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SUMMARY

Equations of motion are derived for free vibration of a uniform straight
free-free beam with a rotational mass attached at each end. The mode-shapes are
shown to be linear combinations of trigonometric and hyperbolic sine and cosine
functions. By using boundary conditions, nonlinear algebraic equations are derived
for both lateral and torsional vibrations. These solutions can then be used to
compute natural frequencies and mode shapes.

A computer program was written to solve the nonlinear algebraic equations.
This program uses the Newton-Raphson method to compute natural frequencies, mode
shapes and node points for any number of modes, for any given parameters.

INTRODUCTION

The lateral and torsional vibration characteristics in the design of certain
systems subject to external interference are not fully understood. Some common
examples of such systems are the wing of an aircraft, the base of reciprocating
engine, and the hull of a ship. Some of these systems can be effectively
approximated by a single beam with varying end conditions. This paper will deal
with the characteristics of free vibration of such beams.

Both the properties of natural frequency and 1location of node points
provide the designer with those tools needed to either minimize or maximize the
vibration of a system. Knowledge of the natural frequency of a system allows a
designer to avoid resonance. If a concentrated force is located at a node point,
then the induced vibration will be minimized. These characteristics are easily
obtainable from tables of predetermined eigenvalues for simple beams such as
cantilever, hinged-hinged, and a few others (refs. 1, 2, 3). However, the problem
is more complicated for those configurations having something other than a hinged,
clamped, or free end mass.

This paper describes the derivation of the differential equations for free
vibration. The linearized equations satisfying the various boundary conditions,
will then be obtained using the methods discussed in reference 1. The
configuration to be considered is a free-free beam with rotating masses at both
extremities. This configuration is considered to be the most general case, with
all the classic cases able to be represented by the lower and upper limiting
cases. The computer program FFBEAM which computes mode shapes, nodal points and
natural frequencies of free vibration is discussed in the text of this paper. A
listing of FFBEAM and sample input and output are also included in the appendices.

S

NGY— 2785



[y

e

o HQEE D
N - -

N =

= XX B Br
[

N

P(t)
r(x),r(€)

SYMBOLS

cross sectional area of beam or shaft
coefficients of mode shape equation

dimensionless position variable
stiffness of beam

modulus of rigidity

polar moment of inertia

inertia of mass at x
inertia of mass at x = L

length of beam or shaft
mass at X = 0 on beam

1. on beam

mass at x

moment
moment of x

0 on beam

L on beam

moment of x

time solution of partial D.E.
lateral mode shape

time

torque
torque at x

0 on beam

torque at x L on beam

lateral displacement of beam
shear force
shear at x

0 on beam

I

shear at x L on beam

location on axis of beam or shaft
eigenvalue matrix

phase angle (rad)

eigenvalue variable
dimensionless position variable
torsional mode shape

density of beam or shaft

angular displacement of shaft
rotational velocity (rad/sec)




DIFFERENTIAL EQUATION OF LATERAL FREE VIBRATION

The basic differential equation of lateral free vibration is best discussed
using figure 1. Therein, a section of beam of length dx can be seen. Its
longitudinal displacements and slopes are assumed to be negligible. Then, setting
the transverse shear force acting on the element equal to the element's mass times
acceleration, the following partial differential equation is obtained (ref. 1).

32v(xzt) . EI Dav(xzt) (1)
3t2 PA 8x4

where v(x,t) 1is the lateral displacement.
This equation is solved by separation of variables. That is, v(x,t) can be
written as (ref. 1):

v(x,t) = p(t) r(x) (2)

Then substituting the right half of equation (2) into the original D.E. and
rearranging the variables.

_ dzp(t) 1 _ EI 1 dar(x)

a2 p(B)  pA () 4 (3)

But (3) can be true if, and only if, each side is identically equal to a constant.
If this constant is —wz, two ordinary homogeneous equations are obtained:

2
4 plt) gt) + wzp(t)
dt

]
(o]

(4)

and

dar(x)

dx4

[
o

B?r(x) (5)

where

Bl = ®r © (6)




The solutions for (4) and (5) are (ref. 1):

r(x)

[

Alsin Bx + Blcos Bx + Clsinh Bx + chosh Bx

and

p(t) = cos(wt - a) (7

where a represents the phase angle. But this solution is more convenient to use
in its nondimensionalized form. Therefore, the new variable € = x/L, where L 1is
the length of the beam, 1is introduced. The solution of displacement after the
substitution is found to be

r(e) = Alsin 826 + B1 cos 826 + Clsinh 826 + chosh 826 (8)
where

4 _ pA 2 4

By= 37 O L (9)

Boundary Conditions for Lateral Vibration

The configuration being considered is a beam with rotational masses at both
ends. A sketch of the configuration is shown in figure 2. There the two free body
diagrams show the anticipated reactions at the masses.

Since the original differential equation is of fourth order, four boundary
conditions are needed. By using the equations for shear and bending moment
(ref. 1):

EI d3v(€ t)

v = B 3, (10)
L de
EX d2v(€ t)
L de

one can obtain the four necessary linear equations.




I. Following reference 1 and referring to figure 2, the first boundary condition
involves the shear Vj:

3 2
EL div(e,0) _ o dv(e,8) 0 oo

= (12)
1 AP T L g2

By substituting the right-hand side of equation (2) into equation (12), the
following is obtained:

3 2
"E% .ﬂ_{%ﬁl p(t) = mlr(e) Q—E%El (13)
L de dt
Equation (4) can be rewritten as:
2
d p(t)
dEZ) W2 (14)
plt

Using equation (14) in equation (13), we have:

3
m2 mlr(e) —-§§ Q_Eéil =0 (15)
L de
or
3 m
d’r(e) _ 1 4 _
3 = AL Bzr(e) at € =0 (16)

de
where B9 1is given by equation (9).

II. The derivation of the second boundary conditions employs the same procedure as
that of the first boundary condition. The only difference is that they are
applied to the mass my; and shear Vjy. The resulting equation is:

d3r(€) _ )

4 -
d€3 = DAL Bzr(E) at € = 1, (17)



III. Following reference 1, the third boundary condition involves the moment M;
(see figure 2):

EI dzr(e)

2 2

M, = Ile(E,t) =
L de

1 p(t) at €e=0 (18)

By assuming small angular displacements, one may represent 8(e,t) by the slope

av(x,t)/ox. Therefore, using equation (2), for small displacements, 6 can
be approximated by:

gﬁéﬁl * p(t)

thereby obtaining:

I 2 2
= €
M, L1 d;é ) d pgt) - E; d r§€) . p(t) (19)
dt L™ de

By using equation (14), equation (19) can be reduced:

2

d?re) . _ LMY arce (20)
1c2 EL de
or
2 -1
9—5%51 = - ——13 Bg dzge) at €=0 (21)
de PAL

IV. The fourth boundary condition uses the same method as the third. After
employing the same steps as outlined above, the following is obtained:

dre) _ Iz g oaxce)
de2 pAL3 2 de

at € = 1. (22)

By substituting equation (8) and appropriate values of ¢ (i.e., € = 0 at one
boundary and € = 1 at the other boundary) into equations (16), (17), (21)
and (22), the following four linear equations are obtained:




17 paL B *tC 7 sap D=0 (23)

m, B m,.B
2 2 22
<pAL sin 62- cos BZ) A1 + <pAL cos 82+ sin 62> Bl

<m262 ) <m232 >
+ AL sinh 62+ cosh 82 C1 + AL cosh 82+ sinh BZ D1 =0 (24)
1,6 1,65
—3 A - B ¢+ 3 C,*+D, =0 (25)
PAL pAL
1,8 1,8
- 3 cos 82— sin 82 Al + 3 sin 82- cos 62 B1
pAL PAL
1283 1282
+ |- 3 cosh 82+ sinh 82 C1 + |- 3 sinh 82+ cosh 82 D1 =0 (26)
PAL PAL

Obtaining Nontrivial Solutions

Equations (23)-(26) can be compactly written in the vector-matrix form as

follows:
)

where Z(B) 1is the 4 x 4 coefficient matrix whose entries are functions of 8.
Non-zero solutions (A;, B;, C;, Dj,) exist only when the determinant of

Z(B) 1is zero. Therefore, the first step in obtaining non-trivial solutions is to
obtain the real solutions of the nonlinear equation:

o (27)

o o = >

1
1
1
1

det [Z(Bz)] =0 (28)

where det [ ] denotes the determinant.




A solution B* is substituted back in equation (27), and a degenerate system
(usually of rank 3) of algebraic equations is obtained. Making A; = 1, the
remaining three coefficients By, C and D; can be uniquely determined
for each B*., The computer program MACSYMA was used to carry out these proce-—
dures. A listing and description of the steps can be found in Appendix C. The
resulting determinant of Z(B) obtained in MACSYMA is used in the program FFBEAM
which is discussed below.

PROGRAM DISCUSSION

The computer program FFBEAM (see Appendix A for a listing) was written for the
purpose of calculating non-trivial solutions using the method described in the
preceding section. FFBEAM calculates the frequencies of vibration, mode shapes and
the locations of nodes for any number of modes.

The program uses a simple root-finding subprogram (NONLIN) that employs the
Newton—-Raphson method to find the eigenvalues of the determinant. The size of the
equation representing the determinant necessitated the separation of the equation
into three separate quantities that are subsequently added together. FFBEAM uses
the subprogram GELIM (for Gauss (-Seidel) elimination) to solve the degenerate
system of equations (eq. 28) discussed in the previous section.

After computing the values of B, Ap, By, ] and D} from
equations (27) and (28), the program uses simple substitution to find the
frequencies. The subprogram NONLIN is again used to find the node points of the
mode shape equation. A further explanation of the input as well as output is given
below.

PROGRAM OPERATION

Input.— A total of eight input variables 1s needed to run FFBEAM. A
consistent set of wunits is needed for the input (meters-kilograms-seconds or
feet-pounds-seconds is recommended). The necessary input information includes two
concentrated endpoint masses (Ml and M2), two endpoint inertias (Il and 1I2),
beam mass and length (MU and L, respectively), beam stiffness (EI), and the
number of modes solutions are needed for (NMODE). Because of the small number of
input variables the input can simply be written in the text of the program. A
listing of sample input is given in Appendix B.

OQutput.— The output computed by FFBEAM includes the natural frequency of
vibration, eigenvalue, mode shape equation and the location of node points for each
mode. A listing of sample output is given in Appendix B. The first three pages of
Appendix B include the frequencies, node positions, eigenvalues and mode shape
equations. The final pages of Appendix B are the plots corresponding to each of
the modes. These plots were found useful in identifying the relative motion of
points of interest on the beam.




THE DIFFERENTIAL EQUATION OF TORSIONAL VIBRATION

The differential equation of torsional vibration will be derived next, using
the method described in reference 1. This method utilizes a differential element

of a shaft of length dx (as seen in fig. 4) and the dynamic equilibrium of this
element.

It is known that the torque at any position of a circular shaft may be written
as (ref. 1):

T - o1 32%3;51 (29)

Utilizing equation (29) and the differential element shown in figure 3, it follows
that the net torque acting on the element at any time is (ref. 1):

2
T dx = GI 3 9(x,t) dx (30)
ax P ax2

This torque is opposed by an inertial torque:

2
Poae

Hence, sum of these torques must be zero, and the differential equation governing
torsional vibration of circular shafts is:

320(x,t) _ G 3%6(x,t)

] (32)
Btz P 8x2

This equation can also be solved by separation of variables. The angular
displacement of the shaft is written as:

$(x,t) = p(t) 6(x) (33)

Then, after substituting into equation (32) and rearranging, gives:

1 &) ¢ 1 a?ex)

PO g2 B 2 (34)

The solutions for both 6(x) and p(t) are obtained by setting both sides
equal to =-w2;

p(t) = cos(wt - a) (35)

£ P
0(x) A1 sin w J; X + B1 cos W J; X (36)




Using the dimensionless variable € = x/L, equation (35) can be rewritten as:

8(e) = Al sin 83€ + B1 cos 836 (37)
where
= P
83— © L Yg (38)

Boundary Conditions of Torsional Vibrations

The configuration being considered, as seen in figure 4, is a shaft with a
rotational mass at each end. The method used to obtain the two linear equations is
outlined in reference 1. The only relationship needed to obtain the boundary
conditions for this system is (ref. 1):

Gl '
T= —P %&—’-“ I w?6(e) (39)

I. The first boundary condition involves the mass located at € = 0 (that is, at
the left end). Using the relationship in equation (39) one obtains:

GI

_ de(e) _ _ 2 _ ‘
T, =% il 8(e) at € =0 (40)
which can be rewritten as
2
1,858(e)
de(e) _ _ 13 _
de -5;377;—- at € =0 (41)

using B3= w L J—g—

II. The second boundary condition is obtained in a similar way with- the result
being:

2
do(e) _ 1,850(¢)
de I Lop

P

at € =1 (42)

10




After substituting equation (37) into equation (41) with € = 0 and in (42)
with € = 1, the following two simultaneous equations are found:

85-11
63'A1+pLI B1=0 , (43)
p
2
I, B, sin B
2 3 3
(%3cos 83— L1 ) Al
P
12 B% cos 83
+(- 83sin 83- 51 Ip B1 =0 (44)

Obtaining Nontrivial Solutions

The procedure for finding non-trivial solutions for I A and By is
identical to that described for the lateral case. It is straightforward to write
the expression for the determinant of the 2 x 2 coefficient matrix in

equations (43)and (44). After removing the common Bg term (which corresponds to

the rigid-body mode) from the expression for the determinant, and equating the
expression to zero, the resulting transcendental equation can be solved by using
any nonlinear root-finding algorithm.

CONCLUDING REMARKS

Equations of motion were derived for free vibrations of a uniform free-free
beam with a rotational mass attached to each extremity. The simplified equations
of motion considered in this paper were acquired by assuming the governing beam
equations to be uncoupled. Using appropriate boundary conditions, nonlinear
algebraic equations were obtained, the solutions of which yield the modal frequen-
cies and the mode shapes for lateral as well as torsional vibrations. Computer
programs were developed for computing the modal frequencies, mode shapes and node
points. These programs can be used to generate modal data for any number of
modes. While performing control systems studies based on structural models
generated, using the computer program, care must be taken to normalize the mode-
shapes by dividing them by the appropriate Ly-norm (i.e., square-root of the
integral of mode-shape squared, integrated from 0 to L over the space
variable). Mode slopes, which are necessary for control systems studies with
torque actuators and attitude sensors, can be obtained simply by differentiating
the corresponding normalized mode shapes with respect to the space variable.

11
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5(1'3)--—"1*91’“1”'40
TTTTTTUS(201 )01 )
T T S(252) e T14BTA( 1) 4437 (HUKL##2]
TTTTT S12,3) =1, ‘ i
T S(3,1)=(T2¢8TA(L) #4327/ (MUKL#*Z)*SIN(BTATILTI=COS(BTALLIT) o -
TS (3,2 ) (=12%BTA(L)#43/{MUF[*¥2T*COSH(BTAIIYI4SINKIBTA{IIT) -
T TS (3,3) = (~124PTA(L) # £3) (NUFTHFF2TIFSTIRA(RTACIVI+COSHIBTATITY
TTTTTTTTT(1s1 ) A T T
T T2, ) e=T1%BTALLY R/ (MUSLAR2 YA T T -
T T )-(IZ*BTA(I)**BI(HU*L**Z)*COS(BTA(I)HSIN(BTA(I))HA‘”“ -
TUTTTTTT CALL GELIM(NMAY,N,SyNRHS,T,IPIVOT, IFAC, WK, TERR) T T
—c— gl o
TC "7 8,C AND D, "ALONG WITH X ARE TRE COFFICIERTS UF THE
=CT 77 MODE SHAPE EQUATION & & T Tt T T -
- RaT(l,1) : T T T e Tt T
ST €eT(2,1) T T T T - —
T T DeT(3, ) e T T -

 WRITE(5,15) AsBsCpD,RTALIY ~— = " " T T T

T 157 FNRMAT(34HTHE EQUATION OF THE FODE SHAPE IST//THRIX/LV=F15.7,15H3%
T LIN(BETA®X/L)4F15,7,15H#COS(BETA®X/L)+/F15, 75 16H*SINH(BETA*X/L)#F15 —
T T T 2471 15H*COSHIBETA*X/L) //11HWHERE BETA=F14,7//) o -

) JJ=1 - T B
TCT°7  DLTX IS THE INCPEPENT ADDED TO EPSLN TO ORTAIN ~ """ B
TTCTT T TTPNINTS FOR THE PLOT OF THE MODE™ SHAPE ” -

T DLTX=,001 T -
—e S — — _
TCTTT TECHNsKXsKYsXMINyXMAX,YMINSYHAX,PCTPTS,NXMC,NYNC, — — — " -
TC T ISYMySX;SY,XUFF AND YOFF “AREALLT VARTABLES NEEDED
T 7T IN INFOPLT. T T T T T T T T
- 1EC a1 e e e e e -
T Ns1001 T
TTTTTT Y] T oTTmTT T T
B '_""KY-I ST T - T Tt T
Tt XMIN=Q,0 T T T T e - - T T T T B -
- T -XHAX-I. ° ST TTTm T s T e - - TTrT T - - TTT T mT T T T - T T T T
=TT YH[N--,] ST T 7 R - - - e T - T -
TTTTTUUTYMAXe,l T T T
- PCTPTS=0.,00 Tt T T e T e - T -
. NYMC= S TorTT T T T T T
>
1
ol




—

T NYMCe4

o ISYMeO _
. SX=7,

SYs5, o

“XQFF®,T5

= YOFFs= .75

C TEPSLN(JJ) 1STTHE HORI7ONTAL COMPONENT OF THE PLOT

—{ =" WHERE 4§ R(K) IS THE VERTICAL,

T T EPSLN{1)e0. T

- D0 20 KelyN

- P(¥IaASSIN(BTA(LY+EPSUNLIS) THB#TDSTETA(IIFEPSCN(JITISTHSINATETA(L

TTTTTTLeERSULN(IS) 140+ COSHIBTA LI REPSTN(ITY)

_ TIF {K.EQ.1) GO TO 5

c
¢ THE FOLLOVING TF STATEMENT IS USED YO OBTAIN A

C FIRST GUESS AS TOD THE LOCATION OF THE NODES AND

- C SURRQUTINE NNDE "USES THE NERTON RAPASON FETHDD 10

¢ "ORTAIN THE TRUE ROOTS,

- ‘TF (R(K)*#R{K=1),LELOJ) CALL NODETEPSLN,JJ,BTA]

—EgpSIN(JJ+1)=EPSLN(IVIFDLTX

NRERNED B

Z0 CONTINUE™

- "CALL INFOPLTUIEC,Ny EPSTNTIT,RY,RULT,RY, XHIN, YFAX, YFIN, YHAX,

- ]PCTPTS:N¥EE&2?EESLN}NY“C7RHRTE)TISYH;SYTSY?YDFFTYUFF1

e SUBRDUTINE EVAU(BTA, XYT)

- CO“MON/VALUES/ 11,5125 MIs¥ 25U, ETA»B,C,0»CFD

TTTTTTTREAL T1,125L0M1I,M2,MUTTTT

- TDIMENSION RTAL{1),XYZ(1)

“Ya{26COSIARTALL))+COSHIBTACIII=Z)#L # 44 ¢ NU** &+ (12¥BTA(1)*COS(BT

: I AT1))*SINHIBTATIY)=2¥ETATIT#COSR(BTATI I TFSIN(BTATITTTPL#¥AFF L3

' 27 2*BTA(1)‘C0$(HT1(11)*SIN“(BT](I));Z‘BTK(T)*CUSH(BTA(TWT*SIN(BTA
) 37 (1)))‘L"kOHIOITZ‘(-Z*BTI(TY“B‘COS(BTA(IT)‘SINH(BTA(IW)EZ*ETA(

4" 1)%+3%COSH{RTACI))*SIN(RTA(I)))4T18(=24BTA(1)8434COS(BTA(1))4ST

5'"'NH(FTA(1))—Z‘BTA(I)**3*COSH(BTA(1))‘SIN(R7A(1))))*L**Z)‘HU**3

Y‘T((!2*(-2*8TA(1)*‘6*CDS(BTA(I))‘COSH(BTA(I))‘Z‘BTA(I)*");Q*II‘B

7 TA(1) 444 COS(ATATIY)FCOSHTBTATI VY THL#42=0#ETATIT¥#2¥STNTBTA (1))

g ‘SINH(BTA(I’)‘L"A#PI)*FZ#(Il‘(*Z‘BTA(l)t‘kiCOS(BTA(l))*CDSH(BT

9 A(l))-Z‘BTA(1)‘*4)-4#12‘BTA(1)**A‘COS(PTA(li)‘COSH(BTA(]))}‘L‘t

————- t 24M1+4HTI4I2¢RTA(1)#46#SIN(ATA(L))¢SINHIRTA(L)))* U2

TUTe((12%(2

- G *RTA(])“5‘COSH(BTA(1))‘SIN(RTA(I))-2¢BTA(1)**5‘COS(ETA(1))*SIN

<= H(BTA(I)))OI1‘(Z*BTAIIW“S‘CDSNTBTITI))‘SIN(BTA111);2‘RTE(1Y“5

- ) *COS(BTA(I))‘SINH(BTA(I))))*L‘*Z‘Hlill'IZ‘(2*87[(1)**7*COS(8TA(

Ei'“_'wS-_'1))‘SINH(%TA(I))02‘?TA(1)"7‘COSH(BTA(1))‘SIN(PTA(I))))‘HZ’II‘I




? 2¢(2¥BTA(I)I**7#COS(BTA(LI))*SINH(BTA(1))+2*BTA(1)**7+COSH(BTA(])

TS INCARTALL) ) T#MT Y #RUST1# T2 ¥ (ZRBTATTT#¥64TOSIBTATT) Y*¥COSHIBTATY

LT ) ) =24 TA{L Y G EHTRND

XY2(1)mixXeYe? V7 (LPeQGkH(*#FLY

RETURN

END

“SUBROUTINE JACOR(ARTA,DPRIME)

‘COMMON/VALUESY TI1,125LsMY,H2,FUsET,A,B,C,0,CRO

REAL I1,12,LsH1,F2, MU

DIMENSION BTA(1),DPRIME(1,1)

T -(Z*CUS(BTA(I))*SINH(BTITTTY_ZTCUSHTBTATTTYTSTN1BT1(I1))*

YT LeeasbUs o (((24CDSTBTAIYT =4 *BTACYYFSTRN(RTAQITY V#STRH(BTATY V)=

277 2¢COSHIBTA(L ) YASIN(RTAIT)YYSLFFLEM24T(2¥COSIBTA(I)V=4%BTA(L) #5T

37T N(RTACLY) ) RSINH(BTA(TI V=2 COSHTRTA(L)VASINIRTAILVT VR CF#44 Y4 ((=

. % bt T2=b# 1) 4 RTA(I VI F2FCOSTBYATT Y J¥STRATBTATT ) #(-C¥T2-63TIJ#BTAL

577 1) ##24COSHIBTA(L) ) XSIN(BTATI))#I=A%12-4+TTV#BTATIT#433C0SIBTA(L

T8 })#COSH(BTA(L)) )42 4 Ryse3™—— —— ~— "~ T

Ve  ((((=B8+RTA(L)#SINIBTA(1))=4*BTATI)

- 7 **Z*COS(BTA(ll))‘SINH(BTA(I))-4‘87A(T)*‘Z*CUSH(BT!(I)W*QIN(BTE(

BTTTLN) NN ARG oMY 4 (2412 RFTTVRRTA(L)VFKLHCOS(RTATLITHSINH(BTALLY )41

T T 2e 12444 T ) #RT ALY FELFCOSHIBTATT T IFSIN(BTA LI VT #(=6#T2=1EF TITVEOTA

177 (1)%¢34COS{BTA(I))*COSH(BTA(L))=B#T24RTA(T 443 )4 #42)4M2+{(~4*T

T3 2=24I1)#ATAL1)#*4*%COS(BTA(L)IASINHIBTALL) )+ (4¥I232¢T1)*BTA(TI**

"¢ 4¥COSH{BTA(I))*STIN(BTA(L))+(=T16*I2-B+TI)*#BTA(1)*#3+COSIBTA(LII®

T COSH{RATA(1))=R4#T1#BTACL)#&3)HL* #2414 (242 TI4T24BTA(])**5¢SINIRT

> A{1))+6¢T1*T24BTAI1)#464CNS(BTA{IIII*SINH(RTA(II )1 #4*]1#124BTA(]

7 Ve#64COSHIBTA(I)VASINTRTATITTT#FO4*2

SIN(BTA(I))#( IO*IZ 10*11)‘RTA(1)"Q*COS(BTA(I)))‘SINH(BTA(I))*

T 1 {10%12410%T1)#BTA(1)#+4%COSHIRTA(LI) )#STN(BTA(T}) J#L*424M1+14%]1

2——'*IZ‘RTA(I)“6¢CDS(BTA(1)!‘SINH(BTA(1))#IR‘II*IZ‘BTK(1)“6*COSH(
- 3T BTA(1)I#SIN(BTA(L) )44+ T1#I2+4BTA(1)##7*COS(RTA{1))*COSH(BTA(1)))

Z M2 14PT1RT24RTA(Y ) #46%COS(BTATIY ISTRPTRTATITY+I4¥ 14124 AT
TR T T ) e s64COSHIBTA(L) ) ASIN(BTA(Y ) )44 1RI24RTA(1)*##74COSIBTA(L))*COS
’_' “6'— HIBTA(L1)))#ML)#MU+ (241141248 TALL)*#+8+COSIBTA(L))*SINH(BTA(L))=2

e 77T #T14T12¢BTA(1)##8%COSH(BTA(I))*SIN(BTA(T))4164T14T248TA(1)*474C0O
A7 S(BTA(I))4COSH(BTA(L))=16%T1+124RTALL)#47)4F14K2 "~ ~

“DPRIME(L, 1) e (U+VHN) Z(L¥%L8MUYS4)

RFTURN

_____.___END e et

—————SUBROUTINE NODECEPSLN,JJy8TA) - ~ -~ —— ~-r —rom-m s == T TR T o
—__-—_-CUHHUN/VALUFSlIlpIZrL’FlanyﬂU’EI,A’B:CnDnCRD ST T T s S R

C

-t “TABLE AND BRAKEFR "ARE™ THE EXTERNALS THAT CORTAIN THE™
(S nnos SHAPE EQUATION AND ITS DERIVATIVE WHICH ARE"

- m e




c ~ USED BY NODNLIN,

EXTERNAL ABLE,BAKER___

DIMENSION BTA(1),EPSLIN(2000),ANO0( 1) WK (41 AA(Ip2)CRO(1)

REAL MUsM1sM2,L,T11,12 T

__ANOD(1)«EPSLN(JJI) —~

TCTTTTONMAY, NoNSIGsINJAC AND TTHAX ARE ALL USED 8Y NONLIN,

KHMax=]

Nel

7T 7T NS IGe14

INJaZel 7

"TTTTTTT ITMAX=10000°

T U CRDUL)=RTA(L) .

_CALL NONLIN(NMAX,Ny ANODyNSIGy INJAC,BAKER, ITHAX,ABLE, WK, AA, IERR)

T x=aANDDUY)AL 0 T

WRITE(S5,10) X~~~

T Y0 FORMAT(23HA NODE IS TOCATED AT X»F14.5)

FETURN

END

TTSURROUTINE ABLETLNOD,RR)

T CCMMON/VALUESY T11,I2,UsM15EZ5HULET»X5BsC,0,CRD

TTTT 7T DIMENSION ANOD(1),RR{1)sCRDI1Y ™ —

" RR(1}=A*SIN(CRD(1)*ANOD(TY)+B¥COSTCRD(I)*ANDDUITTY+U*STNR(TROT1) ¥

- IANDn(l)HD‘CUSH(CRD(I)*ANDDHH

TTTTTTT ORETURN T

END

—" SUBROUTINE RAKER(ANDD,DRR)

~ COMMON/VALUES/I1,12,LsM¥13M25MU,ET>A5B,C505CR0

T "7 DIMENSION ANDD(1),DRR{151V,CRDI(1)}

TDRR(1,1)=A%CRO(1)*COSICROTIT¥ANDOTITI=B*CROTIJ¥STN(CROUTIT¥ANOUTY)

T 1)+C*CPD(1)_‘COSH(CRD(1)*ANC_'D{I) J+D*CRD(IJ*SINH{CRD(1)*ANDD(1))

T RETURN

T END T







— - - EXAMPLE~OF—EATERAL-VEBRATION-PROGRAM

CEPRE2020880000080¢¢083800088280¢40309880404888008¢0¢

c THE FOLLOWING 8 VARIABLES ARE THE INPUT YARIABLES,
15 ¢
- ¢ KUs MASS OF THE BEAM ALONE L
¢ " LeLENGTH OF THE BEAM o
¢ _ H1=MASS AT Xe0, END OF BEAM — ~— —— ™ 5.
¢ __ M2eMASS AT XseL END OF BEAM -
20 € T I1eINERTIA OF M1 o _ 8
-— T C T2=INERTIA OF %2 o e
e e T E1eSTIFFNESS OF THE BEAM o
- o c_ T NMODE<THE NUMBER OF MODES SOLUTIONS ARE_NEEDED FOR, STARTING T i
T T T WITH 81 AND ENDING WITH eNWOOE,  __  _  _ ———— - & -
25 ct....‘.t..ouottt.o“0“0‘0.00000‘0‘0‘.‘!.::’!1:._‘0 -
NU»177. o o T
_ Le100. e g
+120000.0 . — o
M2e220. L T - o -
30 _ 11=9380141.7 e ———— _ _
. 124250, g
"E1220000000,0 L _ - __ . g
_ i NM(.UES o - a -
o T o _ - -
- Cem—ee - e et e e ——— e ————— e —— - ———— — e e e e e e e e e e e e e e e = -
Q‘ -
—— o
TTHESE _ARE_THE SOLUTIONS FCR LATERAL VIBRATION OF THE =1
_BEAY_WITH THE FOLLOVWING CHARACTERISTICS. _ . o - 9
TTHE MASS OF THE BEAM = 177.000 ST _ o =
"THE LENGTH OF THE BEAMe 100,000 T _ . e i —
_THE MASS LOCATED AT X=0e. = 80000000 _ . S
" THE "ASS LOCATED AT X=L = . 2504000 T e L
_THE_INERTIA_OF_THE MASS_AT X=0e = _ 9380141.700 N
!_THE INERTIA OF THE MASS AT XsL o 250.000 R - -
__THE STIFFNESS OF THE BEAM s _20000000.000 _ _ E —
RESULTS FOR MODE ¢ 1 5
| THATURAL EREQUENCYe 200000000 HI o _ _ —
P ' —
i_THE_EQUATION OF THE WODE SHAPE 1ST __ — . e I
L RUX/L)=" """ 1.0000000¢ SIN(BETA®X/L)¢  ~ ~ =,0000001#COS(BETA®X/L)s ~ —
o]



1.0000000#SINH(BETA#*X/L )¢ =+ 0000001%COSH(BETA®X/L)

WHERE BETAS -,oopoooo

HATURAL FREQUENKCY= «06316431 HZ

_THE EQUATION 'OF THE HODE SHAPE 151

TRUX/L)e T 71, 00000009SIN(BETARX /L) -JT."s'Zqz"zzi's"o"t'b:é,"(‘a'é'f,&'mtt4

=142622367°SINHIBETAOX/L)® _ 143452145¢COSH(BETARX/L)

TUHERE BETAs T 1,2469426

A _NODE IS LOCATED AT xe —  17.79221_

_RESULTS FOR MOOE & 3~

TIHE EQUATION OF THE HODE SHAPE 1S1__

“R(X/U)= _ 1.0000000*#SIN(BETA#X/L)¢ __ =1.0020106%COS(BETA®X/L)+

-1,0058983#SINH{BETASX/L) + 1,0009016+COSH(BETA®X/L)

_WHERE BETAs  4.0015941_

TA_NODE IS LOCATED AT X=  ,91457_ ~
A_NODE IS LOCATED AT X= 96,44120

_RESULTS_FOR_MODE # 4

_RATURRL FREQUERCYS 268848526 W2~~~ T -

\CIHE_EQUATION OF THE MODE_ SHAPE ISt

g



]_gi_igl___g___x.ooooooogsxngpstgox_L;»__uu_31.oo1as13tcas(asrA¢x/L)¢
i______:;,qpxgoxogs;nggegjngxlt13_____ 1.00123284COSH(BETA®X/L)
VHERE BETA® 7.0686723 .
A _NOODE_IS LOCATED AT Xs=___ 436140
TA_NODE_IS LOCATED AT _X= 55.64698
“A_NODE IS LOCATED AT X= 98.77667
_RESULTS FOR MODE o3

5.,521487150 HZ

_THE_EQUATION OF THE MODE SHAPE_IS3
TRIX/L)e_ T T1,0000000¢SIN(BETA®X/L )+
-1,0003601 #SINH(BETA®X/L)4 .
:iﬁﬁné_aii!-_“; 10.1590663
A NODE_IS LOCATED AT Xs 20761
A _NDDE_IS_LOCATED_ AT Xs __ '38,79191
TA NOOE IS LOCATED AT X=_ 69.62796
TA NODE IS LOCATED AT X= _ 99,45123

R

'
| ———-—

1.0003477*COSH{BETA®X/L)

«1,0007834#COS(BETA*X/L)+

1

T




R(E)

A0 PLOT FOR MODE #1
—
—
06
-
R
_.m:
~.06 —
-.10"1‘L[llllil,llll[Llll,Lllllllllllllllllll[lllllllll]lllllllll Lt at
0 'lq ‘29 ‘43 057 071 088
E

Figure 5.- Output from FFBEAM plotting displacement R(E) versus
nondimensional position variable E for first mode.
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R(E)

{.0

S

.
)

-1.0

-
-

lllllllflllllllllll llllllllll

Illlllllll

SEANNNEENENEENERR

[INENERRE

PLOT FOR MODE #2

HERERNEN!

HRNERNEE

IS EEREREERANN]

COTTTTTTT

2

ot

.6 .8
E

1.0 1.2

Figure 6.— Output from FFBEAM plotting displacement R(E)
nondimensional position variable

versus

E for second mode.
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PLOT FOR HMUDE #3

1.5

1.0

lllllllﬂrlllllll“IHIIIIHW

.5
]
©
0—-
—
=S
—
cofr oo b oo oo e
0 .2 4 .6 .8 1.0 1.2

E

Figure 7.- Output from FFBEAM plotting displacement R(E) versus

nondimensional position variable

E

for third mode.
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R(E)

IITHIITI‘HIHIHIPH]HIH]

PLOT FOR MGDE #4

WHHH‘HHIHH‘

X ladiUNRNER lllllllllllJLLHH‘IHLHlllll(llllllllLllHllHlllllllLL
.2 i .6 -8 1.0 1.2
E

Figure 8.~ Output from FFBEAM plotting displacement R(E) versus
nondimensional position variable E for fourth mode.

o
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R(E)

lﬂlllllinl”TTllHllﬂlﬂ]

PLOT FOR MODE #3

1
0—
-1:':—
-
-Q;HHIHI_ bttt IllLUlll!lllHllllI|llll||llll|IIHHIIIULHIL
0 2 M .6 .8 1.0 1.2
E .

Figure 9.— Output from FFBEAM plotting displacement R(E) versus
nondimensional position variable E for fifth mode.
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This

tions described earlier.

l.
2.
3.
4,
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

APPENDIX C.

MACSYMA PROCEDURE

appendix 1lists and explains the code wused to derive the equations
necessary to solve for the eigenvalues for free lateral vibration of the configura-

A*SIN(BETA*E)+B*COS(BETA*E)+C*SINH( BETA*E)+D* COSH(BETA*E) ;
DIFF(D2,E,1);
DIFF(D2,E,2);
DIFF(D2,E,3);

The following is a list of a batch file which can be run
on MACSYMA to duplicate the derivation that was used for lateral vibrations:

D5-M1/MU*BETA**4%D2=0.;
SUBST(0.,E,D6);
D5+M2/MU*BETA**4*D2=0.;

SUBST(1.,E,D8)
D4+TI1/(MU*L**2)*BETA**4*D3=0.;
SUBST(0.,E,D10);
D4-12/(MU*L**2)*BETA**4*D3=0.;
SUBST(1.,E,D12);
COEFMATRIX([D7,D9,D11,D13],[A,B,C,D]);
DETERMINANT(%);

RATSIMP(%);

DET=D16;

DIFF(D16 ,BETA,1);
RATSIMP(Y%);
DPRIME=DI19;

FORTRAN(D17);
FORTRAN(D20);

The following is an explanation of each line individually:

Line Number

W oo~ W N -

This
This
This
This
This
This
This
This
This
This
This
This
This
This
This
This

line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line

Definition

simply writes equation (8).

differentiates equation (8) with respect to e.
differentiates equation (8) twice with respect to €.
differentiates equation (8) three times with respect to €.
writes the first boundary condition: equation (16).
substitutes zero for € to satisfy the boundary conditions.
writes the second boundary condition: equation (18).
substitutes one for € to satisfy second boundary condition.
writes the third boundary condition: equation (22).
substitutes zero for € to satisfy third boundary condition.
writes the fourth boundary condition: equation (23).
substitutes one for € to satisfy fourth boundary condition.
generates the four by four matrix.

generates the determinant of the matrix.

simplifies the determinant.

writes the determinant in the form DET=....




Line

Number

17

18
19
20
21

This

Definition

line differentiates the determinant with respect to B. This

needed to use the Newton-Raphson method of finding roots.

This
This
This
This

line simplifies the derivative.

line writes the derivative in the form DPRIME=....
line writes the determinant in FORTRAN code.

lines writes the derivative in FORTRAN code.

This file can be run on MACSYMA by typing the command:

BATCH(DKROBE, LATRAL,DSK,LRC) ;

This must be done as the first command in a session: on line "Cl".

is
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wix.)

v V-4-dVv

rd ¥2
M+ dM

> x

Figure l.- A differential beam element showing shears and moments resulting
from displacement V(x,t).

(a)

(= —")

(b) (c)

Figure 2.- (a) The beam configuration considered in this paper with
rotating masses m; and my at either end. Parts (b) and
(c) show the force and moment reactions at the ends.




a7
—dX
T+3%

Figure 3.- A differential element showing torques resulting from angular
displacement ¢(x,t).

6(€)

9
(c)
(b)

Figure 4.- (a) A shaft with rotational masses at either end. Parts (b) and
(c) show the reaction torques at both ends.
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