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1. Introduction

The Bose, Chaudhuri and Hocquenghem (BCH) codes form a large class of ran-

dom-error correcting cyclic codes [1-4]. For any positive integers m (m > 3)

and t (t < 2m-1 ), there exists a binary t-error-correcting BCH code of length

n = 2m- 1 ind no more than mt parity-check bits. BCH codes or shortened BCH

codes are widely used for error control in data storage and communication sys-

tems. In this report, we present some shortened BCH codes for possible appli-

cations to large IC random-access memory systems. These codes are given by

their parity-check matrices. Encoding and decoding of these codes are

discussed.

2. Encoding a.1 Decoding of Linear Block Codes

An (n, k) linear block code is specified by either a k xn generator matrix

G or an (n-k) Xk parity-check m.itrix H. In systematic form, the generator and

parity-check matrices have the following forms:

G = [P Ik]

b 00	 b01	 b0,n-k-1	
i 0 0	 0

b 10	 b11	 bl,n-k-1	
0 1 0	 0

bk-1,0	 bk-1,1	 bk-l,n-k-1	
0 0 0	 1

	

P	 Ik

and
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1 0 0	 0 b00	 b10	 bk-1,0

	

0 1 0	 0 b
01	 b11	 bk-1,1

(2)

	0 0 0	 1 
bO,n-k-1 b l,n-k-1	 bk-l,n-k-1

T
I
n-k	 P	 -

where PT denotes the transpose of P. Encoding can be performed based or, either
T

t

i	 the generator or the parity-check matrices. However, decoding (syndrome compu-

tation) is normally done based on the parity-check matrix. In some applications,

such as applications to IC random-access memory systems, it is preferred that

'	 both encoding and decoding are based on theaP rity-check matrix.

i
Consider a systematic (n, k) code with parity-check matrix given by (2).

Let m = (m0 , ml ,	 mk-1) be the message to be encoded. The corresponding

codeword is

V	 (Vol 
v l'	 vn-1)

(3)

1	 = (Vol v l , ..., 
vn-k-1' m0' ml,	 'k-1)

where the k rightmost bits are identical to the k message bits and 'the n-k
r

leftmost bits are the parity-check bits. The parity-check bits can be ob-

tained from the parity-check matrix H by using the following theorem: A vector

v is a codeword if and only if v • H T = 0. From (2) aid (3), the n-k parity-
,

check bits are given by the following n-k parity-check equations:

v0 - m0b00 + mI b 10 +	 + mk-1bk-1,0

v l = m0b01 + m
1 b 11 

+ ... + mk-lbk-1,l

bl	 (4)

vn-k-1	 m0bO,n-k-1 + mlbl,n-k-1 +	 + 'k-lbk-l,n-k-1

	 A
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where the coefficients b..'s are the entries of the parity-check matrix H.

Hence, each parity bit is a linear sum of the message bits. An encoder which

accepts k message bits in parallel and forms the n-k parity bits in parallel

is shown in Figure 1.

	

Let r = (r 0 , rl'	 , rn-1 ) be the vector received from a communication

system (or read :'rom a memory system). Due to channel or memor y noise, r may

differ from the word v transmitted (or stored) and hence r may contain errors.

The difference between the received word r e nd the transmitted word v is de-

fined as the vector sum

e = (e0, el,	
en-1)

	

= r + v
	

(5)

= (r0 
+ v0, 

r  + vly ..., r
n-1 + vn-1)

where r. + v. is the modulo-2 sum of r. and v_. We see that
1	 1	 1	 1

	

0,	 if r. = v.
i

	

1,	 if r. # v.

The vector e is called the error vector (or error atP tern), the ones in e

indicate errors. From (5), we have

	

r = v + e	 (6)

The receiver doe- not know either v or e. Upon receiving r, the decoder must

first determine whether r contains errors. If the presence of errors is de-

tected, the decoder takes actions to locate and correct the errors.

r
Error detection is carried out by computing the syndrome of the received

word r which is defined as fulic::s:

s = (S
0 p s1,	 sn-k-1)

TCO	 = r•H
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If s = 0, r is a codeword. In this case the decoder assumes that r is error-

free and accepts it. If s # 0, r is not a codeword and the presence of errors

is detected. From (2) and (7), the n-k s yndrome bits are given by the follow-

ing n-k syndrome equations:

s 0
 = r0 + ` n-k b 00 + rn-k+l b10	

+ r
n-1 bk-1,0

s l = r  + 
rn-k b01 + rn-k+l b11 + ... + 

r
n-1 bk-1,1

(8)

s n-k-1	 rn-k-1 + rn-k b0,n-k-1 + rn-k+l b l,n-k-1 +	 + rn-1 bk-l,n-k-1

From (8), we see that the syndrome s is simply the vector stun of the received

parity bits (r 0 , r1,	 rn-k-1) and the parity bits recomputed from the re-

ceived message bits r
n-k' rn-k+l'	

' rn-1' Therefore, the syndrome can be

formed by a circuit similar to the encoding circuit. A syndrome circuit con-

sisting of a replica of encoding circuit is shown in Figure 2.

Example 1: Consider the (7,4) linear code which is specified by the following

parity -check matrix

1 0 0 1 0 1 1

H=	 0 1 0 1 1 1 0

0 0 1 0 1 1 1

I^	 PT
	

I

The three parity-check bits are given by the following parity-check equations:

v0 = m0	 + m2 + ms

v l = m0 + ml + m2

v2 =	 ml + m2 + m_



s o = r0

s1 = r 

s 2 = r2

t

Received
parity
bits
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A parallel encoding circuit is shown in Figure 3. Let r = (r o , rip r2) r3,

r4 , r5 , r6 ) be the vector received or read from a memory system. The bits

b o , b  and b 2 are the received parity bits; the bits r 3 , r4 , r5 and r6 are the

received message bits. The 3 syndrome bits are given by the following 3 syn-

drome equations:

+r3 r5 + r6

r + r + r
3 4 5

+ r + r
4 S +r6

t

Party bi;s recomputed

from the received
message bits

A syndrome circuit is shown in Figure 4.

There are 2n possible error patterns. However, every (n, k) linear code

is --pable of correcting 2 n-k error patterns which are called the correctable

error patterns. There exists a one-to-one correspondence between a correct-

able error pattern and an(n-k)-bit syndrome s [1-4]. A table can be set up to

show this correspondence. The table consists of 
2n•k 

correctable error pat-

terns and their corresponding syndromes as shown in Figure S. This table can

be used for decoding. The decoding consists of three steps:

Step 1. Compute the syndrome s of the received word r,
i

s = r•HT.

_	 1

Step 2. From the table, determine the error pattern e which

corresponds to the s;j►drome computed in Step 1.

Then e is assumed to be the error pattern caused by

the noise.

Step 3. Decode the received word r into the codeword v = r + e.

The above decoding scheme 4-s called table-lookup decoding.
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The association of the syndrome to an error pattern cart be implemented

with either a combinational logic circuit or a read-only memory (ROM). A

general decoder based on the table-iuokup scheme is shown in Figure 6. The

table-lookup decoder is fast in decoding speed, however its complexity grows

exponentially with n-k (or with tt.e number of error patterns to be corrected,

2n-k of them). For large n-k, this decoder becomes impractical. However, if

n-k is not too large and if we do not intend to correct all the 2 n-k correct-

able error patterns, the table-lookup decoding can be implemented practically.

If a (n, k) linear code with minimum distance d is used for random error

correction, then all the error patterns with t= [ d21 J or fewer errors are

correctable, i.e., the code is capable of correcting t or fewer errors in the

received word [1-4]. The number of these error patterns is

(o) + ( 1) + ... + (t),

which is in general much smaller than 2 n-k for large n-k. However these are

the error patterns which are most likely to occur. If we only intend to cor-

rect these most probable error patterns, we may set up a decoding table which

only shows the correspondence between these error patterns and their syndromes.

The decoding is t:ien carried out as follows:

Step 1. Compute the s)rndro-fie s of the received word r.

Step 2. Check whether the syndrome s corresponds to an error
pattern of t or fewer errors.

Step 3. If the syndromf- s corresponds to an error pattern e

of t or fewer errors, then_ the_ received word r is
decoded into the codeword v = r + e.

Step 4. If the syndrome s does not correspond to an error
pattern of t or fewer errors, errors are detected.

In this case, either a retransmission or a re-read
from the memory system is requested.

For moderate n and small t (say t = 1tiS), the above modified table-lockup de-

coding can be practically implemented and results in a fast decoder which is

___ Jj
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desired in large IC random-access memory systems.

3.	 BCH Codes

For any positive integers m(m > 3) and t(t < 2m-1 ), there exists a binary

BCH code with the following parameters:

Length:
	

n = 2m- 1,

Number of parity bits: 	 n - k < mt,

Mi iimum distance:	 d = 2t + 1.

This code is capable of correcting al, the error patterns of t or fewer errors,

.nd is called a t-error-correcting BCH code. The code is cyclic and is

uniquely specified by a generator polynomial g(x) of degree n-k [1-4]. Let

v = (v0 , v l)	 vn-1) be a binary vector. Let v(x) = v 0 + 
v l x +	 + vn-lYn-1

be a binary polynomial corresponding to v. Clearly v(x) is a polynomial of

degree n-1 or less. For a cyclic code with generator polynomial g(x), a vec-

tor v is a codeword if and only if its corresponding polynomial v(x) is divis-

ible by g(x), i.e., a multiple of g(x).

Let GF(2m) be a Galois field of 2m elements. Let a be a primitive element	 '

in GF(2m). Then the generator polynomial g(x) of a binary primitive t-error-

correcting BCH code of length n = 2 m-1 is the lowest-degree polynomial with

binary coefficients which has

	

2	 2t
C" a	 a

i

as roots, i.e., g(a 1. = 0 for i = 1, 2,	 2t. Generator polynomials of

binary primitive BCH codes of length up to n = 1023 are given by Lin and

Costello [4].

i
Example 2: For m = 7 and t = 2, there exists a double-error-correcting BCH

code of length n = 2 7 -1 = 127 and 14 parity bits. Hence it is a (127,113)

code. Its generator polynomiai is



(x) = x14 + x9 + x8 + x6 + x5 + x4 + x2 + x + 1.

Encoding of a BCH code is normally performed in serial manner using a

shift register with feedback connections based on its generator ^olynomial.

However in some applications, parallel encoding is preferred. For parallel

encoding, we need to determine the parity-check matrix H. Dividing xn-k+i by

the generator polynomial g(x) for i = 0, 1, 2, 	 k-1, we obtain

n-k+ic 	 = 
al ( x ) g (x ) + bi(x)

whore b i (x) is the remainder with the following form

b.(x) = b.	 + b x +	 + b.	
xn-k-1

i	 i0	 it	 i,n-k-i

Then the parity-check matrix in systematic form is given below:

1 0 0	 0 b
00	 b10	 bk-1,0

0 1 0	 0 b
01	 b11	 bk-1,1

H=

0 0 0	 1 b0,n--'-.-1 b l,n-k-1	 bx- l,n-k-1

Example 3: For m = 4 and t = 2, there exists a (15,7) double-error-correcting

BCH code with generator polynomial

g(x) = x + x / + x6 + x4 + 1.

+1
Dividing x 8 by g(x) for i = 0, 1,	 ,	 6,	 we obtain

b 0 (") =	 1 + x4 + x6 + x7,

b1(x) =	 1 +x+x4 +x5 +x6,

b 2 (x) = x + x2 + x 5 + x6 + x7,

b 3 ( x ) =	 1 + x2 + x3 + x4,

b 4 ( x ) = x + x3 + x4 + xs

M

I

i
i

yen

1



iii	
^
1L''

^^^''
1̂'
'

'
^,-

-
;. :. ;, 

, ^

'jr
q'

^

►`  
^

fie ''	 °,'11r	 ti	 -,

^'•	 tip 	F^	 ^ ` :t	 ti ^`	 ,r -	 S; '^^ ^t^'

b 5 (x) = x 2 + x4 + x 5 + x6,

b6 (x) = x 3 + x5 + x6 + x7 .

The parity-check matrix is given by

1 0 0 0 0 0 0 0 1 1 0 1 0 0 0

0 1 0 0 0 0 0 0 0 1 1 0 1 0 0

0 0 1 0 0 0 0 0 0 0 1 1 0 1 0

0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
H =

0 0 0 0 1 0 0 0 1 1 0 1 1 1 0

0 0 0 0 0 1 0 0 0 1 1 0 1 1 1

0 0 0 0 0 0 1 0 1 1 1 0 0 1 1

0 0 0 0 0 0 0 1 1 0 1 0 0 0 1

In system design, if a code of suitable natural length n or suitable num-

ber k of message digits cannot be found, it may be desirable to shorten a code

to meet the requirements. Let C be an (n, k) linear block code with parity-

check matrix H = [I n-k PT ],,where  P T is an (n-k) matrix. If we delete Z

colLums from PT with 0 < Q < k, we obtain an (n-k)x(n-k) parity-check matrix

Hz = [In-k P QT ]. This matrix Hz generates an (n-2, k-2) linear code which is

called a shcrtened code of C. Anv shortened code of C has at least the same

error-correcting capability as the original code C [1-4].

4.	 Shortened BCH Codes for Table Look-Up Decoding

yM

. MM

In Table 1, we give a list of 8 shortened BCH codes which have been con-

strutted for fast syndrome computation and table look-up decoding. Four of

these codes have d
min	 min

= 6, while the other four have d 	 = 8. For all but

the (45, 32) code with 
d
rain = 6 and the (86, 64) cede with d

min	
8, the max-

-- J 1
Mh_ _ _ - —J
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imum number of 1's in any row of the H matrix is either equal to or slightly

.less than a nower of 2. This minimizes the number of logic levels needed to

compute the syndrome, assuming a two-input exclusive-or gate tree-like imple-

mentation. In addition, the number of 1's in each row of the H matrix is

either equal to, or nearly equal to, the average number. This facilitates a

fast parallel computation of the syndrome bits. Although we have not done an

exhaustive search, we feel that the codes listed in Table 1 are nearly optimal

with respect to minimizing the total number of 1's ir. the H matrix.

The construction procedure followed was essentially a trial-and-error ap-

proach. A summary description of the construction procedure for the a . = 6

Comas now follow-c.

Consider the (127, 113) 
I
min = 5 BCH code, which has generator polynomial

P(x ) _ (1	 x 3 + x 7 ) (1 + x + x2 + x3 + x7 ) . Let g ( x ) _ ( 1 + x )P( x) = 1 + x3 +

x4 + x7 + x8 + x 10 + x14 + x15 . Then g(x) generates a (127, 112) dmin = 6 code.

Dividing xn-k+1 _ x15+i by g(x) for i = 0, 1, 2, 	 111, we obtain

1S+iX 	 = ai x ) + b i (x)

where the remainder b i (x) has the following form:

'p
i 
(x) = b i0 + b il x + ... + b.	

x14

Then the parity-check matrix for the (127, 112) d min = 6 code is given by:

1^M

I
7

H _ 
[I 15x15 PT

1 0 0	 • • •	 0 b
00	 b10	

b_10

0 1 0	 0 b
01	 b11	 b21

0 0 1	 0 b
02	 a12	 b22

0 0 0	 1 b
0,14 b 1,14 b2.14

b111,0

blll,l

b111,2

b111,14

I M

. Y/ .-m—, _IOW W W s —. — ^

	 u
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By deleting an appropriate set of 48 columns from the H matrix ahove, we ob-

tained a 1S-79 matrix H I , which is ,:he parity-check matrix of a (79, 64) dmin

6 linear code. The matrix H I is shown in Fig. 7. (In order to conserve space,

i	
the matrix is given in octal notation.) 	 Let w(h i ) denote the number of is

_n the ith row of the matrix H 1 . From Fig. 7 we see that:

w(h 0 ) = 30, w(h I ) = 30, w(h 2 ) = 30, w(h 3 ) = 31, w(h 4 ) = 31

w(h 5 ) = 30, w(h 6 ) = 31, w(h 7 ) = 30, w(h 8 ) = 30, w(h9 ) = 30

w(h i0 ) = 30, w(h ll ) = 30, w(h 12 ) = 30, w(h 13 ) = 30, w(h 14 ) = 30

and	 w (h i ) < 2 5 = 32.

By deleting 32 columns from the matrix H 1 , we obtained a 15 x 47 matrix H7,

which is the parity-chelk matrix of a (47, 32) dmin = 6 linear codo. The

matrix H2 is shown in Fig. 8. From Fig. 8 we see that:

w(h0 ) = 15, w(h1)

w(h 5 ) = 1S, w(h6)

w(h 10 ) = 15, w(h11)

and	 w(hi) < 24 = 16.

Deleting 16 columns from H 2 resi

check matrix of a (31, 16) dmin

15, w(h2 ) = 1S, w(h3)

= 15, wCh7 ) = 15, w(h8)

= 14, w(h
12 ) = 15, w(h13)

alts in a 15 x 31 matrix H3)

= 6 linear code, and is s

= 13, w(n4 ) = 15

= 14, w(h 9 = 15

= 1S, w(h 14 ) = 15

which is the parity-

hown in Fig. 9. Frcn

Fig. 9 we see that:

w (h 0) = 7, w(h l ) = 7, w (h 2 j = 8, w ;h 3 ) = 7, w (h 4 ) = 6

w(h 5 ) = 7, w(h 6 ) = 7, w(h 7 ) = 7, w(h 8) = 8, w(h 9 ) = i

w(h 10 ) = 7, w(h ll ) = 8, 
w(h 12 ) = 7, 

w(h13) = 7, w(h 14) = 7

and	 w(hi) < 2 3 = 8.

Note that every column in the matri::es f] 1 , H 2 and H 3 contains an odd number

of i's.

We also constructed a (45, 32) d= 6 code from the (63, S1) d 	 = S
min	 min

6BCH code, whose generator polynomial is given by p(x) = (1 + x + x)(1 + x +
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` + x4x 	 + x ` ), by MUI tip lying p(x) by (x + 1) and then following the san.e pro-
cedure described abo ve. The number of 1's in some rows of the parity-check
matrix H4 obtained in this case exceeds 2 4 = 16, however. The parity-check
matrix H4 of the (45, 32) dmin = 6 code is shown in Fig. 10. From Fi;. 10 we

_	 see that:

16, w(h 3 )	 1 7 , w(h4 ) = 17

16, w(h 8 ) = 18, w(h 9 ) = 17

= 16 .

= 3 codes is similar to that de-

irity-check matrice° are shown in

w(h 0 ) = 17, w(h 1 ) = 18, w(h2)

w(hS ) = 18, w(h6 ) = 17, w(h7)

w(h i0 ) = 16, w(h 11 ) = 18, w(h12)

The construction procedure for the dmin

scribed r.bove for the dmin = 6 codes. The p

figures 11.14.

The most efficient dmin = 6 code in t-rms of minimizing the number of
parity-check bits is the (45, 32) code. This code is capable of correcting all

double error patterns and detecting all triple error patterns. A computer

analysis of all weight 4 error patterns has been performed for t}.is code. We

have found that out of ( 44) = 148,995 weight 4 error patterns, only 28,485
are undetectable, i.e., they have the same syndrome as a correctable error

pattern. Hence

28,435

1 - 148,995 = 1 -	 19118 = 80.8820

of the weight 4 error patterns are detectable for this code. Ile have also in-

clud^!d as an Appendix to this repert a 38 page computer printout of the de-

coding table for this code. Listed are the syndromes and their corresponding

coset leaders for the	 I'

( 4 1 ) + ( 4 2j = 45 + 990 = 103S

correctable error patterns. The remaining syndromes for the detectable error

patterns are not listed.

MJ

J1
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INN

71̂

1n

H2 =

5 1 1 0 4 3 0 4 5 7 2

6 4 4 4 2 1 4 6 2 3 4

3 i 0 2 2 0 6 3 2 5 6

0 4 1 1 5 2 3 S 1 0 4

4 3 0 4 3 7 1 2 2 6 0

1 6 2 0 7 4 5 3 2 0

0 0 7 1 1 J 6 6 4 5 0

115X15	 0 1 2 4 0 6 7 3 4 1 6

0 1 6 2 6 1 3 1 0 3 4

4 0 7 1 2 0 5 4 6 4 6

3 1 0 4 3 3 2 2 7 4 0

1 4 7 2 3 4 5 1 0 2 0

1 6 2 5 1 6 2 4 7 0 0

4 7 2 2 5 6 1 2 1 1 0

2 2 6 _ 4 4 0 1 5 6 6

6n

Fig. 8	 Parity-check matrix of a (47,32) dmin = 6 code



2 2 4 3 0

5 1 2 1 4

6 4 1 0 6

1 0 4 6 3

0 6 2 1 1

4 3 1 1 4

0 1 4 5 6

0
115x15

2 2 0 7

0 3 1 3 3

0 1 4 4 5

6 2 2 1 2

3 1 5 0 5

3 4 2 4 2

1 6 1 2 1

4 5 0 6 0

H3 =

4

0

4

0

0

0

0

4

0

4

•% n

Fig. 9 Parity-check matrix of a (31,16) dmin = 6 code
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1*RAF-.^1_'.	 •	 -	
7

1	 - ytl
i	 1

i

H4 =

6 4 7 4 3 2 1 0 3 4	 6

4 6 6 2 3 7 1 4 2 3	 4

2 3 1 1 1 5 4 6 1 1	 6

6 5 3 0 6 4 5 3 3 1	 0

3 2 7 4 2 2 2 5 5 1	 4

0 5 3 6 1 3 3 2 6 4	 6

6 0 3 2 7 4 5 0 2	 4
113x13	 7

3 7 2 1 4 3 4 2 4 1	 2

7 3 0 4 4 3 7 1 1 5	 2

4 1 1 6 1 1 6 4 7 3	 2

5 4 1 3 3 4 6 2 0 5	 2

5 2 5 1 7 4 2 1 3 6	 2

5 1 7 0 4 4 2 0 6 3	 6

i n

f

i

Fig. 10	 Parity-check matrix of a (45,32) dmin = 6 code
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:1

1 3 0 5 0	 4

0 7 4 1 5	 0

4 1 6 0 6	 4

2 2 7 2 2	 0

0 0 3 3 1	 4

0 0 1 4 4	 4

5 1 0 2 2	 4

2 6 4 1 1	 0
HS -

119X19
4 2 2 4 5	 0

3 0 1 6 3	 0

4 5 0 2 1	 0

6 0 4 0 0	 4

7 2 2 3 0	 0

3 5 1 2 4	 0

1 4 4 5 2	 0

1 5 2 4 4	 4

0 4 5 1 2	 0

4 0 2 6 4	 0

2 2 1 2 3	 0

f n

Fig. 11	 Parity-check matrix of a (35,16) d min - 8 code
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4 2 1 5 4 2 7 4 4 2	 0

2 1 0 7 6 1 2 6 6 5	 0

1 0 4 6 7 0 7 2 3 2	 4

0 4 2 3 3 4 1 5 1 1	 2

4 0 0 6 1 4 0 3 4 6	 4

2 0 0 4 0 6 2 0 2 3	 2

5 2 1 4 4 1 3 5 1 3	 4

2 5 0 5 2 0 3 6 4 5	 6

5 0 5 1 1 2 2 2 2 4	 b

H6 119x19	 6 6 3 2 0 7 0 5 1 4	 2

7 1 0 6 4 1 0 7 0 4	 0

3 4 4 0 2 0 6 2 0 2	 0

1 6 2 1 1 0 0 1 4 1	 0

0 7 1 2 4 4 7 1 2 0	 4

0 3 4 2 2 2 0 4 5 0	 2

4 3 7 0 5 3 4 6 2 2	 0

2 1 7 6 2 5 2 2 5 1	 0

1 0 7 6 1 2 6 1 2 0	 4

0 4 3 7 0 5 5 1 1 4	 2

'yl

im

lu

Fig. 12	 parity-check matrix of a (51,32) drain = 8 :ode
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Lis

1. Introduction

The Bose, Chaudhuri and Hocouenghem (BCH) codes form a large class of ran-

dom-error correcting cyclic codes [1-4]. For any positive integers m (m > 3)

and t (t < 2m-1 ), there exists a binary t-error-correcting BCH code of length

n = 2m- 1 and no more than mt parity-check bits. BCH codes or shortened BCH

codes are widely used for error control in data storage and communication sys-

tems. In this report, we present some shortened BCH codes for possible appli-

cations to large IC random-access memor y systems. These codes are given by

their parity-check matrices. Encoding and decoding of these codes are

discussed.

2. Encoding and Decoding of Linear Block Codes

An (n, k) linear block code is specified b y either a kxn generator matrix

G or an (n-k) Xk parity-check matrix H. In systematic form, the generator and

parity-check matrices have the following forms:

G = [P Ik]

b 00	 b01	 b0,n-k-1	
1 0 0	 0

b 10	 b11	 b1,n-k-1	
0 1 0	 0

bk-1,0	 bk-1,l	 bk-l,n-k-1	
0 0 0	 1

P	 Ik

and

c4^
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