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ABSTRACT

A matrix partitioning scheme is presented for approximating

EOF's (empirical orthogonal functions) or eigenvectors of a large

sample covariance matrix. The data array, a field of measured

anomalies of some physical variable relative to their time aver-

ages, is partitioned in either the space domain or the time do-

main. Eigenvectors and corresponding principal components of the

smaller dimensioned covariance matrices associated with the par-

titioned data sets are calculated independently, then joined to

approximate the eigenstructure of the larger covariance matrix

associated with the unpartitioned data set. The accuracy of the

approximation oC (fraction of the total variance in the field) and

the magnitudes of the largest eigenvalues from the partitioned co-

variance matrices together determine the number of local EOF's

and principal components to be joined at any particular level.

The accuracy and efficiency of the method are demonstrated by

applying the technique to the space-time distribution of Nimbus-5

ESMR (Electrically Scanning Microwave Radiometer) sea ice bright-

ness temperature measurements for a large area of the Antarctic

(Weddell Sea) and for the time period extending from 3° September

1973 through 25 May 1975-

From analysis of the spatial EOF's and their coefficients

(principal components) maximum and minimum ice extents and the

times of these extents can be identified. Regions and periods of

ice growth and decay are identified as well as regions and periods

of higher changes in growth and decay. The interannual variability

in the Weddell Polynya between 1973 and 197̂  is exhibited by

the fourth EOF and its principal component. Power spectral analysis

of the principal components reveal periods which can be related to

the seasonal cycle of sea ice growth and decay in the Weddell Sea,

harmonics of this cycle, the cold season (205 days), the warm

season (160 days), and the duration of spring-summer ice removal

(120 days) as reported in the literature. The first four EOF's and

their components can be considered the dominant normal modes

of variation in the ice field, accounting for 85$ of the total in-

formation content in the data (field variance).



1.0 INTRODUCTION

Empirical orthogonal function (EOF) analysis, or the method of
principal components (also singular value decomposition) is well-
documented in the literature and has found wide application in many
areas of applied research, particularly in those areas where there
are large numbers of measurements. For large data sets (or geophysical
fields) it becomes increasingly important to find ways of compressing
the data while still extracting as much of the information content as
possible.

EOF's, which are linear functions of the measurements, provide
us with an efficient tool in data compression and information extrac-
tion. The method is efficient in the sense that highly correlated
fields can be adequately represented by the least number of orthogonal
functions and corresponding orthogonal coefficients (principal compon-
ents). The higher the correlation in the measurements, the fewer the
number of functions arid coefficients are required to describe the data
and explain the variance in the field. This reduces the dimensionality
of the problem. The latter feature is especially important in the devel-
opment of statistical prediction schemes that rely upon multiple linear
regression techniques, since the skill and confidence of these schemes
depend to a large extent upon a priori methods of reducing the number
of available predictors (Davis, 19?6; Barnett and Hasselmann, 1979).

A property of EOF's which makes them particularly appealing is
that, unlike conventional orthogonal representations (e.g., the famil-
iar Fourier decomposition, Tschebycheff polynomials, or spherical har-
monics), they do not require any predetermined form. Rather, since they
are derived as the eigenvectors of the covariance matrix between the
variables (which can be computed for any variable observed on any grid,-
-regular—or—no-t-)-,—their—form-depends—di-rectly—on -the—interrelationships—
existing within the data itself. This feature is especially desirable
when analyzing fields such as sea surface temperature, pressure, or sea
ice brightness temperature anomalies, which have no known analytic form
and depend on complex boundary conditions. Also, the derived eigenvec-
tors often provide us with a tool for gaining insight into the physical



interpretation of underlying complex processes within a geophysical

field.

The first EOF is that linear combination of the original var-

iables, which when used as a linear predictor of these variables, ex-

plains the largest fraction of the total variance. The second, third

EOF, etc., explain the largest parts of the remaining variance. The

ordered set of EOF's and their coefficients are frequently referred

to as the normal (also natural, principal) modes of variation in the

field. The lower ordered EOF's not only account for the largest

fraction of the total variance, but their coefficients often show

large scale frequency variations. The higher ordered EOF's usually

show small spatial scales with their coefficients being characterized

by diminished amplitudes and higher frequencies, both of which are

sometimes associated with noise.

Early references on principal components can be found in Pearson

(1901) and Frisch (1929) who were concerned with fitting a line, a

plane, or in general a subspace to a scatter of points in a higher

dimensional space. Principal components as applied to random variables

were introduced by Hotelling (1933) who characterized them by certain

optimal properties. Since then, they have been characterized by

slightly different properties (Girschick 1936, Anderson 1958, Kullbach

1959, Anderson 1963, Darroch 1965, Okamoto 1968). A good treatment of

the subject can be found in Kendall (1957)f Kshirsagar (1972), Marr-

iott (197̂ )» and Kendall (1975). An excellent paper on the use and in-

terpretation of principal components in applied research can be found

in Rao (196*0 . This reference contains proofs of a number of optimal

properties of principal components. One of the more important proper-

ties states that the eigenvectors of the sample covariance matrix com-

prise an optimal set of basis functions for a given truncation k. That

is, for a given truncation k, no other basis set can explain more of

the average variance (Davis 1976, Appendix A).

Fukuoka (1951) used principal components in a study of 10-day

forecasts and Lorenz (1956) was the first investigator to use the term

"empirical orthogonal functions" (eigenvectors of a sample covariance

-2-



matrix, also characteristic vectors) in connection with statistical

weather forecasting. Oilman (195?) subsequently applied BOF's to

30-day forecasts using data from 40 winters to calculate eigen-

vectors of temperature over the United States, and pressure over the

Northern Hemisphere. Sellers (1968) computed eigenvectors for pre-

cipitation over the western United States for each month of the year

and Kutzbach (1970) calculated eigenvectors for the January and July

sea level pressure fields over the Northern Hemisphere. Kidson (1975)

derived BOF's for temperature, precipitation, and sea level pressure

in both the Northern and Southern Hemisphere and in the tropics using

10 years of data. More recently Barnett (1978) studied winter-averaged

and annually-averaged surface temperature eigenvectors over Northern

Hemisphere land and ocean areas for the 1950 - 1977 time period. Tren-

berth (1975) and Davis (1978) used EOF's to study air-sea interactions

and Walsh and Johnson (1979) analyzed associations between interannual

atmospheric variability and arctic sea ice extent.

Excellent references for the derivation of BOF's and their

coefficients as well as procedures for calculating them can be found

in Kutzbach (1967), Sellers (1968), and Davis (1976). Hotelling (1933)t

Bartlett (195̂ ). Lawley (1956), Bue.1.1 (1978), Preisendorfer and .Bar-

nett (1977, 1978) discuss significance tests for BOF's, and Craddock

and Flood (1969), Craddock and Flintoff (1970), and Rinne and Jarven-

oja (1979) outline procedures for truncating the EOF series.

Bue.1.1 (1972) has a very interesting discussion on the integral

representation of the eigenvalue problem and compares it with the

matrix formulation. He states "...the integral representation is

appropriate for meteorological problems since additional considera-

tions based on the properties of a continuum are possible, necessary,

and desirable." In two or more dimensions the shape of the boundary

that defines the area of integration must be taken into account. If

the area of each grid is the same, the two formulations are equivalent.

This is essentially true for the data set discussed in the present

paper. The shape of the boundary is also pursued in Bue.1.1 (1975, 1979).

Craddock (1973) discusses the reduction of the dimensionality of

the problem of long range weather forecasting and mentions significant

advances in the application of eigenvector techniques in meteorology.
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North, Bell, and Cahalan (1982) give an excellent review of

EOF's, focusing attention on the necessary weighting factors for

gridded data and the sampling errors incurred when too small a

sample is available. A rule of thumb is presented for indicating

when an EOF is likely to be subject to large sampling errors.

The number of applications of EOF analysis and the list of

parameters which have been expanded in terms of EOF's is quite

extensive. Atmospheric parameters which have been expanded in-

clude pressure (geopotential), temperature, humidity, water-vapor

mixing ratio, rainfall, wind velocity components, and ozone con-

tent (Obukhov I960, Rukhovets 1963, Holmstrom 1963, Grimmer 1963,

Garrilin 1965, Popov 1965. Koprova and Malkevich 1965» Mateer 1965, *

Marchuk 1965, Wark and Fleming 1966, Alishouse et. al 196?, Kutz-

bach 1967, Sellers 1968, Yakovleva et. al 1968, Sellers and Yarger

1969, Craddock and Flood 1969, Craddock and Flintoff 1970, Bodin

197̂ , Kidson 1975, Weare 1976, 1979, 1982). Spurrell (1963) has

applied EOF's to metallurgical data, Choi (1967) to the analysis

of seismic data, Smith et. al (1972, 1976) to retrieve atmospheric

parameters from spectral radiance measurements, and Mueller (1976)

has used EOF/principal component analysis for ocean color spectra,

Jalickee and Klepczynski (1977) applied singular value decomposit-

ion (principal component analysis) in the compaction of navigation

tables (see also Good 1969 and Golub and Reinsch 1970 in connection

with singular value decomposition). Steyaert et. al (1978) have

used EOF's of sea level pressure as predictors of wheat yields in

North America and the Soviet Union. Barnett and Preisendorfer (1978) *

have formulated eigenvectors of several variables in "key regions",

identified through a filtering process, in order to analyze climatic w

predictability. And, Walsh and Johnson (1979) have studied Arctic

sea ice data from the 1953-1977 period, and used EOF's to identify

the major spatial and temporal scales of ice fluctuations within the

25-year period.

Yakovleva et. al (1968) present a joining method for combining

spatial EOF's and their corresponding time coefficients from two

distinct spatial regions in order to approximate the "global" EOF



structure for the larger domain. This technique is applied in
Rinne and Karhi.la (1979) and in this paper.

The purpose of this paper is two-fold: (1) to present a
matrix partitioning scheme for approximating EOF's associated
with large sample covariance matrices at a fixed tolerance
level (or fixed percentage of the total sample variance), and;
(2) to apply the method to the EOF/principal component analysis
of the Nimbus-5 ESMR (Electrically Scanning Microwave Radiometer)
brightness temperature measurements (1.55 cm) of Antarctic sea
ice for a large area of the south pole (Weddell Sea region) and
for the time period from 30 September 1973 through 25 May 1975.
In addition, a physical interpretation of the first four spatial
EOF's and their corresponding time coefficients or principal
components (which can be considered the dominant normal modes of
variation within the ice field) will be given.

Section 2.0 is devoted to a brief description of the relevant
mathematical theory associated with the EOF/principal component
decomposition. In Section 2.1 the concept of matrix partitioning
(in either the spatial domain or the time domain) is introduced. In
Section 3.0, previous analyses of ESMR data are cited. The relation-
ships between brightness temperature, emissivity, and sea ice con-
centration are shown and discussed in Section 3-1• Section ^ con-
tains a description of the particular data set analyzed, the ESMR
instrument (spatial and temporal resolution), and the results of an
EOF decomposition of the field and application of the partitioning
method to the data set. The conclusions are found in Section 5.
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2.0 MATHEMATICAL THEORY

In the following V is a real (p x q) data matrix representing

the scalar field of measured anomalies of some physical variable rel-

ative to their time averages (row means removed). The number of

spatial points is p and the number of time points is q. V has rank

r ̂  q - p.

The complete singular value decomposition of V (Good 19&9? Golub

and Reinsch 1970) or the expansion of V in terms of empirical orthog-

onal functions (EOF's) and their associated coefficients (principal

components) is given by * '

V = ED*F' = eid*f{ + ... + eqd*fq

= EY = eiyi + ... + eqyq

= 7'F' = -7'f1 + + -7'f1L x Z1i1 f . . . -i- zqiq

= (vlf..,,v.,...,v ) = (vij) (D

where the orthonormal vectors e. (columns of E) are the left
J

singular vectors of V or spatial EOF's (eigenvectors of W or of

the sample covariance matrix S = VV'/(q-l))f the orthonormal vectors

f- (columns of F) are the right singular vectors of V or time EOF's
J

(eigenvectors of V'V), the orthogonal vectors y. (row vectors of Y
J

normalized to d.) are the principal components in the spatial domain
J

corresponding to the e. vectors (functions of time), the orthogonal
J

vectors z- (row vectors of Z also normalized to d.) are the principal
J J

components in the time domain corresponding to the f. vectors

(functions of space), and the d^ are the singular values of V or the
J

non-negative square roots of the eigenvalues of VV (or of V'V)

with

(1) x1 is the transpose of x.

(6)



D* = diag(d*...d*)

E'E = F'F = FF1 = I (2)

= ZZ1 = D = d

/o\ J, i
Since the rank of V is r v ' , d = ... = d2 = 0.

Using (1) and the orthonormal property of the e. and f .
J _ J

vectors in (2) the principal components in the space domain

and time domain are, respectively,

and (3)

•j ' d!e3 = fiv '

From (2) and (3). y^'\ = r ^ ' ^ z \ ~ di $>\ \ « and we see "tna"t
•*• J •*• J J -̂ J

the principal components are orthogonal functions of the data V,

ordered in such a way that the first component y.. or z.. ( or

equivalently e. or f. ) corresponding to d. accounts for the

largest fraction of the trace Tr of VV (or of V V) , the second

component y' accounts for the second largest fraction of the

trace, and the jth component accounts for

(d./T ) x 100̂
J -^

of the trace T where

dq

From (1) the jth measurement vector v- is given by
J

The rank of V.V'.VV, and V V is the same (Noble 1969)

(7)



where the coefficient y, . associated with the kth eigenvectorKJ
e, for the .1th time point is the jth element of yk and repre-

sents the amplitude at time j of the normalized (unit length)

spatial EOF pattern e, .

The sum of squares of the coefficient associated with the
q ?

kth eigenvector, J~r V~. = d^ is equal to (q-1) times the total
J^i J

variance explained by the kth eigenvector or EOF. The total

variance in the field is T /(q-1).

From (1) we can also write the scalar representation of

the field as

k=l

which shows that the contribution to the field by the kth spatial

EOF at the ith spatial point and jth time point is given by the

product of the ith element of e, and the jth element of the assoc-

iated time coefficient or principal component y, .

Since the elements of y, = ( e, v. , . . . , e, v ) from (3) are the

projections of the measured anomaly vectors v- (j = 1,2,..., q') ont6
J

ek (see Appendix A for a geometrical interpretation of principal

components), the y, are time-dependent amplitude functions which

modulate the spatial EOF patterns e, and describe the temporal

variation of the field about the mean in the direction of e,. For

fixed k the e, , being functions of space only, describe the spatial

variation of the field about the mean in this direction, i.e., the

spatial distribution of covariance in the field. The ordered spatial

EOF's and their associated time coefficients (or principal compon-

ents) are sometimes referred to as the normal (also natural or

principal) modes of variation in the field.

From (1) and (2), V V = Y'Y, from which we obtain

(8)



n=l k=l

and therefore

x

represents the fraction in percent of the total sum of squares

of the jth measured anomaly vector (v.) accounted for by the kth
J

EOF e, (see Sellers 1968) or equivalently the percent contribution

of the kth principal component y, to the spatially averaged mean

square anomaly at the jth time point, v'.v. .
J J

In Appendix B it is shown that for fixed k - r, (V-V) has

minimum norm, where V is the approximation to V using the first k

terms in (1). Thus, the expansion of V in (1) is optimum in the

sense of least squares. Each successive term in the expansion more

closely approximates V with the complete reconstruction of the

data being accomplished when k = r. For highly correlated data

arrays or fields the first few EOF's will account for the largest

fraction of the total information content in the data (trace Tr of

VV ) . Therefore, representing the field using these few terms

leads to a reduction in the dimensionality of the problem. It is

in this sense that the singular value decomposition or EOF/princi-

pal component expansion of V provides us with the most efficient

method for data compression (see Jalickee and Klepczynski 1977).

It is shown in Appendix B that VV and V V have the same non-

zero eigenvalues and that if e- is an orthonormal eigenvector of
J

VV corresponding to d . P 0 with principal component y., then
_i J J

f . = d.sy'. is an orthonormal eigenvector of V V also corresponding

to d. + 0. Also, if f . is an orthonormal eigenvector of VV corr-
V — "41

esponding to d . $ 0 with principal component z., then e. = d. z'.
J J J J J

Is an orthonormal eigenvector of VV corresponding to d.. The
J

duality between the principal components and eigenvectors in the

two domains is evident from the relations in (3). This result can

afford us savings in both computer storage requirements and compu-

tation time in the calculation of eigenvalues and eigenvectors,

especially if one of the dimensions of V is much larger than the

(9)



other. The eigenstructure of the smaller dimensioned matrix (either

VV or V'V) can be calculated first. Then, from this structure the

eigenvectors of the larger dimensioned matrix can be easily obtained,

If both dimensions of V are large, V can be partitioned into a

number of smaller subarrays V. and the eigenstructure of the smaller

dimensioned matrices - either V-V! or V-'V- - calculated. Then, by

properly joining eigenvectors and principal components from each

partition, the eigenstructure of VV (or of V'V) can be obtained to

any required accuracy of (0 -ef^ 1) where <* represents a fraction of

the trace T . The number of vectors and components to be joined at

any particular level is a function of of, T , and the magnitudes of

the largest eigenvalues of V- V J . The method for joining vectors from

various subdivisions of the data has been presented before by Yak-

ovleva et. a.l (1968) and also by Rinne and Karhila (1979). In appli-

cation of the joining procedure these authors have partitioned the

data in the spatial domain, joining together a fixed number of

spatial EOF's from each partition. In the present analysis V is par-

titioned in both the space and time domains and only that number of

vectors (and components) are joined at each level which are suffic-

ient to insure that 10(X$ of the trace T is accounted for.

(10)



2.1 MATRIX PARTITIONING AND JOINING VECTORS

Partitioning of the basic data array V into a number of

subarrays with the subsequent joining of local EOF's from

these subdivisions offers two advantages. First, the procedure

provides us with an efficient algorithm for approximating the

eigenstructure of VV (or of V'V) at a specified tolerance

leveled. Second, joining local EOF's from these particular

subdivisions enables us to gain an insight into the global EOF

structure through analysis of the joining vectors. The joining

vectors (eigenvectors of the covariance matrix of principal

components from the various subdivisions) are essentially

weighting functions with the elements of each vector weighting

specific -local EOF's to the global EOF associated with that

particular vector. Since the elements range in value from -1

to +1 joining vectors can also be viewed as correlation funct-

ions. In this sense each element gives us a measure of the

correlation between the local EOF and the global EOF. These in-

terpretations of the joining vectors are useful in interpreting

global EOF's.

Sets of EOF's associated with the various subdivisions of

the data may be joined together in a number of ways. The pro-

cedure for joining M sets in one operation, is an extension of

the procedure for joining two sets in one operation ( this

latter procedure is described in Yakovleva et. al 1968 and in

Rinne and Karhila 1979) and is shown in Appendix C. Appendix D

contains a general procedure for joining where there are L

partition levels, M-, matrices and N-, groups of matrices at the

1th level (1 = 1,2, . . . ,L) .

For purposes of this discussion we will consider partit-

ioning in the spatial domain only. To apply the procedure of

joining in the time domain the transpose of V, or V , can be

used. The algebraic equations and manipulations which apply

for V will then apply for V . Thus, let us partition V in (1)

into M submatrices V^ each of dimension (p. x q) and rank

r^ ̂  min(pitq) with p.^ + • . . + PM = p and r^ + . . . +

(11)
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(9)

From Appendix C, V can be written as

y = EY = E(AD2Hf)

= GW = + (10)

where

T =
E'M

Y =
V
LM

The columns of E- in E are the local spatial EOF's for the

ith subdivision V- and the rows of Y- in Y are the corresponding

principal components. Since the rows of Y are correlated.,Y is

expressed in terms of its singular value decomposition AD2H'.

From (10) and using (1), since E- is (p. x r.) and Y^ is (r. x q

we have E = G = EA and Y = W = D̂ H'. The joining vectors are the

columns of A which are the eigenvectors of YY'. The columns of E

(or equivalently G) are the spatial global EOF's and the rows of

Y (or equivalently W) are the corresponding time coefficients or

principal components.

(12)



I

It is also shown in Appendix C that if k. ̂  r. (i=l,2 ..... M)

and k - k1 + ... + kM are the smallest integers such that

(ID

and _ '

where o( is a specified tolerance level, T, is the trace of V- V! ,

T = T. + ... + TM , ^d. are the eigenvalues of V̂ V| , and'

the d- are the eigenvalues of YYf, then we can approximate V by
J

V at the lQQo(f0 level, where

V = g1w1 + ... + g_w_

(13)



3.0 ESMR DATA IN POLAR RESEARCH

Passive microwave images of the polar regions obtained from

the Nim"bus-5 ESMR brightness temperature measurements * ' have

been shown to be a valuable source of polar information. The ESMR

receiver (1.55 cm) is generally useful in all-weather all-season

situations, and, in particular, is able to detect the large con-

trast between the brightness temperature of sea ice and the bright-

ness temperature of open water. It is because of this contrast

that the edge of the ice pack can be identified and information on

sea ice concentration and ice type derived from these images.

Scanning of the ESMR sensor provides complete spatial detail while

continuous satellite coverage of these regions on a daily basis

provides temporal detail (Zwally and Gloersen 1977).

Gloersen et al (1978) characterized the time variation of the

sea-ice concentration and multi-year ice fraction within the pack

ice in the Arctic Basin through analysis of the ESMR microwave

images and other data acquired using the NASA CV-990 airborne lab-

oratory. The data were analyzed for four seasons during 1973-1975.

These observations have shown significant variations in the sea-ice

concentration in the spring, late fall and early winter.

Carsey (1980) used the ESMR microwave images in a study of the

long-term and short-term behavior of the Weddell Polynya for the

years 1973-1977. This polynya or ice-enclosed open area was observed

during the 197^» 1975i and 1976 winters. The behavior of this polynya

margin and the regional ice concentration are interpreted in light

of several oceanographic and meteorological theories explaining the

circulation relevant to its origin, stability and role. He concludes

that water column stability preconditioning alone is a necessary, but

not sufficient condition for the existence of the polynya.__

w/ The Nimbus-5 spacecraft was launched 11 December 1972 into a nearly
circular polar orbit (1089 x 1102 km) permitting complete global
coverage every 12 hours.

The microwave radiation thermally emitted by an object is called its
brightness temperature. It is expressed in units of temperature since
the radiation emitted by a perfect emitter is proportional to its
physical temperature for wavelengths in the microwave region.
(Zwally and Gloersen 1977)



Crane et a.l (1982) used the ESMR data to determine the

spatial and temporal patterns of change in microwave signa-

tures of Arctic sea ice during a full annual cycle (1973/197̂ )-

Interactions of ice conditions with the atmosphere are examined

using grid point data for surface air temperature and atmos-

pheric pressure. An EOF/principal component analysis is used to ex-

amine the major elements present in the microwave and atmospheric

data. Principal components from these analyses are then used in

a canonical correlation analysis to determine interassociations

present "between the ice and atmosphere in the Beaufort Sea and

the European sectors on a synoptic time scale.

Rayner and Howarth (1979) studied the areal extent and var-

iability of Antarctic sea ice using the ESMR brightness temper-

atures from 19 December 1972 to 4 June 1975 for a total of 219

three-day time points with two data gaps (one from 26 February

to 29 May 1973. the other from 1 August 1973 to 5 September 1973).

The seasonal and interannual variations in Antarctic sea ice,

e.g., the times of ice break-up and ice build-up, are important

for fishing operations and coastal navigation. Also, these varia-

tions influence global climate.

In their method of analysis by Fourier decomposition Rayner

and Howarth generate two series: one of maximum ice extent (min-

imum latitude or MINL) and one of minimum ice extent (maximum

latitude or MAXL). Both these series with values at the integer

longitudes follow the 155 K isotherm around the Antarctic contin-

ent and are assumed to coincide with the 15$ ice-sea isopleth

which they take to define the ice-sea boundary (Zwally et al 1976),

Land masses are initially masked out. The reason for using two

series is that quite frequently, due to polynyas and large embay-

ments within the ice pack, the 155 K isotherm crosses the same mer-

idian more than once. For a Fourier series representation of the

ice-sea boundary the function must be single-valued as well as

periodic.

For the 219 time points both the MAXL and MINL series (lati-

tude of the 155 K brightness temperature isotherm versus integer

longitude) were expanded in a Fourier series each containing 180

(15)'



frequencies corresponding to the 360 longitudinal points. Results

of their analysis reveal that the first seven harmonics are

sufficient to account for more than 7Qfo of the variance in the

MINL boundary over the observation period and more than 90$ of

the variance during the winter seasons.

From their analysis of the amplitudes of the Fourier series

with time they conclude that; (1) the time variation of the spa-

tial mean latitude of the boundary is relatively smooth with a

maximum occurring on ̂  September 197̂  and a minimum on 19 Feb-

ruary 1975 (Figures 1 and 2); (2) the cold seasons are relatively

long (205 days) and the summer season relatively short (160 days);

(3) "the time variation of the spatial mean latitude is asymmetric

with the spring-summer removal of ice lasting 120 days and the

autumn-winter increase lasting 150 days.

Cavalieri and Parkinson (1980) have used Rayner and Howarth's

MINL series every ten degrees of longitude for the year 197̂  and

have compared .the three-day averaged ESMR brightness temperatures

with 1000 mb temperature and sea level pressure fields obtained

from the Australian meteorological data set. In their work they

also performed a Fourier decomposition - one on each of these

three variables - and concluded that the first three harmonics

were sufficient to account for most of the variance of the sea ice

extent and temperature for any three-day period. Their results

demonstrate an ice-atmosphere coupling of varying strength through-

out the year.

Zwally et al (1981) have created a summary data set contain-

ing Antarctic sea-ice conditions derived from the ESMR brightness

temperature measurements for the years 1973 through 1976. The meas-

urements have been mapped onto a polar stereographic grid enclosing

the 50°S latitude circle. Sea ice concentrations have been calculated

from the data for each grid element with an algorithm which uses an

emissivity of 0.9 and an ice physical temperature estimate from

climatological surface air temperatures. Monthly, multi-year monthly,

and yearly maps of brightness temperatures and sea ice concentrations

have been created. In their work they conclude that the microwave
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brightness temperatures of Antarctic sea ice are predominantly

characteristic of first-year ice with an emissivity of 0.92 at

the 1.55 cm wavelength of the ESMR.

A detailed analysis of Antarctic sea ice for the years

1973 through 1976 as derived from satellite passive microwave

observations has "been prepared (Zwally et al 1983) and is con-

tained in an atlas which includes pseudo-color images of bright-

ness temperature, sea ice concentration, changes in ice concen-

tration, and multi-year average concentration.
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3.1 EMISSIVITY. BRIGHTNESS TEMPERATURE. AND SEA ICE CONCENTRATION

The Nimbus-5 ESMR receiver has a center frequency of 19-35

GHz (1.55 cm) with an IF bandpass of from 5 to 125 MHz and is

therefore sensitive to radiation from 19.225 to 19-^75 GHz, except

for a 10 MHz gap in the center of the band (Wilheit 1972). The

radiometer is of the Dicke-type (Dicke 19̂ -6) with a temperature

sensitivity of 2°K and is fed by a phased-array antenna consisting

of 103 waveguide elements each having an electrical ferrite phase

shifter which step-scans across the sub-satellite track in 78

positions. The total swath is + 50° from nadir (Wilheit 1972,

Gloersen et al 1973)• Microwave images produced by the ESMR

instrument have a spatial resolution of approximately 30 kilometers.

Radiation (or brightness temperature) at the 1.55 cm wave-

length is directly proportional to the received radiometric power

since the Rayleigh-Jeans approximation holds. ^' It is affected by

high humidity and large water droplets in the atmosphere. Since the

humidity is low and the number and size of water droplets are small

in the south polar region, the received radiation can be assumed to

be emitted from the earth's surface. Also, the radiation is not

affected by darkness or cloud cover (Wilheit 1972, Wilheit et al

1972).

The basic equation for microwave radiometry is (Wilheit 1972,

Zwally and Gloersen 1977)

TB = £T (13)

where TB is brightness temperature, £ is emissivity and T is the

thermodynamic temperature of the emitting surface.

For microwave radiation of wavelength 1.55 cm, the emissivity

of sea water is approximately 0.4-, first-year sea ice approximately

(5) The Rayleigh-Jeans approximation for the intensity of thermal
radiation from a blackbody works well at microwave frequencies
(1-500 GHz) and at temperatures typical of the earth and its
atmosphere (200 - 300°K) (Wilheit 1972).
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0.95, and multi-year ice from 0.8 to 0.9 (Wi.lheit 1972; Gloersen

et al 1973, 197*0 • More recent studies of first-year ice in the

southern ocean have used a value of 0.92 for first-year sea ice

emissivity (Zwally et al 1981).

For an area containing only first-year sea ice and open

water, which is the case for most of the ice-influenced waters

surrounding Antarctica, the brightness temperature TB in a single

instantaneous field of view (IFOV) is related to fractional ice

concentration C (the fraction of the surface area within the IFOV

which is covered by ice) by

TB = *oTo° + (£wTw + A)(1 " C)

where € T is first-year sea ice brightness temperature (assumed

to be 235 K), € T is open water brightness temperature (assumed

to be 120 K), and A is the brightness temperature contributed by

atmospheric water vapor (assumed to be 15 K over open water areas

and 0 over ice)(Zwally et a.l 1976? Zwal.ly and Gloersen 1977).

Neglecting variations of the ice physical temperature (T ), sub-

stituting the foregoing approximate values into (1*0 and mult-

iplying by 100 to express C in percent, we obtain

C = (TB - 135)$ (15)

Equation (15) is accurate to approximately 15$ over most

of the Antarctic region where sea ice predominantly has the

microwave emissivity of first-year ice even though in some regions

it may be older than first-year ice (Zwally et al 19̂ 3)'
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4.0 ANALYSIS AND RESULTS

In Section 4.1, characteristics of the data set are discussed,

such as the period of observation, spatial coverage, temporal and

spatial resolution, and missing data points. The minimum and maximum

ice extents during the period of observation are shown, as well as

time series plots of the spatial mean vector, its associated spatial

standard deviation, and power spectra of these functions.

In Section 4.2, the temporal mean and standard deviation ice

brightness temperature maps for this time period are discussed. Char-

acteristic features such as the Wedde.1.1 Polynya, the edge of the pack

ice, and the region occupied by ice year round, are identified. It is

suggested that the advance and retreat of the ice edge over the annual

cycle may be characterized by a conceptualy simple one-dimensional

model with the gradient of mean ice concentration contours along a

"growth/decay trajectory" on the mean map describing a nearly linear

ramp function.

An EOF decomposition of the sea ice brightness temperature anomaly

field is discussed in Section 4.3. Gray scale/contour maps of the first

10 EOF1s are shown, along with their corresponding time coefficients

(or principal co.mponents) and variance spectra of the latter. In the

interpretation of the EOF's, the spatial pattern of anomalies over the

entire grid of points can be considered to be a pattern of constructive

and destructive interferences between the standing wave patterns in

the EOF maps (Figures 6 through 10). In context with the one-dimensional

model, the interference patterns between the EOF standing waves nerve,

in part, to reconstruct the advance and retreat of the step-like ice

edge through the annual cycle of growth and decay. A physical interpre-

tation of the first four EOF's and their coefficients and variance

spectra is given.

In Section 4.4, the method of matrix partitioning in the time

domain to approximate the "global" principal component structure is

compared to the direct method of calculating global principal compon-

ents. Calculations for the first three "pseudo" principal components

are carried out for a tolerance level of Qlfo (i.e., retaining 81$ of

total sample variance) and are in good agreement with the first three

global components.
-20-



DATA SET CHARACTERISTICS

An extensive time series of Nimbus-5 ESMR images has been

processed at Goddard Space Flight Center. ESMR brightness tem-

peratures accumulated during each 3-day period since 30 Septem-

ber 1973 were resampled to calculate 3-day average brightness

temperatures at each of 293 x 293 grid points which are equally

spaced when overlaid on the polar stereographic map projection

illustrated in Figures 1 through 3- The average distance between

grid points is approximately 3° km. The characteristics of this

data set are more fully described by Zwally and Gloersen (1977).

For the present analysis, an ensemble of ESMR sea ice TB

maps was selected for the time period extending from 30 September

1973 through 25 May 1975. Of the 201 3-day time intervals spann-

ing this 20 month sample period, 170 usable sea ice maps exist,

and the 31 missing data points are distributed in relatively

short time gaps! the largest gap spans 6 time points, another

spans 5 points, and the rest are smaller. The missing data in

the time domain were treated using the Fourier analysis methods

described by Murray (1981).

The space domain selected for analysis was restricted to

the 15»597 oceanic grid points falling within the box labelled

"Area Analyzed" in Figures 1 through 3- The raw data vector, at

any time point t, thus contains the 3-day average brightness

temperature at each of these 15i597 grid points (arranged in a

fixed order). Recalling equation (15)• we may interpret each

(TB - 135) as ice concentration in percent at time t and the

associated grid point. Missing data at individual grid points

within any given map were filled by interpolating linearly over

time at that location.

Figures 1 and 2 illustrate the positions of the ice edge_,

during this ensemble period,at the respective times of maximum

and minimum sea ice extent (after Rayner and Howarth 1979)' T-

variations at open ocean grid points seaward of the maximum ice

extent (Figure 1) are associated with atmospheric water vapor
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and liquid water droplets in passing weather systems. These sig-

nals typically range from 5 to 10 Kelvins. Figure 3 illustrates

the geography of the. Antarctic Continent, major glaciers, con-

tinental ice sheets, various islands, and South America, in re-

lation to the oceanic area covered by the ensemble grid.

The fraction of the total analysis area covered by sea ice

at any given time may be estimated approximately by averaging

each data vector over the 15.597 grid points. The time series of

the spatial mean vector and the associated time series of spatial

standard deviations are plotted in Figure ^. Also illustrated in

Figure 4 are the least squares power spectra of these series

(Vanicek 1969, 1971; Wells and Vanicek 1978; Murray 1981). Both

the spatial mean and spatial standard deviation are dominated by

the annual cycle with a significant spectral peak associated with

a half-year period. At the time of maximum ice extent, approx-

imately bOfi to 5̂?° of "the total oceanic area within the analysis

area (Figure 3) is ice-covered. At the time of minimum ice extent,

approximately 5f° "to Q% is ice-covered, using the approximation

that (TV - 135) is ice concentration in percent.
D

4.2 TEMPORAL MEAN AND STANDARD DEVIATION OF SEA ICE BRIGHTNESS

TEMPERATURE IN THE WEDDELL SEA (9/30/73 - 5/25/75)

The temporal mean and standard deviation ice brightness

temperature maps for this time series are illustrated in the

top two panels of Figure 6. The 15^ K mean brightness temper-

ature isotherm and isoline of 14 K standard deviation corres-

pond closely to the maximum ice extent (Figure 1). The open

ocean region seaward of the maximum ice extent is character-

ized by an average brightness temperature slightly greater

than 135 K, together with a standard deviation of approxi

mately 10 K due to water vapor and liquid water in weather

systems (Allison et al 197̂ ; Wilheit et al 1975; Zwally and

Sloersen 1977) •
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The region occupied by sea ice year round, just to the

east of the Antarctic Peninsula, is characterized by a high

average brightness temperature and also a standard deviation

of only 10°K.

The 200 km x 1000 km area of low average brightness temp-

erature near 0° longitude is a persistent, major polynya which

has been studied by several investigators and called the "Weddell

Polynya" (Zwally and Gloersen 1977; Rayner and Howarth 1979; Car-

sey 1980; Parkinson 1983). The ice pack completely covered the

Weddell Polynya in the winter of 1973» but during the winters of

197̂  and 1975 this region was primarily open water with ice con-

centrations rarely exceeding 15$ (bottom panel of Figure 11).

Variation in ice concentration in this vicinity in 197̂  was pri-

marily due to a gradual change in shape of the polynya from Aug-

ust through November 197̂  (Carsey 1980). The standard deviations

of grid points within the Weddell Polynya are corresponding low,

being only slightly greater than those of the open sea beyond the

maximum ice extent.

The Weddell Polynya lies along the locus of the Antarctic

Divergence, as it projects into the Weddell Sea. Enhanced diver-

gent wind stress, due to inversion winds off the ice shelf, are

thought to produce enhanced upwelling of warm deep water in this

region and thus maintain the polynya as an open water area (Zwally

et. al 1976; Zwally and Gloersen 1977).

Parkinson (1983)» using mean climatological data as input,

has successfully simulated a Weddell polynya through a sequence

of numerical simulations of the ice cover, and concludes, "...

the model obtains a full-scale, Ofo concentration Weddell polynya

which can be moved and prolonged by changing the wind forcing.

Results seem to suggest that the Weddell polynya might arise in

response to the winds, but then is maintained through oceanographic

factors, including possibly a wind-driven divergence, or through

the joint influence of the ocean and such feedbacks as the atmos-

pheric warming which the polynya would be expected to induce."
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In the mean field,the curved tongue-like protuberance

emanating eastward from the Antarctic Peninsula represents the

path of maximum growth and decay of the ice pack over the

annual cycle. For purposes of discussion, the dashed line down

the center of this tongue will be referred to as the ice

"growth/decay trajectory". The gradient of mean ice concen-

tration contours along the growth/decay trajectory may be char-

acterized as a nearly linear ramp function. The ice growth/

decay trajectory curves around the Weddell Polynya, reflecting

the low average ice concentration there, even though it closed

over in 1973-

The ramplike nature of the mean TD contours along the
D

growth/decay trajectory can be readily explained in terms of a

simple one-dimensional model. 'Consider a horizontal axis from

x = 0 to x = 1, along which ice concentration C(x,t) at any

time t may be either 0 (open water) or 1 (ice). At time t = 0,

C(0,0) = 1 and C(x,0) = 0 for x > 0. Over some period T, the

ice edge is observed to advance from x = 0 (at time t = 0) at

a uniform speed to arrive at x = 1 at time t = T/2, and then,

to retreat at the same rate, returning to the initial con-

ditions at time t = T. If we consider the mid-point at x = 0.5,

C(0.5,t) is 0 for half of the cycle and 1 for the other half,

with a mean (over T) of C(0.5) = 0.5. Similar consideration of

the mean at a few other points quickly reveals that C(x) is a

linear ramp function sloping from C(0) = 1 to C(l) = 0. The

mean concentration in this simple model is obviously similar

to the contour gradient along the ice growth/decay trajectory

in the mean ice concentration field (Figure 6).

If we now consider the standard deviation associated with

the above one-dimensional model, SG(X) = i/x(l-x), we obtain for

a few selected points: Sr(0) = Sr(l) = 0, Sr(.25) = Sr(.?5) =O u L> U
0-^33, Sc(.5).= 0.5. This is, therefore, a symmetric function

with steep slopes near x = 0 and x = 1, and a broad maximum at

x = 0.5. Again, there are obvious similarities between the

standard deviation curve of the model and the contours of stan-

dard deviation in sea ice brightness temperatures along the

growth/decay trajectory (upper right panel of Figure 6).



From the above qualitative comparisons of geometric char-

acteristics between the modeled and observed sea ice T,-. means
r>

and standard deviations, we may conclude that much of the ob-

served variance may be explained by analogy to a simple

"advancing step function" model of the ice pack. This inter-

pretation is also supported by the time sequences of ice con-

centration at selected individual pixels within the region in-

fluenced by the ice pack (Figure 11). In all three cases shown

here, the transition from open water to ice-covered (and vice

versa) occurs abruptly. Near the center of the pack, the en-

semble average ice concentration - again approximated as

(TB - 135)$ - is close to 50$. And^at the pixel near the ice

edge, the ensemble average ice concentration is only a few per-

cent. When we consider the EOF decomposition of sea ice bright-

ness temperature anomalies from the sample mean (Section k.J

below), it will therefore be helpful to think in terms of re-

constructing a progressive, slab-like advance and decay sequence

through interference between "standing wave" EOF patterns, in

combination with a linear mean slope extending from minimum to

maximum ice extent.

^.3 EOF DECOMPOSITION OF SEA ICE BRIGHTNESS TEMPERATURE ANOMALIES

IN THE WEDDELL SEA (9/30/73 - 5/25/75)

The usual objective of EOF analysis of geophysical obser-

vations is to rotate tiie representation of the data to distances

along a few p-dimensional directions containing most of the ob-

served signal. This geometrical perspective is discussed in more

detail here in Appendix A and elsewhere in many of the references

cited above in Section 1. If the original p-dimensional measured

variables are truly random and uncorrelated with each other, then

there will be no dominant dispersion (variance) directions and

EOF analysis becomes a fruitless exercise. It is more frequently

the case with geophysical observations, however, that strong corr-

elations exist between the original variables (the measurement

of these variables being made independently), so that preferred

variance directions do exist and can be illuminated through EOF
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decompositions. Stated another way, EOF methods are often useful

in situations where all p measurables respond to variations in

some common forcing function, such as seasonal variation in solar

radiative flux. The projections of the individual responses onto

linear combinations of the original measurables (each such com-

bination being a rotated direction) will influence the EOF coord-

inates according to the importance of that process in the physical

system being studied.

In the case at hand, the original p dimensions are raw bright-

ness temperatures at the 15i597 spatial grid points. A "direction"

in this coordinate frame thus would be displayed graphically,

either as a curve (if all grid points were indexed and plotted on a

single abscissa with T,, as the ordinate)or as a two-dimensional

gray scale/contour plot where the grid points are located on a map

projection. The original measurement origin is thus located at zero

brightness temperature at all grid points, a position far from the

"centroid" of the sample, as given by the sample mean (upper left

panel of Figure 6). Before rotating to find principal axes of

brightness temperature variations, it is therefore necessary to

center the data matrix by subtracting the temporal mean from each

observation. In geometric terms, this amounts to translating the

origin to the position of the sample mean or centroid of the data.

The resulting data matrix V in (1) thus contains column vectors of

brightness temperature anomalies, v., relative to the temporal mean,
J

for 170 time points. These anomaly values, in Kelvins, are now di-

rectly interpretable as ice concentration anomalies in percent.

The EOF's defining the principal directions of anomaly var-

iations in ice concentration are the eigenvectors of the spatial

sample covariance matrix

S = VV'/(<1-1) = VV/169

where q. = 170 is the sample size in the time domain.

Since the mean is subtracted from each observation there are

at most 169 degrees of freedom and, therefore, the rank of S, or

the number of nonzero eigenvalues, is less than or equal to 169.
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A
The elements along the main diagonal of S are the sample

variance of brightness temperature measurements at each assoc-

iated spatial grid point. Therefore, the square roots of these

elements yield the sample standard deviation shown as a gray

scale/contour map in the upper right panel of Figure 6 and dis-

cussed in Section ̂ .2. The trace of S (sum of all the elements

along the main diagonal) is total sample variance, a quan-

tity which is invariant under the rigid axis rotations assoc-

iated with a complete EOF decomposition (Section 2 and Appen-

dix A) .

In order to reduce computation time and storage require-
A

ments, the eigenvalues and eigenvectors of S were calculated

by first determining the eigenstructure of the smaller time

domain scatter matrix V'V which has the same eigenvalues as W.

The desired spatial eigenvectors and temporal principal compon-

ents were then obtained as explained in Section 2 and Appendix B.

A determination that only the first k eigenvalues are

statistically greater than zero amounts to a statement that the

first k principal components represent signal, and the remainder

represent noise. Preisendorfer et al (1982) have recently reviewed

this topic and provide a systematic set of rules for selecting

significant eigenvalues, but ambiguities remain even so.

One family of eigenvalue selection rules is based on slope

variations in a plot of the logarithm of eigenvalue (LEV) ver-

sus eigenvalue number. Craddock and Flood (1969) and Craddock and

Flintoff (1970), for example, truncate the "signal" eigenvalues at

the point beyond which the LEV curve may be approximated by a

straight line. Other criteria for determining truncation level in-

clude retention of eigenvalues exceeding \% of the total sample

variance (Kaiser 1960), retaining only eigenvalues which are "much

larger than others" (Beale et al 196?), retention of eigenvalues

which cumulatively account for ̂ % of the total sample variance

(Mueller 19?6), and subjective determinations based on inspection

of the LEV diagram (Rinne and Jarvenoja 1979). In all cases, some
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element of subjective interpretation is involved in the trunc-

ation decision.

A
The LEV diagram of the sea ice covariance matrix S is

plotted in Figure 5. By the Craddock et al criterion, the first

85 EOF's should be retained to provide a "complete" decomp-

osition of the sea ice anomaly field. This truncation level

would retain 98*92% of total sample variance. The first 10
A

eigenvalues of S and their respective and cumulative contribu-

tions to the total sample variance are compiled in Table 1. Each

eigenvalue equates to variance in the principal component (dis-

tance) in the direction defined by the associated eigenvector

(EOF). Nearly 92% of total sample variance in ice concentration

is resolved by a principal component representation in these 10

directions. By using either Craddock1s criterion or Mueller's

we would retain the first 85 EOF's. By neglecting those eigen-

values which individually account for less than \% of total var-

iance we would retain only the first 7 EOF's.

The issue of truncation would become critical in a study

which used a truncated EOF decomposition of the data in con-

junction with a numerical sea ice model, or in the calculation

of cross-covariance spectra between truncated representations of

sea ice concentration and another variable, such as atmospheric

pressure^ Truncation is less critical in purely descrip-

tive analyses of organized structure in space/time variability

associated with a geophysical field. The present analysis is arb-

itrarily confined to a descriptive presentation and interpretation

of the first 10 EOF's and principal components of sea ice concen-

tration anomalies in the Wedde.1.1 Sea. Furthermore, detailed dis-

cussions focus primarily on only the first ^ EOF* s^ which are

assumed to represent the dominant normal modes of variation in the

field.

The first 10 EOF's are illustrated as gray-scale/con-

tour maps in Figures 6 through 10. Shown beside each EOF map are

the corresponding principal component and the variance spectrum of

the principal component time series. In all EOF maps, major anom-

aly amplitudes are confined to grid points falling between the

maximum ice extent boundary and the shoreline of Antarctica. In
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many of the EOF's, very small amplitude anomaly patterns occur

over the open ocean areas beyond the maximum ice boundary. These

anomalies are due to water vapor and liquid water fluctuations

along the storm tracks through this region during this ensemble

period.

The kth principal component at any time t represents the

amplitude of the normalized (unit length) spatial anomaly pattern

illustrated in the kth EOF map. The interplay between an EOF and

its time varying principal component can be most easily under-

stood through a specific example. Examine EOF/principal component

#2 (Figure 6) and note that the EOF pattern indicates a negative

anomaly of < -0.016 at position (60°S, 15°E) and a positive anom-

aly of +0.012 at position (65°S, ̂ 0°W). On day 250, the 2nd prin-

cipal component has an approximate value of +2000 it, which yields

2nd EOF anomaly contributions of < -32 K at (60°S, 15°E) and

+ 2^ K at (65°S, ̂ 0°W). Conversely, on day ̂ 00 the 2nd principal

component has an approximate value of -1000 K, yielding 2nd EOF

contributions of > 16 K at (60°S, 15°E) and -12 K at (65°S, *K)°W).

Reconstruction of the time modulation of the overall brightness

temperature anomaly at these two locations requires, of course,

that the contribution of all significant EOF's be summed. Thus,

the spatial pattern of anomalies over the entire grid can be con-

sidered to be a pattern of constructive and destructive interfer-

ences between the standing wave patterns in the EOF maps(Figs 6-10).

Recall now the discussion of the simple one-dimensional

"advancing step function" model introduced in Section k.2 above.

In the context discussed there, the interference patterns between

EOF standing waves serve, in-part, to reconstruct the advance and

retreat of the step-like ice edge through the domain influenced

by growth and decay of sea ice through the annual cycle. The

abrupt transition from water to ice (and the reverse) observed at

individual pixels (Figure 11) is consistent with this interpretation.

In general, the 1st EOF and principal component describe a

long wavelength modulation of positive and negative anomalies, foll-

owing a spatial pattern which is qualitatively similar io the shape

of the standard deviation of the one-dimensional model (Section .̂2).

Near the time of maximum ice extent (Rayner and Howarth 1979), the
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1st EOF anomaly monotonically increases TR relative to the mean,

with maximum contributions near the center of the ice pack. Con-

versely, near the time of minimum ice extent, the 1st EOF anom-

alies are monotonically negative and tend to reduce TR over the

ice-influenced region towards the uniformly low values associated

with open water.

The 1st principal component varies smoothly between times of

minimum and maximum sea ice coverage in concert with previously

published descriptions of the annual cycle of ice growth and decay

in the Weddell Sea (Rayner and Howarth 1979; Zwally and Gloersen

1977). Not surprisingly, therefore, the variance spectrum of the

1st principal component is dominated by the annual cycle, with

smaller spectral peaks associated with a half-year period and a

120 day period. (The occurrence of peak power at 3^8 days, rather

than 365 days, is almost certainly an artifact of the ensemble

period being only 20 months. This series is too short to allow

accurate estimates of a variance spectrum dominated by a 12-month

cycle.)

The 2nd principal component time series is phase shifted

from the 1st in such a way that interferences between 1st and 2nd

EOF anomaly patterns will improve the representation of the advance

and retreat of the ice edge during periods of growth and decay

(Figure 6). A similar conclusion may be drawn from inspection of

interactions between the first EOF/principal component and numbers

3 and 5 through 10. In each case the largest principal component

amplitudes (+ or -) occur during periods of ice growth and/or

decay. Also, in each case the dominant spatial pattern in the

higher EOF may be seen to produce interferences with the pattern of

the mean and 1st EOF which reproduce a step-like manifestation of

the ice edge.

Many of the strongest anomaly patterns occur in regions where

the ice pack undergoes extremely rapid growth and decay during the

transition phases. This can be seen by comparing the EOF anomalies,
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in this light, with 197̂  monthly average sea ice extent contours

published by Cavalieri and Parkinson (1981) and included here as

Figure 12. During the ice pack growth period in March through May,

the spacing between monthly contour intervals is large in the

western and central areas of the Weddell Sea (Figure 12a). Compare

this especially with the anomaly patterns in the 2nd and 3rd EOF's

and the rapid positive growth in their principal components during

this period (Figures 6 and 7). Then, during the early retreat of

the ice pack in November and December, a large contour interval

outlines the rapid expansion of the polynya, followed by an abrupt

retreat to nearly minimum extent in January 1975 (Figure 12b) . The

breakup of the pack ice followed a more complex sequence of spatial

patterns than did the ice growth, and is manifested by rapid posi-

tive to negative excursions in most of the principal components

(Figures 6 - 10) .

EOF #4 and its principal component time series (Figure 7)

uniquely represent interannual variability in the Weddell Polynya

between 1973 and 197̂ . In the winter of 1973, when the polynya was

absent until early in the spring breakup of the ice pack, positive

brightness temperature anomalies prevailed here. Then, in 197̂ . the

polynya remained open throughout the winter, creating a negative

TB anomaly relative to the 20-month mean. The anomaly amplitudes in

EOF #4 also indicate a more subtle effect associated with the band

of -0.012 anomaly extending zonally eastward from the tip of the

Antarctic Peninsula (Figures 3 and 7)- In 1973* when the 4th prin-

cipal component had a large positive value (polynya absent), the

maximum ice extent boundary in these longitudes was displaced anom-

alously to the south. In 197̂ , when the 4th principal component had

a large negative value (polynya present), the maximum ice extent

boundary was displaced anomalously to the north. A much longer time

series must be analysed to determine whether there is significant

evidence of an association between presence of the Weddell Polynya

and maximum ice extent. In the present sample this apparent assoc-

iation could be a purely coincidental contrast between two winters.

The primary roles of EOF's 2,3, and 5 through 10 in reconstruct-

ing the movement of the ice edge during growth and decay phases is
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also manifested in the time histories of each principal com-

ponent's percentage contribution to the spatially averaged mean

squared anomaly (equation (8) and Figures 13 and l*f). The 1st

EOF dominates the mean squared anomaly during periods of both

maximum and minimum ice extent and falls abruptly during growth

and decay phases. At the times of ice minima, contributions

from EOF's 2 through 10 are negligible. During the periods of

maximum ice cover EOF #k is a significant contributor, repre-

senting the markedly different manifestations of the Weddell

Polynya in 1973 and 197̂ -. The situation is quite different dur-

ing the ice growth and decay phases. The mean squared contri-

bution of principal component #1 falls steeply to zero, and then

rises just as steeply, as the sign of the principal component

reverses. Coincident with these "notch-like" signatures, the

mean squared anomaly signals associated with principal compon-

ents 2,3. and 5 - 1 0 appear as sharp pulses of energy. During

each such pulse, the shorter wavelength anomaly patterns of the

associated EOF's make strong contributions to the reproduction

of the ice edge.

The variance spectra of the first 10 principal components

are all dominated by peaks associated with periods which are a

significant fraction of the approximate 600 day ensemble period.

As previously mentioned, this time series is much too short to

attribute a high degree of accuracy to the spectra illustrated

in Figures 6 through 10. Nevertheless, the dominant peaks can be

clearly associated with well-known processes, including the
_4

365 day (0.003 day ) annual cycle (particularly in spectra of

principal components 1 and 2), a 160 day (0.006 day" ) warm

season and 205 day (0.005 day ) cold season (Zwally and Gloersen

1977; Rayner and Howarth 1979), and a 120 day (0.008 day"1) per-

iod of ice removal (Rayner and Howarth 1979)•
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*K4 EOF COMPUTATIONS USING PARTITIONS IN THE TIME DOMAIN

It was noted in Section ̂ -.3 that the actual EOF computa-

tions were done using the smaller time-domain scatter matrix

V'V, and the results transformed for application to the spatial

covariance matrix S using the relationships .explained in Sec-

tion 2 and Appendix B. The 170 x 170 matrix V'V is small enough

to allow practical direct computation of its eigenvalues and

eigenvectors using standard computer subroutines. Were sample

size to grow much larger, however, direct eigenvalue computations

would become impractical and the techniques outlined for separate

computations of eigenvectors and eigenvalues of smaller partit-

ions, and subsequent joining of the results (Appendices C and D)

would become essential. Therefore, this data set was used to test

the accuracy of global principal components estimated by joining

truncated sets of principal components associated with the smaller

dimensioned scatter matrices.

The data matrix (V) was partitioned in the time domain into

5 sub-matrices, each of dimension 15,597 x 3^ and the eigenstruc-

ture of each of the 3^ x 3^ vlv-j (i = li-.,5) scatter matrices

determined. Using the joining procedure outlined in Appendices C

and D and retaining 81^ of the total sample variance, a truncated

set of 9 principal components (and associated EOF's) from all

these partitions was joined to approximate the global principal

component structure. These approximations (or pseudo-principal com-

ponents) were then compared with the global principal components

calculated directly without truncation. The first three pseudo-

principal components are plotted as open circles in Figure 6 and 7•

The 1st pseudo-principal component series is virtually indisting-

uishable from the directly computed one, and the comparisons are

nearly as good for the 2nd and 3rd principal components. Clearly,

this approach will be usable, given proper retention of total

sample variance in the truncated computations, for obtaining acc-

urate estimates of at least the lower ordered EOF's from indefin-

itely large ensembles of sea ice brightness temperatures.
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A similar computation was carried out by partitioning

the spatial grid into three longitudinal sectors. Equally

good approximations to the global EOF's were obtained with

this approach to partitioning of the sample. The results from

the spatial partition computations allow some interesting

comparisons to be made concerning the global importance of

locally important anomaly patterns, particularly in the higher

ordered EOF's. However, that type of interpretation is beyond

the scope of the present paper, and the results of spatial

partition computations will not be presented here.



5.0 DISCUSSION AND CONCLUSIONS

A matrix partitioning scheme has been presented for approximat-

ing the eigenstructure of a large sample oovariance matrix. The data

array, a field of measured anomalies (of some physical variable)

relative to their time averages, may be partitioned in either the

time domain or the space domain. Eigenvectors of the smaller dimen-

sioned covariance matrices associated with the partitioned data

sets (and their principal components) may be calculated independent-

ly and joined to approximate the eigenstructure of the larger Co-

variance matrix associated with the unpartitioned data set. The

accuracy of the desired approximation (in terms of retaining a giv-

en percent of total sample variance) and the magnitudes of the

largest eigenvalues from the partition covariance matrices deter-

mine the number of local EOF's (eigenvectors) and principal com-

ponents to be used in the joining process.

This method is shown to allow accurate estimation of spatial

EOF's for time series of satellite image data where there is a

large number of spatial grid points. The spatial covariance matrix

associated with any ensemble of satellite images is far too large

to allow direct computation of its eigenvalues and eigenvectors,

the latter being the desired spatial EOF's. In many cases, however,

the number of images in an ensemble (its time dimension) is suffic-

iently small to permit direct computation of the eigenvalues and

eigenvectors of the temporal scatter matrix. The latter eigenvec-

tors can be easily transformed to obtain the eigenvectors of the

spatial covariance matrix. As a result, great computational sav-

ings are realized.

There are a number of satellite data ensembles where the

dimensions of both the time and space scatter matrices are too

large to permit direct computation of the eigenstructure of either

matrix. In such cases, the above mentioned matrix partitioning

scheme must be employed to break the computational problem into

manageable pieces. The methods by which the partition results are

joined are described in detail in Appendices C and D.

The accuracy and efficiency of the partitioning approach were

-35-



tested using a 20-month ensemble of Nimbus-5 ESMR measurements of

sea ice brightness temperature emissions in the Weddell Sea. The

time series of sea ice TB maps extended from 30 September 1973

through 25 May 1975 and included 170 3-day composite average maps

(leaving 31 reasonably well distributed time gaps). The spatial

representation was restricted to 15i597 oceanic grid points in the

Weddell Sea and adjoining Antarctic Circumpo.lar Current regime.

Spatial EOF's were first computed directly, using the 170 x 170

time scatter matrix as a computational expedient. Then, the first

3 EOF's were computed indirectly using partitioning in the time

domain, and in another case, the space domain. Both partitioning

methods yielded comparable results and the calculated EOF's and

principal components agree remarkably well with those computed

directly. It is concluded that this method is extremely well suited

for analysis of data sets much larger than the one examined here.

The first 10 spatial EOF's, together, explain 92% of total

sample variance in sea ice brightness temperature (or percent ice

concentration) anomalies relative to the ensemble mean. The mean

and standard deviation are shown, by qualitative comparison with a

simple 1-dimensional model, to be consistent with those of a con-

ceptual model of the ice pack as a 2-dimensional, quasi-uniform

slab which grows and shrinks in spatial extent over the annual

cycle of ice growth and decay. In this context, the dominant anom-

aly patterns in the spatial EOF's and the phase relationships of

the principal components may be interpreted as a standing wave de-

composition of the advance and retreat of the ice edge. At any

time between maximum and minimum extent, the ice edge is represen-

ted by a linear pattern of interference between the ensemble mean

ice concentration and the standing wave anomaly patterns in the

EOF fields as modulated in amplitude by the time-varying principal

components.

The fourth EOF/principal component uniquely accounts for the

interannual difference in the Weddell Polynya, which was absent

during the winter of 1973 and present throughout 197̂ . This inter-

annual contrast accounts for J% of total sample variance which is

a highly significant fraction. Recall that the full variance assoc-

iated with the annual cycle is present in the covariance matrix

analyzed here! The spatial anomaly pattern in the fourth EOF also
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shows that the presence of the polynya in 197̂ - was accompanied

by an anomalous northward protrusion of the maximum ice extent,

and the reverse in 1973 when the polynya was absent. A much

longer time series would be needed to determine whether this

apparent association of the polynya with maximum ice extent

east of the Antarctic Peninsula occurs regularly, or was merely

a coincidental artifact of the two years examined.

Power spectral analysis of the .principal components reveal

periods which can be related to the seasonal cycle of sea ice

growth and decay in the Wedde.1.1 Sea, harmonics of this cycle, the

cold season (205 days), the warm season (160 days), and the dur-

ation of spring-summer ice removal (120 days) as reported in the

literature.

The first four EOF1s and their components can be considered

the dominant or principal modes of variation in the ice field,

accounting for &5?o of the total information content in the data

(field variance).
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APPENDIX A

GEOMETRICAL INTERPRETATION OF PRINCIPAL COMPONENTS

Principal components can be viewed geometrically as the pro-

jection of q points in a p-dimensional Euclidean space onto k

orthogonal vectors of a "best fitting" k-dimensional subspace

(k-p). Equivalently, they are linear functions of q measurements

on p variables which possess certain optimal properties. The sub-

space is "best fitting" (Pearson 1901) in the sense that the sum

of squares of the perpendicular distances from the points to the

subspace is a minimum. The motivation for projecting the points

onto a subspace of lower dimension is to represent the q measure-

ments by less than p linear functions in such a way that there is

a minimal loss of information content. The minimization procedure

is equivalent to determining k orthogonal axes or directions such

that there is maximum dispersion along the first principal axis,

a second largest dispersion along the second principal axis, etc.

The dispersion is a minimum along the kth principal axis (the dis-

persion is a measure of the variability and is the sum of squares

of the perpendicular distances of the points to a line passing

through the center of gravity of the points). The solution to the

problem of finding a "best fitting" subspace to a scatter of points

in a higher dimensional space involves the eigenvalues and eigen-

vectors of a matrix and was first investigated by Pearson (1901)

and Frisch (1929)•

As a simple example, consider the scatter of points in Figure

A-l. The "bej3t fitting" one-dimensional subspace passing through

the center of gravity C of the 7 two-dimensional points is the line

LpC (obtained by minimizing the sum of squares of the perpendiculars

from the points to the line). The "standard" least squares straight

' The development here follows that of Rao (196*0 who gives an ex-
cellent treatment on the use and interpretation of principal com-
ponents in applied research and who discusses many of their op-
timal properties. Kshsirsagar (1972) is also an excellent refer-
ence on the subject and the proof of one of the optimal properties
found in this appendix is due to him. The appendix is self-contained,



line fit to these points is the line LTS (obtained by minimizing

the sum of squares of the vertical distances from the points to

the line). Note that the dispersion of the points is a maximum

in the direction of L^ (i.e., the second moment about a line

passing through the center of gravity is the greatest in this

particular direction). The second principal axis (not shown) is

orthogonal to L™ and is in the direction of LTOI also passing

through C.
y

Center of
Gravity

T.

First principal axis

Perpendicular from
point to subspace

Least squares
straight line

Vertical from
point to line

Figure A-l

We can represent q points in a p-dimensional Euclidean space

by the matrix X

X =
lq

pl ' ' '

(A.I)

where the jth point, x., is the jth column of X.
J

The center of gravity of the q points is x where the ith

coordinate is

(A.2)

(i = 1,2,...,p)



v. .

The points measured from their center of gravity,

= (x. . - x. ) (i = 1,2 ..... p; j = 1,2,..., q) can be written
-L.I -L

V =

' ' ' Vlq

V = (A.3)

The total dispersion (or scatter) matrix S is

S = VV = (s. .)
x u

(A.

and is positive semi-definite with p eigenvalues d..-dp-...-d -0

which are the roots of

s - (A.5)

Corresponding to each d. there is an orthonormal eigenvector e.
u J

which satisfies

or in matrix notation

(A.6)

E'SE = D = diag(d1 ( . .d ) ( A . 7 )

where

E = ( e l t . . e )

EE1 = E'E = I

(A.8)

(A .9 )



and I is ̂ e identity matrix of order p.

Equation (A.?) can be written

S = d^ej + . . . + dpep
ep (A.10)

Ip = el6' + . . . + epe^ (A.11)

The representation of S and I in (A.10) and (A.11) is known

as the spectral decomposition of the matrix S and I respectively

(Good 1969 and Appendix B).

By definition a k-dimensional subspace is specified by a point

(or origin) and k orthogonal vectors. As previously mentioned Pear-

son defined a "best fitting" subspace as one in which the sum of

squares of the perpendicular distances from the points to the sub-
space is a minimum. Such a subspace passes through the center of

gravity of the points.

Let h1,h2,...,hk be k orthogonal vectors which together with x

specify the k-dimensional subspace. Without loss of generality we may

assume the h. are orthonormal vectors. The square of the perpendicular

distance from the ith point to the subspace is then

(A. 12)

Summing (A. 12) over all q points we obtain

7 2? =
1=1 1=1 1=1

= trace(S) - trace(H'SH) (A. 13)



where

H = (h. . . .h, ) = (h. .) (A.

H'H = Ik (A.15)

Since the eigenvectors e . are orthogonal they are linearly
J

independent and form a basis for the p-dimensional space. Therefore

we can write h. as a linear function of the e.

hi = ciiei + .-. -t + cipep (A.16)

(i = 1,2,....k)

or in matrix notation

H = EC1 (A.I?)

where E is given "by (A.8) and

C = ( I (A. 18)

ckl ' ' ' ckp

with

CC1 = Ik (A.19)

Using (A.7), (A.9), and (A.I?) trace(H'SH) becomes

trace(H'SH) = trace(qDC')



(A.20)

where each of the coefficients of d- is - 1 and the sum of all the

-coefficients is k by (A.19).

In order to maximize trace(H'SH) the optimum choice for the

coefficients is unity for d.,...,d, and zero for the others. This

means c.. =1 for i = l,2,...,k, c. . = 0 for all other i and j
-L -L -L J

which is possible by choosing h. = e. for i = 1,2 k.

Therefore

max trace(CDC') = d. +...+ d. (A.21)

and the minimum of Q in (A.13) is

min Q = d.
hi

k+l (A.22)

which is attained when (i = 1,2,...,k).

The actual representation of points in the "best fitting"

lower dimensional subspace is, letting K = (e.,...,e, )

X =

eixi

\ekxl ' ekxq

(A.23)

The first row of E£X gives the best one-dimensional representation

of the points; the first two rows give the best two-dimensional rep-

resentation, etc.



In similar manner

Y =

iV\

ekvl ' ' '

/v.\

(A.24)

gives the "best fitting lower dimensional representation of the

deviations of the points from their center of gravity. Here y.

(i = l,2,...,k) is the ith principal component as used in the

text.

Another optimal property of the first k eigenvectors of S

should be noted.

In the sense of least squares the sum of the first k terms

in the spectral decomposition (or singular value decomposition)

of S gives the best matrix of rank k that approximates S.

Thus, if B is any matrix of rank k then

min
B

where the Euclidean norm of A, |AJ.| , is

i* (A.25)

(A.26)

See Appendix B.



APPENDIX B

RELATIONSHIP BETWEEN SINGULAR DECOMPOSITION

AND EOF/PRINCIPAL COMPONENT ANALYSIS

Let V be a real (p x q) data matrix of rank r. Using the

singular decomposition theorem (Good 19&9) we can write

V = ef' + ... + ed*f (B.I)

where the column vectors e • and f • are respectively the left
J J

singular vectors of V ( or eigenvectors of W ) and the right

singular vectors of V ( or eigenvectors of V'V ), and the d^
J

are the singular values of V or the square roots of the positive

eigenvalues of W ( or of V'V ) with

dj ^ d| ^ ... ^ dj > 0 ( B . 2 )

and

(B.3)

If p is the number of spatial points and q the number

of time points and the row means ( time averages ) have been

removed from the data array V, then the e. are sometimes re-
J

ferred to as spatial EOF's ( empirical orthogonal functions )

and the f. as time EOF's ( Lorenz 1956 ).
J

Using (B.I) and the orthonormal property of e. and f. in
J J

( B - 3 ) we can write

VV = e^ej + ... + erdre; (B.5)

V ' V = f ' + . . . + f d f ( B > 6 )

To show that e. is an eigenvector of VV corresponding to d-
J J



we use (B.3) and (B.5)

(VV')e. = d.e. (B.7)
j <J J

To show that f. is an eigenvector of V*V corresponding to

d. we use (B-3) and (B.6)
J

(V'V)f . = d.f . (B.8)
J J J

Define the principal component y- corresponding to e. as
J J

, = e'.V (B.9)j j

Then using (B.I) and (B.3) y- becomes
J

(B.10)

and we see that y1. is also an eigenvector of v'v corresponding
J

to d. (not normalized).
J

In similar manner define the principal component z. corres-
J

ponding to f• as
J

z. = f'.V' ( B . l l )
J J

Then using (B.3) and (B.4) z- "becomes
J

z . = . d e .
J J J



and we see that z1- is also an eigenvector of VV1 corresponding
J

to d - (not normalized).
j

Using (B.3), (B.10), and (B.12) we can write

and we see that the y. and z- row vectors are also orthogonal.
J J

Using (B.10) and (B.12) in (B.I), (B», (B.5), and (B.6)

we can write the singular decomposition of these matrices in terms

of the eigenvectors of VV1 and V1 V and their principal components.

V = e1y1 + ... + eryr (B.14)

V' = flZl + ... + frzr (B.15)

VV* =

V'V = y[yi + ... + y;yr . (B.I?)

The trace of VV1 (or of V'V) is

Tface(VV') = Tracetyjy.^) + ... + Trace(y^yr)

Nl2



where llx II is the Euclidean norm of x.

We can use the first k - r terms in the singular decomp

osition of the matrices in (B.I), (B.̂ -) , (B.5)» and (B.6) to

approximate them. Thus, for V we have the approximation V

V V =

In the sense of least squares V gives the best matrix of

rank k that approximates V. That is, (V - V) has minimum norm.

In order to see this, since the pq matrices e.f. (i = 1,2 ..... p;
"̂  J

j = 1,2 ..... q) form a basis for the vector space of (p x q)

matrices, we can write an arbitrary approximation for V with

rank k, or V , as
81

r—7

2_^ijeif3 (Bi20)
it j

Writing the complete singular d-ecomposition of V (Good 1969)

as

V - f J^e.fJ (B.21)
i. j

we have
_r

li«fi,i - *i.i>2 <B-22>
i.D=l

and the optimum choice for <J. . is
•*• J

(i = 1,2 k)



This gives V = V as the best matrix of rank k which

approximates V. The minimum attained is

o

V -

Since the sum of all the d. (j = 1,2 r) is the trace T
J

of VV, each term in the expansion of V, e.g., the jth explains

of T.

In similar fashion it can be shown that the first k - r

terms in the expansion of S = VV in (B.5) gives us the best

matrix in the least squares sense which approximates S. That is,

if B is any matrix of rank k then (S - B) has minimum norm and

equation (A.25) in Appendix A holds.

The above illustrates the dual role of eigenvectors and

principal components in the V and V spaces. If e- is an ortho-
J .

normal eigenvector of VV corresponding to the eigenvalue d. f 0
_i J

with principal component y. = e'-V, then f. = d- y1. is an ortho-
J J J J J

normal eigenvector of VV. If f. is an orthonormal eigenvector of

VV corresponding to d- # 0 with principal component z- = f'-V ,
_i J 0 «J

then e- = d-2z'- is an orthonormal eigenvector of VV .
<J J J



APPENDIX C

RELATIONSHIP BETWEEN A PARTITIONED AND A NON-PARTITIONED MATRIX V ^

Let V be an arbitrary real data matrix with dimension (p x q)

and rank r - q - p. Then we can write (Appendix B)

i_
V = ED2F' = EY

i i
= Q H2f + + p H2felal1! ' ' ' Wr

= e1y1 + ... + eryr ( C . I )

with

E'E = F'F = I

E = (e1 . . .e r)

F = ( f 1 . . . f p )

D2 = diag(d*. . . dj)

YY' = D = diag(d1 . . .d r)

where the e- and f. (j = 1,2,...,r) are respectively the left and
J J i

right singular vectors of V and the d2. are the singular values of V,
J

dl " 4 - • • • - dr > °

Since the rank of V is r



Partition V into M matrices V- with dimension (p. x q). and

rank r. ̂  q where p. + ... + p^ = p, r. + ... + r - r, and use

the singular value decomposition for each V- ( i = 1,2,...,M )

V =

'-r \

= EY

= e1 y1 +1 1 . e_y_
r r

(C.2)

where r = r. + . + rM and

V. = E.DJF! EiYi

(i = 1,2 M)

E =

'M

Y =

LM

The e- vectors (columns of E) form an orthogonal set. Let
_m_ J _^ _ . . _ . . . . _ _

r + r., r = 0 . Then we can
_ _̂  .._

i-;L + Pi, PQ = 0, and ri
write



for 1 - j * ri and

p.

1 ̂  i ̂  M

0 otherwise

where . e, . is the kth element of . e. and the column vectors
i •& J . f i J

.e. of E- are the eigenvectors from the ith subdivision,

Using the orthonormal property of the . e. vectors
•*- J

The y- vectors (rows of Y) are related to the . y. (principal
J -L J

components corresponding to the . e . or row vectors of Y-)

= -v. ( 1 - 1 - r . )
. +j iy3 U J V

(1 ̂  i ̂  M )

It should be noted that the y. vectors do not form an orthog-
3 .

onal set. They can, however, be orthogonalized. That is, using
(2)

the singular value decomposition for Y, V in (C.2) becomes

V = EY = E(AD2H') = GD2H'

= GW = g]_w1 + ... + gsws (C.3)

The rank of each of the matrices G, Da, and H is s where

s - r. Therefore I52 has s positive elements along its diagonal



and

D2 = G'VH (C.4)

since H'H = G'G = I .s

Since the rank of the product of matrices is less than or

equal to the rank of any of the individual factors, from (C.3)

r ̂  s and from (C.4) s ̂  r. Therefore s = r.

Letting S = W we see from (C.I) and (C.3) "that there are

two semi-orthogonal matrices E and G which diagonalize S.

E'SE = YY' = D (C.5)

G'SG = WWf = D (C.6)

Since the characteristic equation is the same in both cases

and the eigenvalues have been ordered (largest to smallest) D

and D must be identical. Let D be the matrix.

We must show now that the eigenvectors e. and g. are

identical up to a sign change in their components.

Let e- and g. be two eigenvectors which correspond to d.
J J j

with

e] = (elj ..... epj)

Then from (C.5) and (C.6)

elsei

which can :be written as



from which by equating like coefficients of the elements of S,

i.e., sik, we obtain

(k

Equation (C.?) has two solutions

e. . = ± g. . (k = i) (C.9)-1-j -1- j • . .

Substituting (C.9) into (C.8) gives

and therefore the eigenvectors e- and g. are identical up to a
J J

sign change in their components.

The trace T of S can be written in terms of the trace T- of
Si = ViVi (i = L2, ...,M)

M

r)



where the d. (j = l,2,...,r) are the positive eigenvalues of S,
J

the ^d- (j = l,2,...,r^) are the positive eigenvalues of S^ or

elements of D. , and ||AJ| is the Euclidean norm of A = (a- .),

||A II2 -
- .
J

It should be noted that if i1 , i0, . . . ,i.̂  is an arbitrary1 £ m
ordering of the integers from 1 to M, then there exists a (p x p)

permutation matrix P such that PV will order the V1 , . . . , V in
•L Pi

the order V- ,...,V- and the trace remains invariant. That is,

trace (PV)(PV)' = trace (PV)'(PV)

= trace (V'P'PV) = trace (V'V) = T (C.ll)

Let us approximate V by selecting only k- eigenvectors (and

corresponding principal components) from each subdivision such

that 100<*$ of the trace T is accounted for where 0 ̂ <*^ 1. That

is, let k^ ̂  r^ be the smallest integer such that

(C.12)

Then, using the first k. terms in the singular decomposition

of each V-, i.e., V- (see Appendix B) V is approximated by V

£ =

y ^ v = 1C.13)

A A
The g and w vectors in (C.13) are the eigenvectors and components

of VV1 . In (C.3) they are the eigenvectors and components of VV. If

^ = r^ (i = 1,2,...,M), V = V and they then refer to the same matrix.

Using (C.10) and (C.12)



_M

>
1=1

Now let k - k be the smallest integer such that

k
T 5»

0=1

where d- = w.w1- are the positive eigenvalues of YY1 ,
J J J

cL - d9 - . . . - d_ - <L> 0 and k. ( i = 1,2, .. . ,M) principal1 ^ k k _
components from Y- have been concatenated to form Y.

A _
The matrix V is then approximated by V

V = V = g1w1 + ... + g_w (C.15)11 k k

with
A _

•v = 'r^'i

A _
where T is the trace of YY1 and T the trace of VV

It should be noted that we have used V here as the best
matrix in the least squares sense of rank k which approximates
V, whereas in Appendix B> V was defined as the best matrix of

^rank k approximating V. If k. = r. for i = 1,2,...,M, then V = V,
k = r, k = k and the two definitions are consistent. In Appendix D
for the first partitioning level (1=1) we set V/. x = V and then
_ A vi J
V is the least squares approximation to both V/., \ and V which is

again consistent with Appendix B and this appendix.



* ' The partitioning and joining scheme described in this appendix
was first presented by Yakovleva et. a.1 (1968) and is documented
in Rinne and Karhila (1979). The difference between the presen-
tation given here and that of Yakovleva is that the number of
eigenvectors and principal components to be joined at the various
levels is variable and depends upon the required tolerance level
o^ and the magnitudes of the largest eigenvalues within each
subdivision. In the cited references a fixed number of vectors
and components are joined together.

(2) The a. vectors (columns of_A) or left singular vectors of Y
(alsô the eigenvectors of YY) are the "joining vectors" which
are equivalent to the "joining functions" in Yakovleva.



APPENDIX D

PARTITIONING AND JOINING IN GENERAL

Let V be a real (p x q) data matrix (q - p) with rank r

where the row means have been subtracted from the data. Par-

tition V into M subarrays V^ with dimension (p. x q) and rank

r. where p. + ... + PM = p, r. + . . . + r,. - r, r^ - q and

r ̂  q

/v \

V =

'M

(D.I)

From Appendix C if P is any (p x p) permutation matrix

which reorders the V.

PV = (D.2)

M

where i. (j = 1,2,...,M) are the integers i (i = 1,2 M) in
J

some order, then the trace remains unchanged. That is

T = ||v|[2 = = T. + ,,. + T, (D.3)

with T the trace of VV, T. the trace of V.V! , and |A| the.i il i_^i
Euclidean norm of A = (a. .)t lUll2 = > (a? ..1J Hl' i J ± t Jif J

Sets of local EOF's corresponding to the various subdivisions
of the data array, V^, may be ordered and joined in a number of ways,



The ordering of the M matrices in (D.2) is only 1 out of a possible
M! such permutations. For each permutation the V. can be joined to-

M-1 M-1gether in 2 possible combinations giving a total of M!2
possible arrangements. In each case we are interested in retaining
IQQd % of the total information content in the data (i.e., lOQof%
of the trace T) where o^ is a selected tolerance level (0 ̂  °* ̂  1).

In general let there be L partitioning levels with M-, matrices
and N-, groups of matrices at the 1th level (1 = 1,2,...,L), and
,mn matrices in the nth group which we will concatenate and join to-
gether (Appendix C), ,m. + ... + ,01.,, = M, .

The partitioning and joining procedure can now be described by
the following matrices at the 1th level

(i =1,2, ...,L)

where

v(l) = I • (D-5)



/vA \

(1+1) (D.7)

\
'N,

The V. (elements of V/-.N ) are least squares approximations

^to the V- (i=l,2, . . . , M-, ) and consist of the first k- terms in the

singular decomposition of V- (see Appendix C). P-, is a permutation
A _ A _

matrix. Initially,

for i = 1,2 ..... M.

= M, PI = IM, = V, Vi = Vi =

The elements of V/, \ are the permuted elements of V / ^ v which

are grouped into N-, groups, the nth group consisting of the foll-

owing set of matrices

n
nth group = V V, (D.8)

mn'

(n = 1,2

= 0)

where the 1 has been suppressed in -.m and ,m for simplicity.

r *

Joining the m matrices in (D.8) gives V , and element of
A A
V(l+l) (n = 1,2, . . . ,N^) .• From Appendix C, Vn can be written

using the subscript n for joined matrices in the nth group



Vn = = GnWn (D.9)

The matrix consists of the joining vectors or functions

which are also the left singular vectors of Y or equiva.lent.ly

the eigenvectors of Y Y' .

Each of the rn elements of Emn n

En (D.10)

or the E. (i = l,2,...,m ) matrices consists of a set of k^ local

EOF's (columns of E-).

In similar fashion each of the m elements of Y

n

/ Y \nl N

(D.ll)

or the Y. principal component matrices consists of k^ principal

components corresponding to the k- EOF's in E..

The columns of G are the "global" EOF's for the nth group

formed from the in sets of local EOF's.



A _
Similar to Appendix C, for each V , the first k terms in

its singular decomposition become the V matrix in

and we set k = k and MI+I = N, (n = 1,2 ..... N,).

From (D.4)

and therefore

V =

Denote by T/-,\ the trace of V/-,\V/-,\ . We can write

(1 = 1 ,2, . . . ,L)

and then

We therefore can approximate V at a 100*(.% level and each

of the k^ is determined such that k^ = k where k is the

smallest integer such that

sS , i/ d • — d T
t—\ j "* 1
3=1



Table 1

First 10 Eigenvalues

Eigenvalue Eigenvalue % Contribution Cumulative
Number

1

2

3

4

5

6

7

8

9

10

(°K)^

7026087.28

855772.20

458117-91

320376.35

208065.12

11*2705.51

111005.21

100980 .40

75789.78

61717-53

To Variance

68.78

8.38

4.48

3.14

2.04

1.40

1.09

0.99

0.74

0.60

Contribute

68.78

77.16

81.64

84.78

86.82

88.21

89.30

90.29

91-03

91.63

Total variance = 10215181 (°K)2



155K BRIGHTNESS TEMPERATURE SEPT. 4. 1974

AREA ANALYZED

FIGURE 1: MAXIMUM ICE EXTENT AS REPRESENTED BY
THE 155°K BRIGHTNESS ISOTHERM (FROM RAYNER AND

HOWARTH) AND AREA ANALYZED



155K BRIGHTNESS TEMPERATURE FEB. 19.1975
I

AREA ANALYZED

FIGURE 2: MINIMUM ICE EXTENT AS REPRESENTED BY
THE 155°K BRIGHTNESS ISOTHERM (FROM RAYNER AND

HOWARTH) AND AREA ANALYZED



AREA ANALYZED
i <*> ^~~j A

FIGURE 3: LOCATION MAP FOR SOUTH POLAR REGION
(TAKEN FROM ZWALLY AND GLOERSEN 1977) SHOWING

AREA ANALYZED
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FIGURE 7: EOF'S 3 AND 4, PRINCIPAL COMPONENTS AND SPECTRA
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FIGURE 8: EOPS 5 AND 6, PRINCIPAL COMPONENTS AND SPECTRA
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FIGURE 9: EOF'S 7 AND 8, PRINCIPAL COMPONENTS AND SPECTRA
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FIGURE 12: MONTHLY AVERAGE SEA ICE
EXTENTS DERIVED FROM 1974 ESMR-5 IMAGES:
(A) PERIOD OF ICE GROWTH; (B) PERIOD OF ICE

DECAY (TAKEN FROM CAVALIERI AND
PARKINSON)
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