of frequency components.

[Work supported by ON'R and N'ASA.]

Technical committee: Physical Acoustics

Subject Classification nunber(s): 43.35.Dj, 43.6Q.ck

Telephone number: (814) 365-724L

Send acceptance or rejection notice to Yongchun Lee



Experimental Studies of Acoustic Radiation for I'nbaffled Complex

Planar Sources with Ncarfield Acoustic Holography. Yongchun Lee

and J.D. Maynard (Dept. of Physics and Applied Research

Laboratory, The Pennsylvania State University, University Park,

PA 16802)

Design data for the evaluation of the acoustic radiation

coupling loss factor for complex planar sources, such as ribbed

plates, nonunifonn plates, damped plates and aircraft panels etc.

is still fairly scarce. This work presents a hroad survey of

conplex vibrating planar sources. These results were obtained

using Nearfield Acoustic Holography (KAH) to illuminate the

effects of stiffness, mass and damping on radiation loss factor.

['•'ork supported by OFR and f'ASA.j

Technical cocrittee: Physical Acoustics

Subject Classification numbers: &3.20.3z, 43.55.?g, 43.P5.Pj

Telephone nunber: (81̂ ) 865-7FM

Send acceptance or rejection notice to Yongchun Lee



Kearfield Holography for wideband sources. Donald J. Bowen and J.D.

Maynard (Depc. of Physics and Applied Research Laboratory, The

Pennsylvania State University, University Park, PA 16802)

Nearfield Acoustical Holography (NAH), a process developed at

the Pennsylvania State University, has proved itself to be a

powerful research tool in the study of single-frequency sound

sources. A new high-speed.data aquisition system has been developed

which permits extension of the Nearfield Acoustical Holography

technique to the study of wideband noise sources. Using a

partially-parallel, partially-sequential sampling network, near

simultaneous sampling is achieved for 256 microphones in the

holographic measurement plane, for acoustic frequencies up to

1500 Hz. Special problems encountered during the development of the

high-speed data aquisition system are discussed.

(Work supported by ONR and NASA.]
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P̂8g»
Holographic reconstruction of odd-shaped 3-D sources .""William A. Veronesi

and J. p. Maynard (Department of Physics and Che Applied Research

Laboratory, The Pennsylvania State University, University Park, PA 16802)

As previously described, [J. D. Maynard , J. Acoust. Soc. An. 74,

S37 (1983) ], Nearfield Acoustical Holography can reconstruct the surface

velocity and pressure over a level surface in a separable coordinate

system from measurements of the radiated pressure field over a parallel

level surface. This study investigates the feasability of reconstructing

the surface pressure and nornal velocity over surfaces wich do not

confom to a level surface. Such a reconstruction involves nucerically

determining a distribution of surface pressure and velocity which

satisfies the Surface !-elmholtz Integral Equation and which is consistent

with the Helr.holtz Integral Equation for the pressure field r.easured on

the level surface. Details of the algorithm and results of computer

sinula.tions for a uniformly pulsating sphere and a piston set in a sphere

(measurements simulated over a planar surface) are presented. f'.'crk

supported by Q::R and KASAJ
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