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Abstract >

Crossflow instabilities dominate disturbance growth in the leading-edge

region of swept wings. It is well known that streamwise vortices in a bound-

ary layer strongly influence the behavior of other disturbances. Amplifica-

tion of crossflow vortices near the leading edge produces a residual spanwise

nonuniformity in the mid-chord regions where Tollmien-Schlichting (T-S) waves

are strongly amplified. Should the T-S wave undergo double-exponential growth

because of this effect, the usual transition prediction. methods would fail.

Thus it is important to study interactions of this sort and to develop more

realistic criteria for transition prediction.

We modeled analytically the crossflow/Tollmlen-Schlichting wave interac-

tion as a secondary instability. The effects of compressibilty of the three-

dimensional flow over a swept wing will be considered in a future analysis.

The effects of suction are included, and different stability criteria are

examined. The results are applied to Laminar Flow Control wings character-

istic of energy-efficient aircraft designs.

The work is an effort by personnel at Stanford University. At all times

the work has been closely coordinated with an experimental program at Virginia

Polytechnic Institute and State University (VPI & SU), which is examining the

same problem.
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1• Introduction

1.1 Motivation

Recent research efforts in aircraft design are focused on the idea of

Laminar Flow Control (LFC); see, for example, Pfenninger (1977b), Hefner and

Bushnell (1977), and Bushnell and Tuttle (1979). The motivation for these

efforts has been the realization that a turbulent boundary layer can account

for up to 50% of the total drag on a vehicle during cruise. Maintaining a

laminar boundary layer by delaying transition to higher Reynolds numbers and

therefore increasing fuel efficiency is very promising and of practical im-

portance to the industry.

Transition to turbulence can be caused by many different things Morkovin,

1969, 1977), but in the flight case transition occurs due to the unbounded

growth of very small disturbances in the flow. It appears as though the most

efficient means for maintaining laminar boundary layers is the use of very

weak suction on the wing surface. The weak suction inhibits the growth of

unstable disturbances in the boundary layer and delays transition. In the

flight case this was demonstrated by Pfenninger and Groth (1961). The recent

theoretical work of Reed and Nayfeh (1983) and experimental work of Reynolds

and Saric (1983) and Saric and Reed (1983) demonstrate that, in the case of

two-dimensional flows, the suction problem is well understood. The suction

levels and distributions required to delay transition can be accurately pre-

dicted.

Modern LFC transport designs are expected to fly at subsonic speeds near

the speed of sound. Their swept wings are being designed with advanced compu-

ter codes (Bauer, Garabedian, and Korn, 1972; Kaups and Cebeci, 1977) and have

supersonic flow on both the upper and lower surfaces. Typically, the upper

surface of the two-dimensional airfoil is characterized by an extensive super-

sonic flat-pressure region preceded by a leading-edge negative pressure peak

and followed by a gradual shock-free recompression to subsonic flow with a

subsequent rear pressure rise of the Stratford type (Pfenninger, 1977b); Alli-

son and Dagenhart, 1978; Pfenninger, Reed and Dagenhart, 1980).

Because of wing sweep, the flow over the wing is three-dimensional. The

profile of the crossflow velocity component contains an inflection point.

This situation is known to be dynamically unstable and creates streamwise
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vortices that all rotate in the same sense Gray, 1972; Gregory, Stuart and

Walker, 1955; Owen and Randall, 1952). These crossflow vortices are very

important and dominate disturbance growth in the leading-edge region (Sro-

kowski and Orszag, 1977). On the other hand, the mid-chord region is dominated

by the classical Tollmien-Schlichting instability (T-S waves). Because the

flow is locally supersonic, a complete three-dimensional T-S instability must

be considered.

One of the major unanswered questions regarding these instabilities con-

cerns the interaction of crossflow vortices and T-S waves. Klebanoff et al.

(1962) show that the onset of three-dimensionality is quickly followed by

breakdown of the laminar flows. It is well known that streamwise vortices in

a boundary layer strongly influence the behavior of other disturbances. Nay-

feh (1981) shows that GOrtler vortices produce a double-exponential growth of

T-S waves. That is, the amplification rate increases exponentially in this

case. Herbert and Morkovin (1980) show that the presence of T-S waves also

produces a double-exponential growth of Gortler vortices, while Floryan and

Saric (1980) show a similar behavior for streamwise vortices interacting with

Gortler vortices.

If crossflow vortices and Tollmien-Schlichting waves occur simultane-

ously, it is possible that premature transition will occur (Pfenninger,

1977a) . This possible interaction is especially important on the upper sur-

face of supercritical LFC airfoils in the zero-pressure-gradient region. Vor-

ticity developing in the leading-edge area may linger to the mid-chord region

and affect stability there. Amplification of the crossflow vortices near the

leading edge produces a residual spanwise nonuniformity in the mid-chord

regions, where Tollmien-Schlichting waves are strongly amplified. Should the

T-S wave undergo double-exponential growth because of this, the usual transi-

tion prediction methods would fail. Thus it is important to study interac-

tions of this sort and to develop more realistic criteria for transition

prediction.

1.2 Review of Stability Theory

Linear stability theory, or small disturbance theory, in which distur-

bances are assumed in the form of linear, harmonic, traveling waves, plays an

important role in the design of LFC systems. Using it, we can determine the



unstable, or amplifying, range of disturbance frequencies and amplification

factors. The en-method (Smith and Gamberoni, 1956; Van Ingen, 1956; Jaffe,

Okamura and Smith, 1970) and the modified en and amplitude methods (Mack,

1977) predict trends for changes in the mean flow that delay transition and

are therefore very useful. However, they cannot be expected to predict the

exact location of transition, because of the strong dependence of transition

location on freestream turbulence levels. If the turbulence levels are low,

the n-factor for predicting transition is about 15 (Runyan and George-Falvy,

1979); for higher Reynolds numbers and turbulence levels, an n-factor of about

ten has been suggested (Smith and Gamberoni, 1956; Van Ingen, 1956; Jaffe,

Okamura and Smith, 1970). For LFC design, Hefner and Bushnell (1979) suggest

a value of five. Saric and Nayfeh (1977) show how these values are changed

when the nonparallelism of the basic flow is taken into account.

For parallel, three-dimensional, incompressible flows, Gregory, Stuart

and Walker (1955) derive the three-dimensional linear stability equations,

including boundary-layer growth and streamline curvature. Then they determine

a transformation reducing the three-dimensional temporal problem to a two-

dimensional one. For flows over a rotating disk and a sweptback wing, Brown

(1961) solves these equations numerically. Nayfeh and Padhye (1980) present a

method for calculating neutral stability points for a flat-plate flow. Be-

cause calculations of neutral stability (points separating stable and unstable

flows) are extremely tedious and difficult in three dimensions, their work is

significant. From their iterative scheme, they derive equations relating neu-

tral and nonneutral disturbances. Cebeci and Stewartson (1980) identify an

absolute neutral curve, called zarf, for the rotating disk. For given dimen-

sionless frequency co, they find a neutral curve on which the growth rate is

zero. That is, a.^ + {3^ tan <J) = 0, y = x tan <J>, where a.^ and $^ are the

imaginary parts of the complex streamwise and spanwise wavenumbers, respec-

tively, and $ is the direction of propagation. They then define the abso-

lute neutral curve zarf on which both a^ and p^ are zero. Padhye and

Nayfeh (1981) do a nonparallel incompressible stability analysis on the X-21

wing and find crossflow vortices to be the most amplified disturbance in

regions of pressure gradient. In addition, they find the addition of nonpar-

allelism to give more stable results in the front part of the wing and more

unstable results in the rear pressure-rise region.



For parallel, three-dimensional, incompressible stability calculations,

a computer code SALLY has been developed by Srokowski and Orszag (1977) that

uses the en-method for correlating the transition location. They calculate

the maximum temporal amplification rate for a given dimensional frequency at

each boundary-layer station from the parallel, incompressible stability equa-

tions (the so-called envelope method). Then they use the real part of the

group velocity to convert the temporal amplification rate into a spatial one

(Caster, 1962) and integrate along the path defined by the real part of the

group velocity. In their limited calculations, they find stationary crossflow

vortices to be the most amplified on LFC wings. Mack, in his spatial calcula-

tions for the rotating disk (Mack, 1977) and Falkner-Skan-Cooke yawed wedges

(Mack, 1978, 1979), also defines the direction of growth as that of the real

part of the group velocity. In his work, he introduces his amplitude methods

for correlating transition. Cebeci and Stewartson (1980) use the condition

that da/dp be real, a condition also found by Nayfeh (1980a), to calculate

an n-factor for the rotating disk. They start at a point of zarf and fix the

group-velocity angle as a constant before marching. Nayfeh and Padhye (1979)

establish a relation between three-dimensional temporal and spatial stabili-

ties and a relation between spatial stabilities using the complex group veloc-

ity. Malik (1980) and Malik and Orszag (1980) compare several methods of

transition prediction using incompressible stability theory and conclude that

the SALLY code is the most efficient. For the rotating disk, Malik, Wilkinson

and Orszag (1981) then use SALLY to calculate temporal eigenvalues, which they

convert to spatial eigenvalues using a group-velocity transformation. They

then calculate n-factors using the real part of the group velocity. Dagenhart

(1981) considers stationary crossflow vortices and reports that his code MARIA

adequately reproduces the stability results of the more complicated stability

codes using the same physical disturbance model while using less than 2% of

the computer time.

Lekoudis (1979) and Mack (1979) evaluate the effects of compressibility

on the stability of the boundary-layer flow over an infinite-span swept wing.

They find that for T-S waves the inclusion of compressibility significantly

reduces the maximum amplification rate and changes the most unstable wave's

orientation. Mack finds for leading-edge-area crossflow that the incompres-

sible theory overpredicts the amplification factor but has little influence on



the wave angle. El-Hady (1980) and Mack (1980, 1981) both report on the par-

allel compressible stability of the flow over a 23°-swept wing with a super-

critical airfoil shape. In their work, Malik and Orszag (1981) describe the

computer code COSAL they have developed that efficiently computes temporal

eigenvalues by finite differences.

It is apparent that a correct three-dimensional stability analysis must

include both compressibility and nonparallelism. Saric and Nayfeh (1975,

1977) show that nonparallelism of the basic flow can be quite important under

many circumstances. Nayfeh (1980a) uses the method of multiple scales (e.g.,

Nayfeh, 1980b) to formulate the three-dimensional problems but presents no

numerical results. Nayfeh (1980c) then rigorously formulates the nonparallel

3-D problem. He determines the partial differential equations governing vari-

ations of the amplitude and complex wavenumbers and determines conditions on

the group-velocity components, making the problem physically realistic.

El-Hady (1980) presents some results on a 23°-swept wing with a supercritical

airfoil shape. The work of Reed and Nayfeh (1982) represents the state of the

art in three-dimensional calculations. Instead of jumping from wave to wave

by locally calculating the most amplified disturbance in inarching or specify-

ing some artificial condition such as constant spanwise or chordwise wave-

length, they formulate the problem by selecting a specific wave at some ini-

tial point and then following that one wave along its trajectory, using the

group-velocity ratio (Nayfeh, 1980a). A few results for the X-21 wing are

given. They find again that the crossflow disturbances are the most amplified

in the pressure-gradient region.

If crossflow vortices and Tollmien-Schlichting waves occur simultane-

ously, it is possible that premature transition will occur (Pfenninger,

1977a). This possible interaction is especially important on the upper sur-

face of supercritical LFC airfoils in the zero-pressure-gradient region.

Vorticity developing in the leading-edge area may linger to the mid-chord

region and affect stability there. Amplification of the crossflow vortices

near the leading edge produces a residual spanwise nonuniformity in the mid-

chord regions, where Tollmien-Schlichting waves are strongly amplified. Thus

it is important to study interactions of this sort.

For one to use the en-method for the prediction of the transition loca-

tion, it is necessary to know not only the respective growth rates but the



manner in which disturbances propagate in this three-dimensional interacting

flow. Unfortunately, there is a dearth of analytical modeling and experi-

mental data concerning the interaction problem.

Two theoretical approaches are discussed in the next section to model the

crossflow/T-S interaction (characteristic of swept wings) as a secondary in-

stability. The first involves the weakly nonlinear combination of crossflow

vortices with various oblique-wave solutions to the linear disturbance equa-

tions. Craik's resonant triads (Craik, 1971) provide the foundation for this

type of approach. The Craik model was considered for the onset of three-

dimensionality of T-S waves in boundary layers. These types of models provide

only limited understanding to interaction problems, because they specify one

specific wavelength for secondary disturbances for a given frequency, provid-

ing a very limited window. The secondary disturbances have been observed

experimentally in a broad band of wavelengths (Klebanoff, 1962, Kama, i960,

Kachanov and Levchenko, 1982, Thomas and Saric, 1981, Saric and Thomas, 1983,

Kozlov, Levchenko, and Saric, 1983). Moreover, interactions have been observed

in flows where a Craik-type mechanism is invalid, e.g., subharmonic distur-

bances in plane Poiseuille flow (Kozlov, 1982).

The second approach described in the next section considers the T-S wave

growth as a secondary instability in the presence of finite-amplitude cross-

flow vortices. Herbert (1983) has successfully predicted the onset of three-

dimensionality in plane Poiseuille flow and in flat-plate boundary layers

using such an approach. Herbert considers the secondary instability of

modulated finite-amplitude, two-dimensional T-S waves with respect to three-

dimensional disturbances. For equilibrium plane Poiseuille flow, he solves a

Hill-type system of equations with periodic coefficients and finds the differ-

ent types of three-dimensional instability associated with different resonance

conditions. His results (showing frequency and the broad spectrum of possible

wavelengths as a function of amplitude and Reynolds number) compare very well

with experimental observations.

Boundary layers are more complicated, because they grow and do not exhi-

bit the cross-stream symmetry of Poiseuille flow. Therefore, this analysis

does not apply directly without some approximations. Herbert (1984) uses a

shape assumption in which he neglects the nonlinear distortion of the two-

dimensional T-S waves at finite amplitude and also ignores the weak variation
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of T-S wave amplitude on a viscous time scale. That is, he holds amplitude

constant for his analysis so that his basic state (the flat-plate flow with

two-dimensional T-S waves superposed) is periodic and a Hill-type system can

then be solved for the interaction problem. The results of his parametrical

excitation are consistent with available experimental data.

1.3 Objectives

It is proposed to model analytically the crossflow/Tollmien-Schlichting

wave interactions that are characteristic of flows over swept wings. This

modeling is described in the next section. The effects of compressibility and

nonparallelism of the basic flow will be included in a future analysis. The

effects of suction in reducing the growth of these disturbances will be inves-

tigated. Since the flow is complicated by the presence of crossflow vortices,

the group-velocity-ratio criterion (Nayfeh, 1980a, 1980c) may not be the only

applicable criterion. Thus other criteria will be eventually examined.



2. Description of the Analysis

2.1 Work in Progress—Analysis

We consider a three-dimensional, incompressible stability analysis. For

leading-edge-area crossflow, Mack (1979) finds that the incompressible theory

overpredicts the amplification factor but has little influence on the wave

angle.

A. Basic State

The spatial stability of the basic state (comprised of a three-

dimensional boundary-layer flow over a convex or flat surface with a super-

posed flow corresponding to steady streamwise vortices rotating in the same

sense) is examined. This mean flow is typical of the upper surface of a

transonic swept wing considered for Laminar Flow Control (LFC) in the flat-

pressure region. This region is preceded by a leading-edge negative pressure

peak where crossflow vortex instability is expected to be important. These

vortices may linger to the zero-pressure-gradient region and affect stability.

The three-dimensional boundary-layer flow is provided by the code of

Kaups and Cebeci (1977), a code that solves the laminar compressible boundary-

layer equations for a tapered, swept wing with wall mass transfer under the

conical-flow assumptions. That is, the pressure gradient along the wing

generators is assumed zero, and twist and tip and wing-body effects must be

neglected. The governing equations are converted to a two-dimensional form by

similarity transformations and then solved numerically by Keller's box method.

Initially, we analyze the form of the solutions of the steady vortex

flow. This was done by solutions of the disturbance equations for the vorti-

ces. That is, we assume total flow quantities of the form

>*,

q(x,y,z,t) = Q (x,y,z) + q(x,y,z) (1)
s

Here, Qs(x,y,z) stands for the undisturbed three-dimensional flow provided

by the Kaups-Cebeci code, and q(x,y,z) stands for the small, steady distur-

bance due to the presence of the crossflow. Substituting the total flow quan-

tities into the Navier-Stokes equations, subtracting the undisturbed part of

this basic state (that is, the flow without the vortices), and linearizing, we

find the first-order, nondiraensional disturbance equations. We define the

Reynolds number by
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it "ff . ifc / 1 \
R = U 6 /v (2)

e e

Here, U , v , and 6* are the dimensional edge freestream chordwise
6 c

velocity, kinematic viscosity, and displacement thickness, respectively.

We confine our analysis to undisturbed flows that are only slightly non-

parallel; that is, the normal velocity component Vg ±s small compared with

the other components Ug and W_ • This in turn implies that all the undis-

turbed variables must be weak functions of the streamwise and spanwise coor-

dinates compared with the normal coordinate. In other words,

Us - Us
(xl>v>2l> • Ws - Ws(Xl,y,Zl) (3a)

Vs = eV*(Xl,y,2l) , V* - 0(1) (3b)

We describe the relatively slow variations of the undisturbed quantities in

the streamwise and spanwise directions by the slow scales Xj = ex and Zj =

ez, respectively. Here e = 1/R.

We describe the crossflow disturbance quantities in the form

q(x,y,z;e, ey) = ev'
qo^xl »?»*!> exp(i9) + c.c.J (4)

where c.c. stands for complex conjugate and

ft ft f\ A /
"5x" v 1* 1 ' ~§z ^v 1' 1

Here, ev describes the magnitude of the crossflow disturbance. The eigen-

functions qo are normalized so that their maximum value is one half. The

quantities a and p are the complex dimensionless quasi-parallel compo-

nents of the wavenumber in the chordwise and spanwise directions, respec-

tively. Assuming the phase 9 to be continuously differentiable, we have

da dpv
^ = T-^ (6)

For crossflow vortices, the wavenumber direction fy is deflected approxi-

mately 90° from the potential-flow direction.

If we adopt the convention



Z01 = "O* Z02 = ^O' Z03 = V0> Z04 = PO' Z05 = W0» Z06 =

we find that the equations governing the eigenfunctions of the crossflow dis-

turbances can be written as a system of six linear first-order ordinary dif-

ferential equations of the form

6

Dz - V"* a z = 0 (8)
on £ j nm om

m=l

for n = 1, 2, ..., 6. The anm are the elements of a 6x6 variable-

coefficient matrix whose nonzero elements are given in Appendix A. The bound-

ary conditions for (8) become

Z01 " Z03 = Z05 = ° at y = 0 (9a)

Z01» Z03» Z05 * ° as y > « (9b)

The system (8)-(9) constitutes an eigenvalue problem. Given the Reynolds

number R and undisturbed mean-flow profiles, we determine the wavenumbers

numerically. Since our problem is linear, it has six linearly independent

solutions. The general solution is then a linear combination of these line-

arly independent solutions, where the coefficients are determined from the

boundary conditions. The procedure we use is to guess the eigenvalues and

then numerically integrate the system (8) from the boundary conditions for y

-* » to the wall at y = 0. In our analysis we employ the SUPORT code (Scott

and Watts, 1977) and integrate with a Runge-Kutta-Fehlburg scheme using Gram-

Schmidt orthonormalization to keep the solution vectors linearly independent.

In general, our guess of the eigenvalues is wrong, and therefore one of the

boundary conditions at y = 0 is left unsatisfied. We then use a Newton-

Raphson scheme on this unsatisfied boundary condition to iterate and try to

converge to the correct eigenvalue. The other conditions we satisfy are that

the growth rate is a maximum and Wg/tj is real.

Once the correct eigenvalues are determined, we recover the eigensolu-

tions and then construct the appropriate basic state for the interaction

problem.
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B. Crossflow/T-S Interactions Formulation

In this section, two approaches are discussed to model the crossflow/T-S

interaction as a secondary instability. The first approach models the T-S

wave growth as a weakly nonlinear system and is similar to the work of Craik.

The second approach considers the T-S wave growth as a secondary instability

in the presence of finite-amplitude crossflow vortices. Herbert has success-

fully predicted the onset of three-dimensionality in plane Poiseuille flow and

in flat-plate boundary layers using this approach, known as parametric

resonance.

In both approaches, we superpose onto the basic state (that is, the

three-dimensional boundary-layer flow over a convex or flat surface with a

superposed flow corresponding to steady streamwise vortices, rotating in the

same sense) two oblique, traveling, harmonic Tollmien-Schlichting waves. To

this end, we assume small, unsteady perturbation quantities of the form

£TqU,y,z,t) (10)

so that, considering (1), (3), and (4), the total flow quantities become

A

q(x,y,z,t) = Qg(x1,y,z1) + ev(qo(x1 .y.ẑ  exp(ie) + c.c.)

(11)

+ eT(q1(x,y,z,t) + q2(x,y,z,t))

The small dimensionless quantity eT represents the order of the amplitude of

the two oblique Tollmien-Schlichting waves. Two oblique T-S waves are con-

sidered to achieve a resonant or near-resonant condition. The Tollmien-

Schlichting instability is assumed to be a secondary instability so that eT
2

is much smaller than ey and e. In other words, the terms of order e are

negligible in comparison with ee, and

Then, using the method of multiple scales (e.g., Nayfeh, 1980b), we look

for a uniform expansion of the q -quantities (i = 1,2) in the form

q.,(x>y>2>t) = [<L (xi >7»z, »t. ) + eq., (x. ,y,z. ,t. ) -f .. .* J exp(i9.) (12)

where

se.
-ĝ i = o1(x1,z1) (13a)

11



- - Pi(x1>Zl) (13b)

-a, (130

The quantities a^, p^, and u are the streamwise wavenumber, spanwise

wavenumber, and frequency of the two Tollmien-Schlichting waves, respectively.

We substitute these quantities into the Navier-Stokes equations and solve the

resulting eigenvalue problem.

Infinitesimal Crossflow Disturbance

For growing boundary layers with infinitesimal crossflow disturbances,

the parameter ev = 0(e) to account for both the effect of the vortices and

the growth of the boundary layer at the same level. The disturbance equations

describing the 0(e°) problem and the homogeneous terms of the 0(e ) problem

are identical in form to the crossflow disturbance equations given by (8)-(9).

(The basic state is again the three-dimensional boundary-layer flow over the

wing without vortices.) Because of this, a solution for the inhomogeneous

0(e ) problem exists only if a solvability condition is satisfied. The inho-

mogeneous terms must be orthogonal to every solution of the adjoint homogen-

eous problem. These solvability conditions depend on whether

al a \ + a2 — Pl " Pv + P2 (U)

or not. If these resonance conditions are not satisfied, the solvability

conditions yield two completely uncoupled equations describing the effect of

non-parallelism on the two different amplitudes of the two T-S waves. If

is satisfied, we introduce detuning parameters a± and 02 defined by

(15)

' P2+e°2

and find the following coupled equations describing the amplitudes

z,t) and A ( x z , t ) of the two T-S waves

12



SA, dA, dA,
gl St 612g, 13

= h.

g21 5t + g22

dA9
23 h2lAl

The resonance condition produces secular terms and causes the coupling of the

amplitudes, leading to possible magnified growth of the T-S waves beyond that

predicted by straight linear theory. The coefficients Si-, h-, h]?, and

t\2i are given in Appendix B. The quantities hi and h2 account for the

nonparallelism of the mean flow, while h^ and }*2i account for the pres-

ence of the crossflow vortices.

Considering single-frequency, perfectly tuned disturbances, this system

becomes:

dA, QA,
= h,A,

) ~
a 2

= h21AL + h2< (17)

where fu^ /u 1, and fcjo0/oj )0 are the group velocity ratios of the two T-Sv p a l v p a ' ^
waves. This system has the solution:

S1X+S2Z
(18)

locally, where the quantities A and A are the amplitudes of the two T-S

waves as observed at the point (x,z) and
- -1 _

6J to) to) It)f t A - - - - - - - - - -

1
a 2 a 1

'"P _ C

a1 -1

1

(19a)

(19b)

The quantities Sj and $2 are the growth rates associated with nonparallel-

ism and the presence of the vortices. The total growth rates for the two

waves are therefore

a i

13

+ ̂
(20)



Under these resonance conditions, we shall follow the T-S wave along its

trajectory to ascertain its stability characteristics. Since the flow is

complicated by the presence of streamwise vortices, marching along the charac-

teristics defined by the group-velocity ratio may not be the only applicable

criterion.

Finite-Amplitude Crossflow Disturbance

For finite-amplitude crossflow disturbances present in the growing

boundary layer, we now assume that 0(e) < 0(ev) < 0(1). Following the work

of Herbert, the mean flow or basic state is described by:

Qo(x,y,z,t) = Qg(x,y,z) + ev[qQ(x1 .y.ẑ  exp(i9) + cc] (21)

where the eigenfunctions qo have been normalized so that

max (q | = 1/2 (22)
0<y<» °

This expression describes a three-dimensional growing boundary-layer flow over

a wing with embedded streamwise crossflow vortices.

We neglect the nonlinear distortion of the crossflow vortices at finite

amplitude, ignore the weak variation of crossflow wave amplitude on a viscous

time scale, and apply Floquet theory. Under these conditions and considering

the condition a. « a -I- a? and p » p -4- p to achieve resonance, the

first-order disturbance equations describing the two superposed oblique T-S

waves are

ia.u + Dv + iPiW = ° (23: a)

+ Dv + ip2w2 = 0 (23 b)

2 2

-1- e Du v = 0 (24-a)
V o 2

14



2 2

ia2Ug
u2 + DUfiV2

0
(24b)

2 . .2
1«, + P!

vl + Dpl

£VDVoV2
0

(25a)

2 2

- iu>

eVDvoVl = °
(25b)

T / - ' l + D W s V l

(26a)
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1 D2w2

+ Vo0*! + ̂ o*! = ° (26b)

The symbol indicates the complex conjugate. This coupled system of distur-

bance equations is numerically solved by a spectral collocation method using

Chebyshev polynomials. We apply an exponential mapping (Spalart, 1984)

y = - TJO in TJ (27)

that transforms y = [0,®) to r\ = [1,0]. The value of n governs the

concentration of points near the wall. Only odd Chebyshev polynomials are

used in this formulation so that the infinite boundary conditions are automat-

ically satisfied (Herbert, 1984). In this analysis, we use thirty polynomials

giving a 123 x 123 real system of algebraic equations. The results are

observed to be strongly dependent on the accuracy of resolution of the basic

state.

The spatial solution of this system provides the dispersion relation

u - ^(a.p.R.ey) (28)

The growth rates of the two T-S waves are therefore

<s± = - Imag(ai) - -- InagCp^ , i = 1, 2 (29)

%

Again we shall follow the T-S wave along its trajectory to ascertain its

stability characteristics. The amplification factor n is then the integral

along the trajectory of the growth rate.

2 .2 Work in Progress-Calculations

At present the interaction codes are being developed using X-21 wing

data. This wing, derived from the NACA 65A210 airfoil, has leading and

trailing edge sweepback angles of 33.2° and 19.1°, respectively. The x,y,z
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coordinate system used in the stability analysis is shown in Fig. 1. The

input upper surface pressure, suction, and calculated displacement thickness

Reynolds number distributions are shown plotted against percent chord in Figs.

2, 3, and 4, respectively. These quantities apply for a freestream speed of

774.4 feet per second and a 14.66-foot chord.

A. Crossflow

The crossflow instability is expected to dominate in the pressure-

gradient regions. The crossflow/T-S interaction we examine will occur at the

leading-edge negative pressure-gradient region. Amplification of crossflow

disturbances there produces a residual spanwise nonunif ormity that could

linger to regions where T-S waves are strongly amplified. For this reason, we

focus our attention on the leading-edge area.

Figure 5 shows typical streamwise and crossflow velocity profile distri-

butions for the leading-edge area; these are computed at 1.5% chord. In this

plot,

*
U = dimensional chordwise speed
s
*
U = dimensional chordwise edge speed
e
*

W = dimensional spanwise speed

*
W = dimensional spanwise edge speed

Note the inflection point in the crossflow profile, a situation known to be

dynamically unstable. Also of interest is the relatively small amplitude of

the crossflow velocity in comparison with the streamwise velocity. The

distribution of maximum (in magnitude) dimensional crossflow speed Wmax

versus percent chord is shown in Fig. 6; the values are overall very small.

Two dimensionless parameters commonly used both in experiment and theory

to correlate crossflow-vortex appearance with freestream and boundary-layer

conditions are the local crossflow Reynolds number

W v
maxyiQ

Recv " *
v
e

and local shape factor

yio
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Distributions of these plotted versus percent chord are shown in Figs. 7 and

8, respectively. Vortices appear when crossflow Reynolds numbers are on the

order of 100 and shape factors are on the order of 0.3; these figures are

consistent with our findings. Here ymax
 is the local normal-direction

location of W and ylft is the normal-direction location above y_a,..nicix j. u nid A.
where the crossflow speed is 10% of Wmax.

A spatial stability analysis on this flow yields the following results :

Figure 9 shows the amplitude distributions of two perpendicular disturbance

profiles, one in the direciton of the wave angle, the other normal to this

direction. These are computed at 1.5% chord. The larger amplitude portion

lies in the direction perpendicular to the wave and is normalized to 1/2 to

give proper meaning when an amplitude ey is introduced.

Figure 10 shows parallel and nonparallel calculations for the most

unstable disturbance at the leading edge. For Padhye and Nayfeh (1981)

nonparallelism is a stabilizing influence. Here we see that nonparallelism is

initially stabilizing, then destabilizing. Figures 11, 12 show how that

disturbance's wave angle and group velocity vary with percent chord. It is

apparent that the most unstable disturbance lies in the direction perpendic-

ular to the freestream and is a crossf low-type growth. The group-velocity

direction is almost the same as the potential-flow direction.

B. Crossflow/T-S Interaction — Infinitesimal Disturbance

An appropriate basic state is formed and the interaction problems now

considered. Because the Craik-type approach is expected to provide only

limited insight into the interaction problem, only a few results are presented

here to demonstrate the model. The model depends on knowledge of the initial

conditions (that is, the amplitude ratio) of the two interacting T-S waves, as

well as the amplitude of the crossflow disturbance. Moreover, the model

provides a single disturbance wavelength for a given frequency.

Figure 13 shows growth rate (defined by Eq. (20)) plotted versus T-S wave

amplitude ratio for three different crossflow velocity magnitudes (0%, 0.6%,

1.2%) for a chord location of 0.5% and a frequency of 325 Hz. As is evident

from the plot, the stability of the oblique T-S wave is strongly dependent on

the amplitude ratio. Predicting this ratio for an experiment may be

difficult, and this model is therefore impractical.
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C. Crossflow/T-S Interaction—Finite Amplitude

For finite-amplitude disturbances, we use a Herbert-type approach to

model the interaction. Numerical solutions of Eqs. (23)-(26) provide growth

rate (Eq. (29)), wavenumber, and group velocity-ratio distributions as a

function of crossflow vortex amplitude. For a chord location of 1.5% and a

frequency of 325 Hz, these are shown in Figs. 14-16, respectively. The pres-

ence of crossflow vortices, even with small amplitude, apparently causes

magnified growth of the oblique T-S waves. The spanwise nonuniformity modu-

lates the growth rates. In addition, a broad band of wavelengths can be

observed as a function of amplitude. This is consistent with experimental

observations for other three-dimensional interactions—specifically, the

occurrence of three-dimensionality in boundary-layer flows. Figure 16 shows

the variation of group velocity ratio with amplitude.

For a chord location of 2.5%, Figures 17 and 18 show growth rate and

dimensionless wavenumber as functions of frequency and crossflow vortex

amplitude. Higher-frequency disturbances appear to be more affected by the

presence of the spanwise nonuniformity, as evidenced by the magnified growth

rates in Fig. 17. The wavenumber behaves qualitatively the same for the two

frequencies.

Figures 19 and 20 show growth rates and amplification factors for a T-S

wave of frequency 325 Hz and initial amplitude of 0.6%. Results show

parallel, zero-amplitude and finite-amplitude rates. The growth rates are

integrated numerically in marching along the trajectory of the wave to find

amplitude ratio. Figure 20 compares a parallel, zero-amplitude with a finite-

amplitude model. The results clearly show double-exponential growth for the

finite-amplitude analysis as compared with the zero-amplitude approach. It is

clear that the usual transition prediction methods will fail in such a flow;

premature transition will occur.

2.3 Remarks

The analysis will not be restricted just to the effects of crossflow on

the T-S instability. The role of T-S waves in affecting the growth of cross-

flow instabilities will also be examined. Under certain conditions, crossflow

vortices can also be amplified in the midchord region of hybrid laminar flow
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airfoils. In this case, we assume the crossflow as the secondary instability

and proceed with an approach analogous to that above.

At this time, there is no suitable criterion for establishing transition

when both crossflow and T-S waves are present. For the lack of anything

better, a linear relationship is assumed between the n-factors for crossflow

transition (nCF) and T-S transition (nTg)• Usually one assumes

r^g = 12 - (1.2) nCF

with some error bands, as a transition criterion. The present research will

be directed toward better understanding of the relationship between Oj,s

and ncp•

The effectiveness of suction will be examined. As was shown by Lekoudis

(1978) with wall suction, if the percentage of permeable area is small, if

most of the flow there is directed normal to the surface, if the perforations

are closely spaced, and if the surface has small permeability, then it is

acceptable to specify zero boundary conditions for the disturbances. In our

case, this means that both the crossflow vortices and the T-S waves satisfy

no-slip and no-penetration. Suction will therefore be introduced into the

undisturbed mean flow from the Kaups Cebeci code. The stability results of

this modification of the undisturbed mean flow will be applied to typical LFC

situations. It is expected that a new capability for analyzing the stability

of compressible swept-wing flows will result. Whenever appropriate, the work

will be applied to the presently ongoing transonic LFC experiments being con-

ducted at NASA-Langley Research Center in the eight-foot Transonic Pressure

Tunnel (Harvey and Bobbitt, 1982).
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3. Personnel

The principal investigator for this project is Helen L. Reed, Assistant

Professor of Mechanical Engineering, Stanford University. William S. Saric,

Professor of Engineering Science and Mechanics, VPI & SU, has been available

to consult on this program. The detailed resume of Dr. Reed is contained in

Appendix C.

Helen Reed received her Ph.D. in Engineering Mechanics in 1981 from VPI &

SU and joined the faculty at Stanford University in September, 1982. Before

coming to VPI & SU, she worked with W. Pfenninger at NASA-Langley on problems

of supercritical airfoils and laminar flow control. In addition to her inno-

vative modeling of the suction-strip problem in her dissertation (Reed and

Nayfeh, 1983), she has developed the state-of-the-art three-dimensional, com-

pressible stability code (Reed and Nayfeh, 1982) which will be used in the

proposed work.

William Saric received his Ph.D. in Mechanics in 1968 from the Illinois

Institute of Technology. He worked at Sandia Laboratories for ten years in

the Reentry Vehicle Division and the Atomic and Fluid Physics Division, and he

has been at VPI & SU for the past eight years. For the past seven years, he

has been conducting theoretical and experimental studies of boundary-layer

stability problems for LFC applications (Nayfeh and Saric, 1981; Reynolds and

Saric, 1982). He is principal investigator on an experimental program of 3-D

wave interaction in boundary layers that is directly related to the proposed

work.

The author is a member of the Heat Transfer and Turbulence Mechanics

(HTTM) group in the Department of Mechanical Engineering at Stanford, which

consists of eight faculty members, one research associate, and approximately

35 Ph.D. candidates. The other members of the HTTM group will also play

important roles as consultants.
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4. Figures
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Appendix A

ZEROTH-ORDER PROBLEM

a12 = 1

a21 = - 1R(U - avUs - pyWs) + (a
2
v + pj)

a23 = RDUg

a31

a35

ia
v

a., = - ip /R
46 v

a56 = L

= RDWg

a64 =

a65

NOTE: uj = 0 for crossflow.

<zv, pv are the chordwise and spanwise components of the wavenumber,
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Appendix B

QUADRATURES FOR gij, hi, h12, h2l> 1 = 1 , 2 , j = 1, 2, 3

Define £in as follows for the two T-S waves:

r = u , C „ = v , C -, = w , C ,il io i2 io i3 io i4

Then C are defined by:
in

Ctl

i2

Ci3

and Cj are the corresponding adjoint solutions. Then
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Dlu:
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