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APPLICATIONS OF SPECTRAL METHODS TO TURBULENT MAGNETOFLUIDS
IN SPACE AND FUSION RESEARCH

DAVID MONTGOMERY*
Is

Abstract. Recent and potential applications of spectral method
computation to incompressible, dissipative magnetohydrodynamlcs are
surveyed. Linear stability problems for one-dimensional, quasi-
equilibria are approachable through a close analogue of the Orr-
Sommerfeld equation. It is likely that for Reynolds-like numbers
above certain as-yet-undetermined thresholds, all magnetofluida are
turbulent. Four recent effects in MHD turbulence are remarked upon,
as they have displayed themselves in spectral method computations:
(1) inverse cascades; (2) small-scale intermittent dissipative struc-
tures; (3) selective decays of ideal global invariants relative to
each other; and (4) anisotropy induced by a mean dc magnetic field.
Two more conjectured applications are suggested. All the turbulent
processes discussed are sometimes involved in current-carrying con-
fined fusion magnetoplasmas and in space plasmas*

_1_. Introduction. Spectral method computation has had less impact
on plasma physics and magnetohydrodynamics (hereafter: MHD) than it
has on fluid mechanics. This is so despite the fact that there are
an abundance of plasma problems which are technically more urgent, in
an engineering sense, than the fluid mechanics problems to which the
spectral method has typically been applied. For many of the plasma
problems, there is little agreement on even the qualitative features
of the solutions. It is not as much a matter of getting more accu-
rate answers more efficiently as it is of uncovering new zeroth-order
effects. This, too, is a stringent test of a numerical technique.

There has been an unfortunate gap in communication between inves-
tigators in plasma physics who must face these unsolved problems and
the applied mathematicians who are in possession of the numerical ex-
pertise to deal with them. The following material is presented from
the point of view of the plasma theory community and has a two-fold
purpose: (1) to formalize, for spectral method numerical analysts,
examples of central, unsolved problems which can be approached

*College of William and Mary, Williamsburg, VA 23185. Supported in
part by NASA Grant NSG-7416 and U. S. Department of Energy Contract
DE-AS05-76-ET53045
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166 DAVID MONTGOMERY

without the need to dig around in the untidy laboratory background
of those problems; and (2) to remark upon some progress which has
already been made by spectral techniques in the area of MHD turbu-
lence.

Section 2 states the equations of incompressible MHD and their
possible boundary conditions. They appear as a natural generaliza-
tion of the Navier-Stokes equation of a viscous fluid, and define
very similar classes of problems. Like the equations of a Navier-
Stokes fluid, their properties will be seen to differ greatly between
two- and three-dimensional flows. There is also a set of reduced MHD
equations, the Strauss equations, which are intermediate between two
and three dimensions and which .are appropriate to the practically
important case of a magnetofluid subjected to a very strong dc magne-
tic field.

Section 3 delineates a class of idealized MHD stability problems
which parallel those related to the Orr-Sommerfeld equation for
planar shear flows. No MHD problem has been studied as much as
linear stability theory, but the scope and precision of the results
achieved are no match for the corresponding ones for hydrodynamics.

Section 4 remarks upon some recent MHD turbulence results which
have been obtained, and suggests some additional problems that seem
ripe for Investigation.

The need for such computations cannot be overemphasized. The
plasmas of interest are often hot enough to burn up any probes which
are inserted into them, and remote diagnostics are inadequate to pin
down the internal MHD field variables. In many cases, all the reli-
able "experiments" we are going to have in the foreseeable future are
likely to be those done on computers, solving what are believed to be
the relevant dynamical equations. In this respect, the role computa-
tions have to play in deciding fundamental questions is potentially
greater than in fluid mechanics, where the function of computers has
often been in extending the accuracy of knowledge which is, in an ex-
perimental sense, nearly complete already.

_2_. Magnetofluid Description.
A. The MHD Equations. In this section, we write in dimension-

less variables the simplest set of incompressible magnetofluid equa-
tions that could be called in some sense realistic. There are two
basic solenoidal vector 'fields, the velocity field v = v(x,t) and
the magnetic field B = B(x,t). They obey the following four partial
differential equations:

(1)
_

1 2- Vv - 7p +B-VB



TURBULENT MAGNETOFLU1DS 167

(2) V«v

(3) -r- v
5t ~ ~

^— 7"^ + B «Vv

(A) V«B = 0.

Taking Eqs. (1) and (2) with the last term of Eq. (1) deleted just
leaves us with the dynamics of a Navier-Stokes fluid, which appears
in this light as a special case of magnetofluid dynamics, p is the
total (dimensionless) pressure which results from taking the diver-
gence of Eq. (1), using Eq. (2) to eliminate the time derivative, and
solving the resulting Poisson equation.

R and are two dimensionless numbers whose interpretation is

not unique. Two cases are of particular importance. (1) If there
is as much or more fluid kinetic energy than magnetic energy, veloci-
ties may be measured in units of a mean flow speed U, lengths in
units of L, a macroscopic length scale over which the fields vary,
and times in units of L/U, the "eddy turnover time." In this inter-
pretation, R •= OL/v, where v is the kinematic viscosity, and is of
course the Reynolds number. R^ = UL/t| is the magnetic Reynolds num-

bers, where T) is the magnetic diffusivity, c /Auo in cgs units,
with c= the speed of light, and a is the electrical conductivity.
Magne t ic fields, in this interpretation, are measured in units of
D/4up, cgs units, where p is the (uniform) mass density. They may
be < U, in magnitude. (2) Sometimes the magnetic field contains
an externally-imposed dc part B» which is expected to remain

larger than v and the self-consistently-supported _ gart of B.
Then velocities may be measured in units of C. = B«//4up, the Alfven

speed, and B may be measured in units of B_. In this** u
interpretation, R.. becomes S •= C.L/T), the Lundquist number (often,

in the fusion literature, misleadingly called the magnetic Reynolds
number), and R becomes M = C L/v, which we might call the "viscous

A

Lundquist number." This scheme has some advantages for nearly
quiescent initial conditions, since the dimensionless numbers remain
constant as the mean flow speed increases. The disadvantages are
that v and the variable part of B may then remain « 1, and
though the time scale L/U, the eddy turnover time, is still Impor-
tant, it may be masked by the existence of the faster WC , the

A

"Alfven transit time," which has no direct significance for the non-
linear behavior at all.

In summary, there are four possible Reynolds-like numbers which
can be of importance: R = UL/v, R = DL/T), S = C.L/r), and

f-'
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when the magnetic field is a sura of an externally-imposed

part plus a part which is supported by internal currents, either part
may be used to define C . Sorting out their roles in various pro-
blems has not been fully accomplished. They always occur in front of
the only dissipative terms in the equations, and in the denominators,
and which pair is appropriate depends upon the problem. The situa-
tion is more involved than the Navier-Stokes case, but not hopelessly
so.

B. Two-Dimensional MHD. A simplified but still rich limit of
Eqs. (1) - (4) is the two-dimensional one, with all variables inde-
pendent of one spatial coordinate (z, say). In the most frequently
considered geometry, B = (B ,B ,0), v"" x y "-
For this case we can write, B = VXA e ,~ z z ~- z'

and a stream function <1>. A and <l> determine
ry

all other variables in the problem. The vorticity co = we = -V '~

B = 1 = Je = -V2A e"- •*• z z z
components and are also solenoidal, so that j = j(x,y,t) and
co = co(x,y,t) only. Eqs. (1) - (4) get replaced by the much simpler
pair

(vx,vy,0)

tor potential A ez z

and the current density

and 9/5z = 0.

in terms of a vec-

z z

have only single

-.oA
(5)

(6)

~ z
•£- V2A

+ vVco Iv2«o.

The two possible sets of meanings attached to the four various possi-
ble Reynolds-like numbers R, R^, S, and M, still apply. A uniform

constant dc magnetic field B- = B_e can be included in B without

altering Eqs. (5) and (6), or affecting the dynamics in any way.

C. The Strauss Equations. A case intermediate between two and
three dimensions is the Strauss limit, appropriate to the situation
with a uniform mean dc magnetic field B-e , but with some spa-

tial variation with .z, and a perpendicular variable magnetic field
B. = VXA e . This limit can be derived systematically in the case

-L Z Z

BI« BQ. The result of a lengthy derivation [14] is that Eqs. (5)

and (6) are modified to read

(7)
o

• + v . •VA = -r-
z R,.
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(8)

a v«»o>

(5)

where v. =

„, «.

also has only x and y components also, and,

j = -V. , with 7 = e -- + e -g-. The last two terms. ,

of Eqs. (7) and (8) represent the three-dimensionality. All varia-
bles in Eqs. (7) and (8) are functions of x, y, z, and t. The par-
allel fields, vz and BZ, are essentially transported as passive

scalars and their dynamics need not be discussed when discussing Eqs.
(7) and (8). They evolve according to a pair of linear equations
which have coefficients involving v. and B., but they do not re-
act back on B . and v . .•̂j. "•JL

D. Boundary Conditions. There are three sets of severely
idealized simple boundary conditions for MHD fluids. The convention-
al analogues of "free-slip" ideal fluid boundary conditions are
v*n = 0, B»n = 0 at a rigid, perfectly conducting wall along which
the magnetofluid flows freely. Here n is the unit normal to the
vail. These are "ideal MHD" boundary conditions and are expected to
avoid boundary-layer effects.

The analogue of "no-slip," non-ideal, fluid boundary conditions at
a rigid, perfect conductor are that v = 0, n«B = 0, and
nxj =• fix(VxB) = 0. All three components of the velocity vanish at a
rigid, perfectly-conducting wall for a non-ideal magnetofluid, as do
the normal component of the magnetic field and the tangential compo-
nents of the current. For a rigid, perfectly-conducting wall coated
with a thin insulating layer, a situation encountered in experimental
practice, B«n = 0 survives but n*£ is unconstrained. Problems in
which magnetic field lines are permitted to penetrate the wall mate-
rial become very intractable, although in many interesting experi-
ments such wall penetration does occur.

For two dimensions, ideal boundary conditions make A and <\> con-
stant around a closed conducting boundary, and non-ideal boundary

2
conditions at a rigid perfect conductor add the conditions V A = 0,
A
n»v <ji.«i 0. (For the Strauss equations the same conditions apply,

A and fy may be functions of z.) For a non-ideal magneto-
fluid inside a rigid perfect conductor coated with a thin insulating

*5

layer, 7 4> =0 on the boundary as doe's n*7̂ A, but V A is uncon-

strained. (Again, in the Strauss case, A and (p may be functions
o£ z.)

The foregoing three sets of MHD equations, then, accompanied by
their three sets each of appropriate boundary conditions, define a

wider class of interesting problems than do the equations of a
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Navier-Stokes fluid. They include Navier-Stokes flow as a special
case. But they are not hopelessly more complicated than the Navier-
Stokes equation. For many of these problems, even zeroth-order solu-
tions have not been given, and it is fair to say that none of them
have been studied with an intensity that approaches what has been
brought to bear in fluid mechanics. We now turn to a consideration
of two of these.

.!.• Stability of Quiescent Equilibria. A central concern in con-
trolled fusion confinement research has been with the production of
quiescent (v B 0) plasma states which will remain, stably in place
under the presence of (inevitable) small fluctuations. More theoret-
ical plasma papers have been published about this topic than about
anything else. However, much of the concern has been with device-
specific situations with numerous complications, such as: toroidal
geometry; compressibility; highly non-uniform dissipation coeffi-
cients (such as v and T). which, strictly speaking, are tensors);
chemical and radiative interactions with walls; inhomogeneous bound-
aries; impurities; etc. Drastic and uncontrolled approximations have
been necessary to get any answers at all. There has been relatively
little enthusiasm in the fusion community for the kind of accurate
solutions of clean, simple situations analogous to those which the
Orr-Sommerfeld equation requires. Yet rather spectacular success has
been achieved for the Orr-Sommerfeld problem [1] by spectral methods,
and a natural generalization of them to MHD stability seems a logical
direction in which to proceed. In this section, we wish to define
such a problem, though no results are as yet available.

The equilibrium we consider is a static one (v = 0) with a mag-
netic field B = B-(y)e which points in a direction perpendicular

to its direction of variation. This is the magnetic analogue of
plane shear flow, and has an electric current density ^ = Jn(y)e ,

where 'Jfj(y) ° ~DBQ» an<* D - d/dy. For a constant resistivity,

this is not strictly a static configuration, and Bft(y) will re-
- 1 2sistively decay according to B~(y,t) = exp(R^ tV )B0(y,0). ' We will

confine attention to dynamical processes which are fast on the time
scale of this resistive decay, and will freeze BA(V) at its initia^-

value. (If there are instability thresholds as T) decreases, the
solution will be inaccurate in the immediate vicinity of the thres-
hold. It should be kept in mind that the very existence of such
thresholds is still conjectural, however.)

If the MHD equations are linearized about this equilibrium, it is
possible to generalize Squire's theorem, which says [2] that if a
three-dimensional unstable mode exists, it is possible to find
equivalent two-dimensional unstable modes with dissipation coeffi-
cients v, T) which are at least as high. Thresholds for instability
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be sought by restricting attention to the two-dimensional case,
o/5z = 0.

We put rigid parallel walls at the two planes y = ±1. The per-
turbed fields can be written as

(9) (u,v,w)

(bx,by,bz),

and without loss of generality, we may assme the x and t depen-
dence of all perturbed field variables is ~ exp(iax-iwt), where a
Is an arbitrary wave number and u> is a complex eigenvalue to be de-
termined. Discarding all products of perturbation quantities, we may
manipulate the components of Eqs. (1) and (4) to yield:

o o o ? ? 2 2 2
(10) (D -a ) v = -iwR(D -a )v - iaRB_(D -a )b ' '--'"''*iRa(D BQ)b

and

(ID -iaBr

which are the analogues of Orr-Sommerfeld. The boundary conditions
are that v = 0 at y = ±1, Dv = 0 at y = ±1, and b = 0 at

y = ±1, if the infinite parallel planes are regarded as perfectly
conducting. For the sake of comparison, Orr-Sommerfeld is, in [2]

O O O O O O

the same notation, (D -a ) v = iaR[(U0-w/a) (D -a )v - (DTJQ)vJ,

where Ufl =
tion.

is a shear velocity field in the x direc-

The non-viscous (R = <*>) limit of Eqs. (10) and (11) has been
studied to some extent [3]. As far as I am aware, they have never
even been written down for finite R and RM (which since zero

streaming has been assumed for the equilibrium, are properly inter-
preted as M and S). Since most plasmas of current interest are
aore viscous than they are resistive, it would have made more sense
to have studied the R^ = °° limit. We suspect that all

eigenfunctions of the system (10), (11) are stable (Im u> < 0) for

small enough R, RM, and that they become unstable above certain

thresholds as R, R^ are increased. Just what combination of R,

RH is important, we simply do not know. Russell Dahlburg [private

communication] has shown that the ideal (M •»• «, S •* «) limit of
E13« (10) and (11) is always stable. It is tempting to speculate
that, because of the extent to which the equations of motion tie
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v and B together, the stability threshold will be deter-
mined by the smaller of M and S. For plasmas which are more vis-
cous than resistive, this will be M. But this Is pure conjecture,
as are the values the critical M or S will have (will they be of
the order of the Reynolds numbers for shear flow Instability, a few
thousand?). It is a problem for which the spectral method seems made
to order.

Once questions of linear stability are settled there is again the
possibility that the true stability boundary will be determined by
nonlinear and three-dimensional effects, as in the case of plane
shear flows (cf. Orszag & Kells [4] and Orszag & Patera [5]) and
those problems, too, are of a kind for which spectral method dynami-
cal computation has been shown to be useful.

The magnetic field profiles BQ(y) that might be investigated

first are: (1) BQ constant (this is analytically soluble and the

results are simply damped Alfven waves); (2) BQ linear in y, or

JQ = const., the uniform current profile, which would be ruled out by

imposing the boundary condition j*n s 0 at y = ±1; (3) BQ para-

bolic, JQ linear in y, which would be again ruled out by putting

perfect conductors at y = ±1; and (4) BQ cubic, jQ parabolic and

vanishing at y = ±1. This fourth case may be thought of as roughly
analogous to plane Poiseuille flow, and mocks up most closely pinch
effect magnetofluids used in a generation of confinement experiments.

Still a wider class of problems results if a uniform constant, ex-
ternal, magnetic field is imposed parallel to the planes but at an
angle to BQ(y)ex. For these, it would seem that CA ought to be

computed in terms of the internally supported part of the magnetic
field. We will not take up here the class of problems which results
from the assumption that there is a non-zero flow in the equilibrium.

A- Magnetohydrodynamic Turbulence. Just as Eqs. (1) - (4) may be
thought of as defining a stability problem (Eqs. (10), (11) plus
boundary conditions), so they also define problems of transition and
fully-developed turbulence, once those thresholds are significantly
exceeded. The phenomena will be more various than Navier-Stokes
phenomena because of the interplay of the magnetic field with the
velocity field. They are also largely undiagnosed experimentally,
partially for reasons already given: internal probes of the MHD vari-
ables cannot withstand the temperatures in many plasmas of current
interest. A second, and unfortunate, reason is simple bureaucratic
incomprehension of the fact that many of the effects which are
troublesome at high temperatures could be explored on devices which
are not hot enough to burn up probes. But in the thirty-year-plus
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"crash program" to produce controlled fusion, there has been deemed
to be insufficient time to explore these central, basic phenomena!
Computers, are, and are likely to be for some time to come, the "ex-
perimental" arbiters of any theories of MHD turbulence we may con-
struct.

In the following pages, we will remark upon four classes of turbu-
lent MHD processes upon which some progress using spectral method
computation has already been reported. These are:

(1) Inverse Cascade Processes
(2) Small Scale Dissipative Structures
(3) Selective Decay Processes
(4) Mean Magnetic Field Anisotropy. •

Lengthy computational papers have been published on all of the above
topics, and the reader is referred to them for details and graphs.
In the following summary remarks, there will be no attempt to repro-
duce representative graphical documentation for the assertions, but
the relevant references will be cited.

In addition to the above summaries, two probems will be remarked
upon which appear at this moment to be ripe for numerical exploration
by spectral methods. These are:

(5) Turbulence in Current-Carrying Magnetofluids and
(6) Current Boundary Layers.

It is to be stressed that the computations which have been
reported have seldom, if ever, involved state-of-the-art numerical
methods. The affordable spatial resolution has often been patheti-
cally small. The spectral codes have been used as an off-the-shelf
physics research tool, rather than with any deep concern for the
place they occupy in applied mathematics. There is not one problem
on the list that could not, or should not, be done better by
knowledgeable applied mathematicians.

(1) Inverse Cascades [6] - [14]. It is well known that under
some circumstances, small scale two-dimensional Navier-Stokes turbu-
lence may feed the large scales, somewhat reversing the usual three-
dimensional picture. Precise theory for this effect is in short sup-
ply, but extensive numerical computations have given repeated verifi-
cation of its existence. Generally what are required are a small
scale source of excitations and at least two global ideal invariants
which emphasize differently the differing parts of wave number
space. The latter requirement ensures that in the part of wave
number space which is approximately conservative, spectral transfer
In either direction in wave number space must be accompanied by a
comparable amount in the opposite direction. What is basically a
statistical-mechanical constraint on the allowed phase space guar-
antees that any band—limited stirring mechanism must send out

to both longer and shorter scales.

^
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For three-dimensional MHI) turbulence, the Ideal Invariants are

-->• , --M

(12)

= V2/(v2+B2)d3x

i. I. _ ,3

in the presence of either periodic or perfectly-conducting boundary
conditions, where . B = VXA, in terms of the vector potential A.
For the same boundary conditions, the two-dimensional ideal invari-
ants are

(13)

e = l/2 /(v + B2)d x = !/2 JL( V A ) + (7*> Jd'
A - ' f S r / V 2

H = !/2 JvBd2x = l/o JV4..VA d2x
/^ ^ ^ /v *%. *- »

A - V2

where the notations are the same as in Section 2B.
equations of Section 2C, the energy invariant e

For the Strauss
and the cross-

helicity HC are still ideal invariants, and the magnetic helicity

HM degenerates into H^ = BQ/A d x.

For reasons that have been gone into in considerable detail else-
where, in all three sets of equations, there appears to be a tendency
for the magnetic quantities to accumulate, in forced situations, at
the longest wavelengths. The effect has been clearly demonstrated in
two- and three-dimensions, but at the time of this writing is still
conjectural for the Strauss equations. It is a way of accounting for
large-scale magnetic fields' spontaneous generation, as in the clas-
sic "dynamo problem." This is not the only situation where there is
a need to account for the occurence of large-scale magnetic activity
in a system in which small-scale turbulence is present; it may be,
for example, that large-scale disruptions in tokamaks can be repre-
sented as similar to inverse cascades within the framework of the
Strauss equations*

(2) Small-scale Dissipative Structures [15] - [17], Navier-
Stokes turbulence has been geometrically very elusive as far as form-
Ing a concrete, intuitive picture of it is concerned. Some success
at statistical characterization of turbulent Navier-Stokes flows has
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been achieved, but visualizing anything explicit about what is going
on has proved frustrating. Despite its primitive state, MHD turbu-
lence has pulled ahead in one department, at least, in providing a
readily visualizable description for structures associated with dis-
sipation. The picture is clearest in two dimensions, and may not be
significantly different in three. A current filament concentrates
itself near a magnetic X-point, and an associated flow pattern devel-
ops which sweeps magnetic flux symmetrically toward the X point where
it is dissipated. There is outflow from the weak-field corners of
the X point, sometimes at a significant fraction of the Alfven speed,
and the vorticity distribution is essentially that of a quadrupole.
There is a strong asymmetry between the small-scale behavior of the
magnetic and mechanical quantities. The general dissipative pattern
when highly disordered initial conditions are present seems to be a
random collection of such current filaments and associated X-points,
which for decay situations gradually become fewer over time. One im-
portant unexplored question is that of the ratio of ohmic to viscous
dissipation at high Reynolds numbers, and how this ratio varies with
magnetic Prandtl number, v/n.

(3) Selective Decay Processes [18], [19]. Not entirely unrelated
to inverse cascades are the decay processes which are characterized
by a more rapid decay of one global quantity than another. Geometri-
cal constraints sometimes impose lower bounds to the ratio of the
more rapidly to less rapidly decaying quantity, so that as time goes
on, this ratio may approach its mimimum value. The complicated evol-
ving turbulence heads, apparently, for a simple state which can be
described by a variational principle. For instance, the minimum e/A
is achieved by Eqs. (5) and (6) whenever v = 0 and

0, where k is a positive constant.7"A + k2Az z
IE/H | is achieved by Eqs.M

The minimum

, and(1) - (4) when V*B = XB, and v = 0,

the "force-free" state. There is evidence both experimental and
theoretical that such "selective decays" may indeed occur. The typi-
cal attempt to test the hypothesis has involved following the evolu-
tion of a set of disordered initial conditions. The global ideal in-
variants are all observed to decay, but at unequal rates. In a typi-
cal two-dimensional MHD run [18], e/A was observed to decay by more
than a factor of three. In a three-dimensional situation, |

approached to within about ten percent of its theoretical lower bound
[19], though not by spectral method computation. In no case known to
us has there been a turbulent computation in which e/A or |e/TL.|
did anything but decay.

The situation is complicated somewhat by the fact that there
appears further to be an unexplained raonotonic decay of |e/H | in

two- and three-dimensions [20]. Two differing t •*• m asymptotic
states for selectively decaying situations are compatible with what

.
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is known from high-Reynolds number computations so far, and they are
not consistent with each other:

a. A state with no kinetic energy (v = 0), and e/A(2D) or
|e/Hj (3D) minimized; and

M

b. A perfectly aligned state (v
tion in which e/A (2D), je/Hj (3D)

constraints that v = ±B, pointwise. Further, rather demanding,
computation will be required to sort out these possibilities.

±B) with perfect equiparti-
are minimized, subject to the

(4) Mean Field Anisotropy '[21]. Most laboratory magneto-
fluids of interest contain an externally-imposed dc magnetic field
which selects a particular direction in space at each point. This
destroys any possible isotropy of the turbulence, which is one of the
most useful symmetries by which a turbulent tensor description can be
simplified. The few laboratory measurements of MHD turbulence that
have been made to indicate one ubiquitous feature: a large ratio
(> 10) of parallel to perpendicular correlation lengths, indicating
a strong peaking of the k vectors in the spectrum in a direction
perpendicular to the mean field, [22], [23]. This inequality is also
a key assumption in the derivation of the Strauss equations
previously described. An important question is whether an initally
isotropic turbulent MHD spectrum has some tendency, in the presence
of a strong mean dc field, to develop an anisotropic k spectrum
which is sharply peaked perpendicularly to the direction of the mean
field.

In an extensive set of 2D MHD computations (with a strong mean
field in the plane of variation) Shebalin [21] has answered the ques-
tion in the affirmative. What seems to be involved is an inhibited
spectral transfer between Fourier modes with differing values of

In particular, in a resonant three-wave interaction, lk*B!k»B_.

cannot increase, but can. An initially isotropic distribu-

tion of k's seems to elongate itself perpendicularly to the mean
Brt until something like the Kolraogoroff dissipation wave number is~-u
reached, so that the higher the Reynolds numbers, the more pronounced
the anisotropy. Not paradoxically, if the dissipation is artificial-
ly (and unphysically) set equal to zero, the spectrum eventually re-
isotropizes itself uniformly over the allowed Fourier modes due to
higher order processes.

Now two processes are briefly remarked upon which seem ripe for
investigation by spectral method computation. They are:

(5) Turbulence in Current-carrying Magnetofluids. Periodic
boundary conditions preclude the existence of net fluxes of (say)
electric current through any cross section of the region of computa-
tion. Since many of the most interesting laboratory plasmas carry
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net currents, and as a consequence have non-vanishing circulations
$B*di around the perimeter, rectangular periodic boundary conditions
stand in the way of numerical investigation of those turbulence
effects (such as those for the Strauss equations involving inverse
cascades) which require a net current. The expansion of the field
variables in real Fourier sine series, as constrasted with complex
Fourier series with terms ~ exp(ik'x), seems to pose no fundamental
obstacles to spectral investigation of current-driven turbulence, but
no results along these lines have as yet been reported.

(6) Current Boundary Layers. The boundary condition
3_*n =0 at a conducting boundary demands that current densities
which have no reason to be small in the interior of the magnetofluid
must drop to zero at the boundary, reminiscent of the effect of a
rough wall on a fluid velocity. The existence of a boundary layer of
current gradients is to be expected near the boundary, just as a
layer of vorticity is to be expected for a fluid flowing past a sur-
face. Current gradients are widely (and probably correctly) believed
to be a source of MHD activity ("tearing modes"), and it is not
impossible that any confinement device with conducting interior
boundaries will contain significant amounts of current-driven magne-
tic fluctuation associated with current-gradient boundary layers.

_5_. Summary» Fluid mechanics made a transition, in the wake of
engineering achievements, into a sophisticated branch of applied
mathematics. Magnetofluid mechanics may follow a somewhat different
trajectory, in that the engineering achievements may well depend upon
the prior development of a more sophisticated approach to the rele-
vant questions of stability, transition, and turbulence than has
characterized the first few decades of investigation. Spectral meth-
od computation could prove the most useful tool of all in 'this under-
taking .
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