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1.0 Introduction

PAN AIR (an abbreviation for “panel aerodynamics") is a system of computer
programs designed to analyze subsonic or supersonic inviscid flows about
arbitrary configurations. It is one of a sequence of computer programs
developed over the past two decades which fall in the category of “panel
methods." Generally speaking, a panel method is a program which solves a
Tinear partial differential equation numerically by approximating the
configuration surface by a set of panels on which unknown "singularity
strengths" are defined, imposing boundary conditions at a discrete set of
points, such as panel Centers, and thereby generating a system of linear
equations relating the unknown singularity strengths. The equations are then
solved to obtain the singularity strengths, which, once known, provide
complete information about the flow.

PAN AIR differs from earlier panel methods in that it is a "higher order"
panel method; that is, the singularity strengths are not constant on each
panel. This is necessitated by the more stringent requirements of supersonic
flow problems. Numerical solution of the differential equation for supersonic
flow, the wave equation, is far more sensitive to the numerical idiosyncracies
of a panel method than is the solution of Laplace's equation, which governs
subsonic flow. The potential for numerical error is greatly reduced by
requiring the doublet singularity strength to be continuous.

It is this "higher order" attribute which, in turn, allows PAN AIR to be
used to analyze flow about arbitrary configurations. The A-230 program
(Reference 1.1), for instance, can only analyze flow about thick objects such
as bodies and thick wings, while the Woodward program (Reference 1.2) can only
deal with "linearized" configurations, in which a wing is represented by its
mean surface. So, PAN AIR can handle the simple configurations considered in
preliminary design, and at the same time serve as an "analytical wind tunne]"
for the analysis of flow about detailed, complex configurations.

The basic Version 3.0 PAN AIR capabilities include:

(a) the ability to handle, within the Timitations of linear potential
flow theory, completely arbitrary configurations, using either exact
or linearized boundary conditions,

(b) the ability to handle asymmetric configurations as well as those with
one or two planes of symmetry,

(c) the ability to handle ymmetric configurations in either symmetric or
asymmetric flow, ‘

(d) the ability to superimpose an incremental velocity on the freestream,
either locally or globally, in order to simulate effects such as a
rotational motion, differing angles of attack for different portions
of a configuration, or a propeller slipstream,

(e) the ability to calculate pressures, forces and moments using a
variety of pressure formulas (such as isentropic, Tinear, etc.),

including the forces and moments due to momentum flux through the
surface,
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(f) the ability to calculate leading edge and side edge thrust forces and
moments for thin configurations,

(g) the ability to perform non-iterative design of a configuration, a
process in which a desired pressure or tangential velocity
distribution is specified. The program then determines the
"pesidual" normal flow through the surface required to obtain the
desired pressure distribution, and

(h) the ability to calculate streamiines and to evaluate flow properties
at user specified off body points.

This document has been structured to provide an overview of the theory of
potential flow in general and PAN AIR in particular, with detailed
mathematical formulations reserved for the appendices. Section 2 contains a
brief discussion of fluid dynamics, outlining without proofs the steps from
the Navier-Stokes equations to the linear differential equation solved by PAN
AIR. Section 3 discusses the general theory of panel methods without
discussing PAN AIR in particular. Section 4 is an overview of PAN AIR as it
compares to older panel methods. Section 5 is devoted specifically to PAN AIR.

A complete discussion of the theory of potential flow and PAN AIR will be
given in the appendices.

This document is not intended to be a textbook on fluid dynamics, and thus
detailed derivations which are available in standard texts will not be
repeated here; rather, the appropriate reference will be given. The standard
potential theory and fluid mechanics references we will use are the works of
Kellogg (1.3), Liepmann and Roshko (1.4) and Ward (1.5). Those appendices
dealing with items of theory unique to PAN AIR will be more thorough, however,
referring to outside sources only for standard discussions of topics such as
linear algebra, graph theory and numerical analysis. There will be a

correspondence between appendices and portions of the actual computer code,
with each appendix either supplying background information or discussing the

theory behind a module or part of a module of PAN AIR.

A glossary containing the definition of technical terms is contained in
this document. When a term first appears, it will be given in quotes, and
briefly defined. The glossary will give a more detailed definition if
necessary.

The authors wish to thank Kathleen Christianson, Michele Sorensen, and
Valerie Spura for their efforts in typing this document and Forrester Johnson
for his assistance in its preparation.
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2.0 Fundamental Fluid Dynamics

In this section, we will outline the process by which one arrives at a
second order linear partial differential equation, called the Prandtl-Glauert
equation, which describes steady, irrotational, inviscid flow in a perfect
fluid. Our starting point is the Navier-Stokes equations, which describe flow
in a fluid under very general circumstances. The assumption that viscosity
can be neglected permits the Navier-Stokes equations to be replaced by a
simpler system of equations including a “continuity equation,”" a "momentum
equation," two “"energy equations," and "Euler's equation." The further
assumptions of "irrotationality" and "isentropic flow" lead to the "unsteady
potential equation." The assumption of steady flow leads to the "steady
non-linear potential equation." Finally, the "small perturbation assumption"
leads to the “Prandtl-Glauert equation." The remainder of this document will
deal with the numerical solution of the latter equation.
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2.1 The Navier-Stokes Equations

The basic equations describing the flow of a viscous compressible,
heat-conducting fluid are the Navier-Stokes equations. These are:

(a) The equation of continuity,

3
3p vl 3p 1

where Vv - (ai,’ aiz’ 3i3> is the gradient operator with respect to the
Tocation vector X = (xl, Xos X3), and where we have used the conventional index
notation as an alternate to X = (x, y, z). In addition, t is time, o(%,t) is

the density, and V(X,t) is the total velocity, with V- (Vl’ Vz. V3)-

(b) The momentum equation

3
3 ]
st (e ¥yl v 2 5 (o V¥ AR
(3 = 1,2,3) (2.1.2)

where Tij is the deviatoric portion of the "stress tensor" which vanishes for a

frictionless f1uig, Fk;,t) is an external body force per unit mass exerted on
the fluid, and p(X,t) is the pressure.

(c) The energy equation

(2.1.3)

where e(X,t) is the "internal energy" oﬁ the fluid, k is the coefficient of
heat conductivity for the fluid, and T(X,t) is the temperature.

(d) The equation of state
flo, p, T) = 0 (2.1.4)

where the function f depends on the type of fluid. For a perfect gas, (2.1.4)
can be written as

P=pRT (2.1.5)
where R is a constant.

The equations in this section are derived in Liepmann and Roshko (1.4),
section 13.13. ‘
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2.2 Euler's Equation

The Navier-Stokes equations can be simplified by the neglect of viscosity,
which is equivalent to setting the deviatoric stress tensor Tij = 0.
Combining the momentum and continuity equations, we obtain

dy.
_J _ _238p
e i

: j=12,3 (2.2.1)
j J

where the usual convective derivative operator is defined,

d _ 23 3
w3’ ?‘ Yiaxp

Equation (2.2.1) is called Euler's equation. We can obtain a full system of
equations including (2.2.1) as follows (see Liepmann and Roshko (1.4), p. 188,
for details).

The continuity and energy equations can be reduced to two energy equations:

p L GIE) =T vpe . F (2.2.2)

and the rate of increase of heat per unit mass is given by

V.(kVT) =%%*pg—t-(%) (2.2.3)

q =

© |

In addition, it follows from (2.1.5) and (2.2.3) that a perfect gas obeys
the equation ‘

e aT

where C, is the specific heat of the gas at constant volume.
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2.3 The Unsteady Potential Equation

The equations of section 2.2 can be reduced to a single equation (see ref. 2.1
Landahl, section 1.2, for details) if four further assumptions are made.

First we assume "isentropic flow" so that no heat is added to the fiuid, and
thus

q=20 (2.3.1)
Second, we assume irrotationality, that is,
vx V=0 (2.3.2)

whjch is shown in Liepmann and Roshko (p. 196) to be equivalent to the
existence of a "potential™ function & (X,t) such that

veo-V (2.3.3)
Third, we assume the existence of,a freestream potential ®= , whose

gradient is the uniform velocity Ve attained at points sufficiently distant
from the disturbance being analyzed, and thus write

¢ = ¢ - q)m (2.3.4)
and

<> - -
V=(uv,W) = V& = Vo, + Vg=V_ + Vg (2.3.5)

The quantities ¢ and vV are called the perturbation potential and velocity,
respectively. For convenience, we assume the freestream Vo is aligned in the
x direction and has magnitude 1.

Fourth, we assume that

[V] << aw (2.3.6)

everywhere, vhere a, 1is the freestream speed of sound. Equation (2.3.6) is
generally called a small perturbation assumption, but the reader is warned
that other "small perturbation" assumptions exist in the literature and in
this document. :

Based on these four assumptions, one can obtain (denoting differentiation
by subscripts) the unsteady potential equation (writing Mw for |Veo| /2. ):

2
(1-Meo )¢xx v Byt ¢zz - 2M“2 ¢xt - M“?

yy ¢tt

M2 (- 1) (2u 2 gy 19129 %

+ (2u + uz) g+ v2 g+ 2vW ¢yz + Wl p

XX yy 2z

+2(1 +u) (v, twg )+ 2(uu, + v, + ww )] . (2.3.7)
Xy t t t

XZ

where v is the ratio of specific heats
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2.4 The Steady Non-Linear Potential Equation

If we assume the flow conditions do not change with time, we can eliminate

the time derivative terms in (2.3.7), obtaining (see Landahl, (2.1))

(1-ME) g +g +8

XX r4

- M {% (v-1) (2u+ [V %) w2

+ (o) g+ VB,

+ 2(1 + u)(v ¢xy + w¢xz)]

+ 2vw ¢yz + w2 ¢zz

where y is the ratio of specific heats.

(2.4.1)

Equation (2.4.1) is often called the "small perturbation transonic
equation" because it holds at transonic speeds (that is, for Me =1) under the

assumption (2.3.6). Of course, the assumptions of steady, inviscid,

irrotational, and isentropic flow must also hold.
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2.5 The Prandtl-Glauert Equation

So far, each reduction of the Navier-Stokes equations to a simpler form
has been based on precisely defined assumptions. But the conditions under

gh;gh 32.4.1) reduces to a Tinear differential equation are not so precisely
efined.

If Mo =0, (2.4.1) reduces to Laplace's equation,

2

vVEg =0 (2.5.1)

a_linear partial differential equation. If Mo # 0, (2.4.1) reduces to a
linear differential equation provided additional assumptions are made.

Suppose
M [V <« 1 - m2 ' (2.5.2)
and
M2 [T << 1 (2.5.3)

which, like (2.3.6), are called small perturbation assumptions. Under those
assumptions, the steady non-linear potential equation reduces (see Appendix A)
to the Prandti-Glauert equation:

(1 - M2) Bex * By * Byp = 0 (2.5.4)

Equations (2.5.2) and (2.5.3) should be considered carefully by any user
of PAN AIR, since they best indicate when PAN AIR will provide a reasonable
analysis of the flow about a configuration. Equation (2.5.2) clearly cannot
be satisfied for Mo ~ 1, and thus the Prandtl-Glauert equation does not
describe “transonic" flow. Equation (2.5.3) does not hold for M« >> 1, and
so (2.5.4) does not describe "hypersonic" flow.

But there is no precise answer to the question: for what range of Mach
numbers does (2.5.4) describe the flow For a thick configuration, or one at
a high angle of attack, the perturbation quantities u, v, and w tend to be
large, and thus (2.5.2) and (2.5.3) only hold for a narrow range of Mach
numbers. For a very slender configuration, at a small angle of attack,
(2.5.3) and (2.5.4) hold for a much wider range of Mach numbers. But deciding
whether (2.5.4) is a "reasonable" approximation for a particular configuration
and a particular Mach number may be very difficult, and depend greatly on
one's definition of "reasonable."

The remainder of this document will deal with the solution of the Prandtl-
Glauert equation. Using Green's theorem, (2.5.4) is used to derive an integral
representation formula where the integrals extend over the configuration
surface. Additional assumptions are then brought to bear in order to obtain
an integral equation on the configuration surface. The integral equation is
then solved by a "discretization" process: the configuration surface is
divided into panels, "boundary conditions" are imposed at a discrete set of
‘points, and a system of linear equations is generated. The system of equations
is solved, and data of aerodynamic interest is calculated from that solution.
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3.0 Panel Method Theory

In this section, we outline the process by which the Prandtl-Glauert
equation

2
(1 - M) B * By * 8y, =0 (3.0.1)

is converted to an integral equation, and the way in which a general panel
method solves that integral equation.

In section 3.1 we describe the Prandtl-Glauert scale transformation by
which equation (3.0.1) is converted to either Laplace's equation (Me < 1) or
the wave equation (Mw > 1). In section 3.2 we state Green's third identity
which provides a representation formula for g in the subsonic case (Mo < 1).
(The corresponding representation formula for the supersonic case is given in
Ward, ref. (1.5)). For the subsonic case, a simple problem is then formulated
showing how the integral representation formula leads to an integral
equation. Finally, in section 3.3 we describe the discretization process by
which a panel method solves the resulting integral equation.
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3.1 Coordinate Scaling

Equation (3.0.1) is further simplified by performing a scaling of the
coordinate system. If we define the flow type indicator s by

2

S = sign (1 - Mg, ) (3.1.1)

and the compressibility scale factor g by

8= Vs (1-m 2 (3.1.2)

then the scaled coordinates we require are given by

X = X
Yy=8Y (3.1.3)
Z=82

In this new, scaled coordinate system, (3.0.1) can be written
S ¢RR + ¢S[y + ¢22 = 0 (3.1.4)

But equation (3.1.4) is just the same as (3.0.1) with Mo = 0 or Mw = V7.
Thus, the subsonic case reduces to the Mo = 0 case while the supersonic case
reduces to the Mew = V7 case. Equation (3.1.4) is called Laplace's equation
if s = 1, and the wave equation if s = -1, These equations occur in other
branches of physics (for instance, Laplace's equation occurs in electrosta-
tics), and thus PAN AIR potentially has applications in fields other than
fluid mechanics. '

For the rest of section 3, we will assume Mw = 0 (note, incidentally,

that this does not mean IV;I = 0; rather, ,im’ = 1 and the freestream speed

of sound a. is infinite). A similar discussion, for the case Mo - VZ , is
given in Ward (1.5). The integral representation formula (3.2.7) which results
may be generalized to arbitrary subsonic and supersonic Mach numbers, as dis-
cussed by Ward in sections 2.8 and 2.10.
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3.2 Green's Theorems

There are a number of theorems, all of them slightly different
formulations of the same result, known as Green's theorem or theorems. It is
one of these results, often known as Green's third identity (see Kellogg, p.
219) which allows us to obtain an integral representation formula for a
function g satisfying Laplace's equation. The most fundamental version of
these theorems is also known as the "divergence theorem," or Gauss' Theorem,

which states that if F(g) is a "well-behaved" function (that is, continuously
differentiable) on a “nice" region V in space with boundary S (see figure

3.1), then
v S -

where n(x) is an outward-pointing unit normal to the surface. This theorem is
discussed on p. 39 of Kellogg.

Green's third identity follows from (3.2.1). We need some notation to
state this result, however. Let U be a twice continuously differentiable
function in a region V of space. Let P be a point in V, S the boundary of V,

Q an arbitrary point of integration on S, and R = | ; - al. Then
u(P) = -%—" fvfj-%igdvo
__4_117_ ”‘ ﬁ.RVUdSQ
S
e _” U v ds, (3.2.2)
S

This result is derived in Chapter VIII of Kellogg, where opposite signs appear
because Kellogg's normal points inward. Also,

3
2 32 X
v = VeV = 2 _2' (3.2.2a)
izl %4

A number of results follow by substituting into (3.2.2) a function g
satisfying Laplace's equation

V -0 (3.2.3)
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First, letting P approach S we find that ¢ is finite as we approach S. Thus, ¢
is an integrable function over S. Next, let V be a region consisting of all

of space except for a surface S, which is thus the boundary of V. We
illustrate two such cases. In figure 3.2, S is a closed surface, and thus V

is divided into two regions: Vl’ the "interior" of S, and V,, the "exterior."

In figure 3.3, S is not closed, and thus V consists of a single region. Let
us define the "upper" surfage of S as the surface bounding that portion of V
into which n points, where n is the outward-pointing normal for a closed

surface, and may be chosen arbitrarily otherwise. Let us write ¢U and ¢L to

denote the limiting values of ¢ at a point on S, approaching from above and
below. Then (see p. 221 of Kellogg)

g(P) = - T _[[ [ R - "U - ¢L)n. vV R dSQ
S

(3.2.4)

Equation (3.2.4) is the fundamental integral representation formula which
a panel method uses to obtain a solution to the potential flow problem. When
combined with appropriate "boundary conditions" (see below), the formula
(3.2.4) can be manipulated to yield an integral equation (of Fredholm type) on
the singularity surface S. A panel method then obtains an approximate
solution of this integral equation by means of the numerical method of
collocation. Two functions defined on S are generally introduced because of
their importance in the manipulation of (3.2.4). The first is the "source
strength," defined by

o(Q) = ﬁ.[V¢U(Q) -V¢L(Q)] (3.2.5)

and the second is the "doublet strength," defined by

These quantities are often called "singularity strengths," because they
measure the singular behavior of ¢ on S. Using these quantities, (3.2.4)

becomes
¢(P)=-4—}r _”l:;-uﬁ.v%]ds (3.2.7)
S

As mentioned above, equation (3.2.7) must be supplemented with boundary
conditions in order to obtain the integral equation that is solved by PAN
AIR. Generally, these boundary conditions are equations relating ¢, o, u and
their derivatives on S. The specification of boundary conditions in
conjunction with (3.2.7) amounts to a formulation of a "boundary value
problem.” This problem in turn is called "well-posed" if it has a unique
solution, and "ill-posed" otherwise. A typical example of a set of boundary
gonditigns)leading to boundary value problem formulation might be (see

igure 3.2
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g =0 (3.2.8)

combined with

v, . n=>b (3.2.9)

> ~
= - Vo . n, say

It can be shown (see Appendix B) that the combination of (3.2.7) with the
specification of the boundary conditions (3.2.8) and (3.2.9) on the
configuration in figure 3.2 is a well-posed boundary value problem. We will
discuss i11-posed and well-posed boundary value problems further in section 4
and A?pendix B of this document; see also Appendix A of the PAN AIR User's
Manual.

In fact, the boundary conditions (3.2.8) and (3.2.9) constitute the
"Morino formulation" of the potential flow problem (cf. ref. (4.6)).
Referring again to figure (3.2), we see that the boundary condition (3.2.8)
implies that ¢ = 0 for all points interior to Vi- This follows from the

general uniqueness result for solutions of Laplace's equation with Dirichlet
boundary conditions (cf. Kellogg). Consequently we find that

v . n = 0 (3.2.10) -

Substituting this and (3.2.9) into (3.2.5) yields for Oy
0=-Ve .nN (3.2.11)

Note as well that bU is equal to the doublet strength u; for, combining
(3.2.6) and (3.2.8) we get

H = bU - bL = bU - 0 = ”U (3.2.12)

We can now obtain the integral equation mentioned above. Evaluating equation
(3.2.7) on the upper surface of S, we obtain after using (3.2.11) and (3.2.12)

u(P)-ﬁ({I wh. v ds>U=}r; J;I vié_'ids
(3.2.13)

When proper care is taken to evaluate the integral appearing on the left
hand side on the upper surface of S, this equation is the integral equation
for u(Q) that is solved by PAN AIR, given the Morino formulation of the
boundary value problem.
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3.3 Discretization

We now outline the discretization process by which a panel method solves
the integral equation obtained by combining (3.2.7) with a properly posed set
of boundary conditions. In point of fact we will not actually describe the
integral equation formulation of the potential flow problem. Rather, we shall
describe in an operational way the process by which PAN AIR transforms a
specific boundary condition imposed at a particular point into a constraint
relation imposed on a set of singularity parameters. This point of view is
consistent with the actual operation of PAN AIR, in which the problem
formulation is implicitly left as a task to the user.

The general idea of this discretization process consists of two parts.
First, finite dimensional approximate representation formulas are developed
for the singularity functions o(Q), u(Q) which express these functions as
linear combinations of known basis functions si(Q), mi(Q) with unknown

N

i=1
singularity parameters. In the second part, a set of equations determining
the unknown coefficients Ay 1s obtained by imposing the boundary conditions

specified by the program user at selected points, called "control points" or
collocation points. By imposing a total of N conditions of this sort using N
control point/boundary condition combinations, we obtain a system of N

constraint relations involving the N unknown singularity parameters {xi} N .

i=1
Solving this system of equations yields values for P complietely determining
the functions o and y by virtue of the finite dimensional representation
formulae (see equations (3.3.1) and (3.3.2) below). Then, by virtue of the
integral representation formula (3.2.7), the potential function g(P) is
determined for all points P, solving the problem. We now amplify somewhat the
details of this two part discretization process.

coefficients i, i=1, ... , N. The set {Ai} is called the set of

The first part of the discretization process consists of the development
of finite dimensional representations for o and y. One begins by
approximating the singularity surface S by a collection of "panels." Next a
collection of points is chosen (for example, all panel centers), and the
values of ¢ and y at these points are identified as the unknown singularity
parameters, A.. Approximate distributions ¢(Q) and u(Q) are then developed by

assuming that the va]ues‘xi are known and applying a combination of linear
least squares fitting techniques and polynomial interpolation processes to

extend the discrete values of {Ai}N to all points on the surface S. One
i=1
obtains by this method the representations for ¢ and yu,
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a(Q)

N
S Ai Si(Q) (3.3.1)
i=1

N
s g m(Q) (3.3.2)
i=1

1(Q)

Here, the functions si(Q) and mi(Q), called the source and doublet basis

functions, describe the source and doublet distributions obtained by setting

Aj =1 and Aj = 0 for all j # i. Of course if A is a doublet parameter the

corresponding source basis function s; is identically zero. Similarly if A
is a source parameter, mi(Q)s(). (The simplest sort of basis functions,

frequently employed in "constant strength" panel methods, are obtained by ex-
tending the value A, over its associated panel. A basis function for such a

method is illustrated by figure 3.4).
Having described the finite dimensional representation formulae for o(Q)

and u(Q), (3.3.1-2), we now show how a particular boundary condition imposed
at a control point is transformed into a linear constraint relation imposed on

{Ai} N . In order that this process by made quite clear, we consider the case
i=1
of boundary condition (3.2.8) imposed at P:
¢L(P) =0 (3.3.3)

Upon substituting the representations (3.3.1-2) into the integral representa-
tion formula (3.2.7), one obtains the expression for ¢L(P) (note the evaluation
at P-en, a point just below P)

N
1 1
S i=1 E-Eﬁ
N . .
* | g ” R, V(1/R) S aym(Q) dS (3.3.4)
S i=1 A

-
P-en

We identify the coefficient of A in this equation the i-th component of a

row vector d)ICL:
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1 I 1 ~
chICL(P)Ji g (s4/R) dsy + 22 f A, V(1/R) m, ds
S S

Q
(3.3.5)

Combining (3.3.4) with (3.3.5), we have expressed ¢L(P) as a linear combination
of {a; :
{]}1'=1

=

g (P) =yoIc (P)y X (3.3.6)

Finally, imposing the boundary condition (3.3.3) leads to the “AIC constraint
equation:"

Now we impose boundary conditions (which are not necessarily the same form
as equation (3.3.3)) at all the control points in the configuration, obtaining
as many boundary conditions as there are singularity parameters. Each
boundary condition generates one linear equation, and thus we have a system of
N equations in the N variables i s ses 5 A &

i N

[AIC] X = b ‘ (3.3.8)

where b is a vector of "constraints" (the entry of b corresponding to the
boundary condition equation (3.3.7) is zero). Each row of the square matrix
[AIC] is a row vector of a form similar to LPIC, (P)y for some control point P,

Once the AIC equation (3.3.8) has been formulated, it is solved for the
values Aj by means of standard linear algebra techniques. With these values

known, o(Q) and .(Q) are known by virtue of equation (3.3.1-2). The potential
at a point can be computed by evaluating equation (3.2.7), the representation
formula for g. The velocity can be computed by evaluating the gradient of
equation (3.2.7). Once the velocity is known, the pressure and pressure
coefficients can be obtained from standard formulas (see figure (5.21) below).

In section 5 below, we will describe the PAN AIR discretization process
more fully. In particular, we will describe the process of transforming a
?eneral boundary condition into an AIC constraint relation of the form

3.3.7). For even more detail, the reader is referred to appendix K.
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4.0 An Overview of PAN AIR

4.1 Historical Development of Panel Methods

In this section, we will discuss the features which distinguish PAN AIR
from earlier, less complex, panel methods. These features are (a) "continuous
geometry," (b) linear source and quadratic doublet variation, and (c) continuity
of doublet strength. We will explain how these features make PAN AIR more
accurate and reliable than previous methods, and discuss briefly the manner in
which these items are implemented in PAN AIR.

Virtually every panel method approximates the configuration geometry with
panels whose planform is a quadrilateral. Thus, if the panels themselves are
planar, only a small class of configurations (such as cylinders and flat
wings) can be described without gaps being left between panels. These gaps
tend to be very small, except for highly twisted surfaces. In subsonic flow,
the gaps cause little numerical error, but in supersonic flow the cumulative
effect of the gaps is serious, not because of "leakage" of flow through the
gaps, but because the doublet strength jumps abruptly from a non-zero value to
zero at a panel edge which does not exactly meet the adjacent edge. In PAN
AIR, gaps are closed by means of “piecewise flat" panels, that is, panels
which are comprised of several planar regions.

Some panel methods use "curved" panels, generally paraboloidal in shape.
These approximate the configuration surface far more accurately in regions of
high curvature such as the leading edge of a wing, but necessarily have gaps,
even though small ones. Thus they are excellent for the analysis of subsonic
flow, but not for supersonic flow.

As we stated earlier, PAN AIR employs a linear source variation and a
quadratic doublet variation. That is, the basis function bi corresponding to

a source parameter is locally linear, while the basis function corresponding
to a doublet parameter is locally quadratic. This contrasts with earlier,

simpler programs in which the doublet and source variations were locally
constant.

The reasons behind the "higher order" singularity distributions in PAN AIR
are discussed in detail in Appendix B.4. Briefly, they are as follows.

Consider a control point on a panel, and assume the source and doublet
distributions in the immediate neighborhood of the control point are

polynomials. Then we show in Appendix B.4 that a source distribution locally
of the form

o 2N

ol€£,n) =3 3 a?N gl 2N (4.1.1)
N=1 1i=0
or a doublet distribution
o 2Nt1 . .
i 2N+1-1
ul( €, n) = S » aiN 3 n (4.1.2)
N=1 1i=1

4.1-1



does not induce any perturbation velocity locally. That is, even terms in the
polynomial source distribution and odd terms in the doublet distribution do
not generate a local perturbation velocity. So, since we have concluded that
constant source and doublet strengths are insufficient, the next reasonable

higher order approximation to use is linear source strength and quadratic
doublet strength.

Another reason for using a higher order doublet distribution is to provide
a continuous doublet distribugion; that is, each of the basis functions m, is
constructed so that it is continuous everywhere. (Obviously, a locally
constant function cannot be continuous.) A continuous doublet strength, once
again, is much more important in supersonic than in subsonic flow. This is
due to the failure of disturbances caused by doublet discontinuities to
diminish with distance in supersonic flow as they do in subsonic flow. A

detailed description of the behavior of these disturbances is given in
Appendix J.1l1.

In addition, experimental evidence (references (4.5), (4.8). (4.9) indicates
that exact surface analysis is not feasible in supersonic flow without doublet
continuity. The requirement of doublet continuity results in the spline
complexity discussed in section 5.

In figure 4.1, we compare some panel methods of the last two decades. The
list is by no means complete, with inclusion in the 1ist generally reserved

for methods containing innovations, whether or not the method enjoyed any
great success.

Of the other panel methods described in figure 4.1, the one which most
closely resembles PAN AIR is that of Ehlers et al. That program was written
to demonstrate the technological feasibility of a panel code which was capable
of analyzing arbitrary configurations in supersonic flow. The development of
that program took place with the intention of eventually constructing
production software (that is, PAN AIR) based on the same principles, and thus
that program is generally referred to as the PAN AIR "pilot code."

4.1-2




4.2 Summary of PAN AIR Technology

We now outline the method by which PAN AIR computes a row of the
aerodynamic influence coefficient matrix. There are four basic steps. First,
the basis functions must be computed. That is, the locally linear or locally
guadratic variation on every panel must be precisely defined for each basis

unction (see section 4.2.1). Next, for each panel, the perturbation that the
panel induces on the potential and velocity at each control point, in terms of
the singularity parameters, must be computed (see section 4.2.2 for details).

Next (see section 4.2.3) these perturbation influences must be summed over all
panels, to give a "potential influence coefficient" row vector (L®IC(P), )
and a "velocity influence coefficient" matrix [VIC(P)] with the properties

N
¢A(P) = ¥ L¢IC(P)JJ XJ- = ®IC(P), -;

=1 (4.2.1)
(VP = 5 [VIC(P)Iy5 a5 = ( Dvctp)] Xy

j=1 i<1,2,3 (4.2.2)

That is, the jth columns of LPIC(P), and [VIC(P)] give the dependence of the
potential and velocity at P on the j-th singularity parameter. The subscript
A indicates that the average of upper and lower surface potential and velocity
are to be computed. Note that upper and lower surface potential and velocity
are different, their difference being defined by the source and doublet
strength (cf, (3.2.5-6)).

Finally, a fairly general boundary condition of the form
-

ap Vy o+ Ca ¢A + tA < Vy = b (4.2.3)

(where T is a user-defined tangent vector) leads to a row LAIC(P), of [AIC]
as follows:

LAIC(P = cu@IC(P), +(aAﬁ+i:’A)T [VIC(P)] ~ (4.2.4)

More general boundary conditions than this are handled by PAN AIR, but we

ge{er)their full treatment until later (see sections 5.4.2.5, 5.6 and 5.7
elow).

4.2.1 Basis Function Computation

The computation of the basis functions is one of the more complex portions
of PAN AIR. To be precise, we do not directly compute basis functions, but
rather, for each region on which the source and doublet strengths are defined
by a single polynomial, we compute matrices which describe the coefficients of
these polynomial distributions as 1inear combinations of the singularity
parameters in the neighborhood of the panel. A column of such a matrix
defines the coefficients of a basis function on a subpanel.
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These matrices are called "spline" matrices, and are computed in two steps
as described in the following two subsections.

4.,2.1.1 Subpanel Splines

The fir§t step is the computation of a "sub-panel spline" (SPSPL) matrix.
Each panel is divided into eight triangular regions called "subpanels", as
indicated in figure 4.2. The source subpanel spline matrices are 3x5 matrices

SPSPLS giving the three coefficients 095 %5 9y of a linearly varying source

strength (a linear function in two variables has three coefficients) in terms
of five "panel source parameters,” Ops eses Ogs Ogs that is, the values of

source strength at five points on the panel:

0 °1
e { = sl ) (4.2.52)
(o4
on o:
where ¢ is defined in terms of local coordinates by
o€, n) = oo * ogb* o.M (4.2.5b)

Similarly, the (6x9) doublet subpanel spline matrices give the six
coefficients of a quadratically varying doublet strength on the region in
terms of nine "panel doublet parameters:"

Ho l-ll
“on g
where
1 2 1
n(€,n) = ug * ug &+ wen * g ouge § *ug, En Y3 e n2 (4.2.7)

4,2.1.2 Outer Splines

Next, in the second step, the five panel source parameters and nine panel
doublet parameters are described, as linear combinations of singularity

parameters in the neighborhood of the panel, by "outer spline" matrices BS
(5xks) and BD (9ka) where k¢ and kp are the number of source and doublet

singularity parameters in the neighborhood of the panel for which the
dependence is non-zero:
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Fol S 9

s "1
5 = [B°] . (4.2.8)
4 . : 3
o N
. 9 SJ
[y Ag ]
D
! = [B"] . y (4.2.9)
D
H A
49 kp |

The values kS and kp depend on the location of a panel in a network (networks
are discussed in section 5.1). In general, kg is 9 and ky is 21. In all
cases, ks + kD < 31.

4.2.2 Panel Influence Coefficients

The perturbations that a source and doublet distribution on a panel induce
at a control point are described by "panel influence coefficient" (PIC)

matrices. These matrices include a 4x5 matrix PICS and a 4x9 matrix PIC® which
give the potential and velocity at the control point, induced by the panel, in

terms of the five panel source parameters and nine panel doubiet parameters.
That is,

%1 M1
g(P) ~tereSy |2 | o+ red®1 . (4.2.10)
v(P) ] perturbation * :
induced by panel %

where 01 through 04 99 and My through ug are the panel source and doublet
parameters.

The method by which the PIC matrices are calculated depends on the
distance from the panel to the control point.

4,2.2.1 Near Field PIC's

If the distance is small compared to panel size, a "near field" method is
used, and the PIC matrices are computed as a sum of integrals over the eight
subpanels. For instance,
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S 1x5
LPIC POTENTIAL

8
1 1 $13x5
- - 1‘2:1 ” J; 7 1 € ny  dE dn [SPSPL.Y]
A

! (4.2.11)
Here, (¢, n) are the local coordinates on the i-th subpanel By and SPSPL?
is the 3x5 source subpanel spline matrix; J; denotes an area jacobian for the

local to reference coordinate transformation. Note that, for a point
Q=1(t, n), using (4.2.5a) and (4.2.5b),

a0 - 1€ oay sl (4.2.12)

and thus (4.2.11) follows from (3.2.7) and (4.2.10). The integrals in
(4.2.11) are evaluated analytically, and can be expressed as logarithms and
arctangents of quantities which are determined by the geometric relation
between the panel and the control point. In equation (4.2.11) the entries of

[SPSPLiS] are constants and may be removed from the integral. The application
of (3.2.7) and an equation similar to (4.2.12) leads to a similar equation for

the row of PICD corresponding to the potential. The rows of the PIC matrices
corresponding to velocity are computed by using a differentiated version of

(3.2.7). The entire subject of PIC computation is discussed in more detail in
section 5.6 and Appendix J.

4.,2.2.2 Far Field PIC's

If the distance from the panel to the control point is large compared to
panel size, a “far field" approximation is used in computing the influence of

the panel. This is done by approximating the expression (1/R) by a power
series

2
1 1 AR AR
E=F;(1+31'R';+ aZR;) (4.2.13)

where Ro and aR are illustrated in figure 4.3. This far field evaluation

requires considerably less computer time than the near field method (see
section 5.6 for further details). To further save computer time, an
"intermediate field" method described in section 5.6 is used when the near
field method is not necessary and the far field method is inadequate.

4.2.3 Potential and Velocity Influence Coefficient Assembly

The influence of each panel is accumulated to determine the influence of
the entire configuration on the control point. Combining equations
(4.2.8-10), we see that the products
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S . 8% and rpicP . 803

[pIC
give us the potential and velocity induced by a panel, in terms of the
singularity parameters in the neighborhood of the panel. These matrices are
then "added" together; that is, entries of distinct PIC matrices which
correspond to the same singuiarity parameter are accumulated, so that the
"sum" of expanded PIC matrices (none of which has more than 31 non-zero
columns) is the 4xN matrix

Here, N is the total number of singularity parameters.

4.2.4 Aerodynamic Influence Coefficient Matrix Construction

Once the matrices _ ®IC(P)s and [VIC(P)] have been constructed, the
vector AIC(P), 1is easily constructed using equation (4.2.4). The entire
- process is performed for all the control points in the configuration, and the

result is the square matrix [AIC]. Additional details are given in section
5.7.

From here on, the basic structure of PAN AIR is similar to that of other
panel methods. The system of linear equations is solyed, "post-multiplica-
tion" (multiplying _®IC, and [VIC] by the vector ) is performed, and the

resulting potential and velocity values are used to compute pressures.
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ORIGINATOR AND REF PANEL SOURCE DOUBLET BOUNDARY
METHOD NAME (IF ANY) | YEAR| 7 GEOMETRY TYPE TYPE CONDITIONS | RESTRICTIONS COMHENTS
HESS AND SMITH SPECIFICATION NO?-L&FTING
1962 | 4. FLAT CONSTANT NONE WINGS AND
(DOUGLAS) OF NORMAL FLOW| gonTeS ONLY
RUBBERT : ' NORMAL PLANAR WINGS
(VORTEX LATTICE) 1964 | 4.2 FLAT HONE CONSTANT FLOW ONLY
RUBBERT AND SAARIS NORMAL EARLY CONSTANT
(A-230) 1968 1 1.1 FLAT CONSTANT | CONSTANT FLOW PANEL DENSITY
HOODWARD 1968 NORMAL WINGS MUST
1.2 FLAT CONSTANT LINEAR o s MUS
HESS NORMAL NINGS AND
1972] 4.3 FLAT CONSTANT LINEAR o B00tes oy
ROBERTS AND RUNDLE | 1973 | 4.4 | PARABOLOIDAL | QUADRATIC| QuAORATIC NORMAL NUMERICAL INTEGRATION
-4 §P FLOW - VERY EXPENSIVE
NORMAL FLOW SUBSONTC AND SUPERSONIC
MERCER, WEBER 1973 | 4.5 FLAT Nong [ SWIOTH. CUBIC/ Tyy"Teast | pLanar wings | cusic sPad
i ISE, QUADRATIC
ANO LESFORD QUADRATIC | souamEs SENSE CHORDW] SE
MARINO AND XUO CONTINUOUIS, NO THIN
1974 | 4.6 IivpeRsoLoToAL CONSTANT | consTANT POTENTIAL | oS URAT T0NS
JOHNSOM AND RUBBERT | 1975 | 4.7 §PARABOLOIDAL| LINEAR | QUADRATIC i
PLANAR WINGS
EHLERS AND RUBBERT sl 4 CONT INUOUS NORMAL \
(EILERS AD pumocRTy [ 1976 [ 4.8 FLAT LiveRr | QRATIC O, SPECIAL SUPERSONIC FLOW
CONT INUOUS,
EHLERS ET AL 1977 | 4.9 | Precewrse’ | Linear | CONTIMUOUS 1 ARBITRARY IH SUBSONIC AND SUPERSONIC
(*PILOT CODE") FLAT QUADRATIC 4, V¢
. CONTINUOUS,
PAN AIR 1980 PIECEMISE" | LINEAR WCS' “:l'”v":' In SUBSONIC AND SUPERSONIC
‘ »

Figure 4.1 - Historical Overview of Panel Methods




Figure 4.2 - Division of panel into subpanels

field point

_o——control point
P

Figure 4.3 - Panel and far field control point
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5.0 Elaboration on the Technology in PAN AIR

We now proceed to greater depth in the discussion of the technological
details of PAN AIR. In section 5.1 we describe the way in which the program
user describes his configuration geometry to PAN AIR using networks of
panels. Section 5.2 gives the form of the general integral representation
formula for ¢ together with a summary of all of the coordinate transformations
used by PAN AIR, while section 5.3 discusses doublet matching along network
abutments. The general form of a PAN AIR boundary condition is developed in
section 5.4 and this is followed by the treatment of spline matrices in 5.5
and panel influence coefficients (PIC's) in 5.6. The results of sections 5.4,
5.5 and 5.6 are then combined to describe the formation of the aerodynamic
influence coefficient matrix (AIC) and right hand side vector (b) in section
5.7. The discussion concludes with some remarks on the solution of the AIC

constraint equation (section 5.8) followed by a summary of PAN AIR's post
processing features (section 5.9).
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5.1 Networks and Panels

The configuration on which boundary conditions are to be imposed is
described by a collection of networks of points. Each network consists of
(say) N columns of points lying on the configuration surface, where each
column has the same number (M,say) of points. By a point, we mean its (x,y,z)
coordinates, with each point's coordinates given in the same arbitrary
coordinate system. Thus, each network consists of an MxN grid of points in
space (see figure 5.1). This grid need not lie in a plane, but it should be
sufficiently regular to define a surface which does not intersect itself and

on.which the surface normal does not change too radically from panel to
neighboring panel.

Each network is assigned two “singularity types," describing the manner in
which the source and doublet distributions are defined on the portion of the
surface defined by the network. A network source type may be "null,"
"analysis," or “"design," while its doublet type may be "null," "analysis,"
"design," or "wake." The singularity type "nul1" means that the corresponding
singularity distribution is identically zero over the whole network. The
singularity type "analysis" is used when the corresponding boundary conditions
are the standard ones of zero normal flow, while the singularity type "design"
s used when the boundary conditions correspond to specifying a desired
pressure distribution on the surface. The doublet type of "wake" is generally
used with a source type of null to model a wake surface. A wake is a surface
across which a discontinuity in potential exists, while normal flow is
continuous; generally a wake is attached to the trailing edge of a lifting
surface. The positioning of wakes can be a complicated problem, and is
discussed in more detail in the PAN AIR User's and Case Manual.

Note that, unless the source or doublet type is null, all networks are
composite networks, that is, both the network's source distribution and its
doublet distribution are non-zero. This is in contrast to most earlier panel
methods, which required source networks and doublet networks to be entered
separately. Generally speaking, all non-wake networks in PAN AIR will be
composite networks which directly describe the impermeable object about which
one is analyzing the flow. In particular, the “internal lifting system"
doublet networks required by the Boeing A-230 program (Ref. 1.1) are not
required in PAN AIR. These composite networks aliow two boundary conditions,
suc? as the standard boundary conditions of (5.4.28), to be imposed on a
surface.

Each network of M rows and N columns of points defines (M-1) rows and
(N-1) columns of panels, where a panel is a quadrilateral defined by four
network points all lying in two adjacent rows and two adjacent columns of a
network. Figure 5.1 illustrates the subdivision of a network into panels. In
the example of Figure 5.1, there are five rows and columns of points and four
rows and columns of panels.

Now, each panel is defined by its four corner points, but these four
points need not lie on a plane. Previous programs using flat panels on
arbitrary surfaces have handled this problem by projecting the four corner
points onto an "average plane," thus forming a planar quadrilateral panel.
The formation of such panels leaves gaps between panel edges, however, since
the resulting planar panels do not in fact go through their corresponding
corner points.
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This discontinuity in geometry is avoided by constructing piecewise flat
panels which do in fact contain all four corner points and, in fact, all four
panel edges (a panel edge is a line segment connecting adjacent corner
points). The decomposition of a panel into five planar regions is illustrated
in figure 5.2. It will be shown in Appendix D that the four edge midpoints,
which define the vertices of the interior quadrilateral, do in fact lie on a
plane. In section 5.5, the interior quadrilateral will be divided into four
triangular regions for the purpose of defining source and doublet
distributions. Thus the panel will be divided into 8 "subpanels" there, but
at least four of them will lie in one plane.
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5.2 Coordinate Transformations

Recall (see (3.2.7)) that for M, = 0, we wrote the fundamental integral
representation formulas as

8(P) = 7= ff[-%*uﬁ.v(%)]ds (5.2.1)
S

We can easily generalize this equation to arbitrary Mach number. For details,
see Ward (Ref. 1.5). Let P = (x,y,z), and the point of integration
Q=1(¢, n,0). Recall

sign (1 - M% )

S =
(5.2.2)
B8 = VS(l-Mzu)
Now, generalizing the definition of R for M, # 0, let
R = J»( ¢ - x)2 +s 32 (n - y)2 ts 32 (¢ - z)2 (5.2.3)

when the expression under the square root is non-negative. Let R be zero
otherwise.

For subsonic flow, let Dp, the "domain of dependence" of the point P, be

all of space, while for supersonic flow let it be the set of points Q such that
£ < x , and the expression under the square root is non-negative. Let «x = 2r

if s = -1, « = 4r if s = +1. Let us define the compressible gradient operator

2

V= (s 8" 37 50 57) = [B1V (5.2.4)

where the dual metric matrix [B], referred to compressibility coordinates, is
given

ss 0 O
0 0 1

Let the conormal vector n = v be defined

?“ = -\t = [B] ﬁ (5-2.6)
and let o be given by ’
o=V (¢U - bL) .n (5.2.7)

a generalization of our previous definition of source strength to arbitrary
Mach number. Then we can rewrite (5.2.1) for arbitrary Me as
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gP) =X [f -G+ud. TS (5.2.8)
sNnD,

Here, "S()Dp" means the set of points common to both § and D,. This is the

general form of the integral representation for 4, upon which all of PAN AIR
is founded.

Now, in order to obtain "panel influence coefficient" matrices, we must
perform integrations of the form of (4.2.11). This task is somewhat obscured
by the multiplicity of coordinate systems with which we deal. We will now
discuss these coordinate systems and describe the transformations among them.

The coordinate system with which this document primarily deals is the

“compressibility axis coordinate system." This is the system in which
equation

(1-¥a) By + By *8,; =0 (5.2.9)

Y

is valid.

For Mo £ 0, (5.2.9) requires a preferred direction, called the

"compressibility direction," which is the direction of Voo . We have assumed
so far that this is the x-direction.

A program user, however, may not want to describe the configuration
geometry in the compressibility axis coordinate system. PAN AIR permits the
user to specify an arbitrary compressibility direction by specifying angles
ac and 8; , angles of attack and sideslip, which describe the compressibility

direction with respect to the input (or reference) coordinate system.

If the coordinates of a point are (x,y,z) in the compressibility axis

system, and (xo, Yo» zo) in the reference axis system, then
X Xq
z z,
where Iﬂc is the coordinate transformation matrix
cos a. cos B, -sin Be sin a, COS B,
re = cos a - Sin Be Cos B, sin a, sin 8.
-sin a, 0 cos a,
(5.2.11)

5.2-2




We show how [ ¢ is obtained as a product of a rotation by an angle ac about
the y-axis and a rotation by an angie 8. about the modified z-axis in

Appendix E.3. It should be noted that the above sequence of coordinate
rotations is equivalent to the opposite sequence of basis vector transfor-
mations. That is, the configuration is first rotated about its z-axis by an
angle 8., then about its y-axis by an angle a.. This transformation is dis-

cussed further in the User's Document.

Now, the unit vector in the compressibility direction is given in
reference coordinates by

-1 1
o (5.2.12)

Since f‘c is an orthogonal matrix,

0s
1 (o ac cos BC

A T
co=[r'c] 0

-sin
Bc

s1n a. cos BC

(5.2.13)

The relationship of Eo to the reference coordinate system is shown in figure
5.3.

A third coordinate system of importance in PAN AIR is the "local"
coordinate system (see Glossary). We want to compute the surface integrals
required for PIC calculation as integrals in two variables, and thus we
construct a local coordinate system (x',y',z') for each subpanel, in which the
subpanel lies in the x'-y' plane.

The transformation from reference to local coordinates is not orthogonal,
however, but includes a scaling transformation so that the factor 8 does not
appear in the expression for R. This simplifies the influence coefficient
integrals, such as (5.6.9), which must be calculated.

Recall from (5.2.3) that in compressibility coordinates, for a control
point P = (x,y,z) and field point (¢, n, ¢{ ), we have

R = (e -x2+s8%(n-y2+ss? (L -2)? (5.2.14)
where R is the denominator of the integrand of (5.2.8). In order to describe

the appearance of R in local coordinates, we need to introduce the panel
inclination indicator r,
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sign (n . n)

-
1]

(by (5.2.6)) sign (A’ [B] i) (5.2.15)

sign {n, n}

where we define { ., . | by saying that for any two vectors X and Y,

(XY} = ¥l v (5.2.16)

The meaning of r can be understood if we work in compressibility
coordinates.

Then by (5.2.5) and (5.2.6),

r = sign (s 32 n 2., n 2, n

2
X y z )

(5.2.17)

If s = 1 (that is, for subsonic flow), we see that the expression in
(5.2.17) is positive, and so r = 1. If s = -1 (supersonic flow), and 8 = 1
(Mo = V2 ), we see that

-1 if n 2 >N 2 4 n 2

~
n

r o= +l if n<n® +n (5.2.18)

Recall from section 4.2.1.1 that the PAN AIR panels are comprised of eight
triangular subpanels. Each of these flat subpanel surfaces has a unit surface

normal n of fixed direction. If n is such that r = -1 in equation (5.2.18),
the surface normal is inclined at more than 45° to the freestream. But this

45° angle is also that of the "Mach cone" emanating forward from a point P on
the subpanel, as illustrated in figure 5.5, and defines the “domain of
dependence" of P. In other words, point P is affected only by disturbances

(such as those produced by the source and doublet distributions) that
originate within this forward Mach cone.

Thus we see that if r = -1, no point on the subpanel surface lies in the
domain of dependence of any other point on the subpanel, and we call such a
surface "superinclined." If r = +1, the more upstream points on the subpanel
do 1ie in the domain of dependence of the more downstream points, and such a
surface is called subinclined. If n.n = 0, the more upstream points lie
exactly on the boundary of, but never in the interior of, the domain of
dependence of more downstream points. Such a surface is called
Mach-inclined. We will see shortly that no portion of the panelled
configuration is permitted to be Mach-inclined. The above definitions,
illustrated in figures 5.4 and 5.5, are equally valid at all supersonic Mach
numbers.
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Now, for ease of integration, we want the local coordinate system
(x ,y',z') defined on each subpanel to have the property that if

(x,y 2Z2'), Q= (&', n', ') then

R2 =r(¢' - x')2 + s(n' - y')2 trs (¢ - z')2 (5.2.19)

#n this manner, we reduce the denominator of (5.2.8) to one of three standard
orms:

(a) Subsonic flow

R = V(g'-x')2+(n'-y')2+(;'-z')2 (5.2.20)

(b) Supersonic flow, subinclined panels

R = .V( £' - X')2 - (n' - y')2 -(¢ - 2')? (5.2.21)

(c) Supersonic flow, superinclined panels

R = V(c' - 2% . (' -x")" - (n' -y')2 (5.2.22)

So, if we can find a local coordinate system in which (5.2.19) holds, we
will have succeeded in removing the factors of g8 from the integrand of
(5.2.8). Further, the subpanel always lies in the (¢', n') plane.

We will compute the reference to local coordinate transformation A, such
that

X0 X
[A] Yo = y' (5.2.23)
zo z'

in Appendix E.3.

We now describe the result computed there. Let 90 be a unit vector
perpendicular to Eo and ﬁo’ the unit normal to the subpanel, all three of

these vectors being expressed in reference coordinates. Let Go = 90 X ﬁo.

Let the metric matrices in reference coordinates be given by

~ T
]

0

[B,] = [11 + (s 8% - 1) [¢, &,'] (5.2.25)

0 0

Note that the definition (5.2.5) of [B] in the compressibility axis coordinate
system is consistent with (5.2.25) since
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1 0 0 _
0 0 o0 (5.2.26)
0 0 O©

[e &7

in the compressibility axis coordinate system, in which the compressibility
axis coincides with the x axis. Reca111ng the definition (5.2.16) of {., -4
the 3x3 matrix A is found to be given by

.
1 ~ rs 8 n

A = — [c 14 = e 1V — 0

[l{"o’ "o}l bz ot o i "o}l 12 ]

o’

(5.2.27)

Several remarks may be made here. First, if Mw =0, C is meaningless,

but is given a default value by PAN AIR just so that no spec1a1 formula is
needed to replace (5.2.27). Since all occurrences of c are multiplied by

(1 -s 32) M2 any value for c0 is equally valid if M = 0.

Next, (5.2.27) blows up if 8 = 0 or {ﬁo. ﬁo} = 0. Both of these cases

are disallowed in PAN AIR, the case 8 = O corresponding to transonic flow,

Mo =1, the case{no, no} 0 corresponding to a Mach-inclined panel.
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5.3 Network Edge Matching

The splines which are discussed in section 5.5 insure that the doublet
strength on the configuration is continuous within a network, but do nothing
to insure continuity across network edges. The contribution of continuous
doublet splines to the goal of increased program reliability would be wasted
if the doublet strength were discontinuous at network boundaries.

One solution to the problem of matching doublet strength at network edges
(hence called the edge matching problem) is to impose the boundary condition
of zero normal flow along the edge. As shown in Appendix J.l1, a
discontinuity in doublet strength along an edge induces an infinite velocity
there. Thus, the requirement that the flow be finite causes the doublet
strength to be continuous across the edge. This method has worked
successfully (in the earlier versions of the "pilot code," for instance) in
many cases. Unfortunately, the method requires that the geometric fit among
networks be exact; if there is a gap, say, where networks meet, the boundary

condition of zero normal flow will force the doublet strength along the edge
to zero.

The requirement that network edges match exactly in a geometric sense is a
severe burden on the user of a panel code. Figure 5.6 illustrates the type of
panelling frequently used by aerodynamicists at the intersection of the
leading edge of a wing and the body of an airplane. The aerodynamicist is
usually more interested in detailed wing pressures than detailed body
pressures; further, the high curvature of the wing leading edge requires dense
panelling for accurate definition. But accurate definition of the leading
edge of the wing is incompatible with coarse definition of the body, unless a
gap is left between network edges. In figure 5.6, the shaded area represents
the gap between the body and the wing.

The most complex portion of the edge matching problem is the determination
of those pairs (or larger collections) of network edges along which the
doublet strength is to be matched. This determination is performed in two
ways: (1) For each network edge, the program searches for other network edges
which Tie within a user-input tolerance distance of the first network edge.
(2) For edges which 1ie far from each other (compared to the tolerance), but
which ideally would be identical, such as those of figure 5.6, there is an
option which permits the user to directly specify that doublet matching should
occur along the edges.

PAN AIR incorporates two features to insure the matching of doublet
strength across network edges. The first feature is that the matching of
doublet strength is done directly rather than indirectly. That is, in
construction of the AIC matrix, the boundary condition uy = up = 0 (assuming

1 and up are the doublet strengths at two opposing points where networks

meet) is imposed exactly (rather than approximately by the requirement of zero
normal flow). The second feature is that "gap-filling" panels are introduced
whenever there are gaps between network edges which do not actually represent
gaps in the physical configuration. A doublet distribution is defined on
these gap-filling panels in such a manner that continuity of doublet strength
is produced everywhere,
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Imposing doublet matching exactly, rather than indirectly, requires
considerable care. The doublet matching boundary conditions must never be
redundant. Redundancy is permissible in the case of zero normal flow boundary
conditions because of the rather inexact manner in which these boundary
conditions perform doublet matching. (Experimentation has shown however that
the partial redundancy of zero normal flow boundary conditions may lead to
ill-conditioned matrices.) But when matching of doublet strength is imposed
exactly, any redundancy leads to a singular AIC matrix.

Preventing redundancy along a curve where two or more network edges meet
(such a curve is called an abutment) is fairly straightforward. The only
difficult problem occurs at "abutment intersections," that is, points where
several abutments meet (see figure 5.7). The details concerning the
imposition of edge matching, the generation of gap-filling panels and the
handling of abutment intersections are given in Appendix F.
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5.4 Control Points and Boundary Conditions

5.4.1 Control Point Location

Control points are points at which boundary conditions are imposed. Such
points are either (1) in the vicinity of a panel center (the point whose
coordinates are the average of the panel corner coordinates), (2) in the
vicinity of the midpoint of a panel edge which also lies on a network edge, or
(3) in the vicinity of a panel corner which lies on a network edge. These
points are called center, edge, and corner control points respectively.
“Extra” corner control points are located at panel corners which belong to
"abutment intersections." Figure 5.7 illustrates a situation which would
cause the construction of an extra control point. There, Nl’ Nz, and N3 are

three separate networks.

In figure 5.8 we illustrate the control point locations on a network with
no extra control points. Note that control points are always receded slightly
from a panel edge. This is done because the velocity induced by the doublet
distribution on a panel causes an infinite velocity at the panel edge. Thus,
for numerical reasons the control point is withdrawn approximately 1/10 of the
way toward the center of the panel. The precise method by which control
points are receded is described in Appendix G.

5.4.2 Boundary Conditions

Boundary conditions are imposed only at control points. Recall that a
boundary condition is a linear equation in ¢ and its derivatives. Since ¢ or
its gradient may be discontinuous on the configuration surface, upper and
lower surface potential and velocity are different, and so the boundary
condition equation may involve "upper surface" and/or "lower surface" terms.
The number of boundary conditions imposed at a control point is between zero
and two (inclusive), and is determined by the basic principle that the number
of boundary conditions must equal the number of singularity parameters. For
analysis networks, there are two boundary conditions imposed at every panel
center control point, but, since only doublet parameters (and not source
parameters) are located on network edges, there is only one boundary condition
imposed at panel edge and corner control points.

5.4.2.1 Impermeability Boundary Conditions

For most cases, the boundary condition the user wishes to impose is that
there is no flow through the configuration surface. At Mach zero, this is
achieved by setting

<>

V.n=0 (5.4.1)

or equivalently,

~ -> A

VP .N=V.Nzo=Vo on (5.4.2)

Equation (5.4.2) does not generalize in that form to arbitrary Mach number
however. In Appendix H, we see that the appropriate boundary condition for
non-linear potential flow (that is, flow satisfying the non-linear potential
equation (2.4.1)) is
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> PN
pY.n=0 (5.4.3)
where p is the density of the fluid.

In section 1.11 of Ward (1.5), it is shown that, neglecting terms of the
same order as those neglected in reducing equation (2.4.1) to the
Prandtl-Glauert equation, we have

-»> -

pV:pmwzpm(6¢+Vw) (5-4-4)

where pw s the density at infinity. MNote that ¥ g rather than Vg occurs
in (5.4.4). Thus the appropriate boundary condition to impose is

Dm($¢+vw)oﬁ=0 (5.4.5)
or T6.0=-Vo .0 (5.4.6)

The validity of (5.4.4) can be justified intuitively by recalling that the
continuity equation (2.1.1), neglecting the unsteady flow term, is

v. (V) =0 (5.4.7)
while the Prandtl-Glauert equation
sl g+ +p_ =0 (5.4.8)

XX NA 2z
can be rewritten as
>
v . (Dcn VN + P v ¢) = 0 (5'4'9)
since peo 1S a constant and
->
V L] Voo = 0

So, we see that both the left and right hand sides of (5.4.4) are vector
fields whose divergence is zero, that is, they are "conserved quantities.”

> -> :
The expression (p/pw ) V (also denoted W) is called_the mass flux,
V¢ + Ve is called the total linearized mass flux, and V ¢ (also denoted w)
is called the linearized perturbation mass flux. We will not consider the
non-linear mass flux in this section, and thus will drop the modifier _ -
"Jinearized." We will denote the perturbation and total mass flux by w and W

respectively, and call w.n and N.n the perturbation and total normal mass
flux. Note that as a consequence of the definition (5.2.25) of B, and (5.2.4)

of ¥ together with the fact the perturbation velocity vV is given by Vv ¢, we
have, in reference coordinates,

> ~ ->
W= ©U§g-= Bo v¢=Bov (5.4.10)

Now, the combination of (5.4.3) and (5.4.4) indicates that to specify
impermeability of a surface, we set total normal mass flux equal to zero. This
can be done directly or indirectly, as illustrated by the following examples.
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5.4.2.2 Thin Surfaces

In the case of the thin wing illustrated in figure 5.9, we clearly require
both the upper and lower surfaces to be impermeable, and thus specify

;;U . ﬁ = - Vm . ﬁ
> . > . (5.4.11)
wL eN==Vo . n

But recall from section 5.2 that

o=V (bU - ¢L) .N=v (bU - ¢L) . [Bo] n (5.4.12)
= [vig, -8 T (8BIR = (B vig, -8 TR (5.4.13)
= 6 (¢U - ¢L) . ﬁ = WU.ﬁ - WL.ﬁ (5.4.14)
Note that these equations reveal
Rovzn.w (5.4.15)

This relation will be used Tater. Combining (5.4.11) and (5.4.14) now yields
o =0 (5.4.16)

so that the thin wing boundary conditions (5.4.11) are equivalent to

- -~ -> -~
W . = - [ ]
U n Vo n

(5.4.17)
g=20

Note that we show a wake trailing behind the wing in figure 5.9. A wake
is a surface across which a potential jump occurs, even though the surface
does not correspond to a solid, physical object. Deciding where to position
the wake for a particular configuration is an extremely difficult problem.
For many problems, however, any wake position roughly parallel to the
freestream and extending downstream from the object being analyzed is
adequate. A detailed study of wake positioning is not part of this document.

5.4.2.3 Thick Configurations

For a "“thick" wing, that is, a wing for which we panel both the upper and
lower surfaces, we cannot simply impose the boundary conditions (5.4.17).
This is because imposition of zero normal flow at all points on the interior
of a closed surface is an ill-posed boundary value problem since there is no
unique solution: if a particular function ¢ satisfies the Prandtl-Glauert
equation and the boundary conditions, then adding any constant to ¢ in the
interior of the closed surface yields another solution. We illustrate the two
possible solutions in figure 5.10.
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So, we must specify zero normal flow on the interior of a closed surface
in some other manner. There are many possibilities, some of which are
discussed in section 5 of the maintenance document. The method illustrated in
figure 5.11 has been experimentally shown to be reliable in a wide variety of
circumstances. There, the boundary condition bL = 0 on the configuration

surface ensures (assuming a sufficient density of control points) that ¢ is
identically zero in the entire interior region. Such a condition is called
"perturbation stagnation" (it is not really stagnation, since the total

potential is not constant), since v @, the perturbation velocity, is zero in
the interior region.

Thus we impose the boundary conditions

¢L=0

- . - . (5.4.18)
NU e Nz==Yo N

But WL = V#_ =0, sowe can replace Wu.ﬁ by (Wh - WL).ﬁ = o, and thus
we obtain

- . (5.4.19)

The boundary conditions (5.4.19) for a thick wing, or (5.4.17) for a thin
wing are preferable to their equivalents (5.4.18) and (5.4.11) because they
directly specify the source strength. This allows the source parameters to be
removed from the system of linear equations, thus considerably lowering the
cost of solving the equations.

5.4.2.4 Superinclined Surfaces

A final example of the imposition of boundary conditions is shown in
figure 5.12. The surface shown perpendicular to the freestream is a
superinclined surface; recall from section 5.2 that a surface is superinclined
whenever

=1

n.n<oO (5.4.20)

An important result, which we discuss further in Appendix B, is that
boundary conditions of zero normal mass flux must never be placed on the
upstream side of a superinclined surface, or else the boundary value problem
is i11-posed. This is not really too surprising, since the flow about any
impermeable object so blunt as to be superinclined certainly violates the
"small perturbation" assumption.

The need for permeable superinclined surfaces does occur, however, nacelle
faces being the prime example. The example in figure 5.12 shows the use of
boundary conditions on the lower (that is, downstream) surface to induce
perturbation stagnation in the interior of the configuration.
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5.4.2.5 The General Boundary Condition

The previous three examples do not exhaust the generality of boundary
conditions which a PAN AIR user may impose. But we must warn that, while an
arbitrary condition on ¢ and its derivatives is permitted, the boundary
condition may not yield a well-posed problem. The arbitrary boundary
condition can be written

=

aAwA.

> -

n o+ +
n C tA.VA

A %A
> (5-4-21)
+ aD o t CD u vt

Do Vu:b

where the subscripts A and D stand for "average" and "difference," that is,
¢A = 2-(¢U + ﬁL) (5.4.22)
¢D = bU - ¢L = U (5.4.23)

Comparing to equation (3.2.6), we see that the definition of doublet strength
is the same for all Mach numbers. The constants a and ¢ may be arbitrary,

while the vectors t are tangent to the surface at the control point (as
opposed to n, which is normal to the surface).

To see that (5.4.21) permits an arbitrary combination of upper or lower
surface conditions, we solve (5.4.22-23) for g, and ¢ , obtaining

1 1
By=0ptpfPy =90 t7u

(5.4024)
1
=By -7n
Similarly,
Wy s Rk (W LR W R
A" =7\ L
. . N . (5.4.25)
0=WD.n=WU.n-WL.n
and, solving,
W fhew .A+ls
u* "~ A" 2
(5.4.26)
-> A -> Al
chn=WA-n-"2'U
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Thus the boundary condition pair

¢L=0
- R > " (5.4.27)
wU s N==Vuo N
can be written as

1

Bp-7u=0
(5.4.28)

> 1 > a

wAca+§0=-Vm + N

Thus, the first equation in (5.4.28) is equivalent to (5.4.21) with

CA=1
1
CD=-?
(5.4.29)
aA = aD =0
-> ->
tA=tD=0
b=20
while the second equation corresponds to
CA = CD =0
aA =1
1
% =2
- > (5.4.30)
ty = tD =0

> ~
b:-va on

For the remainder of this document, we will generally use the boundary
condition formulation (5.4.21) since it is used internally in PAN AIR. It
should be noted, however, that the program user need not be concerned with
this formulation, but may express boundary conditions in the upper and lower
form if he wishes. The average and difference formulation is used in PAN AIR
in order to separate out the singularity strength (or difference) contribution
to the boundary condition, which are computed from the splines. The
difference potential and velocity are given in terms of the singularity
distributions at a point by the formulae (cf. eqns. (5.4.23) and (B.3.29-31))

¢D =H (5-4.31)
Vp = [oh + (A x V) x 3/(R,5) - (5.4.32)
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The average potential and velocity at a point on the surface are given in
terms of the complete singularity distribution functions by the formulae (cf.
eqns. (5.2.8) and (B.3.28); we use the formula for the velocity field v(p)
with the line vortex term removed),

By () = (1/x) ﬂ [-o/R + 4 0. ¥ _(1/R)]dS (5.4.33)
q al ay
SND g
p
VA(P) = (1/x) If (o vq (1/R) + (n x vq u) x Vq (l/R)]dsq]avg
| snp
P (5.4.34)

Note that the subscript "avg" refers to the process of evaluating the average
value of the given integral expression above and below the singularity surface
S at the point p. In appendices J.6, J.7 and J.8 it is shown that this
average value calculation is a matter of concern only for the subpanel QcS
that contains the point P. For this case, it is shown in appendix J that the
average value calculation is accomplished simply by using an average value of
the panel integral J to evaluate the influence coefficient matrices [S] and
[D] (cf. eqns. (J.6.152) and (J.6.164)). The surface average vaiue

calculation for the panel integral J is fully discussed near the end of
appendix J.8.

There is one type of user-specified boundary condition, called a closure
boundary condition, which is not of the form (5.4.21). This is used in design
problems to specify the integral of the normal mass flux over a surface. A
detailed description of the use and implementation of closure boundary
conditions, discussed briefly in section (5.7.1), will be treated fully in
Appendices H.2.5, K.1.3 and K.6.3.

5.4-7






5.5 Singularity Splines

In this section we will discuss without details the construction of spline
matrices for analysis and wake networks. The technical details of the spline
construction, and all discussion of splines for design networks, will be
reserved for Appendix I. In figure 5.13, we illustrate the locations of
source parameters on a source analysis network, and the locations of doublet

parameters on a doublet analysis or wake network.

Source parameters on analysis networks are located at panel centers only.
Doublet parameters on analysis networks are located at panel centers and in
addition along network edges as illustrated. The value of a source parameter
is always the value of source strength at the parameter location, and
similarly for a doublet parameter. The "extra" doublet parameters occur at
those points at which an "extra" corner control point was stationed because of
edge matching considerations (see figure 5.7). Doublet parameters are
required on network edges (while source parameters are not) because of the
quadratic variation of the approximation to the doublet strength. A quadratic
variation causes rapid changes in doublet strength which make extrapolation of
the doublet values from the interior of the network to the edges ill-advised.
The source strength approximation is only linear, however. Finally, doublet
parameters are only located on the upstream edge of a wake network. The
doublet strength on a wake network is defined to be constant in the streamwise
direction, and thus doublet parameters are only required on one edge in order
to define the doublet strength on the entire network.

S

5.5.1 The Matrices B~ and BD

The outer spline matrices define the source strength and doublet strength
at certain points on the panel as linear combinations of source and doublet
parameters in the neighborhood of the panel. While a single doublet outer
spline matrix has been found satisfactory for all purposes, it has been found
that two source outer splines matrices are generally required. One of the
source outer spline matrices helps define a continuous source distribution
used in post processing applications, where it is essential for processing
considerations that source strength be a uniquely defined function on a
network (cf. sec. 5.5.3). The other source outer spline matrix helps define a
discontinuous source distribution used in AIC matrix construction, where it is
important that the total source strength on a network be accurately measured
gysth? corresponding integral of the splined source distribution (cf. sec.

L] .4 .

To be precise, consider the panel and network in figure 5.14. A source
outer spline matrix BS ijs a 5 x 9 matrix which gives the value of source
strength at P1,P2,P3,P4, and Pg in terms of the source parameters

{x? , 1 = 1,...,9} located at the nine panel centers marked by a circle. The

matrix BD is a 9 x 21 matrix giving the values of doublet strength at P1...,Pg
in terms of the doublet parameters {xiD, i=l,...,21} Tlocated at the 21 panel

centers marked by an x. Because is a continuous locally quadratic
function whereas ¢ is only a locally linear function, . must be defined at 9

points on a panel by BD while o is only defined by 5 points by BD. The values
of ¢ at the 5 points are called "panel source parameters," while the values of
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pn at the 9 points are called "panel doublet parameters."

5.5.2 Definition of SPSPL

The subpsnel spline matrices (one source matrix SPSPLS and one doublet
matrix SPSPLU for each of the eight triangular regions composing the panel)
each define the coefficients of the polynomial distribution of singularity
strength on the triangular region as a linear combination of the singularity
strengths at the panel points P; mentioned above. Thus, on each triangular
region, source and doublet strengths o(¢', n') and u(¢', n') are defined in
terms of local coordinates (¢', n'). (Cf. egn. (5.2.27) for the definition of
the Tocal coordinate transformation A. MNote that the logal coordinateg £'y n'
used here include an origin shift as well; i.e. &' = A (X - X ) where X_"is the
triangle's origin.) ° 0

of€'s n') =0y * og &' * o'
w(€'y n') =y, * e g un
1 1 1 ] ] oeJe
M RTTIR: 2 g€ M *-% Hog? 2 (5.5.1)

where the constants og, o , 0y Hgseeesip, ATE defined by the subpanel
spline matrices:

r 3
00 U(Pz)
a(P,)
4 (5.5.2)
cn U(Pg)
and - ’
Mo u(Pl)‘
D .
e L= [spse”] .\ (5.5.3)
unn ll(pg) “

5.5.3 Construction of B Matrices for Continuous Singularity Distributions

A B matrix associated with a continuous singularity distribution is
constructed one row at a time. Each row defines the singularity strength at a
panel corner, edge midpoint, or panel center in terms of surrounding
singularity parameters. This identical row vector then becomes part of the B
matrix of each panel which shares the particular grid point. This insures
that the value of the singularity strength is identical as one approaches the
grid point from the interior of any of the panels sharing it.

The source strength at a panel corner is obtained from the source

singularity parameters located at the centers of the four panels sharing that
corner, as illustrated in figure 5.15. The dependence of 01 ON Agseeedy is
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determined by a bilinear fit procedure described in Appendix I.l.
Essentially, this procedure determines what "bilinear" function (a bilinear

function in two variables (£,n) is a quadratic function which reduces to a
linear function for constant £ or n)

fl¢g, n) =a +bg +cn+dén (5.5.4)

is determined by the four values x?, and then sets o} to be the "value"

the function takes at that point. By "value", we mean a row vector
(al,az,a3,a4) such that

S\
&
S
0] = .3 3 33 3 | Xy (5.5.5)
4 »
S
23
S
A
L 4
regardless of the values of the x?'s.

Now, finding the row vector that describes the source strength at a panel
center is very simple, since a source parameter is located there. To obtain a

matrix BS for a panel, we assemble the row vectors corresponding to the 5 grid

points. Each row vector has length 4, but by adding zeros each row vector
expands to length 9. Thus each row vector has one entry from each of the 9
source parameters in the neighborhood of the panel. While only four
parameters 1ie in the neighborhood of a particular corner point, (cf. figure
5.14) nine parameters lie in the neighborhood of at least one of the panel

corners. Collecting the five row vectors, we have the 5 x 9 matrix BS, which
was first introduced by equation (4.2.8).

S

Thus, for the panel in figure 5.14, B™ has the structure

"0 * x 0 * * 00 0

x *x 0 *x *x 0 0 0 O
BS = 0 00 * * 0 * * 0
0 0 0 0 * *x 0 * * (5.5.6)

L 0000 *00O00DO

where the columns of BS are arranged according to the integer labels given
to the source parameters in figure 5.14. Here, an asterisk denotes some
generally non-zero entry.
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. .The outer doublet spline matrix BD, introduced in equation (4.2.9), is
similarly constructed row by row. To obtain the row vector describing u at a
panel corner, a least squares fit is used. As shown in figure 5.16, u(P) is
obtained by ginding the quadratic function u(€,n) which best goes through the

12 values 1~ at the 12 doublet parameter locations in the neighborhood of P in
a weighted least squares sense (a quadratic function in two variables
ceftainlx can not go through 12 values exactly). The computation of the
weights is discussed in Appendix I.1.2.4. The quadratic function thus
obtained (its 6 coefficients are each row vectors of length 12, since they

depend on the x?) is evaluated at P to obtain u(P). This weighted least squares
procedure will be described in detail in Appendix I.5.

_ To obtain a row vector defining . at a panel edge midpoint, we again use a
weighted least squares fit, though this time we only fit to 8 neighboring
singularity parameters, as illustrated in figure 5.17. If the grid point lies

near the network edge, a special treatment (which is described in Appendix
I.1) is used.

5.5.4 Construction of the Discontinuous Source Quter Spline Matrix

The discontinuous source outer spline matrix (cf. appendix I.1.15), is
constructed by means of a two stage process. First, a linear source distribu-
tion over the whole panel is determined in terms of the panel's neighboring

source parameters x? , 1 =1,...,9 by means of a weighted least squares

procedure. Second, this distribution is evaluated at the five points Pis Py,
P3, Py, Pg to give the dependency of the five "panel source parameters" upon

the neighboring source parameters A?.

It is the first step of this process that ensures that total source strength
is accurately measured. This accuracy is achieved by the combination of the
linear fit and the fact that the panel's own source parameter is heavily weighted
in the least squares fitting procedure.

It is appropriate to observe here that although the discontinuous source outer
spline is not explicitly constrained to be continuous, it is in fact very nearly
continuous wherever the configuration is sufficiently finely panelled that the
angle between adjacent panel normals is less than, say, 10°.

5.5.5 Construction of SPSPL

Next, let us consider the method by which the subpanel spline matrices use the
panel singularity values (o1 “ee0ps Ogs “1"'“9) to define singularity

distributions within a panel. In referring to the panel illustrated in figure
5.18, we will write o; for °(Pi) and u; for ulPy).

Recall that O1s 9ps 935 9y and oq are defined in terms of neighboring
source singularity parameters by the matrix BS. We then define
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1 1 1 1
05-2(01"'02) ,06=-2-(02+u3), °7=?(°3+°4)’and°8=?(°4+°1) .

We have now defined o at all vertices of all 8 triangular regions, and we
now define a linear distribution o(§', ”')i’ i=1,...,8 on each triangular

region by specifying it to be the unique linear distribution to attain the
appropriate values at the 3 vertices of the triangle.

Note that this construction forces ¢ to vary linearly along the edge of a
triangular region, and thus the value of o at any point along the edge is
determined by the values of ¢ at the two endpoints of the edge. Thus o is
continuous within the panel. Further, since ¢ at a panel edge midpoint M is
the average of the values at the adjacent corners, o varies as a single linear
function on an entire panel edge. Thus o on a panel edge is determined by its
values at the two endpoints, and so, within a network, ¢ is continuous across
panel edges, as long as the continuous source spline is being used. At network

edges, o is not continuous across the network edge.

To determine the doublet distribution on each of the 8 regions, we note

first that a quadratic distribution on a triangular region is uniquely defined
by its value at the three vertices and the three edge midpoints of the
triangle. Thus the doublet distribution on each triangle is determined once
we know y at Pl""’ P9, and Ml""’ M16' Now y at Pl,..., Pg is defined by

BD . We define u at Ml""’ M8’ and M13,..., M16 by requiring that p be
described by a single quadratic function in one variable on the line segments
P1P5P2s PoPeP 3, P3P7P4, P4P8P1, P5P9P7, and P6P9P8' Note that a quadratic

function on a 1ine is uniquely determined by its values at 3 distinct points.
Finally, u is defined at Mg, M10’ Mll’ M12 in such a manner as to minimize the

discontinuities in doublet gradient at P5, Pgs P75 P8.

By defining y at Mi’ i=1,..., 16, in this manner, we insure that, within

a network, the doublet strength is continuous across triangle boundaries.
(Doublet strength matching at network edges is discussed in section 5.3.) In
addition, the doublet gradient is continuous at P9. Also, the doublet

strength is continuous across panel edges because the values of y at the
endpoints and midpoints of an edge define the value on the whole segment.

Summarizing, for each triangular region we obtain subpanel spline matrices

spspLS and spsPLD such that

r I [ h

% %1

S .
p -
1 o - [spspLSy || (5.5.7a)

1

o"l 09
\ P \ J
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Ho "1

[spspL?]

(5.5.7b)

L ]
U
an Hg

Furthermore, we have already discussed the construction of outer spline

matrices BS and BD such that
r h r R 3
o
.1 Al
L] S .
< . > = [B ] L. . > (5-5.8&)
04 L ]
S
A
. 09 / . gJ
and
ul X[]).
: D .
= [B ] . (5.5.8b)
L ] kD
Hg 21

Combining (5.5.7) and (5.5.8), we obtain the source and doublet

distributions on a triangular region, in terms of source and doublet
parameters, by

;
( % xf
A - [spspLSy 8%) . (5.5.9a)
s
o )‘9
. N J
D
Mo M
) Dy D .
- spseLly 18X . (5.5.9b)
L ] XD
“nn 21
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5.6 Influence Coefficients

In order to impose the arbitrary boundary condition given by equation
(5.4.21), viz.,

-~ -> -+ ->

aA wA.n + cA ¢A + tA.vA + a0 + CpH + tD.Vu = b
(5.6.1)

at a control point, it is necessary to evaluate the left hand side expression
as a linear combination of the singularity parameters {x;} . To evaluate o

and , at the control point, we use the subpanel spline and outer spline
matrices. For example, if a control point P has local coordinates (¢', n'),
we find, using equations (5.5.1), (5.5.7) and (5.5.8),

S\
38

oP) = L1 ¢ o', Cspspl18%1 4. |  (5.6.2)

and thus the row vector describing o(P) in terms of all the x? is the

expansion of the 1x9 matrix
1 ¢ o' [spsPL1 (8]
[ -J

into the corresponding 1xN matrix (where all but 9 values are zero), with an
entry for each of the N singularity parameters in the entire configuration.
We obtain the row vector describing u(P) similarly.

5.6.1 Computation of Potential and Velocity

-

Next we wish to evaluate bA and a at a control point, as a linear

combination of all the singularity parameters in the configuration. The row
vectors which describe these quantities at a control point are called the
potential influence coefficient and velocity influence coefficient matrices,
or #IC and VIC respectively. The matrices ¢IC and VIC should not be confused
with the panel influence coefficient (PIC) matrices, introduced in section
4.2.2, which define the perturbation potential and velocity induced by a panel
on a control point. The $IC matrix is evaluated by using the basic

representation formula, equation (5.2.8)
1 1 - |
#(x,y,2) = - = ” ol g5 + L _U w(Q) B . F () ds
S s (5.6.3)

(where S' = Scpr is the intersection of the domain of dependence of P with the

surface of integration S) while the VIC matrix is calculated using the gradient
of equation (5.2.8),
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V(x,y,z) = - %- Vp [ Elgl ds

Sl
+ 1 [ s d. 5.8 ds
< v )] ¢ * Vo'v
S’ (5.6.4)
where P' = (x,y,2), Q = (¢,n,¢) is a point on S,
2
~ Sg-  a/a¢ 3/ax
VQ = VP =
a/an a/ay (5.6.5)
3/l 3/az
and
R2 = (¢ - x)2 +s 82 (n - y)2 + ss2 (- z)2 (5.6.6)

We perform the integration one triangular region at a time; thus, denoting
a subpanel by a, with local coordinates (¢', n'), we have

plxyiz) = 2 {% | eteen) o5 @er, on)
Af]DP

*% “. w(e'y n') n. 50(112-) ds (q(e’, n')):
AND
P (5.6.7)

and a corresponding expression for V(x,y,z). Here we substitute for the exact
(and unknown) values of ¢ the row vector in (5.6.2) and a similar row vector
for u.

In practice, the sum over triangular regions is taken as a sum over all
gane]s, and the integral over a panel is taken as a sum of integrals over the
triangular regions in the panel. The integral over a single panel describes
the perturbation potential and velocity induced at the control point (which
does not necessarily 1ie near the panel) by the panel. Since the singularity
distribution on the panel depends on the 5 panel source parameters and the 9
panel doublet parameters, the perturbation potential and velocity induced by
the panel can be defined by two "panel influence coefficient" (PIC) matrices,

one a 4x5 source matrix, PICS, the other a 4x9 doublet matrix PICD.

That is,
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[ d(x,y,2) ) [ o) ] [uy )
aB/ax(x,y,z) - [pr1cd] : + [p1cP) :
1 ad/ay(x,y,2) ( 1 o ’ * [
3p/az(x,y,z) % "9
4 J k J \ J (5.6.8)

Substitution of (5.6.2) into (5.6.7) shows that

/R yaxi 1x3 3%5
X X
S L ” o JLE o, TPSPLT s
= e - ; a/ay(1/R)
sub- a.n
Sanels it P\ a/3z(1/R) (5.6.9)
Similarly,
. 4x1
n .VQ(I/R)
; 8 . J-J- 3/ax n -Vq (1/R)
PICT = 5 % 2/sy 0 .q (1/R) (5.6.10)
i=1 AinDp a/az ?1 .VQ (1/R)
16 6x9
g e L2 ey Lo (spspl’1  ds

5.6.2 Reformulation of the Doublet Velocity Integral

In Appendix J, we describe the method by which we calculate the matrix

PICS. The integral PICD, however, is evaluated by making use of the continuity
of u. We show in Appendix B.3 that the velocity due to the doublet can be

written as
WP = =V _U u(Q) 7 . \70% ds
SﬂDP
=-,1<— _” (n x VQu)x(G%)dS*r;l;J-u GQ%xdl
SnDdp 2SND,

(5.6.11)

Here, 3S is the boundary of the surface S. The first integral is called
the regular part of the doublet velocity, and the second integral is called
the 1ine vortex part. Now, in general, u = O on the boundary of an isolated
network edge because the doublet matching boundary conditions in PAN AIR force
this to be the case. Further, where two networks meet along a common line,
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the doublet strengths in PAN AIR are made equal; thus, if the integration is
performed one network at a time, the integral of the line vortex term over the
edge of the first network cancels with the corresponding integral over the
edge of the second network (see figure 5.19). The integrals similarly cancel
when three or more networks meet because of the doublet matching boundary
conditions which are imposed (see Appendices B.3, F and K).

Similarly, when we divide S up into subpanels (triangular regions), the
line vortex integrals cancel on the subpanel boundaries because the doublet
strength is continuous. Thus every contribution to the second integral in
(5.6.11) is cancelled by an equal and opposite contribution, provided u is
everywhere continuous. So, if u is continuous, we see that the doublet
velocity may be defined by an integral in the quantity nx Vyu, which is
generally known as the surface vorticity. For a discussion of surface
vorticity, see section 2.8 of Ward.

The assumption that . is continuous everywhere is in fact violated in only
one instance in PAN AIR, namely, on the trailing edge of a wake. The doublet
strength there is non-zero, but this edge is so far from the control points at
which boundary conditions are imposed that neglect of the Tine vortex term for
this edge results in a negligible error.

There are two reasons for evaluating the regular part of (5.6.11) rather
than the complete integral. First, if the boundary of a subpanel (triangular)
region of integration contains points Q = (€',n',¢") for which R = 0, the line
vortex term may be infinite (especially in supersonic flow), where this
infinite quantity is cancelled out by an identical infinite integral in the
opposite direction. This is unacceptable in a numerical method; even if
infinite quantities are avoided, the cancellation of large numbers of opposite
sign tends to be inexact, and the final answer may lose many digits of
accuracy. In evaluating the regular part of the integral, however, large
numbers are generated, with a few exceptions, only when the final answers are
large. The singular behavior of these integrais will be discussed further in
Appendix J.11.

5.6.3 The Far Field Expansion

The second reason for evaluating only the regular integral is efficiency.
When R is small compared to panel size, the integral in (5.6.11) must be
evaluated exactly in terms of transcendental functions (logarithms and arc
tangents) whose arguments are complicated expressions depending on the
geometric relationship of the control point and the panel. To evaluate the
first form of equation (5.6.11), that is, the complete integral, requires the
computation of a greater number of these expressions than is required by the
regular part of (5.6.11), and thus takes longer. Further, if R is large
compared to panel size, the integrand can be replaced by a power series in

<>
W= §-0Q = (e -€gsn' -ngs ' -4p) (5.6.12)
where 60 = (€8,n6,;6) is the panel center. This power series has coefficients

which only depend on Q, and the control point P, while the terms of the power
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series only depend on the panel. Then (see Appendix J.9 for details) the
coefficients can be taken out from under the integral, while the integral
itself now depends only on the panel and thus need only be evaluated once in
the course of the problem, rather than once for every pair of panel and
control point. The approximation of the integrand by a power series in aQ is
called a far field expansion.

Now, applying a gradient operator to 1/R yields with a factor of R'3, and
applying a gradient operator to those terms yields terms with the factor R,

Thus the left hand expansion in (5.6.11) contains terms with R'5, while the
regu1ar part only contains terms with R'3. Now, for a fixed value of R,
R™™ is more accurately expressible as a power series in aQ of fixed length

than R's (see below for a justification), and so a far field expansion can be
used for smaller values of R if only the regular part of (5.6.11) is
evaluated, This is important since the far field expansion is considerably
less time-consuming than the exact evaluation of the integral. In practice,
PAN AIR will use the far field expansion if R is large compared to the panel
diameter for all points Q on the panel. For details, see appendix J.2.

To justify these remarks about accuracy, consider a quantity e<<l. By the
binomial theorem

(1+€)Y‘=1+r€+&51_)82+ cee
@ rir-1)...{(r-1) i+l
=1* 3 T+ :
i=1 (5.6.13)

That is, taking r = - %-and then r = - >

(Lre)yd2. 1.3 4182 1353,

_8- LN ]
(1+€)-5/2=1-g-g+_3_g_€2__31}_g_ 2+...

(5.6.14)

So if we want to approximate (1+e)-5/2 by a power series with 3 terms
(that is, a quadratic expression), the first neglected term has a coefficient
of 315/48, which is more than twice the size of the first neglected

3/2

coefficient if we approximate (1+e) ~'“. Thus, for a particular value of ¢
our quadratic approximation to (1+e)'3/2 is better than our quadratic
approximation to (1+e)'5/2.
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5.7 The Aerodynamic Influence Coefficient Matrix

) Once.the 1xN matrix gIC and the 3xN matrix VIC (N the total number of
singularity parameters in the configuration) have been computed for a control
point, it is quite straightforward to impose the boundary condition (5.6.1).
The left hand side of (5.6.1) then gives a row of the [AIC] matrix (see
equations (4.2.4) and (3.3.8))

. 1x3 - 1x3
a, (1T viee) BN+ ¢, erce), PN {E T tvice) P
1x3 g_3x5 s 5xN
tayg 1€ oy [SPSPL™] [87]
1x6 p.6x9 p.IxN
+ CD '_1 gl nl %_ 6!2 f'n' %‘ﬂiz_l [SPSPL ] [B ]
A 3x6

5~ T 1x3 7.3x3 "2 0 D 6x9 D 9xN

+ {1t (A"l [SPSPL"] (8”1

01 0 ¢

0 01 0 ¢ 4
0000 00 (5.7.1)
In arriving at this result, equation (5.6.2) was used for o (a similar

equation for ,), and we have used the fact that f.v=n.w (see equation
(5.4.15)). The control point P has local coordinates (¢', '), A is the

transformation from reference to local coordinates and BS and gD are the outer
spline matrices, the overbar signifying that they have been expanded to N
columns, with one column of zeros for every singularity parameter on which the
panel source or doublet distribution does not depend. We ﬁi]1 show in

Appendix K that the last term of (5.7.1) is equivalent to tD. Vu ; the

remaining terms have been discussed previously. Thus, a row of the AIC matrix
(corresponding to a boundary condition) can be generated in a completely
straightforward manner. Several considerations make the process somewhat less
straightforward, however. These are: imposition of boundary conditions which
are not of the form (5.6.1), utilization of the existence of one or two planes

of configuration symmetry in order to reduce the size of the problem, and
elimination of singularity parameters whose values are directly specified by a
boundary condition ("known" singularity parameters) from the system of equations.

5.7.1 Non-Standard Boundary Conditions

There are two types of boundary conditions which are not of the form
(5.6.1). The first type is a matching boundary condition (see section 5.3, or
Appendices K.1.2, K.6.2 for full details). The second type is a closure
boundary condition, described in full detail in Appendices K.1.3, K.6.3. To
understand how a closure condition arises, observe that a program user may
specify a desired pressure distribution on a design network by imposing
boundary . conditions of the form

- -+ -+

-
tU 3 VU + tL 3 VL = b (50702)
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at panel geqter control points. When a tangential component of the flow is
thus specified over a surface, there are no boundary conditions remaining at
panel centers to also require that the normal flow to the surface be zero; but

the boundary conditions at a network edge may not yet have been used. At
these control points one may specify

-> -~ b d -~

SJ' [aU Wy oMt W o.n ] ds=b (5.7.3)
column or
row of panels

For 3 = 0 = b, for instance, equation (5.7.3) requires that the integral

of the normal flow over a column (or row) of panels be zero. When the program
user then updates the network geometry to approximately impose impermeability

og thedsurface, the position of the trailing edge of the network will not be
changed.

This alternate iteration of a potential flow solution with an update of
the surface geometry is a method of solving the design problem, in which a
user wishes to obtain an impermeable surface with a specified pressure
distribution. The closure boundary condition is used, for example, in
designing a thick wing, in order to ensure that the trailing edge of the wing
remain closed. The design problem is discussed further in Appendix C. The
implementation of egn. (5.7.3) is discussed in appendix (K.1.3) where it is
shown how the integral is approximated as a weighted sum over panel centers in
a column or row of panels.

5.7.2 Symmetry

While we defer to the appendices all of the detailed technical details
associated with the treatment of symmetry, we will describe here at a fairly
cursory level how PAN AIR takes advantage of configuration symmetry to reduce
the cost of solving the potential flow problem. (For greater detail see
especially appendix K and also appendices F.5 and H.)

In the discussion that follows, we will treat in detail the case of a
configuration having one plane of configuration symmetry as illustrated in
figure 5.20. That part of the configuration surface lying to the right of the

plane of symmetry is denoted S+, its image on the left is denoted S™ and the
part of the configuration surface lying on the plane of symmetry P1 is denoted

Sl. The combined surface S+u Sl’ which is the geometry input by'the user, is

called the principal image of the configuration. To simplify the discussion
we will further assume the following:

(i) The compressibility axis is aligned with the x-axis of the reference
coordinate system.

(ii) The single plane of symmetry coincides with the x-z p]ane,{B | y = o}

As a consequence of these assumptions the normal to the plane of symmetry is
a . + + .
given by nI = (0, 1, 0). Further, for any point 3 e S , the corresponding

point 3~ ¢ S”, the image of S*, is given by
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T] >+ >+ 1 ++

P =01 -2n) 1B = RB 1 P (5.7.4)

Notice that we have implicitly given here the definition of Rl’ the reflection
matrix associated with the plane of symmetry Pl’

Having defined this much of the terminology of symmetry, we can now state
the basic principal that motivates our treatment of symmetry. In PAN AIR,
symmetry is handled by setting up separate integral equations for the
symmetric and antisymmetric parts of g, defined by

5 (p)

S,
-~

o
~—~
]

symmetric part of ¢
#(p) + 8(RP) (5.7.5a)

8™ (p) = BA(p) = antisymmetric part of ¢
#(F) - #(R;P) (5.7.5b)

The integral equations that we obtain for BS and BA involve only integrals
over the principal image of the configuration, S+u Sl‘ Thus, each integral

equation, when discretized, leads to an AIC equation that is (approximately)
half the dimension of an AIC equation for the whole configuration. Since the
cost of solving a large, dense AIC equation increases as the cube of its
dimension, we find -

cost of solving 2 AIC equations of size N/2 = 2[K(N/2)3]
KIN/41

cost of solving 1 AIC equation of size N = KN3

so that symmetry permits us to reduce by a factor of 4 the cost of AIC
solution. Further, (and this is actually more significant), symmetry also
allows us to reduce by a factor of two the cost of AIC generation. This last
fact follows from the observation that of the four influence coefficients
defined by:

+ + +

o] (%) ol (3, sp) + Qg(gﬂﬁ)

= potential induced at 3 due to the source distribution s
and the doublet distribution my restricted to panel

Q+ c S+
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+

Q ->
¢ (Rlp)
d)? (p) Q" = image of Q+ {919 - Ry a+, a+ € Q+ }
Q' -+
@ (Rlp)
only the first two need to be computed since

0 3 '

- +
o0 R - o (B
We now show how PAN AIR combines the boundary conditions at control points
P e s* and (= Ry B+ e S7) to obtain a boundary condition for each of BS and
¢A imposed at E+. (See below for the discussion of control points 3 € Sl')

First we note that corresponding boundary conditions at points p and Rlﬁ
are required by PAN AIR to be connected to one another as follows. (Compare

these forms with equation (5.4.21))

B g, AP BN, * cy(8(B)), + EAlvB)),

* ) o(P) + <p u(p) + -EB Vu(p) =b'
(5.7.6a)

RE : ay AV(B) Ry BVIRB)), * cu(B(RB)), + Ty R (VIRID)),

+ ay o(RP) + ¢y u(RP) *+ TR, Vul(RP) - b
(5.7.6b)

Adding and subtracting these equations while taking account of the following
definitions

VO W3 - v ¢ Ry V(RIE) (5.7.7a)
VR =R @) - WD - R VR (5.7.7b)
S5F) =0 B) * o (RP) (5.7.82)
) =0 B) -0 (RD) (5.7.8b)
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dr)

w (p) + u(RIB) (5.7.8¢c)

GA(E) = u (-l;) + F(R]_B) (5.7.8d)

we obtain after some manipulation

ag AE) (BN, + ¢ @GN, + T 56N,

~ a > + -

g B() ¢ ¢y Mp) + B W =b +b
- A = VT A (5.7.9a)

+ay SME) oy 3AE) 7ot b - b
(5.7.9b)

Mow it can be shown that the fundamental representation formulas (5.6.3-4) for

¢ and V induce similar representation formulas for Bi and v' (see equations
(K.3.28) and (K.3.46)) having the following properties:

(i) the integrals .extend only over the principal image st o Sl’

(id) 31 and ' depend only upon o' and 31, the corresponding symmetrized
singularity distributions.

These observations combined with a close inspection of equations (5.7.9) show
that we have decoupled the symmetric and antisymmetric parts of ¢4, at least as
far as boundary conditions away from the plane of symmetry are concerned.

When a control ?oint lies on a network which itself 1ies on a plane of
syrmetry, it is still possible to obtain a decoupling of the symmetric and
antisymmetric potentials, provided the user's boundary conditions satisfy
certain restrictions. If the network in question is a source network, the
user must specify a nontrivial boundary condition of the form

> > 2T 2 (source network, on a
ap o(p) + cplB(p))y * ty (VP))y = D plane of symmetry)
This is equivalent to the following condition imposed upon 85:
AS,> 1,,AS5,> >T,1,,25,>
ap 5°(B) * ¢, () (B°(R)), + H (V)Y = b (5.7.10a)

The corresponding condition to be imposed upon 3A is the degenerate boundary
condition,

Amr =0
Notice in equation (5.7.10a) that because a source distribution on S1 induces

a component of ¢ that is symmetric with respect to the plane of symmetry Pl’
we make the identification:
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For doublet networks lying on a plane of symmetry, the user must specify a
nontrivial boundary condition of the form

T w aT (doublet network on
a, M (p) B(V(P))y * cp u(p) *+ ty Vulp) =b a plane of symmetry)

-~

This is equivalent to the following condition imposed upon ¢A:

a3 A (3) (3) BEAEN, + oy M) + ) WA = b
(5.7.10b)

The corresponding condition to be imposed upon 35 is the degenerate boundary
condition

@ =0
Notice that in deriving (5.7.10b) we have made the identification:
’ —
S1 $4

because a doublet distribution on S1 induces a component of potential that is
antisymmetric with respect to Pl. —

A comment is in order regarding the rather anomalous factors of (1/2) that
appear in equations (5.7.10). To see how these factors arise, consider the
evaluation of (b(E))A. Solving equation (5.7.5) for #(p) we obtain

>

B3) = 3 BB + BB

Averaging the relation above and below B, which lies on the plane of symmetry
we get

(B(3)), = 3B (31, + 7B (BN,

Since the function BA(E) is antisymmetric with respect to the plane of
symmetry, (BA(E))A = 0 (to see this, examine eqn. (5.7.5b) carefully). Thus

(83N, = (BN,

and the factor of (1/2) appearing here is the same as that appearing in
equation (5.7.10a).

A1l of the results given here for networks lying on a plane of symmetry
are worked out in detail in appendix (K.3). Further, in appendices (K.6.2) -
and (K.6.3) the corresponding decoupling results are worked out for matching
and closure boundary conditions.
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The treatment of doublet matching when symmetry is present deserves
special comment. Whenever doublet matching is performed on an abutment or at
an abutment intersection that lies on a plane of symmetry, doublet matching
conditions must be selected separately for each symmetry condition. That is,

the matching condition overrides must be assigned separately for ¢A and 35.
Thus, it is in the handling of doublet matching that we see most clearly the
fact that the discretization in PAN AIR is formulated separately for each
symmetry condition.

5.7.3 Known Singularity Parameters

In a variety of cases, the value of a singularity parameter is directly
specified. The most common example occurs with impermeable boundary
conditions on a thick configuration (equation (5.4.19)), in which case a
source parameter is specified directly as

g = -Vm . ﬁ (5.7.11)

If, of the N singularity parameters in the whole configuration, p are directly
specified and q are not, we can reorder them so that (Al,...,xp) are specified,

and thus (assuming no planes of symmetry) the basic system of linear equations
can be written as

(M ] (b )
B | ] . .
1P | oPXd xp >,
| = 5.7.12
_______ e IR et I o (5.7.12)
qxp axq
[AIC,,] | rarc,] p+1 p+1
| . :
I : 6
- - L N J L N

Here, the matrix DI is a diagonal matrix whose entries are the coefficients
ap or ¢y in equations of the form

a g = b (5.7013)

or

p* = b

which specify the value of a singularity parameter.

The matrix AICKP (KP stands for known parameters, UP for unknown
parameters) gives the dependence of the boundary condition expressions

-> -~ -+ -> <>
+
aAwA . N+ CA¢A + tA . VA + aD gt CD Q tD . Vu (5.7.14)
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on the set of known parameters, while AICUP gives the dependence of the
expressions (5.7.14) on the set of unknown parameters.

As a specific examp]e, consider the case where all the source singularity
parameters are specified according to equation (5.7.11). Then, xp+1,...,xM
are the unknown doublet singularity parameters, while for 1<j<p, Aj = o(Pj) and

> - -

bj = Vo nje. Also, [DI] = [1], and [AICKP] gives the effect of the known
source strength singularity parameters on the expression (5.7.14), which, in
our example, becomes lower surface potential.

Now, the first p lines of (5.7.12) express the system of equations

M by
[DI] . = . (5.7.15a)
*p by
which implies
M . by
- (D11 . (5.7.15b)

> oo
o

P P

where [DI]'1 is readily computable since [DI] is a diagonal matrix. The
remainder of (5.7.12) is

r)‘l* rkp+11 (bp"‘lw
[AICKP] < . } + [AICUP] < (] b = » <4 [} * (5-7.16)
LAp AN [ by
Substituting (5.7.15b) into (5.7.16), we obtain
qx1 qx1 - pxl
axq )‘p+1 bp"’l axp__; Pxp bl
[AICUP] . = . - [AICKP] ) G .
Ay bN bp
' (5.7.17)

We have thus reduced (5.7.12), a system of equations in the N parameters
Aseees Ay to a system of equations in the q unknown parameters *p+1""’*N‘
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5.7.4 Multiple Right Hand Sides

So far, we have always considered a system or systems of equations of the
general form

[AIC]nxn ;nxl >nx1

= b (5.7.18)

But if the AIC matrix does not change, it is very economical to solve (5.7.18)
for a sequence of distinct vectors Ei, obtaining a sequence of solution
vectors X,.

The ability to solve (5.7.18) for multiple vectors b can be very useful.
The uses include analyzing the flow about a configuration at multiple angles
of attack or sideslip, evaluating stability derivatives, or analyzing a
variety of quasi-steady flows in which the configuration is undergoing a
pitching, rolling, or yawing motion. This is especially useful when M, = 0,
and the small perturbation assumption is not necessary for the Prandtl-Glauert
equation to hold. For a further discussion of "right hand side" or
"constraint" vectors b, see Appendix L.

So, in its most general form, (5.7.18) can be written

[AIC]™N [ A ™™ _ (g™ (5.7.19)

-
where each of the m co]umns of B is a constraint vector bi’ and each column of
A is a solution vector Ai.

5.7.5 Updatability

Another feature of PAN AIR is that of "updatability." That is, a program
user may identify certain networks as being subject to modification. The
program then segregates boundary conditions and singularity parameters
corresponding to these networks, so that the AIC matrix in
(5.7.18) can be partitioned as:

[AIC] = (5.7.20)

|
Here, the subscripts U and NU stand for updatable and non-updatable.

Now, the matrix AICNU is stored, and when the program user makes a-second

run in which updatable networks are modified, the program need only
recalculate AICU 1’ i =1, 2, 3, rather than the whole AIC matrix. Here,

"modification" may consist of the alteration of the network geometry, or the
alteration of the left hand side boundary condition expressions (5.7.14). It
1s easy to see that AICNU remains unchanged under a modification of an

"updatable" network. For a full discussion, see Appendix K.7.
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5.8 Solution of the System of Equations

As we see from (5.7.7), (5.7.8), (5.7.18), and (5.7.19) the program sets
up a system or systems of linear equations of the general form

[A]™P [xxm o _ [B]nxm (5.8.1)

Generally speaking, the matrix A is too large to store in the central
memory of a computer at one time. Thus the matrices are stored in block
format on a disk, and (5.8.1) is solved with no more than three of these
blocks in core at once.

Generally, the matrix A is decomposed as a product of lTower triangular and
upper triangular matrices

[A]nxn - [L]nxn [U]nxn (5.8.2)

This process frequently involves "in-block pivoting," that is, the interchange
of columns within one of the blocks composing A. It can happen that a
boundary value problem of aerodynamic interest results in one of the blocks of
A which 1ies on the diagonal being singular, in which case a decomposition of
the form (5.8.2) is not possible. Such a case requires the interchange of
columns lying in different blocks, a process called "out-of-block pivoting."
The out-of-block pivoting process decreases the efficiency of the solution
process since additional data must be transferred between disk and core. This
process is described in Appendix L.

After the decomposition (5.8.2) the next step is "forward substitution,"
that is, the system of equations

(L™ pyp™™ [y ™ (5.8.3)

is solved for the matrix Y. The final step is "back substitution," in which
the system

nxn

™" ™™ o [yp™m (5.8.4)

is solved for the matrix X.

The solution procedure has two distinct "updatability" features. First,
supgose A is an AIC matrix partitioned as in (5.7.20). Then the factorization
(5.8.2) is performed on AICNU first, after which A is factored in its entirety.

The factorization of AICNU is stored, and in a later run in which AICU i
]

i =1, 2, 3, are changed, the factorization continues from that point. They
may result in a significant saving of time.

The other "updatability" feature is that a program user may request the
entire factorization (5.8.2) to be stored, and then at a later time submit
additional constraint vectors b. Thus, a user may find that the results for
one angle of attack are useful, and thereupon obtain results for additional
angles of attack, angles of sideslip, or for stability derivatives, at small
additional cost. '
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5.9 Post-Solution Features

5.9.1 Computation of Potential and Velocity

Once the system or systems of linear equations (5.7.19) have been solved
for one or more solution vectors, it remains to translate the vector(s) into
quantities of aerodynamic or hydrodynamic interest. The first step is to

>

obtain the values of ¢A and Va at control points. Clearly

8 = [rc AN SNkl
| (5.9.1)
v, - rvig 3N hxd

but obtaining ¢A and VA this way requires the storage of 4N words of data for
each control point. Often it is possible to obtain bA from a boundary

condition. For example (recalling ¢L =-% (¢U + ¢L) - %-(¢U - ¢L) = ¢A - %-u),

the boundary condition
6 =6 L. .0 (5.9.2)
L= A" 247 U
is often imposed at control points. Thus,
g - L (5.9.3)
A T2 H e

Since , at the control point is already available (it is one of the unknown
parameters), we can obtain ¢A without storing the gIC matrix.

Once ¢A has been found at every control point, we may make use of the
doublet spline matrices to obtain a distribution of ”A on the whole surface.
This quadratic distribution may then be differentiated to obtain tangential

~ -> ->

velocities on the surface. The conormal component of velocity, VA e N =W .0,
can often be obtained from a boundary condition of the form

~

-> ~ >
WA.n=-Vco . N

Then, all three components of velocity may be obtained from the tangential and
conormal components. The details of how we can use boundary conditions and
splines to obtain velocities at control points or grid points (panel corner
points, centers, or edge midpoints) are given in Appendix M.

The velocities are calculated at control points or grid points in a
user-selected reference coordinate system (xo, Yor zo). The formulas for

calculating pressures are most easily written in the compressibility
coordinate system (x,y,z), in which the freestream direction is the
x-direction, so we will describe them in that system, in which we write
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-> > >
v = (u,v,w) and V (the total velocity) = (Ile +U, V, W).

5.9.2 Pressure Computation

PAN AIR will calculate the pressure from the velocity according to any of
five different pressure coefficient rules. These pressure rules will be
derived in Appendix N. We assume we are dealing with a gas or an
incompressible 1iquid. Let y be the ratio of specific heats. Subject to
certain constraints on the range of velocities for which the pressure
coefficient rules hold, they are listed in figure 5.21. For an incompressible
liquid, the isentropic formula does not apply.

5.9.3 Velocity Corrections

In addition, PAN AIR will calculate two semi-empirical velocity correction
formulas. The first is often used in practice in areas such as inlets where
the component of the velocity in the freestream direction is less than the
freestream. If u < 0, we solve the following equation for V;:

1
TR S A VS I RN S U (5.9.5)
The corrected velocity is given
Vl
X
Vo= (5.9.6)
W

This velocity correction, denoted SAl in the User's Manual, is closely related
to the Lieblein-Stockman formula (cf. Reference 5.1).

The second velocity correction formula, denoted SA2 in the User's Manual,

is often used in regions of near-stagnation such as the Teading edge of a
wing. If u > 0, we set

V‘ = L_TI ﬁ (5-9.7)
W |

If u < 0, we set

<y

W
2

Vi — 1
1-Me U

(5.9.8)

where the denominator is a first order approximation to o/pe -

These two correction formulas are essentially empirical. The first has
been used successfully only in subsonic flow, while the second has been used
successfully in both subsonic and supersonic flow. Successful applications of
the second velocity correction are given in reference 4.9 (Ehlers et. al.,

p. 89 and figure 36) and reference 5.4 (Chen and Tinoco, figure 5).
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5.9.4 Force and Moment Computation

PAN AIR will also integrate pressures on a surface to obtain coefficients
of force. The formuia we use for the force is

F o= - j;f {I"+Z_” V + ph } ds (5.9.9)
v

where p is the pressure and o is the density.

The first term in the integrand, the momentum flux term, is zero for an
impermeable surface, but does in fact contribute to the force on a porous
surface. The evaluation of this integral is discussed in Appendix 0.

PAN AIR also evaluates the moment M about a point. If ﬁo is the point in
question, and Q is a point on the surface,

il { CH AR ST R SR
Voo
(5.9.10)

The derivation of (5.9.9) and (5.9.10) is given in Ashley and Landahl
(reference 5.3), section 1-6.

Equation (5.9.9) ignores a contribution to the total force, called the
edge force, which occurs for thin configurations. To obtain the force on the
configuration illustrated in figure 5.22, we should integrate the expression
in (5.9.9) over the combined surface slu 52’ while in fact we only integrate

the expression over Sl’ The evaluation of the integral over 52, the edge

force, requires the use of some special extrapolation and correction
techniques. The basic idea is to evaluate the 1imit in the expression for
edge force, (cf. ref. 5.2):

edge force per unit length = (n/8)en [(Vim (u/ V”?h) ]2 (5.9.11)

>
Xn 0

(here, : is an edge normal compressibility factor and Xn is the distance
from the edge) by evaluating the expression (u/\/xn) at panel centers near

the edge. A correction factor is then applied to the result to account for

some nonuniform convergence effects arising from the fact that PAN AIR does
not allow y to behave like C\fi; in the neighborhood of the leading edge.
For more details of the edge force computation, see appendix 0.

5.9.5 0ff-Body Points and Streamlines

In order to help the program user in visualizing the flow field, PAN AIR
provides the capability to calculate potential and velocity at off body
points. In addition, this basic capability of evaluating ¢ and V at points
away from the configuration surface has been combined with an ordinary ‘
differential equation solver to provide a streamline tracing capability. In
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this section we summarize these capabilities, deferring to appendix P the
details of their implementation.

The evaluation of g and Vv at off body points is a straightforward task once
the singularity vector X has been obtained by solving equation (5.7.18). To
see this, simply observe that once X is known, the source and doublet distri-
butions are cgmp]etely determined by equations (3.3.1-2). Once ¢ and y are
known, ¢ and v are given at any point P by the integral representation
formulas, equations (5.6.3) and (5.6.4). The evaluation of the integrals
appearing in equations (5.6.3) for g and (5.6.4) for vV is treated in detail in
appendix J.

Given the capability of evaluating V at an arbitrary point P, the tracing
of a streamline is accomplished by numerically solving an ordinary

differential equation. To see this let g(t) denote the coordinates of a
velocity streamline parameterized by t. By the definition of such a
streamline, the tangent vector to the streamline given by

tangent to streamline E(t) = %%. (5.9.12)

is parallel to the velocity field at 5(t). Mathematically this implies

+
& - git) V(B(e)

fhe apparently arbitrary function g(t) does not affect the shape of the
streamline but rather, just modifies its parameterization. By convention we
set g =1 in PAN AIR. Thus, given an initial point P0 on a velocity

streamline, PAN AIR determines a sequence of points on that streamline by
solving the following initial value problem:

& VIP(t)) = Vo + V(P(L)) (5.9.13)
P(0) = P

In actual practice, it is usually preferable to compute mass flux
streamlines, i.e., streamlines where tangents are parallel to the mass flux

vector field W(E). The initial value problem used to define these streamlines
is given (cf. equations (5.4.4) and (5.4.10))

a? = N(P(t)) = Vo * BO V(P(t)) _ (5-9-14)

P(0) = Py
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Figure 5.1 Network geometry

Figure 5.2 Decomposition of panel into 5 planar regions
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Figure 5.3 - Definition of compressibility directions in terms
of angles of attack and sideslip
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Figure 5.4 - Superinclined Surface, r = -1
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Figure 5.7 - Example of abutment intersection
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Figure 5.8 - Control point locations
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Figure 5.9 - Thin wing boundary conditions

¢2 = ¢(x,y,z) + constant

Figure 5.10 - Two solutions for potential in enclosed volume
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Figure 5.11 = Thick wing boundary conditions
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Figure 5.12 - Boundary conditions on superinclined surfaces
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Figure 5.14 Singularity parameters in the neighborhood of the panel
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e neighboring source parameter

Figure 5.15 - Neighboring source parameters for a panel corner point
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Figure 5.16 - Neighboring doublet parameters for a panel corner point
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X neighboring doublet parameters

Figure 5.17 - Neighboring doublet parameters for a panel edge midpoint
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Figure 5.18 - Panel points and midpoints
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Figure 5.19 - Opposite orientations of adjacent networks
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Figure 5.20 - Configuration and image
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Figure 5.21 - Pressure coefficient rules
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Figure 5.22 - Surfaces of integration for leading edge force
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6.0 A Guide to the Appendices

The purpose of the appendices is three-fold:

(a) they give background material, not reflected in the computer code, but
explaining why the computer program performs the functions it does,

(b) they describe in considerabie detail the functions performed vy tie
program, and

(c) they describe the equations which are actually implemented in the code.

Appendices A through C cover background material exclusively. The
remaining appendices are predominantly devoted to the PAN AIR program, but
often derivations are supplied to prove or justify the validity of an equation.

Often a conflict may occur between organizing the material according to
the structure of the program or organizing it according to subject matter (for
instance splines, panels, networks, pressures, etc.) or capability (for
instance symmetry, updatability, multiple right hand sides, etc.). This
conflict will almost invariably be resolved in favor of organization according
to subject matter.

This document will generally discuss only engineering functions within PAN
AIR. Specifically, the functions of the Data Input Processor (DIP), which
reads and echoes user-input data, and the Print Plot Processor, whicii prepares
files of output data for processing by plotting programs, will be ignored.
Also, input/output and other data manipulation functions which are necessary
due to core limitations, will, with few exceptions, be ignored. For example,
a detailed discussion of the abutment analysis processor in DQG will be
contained in the Maintenance Document rather than the Theory Document, since
the complexity of this procedure is largely due to data manipulation
problems. Finally, there will be no discussion of the “Scientific Data
Management System" (SDMS) used by PAN AIR to transfer data between core and
disk.
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4xy
(A], [Ak] '

Ay

A(G)
(A, A
aliyd)

[AIC], AIC

K

List of Symbols

Latin Symbols

speed of sound, freestream speed of sound
(m/sec)

average and difference normal mass flux
coeffcients

distance (signed) from control point's
projection to an edge of ¥ (local
coordinates)

fundamental integrals in PIC computation

generic coefficients in polynomial
expansions for source and doublet

constant ccefficient of Li' linear
basis function on a triangle

]

end point of an edge [cf.: B, M, KaB
area [i.e., dA]

reference (Xo) to local (X') coordinate
transformation (Ak = transformation

for k-th panel or subpanel, depending

on context)

i-th abutment in an abutment intersection
adjacency matrix of a graph G

Left hand side (AIC) matrix

submatrix of AIC matrix A

partially reduced AIC matrix, after stage
(i,j) of factorization

aerodynamic influence coefficient matrix

Variants: (AIC;J. AIC entry for A,

symmetry condition

(1,3), [K.61)

(AICKP' AICUP’ [5-7-3])

(2.3]

(5.4.2.5]

(J.5]

(J.6]

(4]

[1.2]

{I.2.3.2]

(5.2, E.3]

(F.5]
(F.5]
(5.8.2]
(L.2]

fL.2]

3.3, 5.7]

(AICyy, AICy, 1, AICy o, AICy 3 [5.7.51)

8.0-1



)

(o2
oV

(8]

B,(Q), B/(Q)

(BL]

C
O

Intermediate matrix used in PSPLP [1.3.1]
calculation

a 2x2 nyperbolic skew [J.5]

generic right hand side term for a {5.4]
boundary condition
Variants: (b, vector of right hand side

terms, (5.7])

(bJ , b for symmetry condition
(i,j), solution index a,

(L.oD
fundamental integrals in PIC computation {J.5]
E-coefficient of L;, linear basis (1.2]

function on a triangle

end point of an edge [cf.: A, M, KAB] [1.2.3.2]
fundamental integrals in PIC matrix {J.5]
right hand side matrix containing con- [5.8]

straint vectors for multiple solutions

dual compressibility metric matrix, [5.2]
compressibility axis coordinates
Variants: (B, same as [B], [5.2])

(BO, {BO], reference coordi-

nates, (5.2])
(B, [B], scaled coordinates [E.3])
(B', [B'], local coordinates [E.3])

source outer spline matrix (5.5, I.1]
Variant: (Bs, extended to all N AI' (5.71)

doublet outer spline matrix (5.5, 1.1]
Variant: (BD , extended to all N XI' {5.71)

quadratic interpolatary basis functions on {r.2]
a triangle

bilinear generalized Vandermonde matrix (1.1]
compressibility axis, reference coordinates (5.2, E.3]

Variant: (c : compressibility axis
coordinates [5.2])



ar D

3(1)

1

%y, ¢ sy, cles)

average and difference potential
coefficients

a curve on the singularity surface S

n-coefficient of Li' linear basis
function on a triangle

coefficients of My in evaluation of

~ *
ul(s,t) at Cu

mean panel moment integrals
ratio of specific heats at constant volume

pressure coefficient
lln, linear Cp, [H.2.4])

Variants: (Cp
(AC_ , pressure jump,

Cp,upper - C )

p,lower
(Cp,vac’ vacuum value of
Cp» (ND)
force coefficient vector
mgment coefficient vector
(Cé : referred to an alternate origin)

Continuity classes for functions
defined on S

half panel #4 center (5 ) and corresponding .
point on the hyperbolic paraboloidal panel (Cu)

a cubic basis function on a triangle

regions of space when one plane of
symmetry is present

regions of space when two planes of symmetry

“are present.

- - + -

Variants: (¢°°, ¢ ete., Ci, c7, cl, cD)
arlants: ’ etc., 1’ 1! 2! 2
i-th corner in an abutment intersection
Mach disk on a superinclined panel

winding number coefficient for PIC integrals

[5.4.2.5]

[(K.1]
(1.2]

(r.3]

[(I.4]

[2.2]

[5.9.2]

[0.1]
(0.1]

(B.3]

(1.3l

(1.2]

{K.3]

(K.4)]

(F.5]
[J.4]

[J.4]



(c]

det

(D]

(o]
{DI]

e
€1, €2, 83, ej

€y epr €y €

compressibility metric matrix, compressi- (5.2]
bility axis coordinates ,
Variants: (C, same as [C], (5.2])

(Co, [CO], reference coord-

L inates, [5.2])

(C, [C1, scaled coordinates,

(E.3D)
(c’, [C"], local coordinates, [E.3])

prefix: differential (i.e., dI, 4A, dS, etc.)

design direction [Cc.1]
distance from a point to a line . (F.3]
Examples: d(s,E) = distance from s to

edge E

>
d(g, T.)= distance from s to
i
edge segment Ti

determinant
Domain of dependence for control point p 5.2, J1
Full doublet panel influence matrix, with- [J.6.4.3]

out origin shift. EDo] (ef. [J.6.6])
includes the origin shift.

A local coordinate metric matrix {E.3]

A diagonal matrix associated with known [5.7.3]
singularity parameters

internal energy per unit mass [2.2]

natural unit vectors in RN

average, difference, upper and lower n.3 (H.1]
coefficients for the general boundary

condition

a network edge, the i-th network edge in [F.3]
an abutment

a panel or subpanel edge (1,4, J]
the image of a panel or subpanel edge [J.5]

under a hyperbolic skew transformation

Energy added by incremental onset flow



(G]

(G]

(G]

(K
ij

Body force per unit mass, newtons/kg
Equation of state

Lagrange interpolation functions of the
edge variable v, defined on an edge

A fundamental integral in the PIC calcu-
lation

Total force on the configuration
Generic vector field
Far field moments used in post processing

Compressible distance from a control point
projection to a panel edge

Generic vector field
a graph

Intermediate matrix used in constructing
the half panel doublet spline matrix

Transformation from Prandtl-Glauert scaled
coordinates to local coordinates

2x2 local compressible metric matrix, used
to define the pseudo inner product <.,.>

Kernel moments used to calculate Wa

Intermediate quantity in calculation of Cij

height of the control point above the plane
of the panel, local coordinates

quadratic function fitting 6 data values
on a triangle

cubic function fitting 7 data values on a
triangle

hypothetical location of a control point
on the i-th network of an abutment or
abutment intersection

panel far field moments

[2.1]
[2.1]

(J.10]

[J.5]

(5.9]
{B.3]
(1.4, 0.2]

{d.7, J.8]

[B.3]
[F.5]

(1.3]

(E.3]

tJ]

[J.9]

[1.4.3]

(J.4]

[1.2]

(r.2]

{G]

(1.4, J.9]



a ia
T

J
Hh' HH
T

HPINTS, HPINT®

pspLS, HpspLD
I

I, I,

I(y), I(x)

~

J
J(yp), Jx)

Ik

far field estimates of certain panel [J.9]
integrals

Kernel moments for (1/R3) {J.9]
Mach hyperbola, before and after applica- [J.5]

tion of an edge's skew transformation

2x2 matrix used for symmetrization of (K.3]
potential 4, velocity v, and boundary

conditions

half panel PIC integral matrices (J.1]
half panal spline matrices (1.3, J.1]
row index

edge function,. edge function associated - (Jg.7]
with edge k

edge integrals of functions ¢, X {J.71
rationalized form of I, , edge function 7J.8]
column index

Jacobian area ratio, dS'/dS, {(E.3]
Mean panel jacobian area ratio dsé/dso m (J.9]
hyperbolic paraboloidal panel jacobian matrix, [1.3]
d(&,n)/3(s,t)

Panel function [(J.u]
Panel integrals of functions ¥, ¥ {(J.7]
Edge contribution to panel integral J.6]
Coefficient of heat conductivity {2.1]
subscript, superscript, index of summation (K]
number of doublet and source singularity [u4.2]
parameters (global) in the neighborhood

of a panel

previous and next edge number on network {F.5]
N at an abutment intersection

matrix describing the evaluation of u(s,t) {1.3]

at seven points [HPSPLY calculation]



(LsQ]

[LINV]

<3

o B

rationalized quantity used in evaluation
of I(x)

element of arc length

subscript, superscript, index of summation
lower triangular matrix factor

reference length

basis function for linear interpolation
on a triangle

pseudo inverse for a least squares problem

matrix giving an edge's line vortex contri-
bution to a panel influence coefficient

global basis functions for the doublet
distribution

coefficients of “i in the evaluation of
- *
pis,t)at M
2
mod(i,j) = the remainder of i/j

edge midpoint common to half panel 2 and

*
half panel 4. M is the corresponding
point on the hypérbolic paraboloidal panel

total moment (about some specified point)
on the configuration (newton-meters)

freestream Mach number, local Mach number
midpoint of an edge

number of rows of panel corner points in
a network

matrix giving quadratic doublet coefficients

2x2x2 tensor giving cubic doublet coeffi-
cients

subpanel center
unit normal vector, pointing out of the

singularity surface, into the fluid
(components: Nys Nys nz)

(J.8]

(B.3]
(K]
(5.8, L]
(o]

(r.2]

(I.5]

[J.10]

£3.3]

[1.3]

(1.3]

(5.9]

{2.3]
[(K.2.3.2]

(5.1]

[J.6]

[J.6]

(1.31]
£3.2]



N

34

Nes

N

NCPM,, NCPM

1’ 2

ph

phh

P(4)

O+

Y
conormal vector, also denoted v

edge normal, normalized with pseudo inner
product, <.,.>. (Components: e nn)
components of n , the normal to S

components of 3, the 2-D edge normal in
local coordinates

number of columns of panel corner points
in a network

number of singularity parameters A. in a
configuration, or in the principal” image
of the configuration [K]. Sometimes denotes
the number of unknown singularity parameters.

number of network edge segments in a
configuration

generic upper limit of a sum
moment matrices used in post processing
pressure, freestream preésure (newton/mz)

field point, control point

points just below (S_) and just above (5+)
a control point

number of known singularity parameters

priority used in assignment of matching
conditions at an abutment intersection

size of the i-th partition in the block-
ing of the AIC matrix

phase function. ph(x,y) = Arg(x+iy)

hyperbolic phase function.
phh(x,y) = (1/2)logl{x+y)/(x-y)]

upper limit of integration in cylindrical
or hyperbolic cylindrical coordinates

field point or control point (see E)

vector of coordinates of the point P
(see p)

[5.2]
(J.5]

[5.2]

{J.5]

{5.1]

(3.3]

(F.3]

(r.43

[2.1]

(5.7.3]

(F.5]

[L.2]

{J.u]

(J.5]

{J.4, J.5]

{3.2]



PIC
pspLS, pspLP

Q.

O 4

> >

>
Qg 94 Qy Ag¢,

> i
qQ,q ]

als,t), q_(s,t)

O+

O+

O+

ol

streamline parameterized by t

a point on the line emanating upstream
from a control point and piercing a panel

panel defining point, 1 31 5 9

the location of an abutment intersection
panel influence coefficient matrix
source and doublet panel splines

heat generation (per unit mass) added to
fluid

source point or panel point

edge type indiecator, -1 for supersonic,
+1 for subsonic edges

panel center and bilinear coefficients
for the hyperbolic paraboloidal panel

images of a source point or panel point
»>- >+ + >+ - >=4+ ET T

>+
Also: 9,9,9 ,49 ,4qa ,q

hyperbolic paraboloidal (H-P) panel,
mean plane H-P panel

source point or panel point
vector of coordinates of the point Q

p§nel’poigt deviation from panel center.
AQ = Q - Qo

panel center, expansion point for far
field influence coefficients

corners of a triangle, { = 1,2,3

triangle edge midpoints, Q{ is opposite
Q
panel point, local coordinates

corner phase functions for evaluation of
the panel function J.

(5.91

(J.3]
(5.5]
(F.5]
(5.6]
(1.3]

[2.2]

K]

(J.5]

(1.3]

(K]

(1.3]

(3.2]

[5.6.3]

[5.6.3]

(1.2]

(1.2]

[J.9]
(J.8]



Q, Q+, Q Q = a panel, Q" = principal image of a

panel, Q° = reflected image of a panel
r panel type indicator. r = sign (nen).
(+1, subinclined; -1, superinclined)
R gas constant, joule/(kg k)
+ > . »> >
R, R(p,q) compressible distance between p and q
ﬁ control point recession vector
Ro compressible distance from the control

point to the panel center

R1, R2 reflection matrices for the first and
second planes of symmetry

Ri, R, R reflection matrices associated with
various images when one plane of symmetry
is present

Rij, R**, R'™, etc. reflection matrices associated
with various images when two planes of
symmetry are present

ﬁ 5 - 5, vector from field point to source
point
> > >4 >- +
AR AR = R - R = change in R along an edge
R(L) radius of a panel L

Rx(a). R (a), Rz(a) rotation matrices of angle a about the
y X, y and z axes

Rk(v) value of R on edge E, as a function of
v, the edge variable

s flow type indicator, sign(1 - Mi)

Si» Sy global basis function for the source
distribution

Sy = ¢+ 1, sign of edge orientation relative

to an abutment's orientation

s, 8 first local coordinate before (s) and
after (s) the application of a hyper-
bolic skew
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(K.5]

(5.2]

[2.1]
{5.2]
(G]

f4.2.2.2]

[K.2]

(K.3]

[K.4]

{J.3]
[J.3]
(E.3]

[(J.4]

£3.1]
[3.3]

(B.3]

[J.5]



Y
) a point on a network edge

s vector pointing into the network interior
ds differential element of arclength
s,s¥* first isoparametric coordinate on a hyper-

bolic paraboloidal panel

S the singularity surface across which ¢ and
¢n are allowed to jump

aS boundary of S

Sy the component of S lying in the first
plane of symmetry

82 the component of S lying in the second
plane of symmetry

components of S lying in the first or
second plane of symmetry (1 or 2) and
in the principal (+) or reflected (-)
image

components of S lying away from the
symmetry plane and in the principal
(+) or reflected (-) image

Sij, S+*, Ss°7, etc. components of S lying away from
either symmetry plane and in the various

components of space, C'%, C'7, etec.

dSo element of surface area in reference
coordinates, Xo

das” element of surface area in local coordi-
nates, X'

S a sphere surrounding an abutment inter-
section point, PAI

S a skew symmetric matrix used in construct-
ing [PSPLPI.

[s] a hyperbolic skew used to build the
reference to local coordinate trans-
formation matrix

{s] Full source panel influence matrix, with-

out origin shift. [Sj] (ef. [J.6.6])
includes the origin shift.

(F.3]
[F.5.2]
(I.4]
(1.3]

£3.2]

(B.3]
(X.3]

(K.4]

(K.4]

(K.3]

(K.4]

(E.3]

(E.3]

(F.5]

(1.3]

(E]

(J.6.4.3]
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Sgr

spS , spP

]

[SPSPL],

]

- O

[SPSPL

[SPINT®],
[SPINTP)

t

cty cty T

>

[(T]

Tss» Tp

8.0-12

reference surface area fo.11]

source and doublet spline vectors (1.1}

source and doublet subpanel spline [5.5]

matrices for i-th subpanel

source and doublet panel influence {J.1]
integrals

time, seconds {2.11]
edge parameter [F.6]
vector tangent to surface (E.1]
two-dimensional edge tangent | (J.4, J.5]
unit vector tangent to edge [1.4]
components of £ , the two dimensional edge [J.5]
tangent

second local coordinate on a panel, before (t) (J.5]

and after (t) the application of a hyperbolic
skew

coefficients of the average and difference of (5.6]
the velocity in the standard boundary condition

temperature, degrees Kelvin [2.1]
edge segment (F.3]
a tree (graph theory concept) (F.5]
subpanel k of a standard panel f1.2]
matrix used for cubic interpolation in the (I1.3.2]

construction of [HPSPLDJ ’

source and doublet PIC origin shift transfor- [J.6.6]
mations

a 2x2x2 tensor of rank 3 [J.6.4.2]
the rearrangement of the entries of the (J.6.4.2]

2x2x2 tensor T as a U-vector



g the transformation associated with stage (L.2]
’ (i,j) of the out-of-core factorization

(u,v,w) components of perturbation velocity in a [2.3]
coordinate system whose x-axis is aligned

with the freestream or uniform onset flow

Ug unit vector perpendicular to the panel normal [5.2]
normal and the compressibility axis

u, (U] an upper triangular matrix (5.8, L.2]

] , U uniform onset flow. U refers to the (L.1]
@'a m.a

uniform onset flow for solution index a

total onset flow. ﬁlj refers to solution (L.1]
O,C! O,Q

index a and symmetry image (i,j)

incremental onset flow (user specified). (L.1]
AG;J refers to solution index a and

symmetry image (i,J)

U a generic function represented via Green's {3.2]
third identity

vV, Vv v is the perturbation velocity vector (2.3, K.3]
having components vy

Variant: ;lJ = velocity in symmetry

image (i,J)

v, vt , v ete. Various symmetrized velocity fields [K.3, K.4]
v+=vs = symmetric part of ;
v-=vA = antisymmetric part of ;
“++ °S§ >
v =V = v, symmetrized w.r.t. 1-st and
2nd planes of symmetry

>+~ “SA
=VY =

v symmetric w.r.t. 1-st POS

antisymmetric w.r.t 2-nd POS
-- "AA
ay

-+ 2AS
=V

<P )

<+
<

s’ ¥p source induced component of velocity (B.3, J.1.1]
(35) and doublet induced component of

<>
velocity (vD)
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2,06 V2,4
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VQ

Q+ 2Qt
5 v

20 2,u

» 0 Tou,

regular part of ;D , excluding the line
vortex part

local edge coordinate

unit vector perpendicular to ug and n,
used to construct the reference to local
coordinate transformation

basis vectors used to define a local
coordinate system for spline vector
computation

matrix entries of an elementary column
transformation matrix Vv

a region of space
total velocity, components of total velocity

freestream velocity

source velocity functional giving the source
velocity at B induced by the source distri-

>
bution s(q)

doublet velocity functional giving the
doublet velocity at 5 induced by the
doublet distribution m(Q)

velocity functionals associated_with the
principal (Q") and reflected (Q”) image
of a panel

2Q+

v
1,0

1,0,

velocity functionals associated with panels
lying in the first plane of symmetry that
may be reflected in a second plane of
symmetry (Q7)

(B.3]

{Jd.4, J.5]

{5.2]

(I.1]

(L.2]

[3.2]
[2.1]
(3.1, 5.4]

[K.u]

[K.4]

(5.7, K.5]

(5.7, K.3, K.5]

(5.7, K.4, K.5]

velocity functionals associated with panels
lying in the second plane of symmetry

total source velocity functional (includes

integrals over the full principal image of S)

(K.5]



<4

P(t))

Ve

tvicy, Cvicly gvict

—i —-»j_J
ViC[, VIC,
Y
W, W,
1

> > -+
Hur YL Yae
Wi

>
W, W,
wx
W)
W, W, W

1* %20 "3
W

a

MNIC,
R

X

total doublet velocity functional
total velocity at ﬁ(t)

total velocity in the compressibility axis
direction

total corrected velocity in the compressibility

axis direction

An elementary transformation used in the
factorization of the AIC matrix

critical speed

I3

A velocity influence coefficient matrix
L{VIC], and various symmetrizations of the
velocity influence coefficients

the velocity influence 3-vector correspond-
ing to symmetrized singularity parameter

°i cij

AI or AI

; is the perturbation mass flux vector having

components wi

upper, lower, average and difference compo-
nents of perturbation mass flux

a weighting factor used in a least squares
fitting procedure

ﬁ is the total linearized mass flux vector
having components wi

x-component of total mass flux W

total linearized mass flux evaluated at
B(t)

basis vectors for skew coordinate trans-
formation calculation

far field vector panel integral

normal mass flux influence coefficient row
vector

position vector in R3

[K.5]

{5.9.5, pP.2]

(5.9.3]

(5.9.3]

(L.2]

[N.2.4.2]

(5.7, K.5]

(K.5]

(5.4]

(5.4, H.1]

(1.5]

[5.4]

(5.9.31]

[ 5.9.5, P.2]

[J.2]

(J.9]

(2.1]
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Xi, X'.l, X2, X

(x0 Yo zo)
(x,y,2)
(X,¥,2)

(x“,y",2")

8.0-16

argument for ¢q’ the edge integral primitive

-+ 3 )

Cartesian coordinates of x in R [2.1]

reference coordinates (5.2]

compressibility axis coordinates [2.3]

Prandtl-Glauert scaled coordinates [(3.1]

local coordinates; several local coordinate (5.2]

systems are used in appendices I and J

edge normal distance (5.9.4, 0.3]

the x coordinate after application of a (J.5]

hyperbolic skew

the reference coordinate system (E.0]

the compressibility axis coordinate system (E.0]
" the Prandtl-Glauert scaled coordinate system (E.O]

a panel's local coordinate system (E.O0]

a matrix to be computed by solving a system of {5.8]

linear equations

x and y arguments for the phase function [J.8]

(ph(x,y)), used in the calculation of the panel

function components Jk

the y coordinate after application of a hyper- [J.5]

bolic skew

see, respectively, X _, X, X, X’ [2.3, 3.1, 5.2]

intermediate matrix in the process of solving {5.8]

the AIC equation

see X, [(J.8]

see, respectively, X _, X, X, x° (2.3, 3.1, 5.2]

[J.8]



g, g

ijk

Greek Symbols

angle of attack, radians
compressibility axis angle of attack, radians

downstream parameter used in abutment inter-
section processing

solution index
1/2
compressibility scale factor, 1 - Mf |

angle of sideslip, radians

compressibility axis angle of sideslip,
radians

edge normal compressibility factor

{H.2]
{5.2, E.O]

(F.5]

(L.0, L.1]
[3.1]
[H.2]

(5.2, E.O]

{(5.9.4, 0.3]

generic right hand side term (8) , right (L.0, L.1]
hand side term associated with solution

index a, symmetry image (i,j)

ratio of specific heats of a gas [2.4]
surface vorticity (N.5]
row vectors associated with spline con- [I.1.5]
struction

rotation matrix specified by the user (0.4]
rotation matrix for the reference to com- [5.2]
pressibility coordinate transformation

quantity used in the calculation of recession [G.0]
vectors

Kronecker deltas

i-th subpanel, i=1(1)8 (5.6]
user defined tolerance distance for edge (F.3]
matching

small quantity whose higher powers (5.6.3 et. al.]
may be neglected

the permutation symbol [B.3]
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z third coordinate of a source point, reference {5.2]
coordinates

z, ¢° third local coordinate of a source point [5.2]

n second coordinate of a source point, reference {5.2]
coordinates

n, n’ second local coordinate of a source point {5.2]

An,, change in n along edge k (1.4]

] generic quantity to be matched by a [M.D., Sec. 5]
matching condition of the form ) S, 8, =0
(8 = g, u or £.av)

8IC influence coefficients associated with (M.D., Sec. 5]
a matched quantity @

K, X 4w for subsonic flow, 2n for supersonic flow (5.2]

K, % quantity associated with a quadratic function [1.2]
defined on an edge.
Alternatives: KSS' K85' KAB

Ai' AI’ X global singularity parameters (A, AI) (3.3, 5.7.4]
and the vector containing them (i)

A;, A;J global singularity parameters associated with [k, L]
symmetry image (i), or (i,J)

. + - S A SS

Alternatives: AI’ AI' AI’ AI' AI ete.

IS [A*}, {2™] vectors of global singularity parameters (K, L]
associated with various symmetry images

i Tij Ti Tij . .

AI' AI , AT, A Symmetrized global singularity parameters K, L]
and vectors corresponding to A;, Aij, Kl, iiJ

I;J. {A;J} **J for solution index a {L]

i 1] “ij .

A {xa } A°Y for solution index o (symmetrized singularity (L]
vectors)

> +> > *> > » .

A A A A A for the four images of the configuration. (M]

+ =t == -

Equivalent to X* » A , X 4 A , respectively
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AT o, i=1, ... Kk global source parameters defining a panel's (5.5.1]
source distribution. Each X? corresponds to
a column of BS

SO SLIREY kp ~8lobal doublet parameters defining a panel's (5.5.1]
doublet distribution. Each A? corresponds to
a column of BD

[A] matrix containing singularity parameter vectors (5.7.4]
to be determined by solving an AIC equation

A sweep angle for the leading edge of a wing [0.3]

My u(a) doublet strength, doublet distribution function {3.2]

MorHgrBpeMee Men Mo Hege Yeen P enn M ann (5.5]
polynomial coefficients of u in local coordinates

ul, ulJ the function u restricted to various symmetry [K.3, K.4]
images (i), (i,J)
Variants: u+, u-. ete.

El, ;1J the functions ul. ulJ defined with respect (K.3, K,4]
to points in the principal image

“A -iA  -Aj . . .

B,y UL , M the function p restricted to panels lying [K.3, K.4]

1 2 1 .

in the first or second plane of symmetry

u1, u2, e u9 the value of u at nine canonical points on the (5.5]
panel

u(g’, n’) doublet distribution function referred to local [5.5]
coordinates

> o

u the two vector: ‘ua [J.6]

- n

u(s,t) the doublet distribution on a hyperbolic {1.3.2]
paraboloidal panel (isoparametric element)
defined in terms of the coordinates of
parameter space

My o' Py oo coefficients of (3u/3x), (du/dy) used for the {J.9]

' ¥ far field PIC computation
ul, ulj symmetrized doublet distributions (K.3, K.4]
My, 50 Hg, 6 etc. My 5 refers to the value of py at the mid- (1.2]

point of the line connecting points 1 and
5 on the panel
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S
P, (p1. 92)

>=- >+

>
g, o(q)

g , 0., 0 _, 0,_,,

value of p at the beginning, middle and end
of some panel edge

panel conormal, 3 =Bn (See n)
> >
edge conormal, v = G n
first local coordinate of a source point

first coordinate of a source point, reference
coordinates

the change in the value of { along edge k

the ratio of the circumference to the diameter
of a circle

density of the fluid, kg/m3
density of fluid in freestream, kg/m3

hyperbolic or circular radius of hyperbolic
or circular cylindrical coordinates

vector from control point projection to
source point, local coordinates

values of 3 at beginning and end of edge i

source strength, source distribution function

g g
o’ "g’ "n’ "gE’ "&n’ "nn
polynomials coefficients of ¢ in local coordinates

8.0-20

the function o restricted to various
symmetry images (i), (i,J)

+ -
Variants: ¢ , o0 , etc.

the functions ci, oij defined with respect
to points in the principal image

the function ¢ restricted to panels lying
in the first or second plane of symmetry

the value of ¢ at five canonical points
on a panel

-source distribution function referred to local

coordinates

{d.10]

(5.2]
{J.6]
[5.2]

(5.2]

(1.4]

(3.2]

[2.1]
(5.9]

(J.4, J.5]

(J.4, J.5]

{d.u, J.5]
[3.2]

{5.5]

[K.3, K.4]

[(K.3, K.4]

[K.3, K.4]

(5.5]

(5.5]



a+d

Tk

6, 6(p)

o By, oM (P
o1, N
¢U1 ¢Li ¢A9 ¢D

¢

- +
¢k9 ¢k
¢u7 L¢Q-l

bqr 9q(2)

o
£

o
n

the two-vector:

symmetrized source distributions
summation symbol
panel (L), mean panel (Zm)

surfaces involved in an abutment

a o
2x2 matrix, &8 &8 giving
o ]
&n nn
quadratic variation of o(g,n)

stress tensor, newtons/m2

parameter for a line, t ¢ [0,1]

edge normalization parameter., In some

contexts, 1 = | [t , t ]| 172 , in

others 1 = | <t , > | 172
indicator for sgn (a,)
perturbation potential function

¢ restricted to symmetry image (i) or (i,j)

+ - ++ +-
Variants: ¢ , ¢ , ¢ , ¢ , etc.

symmetrized perturbation potential
functions,

A S

Variants: ¢ , ¢, ¢ , ¢ , ¢ , ¢ , etc.

upper surface, lower surface, average and
difference values of ¢

circular (or hyperbolic) phase

value of circular (or hyperbolic) phase
at the beginning and end of a subpanel
edge segment

set of basis functions of local variables
(£,n) defined on a panel.

2
Lo 1= Uls Es My E9/2, ... nO/6y

a form of the edge integral independent
of q, the edge type

{g.6]

(K.3, K.4]
[2.1]
(I.4]
(B.3]
[J.6]

(2.1]

(I.4, K.1]

{d.7, dJ.10]

{J.8]

(2.3]

[K.3, K.4]

(5.4]

[J.4, J.5]

{d.4, J.5]

(J.9]

[J.8]
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]
¢Q
-
¢c(p.s)
-
¢u(p,m)
¢Q:’ ¢Q:’ ¢Qt
g H
Q
‘»1’0 ¢1 s M ¢1 U
Q
¢2,0' 4>2,u’ <:>2,c'
¥
¢
a
*
¢
u

i
LOIC, | IC)

¢ICI, ¢IC§, ¢IC§j
X

X

v

wa
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SIC

total potential

potential for onset flow

source potential functional giving the source

£2.3]
[2.3]
{K.3]

potential at 5 induced by the source distri-

-
bution s(q)

doublet potential functional giving the doublet

(K.3]

potential at S induced by the doublet distri-

bution m(a)

potential fugctionals associateg with the
principal (Q ) and reflected (Q ) image
of a panel
Q Q+

e Yo ®

Qt
T,u

(5.7, K.5]

(5.7, K.3, K.5]

potential functionals associated with networks

and panels lying in the first plane of
symmetry that may be reflected in a
second plane of symmetry

Q Q+ Q+
2,u’ ¢2.0 i ¢2.u

potential functionals associated with
networks and panels lying in the

second plane of symmetry

¢

total source potential functional (includes

[507’ K-n’ Kos]

{x.5]

integrals over the full principal image of S)

total doublet potential functional
ij

{K.5]

(5.7, K.5]

a potential influence coefficient row vector
( $IC ) and the various symmetry conditions

of this

potential influence coefficients associated

with singularity parameters XI' A;, AiJ

hyperbolic angle
the function R(p,a) = [p-a, p-al'’?

the fundamental kernel function, ¥ = 1/R

far field approximate integral associated
with [[ v o dg dn

[K.5]

[J.5]
{(J.6]
(J.6]

{J.9]




vectors describing strength and direction
of the rotational onset flows

integrals associated with line vortex
influence coefficient generation

(H.3, L.1]

(d.10]
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KP

NU

up

v

XyYs2,6,M,8
a

a,B,Y

1,2,3,4
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average of upper and lower

denotes compressibility or refers to the compressibility
axis

difference of upper and lower (upper minus lower)

refers to quantities associated with u, the doublet
distribution

indices of vectors in R3, €.8+y Vy

index of a global singularity parameter, Ai

index of a global singularity parameter, e.g., AI
corresponding to known parameters

lower surface

non-updatable

refers to quantities associated with ¢, the source
distribution

upper surface

updatable

corresponding to unknown parameters

refers to constant volume quantities (cv)

denotes partial differentiation, e.g., Ux' Uy, Uz

a solution index

index subscripts

denotes reference coordinates

denotes images of real configuration (first image =.input)
refers to first plane of symmetry

refers to a second order quantity, e.g., Cp,2

refers to second plane of symmetry

refers to quantities associated with the far field




Superscripts

~

A denotes antisymmetric part, e.g, ¢

D doublet, quantity pertaining to doublet strength

(1) pertaining to i-th symmetrized matrix or vector,
i=1,2,3,4 (equivalent to SS, AS, AA, SA respectively)

. . . ij kl

i,j,k,1 superscripts in the index set {-1,1}, e.g., H™, H

I input, that is, defined by the user

S source, quantity pertaining to source strength

S denotes symmetric part, e.g., ¢s

T matrix transpose

-T inverse of transpose (same as transpose of inverse)

- denotes Prandtl Glauert scaled coordinate system, e.g., X

»> denotes a vector, e.g., ;

denotes local coordinate system, e.g., X~
-il

image value, e.g., P

* finite part of integral

~ denotes vector modified by application of metric matrix

- denotes a partially symmetrized quantity, e.g., 51SJ
- denotes a fully symmetrized quantity
+ alias for +1 in the index set {+1,-1}; also denotes

symmetric part or principal image

- alias for -1 in the index set {+1,-1}; also denotes
antisymmetric part or reflected image
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<<
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Other Symbols

denotes partial differentiation

boundary of a region

gradient operator

compressible gradient operator, see section B.1

= §~§ = LLaplace operator

gradient with respect to location of (control point) P
gradient with respect to location of (integration point) Q
gradient operator in two dimensions

curl operator

Euclidean inner product

denotes a column vector or a three-index tensor

dual compressible inner product, see equation (E.2.8)
denotes a row vector

denotes a matrix

(i,j) entry of the matrix

compressible inner product, see equation (E.2.4)

positive definite compressible inner product, see equation
(J.2.7)

pseudo-inner product, see equation (J.6.4l4)
union of sets of points

intersection of sets of points

line integral

surface integral

very much less than



c.p.

s.p.

det

qualifier symbol, read "such that.”" For example,
the expression { x | f(x) = 0} is read,

"the set of values x such that f(x) = 0."

refers to far field quantities, e.g., %,

vector cross product operation

denotes contraction of two matrices, defined by equation
(J.6.37)

qualifier symbols, read "such that." See remarks
concerning " | "

boundary condition
control point
singularity parameter

used as a prefix, the jump in a quantity across S

»> >
(e.g., AV = vU-vL)

determinant

approximately equal to
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9.0 PAN AIR Engineering Glossary

This glossary defines the most commonly used engineering terms in the PAN AIR
Theory and User's Documents. In general, all specialized terms (that is,
terms whose meaning in the context of PAN AIR is different from their meaning
in common usage) are included, as are standard engineering terms which are
used in the PAN AIR engineering documents. Terms which relate to the com-
puting aspects of PAN AIR are defined in a separate glossary, the PAN AIR
computing glossary, which is contained in the maintenance document.

The format of the glossary is the following: Each term is followed by a list
of principal references and a definition. The references give the section
number where the item is discussed, preceded by a T for Theory Document, a U
for User's Document, and an S for Summary Document.
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ITEM
Abutment

Abutment, empty space

Abutment intersection

Abutments, overlapping

Abutments, pairwise

Abutment parameterization

Abutment, program generated

Abutment search, automatic

Abutments, user-defined

Angle of attack, «

Angle of sideslip, 8

DEFINITION

A curve where two or more network edges (exactly or
approximately) meet.

An abutment involving only one network edge, which is
thus a free edge.

A point where several abutments meet.

Two distinct user-defined abutments which involve the same
portion of some network edge.

Abutments involving pairs of network edges. They are
generated by the program whenever the distance between
network edges is less than the tolerance distance.

The assignment of a real number between zero and one to
each panel corner or panel edge midpoint in an abutment.
Zero is assigned to the starting point, one to the end point.

An abutment generated by the program rather than defined by
the user, involving any number of network edges, computed
by analyzing pairwise abutments.

The process by which the program determines the set of all
pairwise abutments.

Any abutment which the program user identifies.

The angle of coordinate rotation about the y-axis; this
appears in the coordinate transformation (rotation) matrices.

The angle of coordinate rotation about the modified z-axis; this
appears in coordinate transformation (rotation) matrices.

Note: The effect of the orientation of the flow due to the
specification of an angle of attack a and an angle of

sideslip 8 corresponds to effect of rotating the configuration
through the sideslip angle g, followed by a rotation through
the angle of attack a.

REFERENCES
T-5.3, U-B.3.5

T-F.2
7-5.3, T-F.5

Program printout
only

T-F.2

T-F.6

T-F.2

T-F.3

T-F.2
T-5.2, U-B.2.2

T-5.2, U-B.2.2
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ITEM

Area, reference

Axis system

Axis system, body

Axis system, reference
Axis system, stability

Axis system, wind

DEFINITION

A user-defined scaling factor for the force and moment
coefficient computation.

A coordinate system in which the force and moment coefficients
are expressed.

An arbitrary user-defined coordinate system specified by

- means of Euler angles.

The reference coordinate system (that system in which user
defines the configuration geometry).

The coordinate system conventionally used by stability and control
engineers.

The coordinate system whose x-axis is aligned with uniform
onset flow.

REFERENCES
7-0.1, U-B.4.3

u-2.1.7, u-8.2.1
u-2.1.7, U-B.2.1
u-2.1.7, U-B.2.1
u-2.1.7, u-B.2.1

u-2.1.7, u-B.2.1
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1TEM

Basis function

Boundary condition

Boundary surface

Boundary condition, aerodynamic
Boundary condition classes
éoundary condition, closure

Boundary condition coefficient,

average, ( )a

Boundary condition coefficient,
difference, ( )p

Boundary condition coefficients,
upper (lower), ( )y, (

Boundary condition, doublet
(or edge) matching

Boundary condition hierarchy

WL

DEFINITION

A function (of surface coordinates) which expresses the
distribution due to a unit value of a single singularity
parameter.

A linear equation imposed at points on the configuration.
This equation specifies some combination of the velocity
potential and its derivatives.

A surface, defined by the user, on which boundary conditions
are imposed.

The specific form of boundary conditions for the aerodynamic
problem in PAN AIR.

The result of grouping the boundary conditions into five
separate categories.

An equation specifying the total normal mass flux passing
through a surface.

The average of upper and lower coefficients.

The difference of upper and lower coefficients.

Coefficients in the boundary condition equations corresponding
to the upper (lower) side of the configuration.

A boundary condition specifying continuity of doublet strength
across network edges.

An ordering of all admissible boundary conditions defined by
the program. When two user-input boundary conditions are
supplied and only one needs to be imposed, the program imposes
that boundary condition which is higher on the hierarchy.

REFERENCES
T-3.3, T-4.2.1

T-2.5, T-3.2,
T-3.3, T-4.2,
T-5.4, T-H
U-A.3

T-K.3

U-8.3.1
U-8.3.5, T7-5.4,
T-5.7.1, T-K.4
T-5.4, U-B.3.1
7-5.4, U-B.3.1
T-5.4, U-B.3.1
7-5.3, 1-5.7.1,

T-F
T-H.2.5
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1TEM
Boundary condition, non-standard

Boundary condition, right-hand-
side

Boundary value problem

Boundary value problem, analysis
Boundary value problem, design
Boundary value problem,

i1l-posed

Boundary value problem,
well-posed

DEFINITION
Either a closure or a doublet matching boundary condition.

The specified value of the linear combination of the potential
and its derivatives given by the boundary condition.

The combination of a partial differential (or integral) equation
and boundary condition equations on a surface.

A boundary value problem with boundary conditions specifying
the normal component of the velocity or mass flux.

A boundary value problem in which the boundary conditions specify
the values of a tangential component of the velocity on a surface.

A boundary value problem which does not have a unique solution,
or has no solution.

A boundary value problem which has a unique solution.

REFERENCES
7-5.7.1, U-B.3.5
7-5.7.4

T-3.2, U-A.3
U-3.3, U-B.3.2
T-C, U-B.3.3
T-5.4, T-B.1,

U-A.3

U-A.3, T-3.2,
7-5.4, T-B.1
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1TEM

Column index

Compressibility direction
Compressibility vector
Configuration
Configuration, image part

Configuration modeling

Configuration modeling,
exact

Configuration modeling,
linearized

Configuration, real part

Configuration symmetry

DEFINITION

An integer which, in conjunction with the row index, describes
the indicial location of a panel or a panel corner point.

When panel corner points are defined by a user, all the points
whose column indices are identical are input consecutively.

The direction of freestream flow in the Prandt1-Glauert equation.
It is defined by the input terms “CALPHA" and “CBETA".

A unit vector in the compressibility direction.

The surface (including possible wakes) on which flow boundary
conditions are applied or the potential or velocity is
discontinuous.

That part of a symmetric configuration which is not input
by the user.

The process of representing an object, the flow field about
which is of physical interest, as a collection of networks
of panels on which boundary conditions are applied.

The representation of a physical surface with networks of
panels describing the exact physical location of the surface.

The representation of thickness or deflection of a physical
surface by means of a mean surface paneling combined with the
specification of boundary conditions which simulate the
perturbation of the true surface geometry from the paneled
surface.

The user-defined (that is, input) part of a symmetric configuration.
Existence of one or two (perpendicular) planes through which the

real part of configuration may be reflected to obtain the complete
configuration.

REFERENCES
u-8.1.1, T-5.1

7-5.2, U-B.2.1

7-5.2
T-5.1

T-5.7.2, U-2.1.2

u-2.1.4, s-3.1.4

u-2.1.4, s-3.1.4

T-5.7.2, U-2.1.2
1-5.7.2, U-2.1.2,
u-B.2.3, S-3.1.2



L-0°6

ITEM

Configuration, thick

Configuration, thin

‘Conormal vector, W

Constraint matrix

Constraint number

Constraint vector

Continuity of doublet strength

Continuity equation
Control points
Control point, center

Control point, corner

DEFINITION
A configuration model in which one surface of a network is exposed
to a flow field of interest, while the other surface is exposed
to a flow field of no physical interest.

A configuration model in which both sides of a network are exposed

to the flow field of interest. An example arises from the modeling

of a wing as a single paneled surface.

The vector obtained by a Mach number - dependent transformation
gf a unit surface normal vector. In compressibility coordinates,
N = (sSBC ny, Ny, ng).

The right-hand-side term in a multiple system of boundary
condition equations, that is, a system of equations with more than
one right-hand-side vector.

The right-hand-side term of a single boundary condition equation.

The right-hand-side term in a system of boundary condition
equations with only one right-hand-side vector.

The condition that a certain alternating sum of doublet strengths
along an abutment is zero. This reduces to equality of doublet
strengths if two network edges are involved. It permits the
elimination of the line vortex term from the integral equation.

The equation expressing conservation of mass in a small fluid
element.

The points on a configuration surface at which up to two boundary
conditions are applied.

A control point whose location is receded slightly from a
panel center point.

A control point whose location is receded slightly from a
panel corner point at the end of an abutment.

REFERENCES

u-2.
T-5.
S-3.

1-5.7.4, T-L
T-3.2
T-3.3, T-5.7.2

T-F

T-2.1

T-3.3, T-5.4,
T-G

-G, U-B.3.4

T-G, U-B.3.4



8-0"6

ITEM

Control point, edge
Control points, extra

Control point recession vector

Compressible gradient operator,

Coordinate system,
compressibility, (x,y,z)

Coord1nate ,System, local,
(x', y', 2")

Coordinate system, reference,
(Xo. Yo» Zo)

Coordinate system, scaled,
(x,y,2)

Coordinate transformation

Corrections, velocity

Critical speed

DEFINITION

A control point whose location is receded slightly from a
panel edge midpoint on a network edge.

Control points introduced by the subdivision of a network
edge into more than one abutment.

A vector which defines the difference between the location of
the control point and the location of the point from which
it is receded.

The gradient operator whose component in the freestream
direction has been multiplied by (I—M )}, where M is the
freestream Mach number.

The coordinate system in which the preferred direction of
the Prandt1-Glauert equation is the x-direction.

A generally non-orthogonal coordinate system used to compute
surface integrals for each subpanel, and generally distinct
for each subpanel.

An arbitrary rectangular Cartesian coordinate system in which
the program user defines the configuration geometry.

The non-orthogonal coordinate system in which the Prandtl-
Glauert equation transforms to either Laplace's equation
or the wave equation.

A linear transformation, defined by a matrix, which transforms
point coordinates from one system to another.

Optional semi-empirical corrections applied to the
computed velocity.

The speed of sound at a particular point in the flow field.

REFERENCES
T-G, U-B.3.4

T-5.4, T-G
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T-5.2

T-5.2, U-B.2.1

T"s.z

T-5.2, U-B.2.1

T-3.1

T-£, U-B.2.1

-8.4.1, T-5.9.3,
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ITEM

Data check

Differentiated influence
coefficients

Dirichlet problem
Discretization

Displacement modeling
Design capability
Design, iterative

Design, linearized

Design, sequential

Domain of dependence

DEFINITION

A run of PAN AIR in which the validity of the configuration
geometry and boundary conditions is checked without a potential
flow solution being attempted.

Matrices which define the derivative with respect to panel

or control point location of the potential and velocity
induced by a panel on a control point. (Not currently used in
PAN AIR.)

A boundary value problem consisting df the specification
of potential on the boundary of a region of finite volume.

A numerical method for solving an integral equation by
replacing continuous quantities with discrete ones.

The representation of viscous effects such as a boundary layer
by a perturbation of the boundary conditions (through the
definition of a specified flow) or the surface paneling.

The ability to specify a desired pressure distribution on a
surface whose shape is only known approximately, and obtain a
relofted surface which more nearly yields the desired pressure
distribution.

A multi-step design procedure in which the relofting
algorithm makes use of "differentiated influence coefficients®.

A one-step design procedure in which a first order
approximation to the desired surface is sufficient.

A multi-step design procedure in which the relofting
algorithm makes use of the normal mass flux which the program
computes on the paneled surface.

The spatial domain in which disturbances are felt at a
particular point P. It consists of all of space in subsonic
flow and the upstream Mach cone from P in supersonic flow.

REFERENCES
U-2.3.1

T-C.3

U-A.3

T-2.5, 7-3.3

U-2.1.4

T-C.1

T-C.2

T-Scz
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ITEM

Domain of influence

Doublet distribution

Doublet matching

Doublet parameters

Doublet strength

Drag

Dual vector

Dual vector, almost

DEFINITION

The domain in which disturbances at a point P are felt. It
consists of all of space in subsonic flow, and the downstream
Mach cone from P in supersonic flow.

One of the two unknown quantities in the fundamental integral
equation.

See boundary condition, doublet matching.

Unknown quantities on which the doublet distribution on
the configuration depends.

The value of the doublet distribution at a particular
point. It is equal to the size of the jump in velocity
potential across the surface.

The x-component of the force on the configuration in the wind
axis system. - PAN AIR computes drag on an impermeable surface
by integrating the pressure distribution on the surface.

The drag computed by PAN AIR does not include viscous effects.

A real-valued linear function on a vector space. Dual
vectors transform according to equation (E.1.8e) of the
Theory Document. Typical dual vectors are the gradient
operator and the surface normal. A dual vector is also
known as a covariant vector.

A vector transforming according to equation (E.1.12) of the
Theory Document.

REFERENCES
T-Figure 5.4

7-3.2, U-A.2

U-B.3.5
T-5.5

T-3.1, U-A.2

u-2.1.7

T-E.1

T-E.1
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ITEM

Edge conormal

Edge function

Edge force computation
Edge matching

Edge, nearly sonic

Edge, network
Edge normal

Edge, panel

Edge, subsonic

Edge, supersonic

Edge tangent

DEFINITION

A vector lying in the plane of the panel or subpanel whose
“pseudo-inner product" with the edge tangent is zero.

One of the two basic components (along with the panel
function) of the entries of a PIC matrix. It is defined by
an integral along a panel or subpanel edge.

A special computation of forces on the edge of a thin surface,
where the small perturbation assumptions may not be valid.

The problem of imposing appropriate conditions on singularity
strength variation across network edges.

A subpanel or panel edge for which the pseudo-inner product
of the edge tangent with itself is approximately zero. Such
an edge can only occur in supersonic flow, and is inclined to
the flow at approximately the same angle as a Mach cone.

That collection of panel edges lying on one extreme of a
network and thus not shared by two adjoining panels.

A vector lying in the plane of the panel or subpanel and
perpendicular to the edge.

A line segment connecting two panel corner points.

A subpanel or panel edge for which the "pseudo-inner product"
of the edge tangent with itself is positive.

A subpanel or panel edge for which the pseudo-inner product
of the edge tangent with itself is negative. Such an edge
can only occur in supersonic flow, and is inclined to the
flow at a greater angle than the Mach cone.

A unit vector parallel to a panel or subpanel edge.

REFERENCES
T-J.5.1

T-d.7

7-5.9.4, T-0.3,
U-B.4.3
T-2.2, U-B.3.5

7-4J.5.1

T-D.1, U-B.1.1
T-d.5.1

T-D.1
T-J.5.1

T-4J.5.1

T'JoSul
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ITEM

Energy equation

Entrainment

Equation of state

Euler's equation

Existence of a solution

Extension matrix, doublet

Extension matrix, source

DEFINITION

An equation expressing conservation of energy in a small fluid
element.

The phenomenon in which an efflux from a propulsion source
absorbs fluid from the surrounding flow as the distance from
the configuration increases.

An equation relating the pressure, density, and temperature
of a fluid.

A differential equation relating density, velocity, and pressure
in a f;uid (momentum equation for inviscid fluid without body
forces).

The problem of determining whether a boundary value problem has
at least one solution.

A matrix which gives the values of doublet strength at the
corners of a subpanel and the "kappa quantities" for its
edges in terms of the panel doublet parameters.

A matrix which gives the values of source strength at the
corners of a subpanel in terms of panel source parameters.

REFERENCES
T-2.1

U-2.1.4

T-2.1

T-2.2

T-B.1, U-A.3

T‘IoZ-Z.4

T-1.2.1.3
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ITEM
Far field method

Far field moment, subpanel

Far field moment, basic
Far field moment, subpanel

Flow symmetry

Force

Force coefficient

Force, edge

Freestream, Y%

DEFINITION

An approximation for the computation of panel influence based upon
the distance of the control point from the panel being much greater
than distances within panel.

A matrix or tensor which describes the dependence of a
particular integral over a panel on the panel source or doublet
parameters.

Scalars giving the values of certain integrals of polynomial
functions over a subpanel.

A matrix or tensor which describes the dependence of the same
integral over a subpanel on the panel singularity parameters.

The existence of one or two (orthogonal) planes of symmetry
for the flow field.

For impermeable surfaces, the force is the integral over the
surface of the pressure times the surface normal vector.

For permeable surfaces, an additional "momentum transfer"
term contributes to the force.

A normalized form of the force vector which removes the force
due to the freestream flow and allows for a scaling factor
introduced by the user. The force coefficient on an impermeable
surface is the integral of the pressure coefficient times

the normal vector divided by a user-supplied reference area.

See edge force computation.
The uniform flow which is perturbed by the introduction of a

configuration on which boundary conditions are imposed.
See also onset flow, uniform, and velocity perturbation.

REFERENCES

T-4.2.2, T-5.6,
T-4.9

T-1.4.2.1

T-0.1, U-B.4.3

T-2.3
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ITEM
Global data

Gradient operator,i;
Grid points

Grid points, fine or enriched

Green's theorems

DEFINITION

Information (such as symmetry plane locations and the compress-
ibility direction) supplied by the PAN AIR user to describe
the configurations as a whole.

A vector whose entries are the partial differentiation
operation with respect to the coordinate functions.

Panel corner points.

Rectangular array of points which are corner points, edge
midpoints, or center points of quadrilateral (or triangular)
panels of a network.

Several relations between spatial integrals and surface
integrals. These relations are used to derive the integral
equation (B.0.1) of the Theory Document, which PAN AIR
solves numerically.

REFERENCES

u-7

T-8.3

T-5.1, U-B.1.1

T-5.1, U-B.1.1

T-3.2
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ITEM

Influence coefficient

Influence coefficient,
aerodynamic, AIC

Influence coefficient, panel,
PIC

Influence coefficient,
potential, ¢IC

5q€1uence coefficient, velocity,

Intermediate field method

Irrotational flow

DEFINITION

A matrix giving one or more field flow properties as a linear
combination of the array of singularity parameters.

Combination of potential and velocity influence coefficient
matrices giving left-hand-side of boundary condition equation
as a linear combination of singularity parameters.

Matrix giving perturbations that a source or doublet
distribution on a panel induces at a control point.

Matrix giving the perturbation velocity potential at network
control points as a linear combination of singularity
parameters.

Same for perturbation velocity.

Approximation for computation of panel influence; intermediate
between near field and far field methods.

Property that the curl of the velocity field is zero; assure
existence of velocity potential.

REFERENCES

T1-5.6

7-3.3, T-4.2,
7-5.7

T-4.2.2, T-5.6,
T-4
T-4.2, T-5.6

7-4.2, T-5.6
7-5.6, T-J.9

Y-2.3



91-06

ITEM
Jet efflux

Jet efflux tube

DEFINITION

A flow emanating from the propulsion unit.
modeled in PAN AIR by paneling the jet efflu
wake network.

The cylindrical surface surrounding the jet
from the configuration to infinity,

A jet efflux may be
x with a

efflux, extending

REFERENCES

u-2.1.1

u-2.1.1
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ITEM

Kappa quantity,K

Kutta condition

DEFINITION

A quantity defined for a line segment (generally a panel or
subpanel edge) on which a quadratic function is defined.

The value of the quantity is the value of the function at an
endpoint of the segment plus half the gradient of the function
dotted into the difference vector between the positions of the
two endpoints.

The boundary condition imposed at the trailing edge of a
lifting surface such as a wing, specifying that the jump in
pressure coefficient be zero there.

REFERENCES

T-1.2.2.2

U-A.2, T-B.2
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1TEM

Laplace's equation

Least squares fit, constrained

Length, reference

Line vortex term

Lofting

DEFINITION

Fundamental partial differential equation saying that
divergence of gradient of a scalar is zero.

The process of fitting a function as well as possible to a
set of values at a point on a plane. The values need not

be known in advance; the result of the process is a matrix
giving the defining coefficients of the function in terms of
the unknown values.

A user-input length for the scaling of moment coefficients
computed by the program. .

The line integral in the expression for velocity at a point
in space. This integral vanishes if doublet continuity is
maintained everywhere.

The revision of the geometry of a surface to more nearly attain
a pressure distribution specified in a design run.

REFERENCES

T-3.2, U-2
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ITEM
M-direction
Mach angle
Mach cone, upstream
Mach disk
Mach - inclined surface
Mach line

Mach number

Mach wedge

Mass flux, liqurized
perturbation, W

-l
Mass flux, total, W

Matrix decomposition

DEFINITION
The direction of increasing panel row index.
The angle formed between the freestream direction and a Mach line.

A right circular cone located upstream of a field point,
containing domain of dependence of that point, in supersonic
flow.

The interior of the circle resulting from the intersection of
a Mach cone with a plane perpendicular to its axis.

A surface whose normal is perpendicular to its conormal (A-n = 0).
Such a surface is tangent to a Mach cone.

A straight line generator of the Mach cone. One of the lines
of intersection of the Mach cone with a plane containing the
origin point of the cone.

The ratio of the speed of the fluid to the speed of sound.

The set of all point affected by a disturbance on a supersonic
edge. The Mach wedge emanates fownstream from the edge. A point
Q lies in the Mach wedge if some point P on the edge lies in

the domain of dependence of Q.

The vector obtained by applying the compressible gradient
operator to the velocity potential, or by scaling the
freestream component of the perturbation velocity by.il-Ma,z).
In compressibility coordinates W = (s82 u, v, w) = V§.

Produce of local densitﬁ_(normalize bx‘frqggtremn density)
and velocity of fluid, W= (p/g, ) V=V +W.

Expression of a square matrix as product of lower and upper
triangular matrices.

REFERENCES
U-7.4, U-B.1.1
T-d

1-5.2

1-d.4.2

T-5.2, U-B.1.3
T-J

T-2.3
7-J.11

T-5.4

T-4.5

T-5.8
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ITEM

Metric matrices

Minimal data set

. Modified data set

Modeling
Modified dual vector

Modified vector

Moment coefficient, Cp

Momentum equation

Multiply connected

DEFINITION

Matrices which account for compressibility effects. The first
metric matrix (denoted B) multiplies the freestream component

of a vector by (1-My 2), while the second metric matrix

(denoted C) multiplies the gomponent of the vector perpendicular
to the freestream by (1-Mw

A small amount of data (potential, normal mass flux, source
and doublet strength) stored for each solution and each control
or grid point in anticipation of post-processing.

A small amount of data (potential, normal mass flux, source
and doublet strength) stored for each solution and each control
or grid point in anticipation of post-processing.

See configuration modeling.

A dual vector whose cgmponent in the freestream direction has
been sealed by (1-Ms ¢). A modified dual vector is obtained
from a dual vector by the application of the first metric
matrix.

A vector whose comgonent perpendicular to the freestream has
been scaled (1-Mw €). A modified vector is obtained from
a vector by the application of the second metric matrix.

An angular momentum analog of the force coefficient.
The moment coefficient contains a user-supplied scaling
factor, and is defined by equation (0.1.3) of the
Theory Document.

Equation expressing conservation of linear momentum in a small
fluid element.

A region of space is multiply connected if a closed path can be
drawn be in the region which cannot be shrunk to a point.
See also "simply connected.”

REFERENCES
T-E.2

T-M, U-2.1.1

T-M, U-2.3.4

T-E.2

T-€.2

T-0.1, U-B.4.3

T-2.1

T-B.1, U-A.3
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ITEM

N-direction
Navier - Stokes equation
Near field method

Network

Network, analysis

Network, composite

Network, design

Network, doublet
Network gaps
Network, wake
Network, source

Network type, doublet

Network type, source
Network, wake

Normal vector, unit

DEFINITION
The direction of increasing panel column index.
Combination of continuity, momentum, and energy equation for
a fluid.

Computation of a panel influence coefficient matrix by summing
over all eight subpanels the influence of each subpanel.

An indically rectangular array of panels corner points; basic
unit for defining the geometry of the configuration.

Network with singularity parameter locations as required for
analysis boundary conditions.

Network having both source and doublet distributions.

Network with singularity parameter locations as required for
design boundary conditions.

Network having a (locally quadratic) doublet distribution.
Gaps due to non-coincidence of network edges.

See wake network.

Network having a (locally linear) source distribution.

A description of the function performed by the doublet
distribution on the network. Doublet types existing are

analysis, design, wake, and null (zero doublet distribution).

Same for source distribution. Types are analysis, design,
and null.

Network used to model wake surfaces: has continuous normal
flow, may have discontinuity in potential across network.

See unit normal vector.

REFERENCES

u-7.4,
U-8.1.1

T-2.1

T-4d.1

HE T

—_
|

T-5.1
T-5.1

T-5.1

T-4.1, 7-5.3

T-5.1

7-5.1, T-D

T7-5.1, T-D

1-5.1,
u-B.1.1
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ITEM

-t

Onset flow, U

Onset flow, local incremental,
A

Onset flow, rotational

Onset flow, total, ﬁb

Onset flow, unifonn,iln

DEFINITION

The user-defined flow field in which the configuration is
analyzed. In the simplest case, this is just the uniform
freestream flow .

A supplementary term added to the onset flow at individual
control points to simulate the superposition of a non-uniform
effect (such as a slipstream) onto the freestream.

A supplementary term added to simulate a rolling or pitching
motion.

The sum of all terms in the onset flow.

An onset flow which is constant over the entire flow field,

and is used to simulate a uniform freestream. The uniform onset
flow need not be parallel to the freestream direction i; on
which compressibility effects are based.

REFERENCES

U-8.2,
T-H.3,
S-3.1.5

- C

-8.2,
-H.3

-I-lc
X

—llcc
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ITEM

Panel

Panel, almost non-convex

Panel

Panel

Panel

Panel

Panel
Panel

Panel

Panel

Panel

Panel

aspect ratio

center point
column

corner point

defining points
diameter

edge midpoint

function

integral matrix

method

DEFINITION

Part of a network surface, defined by four network defining
points which are indicially adjacent.

A panel with an interior angle of nearly 1800.
The ratio of the length of a panel to its width.

The point whose coordinates are the average of the coordinates
of the four panel corner points.

A sequence of panels with the same column index. See column index.

One of the grid of points which defines a network. Four of
these points (appropriately adjacent in an indicial sense)
are sufficient to construct a panel's geometry.

The corner points, edge midpoints, and center point of a panel.
Twice the panel radius.

The midpoint of a segment connecting adjacent panel corner
points.

One of the two basic components (along with the edge function)
of the entries of a PIC matrix. Defines as an integral over
a panel or subpanel.

Matrix giving the velocity and/or potential induced at a
control point by a panel or subpanel, in terms of the
coefficients of the polynomial describing the source or
doublet strength on the region.

Method for solving potential flow problems, using panel model
of surface to reduce integral equation to a system of linear
equations.

REFERENCES

1-3.3, T-4.1,
T-5.1, T7-D.1

U-8.1.3, 1-D.2
U-B.1.3, T-D.2
T-D.1

u-8.1.1, 7-5.1

T-D.1

T-D.2
T-D.2
T-D.1

T-J.7

T-J.6
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ITEM
Panel, non-convex
Panel radius

Panel skewness parameters

"Panel, subinclined,

superinclined, or
Mach-inclined

Panel, triangular
Parameterization
Perturbation

Phase function

Post-processing

Potential
Potential flow

Prandt1-Glauert equation

DEFINITION
A panel containing interior angles exceeding 180°.
The distance.

Real numbers whose magnitude describe the extent to which a
panel fails to be a parallelogram.

See subinclined, superinclined, or Mach-inclined surface.

A panel two of whose corner points coincide.
See abutment parameterization.
Change to undisturbed flow field or geometry.

Function with two arguments equivalent to the FORTRAN
function ATAN2 with arguments reversed. Phase (x,y) =
arg(x+iy), where arg is the argument of a complex number.

The computation of pressures, or forces and moments from the
minimal data set.

See velocity potential.

Fluid flow characterized by the existence of a velocity
potential function, satisfying a particular partial
differential equation, whose gradient at a point is the
velocity there.

Partial differential equation for compressible flow: divergence
of compressible gradient of perturbation velocity potential
is zero.

REFERENCES

U-B.1.3, T-D.2

T"Doz

T-D.2

u-8.1.1

T-J.4.4.2

T-2.3, T-A.1

T-J.4.4.2

T-2, T-A
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ITEM

Preferred direction

Pressure, P

Pressure coefficient, Cp

Pressure coefficient,
isentropic

Pressure coefficient, linear

Pressure coefficient, reduced
second order

Pressure coefficient, second
order

Pressure coefficient, slender
body

Pressure coefficient, vacuum

Pseudo-inner product

DEFINITION

In the solution of the potential flow problem (that is, the
construction and solution of the system of linear equation),

it is the compressibility direction. In post-processing, it is
the user-specified x-direction in which velocity = (u,v,w)

for the computation of the pressure coefficient.

Force per unit area.

A normalized expression for pressure which removes the
contribution of the freestream flow to the pressure.

A formula for pressure coefficient resulting from certain
basic assumptions about the character of the fluid flow.

A formula for pressure coefficient resulting from the
additional assumption that second order terms in perturbation
quantities are negligable.

A formula for pressure coefficient based on the second order
assumption and the additional assumption that terms containing
the Mach number squared are negligable.

A formula for the pressure coefficient resulting from the
additional assumption that third powers of perturbation
quantities are negligable.

A formula for pressure coefficient based on the second order
assumption and the additional assumption that second order
terms in the component of velocity parallel to the freestream
are negligable.

The most negative value the isentropic pressure coefficient
can attain.

Modified inner product, one of whose terms in scaled to
account for compressibility.

REFERENCES

T-H.3,
U-8.2.1

]
=

£ -
.
~n

CTC (=g |
o ==

.

N r—

« .
&N o
. . .

7
@ =

.

Lo 2N

)

N o N »=
-

Tr
™ =
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ITEM
Recession vector

Refinement of paneling

Region, exterior
Region, interior
Right-hand-side

Row index

DEFINITION
See control point recession vector,

The paneling along one network edge is a refinement of the
paneling along a second network edge on the same abutment if
the first edge has a panel corner point wherever the second
edge has a panel corner point.

Spatial region outside a finite surface.
Spatial region inside a finite surface.
See boundary condition, right-hand-side.

An integer which, in conjunction with the column index, describes
the indical location of a panel or panel corner point. When

the panel corner points are input by the user all points with

the same column index are input consecutively. For each column
of points input by the user, the row index runs consecutively
from 1 to the maximum row index.

REFERENCES

T-1.1.2.5
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ITEM

Shear layer
Simply connected

Singularity parameters

Singularity parameters, unknown
Singularity parameter, panel

Singularity type

Slipstream
Small perturbation assumptions

Solution list

Solution vector

Source distribution

DEFINITION

A surface in the flow field on which the velocity tangential to
the surface is discontinuous. A shear layer is modeled in PAN
AIR by means of a wake network.

A region of space in which any path may be shrunk to a point.
See also “mulitply connected" and Figure B.8 of the
Theory Document.

Unknown in system of linear equations constructed by a panel
method.

Singularity parameters specified by a single boundary condition
equation.

The value of source strength at one of five panel points
(corners or center) or the value of doublet strength at the
nine panel defining points.

The source of doublet type of network. This may be
analysis, design, wake 1 or wake 2 (for doublets only), or null.

The flow field induced by a rotating propeller.

Assumptions that certain quantities are small enough that their
higher powers may be ignored. The Prandtl-Glauert equation
holds for irrotation, isentropic, inviscid flow in which
certain small perturbation assumptions have been satisfied.

A list of different constraints under which the system of
linear equations is to be solved. Typically, a list of
solutions might consist of several angles of attack and/or
sideslip.

The vector of unknowns in the system of linear equations.

One of two unknown quantities in the fundamental integral
equation.

REFERENCES
u-2

T-H.3
T-A.1

T-5.7.4

7-3.2,
U-A.2
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ITEM

Source parameters

Source strength, ¢

Specified flow, b

Spline

Spline, edge

Spline matrix, outer

Spline matrix, subpanel
(or panel or half panel)

Spline, two-dimensional

Spline vector

Stability

DEFINITION

Known or unknown quantities on which the source distribution
on the configuration depends.

The value of the source distribution at a particular point.
It is equal to the size of its jump in normal mass flux
across the surface.

The right-hand side term in a boundary equation. That is,
some combination of potential and velocity is specified
by the equation to equal b.

The method by which a function on a surface is obtained
from the specification of values of the function at a
discrete set of points on the surface.

The method by which doublet spline vectors are constructed
for five grid points on the edge of a network.

A matrix giving values of (five source or nine doublet) panel
singularity parameters values in terms of surrounding
singularity parameters.

A matrix giving the singularity distribution on subpanel (or panel
or haif panel) in terms of panel singularity parameters.

The method by which a function on a line segment is obtained
from the specification of values of the function at a
discrete set of points on the line segment.

A row vector giving source or doublet strength at a fine grid
point in terms of surrounding singularity parameters.

The property of a spline, in conjunction with a set of
boundary conditions, that a perturbation in the boundary
conditions at one point causes a disturbance in the solution
which decreases rapidly with distance from the point.

REFERENCES
T-5.5

T-1.1.2

T-1.1

T-4.2.1.1,
1-5.5,
T-1.2,
T-1.3.1,
T-1.3.2

T-C.4

T-1.1

T-C.4
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1TEM

Stagnation to ambient

Stagnation, perturbation
Stagnation, total

Subinclined surface

Subpanel

Subpanel, subinclined,
superinclined, or Mach-inclined

Subsonic flow

Superinclined surface

Supersonic flow

Surface, lower

Surface, upper

Symmetry, plane of

DEFINITION
Flow which is no faster than freestream (ambient) flow, yet
not highly perturbed as to have a negative component in
the freestream direction. Such a flow may be corrected uSIng
the semi-empirical “velocity corrections”.
A point at which the perturbation velocity is zero.
A point at which the total velocity is zero.

A surface for which the inner product of normal and conormal
is positive. All surfaces are subinclined in subsonic flow,

A flat triangular surface which is the basic unit of the panel
analysis in PAN AIR (a panel consists of eight subpanels).

See subinclined, superinclined, or Mach-inclined surface.

Flow for which the Mach number is less than one.

A surface for which the inner product of normal and conormal
is negative. Such a surface is inclined to the freestream
at more than the Mach angle.

Flow for which the Mach number is greater than one.

The side opposite to the upper surface.

The side of the surface bounding the region into which the unit
normal points. An exception is that for post-processing only,
upper and lower surfaces are switched by means of the

"reverse" option.

A plane such that either the flow or the configuration
geometry is left unchanged if reflected in this plane.

REFERENCES
U-B.4.1

7-5.4.2.3
7-5.4.2.3

U-8.1.1,
T-5.2

7-4.2.1.1,
T-5.1
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ITEM
Tangent vector
Thick body
Thin body

Tolerance distance

Total

Transformation, orthogonal

DEFINITION
A vector perpendicular to the surface normal.
See configuration, thick.
See configuration, thin.
A distance supplied by the user. The program searches for
network edges which lie closer together than the tolerance
distance, and forms pairwise abutments for these edges.

The sum of a freestream quantity and a perturbation quantity.

A length-preserving coordinate transformation.

REFERENCES

T-5.4

T-F.2,
U-3

U-A.1
T-E.3
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1TEM
Update, IC

Update, solution

Unit normal vector,
ne= (nx, Ny, nz)

DEFINITION

The capability allowing reuse of AIC's for some networks when
modifying other networks.

Capability of storing AIC's and reusing them later in a new
problem in which only the boundary condition constraints
have been changed.

A vector of length 1 which is perpendicular to a surface.
Its direction is defined as the direction of increasing
column index cross the direction of increasing row index.

REFERENCES
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ITEM

b

Velocity, V

Velocity computation method

Velocity, perturbation, v
Velocity potential, ¢,¢

Vorticity, surface, y

DEFINITION

The time rate of position change of fluid particles.

One of two methods of computing the velocity at a point
from the minimal data set. The boundary condition method
attempts to obtain data from boundary conditions and spline
it, while the VIC method obtains the velocity from the
product of a velocity influence coefficient matrix with the
vector of singularity parameters.

The difference between total velocity and that of the undisturbed
fluid.

The function whose gradient is the velocity, v =’$6, -\T =$0 .

The cross product of surface normal vector and doublet gradient,
¥ =0 x%.

REFERENCES

T-2.1,
U-A.1

U-2.1.6
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ITEM

Wake, physical

Wake network

Wave equation

Wetted surface

DEFINITION
A sheet of vorticity shed from the physical configuration.
A network used by PAN AIR to model a physical wake. The normal
mass flux is continuous on such a network, while the

potential and tangential velocity may be discontinuous.

A particular hyperbolic partial differential equation.
PAN AIR solves this equation when the Mach number is VZ.

A surface is wetted by a region of space of it borders on that
region.

REFERENCES

7-5.1,
T-B.2

7-5.1,
T-B.2
T-3.1

U-A.3






A.0 Fundamental Fluid Mechanics

To repeat our warning in section 1, this document is not meant to be a
text in basic fluid mechanics (several basic references are listed in section
1). We will not discuss the derivations of the equations which lead to the
Prandt1-Glauert equation, nor will we discuss the assumptions of irrotational,
inviscid, steady, and isentropic flow which lead to the Prandtl-Glauert
equation. We will, however, briefly discuss the "small perturbation"
assumptions, since these assumptions pervade both the theory and usage of
panel methods, and hence determine the application and validity of the methods
to particular problems.

A.0-1






A.1 The Small Perturbation Assumptions

Recall from section 2.3 that we assumed
>
M << VI << ag (A.1.1)

To be precise, the transonic small perturbation equation is obtained by
assuming (in_addition to irrotational, inviscid, isentropic flow) that terms
of order |V|2/a2 can be ignored. Recall that ¥(x,y,z) is th

perturbation of the local velocity from a uniform freestream V,. Assumption
(A.1.1) holds under a wide variety of cases, including

a. a thin wing at small angle of attack (shown in figure A.l) at any
Mach number other than approximately 1,

b. a blunt object at small Mach number (see figure A.2)

c. a static airplane configuration with engines on, sucking in air, with
local velocities in the inlet duct which are small compared to the
speed of sound:

> Y

Ivi = VI

(see figure A.3).

230 (A.1.2)

N

In case (a), both Wi/ Wl and [¥|/ ag are small. In case (b), VI is of
the same order as 1Vol, and so we are ignoring terms of size

v12/a2 = (.1)2 = .01 (A.1.3)

Similarly, in case (c), we ignore terms of size

IWa/a2 = (.2)2= .04 ' (A.1.4)

which is still small with respect to one.
But now, let us reconsider case (c), with

Wijag = .7 (A.1.5)

In that case, assumption (A.l1.1) no longer holds, since we are ignoring terms
of order .72 = .49, which are not small compared to 1.

Thus, the "engine-on" problem does not satisfy the small perturbation
transonic equation, let alone the Prandtl-Glauert equation, if the "local Mach
number® ( V1 /a) is too large. This does not mean that PAN AIR has no use for
such a problem. Its use, however, is restricted to predicting qualitative
trends, rather than detailed pressure distributions. Note that as the forward
speed of the airplane increases, the perturbation velocity within the duct
decreases, and equation (A.l.1) is more nearly satisfied.
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Now, lef us examine the small perturbation steady transonic equation
(assuming Vgl = 1):

(1-MZ,) Bxx * Byy * 85, = M2[1/2 (y-1) (2u *+ [912) w24 +

(2u * u2) dxx *+ v28yy + 2vudy, + w2 + w24y, (A.1.6)

+ 2(1+U)(V¢xy + dez)]

Since V12 = u2 + v2 + w2, all the terms on the right side of
(A.1.6) are quadratic or cubic expressions in the first or second derivatives
of 4, while the terms on the left hand side are linear expressions in the
derivatives of 4. So, formally, it is justifiable to drop all the terms on
the right, and say that to first order, the Prandt1-Glauert equation

(1-Ma2) dyx * dyy + 627 = O (A.1.7)
holds (where the freestream direction is the x-direction).

But a formal elimination of all quadratic and cubic terms only has meaning
if the terms being ignored are in fact small, compared to the terms which are
being retained.

We can rewrite (A.1.6) as

[(1-M3,) + A] ¢xx + B¢xy * C¢xz
where

A= MZ [1/2(y-1) (2u+ V] 2)+(2u+u2)]

B = -2MZ (1l+u)v

C = -2M2, (1+u)w

D = -MZ [1/2(y-1) (2u+|#12)+v2] (A.1.9)

E = -2M2 vw

F = -MZ [1/2(y-1) (2u+ V] 2+w2]

Now, (A.1.7) holds if the sum of all the ignored terms is small compared to
each of the retained terms, that is, if

Acc 1M2
S= A+B+C+D+E+F <l (A.1.10)
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Adding the terms in (A.1.9)
S < M2 [3/2(y-1)(2 ) +[¥)2
+ 2u+ud +2 |1+ y] (vl + |w]) (A.1.11)
+v2 + 2 Jywl + wl]

Now, since the absolute value of a sum is at most the sum of the absolute
values,

S <M [3(y=1)]ul +3/2 (y-1)[V]2 + 2[u] * u® :
A.1.12)
+2[vh + 20wl +2 luvl + 2|vw] + v2 + 2 |vw] + w2

Now, since |ul, |v|, and |w| are < |V] and all products of these are < |V|2,
we obtain

S < M2, [(3(y-1)+2+2+2) V1 +

(A.1.13)

(3/2(y=-1)+1+2+2+1+2+1) [¥1 2]
or S < MZ [(3+3y) |v|+15/2+3/2y) |91 2] (A.1.14)
or S < MZ k(NLITI + 1¥12] (A.1.15)
where  k(y) = max(3+3y,15/2 + 3/2y) (A.1.16)

depends only on the gas. For diatomic gases, y = 7/5, and thus k(y) = 9.6.
Thus, we see that (A.1.10) holds if
M2 k(y)[IV1+1¥12] << 1 (A.1.17)
and M2, k(y)[I¥1+[9]12] <« 1-M2 ' (A.1.18)
(since |Al < ISI).

Recall from section 2.3 that Iﬁnl = 1; thus |Vl is the size of the
perturbation velocity divided by the freestream speed.

For Mach numbers < V2, (A.1.18) is the more restrictive equation, while
for Mgy > VZ, (A.1.17) is more restrictive. Equations (2.5.2) and (2.5.3) are
simplifications of (A.1.17) and (A.1.18), based on a scaling by a factor of

2k(y) of what we mean by "very much less than", and based on the assumption

1912 < (V] (A.1.19)
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Equation (A.1.19) holds in virtually all cases of aerodynamic interest,
since we have assumed that |Vel = 1, that is, we are not dealing with the
"engine-on" case, in which |Qn| = M, = 0.

From (A.1.17) and (A.1.18), we derive the principle that the more nearly
transonic or the more hypersonic the flow becomes, the smaller the
perturbations to the free stream must be. Small perturbations, in turn, mean
slender objects and small angles of attack. This does not mean, however, that
PAN AIR is of no use if the restrictions (A.1.17) or (A.1.18) are violated
locally. Experimentation has shown that, for instance, wings with rounded
leading edges can be successfully analyzed at Mach numbers such as .7, at
which (A.1.17) is thoroughly violated. This is true because the
Prandlt-Glauert equation is only violated in a small region of space, and the
quality of the solution in other areas is not affected. Further,
semi-empirical velocity correction formulas (see section 5.9) are available.
Pressures calculated from the correction velocity agree more accurately with
those determined by experiments. Thus a fairly accurate approximation to the
true flow properties can be obtained in this case despite the violation of the
assumptions behind the Prandt1-Glauert equation.
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Figure A.1 - “Thin Wing at small angle of attack

Mo =.1

Figure A.2 - Blunt object at small Mach number
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Figure A.3 - Small perturbation "engine-on" case
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B.0 The Prandtl-Glauert Equation

In this appendix, we discuss some basic results concerning solutions of
the Prandtl-Glauert equation. We make no effort to prove results which are
proved in any of the standard references, but we will supply derivations of
results which are not available elsewhere.

The basic step in analyzing solutions ¢ (x,y,z) of the Prandt1-Glauert
equation is to convert it to the integral equation

s0op) =L ] ==+ )i - (b7 e (8.0.1)

where SﬂDp is the intersection of the configuration surface S with the

domain of dependence Dp on the point P=(x,y,z),

o] = 6(¢u - ¢L) .

unit surface normal

>>
]

u = ¢u - ¢L
Q = (ga Ny C)
R2 = (&- X)Z + SBz(n-)')2 + sBZ(C—z)2 (8.0.2)

s = sign (1-M%)

R RN

K = 2n if s = -1 and

[: 4n if s = +1

sg° a/3g

VQ =
3/an
3/ag

The asterisk refers to the fact that for supersonic flow we only take the
"finite part" of the integral, a concept defined in section 3.4 of Ward (1.5),
and in section J.6.7 of this document.

Equation (B.0.1) is derived for subsonic flow in Ward, Chapter 2, and for
supersonic flow in Chapter 3. A‘more thorough derivation is given for My =0
in Kellogg (1.3), p. 221, and for M > 1 in Ehlers, et al.(4.9), sections 3.5
and 3.7.
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In this appendix, we discuss the concept of a boundary value problem, that
is, the combination of (B.0.1) with a set of boundary conditions. In section
B.1, we discuss boundary value problems for which existence and uniqueness of
a solution have been proved or disproved. In B.2, we discuss the role of
wakes in the formulation of a boundary value problem. And finally, in B.3, we
show that the gradient of (B.0.1), defining V(x,y,z), can be replaced by a
different expression which is more readily computable. A1l of the material in
this appendix is "background" material; none of it is reflected in the actual
PAN AIR computer code.

We emphasize that Pan Air actually solves the integral equation (B.0.1),
with boundary conditions imposed on the true configuration geometry (cf.,
(3.1.3)) while other panel methods solve the integral equation corresponding
to Laplace's equation with zero normal velocity boundary conditions applied on
the scaled geometry. These methods can be demonstrated to be equivalent in
subsonic flow (cf., Butter,reference B.1), and go under the general name
"Gothert's rule".

We note that the two versions of Gothert's rule are equivalent only in
subsonic flow. This is because the scaling (3.1.3) in subsonic flow yields an
nequivalent incompressible geometry", and at zero Mach number mass flux is
identical to velocity. In supersonic flow, on the other hand, application of
(3.1.3) yields an "equivalent geometry" corresponding to a Mach number of V2.
But at this Mach number, velocity and mass flux are not identical; rather, the
freestream components of perturbation velocity and mass flux have opposite
sign. Thus normal mass flux and normal velocity boundary conditions are
inherently different in supersonic flow.

In addition, some European panel methods use yet another method, referred
to as Gothert Rule 2, to account for compressibility effects in subsonic
flow. In this method, the Prandtl-Glauert equation is solved, with boundary
conditions of normal velocity (rather than normal mass flux) applied on the
true configuration. This method is not equivalent to either of the two
equivalent versions of Gothert's rule described above.
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B.1 Existence and Uniqueness

In this section, we give four examples of boundary value problems which
are well-posed (that is, for which there exists a unique solution), and two
examples of ill-posed boundary value problems. Finally, we discuss two
boundary value problems for which excellent numerical results have been
obtained, without any actual proof that the problem is well-posed.

The first well-posed problem is the subsonic exterior Neumann problem. A
Neumann problem is the specification of normal mass flux on the boundary of a
region R. If R is a infinite region with finite boundary as illustrated in
figure B.1 or figure B.3, the boundary value problem is called “"exterior"
since the boundary of R is the "outer" surface of S. The precise formulation
of the result (see p. 311 of Kellogg, 1.3) is: The specification of a
continuous distribution of A+ v¢ on the boundary S of an infinite region R
yields a unique distribution of potential ¢, whose value approaches zero at
infinity on R, satisfying the Prandt1-Glauert equation, for M, <l. Kellogg
only proves this result for My, = 0, but the coordinate scaling (3.1.3) (which
reduces the Prandt1-Glauert equation to Laplace's equation in the scaled
coordinates) allows one to prove the result for arbitrary subsonic Mach
numbers. :

The second well-posed boundary value problem is the interior subsonic
Dirichlet problem (a NDirichlet problem is the specification of ¢ on a
surface). Again, this is shown to be well posed (see Kellogg, p. 311) for
M = 0, and is formulated precisely as follows: Let R be a region of finite
volume (see figure B.2). Then the specification of a continuous distribution
of @ on the boundary S of R is a well-posed boundary value problem. Further,
if the specification of ¢ is a constant b, then ¢ is identically equal to b in
all of R. _

The third well posed boundary value problem is discussed in Ward, 1.5,
section 4,13, and is formulated as follows. Let S be a finite smooth surface
(see figure B.3) which is everywhere inclined behind the Mach angle (such a
surface has fi.n > 0, and is called subinclined). The specification of a
continuous distribution of Wefi on both sides of S defines a unique value of ¢
in all of space for Mg # 1. For M < 1, this is just a special case of the
first boundary value problem discussed above.

The fourth well-posed boundary value problem is illustrated in figure
B.4. There, S is a smooth superinclined surface (A.n < 0, which automatically
imp]ies Moo > 1). Then, the specification of continuous distributions of both

w.n and @ on the downstream side of S is a well posed boundary value problem,
and once again is discussed by Ward in section 3.2.

Now let us consider two ill-posed boundary value problems. The first is _
the interior Neumann boundary value problem, that is, the specification of W.n
on the boundary of a region R of finite volume, as illustrated in figure B.5.
The proof that no unique solution exists is simple. Suppose a certain
function ¢(x,y) were a solution. Then, for any constant é,, é(x,y,z)+ dq
is also a solution, since v@y = 0 and thus the normal mass flux
(W.fi= Td¢-.A) is unchanged. Thus, there cannot exist a unique solution ¢,
and so the problem is ill-posed.
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A second example of an ill-posed boundary value problem is the specifi-
cation of 4 or W-fi on the upstream side of a superinclined surface. Consider,
for instance, the point P in figure B.4. According to the integral equation
(B.0.1), 8(P) is an integral over SnD,. But the intersection of S with Dp>
the domain of dependence of the point P, is empty. That is, there is no point
on S which influences P, since the domain of dependence consists of the
interior of a cone pointing upstream from P, as illustrated in figure B.6.

So, 8(P) = 0, regardless of the source or doublet distribution on S.
Further, this holds for all points P on the upstream side of S. So,
specifying 4 = b or W-A = b on the upstream surface of S results in infinitely
many solutions if b = 0, and no solutions if b = 0. Thus, no matter what our
choice of b, upstream specification is an i11-posed boundary value problem.

This discussion of ill-posed and well-posed boundary value problems is of
some interest to the user of PAN AIR because of a basic principle. This
principle is that the use of a panel method to solve an ill-posed boundary
value problem invariably leads to a system of linear equations whose matrix is
singular. Even if the system of equations has infinitely many solutions, the
numerical equation solving techniques used by panel methods break down, and
none of the solutions can be found.

On the other hand, the lack of a proof that a particular boundary value
problem is well-posed should not be an impediment to attempting to find a
numerical solution. The prime examples of this are the successes achieved by
the "pilot code" in solving the exterior Neumann problem and interior
Dirichlet problem for subinclined surfaces in supersonic flow (see figures B.l
and B.2). Specific cases are described in Ehlers, et al., (4.9). A second
example is the specification of design boundary conditions, a subject which
will be discussed in more detail in Appendix C.

Summarizing, for a thick closed configuration such as that of figure B.2,
one is fairly safe (assuming that the surface is subinclined when M_ >1) in
imposing the boundary conditions

¢ =0 ' (B.1.1)

-2

which, as pointed out in section 5.4, is equivalent to

8. =0,
g = - Vaf n . (8.1-2)

Here, the subscripts U and L refer to upper and lower surfaces. For thin
configurations such as that in figure B.3, the boundary conditions should be
(assuming the surface is subinclined again)

ﬁUtﬁ:O
(B.1.3)

-

W-n=0
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or, equivalently

ﬁU N ﬁ = 0
' (B.1.4)
c =0

For a permeable surface inclined to the freestream, as shown in figure
B.7, the boundary conditions for subsonic flow should be

“U‘ ﬁ = b (8-1.5)

¢L =0 (8.1.6)

(8.1.7)
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B.2 Wakes and Modeling

Up to this point, we have implicitly assumed that the surface S on which
non-zero source or doublet distributions are given represents a real phyical
object. But for a wide variety of problems of physical interest, it does not
suffice to impose boundary conditions of impermeability on the physically
existing configuration. The general problem of determining the surface S, and
what boundary conditions should be imposed there, is called the modeling
problem, and will be discussed here briefly.

The first case of a non-physical surface S arises from one of the
hypotheses of Green's Theorem which we ignored when discussing the subject in
section 3.2. This hypothesis requires that the region V on which ¢ is defined
be "simply connected". That is, there must not be any closed path in V which
cannot be shrunk to a point within V. In figure B.8, we illustrate in cross
section a region V, whose boundary S is the surface of a nacelle, which fails
to be simply connected. The imposition of boundary conditions of
impermeability on S once again results in an ill-posed boundary value problem.

The boundary value problem can be made well-posed by the addition of a
surface S' which "blocks off" the inlet. The surface S' is not impermeable,
however; so the user specifies the total normal mass flux b flowing through
the surface. The boundary conditions illustrated in figure B.7 only apply to
subsonic flow, though. For supersonic flow, upper surface normal mass flux
must not be specified on the superinclined surface S'; instead, the boundary
condition

ﬁl_'ﬁ:b
(B.2.1)
¢ =0

should be imposed.

The second case in which the surface S includes non-phyical surfaces
arises not from theoretical but from empirical considerations. These
considerations arise from the fact that the assumption of zero viscosity is
invalid near the trailing edge of a wing. No matter how small the viscosity
of the fluid, the conditions at the trailing edge are considerably different
from those of the zero viscosity case. The difference is the following: at
zero viscosity, the velocity at the trailing edge of a wing becomes infinite,
while at any non-zero viscosity, the velocity is bounded by a fixed number
which depends mostly on the wing geometry and Mach number, and is only weakly
dependent on the viscosity.

In order to reproduce this effect while using a program which ignores
viscous effects, the concept of a wake is introduced. A wake is a surface
across which the normal mass flux is continuous, while the potential and the
tangential velocity are not. Thus, source strength is zero on a wake, while
doublet strength u is non-zero, and the jump in tangential velocity is wu.

The actual physical situation, namely that the tangential velocity varies very
rapidly in a small region of space, is modeled quite well by this type of
surface.
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In modeling a configuration, wakes are generally inserted in a roughly
streamwise direction emanating from the trailing edges of all “lifting -
surfaces" such as wings, fins, etc. The exact location of the wake generally
is not very important. The boundary conditions imposed on the wake,
reflecting the physical situation, are generally (though not in PAN AIR):

og=0
. (8.2.2)
WU' ﬁ = O

The flow about lifting surfaces in subsonic flow is known to satisfy a
condition called the "Kutta condition", that is, the pressure jump across the
surface is zero along the trailing edge. The successful modeling of a
potential flow problem generally requires that the Kutta condition be
satisfied. In section D.1.1, we describe the boundary conditions that PAN AIR
imposes on wake networks. We also outline a justification that these boundary
conditions result in the Kutta condition being satisfied.

An illustration of the wake location for a typical wing-body configuration
is given in figure B.9. Note that no trailing edge of the wake is shown. 1In
true physics, the wake is dissipated by viscous effects. In terms of solving
the Prandt1-Glauert equation, the effect of the far regions of the wake on the
configuration is negligeable, and thus the wake can be terminated at any
finite point which is reasonably far from the physical configuration. The
division of the wake into "wake 1" and "wake 2" networks will be discussed in
section D.1.2.

Several major exceptions exist to the assertions that a wake should —
generally be positioned in a streamwise direction from the trailing edge of a
lifting surface, and that the exact position of the wake is generally not
important. One is the case of a "leading edge vortex", a phenomenon that
occurs at the leading edge of a highly swept wing at large angles of attack as
illustrated in figure B.10. In that case, the wake tends to roll up (trailing
wakes also roll up, but at so much greater distance from the airplane as to be
ignored) as shown, and the exact position of the wake is important in
determining the aerodynamic behavior of the configuration. The use of a
potential flow program to analyze such a case involves an iterative
determination of the wake position, a problem similar to the design problem
discussed in Appendix C. Some success in obtaining numerical solutions of
this problem has been obtained by the program of Johnson, et al., (B.2).

Another case in which wake positioning is important is the case where the
wake from a wing passes near the tail of the airplane. Generally speaking,
whenever the flow leaving the trailing edge of a 1ifting surface passes near
another portion of the configuration (or the ground, if ground effect is being
studied), the location of the wake is important in analyzing the flow.
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B.3 Removal of Line Vortex Terms and the Line Source Integration by Parts
In order to impose boundary conditions involving v¢ (such as V.h = b),

we must evaluate the perturbation velocity at an arbitrary point. Differen-
tiating (B.0.1), we obtain

-»> 1 * A [od 1
V(x,y,2) =vps = Lop qp 0 _ogu + w(Q)A . Fglg) 1ds (B.3.1)
SoD
P

Putting the gradient within the integral, and writing it as vp to emphasize
that we are differentiating in (x,y,z) coordinates, we write

Voo L0 - ol v(h) + w(Qvy (Fy(L) - @) 1 ds (8.3.2)
" snop PR PR

Recalling that,

a/ax s82 3/0a¢
Vp = a/ay Vg = § o/en
a/az a/at
and
RZ - (& - x)2 + 582 (n-y)2 + sa2({- z)2 (8.3.3)
we have
FolR) - elen) slloy) ssfliz) ) set gy
and similarly
(6-x, s8%(n-y), s8?(4-2))
vp(R) = - R (B.3.5)

Further, by the chain rule,

i

~ , N n-1z

sezn ( & -X, n-y, {-2) R"'2 (B.3.7)

and similarly

2

V(R = - n (X, s82(n-y), s8(g-z)) R"" (B.3.8)
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Thus, the fntegra] expression (B.3.2) for V contains the term Vv_ V. (1/R)
given by: P
2 1 (f-X)
~ S8 3s8 2
VP VQ (I/R) = E3_ 1 , - —Rs— 582 (ﬂ'y) '(E'xn n-y, C°Z)
s8” (g -z)

In subsonic flow (s=t1) this expression behaves 1ike 1/R3 as R - 0 while in

supersonic flow (s=-1) it behaves like 1/R5 as R+ 0 for points (¢, n, )
lying near the Mach cone and away from (x,y,z):

E>xt+g ‘\/(n-y)2 + (c-z)2 .

This strongly singular behavior of Yp 30 (1/R) causes substantial numerical

difficulty in the subsonic case and, in the supersonic case causes the finite
part integral
»*

” u vp ¥q (1/R) .1 (Q) ds
Soby

to be unbounded for piecewise flat surfaces S. Historically in the
development of subsonic panel methods, this strongly singular behavior has
been used to approximately enforce doublet matching at network edges.
However, this approach was never very satisfactory in achieving doublet
matching and it was abandoned during the PAN AIR pilot code development when
it was realized that it was unworkable for supersonic flows.

In PAN AIR the difficulty of this singular behavior is resolved by
erforming the line vortex integration by parts on the expression (B.3.2) for
Vv, thereby separating v intg its regular part and its singular line vortex
part. The regular part of Vv has the virtue that the singularities of its
integrand are much less severe than those of equation (B.3.2) and further,
that the finite part is nicely bounded for virtually all piecewise flat
surfaces S. The singular line vortex part of v is then analytically removed
from the calculation by enforcing doublet matching conditions of the type
discussed in section 5.3 and appendix F.

A side benefit of the 1ine vortex removal arises when we consider the
evaluation of “far field" velocity influence coefficients. In this evaluation
procedure one is required to use a Taylor series expansion for an inverse

power of R. Without line vortex removal one would expand R'5 in a power
series; with 1ine vortex removal one expands R’3. Because the resulting power
series for R"3 converges more rapidly than the series for R's, the far field
evaluation procedure is more accurate (for a given order of expansion) when
the 1ine vortex terms is removed.

Having given this statement of the fundamental problem, we now set out to

discuss its resolution via the line vortex integration by parts. In what
follows we will show that equation (B.3.2) implies that
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* *
Vix,y,2z) = '-,1; _” a{Q) vp(%) ds +% ff (n x qu) X VQ(%-) ds

SNDp Snbp (B.3.9)

Sy X

+ 1
K

: " GQ(%) x dl

[+

where 3S is the boundary of the surface S.

Before giving the derivation of this result (cf. equations (B.3.19)
through (B.3.27)), we first discuss its significance and practical
application. We will also shortly show why the line vortex integral (the last
term of (B.3.9)) can be ignored. As a matter of terminology, the second term
on the right of (B.3.9) is called the regular term of the doublet velocity,
while the third term is called the line vortex term.

Now, we perform the integrations in (B.3.9) one panel at a time. Let us
consider what is required for the 1ine integrals to vanish. First, consider a
panel edge with no adjoining panel edge next to it, for instance, the edge AB
in figure B.11. Clearly, if u identically equals zero on AB, the line
integral along AB vanishes. Second, consider two adjacent panels as shown in

->

figure B.12. As a convention, we define dl as being in the counterclockwise

-+ A
direction when looking from "above". That is, dixn 1lies in the plane of the
panel and points outward. Then if the doublet strength on the panel £; is
ui(x,y,2), and on X it is up(x,y,z), and if uy = up at every point
on the edge AB, we have )

* *
II 1/R) x dl I d =0
snaeon, * M X s omenog AL (B.3.10)

since the integrands have identical values with opposite sign due to the
opposite directions dl.

We can generalize (B.3.10) to the case where arbitrarily many panel edges
meet (see figure B.13 for an illustration of 3 panels meeting). Let

<> -+ -+
where dTi is the counterclockwise direction on Xj.

Then if n = number of panels, and

n
i=1
on the entire edge AB, then
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n *
->
S Iy ni vQ(lR) x di ] ; =0 (B.3.13)
i=1  ZnABnD,
Equation (B.3.13) follows from the fact that
n
I owidli=0 (8.3.14)

i=1

at all points on AB, which in turn follows from (B.3.11) and (B.3.12). It
should be noted that if n=1or 2, (B.3.12) reduces to our previously
derived results. So, if (B.3.12) is satisfied along a particular intersection
of panel edges, the line integral in (B.3.9) can be ignored along that edge.

But now we must justify that (B.3.12) is physically reasonable. Consider
the three surfaces in figure B.13, illustrated in cross section in figure
B.14. Let Pl’ P2, and P3 be points a small distance apart, as il1lustrated

illustrated in figure B.14. Let us assume (and this is not a completely
trivial assumption) that g is continuous in each of the regions Vl, v2, and

V3, and bounded by some fixed value in the general vicinity of the
intersection line. Writing ¢i for b(Pi), it is then true that ¢1 does not
change much if P is moved slightly. Thus, we can let P, approach one of the
surfaces zj without changing 8, much. In particular, letting P, and P,

approach 21, we see that ¢1 - ¢2 N Uy In fact, in the limit as P1 and P2
approach the intersection line,

61 - 82 = ul (B.3.15)
Similarly, in the limit as the Py approach the intersection,

$3 - $2 = u2 (B.3.16)

#1 - $3 = u3 (B.3.17)
Subtracting (B.3.15) from the sum of (B.3.16) and (B.3.17), we obtain

0=-uy *u2tu3 (B.3.18)
which is equivalent to equation (B.3.12).

The previous argument is generalizeable to an intersection of n surfaces.
The assumption that ¢ be continuous off the surfaces is valid (and is in fact
required for the basic integral representation formula to hold), but the
requirement that ¢ be bounded in a neighborhood of the surface is not
necessarily valid. It is, however, physically reasonable, since an unbounded
potential produces an infinite velocity. So, we will make the assumption
within PAN AIR. The mechanism by which (B.3.12) is applied is described in
Appendix F. As a result of this assumption, the line vortex term in (B.3.9)
may be ignored.
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We now return to the proof of the relation (B.3.9). If we denote by Vb
the part of v (cf. equation (B.3.1)) that depends only upon the doubliet
strength u, then we have

->

VD(P) = é

*
v, Jf w@n. F, /R ds (8.3.19)
sno

If we write Stokes' theorem in the form

JdT.F:II(ﬁdeV).F:]f(F!.VxF)dS (B.3.20)
2S s S

then it is also clearly true that

-> -+ ~ -
I dl x G =_U (ndS x VvV ) x G (B.3.21)
3S S

Setting G = u GQ (1/R) we obtain

{dT x lu 9y (1/R)] j’sj‘ (0 dsx Vo) x [w §q (1/R)]
3

jsj‘ (ndS x vgu) x Fq (1/R)

+

ff u (ndsx ) x (¥g (1/R))
> (8.3.22)
Now the integrand in the second term on the right can be expanded using the

standard formula for a vector triple product [(3axb)xC = b(a.¢) - 3(B.2)] to

give
w (0 dSy X vg) X (VQ (1/R)) = u Lds, (8.60) vq (1/R)
- dsQ n (vQ . vQ) (1/R)]

Using the fact that the kernel function (1/R) satisfies the Prandtl-Glauert
equation (cf. equation (5.4.9)),

v * GQ (1/R) = 0 (B.3.23)

we may simplify (B.3.22) to obtain
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f dl x [u ?70 (1/R)] ﬂ (n dS x q n) x GQ (1/R)
3S S

fsf NGRS

+

(1/R) dSQ (B.3.24)

Using the fact that vQ (1/R) =
right is clearly equal to

vy (1/R), the second integral on the

SR | IO RIS

Solving for this quantity we obtain

v jsj’ w (R Fy) (1/R) s, J;J' (R x Vg u) x Fy (L/R) dsy

+

Ju §g (R xdl
EN)
(8.3.25)

In the case of supersonic problems, this relation must be interpreted as being
true in a distributional sense, with all integrals taken to be finite part
integrals. The modified equation reads

* *
p ”‘ w (n . ) (1/R) dS, ﬂ' (n x ¥y u) x ¥, (1/R) ds

Sabp SﬂDp

*
o f wvg/m x @

aSa D
P (B.3.26)

The expression on the left is clearly recognizable as [« VD (P)], where VD(P)

was defined by (B.3.19). We find consequently that Vb(P) may be split as
follows

*
vD(P) = (1/x) [‘ (n x VQ w) x vy (1/R) dSQ
SnDP

*
+ (1/x) ﬂ‘ " GQ (1/R) x d1 (B.3.27)

aSnDP
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It is also clear that the substitution of (B.3.27) into (B.3.2) yields the
splitting given by equation (B.3.9), completing our derivation of the line
vortex integration by parts.

If we assume that the appropriate doublet matching is performed, so that
the line vortex term can be dropped, then we may write the following formula

for v*(P), the regular part of v(P): (compare with equation B.3.9)

>%

ViR = (1) ff o (@ vy (1/R) dsy

SnDp

+ (1/x) .U (n XV, u) xGQ (1/R) dsg
soD, : (B.3.28)

Now while the evaluation of V*(P) as given by (B.3.28) is a substantially
better conditioned process than the evaluation of V(P) as given by equation
(B.3.2), there still remains a mildly troublesome logarithmic singularity in
v*(P). This singularity can be isolated by a further integration by parts
called the line source integration by parts. While it is not possible to
fully implement this formula in PAN AIR*, we do state and prove it because it
he]gs motivate the velocity jump matching condition used to enforce the Kutta
condition.

We begin our derivation of the line source integration by parts by stating
the Helmholtz relation for the velocity jump AV across a singularity
surface S. The formula reads** :
aV = o n/(0,3) * Yy (B.3.29)
where 3, the surface conormal is given by

S =8Bn (B.3.30)

*  Such an implementation wogld require a geometry system capable of handling
a continuous surface normal, n(Q), continuous source strength o(Q) and

continuously differential (Cl) doublet strength, u(Q).

** A simple proof of the Helmholtz' relation (B.3.29) is accomplished as
follows. By virtue of the usual formula for calculating a vector triple
product we have,

Ve = [(n xVg)x3 + n(¥ .v9)1/(7,3)

Evaluating this on the upper and lower surface of S, the singularity surface,
we form the difference and obtain (footnote continued on following page)
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and the tangential gradient operator v¢ is given by

v.f= (n x vF) x 3/(n,?) (8.3.31)

Applying Stokes' theorem in the form (B.3.21) to the vector field G - BA;(I/R),
we obtain after using Leibniz' rule on the right hand side

[ df x [8a¥ (1/R)1 = ff [A @5 x 9(1/R)] x BaV
EN S

+ _If (1/R) [(n dS xV) x Bav]
S (8.3.32)

Now the first integral appearing on the right hand side of this equation can
be shown to be related to v* (cf. (B.3.28)) by the formula

U [AdS x v (1/R)IxBaV = « V* - {[ (aV) n . ¥ (1/R) dS (g 3 33)
S

To prove the formula (B.3.33), we simply expand the vector triple product
in the integrand appearing on the left to get,

[d x V(1/R)] x BaV =  ¥(1/R) (n . Bav)
-n( z (1/R) . Bav) (B.3.34)
It is easy to show from the formula for av, (B.3.29), that
N.BAV = v.08V=0 (8.3.35)

and that

(footnote continued from previous page)
(v8), - (v8) = [(R x (g - 6)) x 3V/(A.3)
> 200 >
* (v .v(gy - g, ))n/(n,v)
We recognize the left hand side as the jump in perturbation velocity, AV,
while the doublet strength and source strength appear on the right hand side
in the forms (cf. equations (3.2.6) and (5.2.7)),
H = ¢U - bL

ag

Using these facts, we obtain finally,
AV = [(A xvu) x 31/(R,3) + on/(n,3)

reproducing equation (B.3.29).
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~ - ~ ~
nXav = nxVep = NX Wy (B.3.36)
As a consequence of this second relation we find in addition

- A (V(1/R) . BaV) = -n (¥ (1/R) . aV)
(A x aV) x ¥ (1/R)
- av (0 . ¥ (1/R))

(A x vu) x ¥ (1/R) - av (0 . ¥ (1/R))

(B.3.37)
Substituting (B.3.35) and (B.3.37) into (B.3.34) we obtain
[Ax v(1/R)] x BAV = o V(1/R) + (A xVu) x ¥ (1/R)
- av (0 .V (1/R))
(B.3.38)

Integrating this expression over S then yields

ﬂ [h dS x ¥ (1/R)] x Bav =H [o v(1/R) + (A xVu) x ¥ (1/R)] dS
S S

i ” AV A LT (1/R) dS (B.3.39)
S

The first integral on the right is clearly equal to « v* as defined by
(B.3.28). This proves the validity of the formula (B.3.33).

We conclude our derivation by substituting (B.3.33) into (B.3.32) to obtain
f dl x [Bav (1/R)] = x v* -” AV n . ¥ (1/R) dS
3S S

+ ﬂ (1/R) (A dS x V) x Bav

S . :
A trivial rearrangement of terms then yields the "line source integration by
parts:" . .
v = - (1/x) SI _(_"_X_%Mds
S

+ (1/x) _U av 0 .V (1/R) dS
5

+ (1/x) j' (dl x Bav) (1/R) (B.3.40)

3s

Note that the last term on the right, which we*call a line source term,
isolates the logarithmically singular part of v*. The condition that must be
satisfied in order to drop this term is quite similar to equation (B.3.12),
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the analogous condition for dropping the line vortex term. This condition,
imposed on the velocity jumps AVi is given

n
S Si AV, = 0 (B.3.41)
i=1

We remark that this condition cannot generally be imposed in PAN AIR, even
along panel boundaries in the interior of a network. The fundamental reason

for this is that PAN AIR imposes on the functions n(Q), o(Q) and u(Q) only the
fairly weak continuity requirements

n(Q) e C'I(S), the class of piecewise continuous functions (B.3.42a)
on S
1

a(Q) e CT7(S) (B.3.42b)

u(Q) ¢ CO(S), the class of continuous functions on S (B.3.42c)

whereas the satisfaction of condition (B.3.41) in the interior of a network
would require

n(Q) « c%(s) (B.3.43a)
o(Q) e c°(s) _ (B.3.43b)

u(Q) « Cl(S), the class of continuously differentiable
functions (B.3.43c)

It is the first and last of these requirements (B.3.43a and B.3.43c) that would

be most difficult to satisfy, both demanding the services of a Cl geometry
system for the singularity surface S.

Even though it is not generally feasible to -impose the velocity jump
matching condition (B.3.41) along all subsurface boundaries, it has
nevertheless been found useful to impose a condition derived from it along the
trailing edge of a lifting surface. This condition, sometimes called the
vorticity matching Kutta condition, has the form

>

- n
i=1

>
where the vector t lies in the plane of the wake attached to the lifting
surface and points downstream in the assumed direction of the convected
vorticity. In section (H.2.4) we will show how equation (B.3.44) enforces the
matching of upper and lower surface pressure coefficients (linear Cp rule) for

standard configurations. It is in the sense that equation (B.3.44) enforces

this matching of upper and lower surface values of Cp’ linear that it is

appropriate to call it a "vorticity matching Kutta condition.”

A few final remarks are appropriate concerning the 1ine source integration
by parts. We begin by adding the line vortex term back in to equation (B.3.40)
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to obtain an expression for the perturbation velocity field, v = vp B

= - (1/x) If(n X V)x Bav dS v (1/x) jf“ AL (l/R) ds

+ (1/x) J'J' (dT x BaV) (1/R)  + (1/x) _\'_[u vq (1/R) da
3S

(B.3.45)

First note that the terms on the first line bear a striking resemblance to the
source and doublet terms of the standard representation of g,

VAN | NCLELLIPT VRN | NPVIE RV
S S

In fact it can be shown that the jump in the conormal derivative of 7,
a[(n.V)v] satisfies the condition

A [(R .V)V] = (A xV)x Bav

so that the analogy between the two representation formulas is indeed quite
close. 0f course we would rather expect this to be the case given the fact
that Vv -vp p must also satisfy the Prandtl-Glauert equation. What is

somewhat surprising about equation (B.3.45) is the appearance of the singular
Tine vortex and line source terms on the second line. The line vortex term
must be added in to make v irrotational for those doublet distributions that
do not satisfy the usual doublet matching conditions. Similarly, the line
source terms are required to preserve the conservation of mass condition

60 -v>=0

for surface distributions of av that do not satlsf_y velocity jump matching
conditions of the form (B.3.41).
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B.4 Linear Sources and Quadratic Doublets

In this section we outline a justification for the use of a linear source
strength approximation and a quadratic doublet approximation. For simplicity,
we assume M, = 0, though the proof is readily extendabie to all subsonic Mach
numbers. These results cannot be readily generalized to supersonic Mach
numbers, however,

Nevertheless, for both supersonic and subsonic flow, we can show that a
doublet distribution whose order is one higher than that of the source
distribution is reasonable. We do this by considering the jump Vp in
velocity occuring on a surface. In section N.1, we find

70 =gu * ﬁ%ﬁ f (B.4.1)

Thus the discontinuity in velocity has the same direct dependence on doublet
gradient as on source strength. In addition, we will see in section J.1ll that
a discontinuity in doublet gradient induces the same singularities in
potential and velocity as a singularity in source strength.

For these reasons we conclude that the doublet gradient is the same order
of singularity as the source strength. It is thus reasonable to approximate
the source strength and the components of the doublet same order of
polynomial. Thus the doublet strength should be approximated by a polynomial
of one degree higher than the source strength.

We now consider the case of zero Mach number. We consider the
perturbation velocity resulting at a point P = 0 due to a source distribution

olgn) = 2 ojj £nl, 1>0,3>0 (B.4.2a)
i*tj <n - -

or a doublet distribution

u(&,n) = 2 uijginj (B.4.2b)

i+j < n
on the square region S of size 2¢ x 2¢ about P, illustrated in figure B.15.

Let us first consider the source distribution. By (B.3.1),

25 _ 1 a(&,n)
v (x,y,2) = 4 pff g-x)2 T )2 * (2)2 d&dn (B.4.3)
Thus, Vy (P) = Tn__e.[{ (52 + n2)3/2 d€ dn (B.4.4)
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- o35 pig J¥i
vy(P) = f:{ g;in 377~ dEdn (B.4.5)

and

1im - 9ij § ﬂJ z)
v2(P) = 750 41r_j:f (eZmZi2)317 dedn (B.4.6)

Now, let us consider (B.4.4) one term at a time; that is, we assume

a(g,n) = aij £'nd (B.4.7)

If (1+3) is even, the integrand in (B.4.4) is an "odd" function in £ or n;

that is, its value at (&,n) is minus its value at (-&,n), or minus its value at
(£,-n), and thus the integral over S is zero. Similarly, if (i+j) is even,
the integral (B.4.5) corresponding to that term is zero. Finally, let us
consider the integral (B.4.6) for a single term.

We have
lim 0ijz £ gind
v,(P) = d&d B.4.8
2(P) = 250 T f (etrzegtyyiz 00 (8.4.8)
€
Now, f 3 € =
S (E22+22)312 (B.4.9)

(substituting u = 52+ ng + z2)

52+n2+22 £2+n2+22
J (w8 12 a0 = [-uml/?]
n2+ 22 n2+ 22
1 1

, - B.4.10
(n2+22)1/2  (c2+ q2+ 22)1/2 ( )

When this function is integrated over n, the result is f(e,z) - log |z| where
f(e,z) is bounded as_z>0. Thus the limit in (B.4.8) is zero, provided i = 1.
Since ¢ is small, g1nJ < |&| so the limit in (B.4.8) is zero whenever

i> 1. Simi1ar1y, it is zero whenever j > 1, so we see that

i ff z g'nd d&dn = 0 (B.4.11)
(2t 12) 32

-€ -E

if i+j > 1, and in particular, whenever i+j is even and greater than zero.
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So,

we have

if i+

induced

writing
. § 1 g 0ij&ind ded
wehy - %l (G2 (g (-1 DT
S
v(P) =0

is even, and i+j > 0.

us now consider the velocity

V0 (P)ij =

1y E B PO 1 déd
i V0 I vl 0% e

by a polynomial doublet distribution
u(g,n) = uijgini

on the region in figure B.15.

Now,

and so

Now,

=

n
TN
— OO
~——

p} ]
o
]

a/aC

3 1 _
% [(g-x) 2 (n-y) o+ (g-2)°] 31

~(2=2) 1L (£-x)2*(n-y)2+(g-2)213/%

and since g= 0, x=y=0

. lim 1 3z £ 3
WP)ij = 250 T M1 j;f [£2+n2+72]302 (f;) dgdn

+ £lnd 8 d&d
‘g [£2+42+72] 312 \1 "

(B.

.12)

.13)

.14)

.15)

.16)

.17)

.18)

.19)
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For the x and y components of VD(P)i- we see that if i+j is even then
the integrand is an odd function, so the integrals are zero. If i + j is odd
and greater than 1, then performing an integration similar to (B.4.9) shows
that the integrals in (B.4.19) are of the form f(e,z) - log z where f(e,z) is
bounded as z -+ 0. Multiplying by z and taking the 1imit as z = 0 we conclude
that

> >
v (P)y5 = vg (P)ij = 0 (8.4.20)

if i*§ > 1.

The z component of ¥0(P)j; behaves somewhat differently, due to the
presence of the second term. “Both terms vanish if at least one of i or j is
odd, by the usual odd function argument. In addition, the first term is zero
if i + j > 3 by the same reasoning as the last paragraph. The second term,

z>0 4x J;f (52+n2+22) 3/2 &dn (8.4.21)

doe$ not necessarily vanish if both i and j are even. But it is of order e
if i + j 2 4, and since it vanishes for i + j = 3, it seems reasonable to
approximate the local doublet distribution by a polynomial with i + j < 2.
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Figure B.1 - An exterior boundary value problem

Figure B.2 ~ A region of finite volume
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Figure B.3 - Specification of normal flow on both sides of a surface

o}

Figure B.4 - A superinclined surface
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R ¢ =90(x,y,2)

Figure B.5 - A boundary value problem with no unique solution
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/

Figure B.6 - The Domain of Dependence
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Figure B.7 - A permeable surface inclined to the freestream

L closed path

Figure B.8 - A region which fails to be simply connected
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Figure B.9 - Airplane and wake
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Figure B.11 - Panel edge on a network edge
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Figure B.12 - Two adjacent panel edges
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Figure B.13 - Three adjacent panels
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Figure B.14 - Intersection of 3 surfaces (cross-section)
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Figure B.15 - Region of integration in neighborhood of ¥

B.5-9






C.0 The Design Problem

In the design problem the user attempts to obtain a configuration whose
shape is unknown, but is subject to certain constraints. For instance, a wing
may be required to have a certain planform, but its camber and thickness
distributions may be the subject of the design process. The constraints
involved in this case would be (1) that the surface be impermeable, and (2)
that particular pressure or tangential velocity distributions be required.

Now, specification of both normal and tangential flow on a surface is an
overspecification of boundary conditions, and thus in general there is no one
step solution to the design problem. The exception is called "linearized
design", in which the user is satisfied with a first order approximation to
the solution. This method is discussed in section C.1l.

In section C.2, we discuss a somewhat more sophisticated procedure, which
we call sequential design. This is a non-automatic iterative procedure in
which a single loop in the iteration consists of:

(a) a potential flow analysis (for example, a boundary value

problem with impermeability boundary conditions) of the configuration at

hand,

(b) a comparison of the pressures computed in (a) with the

desired pressure distribution, leading to the specification of tangential

velocity boundary conditions,

(c) solution of the potential flow problem for the tangential

velocity boundary conditions, and computation of the normal flow through

the surface, and
(d) "relofting" of the configuration geometry, using the normal

flow data, in order to produce a more nearly impermeable surface.

This procedure can be executed in the first version of PAN AIR, though steps
(b) and (d) will have to be performed manually by the program user.

In section C.3, we briefly discuss a still more sophisticated design
method, which we simply call "iterative design". This method is distinguished
from sequential design in its relofting method. '

Finally, in section C.4, we discuss stability problems occuring from the
discretization process. These problems generally result when a small
perturbation in a boundary condition generates a perturbation in the solution
which does not die out with distance. Since the discretization process always
results in some numerical error, stability problems can result in a totally
incorrect solution.

We do not discuss the imposition of “"closure" boundary conditions in this
appendix, but rather discuss that subject in section H.2.
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C.1 Linearized Design

The basic assumption of linearized design is that
Cp = -2u (C.1.1)

where Cp is the pressure coefficient at a point, and u is a component of the
perturbation velocity

Vo(x,y,2) = (u,v,w) (C.1.2)

Again, we assume |Vl = 1.

Equation (C.1.1) will be derived in Appendix N. Generally speaking, (C.1.1)
is valid only for thin configurations with Tittle camber at small angles of
attack, such as the configuration in figure C.1.

Now, the program user wishes to specify a difference in pressure distri-
bution ACPS (x,y,z) on the configuration, where

aCp = Cp, upper - Cp, lower (C.1.3)

Noting that u = V-ﬁ, (C.1.4)
(since |Q,I = 1) we have

2

aCp = —Z(VU—VL)°vm
a S
= =29 (¢y-9) * Voo

= 2% Uy (C.1.5)

Thus, the boundary condition to impose at (x,y,z) is

(-2V,)- Ju = aCpg (x,y,2) (C.1.6)
which is of the form
tp Ju = b (C.1.7)

(see (5.4.21) for the general boundary condition equation).

Now, the boundary value problem described by (C.1.7) is solved numerically, in
the course of which the total mass flux at the control points is evaluated.
The mass flux is used to reloft the surface as follows. The procedure we
describe is not incorporated in version 1.0 of PAN AIR.

The relofting takes place one network at a time (for a brief discussion of
networks and panels, see section 5.1). Two edges of the network are left
fixed or, if the geometry of the adjacent network has been relofted, these
edges are adjusted to close the gap. In figure C.2, these edges are edges 1
and 4.
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The remainder of the network is relofted one panel corner point at a
time. This is done by alternately relofting columns and rows of corner
points. For instance, in the example of figure C.2, first point (2,2) is
relofted, then (3,2), etc., then (6,2), then (2,3), then (2,4), and then we
move one row and column inward, relofting (3,3),...,(6,3), and then (3,4), and
one final time we move one more row and column inward, and then the whole
network in figure C.2 has been relofted. Thus a point is relofted only after
all the points closer to the network origin (in an indicial sense) have been
relofted. We now describe the relofting procedure for a typical point.

The pqint Pa(see figure C.3) is relofted to a point P4 as follows.
Let aPg= ?h-P4. Then the user chooses a direction d for aPgq; that is,
requires that N "
AP4= kd (C.]..S)
One then determines the value of k which minimizes W-A', where f'is the normal
of the relofted panel. In Appendix D, we show that

(P3-P1) x (P4-Pp)

n' o= : (C.1.9)
1(F3-F1) x (Pa-P2)
So, we can equally well minimize
57 = 10 [('53_$1) X ('p‘;,,_‘ﬁg)} | (€.1.10)
where § is the denominator of (C.1.9).
Writing Pa'=Pg + kd (C.1.11)
we minimize |f(k)] , where
f(k) = ﬁ-{($3_$1) X (54_32)] + KW-(P3-P1) x d ' (C.1.12)
which, being linear in k, is zero for
M. (P3-P1) x (Pa-P
‘ - (P3-P1) x (Pg-P2) (C.1.13)

W {(33—ﬁi) X 5}

Tgis is well defined providing d has been chosen so that it ;s not parallel to
(P3- P1) and provided W is not in the plane spanned by (P3- P1) and d.

So, (C.1.11) defines P4', and we may continue to the next corner point to be
relofted.

In the case of linearized design, we stop here, since we have the best
answer we can obtain with the linear pressure formula. The relofted
configuration is considered the surface whose distributions of pressure and
normal mass flux are the desired ones.
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C.2 Sequential Design

In sequential design, the first step is again to supply a guess at the
configuration which will yield the desired pressure distribution, and solve
the potential flow problem about that configuration with zero normal flow
boundary conditions. This results in a pressure distribution Cp (x,y,2).
Generally speaking, the second order or isentropic pressure formula would be
used to compute this pressure distribution. Now, barring remarkable
aerodynamic insight on the part of the user, this pressure distribution will
differ from his desired distribution Cp (x,y,z), but hopefully not by too

guch. We also compute the preliminary perturbation velocity distribution
v (x,y,z) resulting from the potential flow solution.

Now, we "linearize" about our previous solution by making the assumption
(analogous to (C.1.1)) in that if Cps(x,y,z) is close to Cpp(x,y,z), then

Cpg(x,y,2) = Cpplx,y,2) = 2V, + (Vs(x,¥,2) - Tp(x,¥,2)) (C.2.1)

where ?S is the unknown velocity distribution which produces the desired
pressure distribution CPS' Solving for the freestream component of vs,

jm-vs(x,y,z) = Qm-Vp(x,y,z) - 1/2(CpS-CpP) (C.2.2)
Considering the configuration in figure C.4 (in which Cp “ERe” = aCp

since Cp_lower = 0), equation (C.2.2) shows that we apply the boundary
condition

pu

tp. Yu =" (C.2.3)
since Su=Vy -V =WV (C.2.4)

where fg is the projection of Vm to the surface

and b = Vg Vp(x,y,2) - 1/2(Cpg-Cp, ) (C.2.5)

Now, once the potential flow problem with the boundary conditions has been
solved, the relofting is performed just as described in section C.1. Then
an analysis case (that is, a potential flow problem with impermeability
boundary conditions) is run, and the new pressure and velocity distributions
are evaluated, and the next cycle of the procedure continues.

If all goes well, the procedure converges, resulting in a configuration of
reasonable shape, with the desired pressure distribution. Unfortunately, if
the initial guess does not yield a pressure distribution Cp (x,y,z) close to
Cp (x,y,z), the procedure may fail to converge.
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C.3 Iterative Design

The procedure we describe briefly in this section is much more accurate
and rapidly convergent than sequential design, but also considerably more
sophisticated, and not available in PAN AIR. It encompasses two features not
found in sequential design. The first one is full automation; the relofting
and the formulation of the boundary conditions are performed automatically by
the program. The second is a more sophisticated relofting method.

This relofting method involves "differentiated influence coefficients".
That is, once the potential flow solution has been performed, and the source
3?(P-‘,)
3 CPj
all i and j, where P; is the ith control point, and CPj is the jth panel
corner point. The matrix [av/aCP;] is a 3x3 matrix, one of which exists for
each pair of control point P5 and corner point CPj, whose k,1 entry is
avy/aCPy. Given these matrices, standard optimization techniques can be
used in order to generate a revised geometry for which ff W-A' dS s

and doublet parameters are known, the matrices are computed for

S
minimized, subject to user-input constraints such as leaving the planform area
the same.

We will not discuss this process further here, since PAN AIR does not make
use of differentiated influence coefficients, and thus does not perform
jterative design. A more detailed discussion of iterative design, for the
special case of leading edge vortices, is given in reference (B,2).
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C.4 Stability

The problem of stability arises from the inherent numerical error in the
discretization process, rather than from the theory of the Prandtl-Glauert
equation. It is the splining method (see section 5.5 for a discussion of
splines) in combination with the boundary conditions which is called stable or
unstable. Precisely, a spline is called unstable if the perturbation of a
single boundary condition results in a perturbation in the original solution
which does not die out with distance from the point at which the boundary
condition is located.

In checking for stability, we may make use of the fact that the sum of
solutions of the Prandt1-Glauert equation is again a solution. Thus, the
solution to any boundary value problem is a linear combination of individual
solutions of cases in which one boundary value is set equal to one and the
rest are set to zero. We thus check for stability by observing the
singularity distribution which occurs when one boundary value is set to one
and the rest to zero. The resulting singularity distribution should rapidly
dimimish in magnitude as the distance from the non-zero boundary condition
increases. We consider a spline more stable, the more rapidly the singularity
distribution diminishes.

The simplest way to illustrate stability is with two-dimensional
examples. Thus, a "network" of “panels" consists of a sequence of intervals.
For simplicity, all our splines will be doublet splines, though what we
discuss will be applicable to source splines as well.

In figure C.5, we illustrate a doublet spline with singularity parameters
and control points located at panel centers, and for which the doublet
strength on a panel is constant, and equal to the singularity parameter
value. In figure C.6, we illustrate the doublet distribution arising from the
boundary conditions y = 0 at all but one control point, u = 1 at the remaining
one. We see that the perturbation induced on the uniformly zero solution by
the single non-zero boundary value dies down extremely rapidly; in fact, the
perturbation is zero except on the single panel containing the non-zero
boundary condition. Thus this spline is very stable. But we know (see
Appendix B.4) that locally constant splines are insufficient, so we consider a
quadratic spline, as illustrated in figure C.7. Because of the rapid
variation a quadratic function may exhibit, control points and singularity
parameters are required at the network edges in order to define the
singularity strength adequately.

The spline is a piecewise quadratic one, where the quadratic variation is
constructed as follows. The value of, for instance, u(P) is determined by
finding the quadratic function f(x) which goes through Q2 and Q3 exactly,
and then goes through Q and Q4 in a least squares sense. Then u(?) is
given as f(P). The details concerning the method by which we obtain the row
vector S of length 4 such that

n(Q1)
u(P) = & [ ) }

u(Qg) (C.4.1)

are given in Appendix I.5.
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Now, once we know u at every corner point on the network, the quadratic
distribution of u on an interval is that quadratic function which takes on the
computed values at the endpoints, and the singularity parameter value at the
panel center. Considering the interval in fiqgure C.8, in the local
coordinates illustrated there, we have

u(x) = a*bx+cx? (C.4.1)
u(-1) = u(P) = a-b*c (C.4.2)
u(0) = u(Q) = a (C.4.3)
u(1) = u(P') = atb*c (C.4.4)

So, subtracting (C.4.2) from (C.4.4),
2b = u(P') - u(P) (C.4.5)
while, adding these equations,

2a + 2¢

u(P) + u(P*) (C.4.6)
2¢c + 2u(Q) (C.4.7)

Thus (by (C.4.3)) we have values for a, b, and ¢, and so

u(x) = u(Q) + ELEL%:ELEL X + "(P)+“(;')—2“(Q) x2 (C.4.8)

In figure C.9 , we illustrate the doublet distribution we obtain by setting
u = 1 at one control point, and u = 0 at the others, given the spline just
described. Note that this spline is nearly as stable as that of figure C.6;
the disturbance dies down very quickly.

Further, this spline yields a doublet strength which is continuous across
panel edges, something which is very important.
But the same spline, with boundary conditions

u
3% ° 1 (C.4.9)

at the last control point, and

au  _
< = 0 (C.4.10)

at the others (except u = 0 at the first control point to insure uniqueness)
yields the doublet distribution (solving the boundary value problem
numerically) illustrated in figure C.10, which compares unfavorably with the
identically zero doublet distribution obtained by replacing the right size of
(C.4.9) by zero.

But now, consider the doublet parameter and control point locations

illustrated in figure C.11. If we impose the boundary conditions (C.4.9) and
(C.4.10), we claim that the resulting doublet distribution is illustrated in
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figure C.12. While the doublet distribution in figure (C.10) was obtained

numerically, that of figure (C.12) can be obtained theoretically in the
following manner.

Consider a distribution u(x) = a+bx+cx2 on the interval in figure C.8.
Now,

3

3§ (Q) = %E (0) = b (C.4.11)
and by (C.4.5)

b = Biﬂll§:—iﬁil (C.4.12)
Thus,

w(P') = u(P) + 2b = u(P) + 2 2% (Q) (C.4.13)

ax

So, applying (C.4.10) and (C.4.13) to figure C.12 with P=Py, P' = Py,
Q=Q1, we obtain

u(pl) = 0 (C.4.14)
But now that we know u(Py), we apply (C.4.14) to the second intervals, and so

u(Po) = 0 (C.4.15)

We continue this way, obtaining

u(P;) = 0, i<6 (C.4.16)

u(Pg) + 2 3% (Qy) = 2

If we now obtain u(Qj) by least squaring to the 4 surrounding Pj, we see

u(Q3) =0, i <5 (C.4.17)
u(Qg) = 0 (C.4.18)
u(Qy) =1 (C.4.19)

and thus we obtain the doublet distribution of figure C.12.

So, comparing with figure C.10, we see that the imposition of doublet
derivative boundary conditions at panel centers requires a different spline
than the imposition of boundary conditions defining doublet strength. This
situation generalizes to three dimensions, and thus requires different splines
for design (that is, doublet gradient) boundary conditions than are used for
analysis (that is, normal mass flux) boundary conditions.
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Figure C.1 - Design boundary conditions on a thin configuration
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Figure C.2 - Indexing of network points
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Figure C.5 - A constant doublet Strength spline

Figure C.6 - Stability for constant doublet spline
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Figure C.7 - Quadratically varying doublet spline.
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Figure C.9 - Stability for a quadratic doublet spline
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D.0 Geometry of Networks and Panels

This appendix will discuss the manner in which PAN AIR handles
configuration geometry. In section D.1, we will describe the different types
of "networks" by which a program user can describe a portion of the
configuration. We will also discuss modifications in the geometry generated
by the program under certain circumstances. In section D.2, we will discuss
basic panel geometry. In section D.3, we will discuss the geometric error
detection methods which discover geometric situations which could cause the
program to execute improperly or terminate abnormally.
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D.1 Networks

A network is an array (with, say, M rows and N columns) of points in space
which define a portion of the configuration geometry. In addition, source and
doublet distributions are defined on the network (that is, the network is a
"composite" network), with singularity parameter locations and spline methods
determined by the network's "source type" and "doublet type".

D.1.1 Network Types

The possible source types are "analysis", "source design 1," "source
design 2," and "null", while the doublet types are "analysis", "doublet
forward weighted," "design", "wake 1", "wake 2", and "null". Source and
doublet analysis networks are used in conjunction with boundary conditions
defining impermeability. Design networks are used in conjunction with
"design" boundary conditions, that is, those which specify tangential
velocity. Note that a "doublet forward weighted" network is really a doublet
design network. A network of type "null" is used to denote that the source or
doublet strength is zero; one could equally well use an analysis network in
conjunction with the uniform boundary condition

g=20
or p=20

To model a wake, as described in section B.2, one would generally use a
doublet wake network in conjunction with a source null network. The boundary
conditions, which are only imposed at the wake leading edge, specify the
matching of doublet strength on that edge to the doublet strength at the
trailing edge of the adjacent wing network(s). In figures D.1 through D.3, we
illustrate the singularity parameter locations corresponding to each of these
network types.

D.1.2 Wake Networks and the Kutta Condition

Two types of wake networks are available. In wake 1 networks, the doublet
strength is variable along the leading edge, and constant in the indicially
perpendicular direction. In wake 2 networks, the doublet strength is constant
over the entire network. In the example of figure B.9, the wake extending
behind the wing would generally be modeled with a wake 1 network, while the
portion of the wake extending back from the body would be modeled with a wake
2 network.

The two types of wake networks have distinct purposes. The wake 1 network
is PAN AIR's approach to satisfying the Kutta condition (see below), while the
purpose of the wake 2 network if to carry over the doublet strength from the
wing to the plane of symmetry.

The Kutta condition, which should hold at the trailing edge, is
ACh=0 (D.1.1)

where C, is the pressure coefficient. If the freestream direction is the x
direction, and the freestream has unit magnitude, then (cf. (C.1.5)) for a
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thin wing, the linear expresssion for ACp is

]
Alp = -2 — (D.1.2)

Now, the boundary conditions on the wake insure doublet continuity from
the thin wing to the wake. 1In addition, it follows from section J.11 that the
zero normal mass flux boundary conditions along the trailing edge of the wing
insure the continuity of the x-component of the doublet gradient.

Now, the wake spline is such that the doublet strength is constant in the
streamwise direction, that is,
du

——

axX

=0 (D.1.3)
wake

Since the normal mass flux boundary conditions insure matching of the doublet
x-derivative, we have, in light of (D.1.2),

ACp =0 (0.1.4)

trailing edge of wing

Thus for a thin wing, the use of a wake 1 network results in the
satisfaction of the Kutta condition, using the linear pressure coefficient
formula. It is therefore natural to use the wake 1 network to satisfy the
Kutta condition for a thick wing. This is done in PAN AIR, even in the
absence of a theoretical justification of its validity.

Wake 2 networks have a purpose which is not related to the Kutta
condition. In figure B.9, we show a wake 1 network emanating from the wing
trailing edge. Now, the body is not a 1ifting surface, and therefore one
would not in general expect a panel method to require a wake emanating from
the body. The wake 2 network is required in PAN AIR, however, because in its
absence the doublet matching boundry conditions on the wake 1 network would
drive the doublet strength to zero along its inboard edge.

Because the doublet strength on the wgke is constant, the doublet gradient
is zero, and thus the surface vorticity, n x gu, is zero. This corresponds to
the physics of the configuration; that is, the body "sheds" no vorticity.

D.1.3 Indexing

We now discuss the indexing system used internally in PAN AIR. The user
specifies an array [CP(I,J)] of panel corner points, where I, 1 < I < M, is
called the row index, and J, 1 < J < N, is called the column index. The upper
surface is defined by an upward pointing unit normal n whose direction is the
‘vector cross product (direction of increasing column index) x (direction of
increasing row index). In figure D.4, we illustrate a network with n pointing
up from the paper. The network edges are labeled in counterclockwise fashion
as shown, and each panel's corner points are similarly labelled in
counterclockwise fashion. The point CP(1,1) is called the origin of the

D.1-2



network. Finally, a panel L is given a row index and column index equal to
the row and column index of the point P on L

Singularity parameters are indexed by a distinct integer for each
parameter. For each index, the parameter type (source or doublet) and
location are stored, and, conversely, for each location on a network, the
program stores the indices of any singularity parameter located there.

D.1.4 Collapsing of Network Edges

Network edges are collapsed when a network of the type illustrated in
figure D.5 is defined by the user. The distance shown there is a user-input
“tolerance distance" (e). The short edge of the network in that figure is
collapsed as follows: the five panel corner points on that edge are each
replaced by the same new point whose coordinates are the averages of the
coordinates of the endpoints of the edge. Thus, the revised network has panel
corner points as illustrated in figure D.6. The array of points is still a
rectangular (MxN) array, except that now the same point occurs five times.

The reason for collapsing a network edge is that the existence of nearly
triangular panels (as opposed to exactly triangular panels) such as those in
figure D.4 causes nearly singular spline matrices, resulting in significant
numerical error. On the other hand, triangular networks (which necessarily
have triangular panels) cannot be excluded from consideration because the
natural paneling of many surfaces such as delta wings (see figure D.7)
requires the use of triangular networks.

A network edge is collapsed whenever the average panel edge length on the
network edge is less than the tolerance distance. If, however, the average
panel edge length exceeds e, yet one or more of the panel edges have length
less than ¢, the program terminates. The edge cannot be left uncollapsed
because some of the panels are too nearly triangular, it cannot be collapsed
because the user-input geometry would be excessively perturbed, and it cannot
be partially collapsed because of the indexing problems which would result
when singularity parameter locations are assigned.

D.1.5 Additional Network Processing

Additional processing is performed on the geometry of each network, but
will not be discussed here. This processing includes labeling of all but one
singularity parameter on a collapsed network edge as "null", and storing data
concerning each network edge separately in preparation for the automatic
abutment search described in Appendix F.3. Since this data is associated with
computing questions rather than engineering questions, this processing will be
discussed in section 3 of the maintenance document.
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D.2 Basic Panel Geometry

In this section we describe some basic quantities concerning panel
geometry.

A panel is uniquely defined by its four corner points P;, i=1,...,4, but
for convenience we define nine panel defining points as shown in figure D.8,
where Pg,...,Pg are panel edge midpoints, and

-l

=3 - - -
Py =~% (Py + Py + P3 + Pg) (D.2.1)

Note that even though P;, i=1,...,4, are arbitrary, Pjs J3=5,...,9 lie
in a plane. The proof comes from noting that by definition an edge midpoint
is the average of the endpoints of the edge, and so

Y 1...; 2
P5 =5 (P1 + Pp)
Bg:%—(ﬁz;"'ﬁl)
and so
LBs+ B =L Brotyepyepy
7 (Ps * P7) =7 (PL + Py +P3 +Py) =Py
% (F_).s + Pg) =% (32 + 33 + ?4 + 31) = ﬁg (D.2.3)

Thus Pg,...,Pg lie in the plane defined by the line connecting Pg and
P7, and the line connecting P and Pg.

Thus Pg is the midpoint of the edge P5Py as well as of the edge
P6Pg, and so Pg,Pq and P7 lie on a line, as do P6,Pg, and Pg.
But a basic theorem in geometry states that there exists a plane containing
any two intersecting lines, and so P5,...,Pg 1ie in that plane, which is
called the panel's "average plane".

We define the panel normal f as the unit vector normal to the plane
containing Pg,...,Pg, a vector which is unique provided the plane is
unique, that is, provided the set P5,...,Pg contains at least 3 distinct
points. The vector n can be computed in a multitude of ways:

n = % IV_X Wi R (0.2-4)
for any linearly independent pair of vectors V and W lying in the plane.
Equation (D.2.4) holds because the cross product of two vectors is
perpendicular to each of them; the condition that V and W be Tinearly
independent (i.e., non-parallel) insures that
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VxH4o0 (D.2.5)
since Vx#d = V] |W| sine (D.2.6)

where o is the angle between V and W. Further, |A} = 1 as long as the
denominator of (D.2.4) is non-zero.

In practice, PAN AIR defines

- - -

10 = 1/2 (Pg + Pg)
P11 = 1/2 (Pg + Py)
P1p = 1/2 (P7 + Pg)
P13 = 1/2 (Pg + Bg) (0.2.7)

(P10- P12) x (P11- P13)
= [(P1p- P12) x (P11- P13)]

>

and

(D.2.8)

which insures that A po1nts up out of the paper (see figure D.8). The
equation (D.2.8) is used in PAN AIR because that formulation would hold even
for "curved panels" (not included in version 1.0 of PAN AIR) for which
P5,...,Pg do not lie in a plane.

We now compute n by a different method, in order to obtain a result used
in section C.1. Applying (D.2.4),

R (P5-P7) x (Pe-Pg)

" [PsP7) X (Pe=Pg]] (0.2.9)

and thus, substituting (D.2.2) into (D.2.9),
R 1/2(31+52—33-34) X 1/2($2+33—34-$1) D.2.10
N = TIT2P 7P P3P4) X 172(P 4P 3P 4=PY)| (D.2.10)

The numerator of (D.2.10) is
- - - - - - -2
1/4{(P1 P3) + (Po- P4)} x{-(P1-P3) + (Pz-P4ﬂ

- 4{$1 P3) x (Fo-Pa)} - {(Po-Pa) x (F1-P3) (D.2.11)
=1/2 ( 1 33) X (ﬁg 34) (D.2.12)
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Substituting this into (D.2.10),

2 _ (P1-P3) x (B- By)
R e e (0.2.13)

a result quoted in section C.1.

Now, P1,...,Pq need not lie in the plane containing P5y...,Pg.
Thus, a panel contains § planar regions; the center region which contains four
triangular regions as illustrated in figure D.9, and 4 outer regions
containing one triangular region each. The triangular regions are called
subpanels, and so a panel contains 8 subpanels, which are labeled in figure
D.8.

Much of the geometric data for a panel is computed for each subpanel,
though this is occasionally redundant. These include: (1) a subpanel origin
and reference to local transformation describing a local subpanel coordinate
system (see Appendix E), (2) a subpanel unit normal vector and co-normal, (3)
the subpanel area, (4) unit edge tangent vectors for the subpanel edges along
with their "compressible" norm, (5) subpanel edge normals in local
coordinates, (6) a Jacobian factor relating subpanel area in global
coordinates to that in-local coordinates, and (7) a flag indicating whether
the subpanel is subinclined or superinclined.

To obtain the unit normal to the subpanel illustrated in figure D.9, we
compute a4 N
= (P- i) x (B )
|(75j- Pi x Py- Pl
where fi is not computed if the denominator is less than 10-10, 1In that

case, the subpanel area is set equal to zero, and no subpanel calculations are
performed. The area of the subpanel is (from geometry)

. (D.2.14)

A =172 |Ps- Pl |Pe- Pi| sine (D.2.15)
Combining (D.2.6) and (D.2.15),

A=1/2 |(P5-P;) x (Pe- Py (D.2.16)
The unit edge tangents are

t = l;%ffgﬁ (D.2.17)
etc. The compressible norm of t (see Appendix E for a discussion of this
norm) is (by definition)

(8.2 - 88 - mie . 12 (0.2.18)
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The subpanel conormal is defined in compressibility axis coordinates (in which
the compressibility direction cg = (1,0,0)) as

s82ny
n = ny (D.2.19)
nz
= (s82-1) (8y-A)8, *+ (D.2.20)
since
Ny = g+ (D.2.21)
Thus, A=f - M )&, (D.2.22)
The Jacobian factor J is given by
o« frtinteference coordinates 0.2.2)
Its use will be discussed in Appendices I and J.
Finally, the sub-panel is "subinclined" if
n.i >0 (D.2.24)
and "superinc]ined; if
A< 0 (D.2.25)
If . =0 (D.2.26)

the subpanel is "Mach-inclined", and the program terminates for reasons which
will be discussed in Appendix E.

Some items of data computed for each panel are not concerned with Jjust a
single subpanel. For instance, all the data computed for the subpanels is
also computed for the "projected panel”, the projection of the panel to the
average plane. In addition, it is computed for the four "half panels", that
is, the triangles P1P,Py, PoP3P1, P3P4Pp, P4qP1P3.

These data are needed to compute "intermediate field" influence coefficients,
in the computation of which the panel is approximated either by two half
panels or by the projected panel. These are used when measuring the influence
of the panel on a control point which is sufficiently far not to require the
8-subpanel representation of the panel, but not far enough to permit the far
field influence coefficient computation method (see Appendix J.2). A1l the
items are computed for the projected panel or half panels in the same manner
as for subpanels. Redundant data is not necessarily computed (e.g., the
projected panel is super- or sub-inclined whenever subpanels 5 through 8 are).
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Finally, the program calculates, for each panel, its radius, its diameter,
and certain skewness parameters. The radius is the distance from the center
to the farthest corner point and the diameter is the maximum distance between
any two corner points. The skewness parameters result from a non-orthogonal
transformation of coordinates after which

0 1 0 0
Pg = 0 ’ P8 = 0 s Ps = 1 , ﬁ = 0 ,k >0 (0.2.27)
0 0 0 K

We may see from figure D.8 that this is not the standard choice of x and y
axes, but it results from having derived the relevant formulas with the panel
in figure D.8 rotated by 1800.

We use this coordinate system, which we write (x*,y*,z*) because the
interior region bounded by P5,...,Pg becomes a square, as illustrated in
figure D.10. Note that in general (since most panels are not square), this is
not an orthogonal coordinate system. The numbers Cij» Jj=1,...,4, i=1,2, are
called skewness parameters since they are all zero for a panel which is a
parallelogram in the original coordinate system as

(P1- Pg) = (Ps- Pg) + (Pg- Pg) (D.2.28)
for a parallelogram.

The doublet subpanel spline matrices are calculated in the (x*,y*,z*)
coordinate system, but rather than transform the panel coordinates, we compute
the matrices using the skewness parameters (see section 1.2 for details).

Computing the skewness parameters is fairly straightforward. Combining

1 +Cq1
ﬁl = 1 + C21 (D.2.29)
z
with (D.2.27), (D.2.28) we obtain
(P1-Pg) = (1 + C11) (Pg- Pg)

~

* (1) (Ps-Po) + A E (D.2.30)
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Taking the cross product on the left with (Pg-Pg ), and dotting into n, we

obtain

>

+ (1 + CZI){( 8- _l;g) x (Pg- —Isg)}-ﬁ

The final term is zero, and so

¢ _{P - Pg) X (51— ﬁg)}-ﬁ
21 = [Pg=Pg) x (P5- Pg)-h

@8‘ ﬁg) X (31- ﬁg)}-ﬁ
(Pg~ Pg) x (Pg- Pg)-h

Similarly
{B1- P9) x (P5- Pg)) -4 =
{P1- P9) x (P5- B}
(Pg- Pg) )

{4;— Pg) x (Ps- Po)}-

Ps— Pg)

and thus Ci1 =

>
—~
o
(8,
|
©
w
—]
| >

Examination of figure D.10 gives us

C1o=Cpy
Co2 = Cn
13 =t
3= Cx
14 = O3
Cos = Oy

This concludes the discussion of basic panel geometric quantities.
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= (1 +Cq1) O-A

(D.2.31)

(D.2.32)

(D.2.33)

(D.2.34)
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D.3 Error Checks

In this section, we summarize the basic checks performed by the program to
insure that the geometry of the configuration is admissible. These checks are
the following:

a. Check if the average panel edge length on a network edge exceeds the
tolerance ¢, while some panel edge length is less than ¢ (violation is a
fatal error).

b. Check if two adjacent edges of network collapse. This is inadmissible
because the calculation of spline matrices would be impossible for panels
near both collapsed edges. See figure D.11 for a network in which
adjacent edges are collapsed.

c. Check if a panel edge in the network interior has length less than e.
This is inadmissible because of logic problems which would occur in
calculating the spline matrices if the edge were collapsed, and numerical
inaccuracies occurring from nearly triangular panels.

d. Check the panel aspect ratio. This is the ratio of the furthest distance
from the panel center to its boundary over the smallest distance. Large
aspect ratios cause numerical error in spline and influence coefficient
calculation (this has only been verified experimentally). Aspect ratios
over 100 are forbidden and those over 100 result in a warning message.

e. A panel or subpanel is essentially Mach inclined.

If .8 < 104 this is a fatal error, and if < 1/10 a warning
message is printed.

f. The panel is seriously skewed. Warning messages are printed if the panel
iS non-convex (1+c11+c12 < 0 for some i = l,...., 4), nearly
non-convex (l+cji*c1p > 0), or triangular while having four distinct
vertices (l+cji*cio = 0).

g. A subpanel has zero area when projected to the average plane. If so, a
flag is set, no normal or conormal vector is calculated, the subpanel
splines are set to zero, etc.
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a. Source analysis network
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b. Source design 1 network
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C. Source design 2 network
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Figure D.1 - Locations of source singularity parameters
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a. Doublet analysis, doublet forward weighted
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b. Doublet design
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O doublet parameter locations
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Figure D.2 - Doublet analysis and design singularity
parameter locations
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a. Doublet wake 1
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b. Doublet wake 2
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X boundary condition locations

Figure D.3 - Doublet wake singularity parameter locations

D.4-3



’ ! Edge 3
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I = row index
J = column index
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Figure D.4 - Network and panel indexing
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Figure D.5 - Network with an edge to be collapsed by the program
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Figure D.8 - A panel
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Figure D.9 - A subpanel



P3 = (-(1+C13)’-(1+C23)’Z)

‘ (‘(1 + Clz), 1+ C22,- Z)

Figure D.10 - Definition of skewness parameters
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Figure D.11 - Impermissible network (two adjacent collapsed edges)




E.0 Matrices and Coordinates

The material in thisg appendix is hardly reflected in the PAN AIR code, but
rather provides background materia] on coordinate systems and
transformations. This material is referred to in the course of the influence
coefficient derivations of Appendix J. In addition, we derive (in section
E.3) the expression for the reference to local transformation (see (5.2.27))

Bﬁo T

A = 1 [Coli
oo I{ﬁo,ﬁo}lll2

|(ﬁo,ﬁo}|1/2

rs [COJVO
8

-~ m > -

(E.0.1)

and for the transformation between orthogonal coordinate systems (see (5.2.11))

COS a COS 8 -sin 8 sin a« COS B
r = CoS a sin g cos B8 sin a sin 8
-sin a 0 coS a : (E.0.2)

Because T is a transformation between two orthogonal coordinate systems, it
is in fact an orthogonal matrix. That is, its inverse is its transpose, and
for all vectors X,Y, the Euclidean inner product is invariant under
transformation by

(TX, TY) = (X,Y) (E.0.3)
This arises from the fact that T is a rotation (see section E.3)

In our application, T will be the matrix relating reference coordinates
and the compressibility coordinate system, in which the x-axis is the
compressibility direction.

The matrix A is less well-behaved, however. This transformation is the product

A= GST (E.0.4)

where we have

r S G

Xo X X —= X' (E.0.5)

Here, X, is the reference coordinate system defined by the program user, X
is the compressibility coordinate system in which the freestream is in the
x-direction, X is a coordinate system in which the y-and z-axes have been
scaled according to (3.1.3), and X' is the local coordinate system in which
(5.2.19) holds.

While the matrices T and G are orthogonal, the scaling matrix S is not, and
so the product matrix A is not orthogonal either. The bulk of the complexity
of this appendix arises from this fact. In figure E.1, we illustrate a surface
S in the compressibility coordinate system X and its image S' in the Jocal
coordinate system X'. We illustrate vectors T and fi, tangent and normal to
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the surface S respectively, and their images T'and 7 in the scaled coordinate
system X'.

In section E.1, we consider the properties of vectors and their images under
an arbitrary transformation. The reader may find some benefit in verifying

the results of E.1 for a "typical" matrix A, such as a diagonal matrix which
is not the identity. In section E.2, we derive the properties of some special
inner products. In section E.3, we verify that the matrix (E.0.1) has all the
properties we require of a reference-to-local transformation. We do s0, in
fact, without ever constructing the transformation G of (E.0.5).
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E.1 Vectors and Dual Vectors

We consider here the effect of the coordinate transformation A = [aij]

A: Xg——X" (E.1.1)

X1
by which a position vector X, = [Xz}, expressed in the coordinate

X3
x1'
system X,, is transformed into an image vector X'=  |x>'l, expressed in the
x3'

coordinate system X'. This image vector represents the same physical quantity
(such as location) as the original vector, but in a different coordinate
system. It is a different vector only in the sense that its entries are
distinct from those of X.

The entries xj' of the image vector X' are given by
the formulas

X; = z a-iJ' XJ’ = [A ?O]i i = 1,2,3
J=1 (E.1.2)

where ajj are the entries of the transformation matrix A. We shall
occasionally find it convenient to write this equation using the summation
convention for repeated indices, that is, x5' = ajj Xj. Examples of

other vectors which transform according to the formula (E.1.2) include the
vector element of arc length, d1, and surface tangent vectors t:

di =aij dly = {adl), (E.1.3)
ty=aij ty = (i), (E.1.4)
Equation (E.1.4) may be interpreted to assert that whgg:?b 1§ a surface

tangent to some surface S at some point y5 in S, then t' = Aty will be a
surface tangent vector to the image surface §'

S = {?“ : X" = [A] X, for some X in S} (E.1.5)

at the image point y'= [A] ¥. Unless [A] is an orthogonal matrix, however, we
need not expect that t' will be a unit vector even when t is. However, if T =
t is any unit vector, then we define the corresponding image unit vector by

T = At AR (E.1.6)
Thus the transformation rule for unit vectors is somewhat more complicated
than the corresponding rule for vectors. In particular, the image of a unit
vector as scaled in (E.1.6) is a distinct vector from the original one. Here,

E.1-1



and from now on, we use a A to denote a vector of unit length.

We now turn to a discussion of dual vectors. A dual vector is, by definition,
a real-valued linear function on the vector space. Whereas the typical vector
was the position vector Xo» the typical dual vector is the unit normal

vector ny or gradient operator

a/ax alaxy
v =Yooy = {asaxy
3/3z a/ax3

(E.1.7a)

It should be noted that tensor analysis works generally refer to vectors as
“contravariant vectors," and dual vectors as "covariant vectors." Both the
normal vector and the gradient operator are linear functions on the vector
space in a natural manner through the dot product

*'v = z 3 Y.
v P ) (E.1.7b)

ﬁ . v: Z n'Y'
0 i 1 (E.1.7¢)

The transformation rules for dual vectors Vo (such as ¥ and Ng) is
that the image V' in the coordinate system X' satisfies

—

VLY =Y (E.1.8a)

for every vector Y.

Now,

VEY = VT Y SV TAY (E.1.8b)
while

Vo Y =V ¥ =VI[a-L ATY (E.1.8¢)
Thus, for (E.1.8a) to hold, we require

VT oo WAl - {[A—T]v‘o} T (E.1.8d)
or

Vo= AT (E.1.8e)

where the superscript -T denotes the inverse of the transpose matrix, which is
the same as the transpose of the inverse.

Thus dual vectors transform by A-T, while ordinary vectors transform

(cf. (E.1.2)) by A. It should be noted that if A happens to be an orthogonal
matrix, A = A-T and is length-preserving, and thus regular vectors, unit
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vectors, and dual vectors transform identically.

The gradient operator may also be applied to functions f of position x.
We see that if we define v' by

9 f (?ﬁ) = 3 _ f(;:)s 3 f(;b) R R
2 Xi > Xj X = Alx (E.1.9)
we obtain
' _Af s 17 . af ol . ..
( v f (X))] = 3Xk W'I [A ]kJ X j = a—xk' [A ]kJ 5]J =

af -1 - 3
e A= s f

IXk 3Xk (E.1.10a)
where §ij is the Kronecker delta:
843 = 1ifi=3
[ 0if i 4] (E.1.10b)
We thus obtain
v =ATVO (E.1.11)

which is consistent with our transformation rule (E.1.8e) for dual vectors.

Next we see that, whenever wy and wp are vectors in X, then
w] X wp is "almost" a dual vector in the sense that

wi X wé = (Awl) X (Aw2) = (det A)A-T (wg x wp) : 12)
£.1.12

This equation is proved below. Thus, apart from the factor of det A, the
cross product of two vectors transforms in the same way as a dual vector. In
g_simjjar vein, we note as well that the cross product of two dual vectors,
vVl x v2, transforms very much like a vector

VI x V3 = (AT V1) x (AT V3) = (det A)=1 A (v] x vp) (E.1.13)

It is apprdpriate at this time that we give brief proofs of the above
assertions. In addition, we will show that AdS, the surface unit normal times
the element of surface area, transforms like an "almost" dual vector, (cf.
(E.1.12)).

A vector t that is tangent to some surface S at some point x may be
regarded as the tangent to some curve T(t), parametrized by T and lying
complgtely on S, as that curve passes through the point x. In other words,
when t is a tangent to S at xy, there exists a curve T(T) such that c(t)
lies in S, xg =7(Tp) and
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d = -
C (T) =t
dt IT = T (E.1.14)

Given this spec1f1cat1on of t, it is easy to see how tangent vectors
transform. The image tangent vector ' will simply be the tangent to the
image curve ¢’ (1) = A T(T) evaluated at the point

Xo' =C'(T) =AT(T) = A . Thus

L?'(T) =T, = d—A-E(T) - = A d -CLT - = A-E = -{‘
gr &1t = S KDy = A S

(E.1.15)
as asserted.

Next we prove equation (E.1.12) for vectors v and w. Recall from section
B.3 that

=S

(V X W)r = quer Wq (E.l.lG)

where epqp is defined there. So,

( Av X AW )r = qur(A-\T)p (Amq = epqr‘ Ap‘i V-i AQj Wj. (E.1.17)

Multiplying by AT on the left,

T - _ T — _
(AT (AV x AW))S = [A ]sr (AV x AW)r = <pgr Api v qu W

(E.1.18)
But, generalizing the definition of determinant
we see
and thus substituting in (E£.1.18),
(AT (AV x AW)) s = eijs (det A)vjy wj = (det A)(V x W S (E.1.21)
and so
AT(AV x AW) = (det A) (V x W) : (E.1.22)
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or
AV X AW = (det A)[AT] (¥ x W) (E.1.23)
which is equivalent to (E.1.12)
Next we examine the transformaticn Taw for unnormalized normal vectors n.
Such vectors are specified only up to an arbitrary multiplicative constant;
their principle characteristic is that they are perpendicular to all tangent

vectors, djhus, if £; and 2 are two linearly independent tangent
vectors, m is given by

no=a (t] xty) (E.1.24)

where o may be chosen arbitrarily non-zero.

Next, we note that the image 7' of 7 must be perpendicular to the images

-y

t] , t , of ] and To; thus

n' =q (t1 X t2) (E.1.25)

Using equation (E.1.4) we find

]

T =aq {thl X th] = o' (det A) A-T [_tLl x-fz]

2 (det A)[A-T] &
a' (E.1.26)

Choosing a' = a ,» we obtain the desired results.

det A

Finally we note that AdS transforms as in equation (E.1.12). This
observation follows immediately from the definitions (see figure (E.2)

Flods = d 1 X d 2
n'dS = 11 X 12
diy = (Ad1),  (E.1.27)

Upon applying equation (E.1.12) we find that
T dS' = (det A) A-T 7 dsS (E.1.28)
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We conclude our discussion of vectors and dual vectors with the
observation that the Euclidean inner product of a vector W with a dual vector
V is invariant under transformation, that is

(VW = VT o 3T [and AlW = (ATWT ag =TT
(E.1.29)

= (-\7' 1wl )
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E.2 Metric Matrices, Dual Metrics and Inner Products

The introduction of metric and dual metric matrices is best motivated by a
careful consideration of the Prandt1-Glauert equation (3.0.1) (for the dual
metric) and the definition of the function R (5.2.14) (for the metric
matrix). First we define the metric matrix C.

Recall from section B.0 that R2 is given in terms of a control point P
and a surface point Q in the compressibility coordinate system (x,y,z) by

RZ = (P - 07)2 - sg2 (P2 - 02)2 - ¢52 (P3 - Q3)2

(E.2.1)
This relation may be written in matrix-vector form as
~ 1 0 0 ~ A
RZ = (P-)T |0 82 o (P - Q)
0 0 sg2 | (E.2.2)
This equation motivates us to define the metric matrix C by
1
[C] = sp2
sg2 (E.2.3)

Corresponding to C, we define the compressible inner product [wy, wp] of
two vectors Wy , Wo by

(W1, W2l = W17 [CIW = (W1, [CIW) (E.2.4)

Turning now to the definition of the dual metric matrix B, we note that the
Prandti-Glauert equation can be written (since sg2 = 1 - Mi )

sg2 afax) |
(3/ax a/ay a/az) 1 3/3y} vé =0
1 3/az (E.2.5)
In matrix vector form this reads
_nT -~
[v (8] v} $ =0 (E.2.6)

where [B] is defined by (cf. (5.2.5), where reference and compressibility
coordinates are assumed to be identical)

2
(B] - 7 |
1 . (E.2.7)
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Since the operator ¢ transforms like a dual vector (cf. (E.1.8el: equation
(E.2.6) motivates us to define the dual compressible inner product{vy, vy}
of two dual vectors by

V1, 23 = V1T (8] Vs = (v], [81V5) (E.2.8)

An important relationship between B and C is the identity
[B] [C] = s82 [I] (€.2.9)

When we investigate the transformation rules for [B] and [C] we will find that
this relationship is preserved under linear transformations.

Careful examination of equations (E.2.5) and (E.2.8) shows that we may
define modified vectors W and modified dual vector V by
W = Cw (modified vector) (E.2.10)

Bv (modified dual vector) (E.2.11)

<?
]

With modified vectors defined in this fashion, it is easy to see that the
inner product relations (E.2.4) and (E.2.8) can be written

(Wi, w2l = (W1, W) = (W, wp) (E.2.12)
{1, V2l = (1, v2) = (¥p, va) (€.2.13)

Two examples of modified dual vectors include the conormal,

A = [B]n ' (E.2.14)
and the modified gradient operator, V , defined by (5.2.4).

We now examine the transformation rules for metrics and dual metrics.
When a coordinate transformation of the form (E.1.1) is performed, the metric

matrix C and dual metric matrix B in the new coordinate system X' are defined
by the invariance requirements that

- )

(W » Wyl = Wy T [C'1W, = [W , W) (E.2.15)

- | - _ - T ' - _ -l
["1 ; Vz] = vp ' B v, ={v;, vy} (E.2.16)
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whenever W} = AW}, Vi = [A'T]V% . For the metric matrix
C', (E.2.15) implied that, for arbitrary vectors ﬁﬁ, Wé

LT = [, 3 = W Tie gy = WaT o AT
(E.2.17)
Consequently we find that
C=AT C' A, C' = AT ¢ a1 (E.2.18)
Similarly, equation (E.2.16) provides us with the transformation rule
B = A-l gr A-T, B' = ABAT (E.2.19)

It is now an easy matter to verify that the relationship (E.2.9) is preserved
under transformation; calculation gives

B' C' = (A B AT) (AT ¢ A-1) = A(B C)A-l= A ( s82 1) A-1l = sp2 1
(E.2.20)

There is no a priori condition that determines how w transforms, so we
make the reasonable requirement that

(W)' = (W')~ (E.2.21)

W= (W)= C'W' o= AW = [C A c-liw (E.2.22)

From equation (E.2.18) we see that

C' Ac-l_ a-T | (E.2.23)
so that
w'o= AT @ (E.2.24)

This shows that modified vectors are in fact dual vectors.

Similarly, one may show that modified dual vectors are vectors. That is,
assuming, for a dual vector v, that

(V) = (v')~ (E.2.25)
then

Vi =AYV (E.2.26)
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These observations provided us with an interesting interpretation of equations
(E.2.12) and (E.2.13): [W], W5], which is the compressible product of the
vectors wy and wp, is the same as the Euclidean inner product of the

vector w1 and the dual vector wy ; similarly (¥], V3} , the dual
compressible inner product of the dual vectors vy and vy is the Euclidean
inner product of V¥ (a vector) and VZ (a dual vector). This

observation shows that the invariance properties (E.2.15) and (E.2.16) are
closely related to the invariance relation (E.1.29).
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E.3 Coordinate Transformations

We recall from section E.Q the reference coordinate system Xg, the
compressibility system X, the scaled system X, and the local system X'. 1In
this section, we will determine the properties required by the transformation
A: Xo > X', and then show that the matrix (E.0.1) is the unique matrix with
these properties.

In general the x-axis of coordinate system X, need not line up with the
free stream. Thus it is necessary to define a new coordinate system X in
which the x-axis is lined up with the free stream axis (that is the x-axis of
the Prandt1-Glauert equation (3.0.1)) . This is possible if the user provides
the compressibility direction by means of a compressibility vector ¢o -

The PAN AIR program user will specify the compressibility axis by giving an
angle of attack ac and a sideslip angle B¢ as shown in fig. E.3. The

?rientagjon of the Compressibility axis 1is given by the unit vector (cf.
5.2.12

COS ac COS B

~

Co = -sin 8¢
Sin ac cos B¢ (E.3.1)

A free stream oriented coordinate system X must be defined such that the
compressibility vector c, lies along the x-axis of this new coordinate
system. The transformation from Xo to X may be characterized as an angle of
attack rotation of (- ac) about the Yo -axis followed by an angle of
sideslip rotation of (- Bc) about the resulting z axis.

Note that coordinates transform in the opposite manner from basis vectors.
Thus if we denote the transformation from Xo to X by I'c so that

Ie: X9 —=— X (E.3.2)
we have
r - — -9
Cos B¢ -sin B¢ 0 {cos ac O sin ac
rc = Rz (—BC) Ry(— (!c) =|sin B¢ CoOS Bc 0 0 1 0
0 0 ;J L_-s1'n ac 0 cos a c.
[ cos ac cos g ~sin 8¢ sin ac cos 8¢ ]
= COs ac sin B, COS B¢ $in ac sin ¢
-sin ac 0 COS a¢ (€.3.3)
- -
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Here Ry and R, denote rotations about the respective axes.

Thus the compressibility axis in coordinate system X is given by

0 (E.3.4)
which is the desired result.
In fact, if T. is partitioned by rows, we see immediately that the first

row of Tc is simply €] while the remaining two rows are orthogonal to
Co and to one another:

(4] )

tJ (€.3.5)
. J

In fact, I is an orthogonal matrix; T =1

A matrix of the form T, transforming reference coordinates
orthogonally to another user-defined system, is used after the potential flow
solution has been obtained.

This axis system X* is defined by an angle of attack o* and an angle of
sideslip g*, with the transformation TI'*: X, » X*
defined by

COS a* c0S B8* -sin B* sin a* cos g*
COS a* sin g* cos g* sin a* sin g*
-Sin a* 0 Co0S a*

I-\*

(E.3.6)

The angles a* and g* are user-supplied, and describe the coordinate system in
which the user wishes PAN AIR to calculate forces or moments.

Before we consider the transformation from reference (Xg) to local (X')
coordinates, let us consider the transformations (see (E.2.18) and (E.2.19),
substituting . for A)

T

[Co] = T¢ CTe
T

(Bo] =

I'c B It (E.3.7)
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The matrices By and C, have the same properties in reference coordinates

that B and C have in compressibility coordinates. That is, equations (E.2.2),
(E.2.4), and (E.2.8) hold for By and Cy if the vectors in these equations

are written in reference coordinates.

Now, from (E.2.3) and (E.2.7)

[C] = s82 1 + (1-s82) 3 &7
(8] =1+ (s82 - 1) 81 &'
(E.3.8)
where 81 is the ith column of the identity matrix I.
Now, since Tl =T, because e is orthogonal, and
TA )
Icer = Co
by (€.3.5),
(Col = 582 1 + (1-582) &y &,T
[Bo] = I+ (582 1) &y &7 (£.3.9)

Let us now consider the properties we require of the transformation

A: Xg > X! (€.3.10)
where X' is the local coordinate system for each subpanel.
The reasons for these requirements are given following (E.3.15).

First, recalling (5.2.19) through (5.2.22), we require, for points p and
g, that

RZ = (p'1 - q'1)2+ (p'p - q'5)2

+ (p'3 - q'3)2 for subsonic flow

(P1-91)2-(p'5-q'p)2

(p'3 - q'3)2 for subinclined panels in supersonic flow

=-(P'1-9"1)2-1(p'5-q')2
+ (p'3-4q'3)2 for superinclined panels. (E.3.11)

Second, we require that on the subpanel on which the X' coordinate system is
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z' = 0 (E.3.12)

Third, we require that the "upstream" direction be the x'< O direction for
subsonic flow or subinclined panels, (cf. (E.3.13)) and that the upstream
direction be preserved for superinclined panels. (cf. (E.3.14)). That is, if
the surface normal in reference coordinates is pointing into the flow, then so
should the surface normal in local coordinates, and similarly if the normal is
pointed with the flow. Precisely, we require

(89, A1 81) >0 (€.3.13)
in the former case, and
sign (&g, A-l 83) = sign (&g, fg) (E.3.14)
in the latter case. The fourth requirement is
det A >0 (E.3.15)

Before proving that these requirements are satisfied, let us discuss them
further. Equation (E.3.11) is necessary in order to obtain reasonable
formulas for the influence coefficients, that is, formulas which do not have
scaling coefficients all over. The requirement that the subpanel lie in a
coordinate plane makes the integrals needed for influence coefficient
calculation computable, the z' = 0 plane is chosen throughout in order to
permit uniform formulas for all three cases. The constraint on the upstream
direction makes the notation for the derivation of the influence coefficient
formulas simpler. Finally, the requirement that A have positive determinant
insures that the local coordinate system will be a right-handed one.

In the remainder of this appendix, we will rigorously prove that the
matrix A in (E.0.1) satisfies the requirements. We will not, however, explain
where A came from, since we did not arrive at A through a rigorous procedure.

Recall that we claim that

! ] A
AT - 1 [Col o | TS_ [Col Vo | 8 Mo
,{?‘o,ﬁo}| 172 [ ] » [ l{ﬁo,ﬁo}lllz
(E.3.16a)

satisfies the requirements (E.3.11-15), where
fg = unit normal vector
Vo = (g x Eo)/|fig x &
r =sign {ng, A}
0y = ¥y x By (E.3.16b)
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The subscript o indicates these vectors are in reference coordinates.

If ny is parallel to ¢, , Vo may be chosen arbitrarily as any unit
vector perpendicular to them. Since i, and ¥, are linearly independent
vectors orthogonal to ng, the second requirement on A, (E.3.12) is
equivalent to

(A Gig, 83) = 0

(A Vg, 83) = 0O (€.3.17)
or (g, AT 83) = (¥o, AT &3) = 0 (E.3.18)
or AT &3 = kifg, k40 (€.3.19)

gut this just says that the third column of AT should be proportional to
Ng, which is satisfied by the matrix in (E.0.1).

Next, by definition,

RZ = (py - a1)2 + s82 (pp - q2)2 + s82 (p3 - q3)2

-7 sg2 (P -7
sg2 , (E.3.20)

[rc(b‘o - %)}T ] (o T)

(Po - -qho)T [rcT C It1(Po- To) (E.3.21)

(by (E.2.18))

-t

(Po- G0)T [Col (Po- To) (£.3.22)

On the other hand, we can unify (E.3.11) by noting that r = -1 if and only if
the panel is superinclined, and so (E.3.11) becomes

R2 = {a (B - 3T s A (85 - o)
rs
(E.3.23)
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Combining with (E.3.22), we obtain the requirement on [A]:

[AT] s (Al = [Co]
rs
Inverting (E.3.24)
r
A-1 S A-T - [Co]—l
rs
or
r
s = [AllCol-1 [AT]
rs
But, by (E.3.7), [Col-l = I¥ (Cc-l1p
T |1
c 1/s82
= 1 r T B T = 1 B
582 [} ¢ 82
=(by £.3.9) _1_ [11+(1-_1_ ) [&, &M
Sg2 Sg2
Thus, we must show that
[0] = ACy™l AT = _1 [AAT] + (1- _1 ) [Ag¢T AT]
sl sg2
r
= s
rs

£.3-6
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Now,

[0, = 1 (1 0T [Ce]T [C
1 (g, No} 582 ° o}’ o)

+ (1 - # ) GOT [Co]T EO EOT [Co] GO)

sg2
But from (E.3.9)

[Cf Col = 8% [1] + 2 582 (1 - sg2) (& €71
+ (1- s82)2 [E, &f &, &]]

= 8% [17+ (2582 - 28% + 1 - 2502 + g4) [¢, &7

=84 (1] + (1 - %) [&, 2]]

Next,

[cd & &J Co] = [s82 1 &, ¢ ss2 1]
+ [s82 1 &, Eg (1 - s82) & &T]

* (1 - s82) 85 20T &, 2,7 s821]

* [ (1-582) S T &5 0T (1 - s82) &, 8,77

84 [Eo CoT1 + (s82 - g4) [ SoT]
+ (582 - 8%) [E &T] + (1 - s82)2 [y &,T]

= [&5 1]

SO, GOT [COT C0] ao = 84 ﬁoT GO
+ (1 - g4) 0§ [&y 217

)

o

= 84 + (1 - 34) (aoa E0)2
and

ud [cd] [ 881 [Col Gy = (G, &9)2

.32)

.33)
.34)
.35)

.36)

.37)
.3.38)

.39)

.40)

.41)
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So,

(D)1 = ____l:____ [ g4 + 1-g4 (Gg, Go)2
[{fg,An}] 582 sg2
+ (1 -_.2_5; ) (Ug, 80)2]
= L [(s82 + (1 - s82) (4y, 2)2
|{n09 n0}|
Now, for vectors A,B,C,

- e = -
(A x B).C = €eijk Aj Bj Cx = €jki Bj Cx Aj = (B x

Thus,

UO.CO

c
o.
o

o

where

On th

Ng,

+

= 1

S

applying (E.3.16b),

= (00 X ﬁo) . 60 = (ﬁo X Eo)-oo
X Co)(qo . VO) = ﬁo X Eo
= |fip x Cg] = * sin e
o is the angle between fy and &,.

e other hand by (£.3.9)
Ng = ngl Bo Mg = Mgl o

s8p - 1) (fig . &5)2

+ (SBZ - 1) (ﬁo . 80)2 = 1 + (582 - 1) cos 2 o
ince (ﬁo R Eo ) = cos e.
So, D17 = s82 + (1 - 582) sin2 o

r (1 + (sg%- 1) cos? o)

(since r {1y, N} = |{Ag, Ng}|)

s82 + (1 - sg2) (1 - cos? o)

E.3-8

(1 + (s82 - 1) cos2 o) r

—ha

).

A

(E.3.42)

(E.3.43)

(E.3.44)

(E.3.45)

(E.3.46)

(E.3.47)
(E.3.48)

(E.3.50)




_ 1+ (1 - s82) (- cos? e)

(1 + (s82 - 1) cos 2 g) p (€.3.51)
Next, let us consider D,5. By (E.3.31) and (E.O.1),
2 2 ~ ~
022 = _1_2_ r 25 (CO Vo)T CO Vo
SB 8
2 &2 o A
+(1-_1_) _rcs (Co ¥o)T [&g &5T] Cq V
$82 Y 0l To el ke To (E.3.52)
=1 T CTCy o+ (1-_1 1 voT [CoT 8 T Col Vg
sg4 sg2 82
(E.3.53)
Now, &f ¥y =0 (E.3.54)

and applying (E.3.35) we therefore get

1.7 [CoT Ca] ¥ = 1 Vol Vn = s
(6] (o] 0 0 = — =
8% s o ° (E.3.55)

Applying (E.3.38) we find that the second term of (E.3.53) vanishes, and thus
Doy = s (E.3.56)
Next (by (E.0.1) and (E.3.31)),

ATA . . -
D33 = B2 o o o+a-L ABZA ot & EoT fig
582 [{nosNo}| 82 |{fig, Mo}l (€.3.57)

Using (E.3.48)

82 (1 - 1/582) 02 o
[{nos No}| [{No s Nol| - (E.3.58)

| (No » N} (E.3.59)

(by (E.3.48) and (E.3.49a))

E.3-9



s (1 + (sg2 - 1) cos?2 8) - re
r (1 + (s8%- 1) cos? o) (E.3.60)

Next, we consider D1» . By (E.0.1) and (E.3.31),

Dyp = rs (Co Up)T Co ¥
$83 [(ng, 13| 112 c e
+ 1 rs Co.ao [Eo EOT] CO v0
1 -s82  g{ng,ng}|1/2 (E.3.61)

.- Applying (E.3.35) and (E.3.38), we see that each term contains either
cg Vg Or ug Vg, both of which are zero by (E.3.16b), and thus

Dip = 0 (E.3.62)
Next, Dj3 =
_ AB . 1 > Uo7 [CoT1 Mg+ (1-_1 > ) GoT [CoT €6 ST Mg
[{fg, Mo} s8 SB (E.3.63)

= (by (E.3.9))

8 L 0T 82 By + 1582 § T e Th,
l{no> no}|  sg2 sg2
+ (1- 1 ) Uo' s82 &g SoT Mg
sg2

+ (1— —_ 1 ) (1 - 582) GOT Eo eoT EO‘GOT ﬁo
sg2 (E.3.64)

= (by(E.3.16))
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—E 0+l 1) (6T &y 2T )

[{(No> Ngjl sg2
*+ (s82- 1) (GpT & SoT Ng) + (2 - 1 - 582) (Uo7 €o CoT Ng)
sg? (E.3.65)
= ___E___ . 0 = O
I{ng, Ng}| (E.3.66)

Finally, Dp3 can be expressed by (E.3.63), changing the factor in front to

: rs 7 and replacing {ig by Vo. But since we also have
NgsNg

(by (£.3.16))

Why = 0 (E.3.67)
we can follow the steps (E.3.63-66) again to obtain

Dp3 = 0 (E.3.68)

Now, combining the fact that D is symmetric (see(E.3.31)) with (E.3.51),
(E.3.56), (E.3.60), (E.3.62), (E.3.66), and (E.3.68), we have

r
[D] = S
rs (E.3.69)

which we have shown is equivalent to (E.3.31) (see the argument from (E.3.20)
to (E.3.31)).

So, we have proved that RZ has the appropriate form in the X' system
(E.3.11), and earlier we showed that the subpanel lies in the z' =0 plane.

To show that the upstream direction transforms correctly, we exhibit A-l
first. We claim

~

Bo no
B [(Ngsno)| 172 (E.3.70)

!
[
i
1

Verifying that [AA-1]= [I] is tedious, and uses the same sort of
arguments as evaluating D.

First,
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I
—~~
o
<
m
.
w
Yo}
N

_r  (sB2ugT Uy + (1 - sg?) Ug! € Co! Ug)
|{ng» Noll

(by (E.3.46), (E.3.48), and (E.3.48a))

r (sg2 + (1 - sg2) sin 28) =1
r (1 + (s82 - 1) cos? o

Next,

i, 25 o :
[Aa-13,, = = U6 CoT Vo =
= (by (E.3.9))
_E? (s82 VoT Vo + (1 = s82) Uo7 &g Col Vo)
B

(by (E.3.16)) V§ Vg = 1

Next,

A A

[AA-]'J33 =__r noT Bo No
[{ngsno}]

= (by definition)
r {Ag » No}
[(ng » No}

by (E.3.49a).

E.3-12
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(E.

.71)

.72)

.73)

.74)

.75)

.76)

J77)

.78)



Next,

r8lfios Aol Z [AA-1115 = 0 <l U, - (E.3.79)
(by (E.3.9), since Cy is its own transpose by (E.3.24))

(1-582) 0§ & e 0o + s820] %y = 0 ' (E.3.80)
by (E.3.16).

Next, reltip, Aol [AA-1113 = & [Cq Byl g
But from (E.2.20) we see
Co B = s82 1 (€.3.81)
and thus by (E.3.16),
[AA-1793 = 0 (E.3.82)
Next,
BZrZSHﬁO, ﬁOHI/Z [AA‘1]23

Vo [Cd Byl Mg

Once again applying (E.3.81) and (E.3.16), we obtain
[A-1153 = 0 (E.3.84)

Next,

1]
o

8 [{fig, Ag}|1/2 [AA-1] = voT Co g
"2s 21

by (E.3.80).

Next,

r {Nos o}l | AA-1 f~T @ 0
5 [AA="13 o™ Yo (E.3.86)

by (£.3.16).

Finally

rltho, Aol /2 [Aa-113 = f] G, = o (€.3.87)
by (E.3.16).

Thus we have shown that

[AA-11 = 1 (€.3.88)
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Applying (E.3.70) when r = +1,

[A-1] [o] = Aag
0 [{fig,fg}| 172 (E.3.89)
and so
. L1 (q,, 6 fo x &
ol A1 {0} = 0> Yo - 0 x Co 5 0
0)  I{fg.fg} 1/2 | {Rg,no}| 172 (E.3.90)

This proves (E.3.13). Applying (E.3.70) when r = -1,

0 A
[A-1] [0] = —[?OJTO
1 Bl{ig,no}| 172 (E.3.91)
and so
0 . N
1 8 |{ng,ng}| 1/ (E.3.92)

(by (E.3.9) and (E.3.48))

- _1 : (CoT fig + (s82 -1) &,T 2, ol fig)
B [{fg,Np}| 172 (E.3.93)

~ 58 (Cq, Ngp)
8 [{Rg,fo}| 172 (E.3.94)

which has the same sign as (€, , fig)since s = -1, thus proving (E.3.14).
Finally, we show that det A > 0.
Applying (E.1.12) to @y and Vo,
Alp x Alg = (det A) [A-T] (G, x ¥o) = (de