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1.0 Introduction

PAN AIR (an abbreviationfor "panelaerodynamics")is a system of computer
programsdesigned to analyzesubsonicor supersonicinviscidflows about
arbitraryconfigurations. It is one of a sequenceof computerprograms
developedover the past two decadeswhich fall in the categoryof "panel
methods." Generallyspeaking,a panel method is a programwhich solves a
linear partialdifferentialequationnumericallyby approximatingthe
configurationsurfaceby a set of panelson which unknown "singularity
strengths"are defined,imposingboundaryconditionsat a discrete set of
points, such as panel centers, and therebygeneratinga system of linear
equationsrelating the unknown singularitystrengths. The equationsare then
solved to obtain the singularitystrengths,which, once known, provide
complete informationabout the flow.

PAN AIR differs from earlierpanel methods in that it is a "higherorder"
panel method; that is, the singularitystrengthsare not constanton each
panel. This is necessitatedby the more stringentrequirementsof supersonic
flow problems. Numericalsolutionof the differentialequation for supersonic
flow, the wave equation,is far more sensitiveto the numericalidiosyncracies
of a panel method than is the solutionof Laplace'sequation,which governs
subsonic flow. The potentialfor numericalerror is greatly reducedby
requiringthe doubletsingularitystrengthto be continuous.

It is this "higherorder" attributewhich, in turn, allows PAN AIR to be
used to analyzeflow about arbitraryconfigurations. The A-230 program
(Reference1.1), for instance,can only analyzeflow about thick objectssuch

- as bodies and thick wings, while the Woodwardprogram (Reference1.2) can only
deal with "linearized"configurations,in which a wing is representedby its
mean surface. So, PAN AIR can handle the simple configurationsconsideredin
preliminarydesign,and at the same time serve as an "analyticalwind tunnel"
for the analysisof flow about detailed,complexconfigurations.

The basic Version3.0 PAN AIR capabilitiesinclude:

(a) the abilityto handle,within the limitationsof linear potential
flow theory,completelyarbitraryconfigurations,using either exact
or ]inearizedboundaryconditions,

(b) the ability to handle asymmetricconfigurationsas well as those with
one or two planes of symmetry,

(c) the ability to handle symmetricconfigurationsin either symmetricorasymmetric flow,

(d) the ability to superimpose an incremental velocity on the freestream,
either locally or globally, in order to simulate effects such as a
rotational motion, differing angles of attack for different portions
of a configuration, or a propeller slipstream,

(e) the ability to calculate pressures, forces and moments using a
.variety of pressure formulas (such as isentropic, linear, etc.),
includingthe forcesand moments due to momentum flux throughthesurface,
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(f) the abilityto calculateleadingedge and side edge thrust forcesand
moments for thin configurations, _

(g) the abilityto perform non-iterativedesign of a configuration,a
process in which a desiredpressureor tangentialvelocity
distributionis specified. The programthen determinesthe
"residual"normal flow throughthe surfacerequired to obtain the
desired pressuredistribution,and

(h) the abilityto calculatestreamlinesand to evaluate flow properties
at user specifiedoff body points.

This documenthas been structuredto providean overview of the theory of
potential flow in general and PAN AIR in particular,with detailed
mathematicalformulationsreserved for the appendices. Section2 containsa
brief discussionof fluid dynamics,outliningwithout proofs the steps from
the Navier-Stokesequationsto the linear differentialequationsolved by PAN
AIR. Section3 discussesthe generaltheory of panel methods without
discussingPAN AIR in particular. Section4 is an overview of PAN AIR as it
compares to older panel methods. Section5 is devotedspecificallyto PAN AIR.

A complete discussionof the theoryof potentialflow and PAN AIR will be
given in the appendices.

This document is not intendedto be a textbookon fluid dynamics,and thus
detailedderivationswhich are availablein standardtexts will not be
repeatedhere; rather,the appropriatereferencewill be given. The standard
potentialtheory and fluid mechanicsreferenceswe will use are the works of --
Kellogg (1.3),Liepmann and Roshko (1.4) and Ward (1.5). Those appendices
dealingwith items of theory unique to PAN AIR will be more thorough,however,
referringto outsidesourcesonly for standarddiscussionsof topics such as
linear algebra, graph theory and numericalanalysis. There will be a
correspondencebetweenappendicesand portionsof the actual computercode,
with each appendix either supplyingbackgroundinformationor discussingthe
theory behind a module or part of a module of PAN AIR.

A glossarycontainingthe definitionof technicalterms is containedin
this document. When a term first appears,it will be given in quotes,and
briefly defined. The glossarywill give a more detailed definitionif
necessary.

The authorswish to thank KathleenChristianson,MicheleSorensen,and
Valerie Spura for their efforts in typing this documentand ForresterJohnson
for his assistancein its preparation.
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2.0 FundamentalFluid Dynamics

In this section,we will outline the processby which one arrivesat a
second order linear partialdifferentialequation,called the Prandtl-Glauert
equation,which describessteady,irrotational,inviscidflow in a perfect
fluid. Our startingpoint is the Navier-Stokesequations,which describeflow
in a fluid under very generalcircumstances. The assumptionthat viscosity
can be neglectedpermits the Navier-Stokesequationsto be replacedby a
simpler systemof equationsincludinga "continuityequation,"a "momentum
equation,"two "energyequations,"and "Euler'sequation." The further
assumptionsof "irrotationality"and "isentropicflow" lead to the "unsteady
potentialequation." The assumptionof steady flow leads to the "steady
non-linearpotentialequation." Finally,the "smallperturbationassumption"
leads to the "Prandtl-Glauertequation." The remainderof this documentwill
deal with the numericalsolutionof the latter equation.
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2.1 The Navier-StokesEquations

The basic equationsdescribingthe flow of a viscouscompressible,
heat-conductingfluid are the Navier-Stokesequations. These are:

(a) The equation of continuity,

3 a(PVi)
a__p+ V (p _) ap + T - 0 (2.1.1)
at " = a_ i=1 axi

, a-_2, is the gradientoperatorwith respect to the
-€.

location vector x = (Xl, x2, x3), and where we have used the conventionalindex

notation as an alternateto _ = (x,y, z). In addition,t is time, p(X*,t)is
-F

the density,and _(_,t) is the total velocity,with V = (VI, V2, V3).

(b) The momentum equation

3 3

a a + pfja-_(p Vj) + Z a -ap + _ Tji
i=l ax---T(p viVj) - axj i=1 ax---T1

(j = 1,2,3) (2.1.2)

where Tij is the deviatoricportionof the "stresstensor"which vanishes for a

frictionlessfluid, _(_,t) is an externalbody force per unit mass exerted on-€.

the fluid, and p(x,t) Is the pressure.

(c) The energy equation

a-_(pe + p + P) + 2 a (pe + 1 Pl_l2 +
i=1 ax--T _- P) Vi

aT

= a__+ T a__Tap a (Tim Vm + k-_T) + P _ fi Vi
i,m i

(2.1.3)
-).

where e(x,t) is the "internalenergy"of the fluid, k is the coefficientof
heat conductivityfor the fluid, and T(_,t) is the temperature.

(d) The equationof state

f(p, p, T) = 0 (2.1.4)

where the function f depends on the type of fluid. For a perfectgas, (2.1.4)
can be writtenas

P = p RT (2.1.5)

__ where R is a constant.

The equationsin this sectionare derivedin Liepmannand Roshko (1.4),section 13.13.
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2.2 Euler's Equation

The Navier-Stokesequationscan be simplifiedby the neglectof viscosity,
which is equivalentto settingthe deviatoricstress tensor Tij = O.
Combiningthe momentumand continuityequations,we obtain

p dVJdt- axjap+ pfj j : 1,2,3 (2.2.1)

where the usual convectivederivativeoperator is defined,

d a + Z Vi a
_I_: _ i ax--T

Equation (2.2.1)is called Euler'sequation. We can obtain a full systemof
equationsincluding(2.2.1)as follows (see Liepmannand Roshko (1.4),p. 188,
for details).

The continuityand energy equationscan be reduced to two energy equations:

d 2Z__i '12) -,- .p _ ( = -V . Vp + pV . f (2.2.2)

and the rate of increaseof heat per unit mass is given by

- 1 V (kVT) dp + d pl_q = p • = _ p _ ( ) (2.2.3)

In addition,it follows from (2.1.5)and (2.2.3)that a perfect gas obeys
the equation

ae Cv aTat - _ (2.2.4)

where Cv is the specificheat of the gas at constantvolume.
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2.3 The UnsteadyPotentialEquation

The equationsof section2.2 can be reducedto a single equation (seeref. 2.1
Landahl, section1.2, for details) if four furtherassumptionsare made.
First we assume "isentropicflow" so that no heat is added to the fluid,and
thus

q : 0 (2.3.1)

Second,we assume irrotationality,that is,

V x V = 0 (2.3.2)

which is shown in Liepmannand Roshko (p. 196) to be equivalentto the
existenceof a "potential"function_ (_,t) such that

v _ = V (2.3.3)

Third, we assume the existenceof.a freestreampotential ¢. , whose
gradient is the uniformvelocityV. attainedat points sufficientlydistant
from the disturbancebeing analyzed,and thus write

= _ - _ (2.3.4)

and

V : (u,v,w)= V • = v _. + V_ : V_ + V_ (2.3.5)

The quantities _ and v are called the perturbationpotentialand velocity,
respectively. For convenience,we assume the freestreamV, is aligned in the
x directionand has magnitude1.

Fourth,we assume that

]_] << a_ (2.3.6)

everywhere,where a. is the freestreamspeed of sound. Equation (2.3.6)is
generallycalled a small perturbationassumption,but the reader is warned
that other "small perturbation"assumptionsexist in the literatureand in
this document.

Based on these four assumptions,one can obtain (denotingdifferentiation
by subscripts)the unsteadypotentialequation (writingM. for IV. I /a. ):

(1-M2)_xx + _yy + #zz - 2M_2 _xt - M2 _tt

= 2 [½(y- i)(2u+ 2 + I I2)

(2u u2) #xx v2 + 2vw + w2+ + + _yy #yz zz

+ 2(i + u) (v _xy + w _xz) + 2(uut + vvt + wwt)] (2.3,7)

where y is the ratio of specificheats
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2.4 The Steady Non-LinearPotentialEquation

If we assume the flow conditionsdo not change with time, we can eliminate
the time derivativeterms in (2.3.7),obtaining(see Landahl, (2.1))

(1 - M.2) 6xx + _xx + _zz

+ (2u + u2) _xx + v2 _yy + 2vw _yz + w2 #zz

+ WCxz)]+ 2(1 + u)(v #xy (2.4.1)

where y is the ratio of specificheats.

Equation (2.4.1)is often called the "small perturbationtransonic
equation"becauseit holds at transonicspeeds (that is, for M,=I) under the
assumption(2.3.6). Of course,the assumptionsof steady, inviscid,
irrotational,and isentropicflow must also hold.
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_ 2.5 The Prandtl-GlauertEquation

So far, each reductionof the Navier-Stokesequationsto a simplerform
has been based on preciselydefinedassumptions. But the conditionsunder
which (2.4.1)reducesto a linear differentialequation are not so preciselydefined.

If M. = O, (2.4.1)reducesto Laplace'sequation,

v2 _ : 0 (2.5.Z)

a linear partialdifferentialequation. If M= _ O, (2.4.1)reduces to a
linear differentialequationprovidedadditionalassumptionsare made.

Suppose

.2I;I<< 1 .2 (2.5.2)
and

M2 I_I << i (2.5.3)

which, like (2.3.6),are called small perturbationassumptions. Under those
assumptions,the steady non-linearpotentialequation reduces (see Appendix A)
to the Prandtl-Glauertequation:

(i - M2) _xx + _yy + _zz = 0 (2.5.4)

Equations(2.5.2)and (2.5.3)should be consideredcarefullyby any user
of PAN AIR, since they best indicatewhen PAN AIR will providea reasonable
analysisof the flow about a configuration. Equation (2.5.2)clearlycannot
be satisfiedfor M. =1, and thus the Prandtl-Glauertequationdoes not
describe "transonic"flow. Equation (2.5.3)does not hold for M. >> 1, and
so (2.5.4)does not describe "hypersonic"flow.

But there is no preciseanswer to the question: for what range of Mach
numbers does (2.5.4)describethe flow For a thick configuration,or one at
a high angle of attack,the perturbationquantitiesu, v, and w tend to be
large, and thus (2.5.2)and (2.5.3)only hold for a narrow range of Mach
numbers. For a very slenderconfiguration,at a small angle of attack,
(2.5.3)and (2.5.4)hold for a much wider range of Mach numbers. But deciding
whether (2.5.4)is a "reasonable"approximationfor a particularconfiguration
and a particularMach number may be very difficult,and depend greatlyon
one's definitionof "reasonable."

The remainderof this documentwill deal with the solutionof the Prandtl-
Glauert equation. Using Green's theorem,(2.5.4)is used to derive an integral
representationformulawhere the integralsextend over the configuration
surface. Additionalassumptionsare then brought to bear in order to obtain
an integralequationon the configurationsurface. The integralequation is

-- then solved by a "discretization"process: the configurationsurface is
divided into panels, "boundaryconditions"are imposedat a discrete set of
points, and a systemof linear equationsis generated. The system of equations
is solved,and data of aerodynamicinterestis calculatedfrom that solution.
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3.0 Panel Method Theory

- In this section,we outline the processby which the Prandtl-Glauert
equation

(1 - M.2) _xx + _yy + _zz = 0 (3.0.1)

is convertedto an integralequation,and the way in which a generalpanel
method solves that integralequation.

In section3.1 we describe the Prandtl-Glauertscale transformationby
which equation (3.0.1)is convertedto either Laplace'sequation (M® < 1) or
the wave equation (M, > 1). In section3.2 we state Green's third identity
which providesa representationformulafor _ in the subsoniccase (M, < 1).
(The correspondingrepresentationformula for the supersoniccase is given in
Ward, ref. (1.5)). For the subsoniccase, a simple problem is then formulated
showing how the integralrepresentationformulaleads to an integral
equation. Finally, in section3.3 we describethe discretizationprocessby
which a panel method solves the resultingintegralequation.
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3.1 CoordinateScaling

Equation (3.0.1)is furthersimplifiedby performinga scalingof the
coordinatesystem. If we define the flow type indicators by

s = sign (1 - H_2)
(3.1.1)

and the compressibilityscale factor B by

B : _rs (i . M_2)
(3.1.2)

then the scaled coordinateswe requireare given by

x:x

= B y (3.1.3)

z:Bz

In this new, scaled coordinatesystem,(3.0.1)can be written

s _RR + _ + #_ = 0 (3.1.4)

But equation (3.1.4)is just the same as (3.0.1)with M. = 0 or M= = _/-2-.
Thus, the subsoniccase reducesto the M_ = 0 case while the supersoniccase
reduces to the M. = _/2-case. Equation (3.1.4)is called Laplace'sequation
if s = 1, and the wave equation if s = -1. These equationsoccur in other
branches of physics (for instance,Laplace'sequationoccurs in electrosta-
tics), and thus PAN AIR potentiallyhas applicationsin fields other thanfluid mechanics.

For the rest of section3, we will assume M_ = 0 (note, incidentally,
that this does not mean I.V_l O; rather I.

= , V_ I = i and the freestreamspeed

of sound a, is infinite). A similardiscussion,for the case M. =_/_'-, is
given in Ward (1.5). The integralrepresentationformula(3.2.7)which results
may be generalizedto arbitrarysubsonicand supersonicMach numbers,as dis-
cussed by Ward in sections2.8 and 2.10.
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3.2 Green's Theorems

There are a number of theorems,all of them slightlydifferent
formulationsof the same result, known as Green's theoremor theorems. It is
one of these results,often known as Green'sthird identi_ (see Kellogg, p.
219) which allows us to obtain an integralrepresentationformulafor a
function_ satis_ing Laplace'sequation. The most fundamentalversionof
these theoremsis also known as the "divergencetheorem,"or Gauss' Theorem,

which states that if F(x) is a "well-behaved"function (that is, continuously
differentiable)on a "nice" regionV in space with bounda_ S (see figure
3.1), then

fff " flV. F dV = n . _ dS (3.2.1)

V S

where n(_) is an outward-pointingunit normal to the surface. This theoremis
discussedon p. 39 of Kellogg.

Green's third identi_ followsfrom (3.2.1). We need some notationto
state this result,however. Let U be a twice continuouslydifferentiable
function in a regionV of space. Let P be a point in V, S the boundaryof V,

Q an arbitrarypoint of integrationon S, and R = IP - _I. Then

lffI%U(P) = - T_ V

- dSQ
S

+ 1 ff 1-- dSQ
(3.2.2)

S

This result is derivedin Chapter VIII of Kellogg,where opposite signs appear
becauseKellogg'snormalpoints inward. Also,

3
2 a2

v : v.v = _ _ (3.2.2a)
i=1 axi

A number of resultsfollow by substitutinginto (3.2.2)a function
satisfyingLaplace'sequation

2

V _ = 0 (3.2.3)
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First, lettingP approachS we find that _ is finite as we approachS. Thus,
is an integrablefunctionover S. Next, let V be a region consistingof all
of space except for a surface S, which is thus the boundary of V. We
illustratetwo such cases. In figure 3.2, S is a closed surface,and thus V

is divided into two regions: V1, the "interior"of S, and V2, the "exterior."

In figure 3.3, S is not closed, and thus V consists of a single region. Let
us define the "upper"surfaceof S as the surfacebounding that portionof V
into which n points,where _ is the outward-pointingnormal for a closed

surface,and may be chosen arbitrarilyotherwise. Let us write _U and _L to

denote the limitingvalues of _ at a point on S, approachingfrom above and
below. Then (see p. 221 of Kellogg)

S (3.2.4)

Equation (3.2.4)is the fundamentalintegralrepresentationformulawhich
a panel method uses to obtain a solutionto the potentialflow problem. When
combinedwith appropriate"boundaryconditions"(see below),the formula
(3.2.4)can be manipulatedto yield an integralequation (of Fredholmtype) on
the singularitysurfaceS. A panel method then obtains an approximate
solutionof this integralequation by means of the numericalmethod of
collocation. Two functionsdefinedon S are generallyintroducedbecauseof
their importancein the manipulationof (3.2.4). The first is the "source
strength,"definedby

o(Q) = _.[V_U(Q) -V_L(Q)] (3.2.5)

and the second is the "doubletstrength,"definedby

_(Q) = _u(Q) - #L(Q) (3.2.6)

These quantitiesare often called "singularitystrengths,"becausethey
measure the singularbehaviorof _ on S. Using these quantities,(3.2.4)
becomes

¢(P) = - 4_ T- p " g dS (3.2.7)
S

As mentionedabove, equation (3.2.7)must be supplementedwith boundary
conditionsin order to obtain the integralequationthat is solved by PAN
AIR. Generally,these boundaryconditionsare equationsrelating_, o, _ and
their derivativeson S. The specificationof boundary conditionsin
conjunctionwith (3.2.7)amounts to a formulationof a "boundaryvalue
problem." This problem in turn is called "well-posed"if it has a unique
solution,and "ill-posed"otherwise. A typicalexampleof a set of boundary
conditionsleading to boundary value problem formulationmight be (see
figure 3.2)
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_L : 0
(3.2.8}

combined with

V_ u ._:b
(3.2.9)

= - V_ . n, say

It can be shown (seeAppendix B) that the combinationof (3.2.7)with the
specificationof the boundaryconditions (3.2.8)and (3.2.9)on the
configurationin figure3.2 is a well-posedboundaryvalue problem. We will
discuss ill-posedand well-posedboundaryvalue problems furtherin section4
and Appendix B of this document;see also AppendixA of the PAN AIR User'sManual.

In fact, the boundaryconditions (3.2.8)and (3.2.9)constitutethe
"Morinoformulation"of the potentialflow problem (cf. ref. (4.6)).
Referringagain to figure (3.2),we see that the boundary condition(3.2.8)
impliesthat _ = 0 for all points interiorto V1. This followsfrom the

general uniquenessresult for solutionsof Laplace'sequationwith Dirichlet
boundaryconditions(cf. Kellogg). Consequentlywe find that

VCL " _ = 0 (3.2.10)

Substitutingthis and (3.2.9)into (3.2.5)yields for

= - V_ . n (3.2.11)

Note as well that 6U is equal to the doubletstrength_; for, combining
(3.2.6)and (3.2.8)we get

" = _U " _L = _U - 0 = _U (3.2.12)

We can now obtain the integralequationmentionedabove. Evaluatingequation
(3.2.7)on the upper surfaceof S, we obtain after using (3.2.11)and (3.2.12)

"(P) "Ti_ , _ • v dS : V.. _ dS

U

(3.2.13)

When proper care is taken to evaluatethe integralappearingon the left
hand side on the upper surfaceof S, this equation is the integralequation
for u(Q) that is solved by PAN AIR, given the Morino formulationof theboundaryvalue problem.
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3.3 Discretization

We now outline the discretizationprocessby which a panel method solves
the integralequationobtainedby combining(3.2.7)with a properlyposed set
of boundary conditions. In point of fact we will not actuallydescribe the
integralequationformulationof the potentialflow problem. Rather,we shall
describe in an operationalway the processby which PAN AIR transformsa
specificboundaryconditionimposedat a particularpoint into a constraint
relation imposedon a set of singularityparameters. This point of view is
consistentwith the actual operationof PAN AIR, in which the problem
formulationis implicitlyleft as a task to the user.

The generalidea of this discretizationprocessconsistsof two parts.
First, finite dimensionalapproximaterepresentationformulas are developed
for the singularityfunctionsa(Q), _(Q) which expressthese functionsas

linear combinationsof known basis functionssi(Q),mi(Q) with unknown

coefficients _i' i=1, ... , N. The set {_i} N is called the set ofi=1

singularityparameters. In the second part, a set of equationsdetermining

the unknowncoefficients_i is obtainedby imposingthe boundaryconditions

specifiedby the program user at selectedpoints,called "controlpoints" or
collocationpoints. By imposinga total of N conditionsof this sort using N
control point/boundaryconditioncombinations,we obtain a systemof N

constraintrelationsinvolvingthe N unknownsingularityparameters{_i} Ni=i
Solving this system of equationsyields values for _i' completelydetermining

the functionsa and _ by virtue of the finite dimensionalrepresentation
formulae (see equations (3.3.1)and (3.3.2)below). Then, by virtue of the
integralrepresentationformula(3.2.7),the potentialfunction_(P) is
determinedfor all points P, solvingthe problem. We now amplifysomewhat the
detailsof this two part discretizationprocess.

The first part of the discretizationprocessconsistsof the development
of finite dimensionalrepresentationsfor o and _. One begins by
approximatingthe singularitysurfaceS by a collectionof "panels." Next a
collectionof points is chosen (for example,all panel centers),and the
values of o and u at these points are identifiedas the unknown singularity

parameters,_i" Approximatedistributionsa(Q) and u(Q) are then developedby

assuming that the values _i are known and applying a combinationof linear
least squares fittingtechniquesand polynomialinterpolationprocessesto

extend the discretevalues of (_i}N to all points on the surfaceS. Onei=1

obtainsby this method the representationsfor a and _,
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N

o(Q) = Z _i si(Q) (3.3.1)
i=1

N

"(Q) = E _i mi(Q) (3.3.2)
i=1

Here, the functionssi(Q) and mi(Q), called the source and doubletbasis
functions,describe the source and doubletdistributionsobtainedby setting

_i = 1 and _j = 0 for all j _ i. Of course if _i is a doubletparameterthe

correspondingsourcebasis function si is identicallyzero. Similarlyif _i

is a source parameter,mi(Q)-O. (The simplestsort of basis functions,

frequentlyemployedin "constantstrength"panel methods, are obtainedby ex-

tending the value _i over its associatedpanel. A basis function for such a
method is illustratedby figure 3.4).

Having describedthe finite dimensionalrepresentationformulaefor _(Q)
and _(Q), (3.3.1-2),we now show how a particularboundary conditionimposed
at a controlpoint is transformedinto a linear constraintrelation imposedon

(_i} N . In order that this processby made quite clear, we consider the casei=1

of boundarycondition (3.2.8)imposedat P:

#L(P) = 0 (3.3.3)

Upon substitutingthe representations(3.3.1-2)into the integralrepresenta-
tion formula (3.2.7), one obtains the expression for _L(P) (note the evaluation
at P-on, a point just below P)

eL(P) = - _ _ xisi(Q) dSQ

iI

I 1
N

1 _. V(I/R) _] _imi(Q) dS (3.3.4)+ 4_
s i:i

We identifythe coefficientof _i in thisequationthe i-thcomponentof a
row vector_ICL:
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1 _ + i fi B v(1/R)m i dSQL_ICL(P)j. : - _ (si/R)dSQ _ .I
S S

(3.3.5)

Combining (3.3'4)with (3.3.5),we have expressedeL(P) as a linearcombination
of " :

i=1

_L(P) =L_ICL(P)J _ (3.3.6)

Finally, imposingthe boundarycondition(3.3.3)leads to the "AIC constraintequation:"

L_ICL(P)J_ = 0 (3.3.7)

Now we imposeboundaryconditions(whichare not necessarilythe same form
as equation (3.3.3))at all the controlpoints in the configuration,obtaining
as many boundaryconditionsas there are singularityparameters. Each
boundary conditiongeneratesone linearequation,and thus we have a system of
N equationsin the N variables _ , ... , _ :

i N

[AIC] _ = b (3.3.8)

where b is a vector of "constraints"(the entry of b correspondingto the
boundaryconditionequation (3.3.7)is zero). Each row of the squarematrix

[AIC] is a row vector of a form similarto L_ICL(P_ for some controlpoint P.

Once the AIC equation (3.3.8)has been formulated,it is solved for the
values _i by means of standardlinear algebratechniques. With these values

known, a(Q) and _(Q) are known by virtue of equation (3.3.1-2). The potential
at a point can be computedby evaluatingequation (3.2.7),the representation
formulafor 6. The velocitycan be computed by evaluatingthe gradient of
equation (3.2.7). Once the velocityis known, the pressure and pressure
coefficientscan be obtained from standard formulas(see figure (5.21)below).

In section5 below, we will describethe PAN AIR discretizationprocess
more fully. In particular,we will describethe processof transforminga
eneral boundaryconditioninto an AIC constraintrelationof the form
3.3.7). For even more detail, the reader is referredto appendixK.
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Figure 3.1 - RegionV of space with boundaryS
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A

_ n S

"upper"surface

vI
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^
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"upper"surface

Figure 3.2 - A surfaceS dividingregionsVI.and V2
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Figure 3.3 - A surfaceS Which does not divide space into 2 separateregions
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Figure 3.4 - Basis functionfor constant strength panels
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- 4.0 An Overview of PANAIR

4.1 Historical Development of Panel Methods

In this section, we will discuss the features which distinguish PANAIR
from earlier, less complex, panel methods. These features are (a) "continuous
geometry," (b) linear source and quadratic doublet variation, and (c) continuity
of doublet strength. Wewill explain how these features make PANAIR more
accurate and reliable than previous methods, and discuss briefly the manner in
which these items are implemented in PANAIR.

Virtually every panel method approximates the configuration geometry with
panels whose planform is a quadrilateral. Thus, if the panels themselves are
planar, only a small class of configurations (such as cylinders and flat
wings) can be described without gaps being left between panels. These gaps
tend to be very small, except for highly twisted surfaces. In subsonic flow,
the gaps cause little numerical error, but in supersonic flow the cumulative
effect of the gaps is serious, not because of "leakage" of flow through the
gaps, but because the doublet strength jumps abruptly from a non-zero value to
zero at a panel edge which does not exactly meet the adjacent edge. In PAN
AIR, gaps are closed by means of "piecewise flat" panels, that is, panels
which are comprised of several planar region s .

Somepanel methods use "curved" panels, generally paraboloidal in shape.
These approximate the configuration surface far more accurately in regions of
high curvature such as the leading edge of a wing, but necessarily have gaps,
even though small ones. Thus they are excellent for the analysis of subsonic
flow, but not for supersonic flow.

As we stated earlier, PANAIR employs a linear source variation and a

quadratic doublet variation. That is, the basis function bi corresponding to
a source parameter is locally linear, while the basis function corresponding
to a doublet parameter is locally quadratic. This contrasts with earlier,
simpler programs in which the doublet and source variations were locally
constant.

The reasons behind the "higher order" singularity distributions in PANAIR
are discussed in detail in Appendix B.4. Briefly, they are as follows.
Consider a control point on a panel, and assume the source and doublet
distributions in the immediate neighborhood of the control point are
polynomials. Then we show in Appendix B.4 that a source distribution locally
of the form

== 2N S _i 2N-in (4.1.1)a(I, n) : }1 _i aiN
N=I i:O

or a doubletdistribution

== 2N+1 aD _i 2N+1-i_(_, n) : _i _ iN n (4.1.2)
N=I i=1
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does not induce any perturbationvelocitylocally. That is, even terms in the
polynomialsource distributionand odd terms in the doublet distributiondo
not generate a local perturbationvelocity. So, since we have concludedthat
constant sourceand doubletstrengthsare insufficient,the next reasonable
higher order approximationto use is linear source strength and quadratic
doublet strength.

Another reason for using a higher order doublet distributionis to provide
a continuousdoubletdistribution;that is, each of the basis functionsm. is
constructedso that it is continuouseverywhere. (Obviously,a locally 1
constant functioncannot be continuous.) A continuousdoublet strength,once
again, is much more importantin supersonicthan in subsonicflow. This is
due to the failureof disturbancescaused by doubletdiscontinuitiesto
diminishwith distance in supersonicflow as they do in subsonicflow. A
detaileddescriptionof the behavior of these disturbancesis given in
Appendix J.11.

In addition,experimentalevidence (references(4,5),(4.8)_(4.9_indicates
that exact surfaceanalysis is not feasible in supersonicflow without doublet
continuity. The requirementof doubletcontinuityresults in the spline
complexitydiscussedin section5.

In figure4.1, we comparesome panel methods of the last two decades. The
list is by no means complete,with inclusionin the list generallyreserved
for methods containinginnovations,whether or not the method enjoyedany
great success. --

Of the other panel methods describedin figure 4.1, the one which most
closely resemblesPAN AIR is that of Ehlers et al. That programwas written
to demonstratethe technologicalfeasibilityof a panel code which was capable
of analyzingarbitraryconfigurationsin supersonicflow. The developmentof
that program took place with the intentionof eventuallyconstructing
production software (that is, PAN AIR) based on the same principles,and thus
that program is generallyreferred to as the PAN AIR "pilotcode."
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4.2 Summaryof PAN AIR Technology

We now outline the method by which PAN AIR computesa row of the
aerodynamicinfluencecoefficientmatrix. There are four basic steps. First,
the basis functionsmust be computed. That is, the locallylinearor locally
quadraticvariationon every panel must be preciselydefinedfor each basis
function (see section4.2.1). Next, for each panel, the perturbationthat the
panel induceson the potentialand velocityat each controlpoint, in terms f
the singularityparameters,must be computed (see section4.2.2 for details)°.
Next (see section4.2.3) these perturbationinfluencesmust be sun,nedover all

panels, to give a "potentialinfluencecoefficient"row vector (L¢IC(P)j )
and a "velocityinfluencecoefficient"matrix [VIC(P)]with the properties

N
-h

_A(p) = T L¢IC(P)jj xj = L¢IC(P)j x

j=l (4.2.1}

N

(VA(P))i = _E [VIC(P)]ijxj = ( [VIC(P)]_)i
j=l

i = 1,2,3 (4.2.2)

That is, the jth columnsof L¢IC(P)_ and [VIC(P)]give the dependenceof the
potentialand velocityat P on the j-th singularityparameter. The subscript
A indicatesthat the averageof upper and lower surfacepotentialand velocity
are to be computed. Note that upper and lower surfacepotentialand velocity
are different,their differencebeing definedby the source and doublet
strength (cf. (3.2.5-6)).

Finally, a fairlygeneral boundaryconditionof the form

aA vA . n + cA CA + tA " VA = b (4.2.3)
-€.

(where t is a user-definedtangent vector)leads to a row LAIC(P)j of [AIC]as follows:

LAIC(P)j = CAL¢IC(P)J+ (aA n + _A)T [VIC(P)] (4.2.4)

More generalboundaryconditionsthanthisare handledby PAN AIR,butwe
defertheirfulltreatmentuntillater(seesections5.4.2.5,5.6 and 5.7below).

4.2.1 BasisFunctionComputation

The computationof thebasisfunctionsis oneof themore complexportions
of PAN AIR. To be precise,we do not directlycomputebasisfunctions,but
rather,for eachregionon whichthe sourceand doubletstrengthsare defined
by a singlepolynomial,we computematriceswhichdescribethecoefficientsof
thesepolynomialdistributionsas linearcombinationsof the singularity
parametersin the neighborhoodof the panel. A columnof sucha matrix
definesthe coefficientsof a basisfunctionon a subpanel.
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These matricesare called "spline"matrices,and are computedin two steps
as describedin the followingtwo subsections.

4.2.1.1 SubpanelSplines

The first step is the computationof a "sub-panelspline" (SPSPL)matrix.
Each panel is dividedinto eight triangularregionscalled "subpanels",as
indicatedin figure4.2. The source subpanelsplinematrices are 3x5 matrices

, , of a linearlyvaryingsourceSPSPLS giving the three coefficientsao at an
strength (a linear functionin two variableshas three coefficients)in terms

" aI a4 that is the values ofof five "panel sourceparameters, , ..., , 09,

source strengthat five points on the panel:

a_ = • (4.2.5a)

an a4
a9

where a is definedin terms of local coordinatesby

a(_, n) = Oo + a_{ + an n (4.2.5b)

Similarly,the (6x9) doublet subpanel splinematricesgive the six
coefficientsof a quadraticallyvaryingdoublet strengthon the region in
terms of nine "panel doubletparameters:"

1;°1Ill= [SPSPLD] (4.2.6)

Unn u9

where

1 2 _n + 1 2
_(_,n) = "o + "_{ + _nn + 2 _ _ + U_n _ _nn n (4.2.7)

4.2.1.2 Outer Splines

Next, in the second step, the five panel source parametersand nine panel
doublet parametersare described,as linear combinationsof singularity

parametersin the neighborhoodof the panel, by "outer spline"matrices Bs

(SxkS) and BD (9xkD) where kS and kD are the number of sourceand doublet
in the neighborhoodof the panel for which thesingularityparameters

dependenceis non-zero:
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: = [BS] (4.2.8)

a4 S

a9 XkS

= [BD] x:_ (4.2.9)

xD
kD

The values kS and kD depend on the locationof a panel in a network (networks

are discussedin section5.1). In general,kS is 9 and kD is 21. In all

cases, kS + kD _31.

4.2.2 Panel InfluenceCoefficients

The perturbationsthat a source and doubletdistributionon a panel induce
at a control point are describedby "panel influencecoefficient"(PIC)

matrices. These matrices includea 4x5 matrix PICs and a 4x9 matrix PICD which
give the potentialand velocityat the controlpoint, inducedby the panel, in
terms of the five panel source parametersand nine panel doubletparameters.
That is,

ala4 I il

I_(P)I = [PIcS] i + [PIDD] (4.2.10)
[_-_ perturbation

inducedby panel
a9 L_9

where aI througha4, a9 and _1 through_9 are the panel source and doublet

parameters.

The method by which the PIC matrices are calculateddependson the
distance from the panel to the controlpoint.

4.2.2.1 Near Field PIC's

If the distance is small comparedto panel size, a "near field"method is
used, and the PIC matrices are computedas a sum of integralsover the eight
subpanels. For instance,
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p S Ix5
L IC POTENTIALJ

1 8 1

ff J i _ nJ d_ dn [SPSPLS]3x5i=1 --- i R L i

ai
(4.2.11)

Here, (_, n) are the local coordinateson the i-th subpanelai, and SPSPL_

is the 3x5 source subpanelspline matrix;Ji denotesan area jacobian for the
local to referencecoordinatetransformation. Note that, for a point
Q = ({ , n), using (4.2.5a)and (4.2.5b),

s] :o(Q) = L i _ n ] [SPSPLi • (4.2.12)
a4

a9

and thus (4.2.11)followsfrom (3.2.7)and (4.2.10). The integralsin
(4.2.11)are evaluatedanalytically,and can be expressedas logarithmsand
arctangentsof quantitieswhich are determinedby the geometricrelation
between the panel and the control point. In equation (4.2.11)the entriesof

[SPSPLiS] are constantsand may be removed from the integral. The application
of (3.2.7)and an equationsimilar to (4.2.12)leads to a similarequation for

the row of PICD correspondingto the potential. The rows of the PIC matrices
correspondingto velocityare computedby using a differentiatedversion of
(3.2.7). The entire subjectof PIC computationis discussedin more detail in
section5.6 and AppendixJ.

4.2.2.2 Far Field PIC's

If the distance from the panel to the control point is large compared to
panel size, a "far field" approximationis used in computingthe influenceof
the panel. This is done by approximatingthe expression(I/R) by a power
series

1 1 aR + a2 aR2) (4.2.13)
_=l_o (i + a11_o l_o

where Ro and aR are illustratedin figure 4.3. This far field evaluation

requiresconsiderablyless computer time than the near field method (see
section5.6 for furtherdetails). To furthersave computer time, an
"intermediatefield" method describedin section5.6 is used when the near
field method is not necessaryand the far field method is inadequate.

4.2.3 Potentialand Velocity InfluenceCoefficientAssembly

The influenceof each panel is accumulatedto determinethe influenceof
the entire configurationon the controlpoint. Combiningequations
(4.2.8-10),we see that the products
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[PICS . BS] and [PICD . BD]

give us the potentialand veloci_ inducedby a panel, in terms of the
singulari_ parametersin the neighborhoodof the panel. These matricesare
then "added"together;that is, entriesof distinctPIC matrices which
correspondto the same singulari_ parameterare accumulated,so that the
"sum" of expandedPIC matrices (none of which has more than 31 non-zero
columns) is the 4xN matrix

J¢IC(P)

VlC(P)

Here, N is the total number of singulari_ parameters.

4.2.4 Aero_namic InfluenceCoefficientMatrix Construction

Once the matricesL¢IC(P)J and [VIC(P)]have been constructed,the
vector LAIC(P)j is easily constructedusing equation (4.2.4). The entire
process is performedfor all the controlpoints in the configuration,and the
result is the squarematrix [AIC]. Additionaldetailsare given in section
5.7.

From here on, the basic structureof PAN AIR is similarto that of other
panel methods. The _stem of linear equationsis solved, "post-multiplica-
tion" (multiplying L¢ICj and [VIC] by the vector _) is performed,and the

resultingpotentialand veloci_ valuesare used to compute pressures.
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ORIGINATORAND R#EF PANEL SOURCE DOUBLET BOUNDARYM(ETHO0NAME (IF ANY) YEAR GEOMETRY TYPE TYPE CONDITIONS RESTRICTIONS CO(_ENTS
I

HESSAND SMITH SPECIFICATION NON-LIFTING
WINGS AND

(DOtN_ULS) 1962 4.1 FLAT CONSTANT NONE OF NORMALFLOW BODIESONLY

RuUERT 1964 4.2 FLAT NONE" CONSTANT NORMAL PLANARWINGS(VORTEXLATTICE) FLOW ONLY

RUBBERT_ SMRIS NORHAL _EARLYCONSTAN1
(A-230) 196Q 1.1 FLAT CONSTANT CONSTANT FLOW PANELDENSITY

I_)ODW_RD !SN58 1.Z FLAT CONSTANT LINEAR NORMAL WINGSMUST
FLOW BE PLANAR

HESS 1972 4.3 FLAT CONSTANT LINEAR NORNAL WINGSAND
FLOW BODIESONLY

ROBERTSANDRONDLE 1973 4.4 PANNW]LOIDALQUADRATIC QUADRATIC NOR_tAL NUHERICALINTEGRATION
FLOW - VERYEXPENSIVE

SMOOTH,CUBIC/ NOf_#4.FLOW SUBSONICANDSUPERSONIC
NERCER.WEBER 1973 4.5 FLAT NONE IN LEAST PLANARWINGS CUBICSPANWISE,QUADRATIC

_ ANDLESFORD QUADRATIC S(_ARE_SSENSE CI_DW|,S{

MARINOANDKUO 1974 4.6 CONTINUOUS,CONSTANT CONSTANT POTENTIAL NOTHINHYPERBOLOI DAL CONFIGURATI OtiS

JOHNSONANDRUBBERT 1975 4.7 PARABOLOIDALLINEAR QUADRATIC FLOW

EHLERS_ RUBBERT 1976 4.8 FLAT LINEAR CONTINUOUS NORMAL PLANARWINGS,
_(NACHLINE PANELING) Q(JADRATIC FLOW SPECIAL SUPERSONICFLOWP_NELING

CONTINUOUS, CONTINUOUS AReITIt_RY Iti
EHLERSET AL 1977 4.9 PIECEWISE LINEAR SUBSONICANDSUPERSONIC

('PILOTCOOEk) FLAT QUADRATIC @, 9@
CONTINUOUS,

PAN AIR 1990 PIECEWiSE LINEAR CONTINtW)OS, NtBITR_JNYIN SUBSONICAND SUPERSONIC
FLAT Q_JN)RATIC 4, 9fJ

Figure4.1 - HistoricalOverviewof PanelMethods
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P4

- o(Pi)o i

i = l, 2, 3, 4, 9

P8 P6 IJi :_(Pi),

i =l,..., 9

P1

P5 P2

Figure4.2 - Divisionof panel into subpanels

field point

i/_- panel
AR

Ro

controlpoint
P

Figure4.3 - Paneland far fieldcontrolpoint

4.3-2



_ 5.0 Elaborationon the Technologyin PAN AIR

We now proceedto greaterdepth in the discussionof the technological
detailsof PAN AIR. In section5.1 we describe the way in which the program
user describeshis configurationgeometryto PAN AIR using networksof
panels. Section5.2 gives the form of the general integralrepresentation
formulafor _ togetherwith a summaryof all of the coordinatetransformations
used by PAN AIR, while section5.3 discussesdoubletmatchingalong network
abutments. The generalform of a PAN AIR boundaryconditionis developedin
section5.4 and this is followedby the treatmentof splinematrices in 5.5
and panel influencecoefficients(PIC's)in 5.6. The resultsof sections5.4,
5.5 and 5.6 are then combined to describethe formationof the aerodynamic
influencecoefficientmatrix (AIC) and right hand side vector (b) in section
5.7. The discussionconcludeswith some remarkson the solutionof the AIC
constraintequation (section5.8) followedby a summaryof PAN AIR's post
processingfeatures (section5.9).
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- 5.1 Networks and Panels

The configurationon which boundaryconditionsare to be imposedis
describedby a collectionof networksof points. Each networkconsistsof
(say) N columnsof points lying on the configurationsurface,where each
column has the same number (M,say)of points. By a point, we mean its (x,y,z)
coordinates,with each point'scoordinatesgiven in the same arbitrary
coordinatesystem. Thus, each networkconsistsof an MxN grid of points in
space (see figure 5.1). This grid need not lie in a plane, but it should be
sufficientlyregularto define a surfacewhich does not intersectitselfand
on which the surfacenormal does not change too radicallyfrom panel to
neighboringpanel.

Each network is assigned two "singularitytypes,"describingthe manner in
which the source and doubletdistributionsare definedon the portionof the
surfacedefinedby the network. A networksource type may be "null,"
"analysis,"or "design,"while its doublettype may be "null,""analysis,"
"design,"or "wake." The singularitytype "null"means that the corresponding
singularitydistributionis identicallyzero over the whole network. The
singularitytype "analysis"is used when the correspondingboundaryconditions
are the standardones of zero normal flow, while the singularitytype "design"
is used when the boundaryconditionscorrespondto specifyinga desired
pressure distributionon the surface. The doublet type of "wake"is generally
usedwitha sourcetypeof nulltomodela wakesurface.A wakeis a surface
across which a discontinuityin potentialexists,while normal flow is
continuous;generallya wake is attachedto the trailingedge of a lifting
surface. The positioningof wakes can be a complicatedproblem,and is
discussedin more detail in the PAN AIR User's and Case Manual.

Note that, unless the source or doublettype is null, all networksare
compositenetworks,that is, both the network'ssource distributionand its
doubletdistributionare non-zero. This is in contrast to most earlierpanel
methods, which requiredsource networks and doubletnetworksto be entered
separately. Generallyspeaking,all non-wakenetworks in PAN AIR will be
compositenetworkswhich directlydescribe the impermeableobject about which
one is analyzingthe flow. In particular,the "internalliftingsystem"
doublet networksrequiredby the BoeingA-230 program (Ref. 1.1) are not
required in PAN AIR. These compositenetworksallow two boundaryconditions,
such as the standardboundary conditionsof (5.4.28) to be imposedon asurface.

Each networkof M rows and N columnsof pointsdefines (M-l) rows and
(N-l) columnsof panels,where a panel is a quadrilateraldefinedby four
networkpoints all lying in two adjacentrows and two adjacentcolumnsof a
network. Figure 5.1 illustratesthe subdivisionof a networkinto panels. In
the exampleof Figure 5.1, there are five rows and columnsof points and four
rows and columnsof panels.

Now, each panel is definedby its four corner points,but these four
points need not lie on a plane. Previousprogramsusing flat panelson
arbitrarysurfaceshave handledthis problemby projectingthe four corner
points onto an "averageplane," thus forminga planar quadrilateralpanel.
The formationof such panels leaves gaps betweenpanel edges, however,since
the resultingplanar panels do not in fact go throughtheir corresponding
corner points.
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This discontinuityin geometry_s avoidedby constructingpiecewiseflat
panels which do in fact contain all four corner points and, in fact, all four
panel edges (a panel edge is a line segmentconnectingadjacentcorner
_oints). The decompositionof a panel into five planar regions is illustrated
In figure 5.2. It will be shown in AppendixD that the four edge midpoints,
which define the verticesof the interiorquadrilateral,do in fact lie on a
plane. In section5.5, the interiorquadrilateralwill be divided into four
triangularregionsfor the purposeof definingsourceand doublet
distributions. Thus the panel will be divided into 8 "subpanels"there,but
at least four of them will lie in one plane.
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5.2 CoordinateTransformations

Recall (see (3.2.7))that for M. = O, we wrote the fundamentalintegral
representationformulasas

ff °. ( 131
_(P) :_-_ [ - _ " •

S

We can easily generalizethis equationto arbitraryMach number. For details,
see Ward (Ref. 1.5). Let P = (x,y,z),and the point of integration
Q = (_, n,_). Recall

s = sign (1 - M2.)
(5.2.2)

Now, generalizingthe definitionof R for M,, _ O, let

R = _( _ - x)2 + s B2 (n - y)2 + s B2 ( _ - z)2 (5.2.3)

when the expressionunder the square root is non-negative. Let R be zero
otherwise.

For subsonicflow, let Dp, the "domainof dependence"of the point P, be
all of space,while for supersonicflow let it be the set of points Q such that
< x , and the expressionunder the squareroot is non-negative. Let _ = 2_

if s = -1, _ = 4x if s = +1. Let us define the compressiblegradientoperator

_= (s B2 B B a
a_' an' at) = [B]V (5.2.4)

where the dual metric matrix [B], referred to compressibilitycoordinates,is
given

[.oo][B] : 0 1 0 (5.2.5)

0 0 1

Let the conormalvectorB = _ be defined

B = _ = [B] B (5.2.6)

and let o be given by

o = v (#U - _L) " _ (5.2.7)

a generalizationof our previous definitionof source strengthto arbitrary
Mach number. Then we can rewrite (5.2.1)for arbitraryM. as
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1
¢(p) =._ ff [__.. _. € _] dS (5.2.8)

SnDp

Here, "SODp"means the set of points con_nonto both S and Dp. This is the
general form of the integral representation for 6, upon which all of PANAIR
is founded.

Now,in order to obtain "panel influence coefficient" matrices, wemust
perform integrations of the form of (4.2.11). This task is somewhatobscured
by the multiplicity of coordinate systems with which we deal. Wewill now
discuss thesecoordinate systemsanddescribe the transformationsamongthem.

The coordinate system with which this document primarily deals is the
"compressibility axis coordinate system." This is the systemin which
equati on

(1-  oo) . Cyy. Czz=o (s.2.9)
is valid.

For Moo _ O, (5.2.9)requiresa preferreddirection,called the
-€.

"compressibilitydirection,"which is the directionof Voo. We have assumed
so far that this is the x-direction.

A program user, however,may not want to describethe configuration
geometry in the compressibilityaxis coordinatesystem. PAN AIR permitsthe
user to specifyan arbitrarycompressibilitydirectionby specifyingangles

ac and Bc , angles of attack and sideslip,which describe the compressibility
directionwith respectto the input (or reference)coordinate system.

If the coordinatesof a point are (x,y,z)in the compressibilityaxis

system, and (xo, Yo' Zo) in the referenceaxis system,then

{x}ixo}Y = [ Pc] Yo (5.2.10)

z Zo

where p is the coordinatetransformationmatrixC

i cos ac cos Bc -sin sc sin ac cos Bcl

Pc = cos ac. sin sc cos sc sin ac sin sc

-sin ac 0 cos ac (5.2.11)
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We show how Pc is obtainedas a productof a rotationby an angle :c about

the y-axis and a rotationby an angle Bc about the modifiedz-axis in

AppendixE.3. It shouldbe noted that the above sequenceof coordinate
rotationsis equivalentto the opposite sequenceof basis vector transfor-
mations. That is, the configurationis first rotatedabout its z-axis by an

angle Bc, then about its y-axis by an angle ac. This transformationis dis-
cussed furtherin the User's Document.

Now, the unit vector in the compressibili_ directionis given in
referencecoordinatesby

co : [ Pc ] 0 (5.2.12)
0

Since P is an orthogonal matrix,C

Co : [Pc ] 0 : -sin Bc

0 sin ac cos Bc

(5.2.13)

The relationshipof Co to the referencecoordinatesystem is shown in figure5.3.

A thirdcoordinatesystemof importanceinPANAIRis the"local"
coordinatesystem(seeGlossa_).We wanttocomputethesurfaceintegrals
requiredforPICcalculationas integralsintwovariables,andthuswe
constructa localcoordinatesystem(x',y',z')foreachsubpane],inwhichthe
subpanelliesin thex'-y'plane.

Thetransformationfromreferencetolocalcoordinatesis notorthogonal,
however,butincludesa scalingtransformationso thatthefactorS doesnot
appearin theexpressionforR. Thissimplifiestheinfluencecoefficient
integrals,suchas (5.6.9),whichmustbe calculated.

Recallfrom(5.2.3)thatin compressibili_coordinates,fora control
pointP = (x,y,z)andfieldpoint(_ , n, { ),we have

R2 = ( _ - x)2 + s B2 (n - y)2 + s B2 ( _ - z)2 (5.2.14)

where R is the denominatorof the integrandof (5.2.8). In order to describe
the appearanceof R in local coordinates,we need to introducethe panel
inclinationindicatorr,
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r : sign (n . _)

: (by (5.2.6))sign (_T [B] _) (5.2.15)

= sign {n, n }

where we define {.,. } by saying that for any two vectorsX and Y,

=  TEB] (5.2.161

The meaningof r can be understoodif we work in compressibility
coordinates.

Then by (5.2.5)and (5.2.6),

r = sign (s B2 nx2 + ny2 + nz2) (5.2.17)

If s = 1 (that is, for subsonicflow),we see that the expressionin
(5.2.17) is positive,and so r = 1. If s = -1 (supersonicflow), and B = 1

(M, = _ ), we see that

nx2 2+ n 2r = -1 if > ny z A

r = +1 if nx2 < ny2 nz2
(5.2.18).

Recall from section4.2.1.1 that the PAN AIR panels are comprisedof eight
triangularsubpanels. Each of these flat subpanelsurfaceshas a unit surface

normal n of fixed direction. If n is such that r = -1 in equation (5.2.18),

the surface normal is inclinedat more than 45° to the freestream. But this

45° angle is also that of the "Mach cone" emanatingforwardfrom a point P on
the subpanel,as illustratedin figure 5.5, and definesthe "domainof
dependence"of P. In other words, point P is affectedonly by disturbances
(such as those producedby the source and doubletdistributions)that
originatewithin this forwardMach cone.

Thus we see that if r = -1, no point on the subpanelsurfacelies in the
domain of dependenceof any other point on the subpanel,and we call such a
surface"superinclined." If r = .I, the more upstreampoints on the subpanel
do lie in the domain of dependenceof^the more downstreampoints,and such a
surface is called subinclined. If n.n = O, the more upstream pointslie
exactly on the boundaryof, but never in the interiorof, the domain of
dependenceof more downstreampoints. Such a surfaceis called
Mach-inclined. We will see shortlythat no portionof the panelled
configurationis permittedto be Mach-inclined. The above definitions,
illustratedin figures5.4 and 5.5, are equallyvalid at all supersonicMach
numbers.
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- Now, for ease of integration,we want the local coordinatesystem
(x',y',z')definedon each subpanelto have the propertythat if
P (x',y',z'),Q = ( _' ' '= , n , { ) then

R2 = r( _' - x')2 + S(n' _ y,)2 + rs ( _' - z')2 (5.2.191

In this manner, we reduce the denominatorof (5.2.8)to one of three standard
forms:

(a) Subsonicflow

R = V( _' - x')2 + (n' - y,)2 + ( _, _ z,)2 (5.2.20)

(b) Supersonicflow, subinclinedpanels

R = V( _' - x')2 - (n' - y,)2 _ ( {, . z,)2 (5.2.211

(c) Supersonicflow, superinclinedpanels

R = i({' - z')2 - ( _' - x')2 - (n' - y,)2 (5.2.22)

So, if we can find a local coordinatesystem in which (5.2.19)holds, we
will have succeededin removingthe factorsof B from the integrandof
(5.2.8). Further, the subpanelalways lies in the (_', n') plane.

We will computethe referenceto local coordinatetransformationA, such
that

[A] = y' (5.2.231

Z i

in Appendix E.3.

We now describethe result computed there. Let _o be a unit vector

perpendicularto Co and no' the unit normal to the subpanel,all three of

these vectorsbeing expressedin referencecoordinates. Let Uo = Vo x no"
Let the metric matrices in referencecoordinatesbe given by

[co] = s 82 Ill+ (I- sB21 [_o_oT] (5.2.24)

[Bo] = [I] + (s B2 - i) [Co CoT] (5.2.25)

Note that the definition(5.2.5)of [B] in the compressibilityaxis coordinate
system is consistentwith (5.2.25)since
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[_ _T] : 0 (5.2.26)

0

in the compressibilityaxis coordinatesystem,in which the compressibility
axis coincideswith the x axis. Recallingthe definition (5.2.16)of {., .},
the 3x3 matrix A is found to be given by

T

I}i rs l{no' noB}l n J]A: I(_o'ao _/2[Co]_o _- [Col_oI _/2o1

(5.2.27)

Several remarksmay be made here. First, if Moo = O, to is meaningless,

but is given a defaultvalue by PAN AIR just so that no specialformulais
needed to replace (5.2.27). Since all occurrencesof Co are multipliedby

(1 - s B2) = M2, any value for Co is equallyvalid if M. = O.

Next, (5.2.27)blows up if B = 0 or {no, no} = O. Both of these cases

are disallowedin PAN AIR, the case B = 0 correspondingto transonicflow,

M_ : I, the case{no, no} = 0 correspondingto a Mach-inclinedpanel.
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5.3 NetworkEdge Matching

The splineswhich are discussedin section5.5 insure that the doublet
strengthon the configurationis continuouswithin a network,but do nothing
to insure continuityacross networkedges. The contributionof continuous
doublet splinesto the goal of increasedprogramreliabilitywould be wasted
if the doubletstrengthwere discontinuousat networkboundaries.

One solutionto the problemof matchingdoubletstrengthat networkedges
(hencecalled the edge matchingproblem) is to imposethe boundarycondition
of zero normal flow along the edge. As shown in AppendixJ.11, a
discontinuityin doubletstrengthalong an edge inducesan infinitevelocity
there. Thus, the requirementthat the flow be finite causes the doublet
strengthto be continuousacross the edge. This method has worked
successfully(in the earlierversionsof the "pilot code," for instance)in
many cases. Unfortunately,the method requiresthat the geometricfit among
networks be exact; if there is a gap, say, where networksmeet, the boundary
conditionof zero normal flow will force the doublet strengthalong the edge
to zero.

The requirementthat networkedges match exactly in a geometricsense is a
severe burden on the user of a panel code. Figure 5.6 illustratesthe type of
panellingfrequentlyused by aerodynamicistsat the intersectionof the
leadingedge of a wing and the body of an airplane. The aerodynamicistis
usuallymore interestedin detailedwing pressuresthan detailedbody
pressures;further,the high curvatureof the wing leadingedge requiresdense
panellingfor accuratedefinition. But accuratedefinitionof the leading
edge of the wing is incompatiblewith coarse definitionof the body, unless a
gap is left betweennetworkedges. In figure 5.6, the shaded area represents
the gap between the body and the wing.

The most complex portionof the edge matching problemis the determination
of those pairs (or larger collections)of networkedges along which the
doublet strengthis to be matched. This determinationis performedin two
ways: (1) For each networkedge, the programsearchesfor other networkedges
which lie within a user-inputtolerancedistanceof the first networkedge.
(2) For edges which lie far from each other (comparedto the tolerance),but
which ideallywould be identical,such as those of figure 5.6, there is an
optionwhich permitsthe user to directly specifythat doubletmatching should
occur along the edges.

PAN AIR incorporatestwo featuresto insure the matching of doublet
strengthacross networkedges. The first featureis that the matching of
doublet strengthis done directlyrather than indirectly. That is, in

constructionof the AIC matrix, the boundarycondition_1 - _2 = 0 (assuming

_I and _2 are the doubletstrengthsat two opposing pointswhere networks
meet) is imposedexactly (ratherthan approximatelyby the requirementof zero
normal flow). The second featureis that "gap-filling"panels are introduced
whenever there are gaps betweennetwork edges which do not actuallyrepresent
gaps in the physicalconfiguration. A doublet distributionis definedon
these gap-fillingpanels in such a manner that continuityof doublet strength
is producedeverywhere.
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Imposingdoubletmatchingexactly, ratherthan indirectly,requires
considerablecare. The doubletmatchingboundaryconditionsmust never be
redundant. Redundancyis permissiblein the case of zero normal flow boundary
conditionsbecauseof the rather inexactmanner in which these boundary
conditionsperformdoubletmatching. (Experimentationhas shown howeverthat
the partial redundancyof zero normal flow boundaryconditionsmay lead to
ill-conditionedmatrices.) But when matchingof doubletstrengthis imposed
exactly, any redundancyleads to a singularAIC matrix.

Preventingredundancyalong a curve where two or more networkedges meet
(such a curve is called an abutment)is fairly straightforward.The only
difficultproblemoccurs at "abutmentintersections,"that is, pointswhere
several abutmentsmeet (see figure 5.7). The detailsconcerningthe
impositionof edge matching,the generationof gap-fillingpanels and the
handling of abutment intersectionsare given in AppendixF.
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5.4 Control Points and BoundaryConditions

5.4.1 ControlPoint Location

Controlpoints are points at which boundaryconditionsare imposed. Such
points are either (1) in the vicinityof a panel center (the point whose
coordinatesare the averageof the panel cornercoordinates),(2) in the
vicinityof the midpoint of a panel edge which also lies on a networkedge, or
(3) in the vicinityof a panel cornerwhich lies on a networkedge. These
points are called center,edge, and corner controlpoints respectively.
"Extra"corner controlpoints are locatedat panel cornerswhich belong to
"abutmentintersections." Figure 5.7 illustratesa situationwhich would
cause the constructionof an extra controlpoint. There, NI, N2, and N3 are
three separatenetworks.

In figure 5.8 we illustratethe controlpoint locationson a networkwith
no extra control points. Note that controlpoints are always recededslightly
from a panel edge. This is done becausethe velocity inducedby the doublet
distributionon a panel causes an infinitevelocityat the panel edge. Thus,
for numericalreasonsthe control point is withdrawnapproximately1/10 of the
way toward the center of the panel. The precisemethod by which control
points are recededis describedin AppendixG.

5.4.2 BoundaryConditions

Boundaryconditionsare imposedonly at controlpoints. Recall that a
boundaryconditionis a linear equation in _ and its derivatives. Since _ or
its gradientmay be discontinuouson the configurationsurface,upper and
lower surfacepotentialand velocityare different,and so the boundary
conditionequationmay involve "upper surface"and/or "lower surface"terms.
The number of boundary conditionsimposedat a control point is between zero
and two (inclusive),and is determinedby the basic principlethat the number
of boundaryconditionsmust equal the numberof singularityparameters. For
analysis networks,there are tWO boundaryconditionsimposedat every panel
center control point, but, since only doubletparameters(and not source
parameters)are locatedon networkedges, there is only one boundary condition
imposedat panel edge and corner control points.

5.4.2.1 ImpermeabilityBoundaryConditions

For most cases, the boundaryconditionthe user wishes to imposeis that
there is no flow throughthe configurationsurface. At Mach zero, this is
achievedby setting

V . _ = 0 (5.4.1)

or equivalently,

. .. = v . n =- V.. n (5.4.2)

Equation (5.4.2)does not generalizein that form to arbitraryMach number
however. In Appendix H, we see that the appropriateboundaryconditionfor
non-linearpotentialflow (that is, flow satisfyingthe non-linearpotential
equation (2.4.1))is
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p V . n = 0 (5.4.3)

where p is the densityof the fluid.

In section 1.11 of Ward (1.5),it is shown that, neglectingterms of the
same order as those neglectedin reducingequation (2.4.1)to the
Prandtl-Glauertequation,we have

p V=pQo W _- p_ (_+V.) (5.4.4)

where p, is the densityat infinity. Note that V6 rather than V6 occurs

in (5.4.4). Thus the appropriateboundaryconditionto impose is

p. ( + v.) . B = 0 (5.4.5)

or V _ . B = -V- . B (5.4.6)

The validityof (5.4.4)can be justifiedintuitivelyby recallingthat the
continuityequation (2.1.1),neglectingthe unsteady flow term, is

V. (p V) = 0 (5.4.7)

while the Prandtl-Glauertequation

s B2 _xx + _yy + _zz = 0 (5.4.8) -.

can be rewrittenas
-).

V • (p_ V_ + p_ V _) = 0 (5.4.9)

since p_ is a constantand

V.V_ =0

So, we see that both the left and right hand sides of (5.4.4)are vector
fieldswhose divergenceis zero, that is, they are "conservedquantities."

Th_ expression (p/p,) V (also denotedW) is called the mass flux,
_ + V. is called the total linearizedmass flux, and _ _ (also denoted_)

is called the linearizedperturbationmass flux. We will not consider the
non-linearmass flux in this section,and thus will drop the modifier .
"linearized." We will denote the perturbationand total mass flux by w and

respectively,and call w.n and _.n the perturbationand total normal mass
flux. Note that as a consequenceof the definition(5.2.25)of Bo and (5.2.4)

-€- .

of V togetherwith the fact the perturbationvelocityv is given by V _, we
have, in referencecoordinates,

.€,

v (5.4.10)
w = V_ = Bo V_ = Bo ""

Now, the combinationof (5.4.3)and (5.4.4)indicatesthat to specify
impermeabilityof a surface,we set total normalmass flux equal to zero. This
can be done directly or indirectly,as illustratedby the followingexamples.
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5.4.2.2 ThinSurfaces

In the caseof the thinwingillustratedin figure5.9,we clearlyrequire
boththe upperand lowersurfacesto be impermeable,and thusspecify

. (5.4.11)
_L • n : - V= . n

But recall from section5.2 that

o = V (_U - _L) " { = V (_U - _L) " [Bo] _ (5.4.12)

I ("u :
= V (_U- eL) • n = _u.n- wL.n (5.4.14)

Note thattheseequationsreveal

. v = _ . w (5.4.15)

This relationwillbe usedlater. Combining(5.4.11)and (5.4.14)nowyields

o = 0 (5.4.16)

so thatthe thinwingboundaryconditions(5.4.11)are equivalentto
.

. _ = -V=
WU •

(5.4.17)
_ = 0

Note that we showa wake trailing behind the wing in figure 5.9. A wake
is a surface across which a potential jump occurs, even though the surface
does not correspond to a solid, physical object. Deciding where to position
the wake for a particular configuration is an extremely difficult problem.
For manyproblems, however, any wakeposition roughly parallel to the
freestream and extending downstreamfrom the object being analyzed is
adequate. A detailed study of wake positioning is not part of this document.

5.4.2.3 Thick Configurations

For a "thick" wing, that is, a wing for which we panel both the upper and
lower surfaces, we cannot simply impose the boundaryconditions (5.4.17).
This is because imposition of zero normal flow at all points on the interior
of a closed surface is an ill-posed boundaryvalue problem since there is no
uniquesolution: if a particularfunction_ satisfiesthe Prandtl-Glauert
equationand the boundaryconditions,thenaddingany constantto _ in the
interiorof the closedsurfaceyieldsanothersolution.We illustratethe two
possiblesolutionsin figure5.10.
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So, we must specifyzero normal flow on the interiorof a closed surface
in some other manner. There are many possibilities,some of which are
discussedin section5 of the maintenancedocument. The method illustratedin
figure5.11 has been experimentallyshown to be reliablein a wide varietyof

circumstances. There, the boundarycondition_L = 0 on the configuration

surface ensures (assuminga sufficientdensityof controlpoints) that _ is
identicallyzero in the entire interiorregion. Such a conditionis called
"perturbationstagnation"(it is not really stagnation,since the total
potentialis not constant),since v _, the perturbationvelocity,is zero in
the interiorregion.

Thus we imposethe boundaryconditions

_L = 0

. . (5.4.18)
wu . : . h

But : V eL = O, so we can replace WU.n by ( - WL).fi: a, and thus
we obtain

_L = 0
. (5.4.19)

o = -V. •

The boundaryconditions (5.4.19)for a thick wing, or (5.4.17)for a thin
wing are preferableto their equivalents(5.4.18)and (5.4.11)becausethey
directly specifythe source strength. This allows the source parametersto be
removed from the system of linear equations,thus considerablyloweringthe
cost of solvingthe equations.

5.4.2.4 SuperinclinedSurfaces

A final example of the impositionof boundaryconditionsis shown in
figure 5.12. The surfaceshown perpendicularto the freestreamis a
superinclinedsurface;recall from sectio_5.2 that a surfaceis superinclined
whenever

. _ < 0 (5.4.20)

An importantresult,which we discussfurther in Appendix B, is that
boundary conditionsof zero normal mass flux must never be placed on the
upstream side of a superinclinedsurface,or else the boundaryvalue problem
is ill-posed. This is not really too surprising,since the flow about any
impermeableobject so blunt as to be superinclinedcertainlyviolatesthe
"small perturbation"assumption.

The need for permeablesuperinclinedsurfacesdoes occur, however,nacelle
faces being the prime example. The example in figure 5.12 shows the use of
boundary conditionson the lower (that is, downstream)surface to induce
perturbationstagnationin the interiorof the configuration.
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- 5.4.2.5 The General Boundary Condition

The previous three examples do not exhaust the generality of boundary
conditions which a PANAIR user may impose. But we must warn that, while an
arbitrary condition on 6 and its derivatives is permitted, the boundary
condition may not yield a well-posed problem. The arbitrary boundary
condition can be written

aA WA " n + CA CA + tA " VA
. (5.4.21)

+ aD o + cD u + tD . V_ = b

where the subscriptsA and D stand for "average"and "difference,"that is,

_A = ½ (_U + _L) (5.4.22)

_D _ _U - _L = _ (5.4.23)

Comparingto equation (3.2.6),we see that the definitionof doubletstrength
is the same for all Mach numbers. The constantsa and c may be arbitrary,

while the vectors t are tangentto the surfaceat the control point (as

opposedto B, which is normal to the surface).

To see that (5.4.21)permitsan arbitrarycombinationof upper or lower

surfaceconditions,we solve (5.4.22-23)for _U and eL' obtaining

1_U : _A + _D : _A + _ u
(5.4.24)

1
eL : _A - 2 u

Similarly,

wA • _ : . _ + wL • _)
(5.4.25)

a : _D " _ = _U " B - _L "

and, solving,

. i
Wu • n =WA • a *go

(5.4.26)

. . i

wL • _ : wA . B -_ o
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Thus the boundaryconditionpair --

6L = 0
-. + (5.4.27)

can be written as

I
_A-_" :0

(5.4.28)

wA • n +_a :

Thus, the first equationin (5.4.28)is equivalentto (5.4.21)with

CA= 1

1
CD = - -_-

(5.4.2g)

aA = aD = 0

= = 0

b = 0

while the second equationcorrespondsto

cA = cD = 0

aA = 1

1
aD =

(5.4.30)

:0
b = -V= .

For the remainderof this document,we will generallyuse the boundary
conditionformulation(5.4.21)since it is used internallyin PAN AIR. It
should be noted, however, that the programuser need not be concernedwith
this formulation,but may express boundaryconditionsin the upper and lower
form if he wishes. The averageand differenceformulationis used in PAN AIR
in order to separateout the singularitystrength (or difference)contribution
to the boundary condition,which are computedfrom the splines. The
differencepotentialand velocityare given in terms of the singularity
distributionsat a point by the formulae (cf. eqns. (5.4.23)and (B.3.29-31))

_D = " (5.4.31)

_D : [on + (n x V,) x _]/(n,_) (5.4.32)
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The averagepotentialand velocityat a point on the surfaceare given in
terms of the completesingularitydistributionfunctionsby the formulae(cf.
eqns. (5.2.8)and (B.3.28);we use the formulafor the velocityfield _(I_)
with the line vortex term removed),

I laY
VA(p) = (I/K) [_ Vq (I/R) + (n x Vq _) x Vq (i/R)]dSq avg

n Dp (5.4.34)

Note that the subscript"avg" refers to the processof evaluatingthe average
value of the given integralexpressionabove and below the singularitysurface
S at the point_. In appendicesJ.6, J.7 and J.8 it is shown that this
averagevalue calculationis a matter of concern only for the subpanelQc S
that contains the point _. For this case, it is shown in appendixJ that the
average value calculationis accomplishedsimply by using an averagevalue of
the panel integralJ to evaluatethe influencecoefficientmatrices [S] and
[D] (cf. eqns. (J.6.152)and (j.6.164)). The surfaceaveragevalue
calculationfor the panel integralJ is fully discussednear the end of
appendixJ.8.

There is one type of user-specifiedboundarycondition,called a closure
boundary condition,which is not of the form (5.4.21). This is used in design
problemsto specifythe integralof the normalmass flux over a surface. A
detailed descriptionof the use and implementationof closure boundary
conditions,discussedbriefly in section (5.7.1),will be treatedfully in
AppendicesH.2.5, K.1.3 and K.6.3.
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- 5.5 Singularity Splines

In this section we will discuss without details the construction of spline
matrices for analysis and wake networks. The technical details of the spline
construction, and all discussion of splines for design networks, will be
reserved for Appendix I. In figure 5.13, we illustrate the locations of
source parameters on a source analysis network, and the locations of doublet
parameters on a doublet analysis or wake network.

Source parameters on analysis networks are located at panel centers only.
Doublet parameters on analysis networks are located at panel centers and in
addition along network edges as illustrated. The value of a source parameter
is always the value of source strength at the parameter location, and
similarly for a doublet parameter. The "extra" doublet parameters occur at
those points at which an "extra" corner control point was stationed because of
edge matching considerations (see figure 5.7). Doublet parameters are
required on network edges (while source parameters are not) because of the
quadratic variation of the approximation to the doublet strength. A quadratic
variation causes rapid changes in doublet strength which make extrapolation of
the doublet values from the interior of the network to the edges ill-advised.
The source strength approximation is only linear, however. Finally, doublet
parameters are only located on the upstream edge of a wake network. The
doublet strength on a wake network is defined to be constant in the streamwise
direction, and thus doublet parameters are only required on one edge in order
to define the doublet strength on the entire network.

5.5.1 The Matrices Bs and BD

The outer spline matrices define the source strength and doublet strength
at certain points on the panel as linear combinations of source and doublet
parameters in the neighborhood of the panel. While a single doublet outer
spline matrix has been found satisfactory for all purposes, it has been found
that two source outer splines matrices are generally required. One of the
source outer spline matrices helps define a continuous source distribution
used in post processing applications, where it is essential for processing
considerations that source strength be a uniquely defined function on a
network (cf. sec. 5.5.3). The other source outer spline matrix helps define a
discontinuous source distribution used in AIC matrix construction, where it is
important that the total source strength on a network be accurately measured
by the corresponding integral of the splined source distribution (cf. sec.
5.5.4).

To be precise, consider the panel and network in figure 5.14. A source
outer spline matrix Bs is a 5 x 9 matrix which gives the value of source
strength at PI,P2,P3,P4, and Pg in terms of the source parameters

1_ , i = i,...,9} located at the nine panel centers marked by a circle. The

matrix BD is a 9 x 21 matrix giving the values of doublet strength at PI...,P9

in terms of the doublet parameters {_i D, i:i,...,21} located at the 21 panel

centers marked by an x. Because _ is a continuous locally quadratic
function whereas a is only a locally linear function, _ must be defined at 9

points on a panel by BD while a is only defined by 5 points by BD The values
of a at the 5 points are called "panel source parameters," whlle the values of
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at the 9 pointsare called "panel doubletparameters."

5.5.2 Definitionof SPSPL

The subp_!nelsplinematrices (one sourcematrix SPSPLS and one doublet
matrix SPSPLu for each of the eight triangularregionscomposingthe panel)
each define the coefficientsof the polynomialdistributionof singularity
strengthon the triangularregion as a linear combinationof the singularity
strengthsat the panel points Pi mentionedabove. Thus, on each triangular
region, source and doubletstrengthsa(_' ' _' ', n ) and u( , n ) are definedin
terms of local coordinates(_', n'). (Cf. eqn. (5.2.27)for the definitionof

the local coordinatetransformationA. Note that,theAl_al .c°°rdinates._' n'used here includean origin shift as well; i.e. _ = - xo) where x is the
triangle'sorigin.) o

a(_' ' +
, n ) = a0 + a_ _' ann

P(_' n' : + _nn' ) "o + "_ _'

1 2 _, , + 1 ,2 (5.5.1)
+ 2 _ _' + "_n n _'.nn n

where the constantsoo, o , on, _o,...,Pnnare definedby the subpanel
spline matrices:

"o(P1)

° L °(P2)

a_ = [SPSPLS] o(P3)

an o(P4) (5.5.2)
a(P9)

and

-- [spspLD] (5.5.31

t_[P 9)nn

5.5.3 Constructionof B Matrices for ContinuousSingularityDistributions

A B matrix associatedwith a continuoussingularitydistributionis
constructedone row at a time. Each row definesthe singularitystrengthat a
panel corner, edge midpoint,or panel center in terms of surrounding
singularityparameters. This identicalrow vector then becomespart of the B
matrix of each panel which shares the particulargrid point. This insures
that the value of the singularitystrengthis identicalas one approachesthe
grid point from the interiorof any of the panels sharing it.

The source strengthat a panel corner is obtained from the source
singularityparameterslocated at the centersof the four panels sharingthat
corner, as illustratedin figure 5.15. The dependenceof aI on Xl,...x4is
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determinedby a bilinearfit proceduredescribedin Appendix 1.1.
Essentially,this proceduredetermineswhat "bilinear"function(a bilinear
function in two variables(_,n) is a quadraticfunctionwhich reducesto a
linear function for constant _ or n)

f(_, n) = a + b_ + Cn + d_ n (5.5.4)

is determinedby the four values x_, and then sets al
tobe the "value"

the function takes at that point. By "value",we mean a row vector

(al,a2,a3,a4) such that

/%q

- (5.5.5)
al = Lal a2 a3 a4J "2

v

Ao,i

_A

Sl

regardlessof the values of the _i s.

Now, finding the row vector that describesthe source strengthat a panel
center is very simple,since a source parameteris locatedthere. To obtain a

matrix BS for a panel,we assemblethe row vectorscorrespondingto the 5 grid

points. Each row vector has length 4, but by adding zeros each row vector
expands to length 9. Thus each row vector has one entry from each of the 9
source parametersin the neighborhoodof the panel. While only four
parameterslie in the neighborhoodof a particularcorner point, (cf. figure
5.14) nine parameterslie in the neighborhoodof at least one of the panel

corners. Collectingthe five row vectors,we have the 5 x 9 matrix BS, which
was first introducedby equation (4.2.8).

Thus, for the panel in figure 5.14, BS has the structure
m

0 * * 0 * * 0 0 0

• * 0 * * 0 0 0 0

BS = 0 0 0 * * 0 * * 0

0 0 0 0 * * 0 * * (5.5.6)

0 0 0 0 * 0 0 0 0

where the columns of BS are arrangedaccordingto the integerlabels given
to the source parametersin figure 5.14. Here, an asterisk denotessome
generallynon-zero entry.
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The outer doubletspline matrix BD, introducedin equation (4.2.9),is -_
similarlyconstructedrow by row. To obtain the row vector describing_ at a
panel corner, a least squaresfit is used. As shown in figure 5.16, u(P) is
obtained by findingthe quadraticfunctionu(_,n)which best goes throughthe

12 values _iD at the 12 doublet parameterlocationsin the neighborhoodof P in
a weighted least squaressense (a quadraticfunctionin two variables
certainlycan not go through 12 values exactly). The computationof the
weights is discussedin Appendix 1.1.2.4. The quadraticfunctionthus
obtained (its 6 coefficientsare each row vectorsof length 12, since they

depend on the _} is evaluatedat P to obtain _(P). This weighted least squares

procedurewill be describedin detail in Appendix 1.5.

To obtain a row vector defining _ at a panel edge midpoint,we again use a
weighted least squaresfit, though this time we only fit to 8 neighboring
singularityparameters,as illustratedin figure 5.17. If the grid point lies
near the network edge, a specialtreatment(which is describedin Appendix
1.1) is used.

5.5.4 Constructionof the DiscontinuousSourceOuter Spline Matrix

The discontinuoussource outer splinematrix (cf. appendix 1.1.15),is
constructedby means of a two stage process. First, a linear sourcedistribu-
tion over the whole panel is determinedin terms of the panel'sneighboring

S i = 1 ,9 by means of a weighted least squaressource parameters_i ' '""

procedure. Second,this distributionis evaluatedat the five points PI' P2,

P3, P4, P9 to give the dependencyof the five "panelsource parameters"upon

the neighboringsource parameters_Si"

It is the first step of this processthat ensures that total source strength
is accuratelymeasured. This accuracy is achieved by the combinationof the
linear fit and the fact that the panel'sown source parameteris heavilyweighted
in the least squaresfitting procedure.

It is appropriateto observehere that although the discontinuoussource outer
spline is not explicitlyconstrainedto be continuous,it is in fact very nearly
continuouswherever the configurationis sufficientlyfinely panelledthat the
angle between adjacentpanel normals is less than, say, 10°.

5.5.5 Constructionof SPSPL

Next, let us consider the method by which the subpanelspline matricesuse the

panel singularityvalues (aI ...o4, o9, _1..._g) to define singularity

distributionswithin a panel. In referringto the panel illustratedin figure

5.18, we will write ai for o(Pi) and _i for _(Pi).

Recall that a1, a2, a3, a4 and _9 are defined in terms of neighboring

source singularityparametersby the matrix BS. We then define
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1 1 (02 + a3), a7 i (a + a4), and 08 1a5 = 2 (al + o2) ' a6 = 2 = 2 3 = 2 (04 + °i) "

We have now definedai at all verticesof all 8 triangularregions,and we

now define a linear distributiono(_', n')i, i = i,...,8on each triangular

region by specifyingit to be the unique linear distributionto attain the
appropriatevalues at the 3 verticesof the triangle.

Note that this constructionforceso to vary linearlyalong the edge of a
triangularregion,and thus the value of a at any point along the edge is
determinedby the values of a at the two endpointsof the edge. Thus o is
continuouswithin the panel. Further, since o at a panel edge midpointM is
the averageof the values at the adjacentcorners,o varies as a single linear
functionon an entire panel edge. Thus o on a panel edge is determinedby its
values at the two endpoints,and so, within a network,a is continuousacross
panel edges, as long as the continuoussource spline is being used. At network
edges, o is not continuousacross the networkedge.

To determinethe doubletdistributionon each of the 8 regions,we note
first that a quadraticdistributionon a triangularregion is uniquelydefined
by its value at the three vertices and the three edge midpointsof the
triangle. Thus the doubletdistributionon each triangle is determinedonce

we know u at PI'''" P9' and MI,...,M16. Now _ at PI''"' P9 is definedby

BD . We define u at M1,..., M8, and M13,...,M16 by requiringthat _ be

describedby a single quadraticfunction in one variableon the line segments

- PiPsP2, P2P6P3, P3P7P4, P4P8P1, P5P9P7, and P6P9P8. Note that a quadratic

functionon a line is uniquelydeterminedby its values at 3 distinctpoints.

Finally, _ is definedat M9, MIO, Mll, M12 in such a manner as to minimize the

discontinuitiesin doubletgradientat P5' P6' P7' P8"

By defining _ at Mi, i = 1,..., 16, in this manner,we insurethat, within

a network, the doublet strengthis continuousacross triangleboundaries.
(Doubletstrengthmatching at networkedges is discussedin section5.3.) In

addition,the doubletgradient is continuousat P9" Also, the doublet

strengthis continuousacross panel edges becausethe values of _ at the
endpointsand midpointsof an edge define the value on the whole segment.

Summarizing,for each triangularregionwe obtain subpanelsplinematrices

SPSPLS and SPSPLD such that
w

° o 01

SPSPLs " I' [ ] : (5.5.7a)at

04

n _9
b
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i° iI: [SPSPLD] (5.5.7b)

_nn _9

Furthermore, we have already discussed the construction of outer spline

matrices BS and BD such that

• = [BS] " (5.5.8a)

a4
A

_ v

O 9 nO

and

D

= [BD] (5.5.8b)

u9 X_l

Combining (5.5.7)and (5.5.8),we obtain the source and doublet
distributionson a triangularregion, in terms of source and doublet
parameters,by

o_ = [SPSPLS] [BS] (5.5.9a)

• On J x9S

{io} { ID}= [SPSPLD] [BD] (5.5.9b)

_nn X_l
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- 5.6 InfluenceCoefficients

In order to impose the arbitraryboundaryconditiongiven by equation
(5.4.21),viz.,

aA "n + CA CA + t_A'VA+ aD° + CD_ + tD'V_ = b
(5.6.1)

at a control point, it is necessaryto evaluatethe left hand side expression

as a linear combinationof the singularityparameters I_i} " To evaluatea

and p at the controlpoint,we use the subpanelspline and outer spline
matrices. For example, if a controlpoint P has local coordinates(_', n'),
we find, using equations(5.5.1),(5.5.7)and (5.5.8),

-]
a(P) = _1 _' n'j [SPSPLS] [BS] , . (5.6.2)

S is the
and thus the row vector describingo(P) in terms of all the _i
expansionof the ix9 matrix

1 _' n' [SPSPLS] [BS]
J

into the correspondinglxN matrix (whereall but 9 values are zero), with an
entry for each of the N singularityparametersin the entire configuration.
We obtain the row vector describingu(P) similarly.

5.6.1 Computationof Potentialand Velocity

Next we wish to evaluate_A and V_Aat a controlpoint, as a linear

combinationof all the singularityparametersin the configuration. The row
vectorswhich describethese quantitiesat a controlpoint are called the
potentialinfluencecoefficientand velocityinfluencecoefficientmatrices,
or _IC and VIC respectively. The matrices_IC and VIC should not be confused
with the panel influencecoefficient(PIC)matrices,introducedin section
4.2.2, which define the perturbationpotentialand velocity inducedby a panel
on a controlpoint. The 61C matrix is evaluatedby using the basic
representationformula,equation (5.2.8)

II If '_(x,y,z) 1 o(O) dS + 1 u(Q) n v ) dS= - _ R _ "
S' S' (5.6.3)

(whereS' = SnDp is the intersectionof the domain of dependenceof P with the

surfaceof integrationS) while the VIC matrix is calculatedusing the gradient
of equation (5.2.8),
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v(x,y,z) = -

S'

S'
(5.6.4)

where P' = (x,y,z),Q = (_,n,_)is a point on S,

VQ = _/_n _/_y (5.6.5)

and

R2 = (_ - x)2 + s B2 (n - y)2 + sB2 (__ z)2 (5.6.6)

We perform the integrationone triangularregion at a time; thus, denoting
a subpanel by A, with local coordinates(_', n'), we have

{ °(°°, o_(x,y,z) = _ - _ _ dS (_(_', )1
A

ANDp

n ) n ( ) dS (_(_', n'))

ANDp
(5.6.7)

.@.

and a correspondingexpressionfor v(x,y,z). Here we substitutefor the exact
(and unknown) values of a the row vector in (5.6.2)and a similarrow vector
for _.

In practice,the sum over triangularregionsis taken as a sum over all
anels, and the integralover a panel is taken as a sum of integralsover the
triangular regionsin the panel. The integralover a single panel describes

the perturbationpotentialand velocity inducedat the control point (which
does not necessarilylie near the panel) by the panel. Since the singularity
distributionon the panel dependson the 5 panel source parametersand the 9
panel doubletparameters,the perturbationpotentialand velocity inducedby
the panel can be defined by two "panel influencecoefficient"(PIC) matrices,

one a 4x5 sourcematrix, PICS, the other a 4x9 doubletmatrix PICD.

That is,
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- _(x,y,z)• _ °1 "1 "

ICS " [PiCD_/Bx(x,y,z) = [p ] : + ] .

B_/_y(x,y,z) o4

a_/Bz(x,y,z) a9 u9 J
. ] (5.6.8)

Substitutionof (5.6.2)into (5.6.7)shows that

1/R /4xl lx3 ,. 3x5

I I_ B/Bx(1/R) ,I _' n', [SPSPLi_] dSPIcS = Z - _ B/By(I/R)

8 sub- aillDp B/az(1/R)
panels (5.6.9)

Similarly,

4xl

n .VQ (I/R)

8

1 If , BIBx _ .VQ (l/R)
PIcD = Y _- _ D/By _ .VQ(1/R) (5.6.10)

i=1 aiflDP B/BZ B .VQ (l/R)

i ,2 lx6 _ 6x9
' ' [SPSPLu] dSi {' 1 _,2 _,. n n j

5.6.2 Reformulation of the Doublet Velocity Integral

In Appendix J, we describe the method by which we calculate the matrix

PICS. The integral PICD, however, is evaluated by making use of the continuity
of _. We show in Appendix B.3 that the velocity due to the doublet can be
written as

_(P) : _Vp _(Q) n • VQ

Sr]Dp

= _- (n x vq p) x ( _ ) dS + _ _ I[x dl

SflDp BSflDp

(5.6.11)

Here, BS is the boundaryof the surfaceS. The first integralis called
the regular part of the doubletvelocity,and the second integralis called
the line vortex part. Now, in general,_ = 0 on the boundaryof an isolated
networkedge becausethe doubletmatching boundaryconditionsin PAN AIR force
this to be the case. Further,where two networksmeet along a common line,
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the doublet strengthsin PAN AIR are made equal; thus, if the integrationis
performedone networkat a time, the integralof the line vortex term over the
edge of the first networkcancelswith the correspondingintegralover the
edge of the second network (see figure 5.19). The integralssimilarlycancel
when three or more networksmeet becauseof the doubletmatchingboundary
conditionswhich are imposed (see AppendicesB.3, F and K).

Similarly,when we divide S up into subpanels(triangularregions),the
line vortex integralscancel on the subpanelboundariesbecausethe doublet
strength is continuous. Thus every contributionto the second integralin
(5.6.11) is cancelledby an equal and oppositecontribution,provided_ is
everywherecontinuous. So, if u is continuous,we see that the doublet
velocitymay be definedby an integralin the quantity BxV_, which is
generallyknown as the surfacevorticity. For a discussionof surface
vorticity,see section2.8 of Ward.

The assumptionthat _ is continuouseverywhereis in fact violatedin only
one instance in PAN AIR, namely,on the trailingedge of a wake. The doublet
strength there is non-zero,but this edge is so far from the controlpoints at
which boundary conditionsare imposedthat neglectof the line vortex term for
this edge results in a negligibleerror.

There are two reasonsfor evaluatingthe regularpart of (5.6.11)rather
than the complete integral. First, if the boundaryof a subpanel (triangular)
region of integrationcontainspoints Q = (_',n',{')for which R = O, the line
vortex term may be infinite (especiallyin supersonicflow),where this
infinite quantityis cancelledout by an identicalinfiniteintegralin the
opposite direction. This is unacceptablein a numericalmethod; even if
infinite quantitiesare avoided, the cancellationof large numbersof opposite
sign tends to be inexact,and the final answer may lose many digits of
accuracy. In evaluatingthe regularpart of the integral,however,large
numbers are generated,with a few exceptions,only when the final answersare
large. The singularbehaviorof these integralswill be discussedfurtherin
Appendix J.11.

5.6.3 The Far Field Expansion

The second reason for evaluatingonly the regularintegral is efficiency.
When R is small comparedto panel size, the integralin (5.6.11)must be
evaluatedexactlyin terms of transcendentalfunctions(logarithmsand arc
tangents)whose argumentsare complicatedexpressionsdependingon the
geometricrelationshipof the control point and the panel. To evaluatethe
first form of equation (5.6.11),that is, the complete integral,requiresthe
computationof a greaternumber of these expressionsthan is requiredby the
regularpart of (5.6.11),and thus takes longer. Further, if R is large
compared to panel size, the integrandcan be replacedby a power series in

AQ Q Qo (_, , , ' ' ' ) (5.6.12): - : - _o' n - no' _ - {o

,,_where Qo = ({o'no'{ ) s the panel center. This power series has coefficients

which only depend on Qo and the controlpoint P, while the terms of the power
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- series only dependon the panel. Then (see AppendixJ.9 for details)the
coefficientscan be taken out from under the integral,while the integral
itself now dependsonly on the panel and thus need only be evaluatedonce in
the course of the problem,rather than once for every pair of panel and
control point. The approximationof the integrandby a power series in AQ is
called a far field expansion.

Now, applyinga gradientoperatorto I/R yields with a factorof R-3, and

applyinga gradientoperatorto those termsyields terms with the factorR-5.

Thus the left hand expansionin (5.6.11)containsterms with R-5, while the

regularpart only contains terms with R"3. Now, for a fixed value of R,

R-3 is more accuratelyexpressibleas a power series in AQ of fixed length

than R-5 (see below for a justification),and so a far field expansioncan be
used for smallervalues of R if only the regularpart of (5.6.11)is
evaluated. This is importantsince the far field expansionis considerably
less time-consumingthan the exact evaluationof the integral. In practice,
PAN AIR will use the far field expansionif R is large compared to the panel
diameter for all pointsQ on the panel. For details,see appendixJ.2.

To justify these remarksabout accuracy,consider a quantity€<<1. By the
binomial theorem

r(r-1) 2
(1 + €)r i + r_ + _ € +

mem

= r(r-1)...(r-i) i+1
= 1 + _ (i+I):

i=1 (5.6.13)

3 5
That is, taking r = -7 and then r = -_,

= 3 + 15 2 135 3
(i + _)-3/2 I - _ € -_r_ - _ € + ...

)-5/2 5 35 2 315 2 +(l+€ =1 ,2-€+- -8-€ - --4-8-_ ...
(5.6.14)

So if we want to approximate(1+_)-5/2 by a power serieswith 3 terms
(that is, a quadraticexpression),the first neglectedterm has a coefficient
of 315/48,which is more than twice the size of the first neglected

coefficientif we approximate(i+€)-3/2. Thus, for a particularvalue of €

our quadraticapproximationto (1+€)-3/2 is better than our quadratic

approximationto (1+€)-5/2.
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5.7 The AerodynamicInfluenceCoefficientMatrix

Once the lxN matrix _IC and the 3xN matrix VIC (N the total numberof
singularityparametersin the configuration)have been computedfor a control
point, it is quite straightforwardto impose the boundarycondition(5.6.1).
The left hand side of (5.6.1)then gives a row of the [AIC] matrix (see
equations(4.2.4)and (3.3.8))

aA {_} T lx3 T1X3[VlC(P)]3xN + CA_IC(p_IXN + (_A } [VIC(P)]3xN

lx3 _ 3x5 Bs]SxN. aD L1 _' n'j [SPSPL_] [

lx6 6x9 [BD]9XN, 1 1 ,2 [SPSPLD]
+ CD L1 _' ,2 _, ,n _ _ n _ n j

- 3x6

}T lx3 [AT]3X3IO i 0 _' n' Ol [SPSPLD]6X9

+ {_D 0 0 1 0 _' n' [BD]9XN

0 0 0 0 0 0 (5.7.1)

In arriving at this result,equation (5.6.2)was used for a (a similar
equation for _), and we have used the fact that B._=n._ (see equation
(5.4.15)). The controlpoint P has local coordinates(_', n'), A is the

transformationfrom referenceto local coordinatesand BS and BD are the outer

spline matrices, the overbar signifyingthat they have been expanded to N
columns,with one column of zeros for every singularityparameteron which the
panel source or doubletdistributiondoes not depend. We will show in

Appendix K that the last term of (5.7.1)is equivalentto tD. Vu ; the

remainingterms have been discussedpreviously. Thus, a row of the AIC matrix
(correspondingto a boundarycondition)can be generatedin a completely
straightforwardmanner. Severalconsiderationsmake the processsomewhatless
straightforward,however. These are: impositionof boundaryconditionswhich
are not of the form (5.6.1),utilizationof the existenceof one or two planes
of configurationsymmetryin order to reduce the size of the problem,and
eliminationof singularityparameterswhose values are directlyspecifiedby a
boundary condition("known"singularityparameters)from the systemof equations.

5.7.1 Non-StandardBoundaryConditions

There are two types of boundaryconditionswhich are not of the form
(5.6.1). The first type is a matchingboundarycondition (see section5.3, or
AppendicesK.1.2, K.6.2 for full details). The second type is a closure
boundarycondition,describedin full detail in AppendicesK.1.3, K.6.3. To
understandhow a closureconditionarises,observethat a programuser may
specifya desiredpressure distributionon a design networkby imposing
boundaryconditions of the form

tU . vU + tL . vL = b (5.7.2)
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at panel center controlpoints. When a tangentialcomponentof the flow is
thus specifiedover a surface, there are no boundaryconditionsremainingat
panel centers to also requirethat the normal flow to the surfacebe zero; but
the boundaryconditionsat a networkedge may not yet have been used. At
these control pointsone may specify

aU wU . n + aL wL . n dS = b (5.7.3)
column or
row of panels

For aL = 0 = b, for instance,equation (5.7.3)requires that the integral
of the normal flow over a column (or row) of panels be zero. When the program
user then updatesthe networkgeometryto approximatelyimpose impermeability
of the surface, the positionof the trailingedge of the networkwill not be
changed.

This alternateiterationof a potentialflow solutionwith an updateof
the surface geometryis a method of solvingthe design problem, in which a
user wishes to obtain an impermeablesurfacewith a specifiedpressure
distribution. The closureboundaryconditionis used, for example, in
designinga thick wing, in order to ensure that the trailingedge of the wing
remain closed. The design problem is discussedfurtherin AppendixC. The
implementationof eqn. (5.7.3)is discussedin appendix (K.1.3)where it is
shown how the integralis approximatedas a weighted sum over panel centers in
a column or row of panels. -

5.7.2 Symmetry

While we defer to the appendicesall of the detailed technicaldetails
associatedwith the treatmentof symmetry,we will describehere at a fairly
cursory level how PAN AIR takes advantageof configurationsymmetryto reduce
the cost of solving the potentialflow problem. (For greaterdetail see
especiallyappendixK and also appendicesF.5 and H.)

In the discussionthat follows,we will treat in detail the case of a
configurationhaving one plane of configurationsymmetryas illustratedin
figure 5.20. That part of the configurationsurfacelying to the right of the

plane of symmetry is denoted S+, its image on the left is denotedS- and the
part of the configurationsurfacelying on the plane of symmetryP1 is denoted

.

S1. The combined surfaceS u S1, which is the geometryinput by the user, is
called the principalimage of the configuration. To simplifythe discussion
we will furtherassume the following:

(i) The compressibilityaxis is alignedwith the x-axis of the reference
coordinatesystem.

(ii) The single plane of symmetrycoincideswith the x-z plane,{_ I Y = O}

As a consequenceof these assumptionsthe normal to the plane of symmetryis
^T .+ +

given by nI = (0, 1, 0). Further, for any point p € S , the corresponding

point_- S+€ S-, the image of , is given by
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_ = [I _ 2nlnlT]_ = RI_II= wl i I _ (5.7.4)

Notice that we have implicitlygiven here the definitionof R1, the reflection
matrix associatedwith the plane of symmetryPI"

Having definedthis much of the terminolo_ of s_met_, we can now state
the basic principalthat motivatesour treatmentof symmet_. In PAN AIR,
symmet_ is handledby settingup separateintegralequationsfor the
symmetricand antisymmetricparts of _, definedby

_+(p) = _S(p) = symmetricpart of

= _(_) + _(RI_) (5.7.5a)

_-(p) = _A(p) = antisymmetricpart of

= _(_) _ #(RI_) (5.7.5b)

The integralequationsthat we obtain for _S and _A involveonly integrals

over the principalimage of the configuration,S+uS 1. Thus, each integral

equation,when discretized,leads to an AIC equationthat is (approximately)
half the dimensionof an AIC equation for the whole configuration. Since the
cost of solvinga large, dense AIC equation increasesas the cube of its
dimension,we find -

cost of solving2 AIC equationsof size N/2 = 2[K(N/2)3]

= K[N3/4]

cost of solvingi AIC equationof size N = KN3

so that symmetrypermitsus to reduce by a factorof 4 the cost of AIC
solution. Further, (and this is actuallymore significant),symmetryalso
allows us to reduce by a factor of two the cost of AIC generation. This last
fact followsfrom the observationthat of the four influencecoefficients
defined by:

. . .

€ = sI)+ • (P,mI)

= potentialinducedat _ due to the source distributionsI
and the doubletdistributionmI restrictedto panel

Q+ ¢ S+
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. _.

I (RI_)

Q- _ .+ Q.¢ (_) Q : image of Q+ :1_-I _- : R1 q , q E }

only the first two need to be computed since

+

• (;I= I

We now show how PAN AIR combines the boundaryconditionsat controlpoints

_. S . _.
p € andS-(= R1 p € S-) to obtain a boundaryconditionfor each of _S and

_A imposed at _+. (See below for the discussionof control points_ € $1.)

First we note that correspondingboundaryconditionsat points _ and RI_

are required by PAN AIR to be connectedto one another as follows. (Compare
these forms with equation (5.4.21))

: aA BT(_) B(T(_))A+ CA(_(_))A + _(v(_)) A

+ aD a(_) + cD _(_) + _ v_(_) = b+

(5.7.6a)

_T _(RI_))ARI_ : aA _T(_) RI B(_(RI_))A+ CA(_(RI_))A + tA R1(

+ aD a(Rl_) + CD ,(RI_) + _ R1 V_(RI_) = b-

(5.7.6b)

Adding and subtractingthese equationswhile takingaccount of the following
definitions

;+(_) : ;S (_) : ;CP) + R1 _'CRI_) (5.7.7a)

;-(_) = _lA (_) : _'(_) _ R1 ;(RI_ ) (5.7.7b)

;S(_) : a (;) + a (R1;) (5.7.8a)

;A(p) = o (_) -o (RI_) (5.7.8b)
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_- _S(_) : , (_) + _(RI_ ) (5.7.8c)

_A(_) = , (_) + F(RI_) (5.7.8d)

we obtain after some manipulation

aA ^Tn(_) (_S(_))A_ + CA(_S(_))A + _T (_S(_))A

^S ++ aD _S(_) + CD iS(p} + x/u = b + b
(5.7.9a)

+ ^A _ + _T _A(_,))AaA _T(_) (_A(_))A CA(_ (P))A (

+ aD _A(_) + CD _A(_) + _T v_A = b+ - b
(5.7.9b)

Now it can be shown that the fundamentalrepresentationformulas (5.6.3-4)for

and _ induce similarrepresentationformulasfor _i and _i (see equations
(K.3.28)and (K.3.46))having the followingproperties:

(i) the integrals_xtend only over the principalimage S+ u $1,

• ^i(ii) _i and _I depend only upon o and , the correspondingsymmetrized
singularitydistributions.

These observationscombinedwith a close inspectionof equations (5.7.9)show
that we have decoupledthe symmetricand antisymmetricparts of _, at least as
far as boundary conditionsaway from the plane of symmetryare concerned.

When a controlpoint lies on a networkwhich itself lies on a plane of
symmetry,it is still possible to obtain a decouplingof the symmetricand
antisymmetricpotentials,provided the user's boundaryconditionssatisfy
certain restrictions. If the network in question is a source network,the
user must specifya nontrivialboundaryconditionof the form

. _T (sourcenetwork,on aaD c(_) + CA(_(p))A + (_(P))A: b plane of symmetry)

This is equivalentto the followingconditionimposedupon _S.

+ _T,1, GS(_))A b (5.7.10a)aD _S(_) + CA(1)(_S(_))A tAl_j( =

The correspondingconditionto be imposedupon _A is the degenerateboundary
condition,

:o
Notice in equation (5.7.10a)that becausea source distributionon S1 induces

a componentof _ that is symmetricwith respectto the plane of symmetryPI'
we make the identification:
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J ^sIS1 S1

For doublet networkslying on a plane of symmetry,the user must specifya
nontrivialboundaryconditionof the form

(doubletnetworkon

aA _T(_) B(_(_))A+ CD _(_) + _T Vp(p) : b a plane of symmetry)

This is equivalentto the followingconditionimposedupon _A:

aA _T(_) (1) B(_A(_))A+ CD _A(_) + _T v_A(p) = b
(5.7.10b)

The correspondingconditionto be imposedupon _S is the degenerateboundary
condition

^s. =o
Notice that in deriving (5.7.10b)we have made the identification:

la = g

SI SI

because a doubletdistributionon S1 inducesa componentof potentialthat is
antisymmetricwith respectto PI" --

A comment is in order regardingthe rather anomalousfactorsof (1/2) that
appear in equations(5.7.10). To see how these factorsarise, consider the

evaluationof (6(_))A" Solvingequation (5.7.5)for _(_) we obtain

1
_(_) = 2 [_S(_) + _A(_)]

Averaging the relationabove and below p, which lies on the plane of symmetry
we get

.
Since the function_A(_) is antisymmetricwith respectto the plane of

symmetry, (_A(_))A = 0 (to see this, examineeqn. (5.7.5b)carefully).
Thus

( ( IIA= A
and the factor of (1/2) appearinghere is the same as that appearingin
equation (5.7.10a).

All of the resultsgiven here for networkslying on a plane of symmetry
are worked out in detail in appendix (K.3). Further, in appendices(K.6.2)
and (K.6.3) the correspondingdecouplingresultsare worked out for matching
and closureboundaryconditions.
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The treatmentof doubletmatchingwhen symmetryis presentdeserves
specialcomment. Whenever doubletmatchingis performedon an abutmentor at
an abutment intersectionthat lies on a plane of symmetry,doubletmatching
conditionsmust be selectedseparatelyfor each symmetrycondition. That is,

the matching conditionoverridesmust be assigned separatelyfor _A and _S.
Thus, it is in the handlingof doubletmatching that we see most clearlythe
fact that the discretizationin PAN AIR is formulatedseparatelyfor each
symmetrycondition.

5.7.3 Known SingularityParameters

In a varietyof cases, the value of a singularityparameteris directly
specified. The most common exampleoccurs with impermeableboundary
conditionson a thick configuration(equation(5.4.19)),in which case a
source parameteris specifieddirectlyas

o = -V_ . _ (5.7.11)

If, of the N singularityparametersin the whole configuration,p are directly

specifiedand q are not, we can reorderthem so that (_1,...,_p)are specified,
and thus (assumingno planesof symmetry)the basic system of linear equations
can be written as

_ _ _1 l bl

[Dl]pxp I oPXq " _p{ _p
I = (5.7.12)

I [AiCUp]qXq XP+l I "bp+l

[AICKP]qxp I

I i :I
_ _ xN bN

Here, the matrix DI is a diagonalmatrix whose entriesare the coefficients

aD or cD in equationsof the form

aDo = b (5.7.13)
or

CD_ = b

which specifythe value of a singularityparameter.

The matrix AICKp (KP stands for known parameters,UP for unknown

parameters)gives the dependenceof the boundaryconditionexpressions

aAwA . _ + CA_A + tA . vA + aD o + cD _ + tD . V_ (5.7.14)
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on the set of known parameters,while AICup gives the dependenceof the

expressions(5.7.14)on the set of unknownparameters.

As a specificexample,consider the case where all the source singularity

parametersare specifiedaccordingto equation (5.7.11). Then, Xp+l,...,X_l

are the unknowndoubletsingularityparameters,while for 1<j<p, xj = o(Pj) and

bj = -V= . nj. Also, [DI] = [I], and [AICKp]gives the effect of the known
source strength singularityparameterson the expression (5.7.14),which, in
our example, becomeslower surfacepotential.

Now, the first p lines of (5.7.12)expressthe system of equations

Xp bp

which implies

= [DI] -1 (5,7.15b)

Xp bp

_here [DI]-1 is readilycomputable since [DI] is a diagonalmatrix. The
remainderof (5.7.12)is

p+z "bp+l

• m •

[AICKp] • , + [AICup] , . = , . (5.7.16)!

• io •

Xp. x N , =bN

Substituting (5.7.15b) into (5.7.16), we obtain

qxl qxl pxl

(5.7.17)

We have thus reduced (5.7.12),a system of equationsin the N parameters

Xp+1Xl'"" XN to a systemof equations in the q unknownparameters '''"XN"
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5.7.4 Multiple Right Hand Sides

So far, we have always considered a system or systems of equations of the
general form

.nxl _nxl[AIC] nxn x = (5.7.18)

But if the AIC matrix does not change, it is very economical to solve (5.7.18)

for a sequence of distinct vectors bi, obtaining a sequence of solution
--w

vectors x i .

The ability to solve (5.7.18) for multiple vectors b can be very useful.
The uses include analyzing the flow about a configuration at multiple angles
of attack or sideslip, evaluating stability derivatives, or analyzing a
variety of quasi-steady flows in which the configuration is undergoing a
pitching, rolling, or yawing motion. This is especially useful when M_ = 0,
and the small perturbation assumption is not necessary for the Prandtl-Glauert
equation to hold. For a further discussion of "right hand side" or
"constraint" vectors _, see Appendix L.

So, in its most general form, (5.7.18) can be written

[AIC] nxn [A]nxm = [B]nxm (5.7.19)

where each of the m columns of B is a constraint vector bi, and each column of
A is a solution vector _..

1

5.7.5 Updatability

Another feature of PANAIR is that of "updatability." That is, a program
user may identify certain networks as being subject to modification. The
program then segregates boundary conditions and singularity parameters
corresponding to these networks, so that the AIC matrix in
(5.7.18) can be partitioned as:

I AICNU ' ]

I AICu i
[AIC] = I 'I (5.7.20)

T

AICu,2 I AICu,I 3
I

Here, the subscriptsU and NU stand for updatableand non-updatable.

Now, the matrix AICNu is stored,and when the program user makes a second
run in which updatablenetworksare modified,the programneed only

recalculateAICu,1, i = 1, 2, 3, rather than the whole AIC matrix. Here,
"modification"may consist of the alterationof the networkgeometry,or the
alterationof the left hand side boundaryconditionexpressions(5.7.14). It

is easy to see that AICNu remains unchangedunder a modificationof an

"updatable"network. For a full discussion,see Appendix K.7.
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5.8 Solutionof the System of Equations

As we see from (5.7.7),(5.7.8),(5.7.18),and (5.7.19)the programsets
up a system or systemsof linear equationsof the general form

[A] nxn [X] nxm = [B] nxm (5.8.1)

Generally speaking, the matrix A is too large to store in the central
memory of a computer at one time. Thus the matrices are stored in block
format on a disk, and (5.8.1) is solved with no more than three of these
blocks in core at once.

Generally, the matrix A is decomposed as a product of lower triangular and
upper triangular matrices

[A] nxn : [L] nxn [U] nxn (5.8.2)

This process frequently involves "in-block pivoting," that is, the interchange
of columns within one of the blocks composing A. It can happen that a
boundary value problem of aerodynamic interest results in one of the blocks of
A which lies on the diagonal being singular, in which case a decomposition of
the form (5.8.2) is not possible. Such a case requires the interchange of
columns lying in different blocks, a process called "out-of-block pivoting."
The out-of-block pivoting process decreases the efficiency of the solution
process since additional data must be transferred between disk and core. This
process is described in Appendix L.

After the decomposition (5.8.2) the next step is "forward substitution,"
that is, the system of equations

[L]nxn [y]nXm = [B]nxm (5.8.3)

is solved for the matrix Y. The final step is "back substitution," in which
the system

[U]nxn [X]nxm = [y]nXm (5.8.4)

is solved for the matrix X.

The solution procedure has two distinct "updatability" features. First,
suppose A is an AIC matrix partitioned as in (5.7.20). Then the factorization
(5.8.2) is performed on AICNu first, after which A is factored in its entirety.

The factorization of AICNu is stored, and in a later run in which AICu, i ,
i : i, 2, 3, are changed, the factorization continues from that point. They
may result in a significant saving of time.

The other "updatability" feature is that a program user may request the
entire factorization (5.8.2) to be stored, and then at a later time submit
additional constraint vectors b. Thus, a user may find that the results for
one angle of attack are useful, and thereupon obtain results for additional
angles of attack, angles of sideslip, or for stability derivatives, at small
additional cost.
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5.9 Post-Solution Features

5.9.1 Computation of Potential and Velocity

Once the system or systems of linear equations (5.7.19) have been solved
for one or more solution vectors, it remains to translate the vector(s) into
quantities of aerodynamic or hydrodynamic interest. The first step is to

obtain the values of _A and _A at control points. Clearly

.Nxl
_A = [_Ic]IXNx

(5.9.1)

VA : [Vlc]3XN_NxI

but obtaining_A and TA this way requires the storageof 4N words of data for

each control point. Often it is possibleto obtain6A from a boundary

condition. For example (recallingeL = (_U + eL) - (¢U - eL) = CA - 2 _)'
the boundarycondition

1
_L = _A - _ _ = 0 (5.9.2)

is often imposedat controlpoints. Thus,

i (5.9.3)
#A - 2 _

Since u at the control point is alreadyavailable(it is one of the unknown

parameters),we can obtain CA without storingthe _IC matrix.

Once 6A has been found at every control point,we may make use of the

doubletspline matrices to obtain a distributionof _A on the whole surface.

This quadraticdistributionmay then be differentiatedto obtain tangential

velocitieson the surface• The conormalcomponentof velocity,_A _ _ .• = wA . n,

can often be obtained from a boundaryconditionof the form

wA . n : -V, .

Then, all three components of velocity may be obtained from the tangential and
conormal components. The details of how we can use boundary conditions and
splines to obtain velocities at control points or grid points (panel corner
points, centers, or edge midpoints) are given in Appendix M.

The velocities are calculated at control points or grid points in a

user-selected reference coordinate system (x o, Yo' Zo)" The formulas for

calculating pressures are most easily written in the compressibility
coordinate system (x,y,z), in which the freestream direction is the
x-direction, so we will describe them in that system, in which we write
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v = (u,v,w)and V (the total velocity): (IV_l +u, v, w).

5.9.2 PressureComputation

PAN AIR will calculatethe pressure from the velocityaccordingto any of
five differentpressurecoefficientrules. These pressure rules will be
derived in AppendixN. We assume we are dealingwith a gas or an
incompressibleliquid• Let y be the ratio of specificheats. Subjectto
certain constraintson the range of velocitiesfor which the pressure
coefficientrules hold, they are listed in figure5.21. For an incompressible
liquid, the isentropicformuladoes not apply.

5.9.3 VelocityCorrections

In addition,PAN AIR will calculatetwo semi-empiricalvelocitycorrection
formulas. The first is often used in practicein areas such as inletswhere
the componentof the velocity in the freestreamdirectionis less than the

I,

freestream. If u < O, we solve the followingequation for Vx.

1

JV_l + sB2u = Wx = Vx'[1 + 2 M_ (I lVxl2)]y-i (5•9 5)

The corrected velocity is given

{v,lxV' = v (5.9.6)

w

This velocity correction, denoted SA1 in the User's Manual, is closely related
to the Lieblein-Stockmanformula (cf.Reference5.1).

The second velocitycorrectionformula,denotedSA2 in the User's Manual,
is often used in regionsof near-stagnationsuch as the leadingedge of a
wing• If u > O, we set

_ (5.9.7)
-

If u < O, we set

?, _ W (5.9.8)
1-M_2 u

where the denominatoris a first order approximationto p/p_ •

These two correctionformulasare essentiallyempirical. The first has
been used successfullyonly in subsonicflow, while the second has been used
successfullyin both subsonicand supersonicflow. Successfulapplicationsof
the second velocitycorrectionare given in reference4.9 (Ehlerset. al., P
p. 89 and figure 36) and reference5.4 (Chen and Tinoco, figure 5).
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5.9.4 Force and Moment Computation
o

PANAIR will also integrate pressures on a surface to obtain coefficients
of force. The formula we use for the force is

where p is the pressure and p is the density.

The first term in the integrand, the momentumflux term, is zero for an
impermeable surface, but does in fact contribute to the force on a porous
surface. The evaluation of this integral is discussed in Appendix O.

PANAIR al_o evaluates the moment M about a point. If Ro is the point in
question, and Q is a point on the surface,

ss: }M : - (Q Ro) x " p (Q RO) x n dSs twl z
(5.9.1o)

The derivation of (5.9.9) and (5.9.10) is given in Ashley and Landahl
(reference 5.3), section 1-6.

Equation (5.9.9) ignores a contribution to the total force, called the
edge force, which occurs for thin configurations. To obtain the force on the
configuration illustrated in figure 5.22, we should integrate the expression

in (5.9.9) over the combined surface SIU S2, while in fact we only integrate

the expression over SI. The evaluation of the integral over S2, the edge
force, requires the use of some special extrapolation and correction
techniques. The basic idea is to evaluate the limit in the expression for
edge force, (cf. ref. 5.2):

edge force per unit length = (x/8)B n [lim (u/ V-_'Xn) ]2 (5.9.11)
Xn. 0

(here, Bn is an edge normal compressibility factor and xn is the distance

from the edge) by evaluating the expression (u/_/-x n) at panel centers near
the edge. A correction factor is then applied to the result to account for
some nonuniform convergence effects arising from the fact that PANAIR does

not allow _ to behave like CV_n in the neighborhood of the leading edge.
For more details of the edge force computation, see appendix O.

5.9.5 Off-Body Points and Streamlines

In order to help the program user in visualizing the flow field, PANAIR
provides the capability to calculate potential and velocity at off body
points. In addition, this basic capability of evaluating _ and _ at points
away from the configuration surface has been combined with an ordinary
differential equation solver to provide a streamline tracing capability. In

5.9-3



this sectionwe summarizethese capabilities,deferringto appendixP the _
detailsof their implementation•

The evaluationof _ and _ at off body points is a straightforwardtask once

the singularityvector_ has been obtained by solvingequation (5•7.18). To
see this, simplyobserve that once x IS known, the source and doubletdistri-
butions are c_mpletelydeterminedby equations(3.3.1-2)• Once o and _ are
known, 6 and v are given at any point P by the integralrepresentation
formulas,equations(5.6.3)and (5.6.4). The evaluationof the integrals
appearingin equations(5•6.3) for _ and (5.6.4)for v is treatedin detail in
appendixJ.

Given the capabilityof evaluating_ at an arbitrarypoint P, the tracing
of a streamlineis accomplishedby numericallysolvingan ordinary

differentialequation. To see this let P(t) denote the coordinatesof a
velocitystreamlineparameterizedby t. By the definitionof such a
streamline,the tangentvector to the streamlinegiven by

dP (5.9•12)
tangent to streamlineP(t) = Tt

is parallel to the velocityfield at P(t). Mathematicallythis implies

dP . .
_-_= g(t) V(P(t))

The apparentlyarbitraryfunctiong(t) does not affect the shape of the
streamlinebut rather,just modifies its parameterization. By conventionwe

set g m 1 in PAN AIR. Thus, given an initialpoint Po on a velocity

streamline,PAN AIR determinesa sequenceof points on that streamlineby
solving the followinginitialvalue problem:

dP _(_(t)) _ + _(P(t)) (5 9.13)

:Po

In actual practice,it is usually preferableto computemass flux
streamlines,i.e., streamlineswhere tangentsare parallelto the mass flux

vector field W(P). The initialvalue problemused to define these streamlines
is given (cf. equations(5.4.4)and (5.4.10))

dP . . .
dt - W(P(t)) = V= + Bo v(_(t)) (5.9•14)

P(O)--Po
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Figure 5.1 Network geometry

Figure 5.2 Decompositionof panel into 5 planar regions
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Figure 5.3 - Definitionof compressibilitydirectionsin terms
of anglesof attack and sideslip
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Superinclinedsubpanel.

All panel points upstreamof P
are outsidedomain of influence.

Figure 5.4 - SuperinclinedSurface,r = -l
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a - Subinclined, r = +I b - Mach-inclined, An _:0.

Figure 5.5 - Subinclined and Mach-inclined surfaces

Body

Flow
m

Wing

.

Figure 5.6 - Gap between leading edge of wing and body
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X extra control point

Figure 5.7 - Example of abutment intersection

________
X •

• X X X center control point

• edge control point
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• X X X •

Figure 5.8 - Control point locations
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Figure 5.9 - Thin wing boundary conditions

Figure 5.10 - Two solutions for potential in enclosed volume
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Figure 5.11 - Thick wing boundary conditions

V_ M_ > 1

eL=OF " CL=O
--_ a

•n : 0 -_ A
WL- --'-- 0 : -Vo_'n

Figure 5.12 - Boundary conditions on superinclined surfaces
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Figure 5.13 - Singularity parameter locations
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X doublet parameters in the neighborhood of the panel

C) source parameters in the neighborhood of the panel

Figure 5.14 Singularity parameters in the neighborhood of the panel
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Figure 5.15 - Neighboring source parameters for a panel corner point

X X
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Figure 5.16 - Neighboring doublet parameters for a panel corner point
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Figure 5.17 - Neighboring doublet parameters for a panel edge midpoint
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Figure 5.18 - Panel points and midpoints
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Figure5.19 - Oppositeorientationsof adjacentnetworks
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Figure 5.20- Configuration and image
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RULE Cp --
y

Isentropic 2 [I Y21 M2_(I-[-_] 2) -I
Y,J Iv-- 12

used if M= > .01

Incompressible I-I'_12/_ V:= ]2

used if Moo.<.Ol

Second Order 1_IV12 + M 2u
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Linear -2u

Reduced Second Order 1-1VI2

Figure 5.21 - Pressure coefficient rules --"
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Figure 5.22 - Surfaces of integration for leading edge force
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6.0 A Guide to the Appendices

The purpose of the appendices is tilree-fold:

(a) they give background r._aterial, not reflected in the computer code, but
explaining why the con_puter program performs the functions it does,

(b) they describe in considerable detail the functions performed Dy tile
program, and

(c) they describe the equations wllich are actually implemented in tile code.

Appendices A through C cover background material exclusively. The
remaining appendices are predominantly devoted to the PANAIR program, but
often derivations are supplied to prove or justify the validity of an equation.

Often a conflict may occur between organizing the material according to
the structure of the program or organizing it according to subject matter (for
instance splines, panels, networks, pressures, etc.) or capability (for
instance symmetry, updatability, f,lultiple rigilt hand sides, etc.). This
conflict will almost invariably be resolved in favor of organization according
to subject matter.

This document will generally discuss only engineering functions within PAN
AIR. Specifically, the functions of the Data Input Processor (DIP), which
reads and eciloes user-input data, and the Print Plot Processor, whici_ prepares
files of output data for processing by plotting programs, will be ignored.
Also, input/output and other data manipulation functions which are necessary
due to core limitations, will, with few exceptions, be ignored. For example,
a detailed discussion of the abutment analysis processor in DQGwill be
contained in the Maintenance Document rather than the Theory Document, since
the complexity of this procedure is largely due to data manipulation
problems. Finally, there will be no discussion of the "Scientific Data
Management System" (SDMS) used by PANAIR to transfer data between core and
disk.
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8.0 List of Symbols

Latin Symbols

a, a speed of sound, freestream speed of sound [2.3]
(m/sec)

aA, aD average and difference normal mass flux [5.a.2.5]
coeffcients

a, ai, ak distance (signed) from control point's [J.5]
projection to an edge of Z (local
coordinates)

a, _ fundamental integrals in PIC computation [J.6]

S D

aiN, aiN generic coefficients in polynomial [4]
expansions for source and doublet

ai constant coefficient of Li, linear [1.2]
basis function on a triangle

A, A end point of an edge [cf.: B, M, CAB] [1.2.3.2]

A area [i.e., dA]

[A], [Ak ]4x4, Ak reference (XO) to local (X') coordinate [5.2, E.3]

transformation (Ak = transformation
for k-th panel or subpanel, depending
on context)

Ai i-th abutment in an abutment intersection [F.5]

A(G) adjacency matrix of a graph G [F.5]

[A], A Left hand side (AIC) matrix [5.8.2]

Aij submatrix of AIC matrix A [L.2]

A(i'j) partially reduced AIC matrix, after stage [L.2]

(i,j) of factorization

[AIC], AIC aerodynamic influence coefficient matrix [3.3, 5.7]

Variants: (AIC_ j AIC entry for AI

symmetry condition

(i,j), [K.6])

(AICKp, AICup, [5.7.3])

(AICNu, AICu, I, AICu, 2, AICu, 3 [5.7.5])
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A

A. Intermediate matrix used in PSPL D [I.3.1]
i calculation _

A a 2x2 hyperbolic skew [J.5]

b generic right hand side term for a [5.4]

boundary condition
Variants: (b, vector of right hand side

terms, [5.7])

(_ij , b for symmetry condition

(i,j), solution index e,
[L.O])

b, b fundamental integrals in PIC computation [J.5]

b i _-coefficient of Li, linear basis [I.2]
function on a triangle

B, B end point of an edge [cf.: A, M, _AB ] [1.2.3.2]

rBL ] fundamental integrals in PIC matrix rj.5]

[B] right hand side matrix containing con- [5.8]
straint vectors for multiple solutions

[B] dual compressibility metric matrix, [5.2]

compressibility axis coordinates

Variants: (B, same as [B], [5.2])

(Bo, L o,rB ] reference coordi-

nates, [5.2])

(B, [B], scaled coordinates [E.3])

(B', [B'], local coordinates [E.3])

Bs source outer_ spline matrix [5.5, I.I]

Variant: (Bs, extended to all N AI, [5.7])

BD doublet outer spline matrix [5.5, I.I]

Variant: (BD , extended to all N hi, [5.7])

Bi(Q) , Bi(Q) quadratic interpolatary basis functions on [1.2]
a triangle

[BL] bilinear generalized Vandermonde matrix [I.I]

^

c compressibility axis, reference coordinates [5.2, E.3]
O ^

Variant: (c : compressibility axis

coordinates [5.2])
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CA, cD average and difference potential [5.4.2.5]
-- coefficients

_(_) a curve on the singularity surface S [K.I]

ci n-coefficient of Li, linear basis [1.2]
function on a triangle

coefficients of in evaluation of [1.3]
C4,i _i

_(s,t)at c4

Cij mean panel moment integrals [I.4]

Cv ratio of specific heats at constant volume [2.2]

Cp pressure coefficient [5.9.2]

Variants: (_lincp, linear Cp, [H.2.4])

(AC_ , pressure jump,

P Cp,upper - Cp,lowe r)

(Cp,vac, vacuum value of

Cp, [N])

_F force coefficient vector [0.I]

_M' _M m_ment coefficientvector [0.I]
(C_ : referred to an alternateorigin)

cO(s), C-I(s), CI(s) Continuityclassesfor functions [B.3]
definedon S

Ca, C4 half panel #4 center (C4 ) and corresponding ., [I.3]
point on the hyperbolic paraboloidal panel (C4)

C(Q) a cubic basis function on a triangle [I.2]

Ci, C I, C., C- regions of space when one plane of [K.3]
symmetry is present

i regions of space when two planes of symmetry [K.4]Cij , C , C2

are present.

.. +- . - . _)Variants: (C , C etc., CI, CI, C2, C

Ci i-th corner in an abutment intersection [F.5]

Ch Mach disk on a superinclined panel [J.4]

CO winding number coefficient for PIC integrals [J.4]
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[C] compressibility metric matrix, compressi- [5.2]

bility axis coordinates

Variants: (C, same as [C], [5.2])

(Co, [Co] , reference coord-
inates, [5.2])

(3, [_], scaled coordinates,
[E.3])

(C', [C'], loca! coordinates, [E.3])

d prefix: differential (i.e., dE, dA, dS, etc.)

a design direction [C.I]

d distance from a point to a line _ [F.3]
Examples: d(s,E) = distance from s to

. edge E

d(s, Ti)= distance from s to
edge segment T i

det determinant

Dp Domain of dependence for control point p [5.2, J]

[D] Full doublet panel influence matrix, with- [J.6.4.3]

out origin shift. [Do ] (cf. [J.6.6])
includes the origin shift.

[D] A local coordinate metric matrix [E.3] --

[DI] A diagonal matrix associated with known [5.7.3]

singularity parameters

e internal energy per unit mass [2.2]

el, e2, e3, ei natural unit vectors in RN
^

eA, eD, eu, eL average, difference, upper and lower n.v [H.I]
coefficients for the general boundary

condition

E, Ei a network edge, the i-th network edge in [F.3]
an abutment

E, Ek a panel or subpanel edge [I.4, J]

the image of a panel or subpanel edge [J.5]

under a hyperbolic skew transformation

AE Energy added by incremental onset flow
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_, f. Body force per unit mass, newtons/kg [2.1]
I

f(p,p,T) Equation of state [2.1]

f-' fo' f+ Lagrange interpolation functions of the [J.IO]
edge variable v, defined on an edge

F A fundamental integral in the PIC calcu- [J.6]
lation

Total force on the configuration [5.9]

Generic vector field [B.3]

FFM_, FFM_ Far field moments used in post processing
[1.4, O.2]

g, gk Compressible distance from a control point [J.7, J.8]
projection to a panel edge

G Generic vector field [B.3]

G a graph IF.5]

[G] Intermediate matrix used in constructing [I.3]

the half panel doublet spline matrix

[G] Transformation from Prandtl-Glauert scaled [E.3]
- coordinates to local coordinates

[G] 2x2 local compressible metric matrix, used [J]

to define the pseudo inner product <.,.>

GK Kernel moments used to calculate _ [J.9]
3

G(k).. Intermediate quantity in calculation of Cij [I._.3]13

h height of the control point above the plane [J.4]

of the panel, local coordinates

h2 quadratic function fitting 6 data values [I.2]
on a triangle

h3 cubic function fitting 7 data values on a [I.2]
triangle

Hi hypothetical location of a control point [G]
on the i-th network of an abutment or

abutment intersection

Has' Hia8 panel far field moments [I.4, J.9]
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H , H far field estimates of certain panel [J.9]
l_ integrals

HK Kernel moments for (I/R3) [J.9]
3

Hh' Hh Mach hyperbola, before and after applica- [J.5]
tion of an edge's skew transformation

HiJ 2x2 matrix used for symmetrization of [K.3]

potential _, velocity v, and boundary
conditions

HPINT S, HPiNT D half panel PIC integral matrices [J.1]

HPSPL S HPSPL D half panel spline matrices [I.3, J.1]

I row index

I, Ik edge function, edge function associated [J.7]
with edge k

I(_), I(X) edge integrals of functions _, X [J.7]
A

I rationalized form of Ik, edge function [J.B]

j column index

J'Jk Jacobian area ratio, dS'/dS o [E.3]

Jm Mean panel jacobian area ratio dSm/dSo, m [J.9]

j hyperbolic paraboloidal panel jacobian matrix, [I.3]
_(_.n)/_(s,t)

j Panel function [J.4]

J(_), J(X) Panel integrals of functions _, X [J.7]

Jk Edge contribution to panel integral [J.6]

k Coefficient of heat conductivity [2.1]

k subscript, superscript, index of summation [K]

kD , kS number of doublet and source singularity [4.2]
parameters (global) in the neighborhood
of a panel

k , kN previous and next edge number on network [F.5]
N at an abutment intersection

[K] matrix describing the evaluation of _(s,t) [I.3]
at seven points [HPSPL u calculation]
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A

K rationalized quantity used in evaluation [J.8]
of I(×)

d£ element of arc length [B.3]

£ subscript, superscript, index of summation [K]

[L], L lower triangular matrix factor [5.8, L]

LR reference length [0]

Li(Q) basis function for linear interpolation [1.2]
on a triangle

[LSQ] pseudo inverse for a least squares problem [I.5]

[LINV] matrix giving an edge's line vortex contri- [J.10]

bution to a panel influence coefficient

mi, mi global basis functions for the doublet [3.3]
distribution

m2, i coefficients of _i in the evaluation of [I.3]

_(s,t)at M_

mod mod(i,j) = the remainder of i/j

M2, M2 edge midpoint common to half panel 2 and [I.3]

half panel 4. M_ is the corresponding

point on the hyperbolic paraboloidal panel

M total moment (about some specified point) [5.9]

on the configuration (newton-meters)

M , M£ freestream Mach number, !ocal Mach number [2.3]

M, M midpoint of an edge [K.2.3.2]

M number of rows of panel corner points in [5.1]
a network

[M] matrix giving quadratic doublet coefficients [J.6]

"_ 2x2x2 tensor giving cubic doublet coeffi- [J.6]
cients

M subpanel center [I.3]

unit normal vector, pointing out of the [3.2]
singularity surface, into the fluid

(components: nx, ny, nz)
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n conormal vector, also denoted v [5.2]

n edge normal, normalized with pseudo inner [J.5]

product, <.,.>. (Components: ns, n_)

nx, ny, nz components of n , the normal to S [5.2]

n_, n components of n, the 2-D edge normal in [J.5]n local coordinates

N number of columns of panel corner points [5.1]

in a network

N number of singularity parameters _T in a [3.3]
configuration, or in the principal-image

of the configuration [K]. Sometimes denotes

the number of unknown singularity parameters.

NES number of network edge segments in a iF.3]
configuration

N generic upper limit of a sum

NCPMI, NCPM 2 moment matrices used in post processing [1.4]

p, p® pressure, freestream pressure (newton/m 2) [2.1]

p field point, control point

p , p points just below (_-) and just above (p)
a control point

p number of known singularity parameters [5.7.3]

p priority used in assignment of matching iF.5]
conditions at an abutment intersection

Pi size of the i-th partition in the block- [L.2]
ing of the AIC matrix

ph phase function, ph(x,y) z Arg(x+iy) [J.4]

phh hyperbolic phase function. [J.5]
phh(x,y) = (I/2)log[(x+y)/(x-y)]

p(¢) upper limit of integration in cylindrical [J.4, J.5]
or hyperbolic cylindrical coordinates

p field point or control point (see p) [3.2]

p vector of coordinates of the point P

(see p )
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P(t) streamline parameterized by t [5.9]

P a point on the llne emanating upstream

from a control point and piercing a panel [J.3]

Pi panel defining point, I _ i _ 9 [5.5]

PAI the location of an abutment intersection [F.5]

PIC panel influence coefficient matrix [5.6]

PSPL S, PSPL D source and doublet panel splines [I.3]

q heat generation (per unit mass) added to [2.2]
fluid

q source point or panel point [K]

q edge type indicator, -I for supersonic, [J.5]
+I for subsonic edges

panel center and bilinear coefficients [I.3]

qo' qs' qt' qst for the hyperbolic paraboloidal panel

_i _iJq , images of a source point or panel point [K]

Also: q , q , q , q , q , q

q(s,t), qm(S,t) hyperbolic paraboloidal (H-P) panel, [I.3]
mean plane H-P panel

Q source point or panel point [3.2]

Q vector of coordinates of the point Q

AQ panel point deviation from panel center. [5.6.3]

AQ - Q - Q•

panel center, expansion point for far [5.6.3]
o field influence coefficients

Qi' Qi corners of a triangle, i - 1,2,3 [1.2]

Qi' Qi triangle edge midpoints. Q_ is opposite [I.2]
Qi

_" panel point, local coordinates [J.9]

Qk' Qk corner phase functions for evaluation of [J.8]
the panel function J.
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Q, Q , Q Q _ a panel, Q+ principal image of a [K.5]
panel, Q- = reflected image of a panel

A

r panel type indicator, r - sign (n.n). [5.2]
(+I, sublncllned; -I, superlncllned)

R gas constant, joule/(kg OK) [2.1]

R, R(p,_) compressible distance between p and q [5.2]

R control point recession vector [G]

Ro compressible distance from the control [4.2.2.2]
point to the panel center

RI, R2 reflection matrices for the first and [K.2]
second planes of symmetry

Ri R+ R- reflection matrices associated with [K.3]

various images when one plane of symmetry

is present

Rij, R++, R+-, etc. reflection matrices associated [K.4]

with various images when two planes of

symmetry are present

R Q - P, vector from field point to source

point

AR AR = R - R = change in R along an edge [J.3]

R(£) radius of a panel £ [J.3]

Rx(a), Ry(m), Rz(a) rotation matrices of angle _ about the [E.3]
x, y and z axes

Rk(V) value of R on edge Ek as a function of [J.4]
v, the edge variable

s flow type indicator, slgn(1 - M_) [3.1]

si,sI global basis function for the source [3.3]
distribution

sk = ± I, sign of edge orientation relative [B.3]
to an abutment's orientation

s, s first local coordinate before (s) and [J.5]

after (s) the application of a hyper-
bolic skew
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s a point on a network edge [F.3]

vector pointing into the network interior [F.5.2]

ds differential element of arclength [I.4]

s,s* first isoparametric coordinate on a hyper- [I.3]
bolic paraboloidal panel

S the singularity surface across which _ and [3.2]

Sn are allowed to jump

_S boundary of S [B.3]

SI the component of S lying in the first [K.3]
plane of symmetry

S2 the component of S lying in the second [K.4]
plane of symmetry

S_, i components of S lying in the first or [K.4]
S , S , S2 second plane of symmetry (I or 2) and

in the principal (+) or reflected (-)

image

+ . -- i

S-, S , S , S components of S lying away from the [K.3]

symmetry plane and in the principal
- (+) or reflected (-) image

Sij, S++, S+-, etc. components of S lying away from [K.4]
either symmetry plane and in the various

components of space C++, , C_-, etc.

dSo element of surface area in reference [E.3]
coordinates, Xo

dS" element of surface area in local coordi- [E.3]

nates, X'

S a sphere surrounding an abutment inter- [F.5]

section point, PAI
A

S a skew symmetric matrix used in construct- [I.3]

ing [PsPLD].

[S] a hyperbolic skew used to build the [E]
reference to local coordinate trans-

formation matrix

[S] Full source panel influence matrix, with- [J.6.4.3]

out origin shift. [So] (of. [J.6.6])
includes the origin shift.
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SR reference surface area [O.I]

SpS , SpD source and doubletspline vectors [I.I]

[SPSPL_], source and doublet subpanel spline [5.5]

[SPSPL_] matrices for i-th subpanel

[SPINTS], source and doublet panel influence [J.1]

[SPINT D] integrals

t time, seconds [2.1]

t edge parameter [F.6]

t vector tangent to surface [E.I]

t two-dimensional edge tangent [J.4, J.5]

unit vector tangent to edge [I.4]

t_, t componentsof _ , the two dimensionaledge [J.5]
n tangent

t, t second local coordinateon a panel, before (t) [J.5]
and after (t) the applicationof a hyperbolic
skew

tA, tD coefficientsof the averageand differenceof [5.6]
the velocity in the standard boundary condition

T temperature,degreesKelvin [2.1]

Ti edge segment [F.3]

T a tree (graph theory concept) [F.5]

Tk subpanel k of a standard panel [I.2]

[T] matrix used for cubic interpolation in the [I.3.2]
construction of [HPSPL D]

TS, TD source and doublet PIC origin shift transfor- [J.6.6]
mations

T a 2x2x2 tensor of rank 3 [J.6.4.2]

the rearrangement of the entries of the [J.6.4.2]
_ 2x2x2 tensor T as a 4-vector
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Ti, j the transformation associated with stage [L.2]
_ (i,j) of the out-of-corefactorization

(u,v,w) componentsof perturbationvelocity in a [2.3]
coordinatesystem whose x-axis is aligned
with the freestreamor uniformonset flow

Uo unit vector perpendicularto the panel normal [5.2]
normal and the compressibilityaxis

U, [U] an upper triangularmatrix [5.8, L.2]

U , U uniformonset flow. 0 refers to the [L.I],_ _,_
uniformonset flow for solutionindex a

.U , total onset flow. _lj refers to solution [L.I]
O O,_ O,_

index _ and symmetry image (i,j)

A0, _0 ij incremental onset flow (user specified). [L.I]

AUiJ-_ refers to solution index a and

symmetry image (i,J)

U a generic functionrepresentedvia Green's [3.2]
third identity

v, v. v is the perturbation velocity vector [2.3, K.3]
1

having components vi

Variant: _ij = velocity in symmetry
image (i,j)

A A , •

v, v13, _SS etc. Various symmetrizedvelocityfields [K.3, K.43
A. AS
v =v _ symmetricpart of v
A A A

v =v = antisymmetriepart of v
^++ _SS .
v =v = v, symmetrizedw.r.t, l-st and

2nd planes of symmetry
.+- ^SA
v =v = symmetricw.r.t, l-st P0S

antisymmetric w.r.t 2-nd POS
A____AA
V _V

A__+ _AS
V =V

vS, vD source inducedcomponentof velocity [B.3, J.I.1]

(_S) and doublet induced component of

velocity (_D)
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regular part of _D ' excluding the linev D [B.3]
vortex part

v local edge coordinate [J.4, J.5]
A

_o unit vector perpendicular to u and n, [5.2]o

used to construct the reference to local

coordinate transformation

basis vectors used to define a local [I.I]

v_, vn, v coordinate system for spline vector
computation

vij matrix entries of an elementary column [L.2]
transformation matrix V

V a region of space [3.2]

V, Vi total velocity, components of total velocity [2.1]

V freestream velocity [3.1, 5.4]

V (p,s) source velocity functional giving the source [K.4]
0

velocity at p induced by the source distri-

bution s(q)

V (p,m) doublet velocity functional giving the [K.4]
u

doublet velocity at p induced by the

doublet distribution m(_)

+ ± +

_n _Q- velocity functionals associated with the [5.7, K.5]
' ' _ principal (Q+) and reflected (Q-) image

of a panel

. _Q _Q _Q± _Q± [5.7, K.3 K.5]
V1 _I VI,o Vl, 1,0, 1,_,O ,_ _,

velocity functionals associated with panels

lying in the first plane of symmetry that

may be reflected in a second plane of

symmetry (Q±)

_2,o _2,_ _Q±2,o_Q± [5.7, K.4, K.5]
2'_veloclty functionals associated with panels

lying in the second plane of symmetry

V total source velocity functional (includes [K.5]o
integrals over the full principal image of S)
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V total doubletvelocity functional [K.5]

_(_(t)) total velocityat P(t) [5.9.5,P.2]

Vx total velocityin the compressibilityaxis [5.9.3]
direction

V tota! correctedvelocity in the compressibility [5.9.3]
x

axis direction

V An elementary transformation used in the [L.2]
factorization of the AIC matrix

Vc critical speed [N.2.4.2]

[VIC], [VIC i] [VIC ij] [5.7, K.5]

A velocity influence coefficient matrix

[VIC], and various symmetrizations of the

velocity influence coefficients

V-[_, _J the velocity influence 3-vector correspond- [K.5]
ing to symmetrized singularity parameter

^i _I_I or ij

w, w. w is the perturbation mass flux vector having [5.4]l
- , components wi

Wu, WL, WA, wD upper, lower, average and difference compo- [5.4, H.1]
nents of perturbation mass flux

wi a weighting factor used in a least squares [I.5]
fitting procedure

W, W W is the total llnearized mass flux vector [5.4]
i

having components Wi

Wx x-component of total mass flux W [5.9.3]

W(P(t)) total linearized mass flux evaluated at [ 5.9.5, P.2]

P(t)

Wl, W2, W3 basis vectors for skew coordinate trans- [J.2]formation calculation

far field vector panel integral [J.9]
c:

t..WIC_I normal mass flux influence coefficient row
vector

x positionvector in R3- [2.1]
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xi, xi, x2, x3 Cartesian coordinates of _ in R3 [2.1] r_

(Xo Yo Zo) reference coordinates [5.2]

(x,y,z) compressibility axis coordinates [2.3]

(x,y,z) Prandtl-Glauert scaled coordinates [3.1]

(x',y',z °) local coordinates; several local coordinate [5.2]
systems are used in appendices I and J

xn edge normal distance [5.9.4, O.3]

the x coordinate after application of a [J.5]

hyperbolic skew

X° the reference coordinate system [E.O]

X the compressibility axis coordinate system [E.O]

the Prandtl-Glauert scaled coordinate system [E.O]

X" a panel's local coordinate system [E.O]

[X] a matrix to be computed by solving a system of [5.8]

linear equations

Xk' Yk x and y arguments for the phase function [J.8]
(ph(x,y)), used in the calculation of the panel

function components Jk

y the y coordinate after application of a hyper- [J.5]
bolie skew

Yo' y' y' y see, respectively, xo, x, _, x [2.3, 3.1, 5.2]

[Y] intermediate matrix in the process of solving [5.8]
the AIC equation

Yk see Xk [J.8]

Zo, z, _, z" see, respectively, xo, x, _, x" [2.3, 3.1, 5.2]

Z argument for Sq, the edge integral primitive [J.8]
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Greek Symbols

a angle of attack, radians [H.2]

a compressibility axis angle of attack, radians [5.2, E.O]c

a downstream parameter used in abutment inter- [F.5]

section processing

a solution index [L.O, L.I]

8 compressibility scale factor, I I - M2 I I/2 [3.1]

8 angle of sideslip, radians [H.2]

8c compressibility axis angle of sideslip, [5.2, E.O]
radians

8n edge normal compressibility factor [5.9.4, O.3]

8, 8ij generic right hand side term (B) , right [L.O, L.I]
a hand side term associated with solution

index a, symmetry image (i,j)

Y ratio of specific heats of a gas [2.4]

Y surface vorticity [N.5]

uy4j, uySj row vectors associated with spline con- [I.I.5]
structlon

F rotation matrix specified by the user [O.4]

r rotation matrix for the reference to com- [5.2]

c pressibility coordinate transformation

6 quantity used in the calculation of recession [G.O]
vectors

6 6ij Kronecker deltas
ij'

Ai i-th subpanel, i=I(I)8 [5.6]

E user defined tolerance distance for edge [F.3]

matching

€ small quantity whose higher powers [5.6.3 et. al.]

may be neglected

€lj k the permutation symbol [B.3]
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third coordinate of a source point, reference [5.2]
coordinates

€, _" third local coordinate of a source point [5.2]

q second coordinate of a source point, reference [5.2]
coordinates

n, q" second local coordinate of a source point [5.2]

Ank change in q along edge k [I.4]

8 generic quantity to be matched by a [M.D., Sec. 5]

matching condition of the form _ sk 8k = 0 ,

(B = o, _ or t.Av)

BIC influence coefficients associated with [M.D., Sec. 5]

a matched quantity e

_, _ 47 for subsonic flow, 27 for supersonic flow [5.2]

_, _ quantity associated with a quadratic function [I.2]
defined on an edge.

Alternatives: _58' _85' _AB

Ai , AI, _ global singularity parameters (A_, II) [3.3, 5.7.4] __
and the vector containing them (I)

Ii, I global singularity parameters associated with [K, L]
symmetry image (i), or (i,j)

+ - S _A SS etc.
Alternatives: AI' _I' _I' I' _I

_i _ij, {li}, {lij} Vectors of global singularity parameters [K, L]
associated with various symmetry images

_, _j, _i, _ij Symmetrized global singularity parameters [K, L]
i ij _i _ij

and vectors corresponding to II, _I ' '

_iJ {Aij} _ij for solution index a [L]
(% ' (_

Iij { J} 113 for solution index a (symmetrized singularity [L]
a ' vectors)

_I' 12' _3' _4 _ for the four images of the configuration. [M]_++ _-+ _-- _+-

Equivalent to I , _ , _ , _ , respectively
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S .. global source parameters defining a panel's [5.5.1]
_i ' I=I, • ks

-- S

source distribution. Each Xi corresponds to

a column of BS

AiD , i=I, ... kD global doublet parameters defining a panel's [5.5.1]
D

doublet distribution. Each A corresponds to
i

a column of BD

[A] matrix containing singularity parameter vectors [5.7.4]

tO be determined by solving an AIC equation

A sweep angle for the leading edge of a wing [O.3]

_, _(q) doublet strength, doublet distribution function [3.2]

[5.5]
_o,_,_n,_'_n'_nn'_'_n'_nn'_nnn

polynomial coefficients of _ in local coordinates

i " "
, zJ the function _ restricted to various symmetry [K.3, K.4]

images (i), (i,j)
.

Variants: _ , _ , etc.

-i -ij i ""
, u the functions _ , zj defined with respect [K.3, K,4]

to points in the principal image

^A -iA ~Aj
_I' _2 ' _I the function _ restricted to panels lying [K.3, K.4]

in the first or second plane of symmetry

_I' _2' "'" _9 the value of _ at nine canonical points on the [5.5]
panel

_(_', n') doublet distribution function referred to local [5.5]
coordinates

u the two vector: u [J.6]

_(s,t) the doublet distribution on a hyperbolic [I.3.2]

parabololdal panel (Isoparametric element)
defined in terms of the coordinates of

parameter space

coefficients of (_u/_x), (_u/_y) used for the [J.9]

_x,a' _y,a far field PIC computation

^i ^ij
, _ symmetrized doublet distributions [K.3, K.4]

refers to the value of _ at the mid- [I.2]
_I,5' _5,6' etc. _1,5

point of the line connecting points I and

5 on the panel

8.0-19



__, Uo, _+ value of _ at the beginning, middle and end [J.10]
of some panel edge

A

panel conormal, _ = B n (See n) [5.2]

v edge conormal, u = G n [J.6]

_, _ first local coordinate of a source point [5.2]

first coordinate of a source point, reference [5.2]
coordinates

A& k the change in the value of _ along edge k [I.4]

the ratio of the circumference to the diameter [3.2]
of a circle

0 density of the fluid, kg/m 3 [2.1]

p_ density of fluid in freestream, kg/m 3 [5.9]

p hyperbolic or circular radius of hyperbolic [J.4, J.5]

or circular cylindrical coordinates

P' (PI' P2) vector from control point projection to [J.4, J.5]
source point, local coordinates

Pi' Pi values of p at beginning and end of edge i [J.4, J.5] o--

o, o(q) source strength, source distribution function [3.2]

oo, a_, an, o_, a_n, Onn [5.5]
polynomials coefficients of c in local coordinates

i ij
c , o the function c restricted to various [K.3, K.4]

symmetry images (i), (i,J)
.

Variants: a , c , etc.

-i -ij i ij
c , c the functions c , c defined with respect [K.3, K.4]

to points in the principal image

S

_2iS - Sj the function c restricted to panels lying [K.3, K.4]a I , , c2
in the first or second plane of symmetry

01, c2, c3, c4, o9 the value of c at five canonical points [5.5]
on a panel

c(_',n') .source distribution function referred to local [5.5]
coordinates
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- 0 the two-vector: [J.6]

_i _ij symmetrized source distributions [K.3, K.4]

£ summation symbol [2.1]

_' £m panel (£), mean panel (_m) [I.4]

an
_i surfaces involved in abutment [B.3]

[£] 2x2 matrix, P_ :_I giving [J.6]
L°_n nnj

quadratic variation of o(_,n)

stress tensor, newtons/m 2 [2.1]Tjl

T parameter for a llne, _ _ [O,I] [1.4, K.I]

edge normalization parameter. In some [J.7, J.10]
A

contexts, _ = I [ t , t ] I I/2 , in
. _ I/2

others T : [ < t , t > [

_k indicator for sgn (a k) [J.8]

€, ¢(p) perturbation potential function [2.3]

€1(_), ¢ij(_) € restricted to symmetry image (i) or (i,j)
+ -- +. +-

Variants: € , € , € , € , etc.

_z(_), _ij(p) symmetrized perturbation potential [K.3, K.4]
functions.

^. _++

Variants: ;S _A, _- ;SS € etc, , , , •

CU' eL' CA' CD upper surface, lower surface, average and [5.4]
difference values of €

€ circular (or hyperbolic) phase [j.4, J.5]

€ ' Ck value of circular (or hyperbolic) phase [J.4, J.5]
at the beginning and end of a sub panel

edge segment

Ca' UCaj set of basis functions of local variables [J.9]
(_,n) defined on a panel.

LCaj = kl, 6, q, 62/2, ... n3/6j

Cq, Cq(Z) a form of the edge integral independent [J.8]
of q, the edge type
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€ total potential [2.3]

€ potential for onset flow [2.3]

@0(_,s ) source potential functional giving the source [K.3]

potential at p induced by the source distri-

bution s(q)

(p,m) doublet potential functional giving the doublet [K.3]

potential at p induced by the doublet distri-

bution m(_)

@Q± @_± cQ± potential functionals associated with the [5.7, K.5]
' ' _ principal (Q+) and reflected (Q-) image

of a panel

Q @? Q± Q± [5.7, K.3, K.5]@1,a @I,_ @I,_ ,a @1,a €I,u

potential functionals associated with networks

and panels lying in the first plane of

symmetry that may be reflected in a

second plane of symmetry

, @Q Q Q± Q±
@2,u' [5.7, K.4, K.5]¢2,c 2,c' ¢2,U' @2,c ' ¢2,u

potentia! functionals associated with

networks and panels lying in the

second plane of symmetry

€ total source potential functional (includes [K.5]

o integrals over the full principa! image of S)

@ total doublet potential functional [K.5]

L@ICJ L¢IC_ L¢IC_ j [5.7, K.5]
a potential influence coefficient row vector
( ¢IC ) and the various symmetry conditions
of this

¢ICI, @IC_, @IC j potential influence coefficients associated [K.5]
_i _tj

with singularity parameters hI, hI, I

× hyperbolic angle [J.5]

. _ ._I12
X the function R(p,q) - [p-q, p-qJ [J.6]

the fundamental kernel function, _ = I/R [J.6]

far field approximate integral associated [J.9]
@P

jj
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_, m vectors describing strength and direction [H.3 L I]
of the rotational onset flows

_-' _o' m+ integrals associated with line vortex [J.10]
influence coefficient generation
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Subscripts

A average of upper and lower

e denotes compressibility or refers to the compressibility
axis

D difference of upper and lower (upper minus lower)

D refers to quantities associated with _, the doublet
distribution

i,j,k,l indices of vectors in R3, e.g., vi

i index of a global singularity parameter, Ai

I index of a global singularity parameter, e.g., _I

KP corresponding to known parameters

L lower surface

NU non-updatable

S refers to quantities associated with 0, the source
distribution

U upper surface

U updatable

UP corresponding to unknown parameters

v refers to constant volume quantities (cv)

x,y,z,_,n,_ denotes partial differentiation, e.g., Ux, Uy, Uz

a solution index

_,B,Y index subscripts

0 denotes reference coordinates

1,2,3,4 denotes images of real configuration (first image = input)

I refers to first plane of symmetry

2 refers to a second order quantity, e.g., Cp, 2

2 refers to second plane of symmetry

refers to quantities associated with the far field
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Superscripts

A denotes antisymmetrio part, e.g, _A

D doublet, quantity pertaining to doublet strength

(1) pertaining to i-th symmetrized matrix or vector,

i = 1,2,3,4 (equivalent to SS, AS, AA, SA respectively)

i,j,k,l superscripts in the index set {-1,1}, e.g., Hij, Hkl

I input, that is, defined by the user

S source, quantity pertaining to source strength

S denotes symmetric part, e.g., _S

T matrix transpose

-T inverse of transpose (same as transpose of inverse)

- denotes Prandtl Glauert scaled coordinate system, e.g., X

. denotes a vector, e.g., v

• denotes local coordinate system, e.g., X"

• image value, e.g., p

* finite part of integral

- denotes vector modified by application of metric matrix

- Sj
- denotes a partially symmetrized quantity, e.g., oI

A denotesa fully symmetrizedquantity

+ alias for +I in the index set {+I,-I};also denotes
symmetric part or principal image

- alias for -I in the index set {+I,-I}; also denotes

antisymmetric part or reflected image
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Other Symbols

a denotes partial differentiation

boundary of a region

V, V gradient operator

compressible gradient operator, see section B.I

V2 .= V.V = Laplace operator

V gradient with respect to location of (control point) P
P

?Q gradient with respect to location of (integration point) Q

V2 gradient operator in two dimensions

Vx curl operator

( , ) Euclidean inner product

{ } denotes a column vector or a three-index tensor

{ , } dual compressible inner product, see equation (E.2.8)

L J denotes a row vector

[ ] denotes a matrix

[ ]ij (i,j) entry of the matrix

[ , ] compressible inner product, see equation (E.2.4)

[ , ]p positive definite compressible inner produot, see equation
(J.2.7)

< , > pseudo-inner product, see equation (J.6.44)

U union of sets of points

N intersection of sets of points

line integral

;; surface integral

<< very much less than
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i qualifiersymbol,read "such that." For example,
the expression { x I f(x) = O} is read,
"the set of values x such that f(x) = O."

refers to far field quantities,e.g., €

x vector cross productoperation

: denotescontractionof two matrices,defined by equation
(J.6.37)

: qualifiersymbols,read "such that." See remarks
concerning" I"

b.c. boundarycondition

c.p. controlpoint

s.p. singularityparameter

A used as a prefix, the jump in a quantityacross S

(e.g.,Av = Vu-VL)

det determinant

approximately equal to
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9.0 PANAIR Engineering Glossary

This glossarydefinesthe most commonly used engineeringterms in the PAN AIR
Theory and User's Documents. In general, all specializedterms (that is,
terms whose meaning in the contextof PAN AIR is differentfrom their meaning
in common usage) are included,as are standardengineeringterms which are
used in the PAN AIR engineeringdocuments. Terms which relate to the com-
puting aspectsof PAN AIR are definedin a separateglossary,the PAN AIR
computingglossary,which is containedin the maintenancedocument.

The format of the glossary is the following: Each term is followedby a list
of principalreferencesand a definition. The referencesgive the section
numberwhere the item is discussed,precededby a T for Theory Document,a U
for User's Document,and an S for SummaryDocument.
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o

a ITEM DEFINITION REFERENCES

Abutment A curvewheretwo or more networkedges (exact1_or T-5.3,U-B.3.5
approximately)meet.

Abutment,emptyspace An abutmentinvolvingonly one networkedge,which is T-F.2
thus a freeedge.

Abutmentintersection A pointwhereseveralabutmentsmeet. T-5.3,T-F.5

Abutments,overlapping Two distinctuser-definedabutmentswhich involvethe same Programprintout
portionof somenetworkedge. only

Abutments,pairwise Abutmentsinvolvingpairsof networkedges• They are T-F.2
generatedby the programwheneverthe distancebetween
networkedgesis lessthan the tolerancedistance•

Abutmentparameterization The assignmentof a real numberbetweenzeroand one to T-F.6
each panelcorneror paneledge midpointin an abutment.
Zero is assignedto the startingpoint,one to the end point•

Abutment,programgenerated An abutmentgeneratedby the programratherthan definedby T-F.2
the user,involvingany numberof networkedges,computed
by analyzingpairwiseabutments.

Abutmentsearch,automatic The processby whichthe programdeterminesthe set of a11 T-F.3
pairwiseabutments.

Abutments,user-defined Any abutmentwhichthe programuser identifies• T-F.2

Angleof attack, a The angleof coordinaterotationaboutthe y-axis;this T-5.2,U-B.2.2
appearsin the coordinatetransformation(rotation)matrices•

Angleof sideslip, B The angleof coordinaterotationaboutthe modifiedz-axis;this T-5.2,U-B.2.2
appearsin coordinatetransformation(rotation)matrices•

Note: The effectof the orientationof the flow due to the
specificationof an angleof attacka and an angleof
sideslipB correspondsto effectof rotatingthe configuration
throughthe sideslipangleB, followedby a rotationthrough
the angleof attacka.

) ) )



ITEM DEFINITION REFERENCES

Area, reference A user-definedscalingfactorfor the force andmoment T-O.1,U-B.4.3
coefficientcomputation.

Axis system A coordinatesystemin whichthe forceand momentcoefficients U-2.1.7,U-B.2.1
are expressed.

Axis system,body An arbitraryuser-definedcoordinatesystemspecifiedby U-2.1.7,U-B.2.1
meansof Euler angles.

Axis system,reference The referencecoordinatesystem(thatsystemin whichuser U-2.1.7,U-B.2.1
definesthe configurationgeometry).

Axis system,stability The coordinatesystemconventionallyused by stabilityand control U-2.1.7,U-B.2.1
engineers.

Axis system,wind The coordinatesystemwhosex-axisis alignedwith uniform U-2.1.7,U-B.2.1
onsetflow.

m
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i ITEM DEFINITION REFERENCES

Basisfunction A function(of surfacecoordinates)whichexpressesthe T-3.3,T-4.2.1
distributiondue to a unit valueof a singlesingularity
parameter.

Boundarycondition A linearequationimposedat pointson the configuration. T-2.5,T-3.2,
Thisequationspecifiessomecombinationof the velocity T-3.3,T-4.2,
potentialand its derivatives. T-5.4,T-H

Boundarysurface A surface,definedby the user,on whichboundaryconditions U-A.3
are imposed.

Boundarycondition,aerodynamic The specificformof boundaryconditionsfor the aerodynamic T-K.3
problemin PAN AIR.

Boundaryconditionclasses The resultof groupingthe boundaryconditionsintofive U-B.3.1
separatecategories.

Boundarycondition,closure An equationspecifyingthe totalnormalmass flux passing U-B.3.5,T-5.4,
througha surface. T-5.7.1,T-K.4

Boundaryconditioncoefficient, The averageof upperand lowercoefficients. T-5.4,U-B.3.1
average,( )A

Boundaryconditioncoefficient, The differenceof upperand lowercoefficients. T-5.4,U-B.3.1
difference,( )D

Boundaryconditioncoefficients,Coefficientsin the boundaryconditionequationscorresponding T-5.4,U-B.3.1
upper (lower),( )U, ( )L to the upper (lower)sideof the configuration.

Boundarycondition,doublet A boundaryconditionspecifyingcontinuityof doubletstrength T-5.3,T-5.7.1,
(or edge)matching acrossnetworkedges. T-F

Boundaryconditionhierarchy An orderingof all admissibleboundaryconditionsdefinedby T-H.2.5
the program. When two user-inputboundaryconditionsare
suppliedand only one needs to be imposed,the programimposes
that boundaryconditionwhich is higheron the hierarchy.



ITEM DEFINITION REFERENCES

Boundarycondition, non-standard Either a closure or a doublet matching boundary condition. T-5.7.1, U-B.3.5

Boundarycondition, right-hand- The specified value of the linear combination of the potential T-5.7.4
side and its derivatives given by the boundary condition.

Boundaryvalue problem The combination of a partial differential (or integral) equation T-3.2, U-A.3
and boundary condition equations on a surface.

Boundary value problem, analysis A boundary value problem with boundary conditions specifying U-3.3, U-B.3.2
the normal componentof the velocity or mass flux.

Boundary value problem, design A boundary value problem in which the boundary conditions specify T-C, U-B.3.3
the values of a tangential componentof the velocity on a surface.

Boundary value problem, A boundary value problem which does not have a unique solution, T-5.4, T-B.1,
ill-posed or has no solution. U-A.3

Boundaryvalue problem, A boundary value problem which has a unique solution. U-A.3, T-3.2,
well-posed T-5.4, T-B.1

tO
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o
i ITEM DEFINITION REFERENCES

Columnindex An integerwhich,in conjunctionwith the row index,describes U-B.I.1,T-5.1
the indiciallocationof a panelor a panelcornerpoint.
When panelcornerpointsare definedby a user, all the points
whose columnindicesare identicalare inputconsecutively.

Compressibilitydirection The directionof freestreamflow in the Prandt1-Glauertequation. T-5.2,U-B.2.1
It is definedby the inputterms"CALPHA"and "CBETA".

Compressibilityvector A unit vectorin the compressibilitydirection. T-5.2

Configuration The surface(includingpossiblewakes)on whichflow boundary T-5.1
conditionsare appliedor the potentialor velocityis
discontinuous.

Configuration,imagepart That part of a symmetricconfigurationwhich is not input T-5.7.2,U-2.1.2
by the user.

Configurationmodeling The processof representingan object,the flow fieldabout U-3.1,U-B.1,
which is of physicalinterest,as a collectionof networks T-B.2,S-2.2
of panelson whichboundaryconditionsare applied.

Configurationmodeling, The representationof a physicalsurfacewith networksof U-2.1.4,S-3.1.4
exact panelsdescribingthe exactphysicallocationof the surface.

Configurationmodeling, The representationof thicknessor deflectionof a physical U-2.1.4,S-3.1.4
linearized surfaceby meansof a mean surfacepanelingcombinedwith the

specificationof boundaryconditionswhichsimulatethe
perturbationof the true surfacegeometryfrom the paneled
surface.

Configuration,realpart The user-defined(thatis, input)part of a symmetricconfiguration.T-5.7.2,U-2.1.2

Configurationsymmetry Existenceof one or two (perpendicular)planesthroughwhich the T-5.7.2,U-2.1.2,
real part of configurationmay be reflectedto obtainthe complete U-B.2.3,S-3.1.2
configuration.



ITEM DEFINITION REFERENCES

Configuration,thick A configurationmodel in whichone surfaceof a networkis exposed U-2.1.2,
to a flowfield of interest,whilethe othersurfaceis exposed T-5.4.2.3,
to a flowfield of no physicalinterest. S-3.1.3

Configuration,thin A configurationmodel in whichboth sidesof a networkare exposed U-2.1.2,
to the flow fieldof interest. An exan_learisesfrom the modeling T-5.4.2.2
of a wing as a singlepaneledsurface. S-3.1.3

Conormal vector,_ The vectorobtainedby a Mach number- dependenttransformation T-5.2,T-E.2
of a unit surfacenormalvector. In compressibilitycoordinates,

- (sB2 nx, ny, nz).

Constraintmatrix The right-hand-sideterm in a multiplesystemof boundary T-5.7.4,T-L
conditionequations,that is, a systemof equationswith more than
one right-hand-sidevector.

Constraintnumber The right-hand-sideterm of a singleboundaryconditionequation. T-3.2

Constraintvector The right-hand-sideterm in a systemof boundarycondition T-3.3,T-5.7.2
equationswith only one right-hand-sidevector.

Continuityof doubletstrength The conditionthat a certainalternatingsum of doubletstrengths T-F
alongan abutmentis zero. This reducesto equalityof doublet
strengthsif two networkedgesare involved. It permitsthe
eliminationof the linevortexterm from the integralequation.

Continuityequation The equationexpressingconservationof mass in a smallfluid T-2.1
element.

Controlpoints The pointson a configurationsurfaceat whichup to two boundary T-3.3,T-5.4,
conditionsare applied. T-G

Controlpoint,center A controlpointwhose locationis recededslightlyfrom a T-G,U-B.3.4
panelcenterpoint.

Controlpoint,corner A controlpointwhose locationis recededslightlyfrom a T-G, U-B.3.4
panelcornerpoint at the end of an abutment.

t_
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Controlpoint,edge A controlpointwhose locationis recededslightlyfrom a T-G, U-B.3.4
paneledgemidpointon a networkedge.

Controlpoints,extra Controlpointsintroducedby the subdivisionof a network T-5.4,T-G
edge intomore than one abutment.

Controlpointrecessionvector A vectorwhichdefinesthe differencebetweenthe locationof T-G
the controlpointand the locationof the pointfrom which
it is receded.

Compressiblegradientoperator, The gradientoperatorwhosecomponentin the freestream T-5.2
directionhas beenmultipliedby (1-M2),whereM is the
freestreamMach number.

Coordinatesystem, The coordinatesystemin whichthe preferreddirectionof T-5.2,U-B.2.1
compressibility,(x,y,z) the Prandt1-Glauertequationis the x-direction.

Coordinatesystem,local, A generallynon-orthogonalcoordinatesystemused to compute T-5.2
(x',y', z') surfaceintegralsfor eachsubpanel,and generallydistinct

for each subpane1.

Coordinatesystem,reference, An arbitraryrectangularCartesiancoordinatesystemin which T-5.2,U-B.2.1
(xo,Yo, Zo) the programuserdefinesthe configurationgeometry.

Coordinatesystem,scaled, The non-orthogonalcoordinatesystemin which the Prandtl- T-3.1
(x,y,z) Glauertequationtransformsto eitherLaplace'sequation

or the wave equation.

Coordinatetransformation A lineartransformation,definedby a matrix,which transforms T-E, U-B.2.1
pointcoordinatesfrom one systemto another.

Corrections,velocity Optionalsemi-empiricalcorrectionsappliedto the U-B.4.1,T-5.9.3,
computedvelocity. T-N.3

Criticalspeed The speedof soundat a particularpoint in the flow field. U-B.4.2,
T-N.2.4.2

) ) )



J 1

ITEM DEFINITION REFERENCES

Datacheck A run of PAN AIR in which the validityof the configuration U-2.3.1
geometryand boundaryconditionsis checkedwithouta potential
flow solutionbeing attempted.

Differentiatedinfluence Matriceswhichdefinethe derivativewith respectto panel T-C.3
coefficients or controlpoint locationof the potentialand velocity

inducedby a panelon a controlpoint. (Notcurrentlyused in
PAN AIR.)

Dirichletproblem A boundaryvalueproblemconsistingof the specification U-A.3
of potentialon the boundaryof a regionof finitevolume•

Discretization A numericaln_thodfor solvingan integralequationby T-2.5,T-3.3
replacingcontinuousquantitieswith discreteones.

Displacementmodeling The representationof viscouseffectssuchas a boundarylayer U-2•1.4
by a perturbationof the boundaryconditions(throughthe
definitionof a specifiedflow)or the surfacepaneling.

Designcapability The abilityto specifya desiredpressuredistributionon a U-2.2,T-C,
surfacewhose shape is only knownapproximately,and obtaina S-I.0
reloftedsurfacewhichmore nearlyyieldsthe desiredpressure
distribution.

Design,iterative A multi-stepdesignprocedurein whichthe relofting T-C.3
algorithmmakes use of "differentiatedinfluencecoefficients".

Design,linearized A one-stepdesignprocedurein whicha firstorder T-C.I
approximationto the desiredsurfaceis sufficient.

Design,sequential A multi-stepdesignprocedurein whichthe relofting T-C.2
algorithmmakes use of the normalmass fluxwhich the program
computeson the paneledsurface•

Domainof dependence The spatialdomain in whichdisturbancesare felt at a T-5.2
particularpoint P. It consistsof all of space in subsonic
flow and the upstreamMach cone from P in supersonicflow.

!
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Domainof influence The domainin which disturbancesat a pointP are felt. It T-Figure5.4
consistsof allof space in subsonicflow,and the downstream
Mach cone fromP in supersonicflow.

Doubletdistribution One of the twounknownquantitiesin the fundamentalintegral T-3.2,U-A.2
equation.

Doubletmatching See boundarycondition,doubletmatching. U-B.3.5

Doubletparameters Unknownquantitieson which the doubletdistributionon T-5.5
the configurationdepends.

Doubletstrength The valueof the doubletdistributionat a particular T-3.1,U-A.2
point. It isequalto the size of the jump in velocity
potentialacrossthe surface.

Drag The x-componentof the forceon the configurationin the wind U-2.1.7
axissystem. PAN AIR computesdrag on an impermeablesurface
by integratingthe pressuredistributionon the surface.
The dragcomputedby PAN AIR does not includeviscouseffects.

Dual vector A real-valuedlinearfunctionon a vectorspace. Dual T-E.1
vectorstransformaccordingto equation(E.l.Se)of the
TheoryDocument.Typicaldual vectorsare the gradient
operatorand the surfacenormal. A dualvectoris also
knownas a covariantvector.

Dualvector,almost A vectortransformingaccordingto equation(E.I.12)of the T-E.I
TheoryDocument.

) )
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Edge conormal A vectorlyingin the planeof the panelor subpanelwhose T-J.5.1
"pseudo-innerproduct"with the edge tangentis zero.

Edge function One of the two basiccomponents(alongwith the panel T-J.7
function)of the entriesof a PIC matrix. It is definedby
an integralalonga panelor subpaneledge.

Edgeforcecomputation A specialcomputationof forceson the edgeof a thin surface, T-5.9.4,T-O.3,
where the smallperturbationassumptionsmay not be valid. U-B.4.3

Edgematching The problemof imposingappropriateconditionson singularity T-2.2,U-B.3.5
strengthvariationacrossnetworkedges.

Edge,nearlysonic A subpanelor paneledge for which the pseudo-innerproduct T-J.5.1
of the edge tangentwith itselfis approximatelyzero. Such
an edge can onlyoccur in supersonicflow,and is inclinedto
the flow at approximatelythe sameangleas a Mach cone.

Edge,network That collectionof paneledges lyingon one extremeof a T-D.1,U-B.I.1
networkand thus not sharedby two adjoiningpanels.

Edge normal A vectorlyingin the planeof the panelor subpaneland T-J.5.1
perpendicularto the edge.

Edge,panel A linesegmentconnectingtwo panelcornerpoints. T-D.I

Edge,subsonic A subpanelor paneledge for which the "pseudo-innerproduct" T-J.5.1
of the edge tangentwith itselfis positive.

Edge, supersonic A subpanelor paneledge for which the pseudo-innerproduct T-J.5.1
of the edge tangentwith itselfis negative. Such an edge
can only occur in supersonicflow,and is inclinedto the
flow at a greateranglethan the Mach cone.

Edge tangent A unit vectorparallelto a panelor subpaneledge. T-J.5.1

I
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Energyequation An equationexpressingconservationof energyin a sma]1fluid T-2.1
element.

Entrainment The phenomenonin which an effluxfrom a propulsionsource U-2.1.4
absorbsfluidfromthe surroundingflow as the distancefrom
the configurationincreases.

Equationof state An equationrelatingthe pressure,density,and temperature T-2.1
of a fluid.

Euler'sequation A differentialequationrelatingdensity,velocity,and pressure T-2.2
in a fluid (momentumequationfor inviscidfluidwithoutbody
forces).

Existenceof a solution The problemof determiningwhethera boundaryvalueproblemhas T-B.1,U-A.3
at ]eastone solution.

Extensionmatrix,doublet A matrixwhichgives the valuesof doubletstrengthat the T-I.2.2.4
cornersof a subpaneland the "kappaquantities"for its
edges in termsof the paneldoubletparameters.

Extensionmatrix,source A matrixwhichgivesthe valuesof sourcestrengthat the T-I.2.1.3
cornersof a subpanelin termsof panel sourceparameters.

) ) )
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Far fieldmethod An approximationfor the computationof pane] influencebasedupon T-4.2.2,T-5.6,
the distanceof the controlpointfrom the panelbeingmuch greater T-J.9
than distanceswithinpanel.

Far fieldmoment,subpanel A matrixor tensorwhichdescribesthe dependenceof a T-I.4.2.1
particularintegralover a panelon the panel sourceor doublet
parameters.

Far fieldmoment,basic Scalarsgivingthe valuesof certainintegralsof polynomial T-I.4.3
functionsover a subpanel.

Far fieldmoment,subpanel A matrixor tensorwhichdescribesthe dependenceof the same T-I.4.2.1
integralover a subpanelon the panelsingularityparameters.

Flow symmetry The existenceof one or two (orthogonal)planesof symmetry T-5.7.2,
for the flow field. U-2.1.2,

U-B.2.1

Force For impermeablesurfaces,the force is the integralover the U-Z.I.7,T-O
surfaceof the pressuretimesthe surfacenormalvector•
For permeablesurfaces,an additional"momentumtransfer"
termcontributesto the force•

Forcecoefficient A normalizedform of the forcevectorwhich removesthe force T-O.1,U-B.4.3
due to the freestreamflow and a11owsfor a scalingfactor
introducedby the user. The forcecoefficienton an impermeable
surfaceis the integralof the pressurecoefficienttimes
the normalvectordividedby a user-suppliedreferencearea.

Force,edge See edge forcecomputation.

Freestream,V_ The uniformflow which is perturbedby the introductionof a T-2.3
configurationon which boundaryconditionsare imposed•
See also onsetflow,uniform,and velocityperturbation•

C_
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Globaldata Information(suchas symmetryplane locationsand the compress- U-7
ibilitydirection)suppliedby the PAN AIR user to describe
the configurationsas a whole.

Gradientoperator,V A vectorwhoseentriesare the partialdifferentiation T-B.3
operationwith respectto the coordinatefunctions.

Grid points Panelcornerpoints. T-5.1,U-B.I.1

Grid points,fine or enriched Rectangulararrayof pointswhich are cornerpoints,edge T-5.1,U-B.I.1
midpoints,or centerpointsof quadrilateral(or triangular)
panelsof a network.

Green'stheorems Severalrelationsbetweenspatialintegralsand surface T-3.2
integrals.Theserelationsare used to derivethe integral
equation(B.O.I)of the TheoryDocument,whichPAN AIR
solvesnumerically.
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Influencecoefficient A matrixgivingone or more fieldflowpropertiesas a linear T-5.6
combinationof the array of singularityparameters.

Influencecoefficient, Combinationof potentialand velocityinfluencecoefficient T-3.3,T-4.2,
aerodynamic,AIC matricesgivingleft-hand-sideof boundaryconditionequation T-5.7

as a linearcombinationof singularityparameters.

Influencecoefficient,panel, Matrixgivingperturbationsthat a sourceor doublet T-4.2.2,T-5.6,
PIC distributionon a pane] inducesat a controlpoint. T-J

Influencecoefficient, Matrixgivingthe perturbationvelocitypotentialat network T-4.2,T-5.6
potential,61C controlpointsas a linearcombinationof singularity

parameters.

Influencecoefficient,velocity, Samefor perturbationvelocity. T-4.2,T-5.6
VIC

Intermediatefieldmethod Approximationfor computationof panelinfluence;intermediate T-5.6,T-J.9
betweennearfield and far fieldmethods.

Irrotationalflow Propertythatthe curl of the velocityfield is zero; assure Y-2.3
existenceof velocitypotential.

_D
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Jet efflux

A flow emanatingfromthe propulsionunit. A jet effluxmay be U-2.1.1
o_ modeledin PANAIR by panelingthe jet effluxwith a

wake network.

Jet effluxtube The cylindricalsurfacesurroundingthe jet efflux,extending U-2.1.1
from the configurationto infinity.



ITEM DEFINITION REFERENCES

Kappaquantity,K A quantitydefinedfor a linesegment(generallya panelor T-I.2.2.2
subpaneledge)on which a quadraticfunctionis defined.
The valueof the quantityis the valueof the functionat an
endpolntof the segmentplus halfthe gradientof the function
dottedintothe differencevectorbetweenthe positionsof the
two endpoints.

Kutta condition The boundaryconditionimposedat the trailingedge of a U-A.2,T-B.2
liftingsurfacesuch as a wing,specifyingthatthe jump in
pressurecoefficientbe zero there.

I
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Laplace'sequation Fundamentalpartialdifferentialequationsayingthat T-3.2,U-2
oo divergenceof gradientof a scalaris zero.

Leastsquaresfit, constrained The processof fittinga functionas well as possibleto a T-I.I.2.1,
set of valuesat a point on a plane. The valuesneed not T-I.5.1
be knownin advance;the resultof the processis a matrix
givingthe definingcoefficientsof the functionin terms of
the unknownvalues.

Length,reference A user-lnputlengthfor the scallngof momentcoefficients T-O.I,U-B.4.3
computedby the program.

Line vortexterm The line integralin the expressionfor velocityat a point T-5.6,T-B.3,
in space. This integralvanishesif doubletcontinuityis U-A.2
maintainedeverywhere.

Lofting The revisionof the geometryof a surfaceto more nearlyattain T-C.2
a pressuredistributionspecifiedin a designrun.

) ) )
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M-direction The directionof increasingpane]row index. U-7.4,U-B.I.I

Mach angle The angleformedbetweenthe freestreamdirectionand a Mach line. T-J

Mach cone,upstream A rightcircularcone locatedupstreamof a fieldpoint, T-5.2
containingdomainof dependenceof that point,in supersonic
flow.

Mach disk ' The interiorof the circleresultingfrom the intersectionof T-J.4.2
a Mach cone with a planeperpendicularto its axis.

Mach - inclinedsurface A surfacewhosenormalis perpendicularto its conormal(_._ = 0). T-5.2,U-B.I.3
Such a surfaceis tangentto a Mach cone.

Mach line A straightlinegeneratorof the Mach cone. One of the lines T-J
of intersectionof the Mach cone with a planecontainingthe
originpointof the cone.

Mach number The ratioof the speedof the fluid to the speedof sound. T-2.3

Mach wedge The set of all pointaffectedby a disturbanceon a supersonic T-J.11
edge. The Mach wedgeemanatesfownstreamfromthe edge. A point
Q lies in the Mach wedgeif some pointP on the edge lies in
the domainof dependenceof Q.

Mass flux,linearized The vectorobtainedby applyingthe compressiblegradient T-5.4
perturbation,_ operatorto the velocitypotential,or by scalingthe

freestreamcomponentof the perturbationvelocityby__1-Moo2).
In compressibilitycoordinates_E (sB2 u, v, w) = V@.

Mass flux,total,W Produceof localdensity_(normalize_by__freestreamdensity) T-4.5
and velocityof fluid,_= (Pl_k_)V- V +_.

Matrixdecomposition Expressionof a squarematrixas productof lowerand upper T-5.8
triangularmatrices.

_D
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c:)
m Metricmatrices Matriceswhichaccountfor compressibilityeffects. The first T-E.2r_
o metricmatrix(denotedB) multipliesthe freestreamcomponent

of a vectorby (1-M_oZ),while the secondmetricmatrix
(denotedC) multipliesthe _omponentof the vectorperpendicular
to the freestreamby (1-M_oz)..

Minimaldata set A smallamountof data (potential,normalmass flux, source T-M, U-2.1.1
and doubletstrength)storedfor each solutionand each control
or gridpointin anticipationof post-processing.

Modifieddata set A smallamountof data (potential,normalmass flux,source T-M, U-2.3.4
and doubletstrength)storedfor each solutionand each control
or grid pointin anticipationof post-processing.

Modeling See configurationmodeling.

Modifieddual vector A dual vectorwhose c_mponentin the freestreamdirectionhas T-E.2been sealedby (1-MQo). Amodified dual vectoris obtained
froma dualvectorby the applicationof the firstmetric
matrix.

Modifiedvector A vectorwhose comRonentperpendicularto the freestreamhas T-E.2
been scaled(1-Fizz). A modifiedvectoris obtainedfrom
a vectorby the applicationof the secondmetricmatrix.

Momentcoefficient,Cm An angularmomentumanalogof the forcecoefficient. T-O.I,U-B.4.3
The momentcoefficientcontainsa user-suppliedscaling
factor,and is definedby equation(0.1.3)of the
TheoryDocument.

Momentumequation Equationexpressingconservationof linearmomentumin a small T-2.1
fluidelement.

Multiplyconnected A regionof space is multiplyconnectedif a closedpath can be T-B.I,U-A.3
drawnbe in the regionwhichcannotbe shrunkto a point.
See also "simplyconnected."



ITEM DEFINITION REFERENCES

N-direction The directionof increasingpanelcolumnindex. U-7.4,
U-B.I.1

Navier- Stokesequation Combinationof continuity,mo(nentum,and energyequationfor T-2.1
a fluid.

Nearfieldmethod Computationof a panel influencecoefficientmatrixby summing T-J.1
over all eightsubpanelsthe influenceof each subpanel.

Network An indicallyrectangulararrayof panelscornerpoints;basic T-5.1,
unitfor definingthe geometryof the configuration. U-B.I.1,

T-D.I

Network,analysis Networkwithsingularityparameterlocationsas requiredfor T-5.1
analysisboundaryconditions.

Network,composite Networkhavingboth sourceand doubletdistributions. T-5.1
i

Network,design Networkwith singularityparameterlocationsas requiredfor T-5.1
designboundaryconditions.

Network,doublet Networkhavinga (locallyquadratic)doubletdistribution. T-5.1

Networkgaps Gaps due to non-coincidenceof networkedges. T-4.1,T-5.3

Network,wake See wake network.

Network,source Networkhavinga (locallylinear)sourcedistribution. T-5.1

Networktype,doublet A descriptionof the functionperformedby the doublet T-5.1,T-D
distributionon the network. Doublettypes existingare
analysis,design,wake, and null (zerodoubletdistribution).

Networktype,source Same for sourcedistribution.Typesare analysis,design, T-5.1,T-D
and null.

Network,wake Networkused to modelwake surfaces: has continuousnormal T-5.1,
flow,may havediscontinuityin potentialacrossnetwork. U-B.I.I

Normalvector,unit See unitnormalvector.

tO
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Onset flow,U The user-definedflow field in whichthe configurationis U-B.2,
analyzed. In th__simplestcase, this is just the uniform T-H.3,
freestreamflow V_ . S-3.1.5

a_setflow, localincremental, A supplementaryterm added to the onsetflow at individual U-B.2,controlpointsto simulatethe superpositionof a non-uniform T-H.3
effect(suchas a slipstream)onto the freestream.

Onsetflow,rotational A supplementaryterm addedto simulatea rollingor pitching U-B.2,
motion. T-H.3

Onsetflow,total,Uo The sum of a11 termsin the onsetflow. U-3.2.1

Onsetflow,uniform,_ An onsetflowwhich is constantover the entireflowfield, U-B.2,
and is usedto simulatea uniformfreestream.The uniformonset T-H.3
flow neednot be paralle1to the freestreamdirection_ on
whichcompressibilityeffectsare based.

) ) )
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Pane] Part of a networksurface,definedby four networkdefining T-3.3,T-4.1,
pointswhich are indiciallyadjacent. T-5.1,T-D.1

Panel,almostnon-convex A panelwith an interiorangleof nearly1800. U-B.I.3,T-D.2

Panelaspectratio The ratioof the lengthof a pane]to itswidth. U-B.I.3,T-D.2

Panelcenterpoint The pointwhose coordinatesare the averageof the coordinates T-D.1
of the four panelcornerpoints.

Panelcolumn A sequenceof panelswith the samecolumnindex. See column index. U-B.I.I,T-5.1

Panelcornerpoint One of the grid of pointswhichdefinesa network. Four of T-D.I
thesepoints(appropriatelyadjacentin an indicia]sense)
are sufficientto constructa panel'sgeometry.

Paneldefiningpoints The cornerpoints,edgemidpoints,and centerpointof a pane]. T-D.2

Paneldiameter Twicethe panelradius. T-D.2

Pane]edgemidpoint The midpointof a segmentconnectingadjacentpanelcorner T-D.1
points.

Panel function One of the two basiccomponents(alongwith the edge function) T-J.7
of the entriesof a PIC matrix. Definesas an integralover
a panelor subpanel.

Pane] integralmatrix Matrixgivingthe velocityand/orpotentialinducedat a T-J.6
controlpolntby a panel or subpanel,in termsof the
coefficientsof the polynomialdescribingthe sourceor
doubletstrengthon the region.

Panelmethod Methodfor solvingpotentialflow problems,usingpanelmodel T-I.0,T-4.1
of surfaceto reduceintegralequationto a systemof linear U-A.2
equations.

I
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' Panel non-convex A panelcontaininginterioranglesexceeding1800. U-B.I.3 T-D.2

Pane]radius The distance. T-D.2

Pane]skewnessparameters Real numberswhosemagnitudedescribethe extentto which a T-D.2
pane] failsto be a parallelogram.

Panel, subinclined, See subinclined,superinclined,or Mach-inclinedsurface•
superinclined,or
Mach-inclined

Panel,triangular A panel two of whose cornerpointscoincide. U-B.I.I

Parameterization See abutmentparameterization. T-J.4.4.2

Perturbation Changeto undisturbedflowfieldor geometry. T-2.3,T-A.I

Phasefunction Functionwith two argumentsequivalentto the FORTRAN T-J.4.4.2
functionATAN2with argumentsreversed. Phase (x,y)-
arg(x+iy),wherearg is the argumentof a complexnumber.

Post-processing The computationof pressures,or forcesand momentsfrom the U-2
minimaldata set.

Potential See velocitypotential.

Potentialflow Fluidflow characterizedby the existenceof a velocity T-2, T-A
potentialfunction,satisfyinga particularpartial
differentialequation,whosegradientat a point is the
velocitythere.

Prandtl-Glauertequation Partialdifferentialequationfor compressibleflow:divergence T-2.5,T-A,
of compressiblegradientof perturbationvelocitypotential S-2.0,U-A.I
is zero.



ITEM DEFINITION REFERENCES

Preferreddirection In the solutionof the potentialflow problem(thatis, the T-H.3,
constructionand solutionof the systemof linearequation), U-B.2.1
it is the compressibilitydirection. In post-processing,it is
the user-specifiedx-directionin which velocity= (u,v,w)
for the computationof the pressurecoefficient.

Pressure,P Forceper unit area. T-N.I,
U-B.4.2

Pressurecoefficient,Cp A normalizedexpressionfor pressurewhichremovesthe T-N.2.1,
contributionof the freestreamflow to the pressure. U-B.4.2

Pressurecoefficient, A formulafor pressurecoefficientresultingfromcertain T-N.2.1,
isentropic basicassumptionsaboutthe characterof the fluidflow. U-B.4.2

Pressurecoefficient,linear A formulafor pressurecoefficientresultingfrom the T-N.2.5,
additionalassumptionthat secondorder termsin perturbation U-B.4.2
quantitiesare negligable.

Pressurecoefficient,reduced A formulafor pressurecoefficientbasedon the secondorder T-N.2.5,
secondorder assumptionand the additionalassumptionthat termscontaining U-B.4.2

the Mach numbersquaredare negligable.

Pressurecoefficient,second A formulafor the pressurecoefficientresultingfromthe T-N.2.4,
order additionalassumptionthat thirdpowersof perturbation U-B.4.2

quantitiesare negligable.

Pressurecoefficient,slender A formulafor pressurecoefficientbasedon the secondorder T-N.2.5,
body assumptionand the additionalassumptionthatsecondorder U-B.4.2

terms in the componentof velocityparallelto the freestream
are negligable.

Pressurecoefficient,vacuum The most negativevaluethe isentropicpressurecoefficient U-B.4.2,
can attain. T-N.2.4.1

Pseudo-innerproduct Modifiedinnerproduct,one of whose termsin scaledto T-J.5.1
accountfor compressibility.

_0
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. Recessionvector See controlpointrecessionvector.

Refinementof paneling The panelingalongone networkedge is a refinementof the T-I.I.2.5
panelingalonga secondnetworkedge on the same abutmentif
the firstedge has a panelcornerpointwhereverthe second
edge has a panelcornerpoint.

Region,exterior Spatialregionoutsidea finitesurface. T-3.2

Region,interior Spatialregioninsidea finitesurface. T-3.2

Right-hand-side See boundarycondition,right-hand-side.

Row index An integerwhich,in conjunctionwith the column index,describes T-5.1,
the indicallocationof a panelor panelcornerpoint. When U-B.I.1
the panelcornerpointsare inputby the user all pointswith
the same columnindexare inputconsecutively.For eachcolumn
of pointsinputby the user,the row indexruns consecutively
from 1 to the maximumrow index.
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Shearlayer A surfacein the flow fieldon which the velocitytangentialto U-2
the surfaceis discontinuous.A shearlayer is modeledin PAN
AIR by means of a wake network.

Simplyconnected A regionof spacein whichany pathmay be shrunkto a point. T-B.I,
See also "mulitplyconnected"and FigureB.8 of the U-A.3
TheoryDocument.

Singularityparameters Unknownin systemof linearequationsconstructedby a panel T-3.3
method.

Singularityparameters,unknown Singularityparametersspecifiedby a singleboundarycondition T-5.7.2,
equation. T-5.7.3,

T-K.2

Singularityparameter,panel The valueof sourcestrengthat one of five panelpoints T-I.I,
(cornersor center)or the valueof doubletstrengthat the T-I.2
nine paneldefiningpoints.

Singularitytype The sourceof doublettypeof network. This may be U-A.2
analysis,design,wake 1 or wake 2 (fordoubletsonly),or nu11.

Slipstream The flow field inducedby a rotatingpropeller. T-H.3

Smallperturbationassumptions Assumptionsthatcertainquantitiesare smallenoughthat their T-A.I
higherpowersmay be ignored. The Prandt1-G1auertequation
holdsfor irrotation,isentropic,inviscidflow in which
certainsmallperturbationassumptionshave been satisfied.

Solutionlist A listof differentconstraintsunderwhichthe systemof U-7
linearequationsis to be solved. Typically,a listof
solutionsmight consistof severalanglesof attackandlor
sideslip.

Solutionvector The vectorof unknownsin the systemof linearequations. T-5.7.4

Sourcedistribution One of two unknownquantitiesin the fundamentalintegral T-3.2,
equation. U-A.2

_o
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ITEM DEFINITION REFERENCEStO

m Sourceparameters Knownor unknownquantitieson whichthe sourcedistribution T-5.5
co on the configurationdepends.

Sourcestrength,o The valueof the sourcedistributionat a particularpoint. T-3.2,
It is equalto the sizeof itsjump in normalmass flux U-A.2
acrossthe surface.

Specifiedflow,b The right-handside term in a boundaryequation. That is, U-B.3
some combinationof potentialand velocityis specified
by the equationto equal b.

Spline The methodby which a functionon a surfaceis obtained T-I
fromthe specificationof valuesof the functionat a
discreteset of pointson the surface.

Spline,edge The methodby which doubletsplinevectorsare constructed T-I.1.2
for five gridpointson the edge of a network.

Splinematrix,outer A matrixgivingvaluesof (fivesourceor ninedoublet)panel T-I.1
singularityparametersvaluesin termsof surrounding
singularityparameters.

Splinematrix,subpanel A matrixgivingthe singularitydistributionon subpanel(or panel T-4.2.1.1,
(or panelor half panel) or halfpanel)in termsof panelsingularityparameters. T-5.5,

T-I.2,
T-I.3.1,
T-I.3.2

Spline,two-dimensional The methodby whicha functionon a line segmentis obtained T-C.4
from the specificationof valuesof the functionat a
discretesetof pointson the line segment.

Splinevector A row vectorgivingsourceor doubletstrengthat a fine grid T-I.I
point in termsof surroundingsingularityparameters.

Stability The propertyof a spline,in conjunctionwith a set of T-C.4
boundaryconditions,that a perturbationin the boundary
conditionsat one pointcausesa disturbancein the solution
which decreasesrapidlywith distancefromthe point.



ITEM DEFINITION REFERENCES

Stagnationto ambient Flow which is no fasterthan freestream(ambient)flow,yet U-B.4.1
not highlyperturbedas to have a negativecomponentin
the freestreamdirection. Such a flowmay be correctedusing
the semi-empirical"velocitycorrections".

Stagnation,perturbation A pointat whichthe perturbationvelocityis zero. T-5.4.2.3

Stagnation,total A pointat whichthe totalvelocityis zero. T-5.4.2.3

Subinclinedsurface A surfacefor whichthe innerproductof normaland conormal U-B.I.1,
is positive. All surfacesare subinclinedin subsonicflow. T-5.2

Subpanel A flat triangularsurfacewhich is the basic unitof the panel T-4.2.1.1,
analysisin PAN AIR (a panelconsistsof eight subpanels). T-5.1

Subpanel,subinclined, See subinclined,superinclined,or Mach-inclinedsurface.
superinclined,or Mach-inclined

Subsonicflow Flow for which the Mach numberis less than one. T-3.1,
U-2.0,
S-1.0

Superinclinedsurface A surfacefor whichthe innerproductof normaland conormal U-B.I.1,
is negative. Such a surfaceis inclinedto the freestream T-5.2
at more thanthe Mach angle.

Supersonicflow Flow for whichthe Mach numberis greaterthan one. T-3.1,
U-2.0,
S-I.0

Surface,lower The sideoppositeto the upper surface. T-5.4,
U-A.3.1

Surface,upper The sideof the surfaceboundingthe regionintowhichthe unit T-5.4,
normalpoints. An exceptionis that for post-processingonly, U-A.3.1
upper and lowersurfacesare switchedby means of the
"reverse"option.

Symmetry,planeof A planesuch thateitherthe flow or the configuration U-2.1.2,
geometryis leftunchangedif reflectedin this plane. U-B.2.3,

T-K.1
_0
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ITEM DEFINITION REFERENCES

Tangentvector A vectorperpendicularto the surfacenormal. T-5.4

Thickbody See configuration,thick.

Thin body See configuration,thin.

Tolerancedistance A distancesuppliedby the user. The programsearchesfor T-F.2,
networkedgeswhichlie closertogetherthan the tolerance U-3
distance,and formspairwiseabutmentsfor theseedges.

Total The sumof a freestreamquantityand a perturbationquantity. U-A.1

Transformation,orthogonal A length-preservingcoordinatetransformation. T-E.3

) )
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ITEM DEFINITION REFERENCES

Update,IC The capabilityallowingreuseof AIC's for s_e networkswhen T-5.7.5,
modifyingothernetworks. T-K.6,

S-3.3.3,
U-2.3.2

Update,solution Capabilityof storingAIC'sand reusingthen laterin a new U-2.3.2,
problemin whichonly the boundaryconditionconstraints _L,
have been changed. T-5.8,

S-3.3.2

Unitnormalvector, A vectorof lengthI whichis perpendicularto a surface. T-D.2
- (nx, ny, nz) Its directionis definedas the directionof increasing

col_n indexcross the directionof increasingrow index.
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ITEM DEFINITION REFERENCES

Velocity,V The timerateof positionchangeof fluid particles T-2.1,
U-A.1

Velocitycomputationmethod One of twomethodsof computingthe velocityat a point U-2.1.6
from the minimaldata set. The boundaryconditionmethod
attemptsto obtaindata from boundaryconditionsand spline
it,whilethe VIC methodobtainsthe velocityfrom the
productof a velocityinfluencecoefficientmatrixwiththe
vectorof singularityparameters.

Velocity,perturbation,v The differencebetweentotalvelocityand that of the undisturbed T-2.3,
fluid. U-A.1

Velocitypotential,_,_ The functionwhose gradientis the velocity,v =_6, _-V9 • T-2.3,
U-A.1

Vorticity,surface,_ _he crossproductof surfacenormalvectorand doubletgradient, U-A.2,
_ = B x_. T-5.6.2

) ) )



ITEM DEFINITION REFERENCES

Wake, physica] A sheetof vorticityshedfrom the physicalconfiguration. T-5.1,
T-B.2

Wake network A networkused by PAN AIR to mode]a physicalwake. The norma] T-5.1,
mass flux is continuouson such a network,whilethe T-B.2
potentialand tangentialve]ocitymay be discontinuous.

Wave equation A particularhyperbolicpartialdifferentialequation. T-3.1
PAN AIR so]yesthisequationwhen the Mach numberis

Wettedsurface A surfaceis wettedby a regionof spaceof it borderson that U-A.3
region.
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A.O Fundamental Fluid Mechanics

To repeat our warning in section I, this document is not meant to be a
text in basic fluid mechanics (several basic references are listed in section
1). Wewill not discuss the derivations of the equations which lead to the
Prandtl-Glauert equation, nor will we discuss the assumptions of irrotational,
inviscid, steady, and isentropic flow which lead to the Prandtl-Glauert
equation. We will, however, briefly discuss the "small perturbation"
assumptions, since these assumptions pervade both the theory and usage of
panel methods, and hence determine the application and validity of the methods
to particular problems.
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A.I The Small Perturbation Assumptions

Recall from section 2.3 that we assumed

_I << I_I << am (A.I.I)

To be precise, the transonic small perturbation equation is obtained by
assuming (in addition to irrotational, inviscid, isentropic flow) that terms
of order i_12/a2 can be ignored. Recall that _(x,y,z) is th_
perturbation of the local velocity from a uniform freestream vm. Assumption
(A.I.I) holds under a wide variety of cases, including

a. a thin wing at small angle of attack (shown in figure A.I) at any
Mach number other than approximately i,

b. a blunt object at small Mach number (see figure A.2)
c. a static airplane configuration with engines on, sucking in air, with

local velocities in the inlet duct which are small compared to the
speed of sound:

Ivl = IVl < .2a_ (A.I.2)

(see figure A.3).

In case (a), both I_I/ I_I and I_I/ am are small. In case (b), l_l is of
the same order as t_ml, and so we are ignoring terms of size

I_12/a 2 : (.i) 2 : .01 (a.l.3)

Similarly, in case (c), we ignore terms of size

l_21/a2 = (.2)2:.04 (A.I.4)

which is still small with respect to one.
But now, let us reconsider case (c), with

IVl/am : .7 (A.I.5)

In that case, assumption (A.I.I) no longer holds, since we are ignoring terms
of order .7 2 : .49, which are not small compared to 1.

Thus, the "engine-on" problem does not satisfy the small perturbation
transonic equation, let alone the Prandtl-Glauert equation, if the "local Mach
number" (IVi/a) is too large. This does not mean that PANAIR has no use for
such a problem. Its use, however, is restricted to predicting qualitative
trends, rather than detailed pressure distributions. Note that as the forward
speed of the airplane increases, the perturbation velocity within the duct
decreases, and equation (A.I.I) is more nearly satisfied.
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Now, le_ us examine the small perturbation steady transonic equation
(assuming IV_l = i): --.

(1-M_) _xx + 6yy + _zz : M_[I12 (y-l) (2u + I_12)v2_ +

(2u + u2) _xx + V2_xy + 2VW_yz + w2 + W2_zz (A.I.6)

+ 2(l+u)(V_xy+ W_xz)]

Since I_l2 = u2 + v2 + w2, all the terms on the right side of
(A.1.6)are quadraticor cubic expressionsin the first or secondderivatives
of _, while the terms on the left hand side are linear expressionsin the
derivativesof _. So, formally,it is justifiableto drop all the terms on
the right, and say that to first order, the Prandtl-Glauertequation

(I-M::2) _xx + _yy + _zz = O (A.I.7)

holds (wherethe freestreamdirectionis the x-direction).

But a formal eliminationof all quadraticand cubic terms only has meaning
if the terms being ignoredare in fact small, comparedto the terms which are
being retained.

We can rewrite (A.1.6)as

[(1-M_) + A] _xx + B_xy + C_xz

+ (l+D)_yy + E_yz + (I+F)_zz = 0 (A.1.8)

where

A = -M_[ll2(y-l) (2u+l_12)+(2u+u2)]

B = -2M_ (l+u)v

C : -2M_ (l+u)w

D = -M_ [I12(y-I) (2u+l_12)+v 2] (a.l.9_

E =-2M_ vw

F = -M_ [i12(y-1) (2u+I_12+w2]

Now, (A.I.7) holds if the sum of all the ignored terms is small compared to
each of the retained terms, that is, if

A << I-Moo2

S = A+ B + C + D + E + F <<I (A.I.IO)
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Adding the terms in (A.I.9)

S < M2 [3/2(y-l)(21Ul +I_ 12

+ 2u + u2 + 2 II + uI (Ivl + twl) (A.I.II)

+ v2 + 2 Ivw{ + w2]

Now, since the absolute value of a sum is at most the sum of the absolute
values,

S < M2 [3(y-1)lu[ + 3/2 (y-l)I_l2 + 21uI + u2
(A.1.12)

+ 2{_I + 21wl +2 luvl+ 21vwl + v2 + 21vwl + w2

Now, since lul,Ivl,and lwl are < I_I and all productsof these are < ]_I2
we obtain - - '

S < M_ [(3(y-i)+2+2+2)i_I+

(3/2(y-i)+1+2+2+I+2+I)I_'I2] (A.i.13)

or S < M_ [(3+3y)IVl+15/2+3/2y)l_l2] (A.I.14)

or S<M_ k(y)[I_i+ I_I2] (A.1.15)

where k(y) : max(3+3y,15/2+ 3/2y) (A.I.16)

depends only on the gas. For diatomic gases,y = 7/5, and thus k(y) = 9.6.

Thus, we see that (A.1.10)holds if

M_ k(y)[i_l+lg'f2]<< i (A.I.17)

and M_ k(y)[19"l+l_12]<< 1-M_ (A.1.18)

(since IAl < ISl).1

Recall from section2.3 that l_l : 1; thus l_l is the size of the
perturbationvelocitydividedby the freestreamspeed.

For Mach numbers< v_, (A.1.18)is the more restrictiveequation,while
for M, > v_, (A.1.17) is more restrictive. Equations(2.5.2)and (2.5.3)are
simplificationsof (A.1.17)and (A.1.18),based on a scalingby a factor of
2k(y) of what we mean by "very much less than", and based on the assumption

l_l2 _ l_l (A.1.19)
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Equation (A.I.19) holds _n virtually all cases of aerodynamic interest,
since we have assumed that IV_I : 1, that is, we are not dealing with the
"engine-on" case, in which l_l : M_: O.

From (A.I.17) and (A.I.18), we derive the principle that the more nearly
transonic or the more hypersonic the flow becomes, the smaller the
perturbations to the free stream must be. Small perturbations, in turn, mean
slender objects and small angles of attack. This does not mean, however, that
PANAIR is of no use if the restrictions (A.I.17) or (A.I.18) are violated
locally. Experimentation has shown that, for instance, wings with rounded
leading edges can be successfully analyzed at Mach numbers such as .7, at
which (A.I.17) is thoroughly violated. This is true because the
Prandlt-Glauert equation is only violated in a small region of space, and the
quality of the solution in other areas is not affected. Further,
semi-empirical velocity correction formulas (see section 5.9) are available.
Pressures calculated from the correction velocity agree more accurately with
those determined by experiments. Thus a fairly accurate approximation to the
true flow properties can be obtained in th,is case despite the violation of the
assumptions behind the Prandtl-Glauert equation.
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or Moo=.9

or M_ =3

FigureA.l - Thin Wing at small angle of attack

M_ :Iol

FigureA.2 - Blunt object at small Mach number
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FigureA.3 - Smallperturbation"engine-on"case
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B.O The Prandtl-Glauert Equation

In this appendix, we discuss some basic results concerning solutions of
the Prandtl-Glauert equation. Wemake no effort to prove results which are
proved in any of the standard references, but we will supply derivations of
results which are not available elsewhere.

The basic step in analyzing solutions _ (x,y,z) of the Prandtl-Glauert
equation is to convert it to the integral equation

lff_(x,y,z) : _ [-a_Q) + u(Q)B • _( )] dS (B.O.I)
SnDp

where SNDp is the intersection of the configuration surface S with the

domain of dependence Dp on the point P:(x,y,z),

: _(_u - 6L) " B

= unit surface normal

= _u - 6L

Q : (_, n, _ )

R2 : (_- x) 2 + sB2(n-y) 2 + sB2(_-z) 2 (B.O.2)

s : sign (1-M_)

82 : I 1-MI

K f = 2x if s : -i and

I 4x if s = +I

sB2 _I_ ]

VQ = Blan

ala¢

The asterisk refers to the fact that for supersonic flow we only take the
"finite part" of the integral, a concept defined in section 3.4 of Ward (1.5),
and in section J.6.7 of this document.

Equation (B.O.I) is derived for subsonic flow in Ward, Chapter 2, and for
supersonic flow in Chapter 3. A-more thorough derivation is given for M_ : 0
in Kellogg (1.3), p. 221, and for Mm> I in Ehlers, et ai.(4.9), sections 3.5
and 3.7.
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In this appendix, we discuss the concept of a boundary value problem, that
is, the combination of (B.O.I) with a set of boundary conditions. In section
B.I, we discuss boundary value problems for which existence and uniqueness of
a solution have been proved or disproved. In B.2, we discuss the role of
wakes in the formulation of a boundary value problem. And finally, in B.3, we
show that the gradient of (B.O.I), defining _(x,y,z), can be replaced by a
different expression which is more readily computable. All of the material in
this appendix is "background" material; none of it is reflected in the actual
PANAIR computer code.

We emphasize that Pan Air actually solves the integral equation (B.O.I),
with boundary conditions imposed on the true configuration geometry (cf.,
(3.1.3)) while other panel methods solve the integral equation corresponding
to Laplace's equation with zero normal velocity boundary conditions applied on
the scaled geometry. These methods can be demonstrated to be equivalent in
subsonic flow (cf., Butter,reference B.I), and go under the general name
"Gothert's rule".

We note that the two versions of Gothert's rule are equivalent only in
subsonic flow. This isbecause the scaling (3.1.3) in subsonic flow yields an
"equivalent incompressible geometry", and at zero Mach number mass flux is
identical to velocity. In supersonic flow, on the other hand, application of
(3.1.3) yields an "equivalent geometry" corresponding to a Mach number of v_T.
But at this Mach number, velocity and mass flux are not identical; rather, the
freestream components of perturbation velocity And mass flux have opposite
sign. Thus normal mass flux and normal velocity boundary conditions are
inherently different in supersonic flow.

In addition, some European panel methods use yet another method, referred --
to as Gothert Rule 2, to account for compressibility effects in subsonic
flow. In this method, the Prandtl-Glauert equation is solved, with boundary
conditions of normal velocity (rather than normal mass flux) applied on the
true configuration. This method is hot equivalent to either of the two
equivalent versions of Gothert's rule described above.
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B.1 Existence and Uniqueness

In this section, we give four examples of boundary value problems which
are well-posed (that is, for which there exists a unique solution), and two
examples of ill-posed boundary value problems. Finally, we discuss two
boundary value problems for which excellent numerical results have been
obtained, without any actual proof that the problem is well-posed.

The first well-posed problem is the subsonic exterior Neumannproblem. A
Neumannproblem is the specification of normal mass flux on the boundary of a
region R. If R is a infinite region with finite boundary as illustrated in
figure B.I or figure B.3, the boundary value problem is called "exterior"
since the boundary of R is the "outer" surface of S. The precise formulation
of the result (see p. 311 of Kellogg, 1.3) is: The specification of a
continuous distribution of _ • v_ on the boundary S of an infinite region R
yields a unique distribution of potential _, whose value approaches zero at
infinity on R, satisfying the Prandtl-Glauert equation, for M_<I. Kellogg
only proves this result for Mm : O, but the coordinate scaling (3.1.3) (which
reduces the Prandtl-Glauert equation to Laplace's equation in the scaled
coordinates) allows one to prove the result for arbitrary subsonic Mach
numbers.

The second well-posed boundary value problem is the interior subsonic
Dirichlet problem (a Oirichlet problem is the specification of _ on a
surface). Again, this is shown to be well posed (see Kellogg, p. 311) for
M_ = O, and is formulated precisely as follows: Let R be a region of finite
volume (see figure B.2). Then the specification of a continuous distribution
of _ on the boundary S of R is a well-posed boundary value problem. Further,
if the specification of _ is a constant b, then _ is identically equal to b in
all of R.

The third well posed boundary value problem is discussed in Ward, 1.5,
section 4.13, and is formulated as follows. Let S be a finite smooth surface
(see figure B.3) which is everywhere inclined behind the Mach angle (such a
surface has _._ > O, and is called subinclined). The specification of a
continuous distribution of _._ on both sides of S defines a unique value of
in all of space for M_# I. For M_< I, this is just a special case of the
first boundary value problem discussed above.

The fourth well-posed boundary value problem is illustrated in figure
B.4. There, S is a smooth superinclined surface (A._ < O, which automatically
_m_lies Mm> i). Then, the specification of continuous distributions of both
w.n and _ on the downstream side of S is a well posed boundary value problem,
and once again is discussed by Ward in section 3.2.

Now let us consider two ill-posed boundary value problems. The first is
the interior Neumannboundary value problem, that is, the specification of _.n
on the boundary of a region R of finite volume, as illustrated in figure B.5.
The proof that no unique solution exists is simple. Suppose a certain
function _(x,y) were a solution. Then, for any constant _o, _(x,Y,Z) + _o
is also a solution, since V_ o : 0 and thus the normal mass flux
(_. A : _._) is unchanged. Thus, there cannot exist a unique solution _,
and so the problem is ill-posed.
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A second example of an ill-posed boundary value problem is the specifi-
cation of _ or w.n on the upstream side of a superinclined surface. Consider,
for instance, the point P in figure B.4. According to the integral equat!on
(B.O.I), _(P) is an integral over SnDo. But the intersection of S with Dp,
the domain of dependence of the point'P, is empty. That is, there is no point
on S which influences P, since the domain of dependence consists of the
interior of a cone pointing upstream from P, as illustrated in figure B.6.

So, _(P) : O, regardless of the source or doublet distribution on S.
Further, this holds for all points P on the upstream side of S. So,
specifying 6 : b or _.B = b on the upstream surface of S results in infinitely
many solutions if b : O, and no solutions if b = O. Thus, no matter what our
choice of b, upstream specification is an ill-posed boundary value problem.

This discussion of ill-posed and well-posed boundary value problems is of
some interest to the user of PANAIR because of a basic principle. This
principle is that the use of a panel method to solve an ill-posed boundary
value problem invariably leads to a system of linear equations whose matrix is
singular. Even if the system of equations has infinitely many solutions, the
numerical equation solving techniques used by panel methods break down, and
none of the solutions can be found.

On the other hand, the lack of a proof that a particular boundary value
problem is well-posed should not be an impediment to attempting to find a
numerical solution. The prime examples of this are the successes achieved by
the "pilot code" in solving the exterior Neumannproblem and interior
Dirichlet problem for subinclined surfaces in supersonic flow (see figures B.I
and B.2). Specific cases are described in Ehlers, et al., (4.9). A second
example is the specification of design boundary conditions, a subject which
will be discussed in more detail in Appendix C.

Summarizing, for a thick closed configuration such as that of figure B.2,
one is fairly safe (assuming that the surface is subinclined when M, >1) in
imposing the boundary conditions

_L = 0 (B.I.I)

:o

which, as pointed out in section 5.4, is equivalent to

_L = O_
o : - V_ B (B.1.2)

Here, the subscripts U and L refer to upper and lower surfaces. For thin
configurations such as that in figure B.3, the boundary conditions should be
(assuming the surface is subinclined again)

WU • _ = 0
(B.1.3)

WL • _ = 0
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_ or, equivalently

_u _ : o (B.l.4)
_=0

For a permeable surface inclined to the freestream, as shown in figure
B.7, the boundary conditions for subsonic flow should be

_L = o

WU" _ = b (B.I.5)

or equivalently

_L : 0 (B.I.6)

a : - Vo:. _ + b

while for supersonic flow they should be

_L = 0 (B.I.7)

_t._ : b'
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B.2 Wakes and Modeling

Up to this point, we have implicitly assumedthat the surface S on which
non-zero source or doublet distributions are given represents a real phyical
object. But for a wide variety of problems of physical interest, it does not
suffice to impose boundary conditions of impermeability on the physically
existing configuration. The general problem of determining the surface S, and
what boundary conditions should be imposed there, is called the modeling
problem, and will be discussed here briefly.

The first case of a non-physical surface S arises from one of the
hypotheses of Green's Theorem which we ignored when discussing the subject in
section 3.2. This hypothesis requires that the region V on which _ is defined
be "simply connected". That is, there must not be any closed path in V which
cannot be shrunk to a point within V. In figure B.8, we illustrate in cross
section a region V, whose boundary S is the surface of a nacelle, which fails
to be simply connected. The imposition of boundary conditions of
impermeability on S once again results in an ill-posed boundary value problem.

The boundary value problem can be made well-posed by the addition of a
surface S' which "blocks off" the inlet. The surface S' is not impermeable,
however; so the user specifies the total normal mass flux b flowing through
the surface. The boundary conditions illustrated in figure B.7 only apply to
subsonic flow, though. For supersonic flow, upper surface normal mass flux
must not be specified on the superinclined surface S'; instead, the boundary
condition

- WL • _ = b
(8.2.1)

6L = 0

should be imposed.

The second case in which the surface S includes non-phyical surfaces
arises not from theoretical but from empirical considerations. These
considerations arise from the fact that the assumption of zero viscosity is
invalid near the trailing edge of a wing. No matter how small the viscosity
of the fluid, the conditions at the trailing edge are considerably different
from those of the zero viscosity case. The difference is the following: at
zero viscosity, the velocity at the trailing edge of a wing becomes infinite,
w_ile at any non-zero viscosity, the velocity is bounded by a fixed number
which depends mostly on the wing geometry and Mach number, and is only weakly
dependent on the viscosity.

In order to reproduce this effect while using a program which ignores
viscous effects, the concept of a wake is introduced. A wake is a surface
across which the normal mass flux is continuous, while the potential and the
tangential velocity are not. Thus, source strength is zero on a wake, while
doublet strength u is non-zero, and the jump in tangential velocity is VN.
The actual physical situation, namely that the tangential velocity varies very
rapidly in a small region of space, is modeled quite well by this type of
surface.
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In modeling a configuration, wakes are generally inserted in a roughly
streamwise direction emanating from the trailing edges of all "lifting
surfaces" such as wings, fins, etc. The exact location of the wake generally
is not very important. The boundary conditions imposed on the wake,
reflecting the physical situation, are generally (though not in PAN AIR):

= 0 (B.2.2)

:o
The flow about lifting surfaces in subsonic flow is known to satisfy a

condition called the "Kutta condition", that is, the pressure jump across the
surface is zero along the trailing edge. The successful modeling of a
potential flow problem generally requires that the Kutta condition be
satisfied. In section D.I.I, we describe the boundary conditions that PAN AIR
imposes on wake networks. We also outline a justification that these boundary
conditions result in the Kutta condition being satisfied.

An illustration of the wake location for a typical wing-body configuration
is given in figure B.9. Note that no trailing edge of the wake is shown. In
true physics, the wake is dissipated by viscous effects. In terms of solving
the Prandtl-Glauert equation, the effect of the far regions of the wake on the
configuration is negligeable, and thus the wake can be terminated at any
finite point which is reasonably far from the physical configuration. The
division of the wake into "wake i" and "wake 2" networks will be discussed in
section D.I.2.

Several major exceptions exist to the assertions that a wake should --
generally be positioned in a streamwise direction from the trailing edge of a
lifting surface, and that the exact position of the wake is generally not
important. One is the case of a "leading edge vortex", a phenomenon that
occurs at the leading edge of a highly swept wing at large angles of attack as
illustrated in figure B.IO. In that case, the wake tends to roll up (trailing
wakes also roll up, but at so much greater distance from the airplane as to be
ignored) as shown, and the exact position of the wake is important in
determining the aerodynamic behavior of the configuration. The use of a
potential flow program to analyze such a case involves an iterative
determination of the wake position, a problem similar to the design problem
discussed in Appendix C. Some success in obtaining numerical solutions of
this problem has been obtained by the program of Johnson, et al., (B.2).

Another case in which wake positioning is important is the case where the
wake from a wing passes near the tail of the airplane. Generally speaking,
whenever the flow leaving the trailing edge of a lifting surface passes near
another portion of the configuration (or the ground, if ground effect is being
studied), the location of the wake is important in analyzing the flow.
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B.3 Removal of Line Vortex Terms and the Line Source Integration by Parts

In order to impose boundary conditions involving v_ (such as v.n = b),
we must evaluate the perturbation velocity at an arbitrary point. Differen-
tiating (B.O.I), we obtain

i Vp II [ -o(Q) + ,(Q)_ VQ( ) ] dS (B.3.1)T(x,y,z)=Vp_ =_
S_Dp

Puttingthe gradientwithinthe integral,and writingit as Vp to emphasize
thatwe are differentiatingin (x,y,z)coordinates,we write

. 1 * _ )Vp(_Q(_v = _ fS [ - o(Q) Vp( ) + _(Q ). _) ] dS (B.3.2)K

SnDp

Recallingthat,

Vp = alay VQ = alan

a/az a/at

and

R2 : (_- x) 2 + sB2 (n-y) 2 + sB2({- z) 2 (B.3.3)

we have

_Q(R) : (sB2(_-x) SB2(n-y) sB2({-z)) sB2R ' R ' R :_- (_-X,n-y,{-z) (B.3.4)

and similarly

Vp(R) = _ (_-x, sB2(n-Y),RsB2(_-z)) (B.3.5)

Further,by the chain rule,

_Q(Rn) = nRn-IVQ(R) (B.3.6)

= SB2n ( _-x, n-Y,{-Z) Rn-2 (B.3.7)

and similarly

Vp(Rn) : - n (_ -x, sB2(n-y),sB2({-z))Rn-2 (B.3.8)
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Thus,the i'ntegralexpression(B.3.2)for_ containsthe term Vp VQ (l/R)
givenby:

SB2 3SB2

Vp VQ (I/R)=_ I - _ sB2 (n-Y) ({-x, n-Y,{-z)
1 sB2 ({ -z)

In subsonicflow (s=+l)thisexpressionbehaveslikeI/R3 as R . 0 whilein

supersonicflow(s=-l)it behaveslike 1/R5 as R . 0 for points(_ , n,{)
lyingnearthe Machconeand awayfrom (x,y,z):

.x + B _/(n-y)2 . ({-z)2 •

This stronglysingularbehaviorof Vp VQ (l/R)causessubstantialnumerical
difficultyin the subsoniccase and,in the supersoniccasecausesthe finite
part integral

SnDp

to be unboundedfor piecewiseflatsurfacesS. Historicallyin the
developmentof subsonicpanelmethods,thisstronglysingularbehaviorhas
beenusedto approximatelyenforcedoubletmatchingat networkedges.
However,thisapproachwas neververy satisfactoryin achievingdoublet
matchingand it was abandonedduringthePAN AIR pilotcodedevelopmentwhen
it was realizedthatit was unworkablefor supersonicflows.

In PAN AIR the difficultyof thissingularbehavioris resolvedby

_erformingthe linevortexintegrationby partson the expression(B.3.2)for
v, thereby separating _ into its regular part and its singular line vortex

_art. The regularpartof _ has the virtuethatthe singularitiesof its
ntegrandare muchlessseverethanthoseof equation(B.3.2)and further,
thatthe finitepartis nicelyboundedfor virtuallyall piecewiseflat
surfacesS. The singularlinevortexpartof _ is thenanalyticallyremoved
fromthe calculationby enforcingdoubletmatchingconditionsof the type
discussedin section5.3 and appendixF.

A sidebenefitof the linevortexremovalariseswhenwe considerthe
evaluationof "farfield"velocityinfluencecoefficients.In thisevaluation
procedureone is requiredto use a Taylorseriesexpansionfor an inverse

powerof R. WithoutlinevortexremovalonewouldexpandR-5 in a power

series;with linevortexremovalone expandsR"3. Becausethe resultingpower

seriesfor R-3 convergesmore rapidlythanthe seriesfor R-5, the far field
evaluationprocedureis more accurate(fora givenorderof expansion)when
the linevortextermsis removed.

Havinggiventhisstatementof the fundamentalproblem,we now set out to
discussits resolutionvia the linevortexintegrationby parts. In what
followswe will showthatequation(B.3.2)impliesthat

B.3-2



SflOp SfIDp (B.3.9)

T u x dl
_S

where BS is the boundaryof the surfaceS.

Beforegivingthe derivationof this result(cf.equations(B.3.19)
through(B.3.27)),we first discussits significanceand practical
application. We will also shortlyshowwhy the linevortex integral(thelast
term of (B.3.9))can be ignored. As a matterof terminology,the secondterm
on the right of (B.3.9)is calledthe regularterm of the doubletvelocity,
while the third term is calledthe line vortexterm.

Now, we performthe integrationsin (B.3.9)one panel at a time. Let us
considerwhat is requiredfor the line integralsto vanish. First,considera
panel edgewith no adjoiningpanel edge next to it, for instance,the edge AB
in figureB.11. Clearly,if _ identicallyequalszero on AB, the line
integralalongAB vanishes. Second,considertwo adjacentpanelsas shown in

figure B.12. As a convention,we definedl as being in the counterclockwise
_A

directionwhen lookingfrom "above". That is, dlxn lies in the plane of the
panel and pointsoutward. Then if the doubletstrengthon the panel21 is
ul(X,y,z),and on 22 it is u2(x,y,z),and if _1 = _2 at every point
on the edge AB, we have

SS _ Q 22nAB_Dp _ V (l/R)x dl = 0
v(i/R) x dl + IS .

_lnABfiDp Q (B.3.10)

since the integrands_ave identicalvalueswith oppositesign due to the
oppositedirectionsdl.

We can generalize(B.3.10)to the case where arbitrarilymany panel edges
meet (seefigureB.13 for an illustrationof 3 panelsmeeting). Let

si= sign (dli.(B - A)) (B.3.11)

where dli is the counterclockwisedirectionon _i"

Then if n = numberof panels,and

n

si ui = 0 (B.3.12)
i=1

on the entireedge AB, then
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o *( }. = 0 (B.3.13)
SS _i VQ( ) x dl i

i=1 _ABnOp

Equation(B.3.13)followsfrom the fact that

n
_i dli = 0 (B.3.14)

i=1

at all pointson AB, which in turn followsfrom (B.3.11)and (B.3.12). It
shouldbe noted that if n = 1 or 2, (B.3.12)reducesto our previously
derivedresults. So, if (B.3.12)is satisfiedalong a particularintersection
of panel edges, the line integralin (B.3.9)can be ignoredalong thatedge.

But now we must justifythat (B.3.12)is physicallyreasonable. Consider
the three surfacesin figureB.13, illustratedin cross sectionin figure

B.14. Let PI' P2' and P3 be pointsa small distanceapart,as illlustrated
illustratedin figureB.14. Let us assume (andthis is not a completely
trivialassumption)that _ is continuousin each of the regionsVI, V2, and

V3, and boundedby some fixed value in the generalvicinityof the

intersectionline. Writing_i for 6(Pi), it is then true that _i does not

changemuch if Pi is moved slightly. Thus, we can let Pi approachone of the

surfaces_j withoutchanging_i much. In particular,lettingP1 and P2

approach_1' we see that _1 - _2 _ _1" In fact, in the limit as P1 and P2
approachthe intersectionline,

_1 - _2 = _1 (B.3.15)

Similarly,in the limit as the Pi approachthe intersection,

_3 - _2 = _2 (B.3.16)

(B.3.17)
_i - _3 = _3

Subtracting(B.3.15)from the sum of (B.3.16)and (B.3.17),we obtain

0 = - _1 + _2 + u3 (B.3.18)

which is equivalentto equation(B.3.12).

The previousargumentis generalizeableto an intersectionof n surfaces.
The assumptionthat _ be continuousoff the surfacesis valid (andis in fact
requiredfor the basic integralrepresentationformulato hold),but the
requirementthat _ be boundedin a neighborhoodof the surfaceis not
necessarilyvalid. It is, however,physicallyreasonable,since an unbounded
potentialproducesan infinitevelocity. So, we will make the assumption
within PAN AIR. The mechanismby which (B.3.12)is appliedis describedin
AppendixF. As a resultof this assumption,the line vortex term in (B.3.9)
may be ignored.
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We now returnto the proof of the relation(B.3.9). If we denoteby vD
- the part of _ (cf.equation(B.3.1))that dependsonly upon the doublet

strengthu, thenwe have

1
_D(PI=_Vp II _(QIR_Q(I/R1% (B31gl

SN Dp

If we write Stokes'theoremin the form

I" ss fy "dl . _ = (n dS x V ) . _ = (n . V x F)dS (B.3.20)

aS S S

then it is also clearlytrue that

aS S
-p

Setting G = u VQ (l/R)we obtain

aS S

S

+ _ _ (_ dS x Vq) x (Vq (l/R))

S (B.3.22)

Now the integrandin the secondterm on the rightcan be expandedusing the

standardformulafor a vector tripleproduct[(_x_)x_= _(_._')- _(_._)]to
give

(n dSQ x VQ) x (_Q (l/R)) = _ [dSQ (n.vQ) VQ (l/R)

- dSQ _ (VQ • V QI (l/R)]

Using the fact that the kernelfunction(l/R) satisfiesthe Prandtl-Glauert
equation(cf.equation(5.4.9)),

VQ • VQ (l/R) = 0 (B.3.23)

we may simplify(B.3.22)to obtain
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_sSdTx F. _Q (l/R)] = _SS(_ dS x VQ p) x _Q (l/R)

+ S_ u (n • VQ) VQ (l/R)dSQ (B.3.24)S

Using the fact that VQ (l/R)= - Vp (l/R),the secondintegralon the
right is clearlyequal to

_ u(_ •VQ) (l/R) dSQ- Vp S

Solvingfor this quantitywe obtain

Vp I_ u (_ • VQ) (I/R) dSQ = 55 (n x VQ ,) X_Q (I/R)dSQ
S S

-4-

+ S _ VQ (l/R)x dl
BS

(B.3.25)

In the case of supersonicproblems,this relationmust be interpretedas being
true in a distributionalsense,with all integralstaken to be finitepart
integrals. The modifiedequationreads

Vp _ _ (n . VQ) (l/R)dSQ = _ (n x VQ u) x VQ (l/R) dSQ

Sn Dp S NDp

+ _ , VQ (I/R)x _l
BSn D

P (B.3.26)

The expressionon the left is clearlyrecognizableas [_ _D (P)]'where _D(P)
-4-

was defined by (B.3.19). We find consequently that VD(P) may be split as
fol 1ows

_D(P)= (ii.)_ (_xvQ.)x_Q(IIR)dSQ
Sn Dp

+ (i/_) _ _ _Q (l/R)x dl (B.3.27)

_Sn Dp
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It is also clear that the substitutionof (B.3.27)into (B.3.2)yields the
splittinggiven by equation(B.3.9),completingour derivationof the line
vortexintegrationby parts.

If we assumethat the appropriatedoubletmatchingis performed,so that
the line vortextermcan be dropped,thenwe may write the followingformula

for T*(P), the regularpart of _(P): (comparewith equationB.3.9)

v (P) : (l/K) ;f o (Q)VQ (I/R) dSQ

Sn Dp

+ (l/K) ;; (n XVQ ,) XVQ (Z/R)dSQ
Sn Dp (B.3.28)

Now while the evaluationof _*(P) as given by (B.3.28)is a substantially
betterconditionedprocessthan the evaluationof _(P) as given by equation
(B.3.2),there stillremainsa mildly troublesomelogarithmicsingularityin
g*(P). This singularitycan be isolatedby a furtherintegrationby parts
called the line sourceintegrationby parts. While it is not possibleto
fully implementthis formulain PAN AIR*, we do state and prove it becauseit
helps motivatethe velocityjump matchingconditionused to enforcethe Kutta
condition.

We begin our derivationof the line sourceintegrationby partsby stating
the Helmholtzrelationfor the velocityjump Av acrossa singularity
surfaceS. The formulareads**

. _/(n,_)+ Vt u (B.3.29)AV : a

where _, the surfaceconormalis givenby

= B _ (B.3.30)

* Such an implementationwould requirea geometrysystemcapableof handling
a continuoussurfacenormal,_(Q), continuoussourcestrengtho(Q) and

continuouslydifferential(CI) doubletstrength,u(Q).

** A simpleproof of the Helmholtz'relation(B.3.29)is accomplishedas
follows. By virtueof the usual formulafor calculatinga vectortriple
productwe have,

v¢ : xv¢)x +

Evaluatingthis on the upper and lower surfaceof S, the singularitysurface,
we form the differenceand obtain (footnotecontinuedon followingpage)
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and the tangentialgradientoperator Vt is given by

vtf = (n xvf) x _/(n,_) (B.3.31)

ApplyingStokes'theoremin the form (B.3.21)to the vectorfield G = BAd(I/R),
we obtainafter using Leibniz'rule on the right hand side

SdTx (IIRI]:ff[ dSxV(IIRI]x
BS S

+ Jf (l/R) [(n dS xV) x BAli

S (B.3.32)

Now the first integralappearingon the right hand side of thisequationcan
be shown to be relatedto _* (cf. (B.3.28))by the formula

_f [_dS x V (1/R)]xBA_ = K _* - ff (a_) n • _ (I/R)dS (B.3.33)
S

To prove the formula(B.3.33),we simplyexpand the vectortripleproduct
in the integrandappearingon the left to get,

[n xV(i/R)] x BA_ = V(1/R) (n • BA_)

- n ( V (I/R) . BA_) (B.3.34) _

It is easy to show from the formulafor a_, (B.3.29),that

" _ _ (B 35)• Bav = v . av = _ ,3,

and that

(footnotecontinuedfrom previouspaget

(V_)u - (V_)L : [(_ x V(_u - _L)) x _]l(n,_)

+ (_ .V(_u - _L))_I(_,_)

We recognizethe left hand side as the jump in perturbationvelocity,av,
while the doubletstrengthand sourcestrengthappearon the right hand side
in the forms (cf.equations(3.2.6)and (5.2.7)),

= 6U " 6L

o : (_ .V_)U - (_ .V_)L

Using these facts,.weobtain finally,

_g = E(_xv_) x _]l(n,_)+ o_l(n,_)

reproducingequation(B.3.29).
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(B.3.36)_xav : _xvt. : _x v.

As a consequenceof this secondrelationwe find in addition

_ _ (V(I/R) . BAT) = -_ (V(1/R) • a_)

: (n x a_) x _ (IIR)

- a_ (n • V (l/R))

= (n xVu) x V (I/R) - a_ (n . V (I/R))
(B.3.37)

Substituting(B.3.35)and (B.3.37)into (B.3.34)we obtain

[n x V(1/R)] x BAT = a V(1/R) + (n x Vu) x V (l/R)

- a_ (n • V (I/R))
(B.3.38)

Integratingthis expressionover S thenyields

_ [_dSxv(I/R)]xBAT:_ [ov(I/R)+(_xv.)x_(_/R)]dS
JJ
S S

_[ AT B .v (I/R)dS (B.3.3g)
S

The first integralon the right is clearlyequal to ,_* as definedby
(B.3.28). This provesthe validityof the formula(B.3.33).

We concludeour derivationby substituting(B.3.33)into (B.3.32)to obtain

dT x [BAv (l/R)] = _ _* - AT n . V (l/R)dS

BS S

+ _ (l/R) (ndS xV) x
BA_

S

A trivialrearrangementof terms the-n-yieldsthe "line sourceintegrationby
parts:"

_'_" (n xV)x BA_ dS(i/_)
= - .}J R

S

+ (1/_) _S A_n .V (I/R)dS
S

+ (l/x) _ (dT x BA;) (I/R) (B.3.40)
BS

Note that the last term on the right,which we call a line sourceterm,
isolatesthe logarithmicallysingularpart of _*. The conditionthat must be
satisfiedin order to drop this term is quite similarto equation(B.3.12),
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the analogousconditionfor dro_pingthe line vortexterm. This condition,
imposedon the velocityjumps avi is given

n

si a_i : 0 (B.3.41)
i=1

We remarkthat this conditioncannotgenerallybe imposedin PAN AIR, even
along panel boundariesin the interiorof a network. The fundamentalreason
for this is that PAN AIR imposeson the functions_(Q), o(Q) and _(Q) only the
fairlyweak continuityrequirements

n(Q) € c-l(s),the class of piecewisecontinuousfunctions (B.3.42a)
on S

C-1o(Q) _ (S) (B.3.42b)

CO_(Q) _ (S), the class of continuousfunctionson S (B.3.42c)

whereasthe satisfactionof condition(B.3.41)in the interiorof a network
would require

n(Q) € C°(S) (B.3.43a)

COa(Q) € (S) (B.3.43b)

C1_(Q) € (S),the class of continuouslydifferentiable -
functions (B.3.43c)

It is the first and last of these requirements(B.3.43aand B.3.43c)that would

be most difficultto satisfy,both demandingthe servicesof a C1 geometry
system for the singularitysurfaceS.

Even though it is not generallyfeasibletoimpose the velocityjump
matching condition(B.3.41)along all subsurfaceboundaries,it has
neverthelessbeen found useful to imposea conditionderivedfrom it along the
trailingedge of a liftingsurface. This condition,sometimescalled the
vorticitymatchingKutta condition,has the form

n

t . _ si av_ = 0 (B.3.44)
i=1

where the vectort lies in the plane of the wake attachedto the lifting
surfaceand pointsdownstreamin the assumeddirectionof the convected
vorticity. In section(H.2.4)we will show how equation(B.3.44)enforcesthe

matchingof upper and lower surfacepressurecoefficients(linearCp rule) for
standardconfigurations.It is in the sense that equation(B.3.44)enforces

this matchingof upper and lower surfacevaluesof Cp, linear that it is
appropriateto call it a "vorticitymatchingKutta condition."

A few final remarksare appropriateconcerningthe line sourceintegration
by parts. We begin by adding the line vortexterm back in to equation(B.3.40)

B.3-10



to obtain an expressionfor the perturbationvelocityfield,_ = Vp _:

7= (ii IjjffxvR)xds +(iI.Ijjff (l/R)dS

S S

+ (I/K) (dl x BAV) (l/R) + (I/K) u VQ (l/R)x dl
BS BS

(B.3.45)

First note that the terms on the first line bear a strikingresemblanceto the
sourceand doubletterms of the standardrepresentationof _,

= -(1/_) .-f_a[n .R_] dS + (1/_) ___fa_ n .VQ (l/R)dS
S S

In fact it can be shown that the jump in the conormalderivativeof v,

a[(n.v)v]satisfiesthe condition

so that the analogybetweenthe two representationformulasis indeedquite
close. Of coursewe would ratherexpectthis to be the case given the fact

that_ =Vp 6 must also satisfythe Prandtl-Glauertequation. What is
somewhatsurprisingabout equation(B.3.45)is the appearanceof the singular
line vortexand line sourcetermson the secondline. The linevortexterm
must be added in to make _ irrotationalfor those doubletdistributionsthat
do not satisfythe usual doubletmatchingconditions. Similarly,the line
sourceterms are requiredto preservethe conservationof mass condition

_._:o

for surfacedistributionsof a_ that do not satisfyvelocityjump matching
conditionsof the form (B.3.41).
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B.4 Linear Sources and Quadratic Doublets

In this section we outline a justification for the use of a linear source
strength approximation and a quadratic doublet approximation. For simplicity,
we assume M_ = O, though the proof is readily extendable to all subsonic Mach
numbers. These results cannot be readily generalized to supersonic Mach
numbers, however.

Nevertheless, for both supersonic and subsonic flow, we can show that a
doublet distribution whose order is one higher than that of the source
distribution is reasonable. We do this by considering the jump _D in
velocity occuring on a surface. In section N.I, we find

_D =_, + _° _ (B.4.1)

Thus the discontinuity in velocity has the same direct dependence on doublet
gradient as on source strength. In addition, we will see in section J.11 that
a discontinuity in doublet gradient induces the same singularities in
potential and velocity as a singularity in source strength.

For these reasons we conclude that the doublet gradient is the same order
of singularity as the source strength. It is thus reasonable to approximate
the source strength and the components of the doublet same order of
polynomial. Thus the doublet strength should be approximated by a polynomial
of one degree higher than the source strength.

We now consider the case of zero Mach number. We consider the
perturbation velocity resulting at a point P = 0 due to a source distribution

_(_,n) = _ _ij _ini, i > O, j > 0 (B.4.2a)
i+j < n - -

or a doublet distribution

,ij_in j (B.4.2b)
,(_,n) = i+j < n

on the square region S of size 2€ x 2€ about P, illustrated in figure B.15.

Let us first consider the source distribution. By (B.3.1),

1 Vp!_ -a(_,n) d_dn (8.4.3)
_S(x'Y'Z) - 4_ S/(_-x) 2 + (n-Y) 2 + (_-z)2

1 EC _i+1 nj
Thus, Vx (P) :TT-_ II - aij d_ dn (B.4.4)

____ (_2 + n2)312
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CE

i II - oij j+i
vy(P) =4_ 312 d_dn (B.4.5)-€-€ (_2+n2)

and

= lim 1 _€ _i
vz(P) z>O 47 II - aij nJ(-z)

-€-€ (_2+n2+Z2)312 d_dn (B.4.6)
Now, let us consider(B.4.4)one term at a time; that is, we assume

_(_,n) : oij _inJ (B.4.7)

If (i+j) is even, the integrand in (B.4.4) is an "odd" function in _ or n;
that is, its value at (_,n) is minus its value at (-_,n), or minus its value at
(_,-n), and thus the integral over S is zero. Similarly, if (i+j) is even,
the integral (B.4.5) corresponding to that term is zero. Finally, let us
consider the integral (B.4.6) for a single term.

We have

vz(p ) lim oij z CE _inJ d_dn (B.4.8)
= z_O_ _'.#" 312-€-€ ( _2+n2+z2)

€

Now, f _ _ d_ :
0 (_2+n2+Z2)312 (8.4.9) .--

(substituting u = _2+ n2 + z2 )

_2+n2+z2 1_2+n2+z2f (u-3/2) 112 du = [ -u-1/2]

n2+ z2 I n2+ Z2

= 1 _ 1 (B.4.10)
(n2+Z2)112 (¢2+ n2+ z2)i12

When this functionis integratedover n, the result is f(€,z) - log Izl where
f(¢,z) is boundedas.z._O.Thus the limit in (B.4.8)is zero, providedi = 1.
Since € is small, _InJ < i{i so the limit in (B.4.8)is zero whenever
i _>1. Similarly,it is zerowheneverj _>1, so we see that

limf f
z)O -_-8 (_2+n2+Z2)312

if i+j > I, and in particular, whenever i+j is even and greater than zero.
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So, writing

I _pII _ij_inj d_dn
_s(P)iJ - 4x S ((_-x)2+(n-y)2+(_-z)2)1/2 (B.4.12)

s

we have _ (P) = 0 (B.4.13)
ij

if i+j is even, and i+j > O.

Let us now considerthe velocity

v-_(P)ij =

• I d_dn (B.4.14)
I Vp II uij_Inj n'_Q [(__x)2+(n_y)2+(__z)211/2'4T S

inducedby a polynomialdoubletdistribution

u(_,n)= uij_ini (B.4.15)

on the region in figure B.15.

Now

= (B.4.16)

and so R .VQ = BI_ (B.4.17)

Now,
I

_ [(__x)2+(n_y)2+(__z)2] 312 :

_(__z)/[(_-x)2+(n-y)2+({-z)213/2 (B.4.18)

and since _= O, x=y=O

v-_D(P)iJz>O _ uij I,r 3z _ini +_
S [_2+n2+Z21312

S [_2+n2+Z2] 3/2
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Forthexan ycomponentsweseethatif iseventhen
the integrand is an odd function, so the integrals are zero. If i + j is odd
and greater than i, then performing an integration similar to (B.4.9) shows
that the integrals in (B.4.19) are of the form f(€,z) - log z where f(_,z) is
bounded as z_ O. Multiplying by z and taking the limit as z . 0 we conclude
that

>D
_ (P)ij : Vy (P)ij = 0 (B.4.20)

if i + j > 1.

The z componentof _D(P)ijbehavessomewhatdifferently,due to the
presenceof the secondterm. Both termsvanish if at leastone of i or j is
odd, by the usual odd functionargument. In addition,the first term is zero
if i + j _ 3 by the same reasoningas the lastparagraph. The secondterm,

lim ,ij Sf _inJ d_dn (B.4.21)
z>O _ S ({2+n2+z2) 3/2

does not necessarily vanish if both i and j are even. But it is of order €2
if i . j _ 4, and since it vanishes for i + j : 3, it seems reasonable to
approximate the local doublet distribution by a polynomial with i + j _ 2.
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C.O The Design Problem

In the design problem the user attempts to obtain a configuration whose
shape is unknown, but is subject to certain constraints. For instance, a wing
may be required to have a certain planform, but its camber and thickness
distributions may be the subject of the design process. The constraints
involved in this case would be (I) that the surface be impermeable, and (2)
that particular pressure or tangential velocity distributions be required.

Now, specification of both normal and tangential flow on a surface is an
overspecification of boundary conditions, and thus in general there is no one
step solution to the design problem. The exception is called "linearized
design", in which the user is satisfied with a first order approximation to
the solution. This method is discussed in section C.I.

In section C.2, we discuss a somewhat more sophisticated procedure, which
we call sequential design. This is a non-automatic iterative procedure in
which a single loop in the iteration consists of:
(a) a potential flow analysis (for example, a boundary value

problem with impermeability boundary conditions) of the configuration at
hand,

(b) a comparison of the pressures computed in (a) with the
desired pressure distribution, leading to the specification of tangential
velocity boundary conditions,

(c) solution of the potential flow problem for the tangential
velocity boundary conditions, and computation of the normal flow through
the surface, and

(d) "relofting" of the configuration geometry, using the normal
flow data, in order to produce a more nearly impermeable surface.

This procedure can be executed in the first version of PAN AIR, though steps
(b) and (d) will have to be performed manually by the program user.

In section C.3, we briefly discuss a still more sophisticated design
method, which we simply call "iterative design". This method is distinguished
from sequential design in its relofting method.

Finally, in section C.4, we discuss stability problems occuring from the
discretization process. These problems generally result when a small
perturbation in a boundary condition generates a perturbation in the solution
which does not die out with distance. Since the discretization process always
results in some numerical error, stability problems can result in a totally
incorrect solution.

We do not discuss the imposition of "closure" boundary conditions in this
appendix, but rather discuss that subject in section H.2.
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C.I Linearized Design

The basic assumption of linearized design is that

Cp = -2u (C.I.I)

where Cp is the pressure coefficient at a point, and u is a component of the
perturbation velocity

(x,y,z) = (u,v,w) (C.I.2)

Again, we assume IV_I = I.
Equation (C.I.I) will be derived in Appendix N. Generally speaking, (C.I.I)
is valid only for thin configurations with little camber at small angles of
attack, such as the configuration in figure C.I.

Now, the program user wishes to specify a difference in pressure distri-

bution ACPs (x,y,z) on the configuration, where

aCp = Cp, upper - Cp, lower (C.I.3)

Noting that u : _.V_ (C.I.4)

(since IV_I = I) we have

ACp = -2(_U-_L)'_

: -2_ (@U-@L)" Vo:

: .¢. (c.I.5)

Thus, the boundary condition to impose at (x,y,z) is

(-2_)-_, : ACPs (x,y,z) (C.I.6)
which is of the form

_O "_. = b (C.1.7)

(see (5.4.21) for the general boundary condition equation).

Now, the boundary value problem described by (C.I.7) is solved numerically, in
the course of which the total mass flux at the control points is evaluated.
The mass flux is used to reloft the surface as follows. The procedure we
describe is not incorporated in version 1.0 of PANAIR.

The relofting takes place one network at a time (for a brief discussion of
networks and panels, see section 5.1). Two edges of the network are left
fixed or, if the geometry of the adjacent network has been relofted, these
edges are adjusted to close the gap. In figure C.2, these edges are edges I
and 4.
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The remainder of the network is relofted one panel corner point at a --
time. This is done by alternately relofting columns and rows of corner
points. For instance, in the example of figure C.2, first point (2,2) is
relofted, then (3,2), etc., then (6,2), then (2,3), then (2,4), and then we
move one row and column inward, relofting (3,3),...,(6,3), and then (3,4), and
one final time we move one more row and column inward, and then the whole
network in figure C.2 has been relofted. Thus a point is relofted only after
all the points closer to the network origin (in an indicial sense) have been
relofted. We now describe the relofting procedure for a typical point.

The point P4(see figure C.3) is relofted to a point P_ as follows.
4 |_ ° 'Let AP4= _4-P4 • Then the user chooses a direction d for AP4, that is

requires that
a_4= kd (C.I.8)

One then determines the value of k which minimizes W._', where B'is the normal
of the relofted panel. In Appendix D, we show that

(_3-_i) x (_4-_2) (C.I.9)
_' - I(_3-_i) x (_-_2)I

So, we can equally well minimize

: x t cc
where a is the denominator of (C.I.9).

Writing _4': _4 + kd (C.I.11)

we minimize If(k)1 , where

_{(_3-_i)x(_4-_2)}.k_(_3-_)x_ (C_2)f(k)

which, being linear in k, is zero for

• (P3-PI) x (_4-_2) (C.1.13)

x
T_is _s well defined p_oviding d has been chosen so that_it _s not parallel to
(g3- P1) and provided W is not in the plane spanned by (P3- _1) and d.

So, (C.1.11) defines P4°, and we may continue to the next corner point to be
relofted.

In the case of linearized design, we stop here, since we have the best
answer we can obtain with the linear pressure formula. The relofted
configuration is considered the surface whose distributions of pressure and
normal mass flux are the desired ones.
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__ C.2 Sequential Design

In sequential design, the first step is again to supply a guess at the
configuration which will yield the desired pressure distribution, and solve
the potential flow problem about that configuration with zero normal flow
boundary conditions. This results in a pressure distribution Cp (x,y,z).
Generally speaking, the second order or isentropic pressure formula would be
used to compute this pressure distribution. Now, barring remarkable
aerodynamic insight on the part of the user, this pressure distribution will

differ from his desired distribution CPs(X,y,z), but hopefully not by too
much. Wealso compute the preliminary perturbation velocity distribution

(x,y,z) resulting from the potential flow solution.

Now, we "linearize" about our previous solution by making the assumption

(analogous to (C.I.I)) in that if CPs(X,y,z) is close to CpF(x,y,z), then

CPs(X,y,z ) - Cpp(X,y,z) : -2_. (¢S(x,y,z) - _p(x,y,z)) (C.2.1)

where ¢S is the unknown velocity distribution which produces the desired

pressure distribution CPs. Solving for the freestream component of _S,

_ .¢S(x,y,z)= V_.¢p(x,y,z)- 1/2(CPs-CPp) (C.2.2)

Consideringthe configurationin figureC.4 (in which Cp,unner= aCp

since Cp,lower = 0), equation(C.2.2)shows that we apply _e boundary
condition

tD • _u = b (C.2.3)

since v_ : _U - _L = _U (C.2.4)

where _D is the projection of _== to the surface

and b = _==-Cp(x,y,z) - l/2(CPs-CPp) (C.2.5)

Now, once the potential flow problem with the boundary conditions has been
solved, the relofting is performed just as described in section C.1. Then
an analysis case (that is, a potential flow problem with impermeability
boundary conditions) is run, and the new pressure and velocity distributions
are evaluated, and the next cycle of the procedure continues.

If all goes well, the procedure converges, resulting in a configuration of
reasonable shape, with the desired pressure distribution. Unfortunately, if
the initial guess does not yield a pressure distribution Cp (x,y,z) close to
Cp (x,y,z), the procedure may fail to converge.
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C.3 Iterative Design

The procedure we describe briefly in this section is much more accurate
and rapidly convergent than sequential design, but also considerably more
sophisticated, and not available in PAN AIR. It encompasses two features not
found in sequential design. The first one is full automation; the relofting
and the formulation of the boundary conditions are performed automatically by
the program. The second is a more sophisticated relofting method.

This relofting method involves "differentiated influence coefficients".
That is, once the potential flow solution has been performed, and the source

and doublet parameters are known, the matrices 3¢(Pi) are computed for
CPj

all i and j, where Pi is the ith control point, and CPj is the jth panel
corner point. The matrix [Bv/BCPj] is a 3x3 matrix, one of which exists for
each pair of control point Pi and corner point CPi, whose k,l entry is
BVk/BCPI. Given these matrices, standard optimization techniques can be
used in order to generate a revised geometry for which ff W._' dS is

S
minimized, subject to user-input constraints such as leaving the planform area
the same.

We will not discuss this process further here, since PAN AIR does not make
use of differentiated influence coefficients, and thus does not perform
iterative design. A more detailed discussion of iterative design, for the
special case of leading edge vortices, is given in reference (B.2).
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C.4 Stability

The problem of stability arises from the inherent numerical error in the
discretization process, rather than from the theory of the Prandtl-Glauert
equation. It is the splining method (see section 5.5 for a discussion of
splines) in combination with the boundary conditions which is called stable or
unstable. Precisely, a spline is called unstable if the perturbation of a
single boundary condition results in a perturbation in the original solution
which does not die out with distance from the point at which the boundary
condition is located.

In checking for stability, we may make use of the fact that the sum of
solutions of the Prandtl-Glauert equation is again a solution. Thus, the
solution to any boundary value problem is a linear combination of individual
solutions of cases in which one boundary value is set equal to one and the
rest are set to zero. We thus check for stability by observing the
singularity distribution which occurs when one boundary value is set to one
and the rest to zero. The resulting singularity distribution should rapidly
dimimish in magnitude as the distance from the non-zero boundary condition
increases. We consider a spline more stable, the more rapidly the singularity
distribution diminishes.

The simplest way to illustrate stability is with two-dimensional
examples. Thus, a "network" of "panels" consists of a sequence of intervals.
For simplicity, all our splines will be doublet splines, though what we
discuss will be applicable to source splines as well.

- In figure C.5, we illustrate a doublet spline with singularity parameters
and control points located at panel centers, and for which the doublet
strength on a panel is constant, and equal to the singularity parameter
value. In figure C.6, we illustrate the doublet distribution arising from the
boundary conditions _ : 0 at all but one control point, u : I at the remaining
one. We see that the perturbation induced on the uniformly zero solution by
the single non-zero boundary value dies down extremely rapidly; in fact, the
perturbation is zero except on the single panel containing the non-zero
boundary condition. Thus this spline is very stable. But we know (see
Appendix B.4) that locally constant splines are insufficient, so we consider a
quadratic spline, as illustrated in figure C.7. Because of the rapid
variation a quadratic function may exhibit, control points and singularity
parameters are required at the network edges in order to define the
singularity strength adequately.

The spline is a piecewise quadratic one, where the quadratic variation is
constructed as follows. The value of, for instance, _(P) is determined by
finding the quadratic function f(x) which goes through Q2 and Q3 exactly,
and then goes through QI and Q4 in a least squares sense. Then _(P) is
given as f(P). The details concerning the method by which we obtain the row
vector S of length 4 such that

.(P) : L_

,(Q_) (C.4.1)

are given in Appendix 1.5.
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Now, once we know u at every cornerpoint on the network,the quadratic
distributionof u on an intervalis that quadraticfunctionwhich takes on the
computedvaluesat the endpoints,and the singularityparametervalue at the
panel center. Consideringthe intervalin figureC.8, in the local
coordinatesillustratedthere,we have

u(x) = a+bx+cx2 (C.4.1)

_(-I) = u(P) = a-b+c (C.4.2)

u(O) = _(Q) = a (C.4.3)

_(1) = ,(P') = a+b+c (C.4.4)

So, subtracting(C.4.2)from (C.4.4),

2b = _(P') - u(P) (C.4.5)

while, adding these equations,

2a + 2c = u(P) + u(P') (C.4.6)

= 2c + 2u(Q) (C.4.7)

Thus (by (C.4.3)) we have values for a, b, and c, and so

,(x) : ,(Q) + u(P')-u(P)2 x + ,(P)+u(P')-2,(Q)2 x2 (C.4.8)

In figure C.9 , we illustrate the doublet distribution we obtain by setting
= i at one control point, and u = 0 at the others, given the spline just

described. Note that this spline is nearly as stable as that of figure C.6;
the disturbance dies down very quickly.

Further, this spline yields a doublet strength which is continuous across
panel edges, something which is very important.

But the same spline, with boundary conditions

_u _ 1 (C.4.9)
BX

at the last control point, and

B___u: 0 (C.4.10)
Bx

at the others (except u : 0 at the first control point to insure uniqueness)
yields the doublet distribution (solving the boundary value problem
numerically) illustrated in figure C.I0, which compares unfavorably with the
identically zero doublet distribution obtained by replacing the right size of
(C.4.9) by zero.

But now, consider the doublet parameter and control point locations
illustrated in figure C.11. If we impose the boundary conditions (C.4.9) and
(C.4.10), we claim that the resulting doublet distribution is illustrated in
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- figure C.12. While the doublet distribution in figure (C.10) was obtained
numerically, that of figure (C.12) can be obtained theoretically in the
following manner.

Consider a distribution u(x) : a+bx+cx 2 on the interval in figure C.8.
Now,

: YT(o) : b (C.4.11)

and by (C.4.5)

b : u(P') - u(P) (C.4.12)2

Thus,

u(P ) : u(P) + 2b : u(P) + 2_ (Q) (C.4.13)

So, applying (C.4.10) and (C.4.13) to figure C.12 with P=Po, P' = P1,
Q=QI, we obtain

,(PI) : 0 (C.4.14)
i

But now that we know u(Pl), we apply (C.4.14) to the second intervals, and so

u(P2) = 0 (C.4.15)

Wecontinue this way, obtaining

u(Pi) = O, i<6 (C.4.16)

u(P)7 = "(P6) + 2 _-<xQ1) = 2

,(P6 ) + 2 _ (Q7) = 2

If we now obtain u(Qi) by least squaring to the 4 surrounding Pi, we see

,(Qi) : O, i _ 5 (C.4.17)

,(Q6) = 0 (C.4.18)

,(Q7) = i (C.4.19)

and thus we obtain the doublet distribution of figure C.12.

So, comparing with figure C.IO, we see that the imposition of doublet
derivative boundary conditions at panel centers requires a different spline
than the imposition of boundary conditions defining doublet strength. This
situation generalizes to three dimensions, and thus requires different splines
for design (that is, doublet gradient) boundary conditions than are used for
analysis (that is, normal mass flux) boundary conditions.
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D.O Geometry of Networks and Panels

This appendix will discuss the manner in which PANAIR handles
configuration geometry. In section D.I, we will describe the different types
of "networks" by which a program user can describe a portion of the
configuration. Wewill also discuss modifications in the geometry generated
by the program under certain circumstances. In section D.2, we will discuss
basic panel geometry. In section D.3, we will discuss the geometric error
detection methods which discover geometric situations which could cause,the
program to execute improperly or terminate abnormally.
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D.1 Networks

A network is an array (with, say, M rows and N columns) of points in space
which define a portion of the configuration geometry. In addition, source and
doublet distributions are defined on the network (that is, the network is a
"composite" network), with singularity parameter locations and spline methods
determined by the network's "source type" and "doublet type".

D.I.I Network Types

The possible source types are "analysis", "source design i," "source
design 2," and "null", while the doublet types are "analysis", "doublet
forward weighted," "design", "wake 1", "wake 2", and "null". Source and
doublet analysis networks are used in conjunction with boundary conditions
defining impermeability. Design networks are used in conjunction with
"design" boundary conditions, that is, those which specify tangential
velocity. Note that a "doublet forward weighted" network is really a doublet
design network. A network of type "null" is used to denote that the source or
doublet strength is zero; one could equally well use an analysis network in
conjunction with the uniform boundary condition

a=O

or u = 0

To model a wake, as described in section B.2, one would generally use a
doublet wake network in conjunction with a source null network. The boundary

- conditions, which are only imposed at the wake leading edge, specify the
matching of doublet strength on that edge to the doublet strength at the
trailing edge of the adjacent wing network(s). In figures D.1 through D.3, we
illustrate the singularity parameter locations corresponding to each of these
network types.

D.1.2 Wake Networks and the Kutta Condition

Two types of wake networks are available. In Wake 1 networks, the doublet
strength is variable along the leading edge, and constant in the indicially
perpendicular direction. In wake 2 networks, the doublet strength is constant
over the entire network. In the example of figure B.9, the wake extending
behind the wing would generally be modeled with a wake i network, while the
portion of the wake extending back from the body would be modeled with a wake
2 network.

The two types of wake networks have distinct purposes. The wake 1 network
is PANAIR's approach to satisfying the Kutta condition (see below), while the
purpose of the wake 2 network if to carry over the doublet strength from the
wing to the plane of symmetry.

The Kutta condition, which should hold at the trailing edge, is

a Cp = 0 (D.1.1)

where Cp is the pressure coefficient. If the freestream direction is the x
direction, and the freestream has unit magnitude, then (cf. (C.I.5)) for a
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thin wing, the linear expresssion for aCp is

aCp :-2 _u3x (D.I.2)

Now, the boundary conditions on the wake insure doublet continuity from
the thin wing to the wake. In addition, it follows from section J.11 that the
zero normal mass flux boundary conditions along the trailing edge of the wing
insure the continuity of the x-component of the doublet gradient.

Now, the wake spline is such that the doublet strength is constant in the
streamwise direction, that is,

I

I = 0 (D.I.3)wake

Since the normal mass flux boundary conditions insure matching of the doublet
x-derivative, we have, in light of (D.I.2),

I

aCpl : 0 (D.1.4)trailing edge of wing

Thus for a thin wing, the use of a wake 1 network results in the
satisfaction of the Kutta condition, using the linear pressure coefficient
formula. It is therefore natural to use the wake i network to satisfy the
Kutta condition for a thick wing. This is done in PANAIR, even in the
absence of a theoretical justification of its validity.

Wake 2 networks have a purpose which is not related to the Kutta
condition. In figure B.9, we show a wake 1 network emanating from the wing
trailing edge. Now, the body is not a lifting surface, and therefore one
would not in general expect a panel method to require a wake emanating from
the body. The wake 2 network is required in PANAIR, however, because in its
absence the doublet matching boundry conditions on the wake 1 network would
drive the doublet strength to zero along its inboard edge.

Because the doublet strength on the wake is constant, the doublet gradient
is zero, and thus the surface vorticity, _ x Vu, is zero. This corresponds to
the physics of the configuration; that is, the body "sheds" no vorticity.

D.1.3 Indexing

Wenow discuss the indexing system used internally in PANAIR. The user
specifies an array [CP(I,j)] of panel corner points, where I, i < I < M, is
called the row index, and J, I < J < N, is called the column index. -The upper
surface is defined by an upward-pointing unit normal B whose direction is the

vector cross product (direction of increasing column index) x (direction of
increasing row index). In figure D.4, we illustrate a network with B pointing
up from the paper. The network edges are labeled in counterclockwise fashion
as shown, and each panel's corner points are similarly labelled in
counterclockwise fashion. The point CP(1,1) is called the origin of the
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network. Finally, a panel _ is given a row index and column index equal to
the row and column index of the point P1 on E .

Singularity parameters are indexed by a distinct integer for each
parameter. For each index, the parameter type (source or doublet) and
location are stored, and, conversely, for each location on a network, the
program stores the indices of any singularity parameter located there.

D.I.4 Collapsing of Network Edges

Network edges are collapsed when a network of the type illustrated in
figure D.5 is defined by the user. The distance shown there is a user-input
"tolerance distance" (€). The short edge of the network in that figure is
collapsed as follows: the five panel corner points on that edge are each
replaced by the same new point whose coordinates are the averages of the
coordinates of the endpoints of the edge. Thus, the revised network has panel
corner points as illustrated in figure D.6. The array of points is still a
rectangular (MxN) array, except that now the same point occurs five times.

The reason for collapsing a network edge is that the existence of nearly
triangular panels (as opposed to exactly triangular panels) such as those in
figure D.4 causes nearly singular spline matrices, resulting in significant
numerical error. On the other hand, triangular networks (which necessarily
have triangular panels) cannot be excluded from consideration because the
natural paneling of many surfaces such as delta wings (see figure D.7)
requires the use of triangular networks.

- A network edge is collapsed whenever the average panel edge length on the
network edge is less than the tolerance distance. If, however, the average
panel edge length exceeds €, yet one or more of the panel edges have length
less than €, the program terminates. The edge cannot be left uncollapsed
because some of the panels are too nearly triangular, it cannot be collapsed
because the user-input geometry would be excessively perturbed, and it cannot
be partially collapsed because of the indexing problems which would result
when singularity parameter locations are assigned.

D.I.5 Additional Network Processing

Additional processing is performed on the geometry of each network, but
will not be discussed here. This processing includes labeling of all but one
singularity parameter on a collapsed network edge as "null", and storing data
concerning each network edge separately in preparation for the automatic
abutment search described in Appendix F.3. Since this data is associated with
computing questions rather than engineering questions, this processing will be
discussed in section 3 of the maintenance document.
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D.2 Basic Panel Geometry

- In this section we describe some basic quantities concerning panelgeometry.

A panel is uniquely defined by its four corner points Pi, i=i,...,4, but
for convenience we define nine panel defining points as shown in figure D.8
where P5,...,p8 are panel edge midpoints, and

_ _

_9 :_ (Pl + P2 + P3 + _4) (D.2.1)

Note that even though Pi, i=i,...,4, are arbitrary, Pj, j:5,...,9 lie
in a plane. The proof comes from noting that by definitlon an edge midpoint
is the average of the endpoints of the edge, and so

½(_P5 = I + P2)

_6: ½(_2+ _3)

_7=½ (_3.P_) (o.22)

_8:½ (_4+_i)
and so

_ _ (P5 + P7) : (_1 + P2 + _3 + P'4): _9

I _ _ _ __-_(_6 + P8) = (P2 + _3 + _4 + P1) = _9 (D.2.3)

Thus P5,...,p8 lie in the plane definedby the line connectingP5 and
P7, and the line connectingP6 and P8.

Thus P9 is the midpoint of the edge P5P7 as well as of the edge
P6P8, and so P5,P9 and P7 lie on a line, as do P6,P9, and P8-
But a basic theorem in geometry states that there exists a plane containing
any two intersectinglines, and so P5,...,P9lie in that plane,which is
called the panel's "averageplane".

We define the panel normal _ as the unit vector normal to the plane
containingP5,...,p9,a vector which is unique providedthe plane is
unique, that is, providedthe set P5,...,P9 containsat least 3 distinct
points. The vecto_ n can be computedin a multitudeof ways:

=± xW
Ix_l (D.2.4)

for any linearly independent pair of vectors _ and W lying in the plane.
Equation (D.2.4) holds because the cross product of_two vectors is
perpendicular to each of them; the condition that V and _ be linearlyindependent (i.e., non-parallel) insures that
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(0.2.5)

since x # = I#1 sine (0.2.6)

where e is the angle between _ and W. Further, 161= 1 as long as the
denominator of (0.2.4) is non-zero.

In practice, PANAIR defines

_I0 = i12 (_5 + _6)

_11 : 1/2 (_6 + _7)

PI2 : 1/2 7 + P8)

_13 = I/2 (_8 + _5) (D.2.7)

and _ : (PIo- PI2) x (Pll- P13)
I(PIo-P12) x (Pll- P13)I (D.2.8)

which insures that _ points up out of the paper (see figure D.8). The
equation (D.2.8) is used in PANAIR because that formulation would hold even
for "curved panels" (not included in version 1.0 of PANAIR) for which
P5,...,P9 do not lie in a plane.

We now compute _ by a different method, in order to obtain a result used
in section C.I. Applying (D.2.4),

(P5-P7)x (P6-P8) (D.2.9): I(P5-P7) x (P6-P8)I

and thus, substituting(D.2.2)into (D.2.9),

1/2(P1+P2-P3-P4) x 112(P2+P3-P4-P1)

: I1/2(PI+P2-P3-P4) x 1/2(P2+P3-P4-PI)I (D.2.10)

The numerator of (D.2.10) is

= 1/2 (_i-_3)x (_2-_4) (D.2.12)
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Substituting this into (D.2.10),

: (P'z-_3) x (P2- P4)
"'I(PI-P3) x (P2- P4)I (D.2.13)

a result quoted in sectionC.1.

Now, PI,...,p4need not lie in the plane containingP5,...,P9.
Thus, a panel contains 5 planar regions;the center regionwhich containsfour
triangularregions as illustratedin figure D.9, and 4 outer regions
containingone triangularregion each. The triangularregions are called
subpanels,and so a panel contains8 subpanels which are labeled in figureD.8.

Much of the geometricdata for a panel is computedfor each subpanel,
though this is occasionallyredundant. These include: (1) a subpanelorigin
and referenceto local transformationdescribinga local subpanelcoordinate
system (see Appendix E), (2) a subpanelunit normal vector and co-normal,(3)
the subpanelarea, (4) unit edge tangentvectorsfor the subpanel edges along
with their "compressible"norm, (5) subpaneledge normals in local
coordinates,(6) a Jacobianfactor relatingsubpanelarea in global
coordinatesto that in local coordinates,and (7) a flag indicatingwhether
the subpanel is subinclinedor superinclined.

To obtain the unit normal to the subpanelillustratedin figure D.9, wecompute

: x
I(Pj - Pi x Pk- Pi)l . (D.2.14)

where B is not computed if the denominator is less than I0 -I0. In that
case, the subpanel area is set equal to zero, and no subpanel calculations are
performed. The area of the subpanel is (from geometry)

A : 1/2 l_j-_il l_k- _il sine (D.2.15)

Combining (D.2.6)and (D.2.15),

A = 1/2 l(_j- _i) x (_k- _i)l (D.2.16)

The unit edge tangents are

= Pj- Pi
l_Ti i (D.2.17)

etc. The compressiblenorm of _.(seeAppendix E for a discussionof this

norm) is (by definition)

[_,t] = _._ - M2(_o. _)2 (D.2.18)
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The subpanel conormal is defined in compressibility axis coordinates (in which
the compressibility direction cO = (I,0,0)) as _

= ny (D.2.19)

nz

= (sB2-1) (ao'A)_ o + A (D.2.20)
since

nx = _o'n (D.2.21)

Thus, n = n - M_(co'n)Co (D.2.22)

The Jacobian factor J is given by

j = Area in reference coordinates
Area in local coordinates (D.2.23)

Its use will be discussed in Appendices I and J.

Finally, the sub-panel is "subinclined" if

_._ > 0 (D.2.24) --

and "superinclined" if

_.B < 0 (D.2.25)

If _._ = 0 (D.2.26)

the subpanel is "Mach-inclined", and the program terminates for reasons which
will be discussed in Appendix E.

Some items of data computed for each panel are not concerned with just a
single subpanel. For instance, all the data computed for the subpanels is

also computed for the "projected panel", the projection of the panel _o theaverage plane. In addition, it is computed for the four "half panels , that
is, the triangles PIP2P4, P2P3Pl, P3P4P2' P4PiP3"

These data are needed to compute "intermediate field" influence coefficients,
in the computation of which the panel is approximated either by two half
panels or by the projected panel. These are used when measuring the influence
of the panel on a control point which is sufficiently far not to require the
8-subpanel representation of the panel, but not far enough to permit the far
field influence coefficient computation method (see Appendix J.2). All the
items are computed for the projected panel or half panels in the same manner
as for subpanels. Redundant data is not necessarily computed (e.g., the
projected panel is super- or sub-inclined whenever subpanels 5 through 8 are).
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Finally, the program calculates, for each panel, its radius, its diameter,
and certain skewness parameters. The radius is the distance from the center
to the farthest corner point and the diameter is the maximum distance between
any two corner points. The skewness parameters result from a non-orthogonal
transformation of coordinates after which

io}{i} {o}{o}P9 = 0 , P8 = 0 , P5 = 1 , B = 0 ,k > 0 (D.2.27)

0 0 0 k

Wemay see from figure D.8 that this is not the standard choice of x and y
axes, but it results from having derived the relevant formulas with the panel
in figure D.8 rotated by 180o.

We use this coordinate system, which we write (x*,y*,z*) because the
interior region bounded by P5,...,P8 becomes a square, as illustrated in
figure D.IO. Note that in general (since most panels are not square), this is
not an orthogonal coordinate system. The numbers Ci_ , j:l,...,4, i=1,2, are
called skewness parameters since they are all zero f6r a panel which is a
parallelogram in the original coordinate system as

(_I- _9) = (_5- _9) + (_8- _9) (0.2.28)

_ for a parallelogram.

The doublet subpanel spline matrices are calculated in the (x*,y*,z*)
coordinate system, but rather than transform the panel coordinates, we compute
the matrices using the skewness parameters (see section 1.2 for details).

Computing the skewness parameters is fairly straightforward. Combining

_1 = * C21 (D.2.29)

Z

with (D.2.27), (D.2.28) we obtain

(_i-_9): (1 + Cll) (_8-_9)

Z

+ (1 + C21) (_5- _9) + _ _ (D.2.30)
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Taking the cross product on the left with (P8-P9), and dotting into n, we
obtain

{(_8- _9) x (_1- _9)} "n = (1 + Cll ) O-n

+_+c_{(___ix I_-_I}._
z [(_8- _9) x B].n (D.2.31)+T

The final term is zero, and so

{(_8-_g)x (_i-_g)}._
C21 : (P8- P9) x (P5- P9) "B - 1 =

(P8- P9) x (P5- P9)"_ (D.2.32)

Similarly

{(_-_9)x(_5-_9))._: ((_. c_)(_-_9)x (_-_9))._ (D.2.33)
{(_-_9)x(_s-_9)}_and thus Cll = - 1
(P8- Pg) x (P5- Pg)'B

= ((P8-PB) x (P5-PB)}.B (D.2.34)

Examinationof figure D.IO gives us

C12 = Cll

C22 = -C21

C13 = -Cll

C23 = -C21 (D.2.35)

C14 = -Cll

C24 = C21

This concludesthe discussionof basic panel geometricquantities.
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D.3 Error Checks

In this section, we summarize the basic checks performed by the program to
insure that the geometry of the configuration is admissible These checks arethe following:

a. Check if the average panel edge length on a network edge exceeds the
tolerance €, while some panel edge length is less than € (violation is afatal error).

b. Check if two adjacent edges of network collapse. This is inadmissible
because the calculation of spline matrices would be impossible for panels
near both collapsed edges. See figure D.II for a network in which
adjacent edges are collapsed.

c. Check if a panel edge in the network interior has length less than €.
This is inadmissible because of logic problems which would occur in
calculating the spline matrices if the edge were collapsed, and numerical
inaccuracies occurring from nearly triangular panels.

d. Check the panel aspect ratio. This is the ratio of the furthest distance
from the panel center to its boundary over the smallest distance. Large
aspect ratios cause numerical error in spline and influence coefficient
calculation (this has only been verified experimentally). Aspect ratios
over 106 are forbidden and those over i00 result in a warning message.

e. A panel or subpanel is essentially Mach inclined.

If n" n < I0 -_ this is a fatal error, and if < I/I0 a warningmessage is printed.

f. The panel is seriously skewed. Warning messages are printed if the panel
is non-convex (l+cil+Ci 2 < 0 for some i = i, .... , 4), nearly
non-convex (l+cil+Cl2 > 0), or triangular while having four distinct
vertices (l+cil+Ci2 _ 0).

g. A subpanel has zero area when projected to the average plane. If so, a
flag is set, no normal or conormal vector is calculated the subpanelsplines are set to zero, etc.
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Figure D.1 - Locations of source singularity parameters
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a. Doublet analysis, doublet forward weighted --.
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Figure D.2 - Doublet analysis and design singularity
parameter locations
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a. Doubletwake 1
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- b. Doubletwake 2
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Figure D.3 - Doubletwake singularityparameterlocations

D.4-3



Edge 3

CP(4,1) CP(4,2) CP(4,3) CP(4,4)

I = row index
J _ column index

CP(3,1 CP(3,2)
P4 P3 CP(3,4)

Edge 4 _ Edge 2

P1 P2
CP(2,1 CP(2,4)

CP(I,1) CP 1,2) CP(I,3) CP(I,4) '_ J

Edge i

Figure D.4 - Networkand panel indexing

€

Figure D.5 - Networkwith an edge to be collapsedby the program
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FigureD.6 - Networkwith revisedgeometry

Figure D.7 - Panellingof delta wing

D.4-5



P3
P7

P4

2
I

P1 P5 P2

y*

Figure D.8 - A panel
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FigureD.9 - A subpanel
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P3 : (-(1+C13)'-(1+C23),z)

-z_ P7" £°"i'°_

p_: [I+ CI_'"[I+
3

4
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5 6

1
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PI:

(I+ C11, 1 + C21,z)
P5"

(0,1,0) P2 --

I (-(1+ C12), I + C22,- z)
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Figure D.IO - Definitionof skewnessparameters
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Edge 1

Edge 2

€ = tolerancedistance

Figure D.11 - Impemissible network (two adjacentcollapsededges)
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E.0 Matrices and Coordinates

The material in this appendix is hardly reflected in the PANAIR code, but
rather provides background material on coordinate systems and
transformations. This material is referred to in the course of the influence
coefficient derivations of Appendix J. In addition, we derive (in section
E.3) the expression for the reference to local transformation (see (5.2.27))

A = 1 [Co]ao ' rs [Co]_o , ^B no 11/2
I {_o,_o}11/2 ! _ I

I 8 i l{no,no}

(E.O.I)

and for the transformationbetweenorthogonalcoordinatesystems (see (5.2.11))

E ]cos : cos B -sin B sin : cos B

F : cos _ sin B cos B sin _ sin B

-sin _ 0 cos _ (E.O.2)

Because F is a transformationbetweentwo orthogonalcoordinatesystems, it
is in fact an orthogonalmatrix. That is, its inverse is its transpose,and
for all vectors X,Y, the Euclideaninner product is invariantunder
transformationby :

(FX, FY) = (X,Y) (E.O.3)

This arises from the fact that F is a rotation (see section E.3)

In our application, F will be the matrix relating reference coordinates
and the compressibility coordinate system, in which the x-axis is the
compressibility direction.

The matrix A is less well-behaved, however. This transformation is the product

A = GSr (E.O.4)
where we have

F S G
Xo _ X ---"- X

----- X' (E.O.5)

Here, Xo is the reference coordinate system defined by the program user, X
is the compre2sibility coordinate system in which the freestream is in the
x-direction, X is a coordinate system in which the y-and z-axes have been
scaled according to (3.1.3), and X' is the local coordinate system in which(5.2.19) holds.

While the matrices F and G are orthogonal, the scaling matrix S is not, and
so the product matrix A is not orthogonal either. The bulk of the complexity
of this appendix arises from this fact. In figure E.1, we illustrate a surface
S in the compressibility coordinate system X and its image S' in the local
coordinate system X'. We illustrate vectors-t_'and B, tangent and normal to
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the surface S respectively, and their images _'and _ in the scaled coordinate
system X'

In section E.1, we consider the properties of vectors and their images under
an arbitrary transformation. The reader may find some benefit in verifying

the results of E.I for a "typical" matrix A, such as a diagonal matrix which
is not the identity. In section E.2, we derive the properties of some special
inner products. In section E.3, we verify that the matrix (E.O.I) has all the
properties we require of a reference-to-local transformation. We do so, in
fact, without ever constructing the transformation G of (E.O.5).
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E.I Vectors and Dual Vectors

Weconsider here the effect of the coordinate transformation A = [aij ]

A: Xo--,-X, (E.I.1)

{x1]by which a position vector X-_o= x2 , expressed in the coordinate
x3

{xli}system Xo, is transformed into an image vectorS'= x2 , expressed in the
x3

coordinate system X'. This image vector represents the same physical quantity
(such as location) as the original vector, but in a different coordinate
system. It is a different vector only in the sense that its entries aredistinct from those of x-_.

The entries xi' of the image vectorS' are given bythe formulas

3

xi = _ aij xj = A i i = 1,2,3

j=1 (E.I.2)

where aij are the entries of the transformation matrix A. Weshall
occasionally find it convenient to write this equation using the summation
convention for repeated indices, that is, x i' = ai i xi. Examples of
other vectors which transform according to the for_ul_ (E.I.2) include the
vector element of arc length, dl, and surface tangent vectors t:

,
dl i : aij dlj : i (E.1.3)

t'
i = aij tj = i (E.I.4)

Equation (E.I.4) may be interpreted to assert that whe_-_n is a surface
tangent to some surface S at some point Yo in S, then t' 2 At-_owill be asurface tangent vector to the image surface S'

S' = {_' : _, = [A] N0 for some x0 in S} (E.1.5)

at the image point _': [A] _'. Unless [A] is an orthogonal matrix, however, we
eed not expect that t' will be a unit vector even when t is. However, if 11-=

is any unit vector, then we define the corresponding image unit vector by

t' : At/ ]At I {E.I.6)

Thus the transformation rule for unit vectors is somewhat more complicated
than the corresponding rule for vectors. In particular, the image of a unit
vector as scaled in (E.I.6) is a distinct vector from the original one. Here,
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and from now on, we use a ^ to denote a vector of unit length.

We now turn to a discussionof dual vectors. A dual vector is, by definition,
a real-valuedlinearfunctionon the vector space. Whereas the typicalvector
was the position vector Xo, the typicaldual vector is the unit normal
vector no or gradientoperator

a/ax]_a/BXl

[l x3 (E.l.7a)
It shouldbe noted that tensor analysisworks generallyrefer to vectors as
"contravariantvectors,"and dual vectorsas "covariantvectors." Both the
normal vector and the gradientoperatorare linearfunctionson the vector
space in a naturalmanner throughthe dot product

i ax_ (Yi)
(E.l.7b)

no. -_= _ niYi
i (E.l.7c)

The transformationrules for dual vectors_o (such as rand no) is
that the image_' in the coordinatesystem X' satisfies

_"_' =_o'_ (E.l.Ba)

for every vector Y.

NOW,

_,._', = _,T _', =-_,T[A]_" (E.I.8b)

while

V-_o"_:_ _ =_[A -I A]_ (E.Z.Bc)

Thus, for (E.l.8a) to hold, we require

= = (E.1.8d)
or

"_' = [A-T]_ (E.l.Be)

where the superscript -T denotes the inverse of the transpose matrix, which is
the same as the transpose of the inverse.

Thus dual vectors transform by A-T, while ordinary vectors transform
(cf. (E.I.2)) by A. It should be noted that if A happens to be an orthogonal
matrix, A = A-l and is length-preserving,and thus regularvectors,unit
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vectors, and dual vectors transform identically.

The gradient operator may also be applied to functions f of position x.
We see that if we define V' by

V' f (_') : a f(_,) a _ Ia x i ' _ f(x°) _
a x i xo = A-I x' (E.I.9)

we obtain

af a [A_l]kj , af( V'f (x)) i : ax-_-ka_ i x J aXk [A-l]kj aij =

af a f
aXk [A-l]ki = [A-l]ki aXk (E.l.lOa)

where aij is the Kronecker delta:

aiJ = I I if i = j
[ 0 if i _ j (E.I.IOb)

We thus obtain

- V' : A-T V (E.I.11)

which is consistent with our transformation rule (E.l.8e) for dual vectors.

Next we see that, whenever wI and w2 are vectors in Xo then
wI x w2 is "almost" a dual vector in the sense that

w_ x w_ = (awl) x (aw2) : (det A)A-T (wI x w2)
(E.1.12)

This equation is proved below. Thus, apart from the factor of det A, the
cross product of two vectors transforms in the same way as a dual vector. In
a similar_ vein, we note as well that the cross product of two dual vectors,
v I x v2, transforms very much like a vector

v I x v2 = (A-T _I) x (a-T _2) : (det A)-1A (v I x v2) (E.1.13)

It is appropriate at this time that we give brief proofs of the above
assertions. In addition, we will show that _dS, the surface unit normal times
the element of surface area, transforms like an "almost" dual vector, (cf.
(E.I.12)).

A vector t that is tangent to some surface S at some point x may be
regarded as the tangent to some curve_(%), parametrized by T and lying
compl_tely on S, as that curve passes through the point x. In other words,
when t is a tangent to S at Xo, there exists a curve _(T) such that'(%)
lies in S, xo =_(To) and
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d -_ :t
c (T) T = To (E.I.14) --

Given this specification of _, it is easy to see how tangent vectors
transform. The image tangent vector t' will simply be the tangent to the
image curve-_'(T) = A-_(T) evaluated at the point

' = C'(T) = A_(T) : Ax-_ . Thus

d -- d  Tll = o=A o=dT dT dT

(E.I.15)

as asserted.

Next we prove equation (E.1.12)for vectorsv and w. Recall from section
B.3 that

(_ x _)r = CpqrVpWq (E.I.16)

where Cpqr is defined there. So,

( A_" x A_ )r = Cpqr(Av-_)p(Aw--_q : Cpqr Api v i Aqj wj (E.I.17)

Multiplying by AT on the left,

(AT (A_x Aw-_)s : [AT]s r (A_x Aw-_)r = Cpqr Api vi Aqj wj
(E.1.18)

But, generalizing the definition of determinant

. det A = Cpqr Apl Aq2 Ar3 (E.I.19)

we see

cij s det A = Cpqr Api Aqj Ars (E.1.20)

and thus substituting in (E.I.18),

(AT (A_'x Aw-_))s : cijs (det A)vi wj : (det A)(_'xw_ s (E.I.21)

and so

AT(A_x Aw--_: (det A) (_ x w-_ (E.1.22)
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or

ATx A_ : (det A)[A T] (_x_) (E.I.23)

which is equivalent to (E.I.12)

Next we examine the transformation law for unnormalized normal vectors n.
Such vectors are specified only up to an arbitrary multiplicative constant;
their principle characteristic is that they are perpendicular to all tangent
vectors. Thus, if _ and _2 are two linearly independent tangent
vectors, _ is given by

n = a x t2) (E.I.24)

where _ may be chosen arbitrarily non-zero.

Next, we note that the image -_' of _must be perpendicular to the images

tl , t 2 , of t I and t2; thus

.-,_!

-_' : :'(t 1 x t2) (E.I.25)

Using equation (E.I.4) we find

-n' = _' At I x At 2 = _' (det A) A-T x

: _ (det A)[A -T]
O{!

(E.I.26)

Choosing _, : a we obtain the desiredresults'

Finally we note that BdS transforms as in equation (E.1.12). This
observation follows immediately from the definitions (see figure (E.2)

nodS = dl I x dl 2

I l

_'dS = _1 x a_2
!

dl i = (adl)i
(E.1.27)

Upon applying equation (E.I.12) we find that

-_'dS' : (detA) A-T _'dS (E.1.28)
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We conclude our discussion of vectors and dual vectors with the
observation that the Euclidean inner product of a vector w with a dual vector
v is invariant under transformation, that is

I_,w-_ = _T _ = -_T [a_1 A] _ = (A-T v_)T A_'=-_'T'_'

= (_',w) (E.1.29)
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E.2 Metric Matrices, Dual Metrics and Inner Products

The introduction of metric and dual metric matrices is best motivated by a
careful consideration of the Prandtl-Glauert equation (3.0.1) (for the dual
metric) and the definition of the function R (5.2.14) (for the metric
matrix). First we define the metric matrix C.

Recall from section B.O that R2 is given in terms of a control point P
and a surface point Q in the compressibility coordinate system (x,y,z) by

R2 = (PI - Q1)2 - sB2 (P2 - Q2)2 - sB2 (P3 - Q3)2
(E.2.1)

This relationmay be written in matrix-vectorform as

sB (E.2.2)

This equationmotivates us to define the metric matrix C by

]-- sB2 (E.2.3)

Correspondingto C, we define the compressibleinner product [Wl, w2] of
two vectorsW'_l, w-_2by

[_1, _2] : _1T [C]_'2 = (W-_l,[C]_) (E.2.4)

Turning now to the definition of the dual metric matrix B, we note that the
Prandtl-Glauert equation can be written (since sB2 : i - M2_)

sB2 _/@x
(B/BX a/_y a/_z) 1 B/_y _@ = 0

1 B/_Z
(E.2.5)

In matrix vector form this reads

{vT[B] _} _ = 0 (E.2.6)

where [B] is defined by (cf. (5.2.5), where reference and compressibility
coordinates are assumed to be identical)

: i

i (E.2.7)
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Since the operator _ transforms like a dual vector (cf. (E.l.8e), _uation
(E.2.6) motivates us to define the dual compressible inner product{_1, v2}of two dual vectors by

{v-_, v-_} = TIT [B] v2 = ( , [B]v2) (E.2.8)

An important relationship between B and C is the identity

[B] [C] : sB2 [I] (E.2.9)

Whenwe investigate the transformation rules for [B] and [C] we will find that
this relationship is preserved under linear transformations.

Careful examination of equations (E.2.5) and (E.2.8) shows that we may
define modified vectors _ and modified dual vector _ by

= C_ (modified vector) (E.2.10)

= B_ (modified dual vector) (E.2.11)

With modified vectors defined in this fashion, it is easy to see that the
inner product relations (E.2.4) and (E.2.8) can be written

[_' _] : (W-_l,_2) = (Wl, w-_2) (E.2.12)

{Vl' v2} : (Vl' v2) = (_I, v2) (E.2.13)

Two examples of modified dual vectors include the conormal,

: [B] n (E.2.14)

and the modified gradient operator, V , defined by (5.2.4).

We now examine the transformation rules for metrics and dual metrics.
Whena coordinate transformation of the form (E.I.I) is performed, the metric
matrix C and dual metric matrix B in the new coordinate system X' are defined
by the invariance requirements that

-=_I

[wq , ] = Wl T[C'] w2 : [ , ] (E.2.15)

v I , : T [B'] v2 ={v I , v2} (E.2.16)
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-_' A-T]_whenever wi = A_i' vi = [ For the metric matrix

C', (E.2.15) implied that, for arbitrary vectors _'I' w2

:TEAc '[c'] ,
= wI : C' A]w2

(E.2.17)

Consequently we find that

C : AT C' A, C' : A-T C A-1 (E.2.18)

Similarly, equation (E.2.16) provides us with the transformation rule

B = A-I B' A-T, B' : ABAT (E.2.19)

It is now an easy matter to verify that the relationship (E.2.9) is preserved
under transformation; calculation gives

B' C' : (A B AT) (AT C A-1) : A(B C)A-I: A ( sB2 I) A-1 : sB2 1
(E.2.20)

There is no a priori condition that determines how _ transforms so wemake the reasonable requirement that

(_)' = (_')~ (E.2.21)
- Then

_' : (w')- : C' ;' : C' A w : It' A C-1]_" (E.2.22)
From equation (E.2.18) we see that

C' A C-I = A-T
(E.2.23)

so that

_' : A-T _ (E.2.24)

This shows that modified vectors are in fact dual vectors.

Similarly, one may show that modified dual vectors are vectors. That is
assuming, for a dual vector _', that

(_)' = (v')~ (E.2.25)
then

_' :AT
(E.2.26)
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These observations provided us with an interesting interpretation of equations
(E.2.12) and (E.2.13): [_, _], which is the compressible product of the
vectors wI and w2, is the same as the Euclidean inner product of the
vector wI and the dual vector w2 ; similarly {Vl, v2} , the dual
compressible inner__roduct of the dual vectors v I and v2 is the Euclidean
inner product of vI (a vector) and _22 (a dual vector). This
observation shows that the invariance properties (E.2.15) and (E.2.16) are
closely related to the invariance relation (E.I.29).
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E.3 Coordinate Transformations

We recall from section E.O the reference coordinate system Xo, the
compressibility system X, the scaled system X, and the local system X'. In
this section, we will determine the properties required by the transformation
A: Xo ) X', and then show that the matrix (E.O.I) is the unique matrix withthese properties.

In general the x-axis of coordinate system Xo need not line up with the
free stream. Thus it is necessary to define a new coordinate system X in
which the x-axis is lined up with the free stream axis (that is the x-axis of
the Prandtl-Glauert equation (3.0.1)) . This is possible if the user provides
the compressibility direction by means of a compressibility vector Co •

The PANAIR program user will specify the compressibility axis by giving an
angle of attack ac and a sideslip angle Bc as shown in fig. E.3. The
orientation of the compressibility axis is given by the unit vector (cf.(5.2.12))

_ COS ac COS BC!

_o : 1-sin Bc

[sin _c cos Bc (E.3.1)

A free stream orientedcoordinatesystem X must be defined such that the
compressibilityvector co lies along the x-axis of this new coordinate

system. The transformationfrom Xo to X may be characterizedas an angle of
attack rotation of (- ac) about the Yo -axis followedby an angle of
sidesliprotationof (- Bc) about the resultingz axis.
Note that coordinatestransformin the oppositemanner from basis vectors.
Thus if we denote the transformationfrom Xo to X by Fc so that

Fc: Xo ------ X (E.3.2)
we have

m

cos Bc -sin Bc 0 cos :c 0 sin ac

Fc = Rz (-Bc) Ry(- ac) = sin Bc cos Bc 0 0 1 0

0 0 1 -sin _c 0 cos a c

cos _c cos Bc -sin Bc sin ac cos Bc -

= cos ac sin Bc cos Bc sin ac sin Bc

_ -sin ac 0 cos ac (E.3.3)
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Here Ry and Rz denote rotations about the respective axes.

Thus the compressibility axis in coordinate system X is given by

rc o: o

0 (E.3.4)

which is the desired result.

In fact, if Fc is partitioned by rows, we see immediately that the first
row of I"c is simply _ while the remaining two rows are orthogonal toco and to one another:

rc :

t_ (E.3.5)

In fact, Fc is an orthogonalmatrix; FcT _ = I

A matrix of the form Fc, transforming reference coordinates
orthogonally to another user-defined system, is used after the potential flow
solution has been obtained.

This axis system X* is defined by an angle of attack a* and an angle of
sideslipS*, with the transformation F*: Xo _ X*
definedby

_cos a* cos B* -sin B* sin :* cos B*I

=I

F* : Icos a* sin B* cos B* sin a* sin B*II

"L-sin :* o cos:* I1
(E.3.6)

The angles a* and B* are user-supplied, and describe the coordinate system in
which the user wishes PANAIR to calculate forces or moments.

Before we consider the transformation from reference (Xo) to local (X')
coordinates, let us consider the transformations (see (E.2.18) and (E.2.19)
substituting c for A)

T

[Co] : rc C rc

T

[Bo] = Fc B Fc (E.3.7)
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The matrices Bo and Co have the same properties in reference coordinates
that B and C have in compressibility coordinates. That is, equations (E.2.2),

- (E.2.4), and (E.2.8) hold for Bo and Co if the vectors in these equations
are written in reference coordinates.

Now, from (E.2.3) and (E.2.7)

[C] : sB2 1 + (Z-sB2) el el T

[B] = I + (s_ 2 - 1) ez ezT

(E.3.8)

where ei is the ith column of the identity matrix I.

T

Now, since Fc-1 = I"c because Fc is orthogonal, and

T

Fc el = Co

by (E.3.5),

[Co] = sB2 1 + (l-ss 2) _o CoT

_ [B o] = I + (sB2 -1) Co _oT (E.3.9)

Let us now consider the properties we require of the transformation

A: Xo _ X' (E.3.10)

where X' is the local coordinate system for each subpanel.

The reasons for these requirements are given following (E.3.15).

First, recalling (5.2.19) through (5.2.22), we require, for points p andq, that

R2 = (P'I - q'l) 2 + (P'2 - q'2) 2

+ (P'3 - q 3) 2 for subsonic flow

= (P'I - q'l) 2 - (P'2 - q'2) 2

- (P'3 - q'3) 2 for subinclined panels in supersonic flow
I I

= -(P'I - q'z) 2 - (P 2 - q 2) 2

+ (P'3 - q'3) 2 for superinclined panels. (E.3.11)

Second, we require that on the subpanel on which the X' coordinate system is
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defined,

z' : 0 (E.3.12)

Third, we require that the "upstream" direction be the x'< 0 direction for
subsonic flow or subinclined panels, (cf. (E.3.13)) and that the upstream
direction be preserved for superinclined panels. (cf. (E.3.14)). That is, if
the surface normal in reference coordinates is pointing into the flow, then so
should the surface normal in local coordinates, and similarly if the normal is
pointed with the flow. Precisely, we require

(_o, a-z el) > 0 (E.3.13)

in the former case, and

sign (_o, A-I e3) : sign (Co, _o) (E.3.14)

in the latter case. The fourth requirement is

det A > 0 (E.3.15)

Before proving that these requirements are satisfied, let us discuss them
further. Equation (E.3.11) is necessary in order to obtain reasonable
formulas for the influence coefficients, that is, formulas which do not have
scaling coefficients all over. The requirement that the subpanel lie in a
coordinate plane makes the integrals needed for influence coefficient
calculation computable, the z' = 0 plane is chosen throughout in order to
permit uniform formulas for all three cases. The constraint on the upstream
direction makes the notation for the derivation of the influence coefficient
formulas simpler. Finally, the requirement that A have positive determinant
insures that the local coordinate system will be a right-handed one.

In the remainder of this appendix, we will rigorously prove that the
matrix A in (E.O.I) satisfies the requirements. Wewill not, however, explain
where A came from, since we did not arrive at A through a rigorous procedure.

Recall that we claim that

I t i ^B Bo 2]

1 [Co] Go i rs [Co] Vo i
AT: I I'{n°'n°}"1/2 '_ "I B ,ll{no,Ao}ll/

(E.3.16a)

satisfies the requirements (E.3.11-15), where

no : unit normal vector

= x  o)II o x aol
r : sign {no, no}

0o = Vo x no (E.3.16b)
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The subscript o indicates these vectors are in reference coordinates.

If no is parallel to Go , _0 may be chosen arbitrarily as any unit
vector perpendicular to them. Since 0o and Vo are linearly independent
vectors orthogonal to no, the second requirement on A, (E.3.12) is
equivalent to

(A 0o, e3) : 0

(A _o, e3) = 0 (E.3.17)

or (_o, AT 53) = (_o, AT _3) = 0 (E.3.18)

or AT _3 = k Bo, k _ 0 (E.3.19)

But this just says that the third column of AT should be proportionalto
no, which is satisfiedby the matrix in (E.O.1).

Next, by definition,

R2 : (Pl - ql)2 + sB2 (P2 - q2)2 + sB2 (P3 - q3)2

[i]: (__-_) T sB2 (_'_

_ sB2 (E.3.20)

={rc(_o_o_}_Ec_r_o_o_

: (_ - q-_o)T [rc T c rc](_- q-_) (E.3.21)

: (by (E.2.18))

(_o- _o) T [Co] (P'o- q-_o) (E.3.22)

On the other hand, we can unify (E.3.11) by noting that r : -I if and only if
the panel is superinclined, and so (E.3.11) becomes

[ ]r

R2 =1_(_o-_olI_ s _(_o-_o_
J

rs (E.3.23)
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Combining with (E.3.22), we obtain the requirement on [A]:

E ]r

[A T] s [A] : [Co]
rs (E.3.24)

Inverting (E.3.24)

[r 1A-1 s A-T = [Co]-i (E.3.25)r

or

[r ]s = [A][Co]-I [A T] (E.3.26)
rs

But, by (E.3.7), [Co]-I : F_ [C-1]_ (E.3.27)

= F I/sB2
c IIsB2 (E.3.28)

s_ 2 sB2 (E.3.29)

: (by E.3.9) 1 [I] + ( 1 - 1 ) [_o, aoT]
SB2 SB2 (E.3.30)

Thus, we must show that

[D] - A Co-1 AT : 1 [A AT] + (I - 1 . ) [A _o _oT AT]
sB2 sB2

;jr]rs (E.3.31)
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Now,

= I ( I OoT [Co] T [Co] Oo
[DIll J{no, _o}J sa----_-

+ (I- 1
s-_ ) OoT [Co]T _o GoT [Co] Uo)

(E.3.32)

But from (E.3.9)

[C_ Co] : B4 [I] + 2 sB2 (1 - sB2) [_o _]

+ (1- sB2)2 [_o _ _o _] (E.3.33)

: am [I] + ( 2sB2 - 2B4 + I - 2sB2 + B4) [_o _] (E.3.34)

: am [I] + (1 - B4) [_o _] (E.3.35)

Next,

Co] : [sa2I Go sB2I]
+ [sa2 1 _o_ (i - sa2) _o _oT]

-- + [ (1 - sa2) Co CoT Co CoT sa21]

+ [ (1 - sa2) Co CoT Co CoT (i - sa2) Co CoT] (E.3.36)

: a4 [Co coT] + (sa 2 - B4) [Co CoT]

+ (sa2 - a4) [Co _oT] + (i - sa2) 2 [Co CoT] (E.3.37)

: [c° c°T] (E.3.38)

So, _oT [CoT Co] 0o : a4 _oTOo

+ (1 - 84) 0_ [Co c_] Uo (E.3.39)

: a4 + (I - B4) (0o, _o)2 (E.3.40)

and

_ [C_] [Co _] [Co] _o : (0o, _o) 2 (E.3.41)
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So_

[D]I1 = I [. B4 + 1_B4 (Go, _o)2
I{no,no}l sB2 sB2

+ (i - 1 ) (GO _o)2
' ]

(E.3.42)

= I [(sB2 + (1 - sB2) (%, _o)2]

I{Bo, Bo}I (E.3.43)

Now, for vectorsA,B,C,

(A x B).C = cijk Ai Bj Ck = Cjki Bj Ck Ai = ('_x'_)._
(E.3.44)

Thus, applying (E.3.16b),

_o-Co : (% x no)• to : (% x ao)._o

: (_ox _o)(%•%) : _ox _o

(E.3.45)
Thus

Uo'_o = IBo x _o] = ± sin o (E.3.46)

where o is the angle between Bo and _o.

On the other hand by (E.3.9)

no, no : noT Bo _o : noT Bo

+ (sB2- 1) (_o • _o)2

(E.3.47)

= I + (sB2 - 1) (Bo • _o)2 = 1 + (sB2 - i) cos 2 e (E.3.48)

since (_o , _o ) = cos e.

So, Dll : sB2 + (1 - SB2) sin2 e

r (1 + (sB2- 1) cos2 _) (E.3.49a)

(since r {no, Bo} =l{no, no}l) (E.3.4gb)

: sB2 + (1 - sB2) (1 - cos2 e)

(I + (sB2 - 1) cos2 o) r (E.3.50)
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: 1 + (I - sB2) ( - cos2 e) = r

-- (1 + (sB2 - 1) cos 2 e) r (E.3.51)

Next, let us considerD22. By (E.3.31)and (E.O.1),

D22 = 1 r2 s2
sB2 B2 (Co Vo)T CO Go

+ (1-_) r2 s2 (Co vo)T [Co CoT] Co VoB_ (E.3.52)

= 1 VoT CoT Co Vo + (1 - 1 1 VoT [CoT Co CoT Co] Vo
sB4 sB2 B2

(E.3.53)

Now, _ Go = 0 (E.3.54)

and applying (E.3.35) we therefore get

I GoT [CoT Co] Go : I GoT GO : s
s (E.3.55)

Applying (E.3.38)we find that the second term of (E.3.53)vanishes,and thus

D22 = s (E.3.56)

Next (by (E.O.I)and (E.3.31)),

D33 : B2 BoT no + (1 _1____) B2 noT Co CoT no

sB2 l{no'no}l sB2 l{no,no}l (E.3.57)

Using (E.3.48)

D33 _ s + B2 (1 - 1/sB2) cos2

l{no, no}l I{no, no}I (E.3.58)

= s + (B2 - s) cos2 e =

I{_o , _o}i (E.3.5g)

(by (E.3.48)and (E.3.nga))
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s (1 + (sB2 - I) cos2 e) = rs

r (1 + (sB2- 1) cos2 _) (E.3.60)

Next, we consider D12 . By (E.O.1)and (E.3.31),

DI2 = rs (Co ^ )T Co Go
sB31{no,no}ll/2 Uo

+ I . rs Co-uo [Co CoT] Co _o

1 - SB2 B l{no,no}I1/2 (E.3.61)

^Apply_g^(E.3.35) and (E.3.38),we see that each term contains either
_ vo or u6 Vo, both of which are zero by (E.3.16b),and thus

DI2 = 0 (E.3.62)

Next, D13 :

B I GoT [COT] no + (I - i ) _oT [CoT _o _oT] no

I{Bo, _o}I ss2 sB2 (E.3.63)

= (by (E.3.9))

B 1 GOT SB2 no + 1-sB2 GoT Co _oT no
I{%, no}l sB2 sB2

+ (i- i ) GoT sB2 Co CoT no
sB_

+ (1- I ) (1 - sB2) GoT Co CoT CoCo T no
sB2 (E.3.64)

= (by(E.3.16))
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B (0 + i__1__ _ I)(_oT Co CoT no)
I{no, no} 1 sB2

+ (sB2- 1) (QoT ao EoT no) + (2 - 1 - sB2) (GoT Co CoT no)
sB2 (E.3.65)

= B . 0 = 0

l{n°' n°}J (E.3.66)

Finally, D23 can be expressed by (E.3.63), changing the factor in front to

rs , and replacing Go by Vo. But since we also have
l{no,no}1112

(by (E.3.16))

_ no : 0 (E.3.67)

we can follow the steps (E.3.63-66) again to obtain

D23 = 0 (E.3.68)

Now, combining the fact that D is symmetric (see(E.3.31)) with (E.3.51),
(E.3.56), (E.3.60), (E.3.62), (E.3.66), and (E.3.68), we have

I r ]

[D] = s
rs (E.3.69)

which we have shown is equivalent to (E.3.31) (see the argument from (E.3.20)to (E.3.31)).

So, we have proved that R2 has the appropriate form in the X' system
(E.3.11), and earlier we showed that the subpanel lies in the z' = 0 plane.

To show that the upstream direction transforms correctly, we exhibit A-1first. Weclaim

[ 1
A-1 : r Uo I Vo ! Bo no

l{no,no}il/2 I I
I B ! B J{no,no}Ii/ (E.3.70)

Verifyingthat [AA-1]= [I] is tedious,and uses the same sort of
arguments as evaluatingD.

First,
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r GoT[AA-I]I 1 = CoT Go
, no_l. (E.3.71) -_

= (by E.3.9)

r (sB2 GoT Go + (I - sB2) GoT Co CoT Go)
l{no, no}l (E.3.72)

: (by (E.3.46), (E.3.48), and (E.3.48a))

r (sB2 + (I - sB2) sin 2 e) = i
r (I + (sB2 - 1) cos 2 e (E.3.73)

Next,

r2s GoT CoT VoFI:AA-122 = _
B2 (E.3.74) o

: (by (E.3.9))

s (sB2 tJoT Vo + (I - sB2) _oT Co CoT _o)
B2 (E.3.75)

= (by (E.3.16)) v_ Vo = 1 (E.3.76)

Next,

[AA-I]33 = r noT Bo no
I{ no,no}I (E.3.77)

= (by definition)

r {no , no} = 1

I{no , no}l (E.3.78)

by (E.3.49a).
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Next,

^ _ i/2 : iT CoT_o= (_.3.7g)rBI{no, no}I [AA-1]I2

(by (E.3.9), since Co is its own transpose by (E.3.24))

(I - sB2) _ Co E_ Vo + sB2 u_ Vo : 0 - (E.3.80)

by (E.3.16).

Next, rBl{no, no}I [AA-I]13 : G_ [Co Bo] no

But from (E.2.20) we see

Co Bo : sB2 1 (E.3.81)

and thus by (E.3.16),

[aa-1]13 : 0 (E.3.82)

Next,

B2r2sl{_o, _o}iI/2 [aa_l]23 = _T [C_ Bo] no
(E.3.83)

Once again applying (E.3.81) and (E.3.16), we obtain

- [AA-I]23 : 0 (E.3.84)

Next,

BI{no, no}11/2
r_LAA_1121= v°T Co Uo = 0

r2s
(E.3.85)

by (E.3.80).

Next,

I{_o,_o}Ir
[AA-1]31 = noT Uo = 0

B (E.3.86)

by (E.3.16).

Finally

rl{no, no}11/2 [AA_1132 = n_ Vo = 0 (E.3.87)

by (E.3.16).

Thus we have shown that

[AA-1] = I (E.3.88)
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Applying (E.3.70) when r = +1,

0
I{_o,_o} 11/2

(E.3.89)
and so

_oT A-I = (Co, Uo) = no x Co > 0

l{Bo,Bo}l 1/2 l{Bo,Bo}l 1/2 (E.3.90)

This proves (E.3.13). Applying (E.3.70) when r =-i,

[A-1]{i} = -[Bo]noBl{ao,_o}l1/2
(E.3.gl)

and so

I B l{no,no}l 112
(E.3.92)

(by (E.3.9) and (E.3.48))

_ 1

Bl{_o,Bo}l1/2 (coT tO + (sB2 -1) _oT Co CoT no)
(E.3.93)

: - sB(to,
B I{Bo,Bo}I1/2

(E.3.B4)

which has the same sign aSCCo , Bo)since s =-1, thus proving (E.3.14).

Finally,we show that det A > O.

Applying (E.1.12)to Uo and Vo,

AGO x A_o = (det A) [A-T] (00 x Vo) = (det A) [A -T] no

(E.3.95)
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(by E.3.16).

Applying (E.3.70),

A-T no = r ^ u° 1I{_o,_o} I 112 u° "

r Vo • noB

r noT Bo no
B l{fio,fio}1i/2 (E.3.g6)

}= 0

l{no,no}l112
(E.3.97)

Now, recallingfrom (E.3.79)that _ [Co] GO = O, and applying
(E.3.16),

UoT [Co] Uo rl{no , no}lI/2

[A] uo : l{no , no}l 1/2

0 0

O' 0 _ (E.3.98)

by (E.3.71-73).

Next, applying (E.3.16)and (E.3.79),

o iolrs JoT [CoT] Vo = rs[A] 0o :

o l o j (E.3.99)
by (E.3.74-76).
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So,

0
A A

Au x Av : 0o o

Bl( {I/2

(by (E.3.80)) : B2 [A-T] _o (E.3.100)

Substitutingin (E.3.95),we see that

det A = B2 > 0 (E.3.101)

This concludesour proof that [A] satisfies(E.3.11-15).

A useful result relatingto the area jacobianJ for the referenceto local
transformationmatrix can be derivedusing the results of this section
combinedwith some resultsfrom the previous two sections,E.1 and E.2. Using
the formula (E.1.28),we form the inner productof the vector_'dS' with
itself using the metric B'. We obtain:

(n'dS')T B'(_'dS'): (det A)2 (_odS)A-I B' A-T (_odS)
(E.3.102) ....

Now the matrix B' satisfiesthe equations(cf. (E.2.19)with slight
modificationsto accountfor the rotation Fc):

Bo = A-1B' A-T B' = A Bo AT (E.3.103)

Using the fact that det(A) = B2, equation (E.3.102)simplifiesto read

, AT ^
(dS)2 (_,T B' _') = B4 (dS)2 no B° no (E.3.104)

Now equation (E.3.31)defining the diagonalmatrix D can be combinedwith the
result

[Bo] [Co] = s B2 I (E.3.105)

which is readily derivablefrom (E.3.9)to conclude that B' as given by
(E.3.103)satisfies:

[B'] : [A][Bo][A]T: [A] (s B2 [Co]-I)[A]T: s B2 [D]

[rs ]= B2 1 r (E.3.106) -"
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Combiningthis with the fact that

1°}_' = o (E.a.z07)

1

and recallingthe definitionof the dual inner product, (E.2.13),we rewrite
equation (E.3.104)in the form

(dS")2 (r B2) = B4 (dS)2 [Co' no} (E.3.108)

Taking absolutevalues and rearrangingthis slightly,we obtain the desired
result for the area jacobian:

dS area in referencecoordinates
J = _B-S'- area in local coordinates

: lifo,
Note also that by taking the sign of equation (E,3.108) we obtain,

r : sign {€o, Co} (E.3.110)

reproducingthe third of equations(E.3.16b).
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F.O Edge Matching

In this appendix, we will discuss the process by which the program
performs "edge matching", that is, insures "continuity" of doublet strength.
In section F.I we will supply the theoretical background, summarizing section
B.3 and discussing a few points not mentioned there. In section F.2, we will
discuss the concept of abutments between networks, introducing some of the
terminology used within the program. In section F.3, we discuss the process
by which the program determines the list of abutments defined by the
user-input configuration. In section F.4, we describe the assignment of one
edge in the abutment to be the matching edge, and show how this assignment
insures doublet matching along the abutment. In section F.5, we discuss the
special techniques used by the program to process "abutment intersections",
points in space at which abutments meet. In section F.6, we discuss
"gap-filling panels," which areadded by the program along abutments where
gaps between network edges exceed the user-input tolerance distance.
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F.1 Continuity Requirements

Recall equation (B.3.12), that along any panel edge we should have

n

)" si ui = 0
i : I (F.l.1)

where n is the number of panel edges meeting, and si = -i is determined by
the direction of the. panel normal. We supplied three distinct types of
justification for (F.I.I). First, it is physically reasonable. Second, it
has been experimentally shown to be necessary for the analysis of supersonic
flow. Third, (F.I.I) can be used to increase the efficiency of the program by
allowing the removal of the "line vortex terms.""

The imposition of (F.I.I) is effected in one of three ways. Within the
interior of the network, it is effected by splines, discussed in Appendix I,
which impose the equation

ul - _2 = 0 (F.I.2)

along all panel edges. Note that therefore two networks must not meet except
along network edges; else, the value of n along the line of intersection would

_ be at least 3, while the spline methods assume n : 2. In figure F.I, we
illustrate such an impermissible intersection of networks. Along network
edges, boundary conditions (called edge matching boundary conditions) are used
to impose (F.I.2). The curve along which network edges meet is called an
abutment. If an abutment consists of only two network edges, the user may
specify it as a "smooth abutment", in which case a splining method (discussed
in Appendix I), is used in place of boundary conditions to impose (F.I.2).
This results in fewer boundary conditions, and thus reduces the size of the
system of equations to be solved.

The use of smooth abutments is restricted to networkswhich, together,
define a continuously smooth surface. If the surface defined by the networks
is not smooth, the doublet gradient at the intersection should in fact be
discontinuous, while the smooth abutment specification will make the gradient
approximately continuous, resulting in an erroneous solution. For the same
reason, a single network should never be used to describe a surface containing
a discontinuity of slope.

There is one case in which (F.I.I) does not hold. This case is that of a
leading edge vortex (see figure B.IO). The true physics of the situation is
that the vortex rolls up tighter and tighter (see figure F.2) until it
dissipates due to viscous effects. A potential flow program could only
simulate the roll-up of the wake by supplying a wake with infinitely many
turns in it. This not being practical, wake roll-up can be simulated by
replacing the "core" (the region where viscous effects predominate) by a "line
vortex" (see figure F.3). Along this network edge, the doublet strength is in
fact discontinuous; that is, it is non-zero on the wake, while it is zero in
the region of space surrounding the free edge of the wake. The discontinuity
of doublet strength means that when the influence of the wake on a control
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point is computed,the "line vortex terms" must be added in, that is

x_s (F.I.3)

must be computed. We describe the computation of this quantity in appendix J.

The mechanism by which the program user causes the line vortex term
(F.1.3) to be added into the influence coefficient matrix is the following.
He specifies "no doublet matching" for a particular network edge. The program
then insures that the boundary conditions imposed at the control points along
the edge are not those of doublet matching (that is, of the form (F.I.I)), and
furthermore adds in the line vortex contribution for each panel edge lying
along the network edge when measuring the influence of the panel on a control
point.
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F.2 Network Abutments

PANAIR deals with a number of distinct data sets called abutments. There
are "pairwise abutments", "user-defined abutments", "empty space abutments",
and "program-generated abutments". The latter three types of abutments are
end products of the procedure which generates a list of all existing network
abutments. User-defined abutments are those described by the user, either in
order to indicate that they are smooth, or else because the user is not sure
that the "automatic abutment search" described in section F.3 will define that
abutment. Empty space abutments are those which describe a network edge or
portion thereof which does not lie in proximity to any other network edge.
Program-generated abutments (those which are neither user-defined nor empty
space abutments) are computed in a two step procedure. The first step is the
computation of pairwise abutments, each of which lists two network edges or
portions thereof which lie in proximity to one another. In the second step,
the program distills the list of pairwise abutments into a non-redundant list
of program-generated abutments. The latter procedure is described in some
detail in the Maintenance Document (see section 4-G), and will not be
discussed further here.

F.2-1





-- F.3 AutomaticAbutmentSearch

In this sectionwe describethe procedureused to identify"pairwise
abutments." An edge segmentS (the line connectingtwo adjacentboundarymesh
points)is said to form a pairwiseabutmentwith a networkedge E providedthe
end points %'_ and s_'+ of S satisfy d(_, E) < _ where € is some
user specified tolerance distance. Here, d_stance from a point _ to an edge
E is defined in the usual way, d(s_E) : min d(_,e-_.

The practical implementation of this definition requires that one know how
to compute the distance from a point _ = __ or s'_+ to an _dge E . Let
edge E consist of edge segments Ti connecting points ti_ I and
_i, i = i, 2, ... n. Then d(_,E) is given by the formula

d(_,E) = min d(_,T i) (F.3.1)l<i<n

where the distance from a point to a line segment is given by

{I;iid(_,Ti) = (_ _ ti ti - ti i) > 0m

/ %-,I otherwise
- (F.3.2)

Having clearly defined the concept of a pairwise abutment of an edge
segment with an edge, we now describe what is meant by a pairwise abutment of
an "edge portion" with an edge. First, by "edge portion" we mean a subset P

of some network edge consisting of contiguous edge segments, S ,...S I, .. _ •
The edge portion P then, forms a pairwise abutment with E provided each'of' _e
edge segments S1 does. If the situation illustrated in figure F.4 occurs,
several pairwise abutments of edge portions P, Q, R with edge E will be
defined. There are, however, limitations on the permissibility of
configurations of the form of figure F.4. These limitations are noted in the
User's Manual, sec. B.3.5.

Clearly the process of determining all pairwise abutments requires a large
amount of computation for a configuration with many networks. (The amount of

N_S_where NES is the number of edge segments inwork is proportional to

the configuration.) In PANAIR this computational effort is reduced by
avoiding the computation of the distances d(_±,E) whenever the edge of
which S is a segment is sufficiently far away from E that a pairwise
abutment is impossible.
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F.4 Doublet Matching Along Abutments

The purpose of doublet matching boundary conditions is to ensure that
equation (F.I.I) holds at every point along an abutment, even though a
boundary condition of this form is imposed at only a finite number of points.
In this section we discuss the enforcement of the doublet matching condition
at control points along the interior of the abutment while the enforcement of
doublet matching at the ends of an abutment is treated in section F.5.

The ability of a finite number of boundary conditions to cause doublet
matching along the full abutment depends directly on the splining techniques
used to define the doublet strength along network edges. Wediscuss this
subject in section 1.1.2.5, but we will summarize here the results we derive
there.

Given any pair of network edges belonging to an abutment, we call the
first edge a refinement of the other if, at every point where a panel corner
is located on the second edge, a panel corner is also located on the first
edge. According to this definition, each network edge in figure F.5 is a
refinement of the other, while in figure F.6, edge 1 is a refinement of edge 2.

We show in section 1.1.2.5 that if an abutment contains edges El,..., En,
and some edge Ek is a refinement of each of the other (n-I) edges of the
abutment, then doublet matching can be forced to take place along the entire
abutment provided it occurs at the endpoints of the abutments, and at the
panel edge midpoints on edge Ek. In practice, precise doublet matching will

_ not occur because PANAIR uses a "least squares" rather than a differentiable
edge spline (see section 1.1.2.5). The extent to which doublet matching fails
to occur is very small, and has been found experimentally to be negligible.

The program takes into consideration the above results when assigning one
edge of an abutment to be the "matching edge", that is, the edge at whose
panel edge midpoints doublet matching boundary conditions are imposed. Thus,
when no special considerations intervene, the edge with the densest paneling
is assigned to be the matching edge. Assuming that the program user has in
fact provided one edge in the abutment which is a refinement of all the other
edges, then that edge is clearly the most densely paneled edge, and so doublet
matching will occur.

Under certain circumstances, the program does not assign the most densely
paneled edge in the abutment as the matching edge. The first such case arises
from a matching edge of a doublet design or doublet wake network taking part
in the abutment.

Unlike doublet analysis networks, design and wake networks are asymmetric;
boundary conditions are only imposed along certain edges of these networks,
called matching edges, as illustrated in figures D.2 and D.3. Whena matching
edge of a design or wake network belongs to an abutment, the program assigns
it to be the matching edge for the abutment, even if it is not the most
densely paneled edge. This is done mostly for convenience; the user is not
likely to know what boundary condition to impose at the control points along
the matching edge and so the program evades this dilemma by assigning doublet
matching boundary conditions there.
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The other circumstances under which the most densely paneled edge is not
chosen as the matching edge is illustrated in figure F.7. To be specific,
whenever the curve defined by an abutment is "supersonic" (that is, no point
on the edge is in the domain of dependence of any other point), then that
network edge which is a leading edge (that is, upstream of the remainder of
the network) is assigned as a matching edge.

The basis for this assignment is largely empirical. Experience with the
PANAIR "pilot code" with the configuration shown in figure F.8a, illustrates
the need for imposing doublet matching on the leading supersonic edges of
networks in supersonic flow. Whendoublet matching was imposed along the
trailing edges of networks 1, 2, and 3, the solution was completely erratic,
while shifting the matching boundary conditions to the leading edges of
networks 4, 5, and 6 resulted in a solution which was physically reasonable.

The reasons for the numerical problems resulting from the assignment of
matching edges as shown in figure F.8a are not precisely known. It is known,
however, that specification of normal mass flux in a two-dimensional,
linearized, planar, supersonic flow problem is equivalent to specification of
the doublet gradient. Wemay see this by combining equation (C.I.5), which
states that aCp is proportional to Bu/BX, with equations (11-1) and (11-3)
of reference F.l, which states that aCp is proportional to normal mass flux.

Thus for a two-dimensional configuration, the specification of zero normal
mass flux at panel center points, in combination with doublet matching at the
trailing edge, is equivalent to the situation in figure C.IO, with the
trailing edge boundary condition becoming specification of u. But this set of
boundary conditions, in conjuction with the doublet analysis spline, does not
have a unique solution. We see this by noting that the doublet distribution
_o(X) shown in figure F.8b satisfies u : 0 at the leading and trailing
edges, and _/_x : 0 at panel centers. Thus, if some solution _(x) exists
which satisfies the boundary conditions above, so does _(x) + _ uo(X) for
all real numbers _. Thus it is not permissible to specify _ at the trailing
edge of a two-dimensional network on which normal mass flux is specified at
panel centers.

Of course, the configuration in figure F.8a is not a two-dimensional one.
Nevertheless, it seems to have enough resemblance to a two-dimensional
configuration that the imposition of doublet strength specification on the
trailing edge of networks I, 2, and 3 is an unstable boundary condition
specification for the doublet analysis network spline in use on those networks.

Summarizing, PANAIR selects the network edge to be used for doublet
matching along an abutment according to the following criteria:

(i) Matching edge of a doublet design network
(ii) Matching edge of a doublet wake network
(iii) If neither (i) nor (ii) occur, and the abutment is supersonic, the

leading edge of the most "downstream pointing" network is used.
(iv) If none of the above occur, the most densely panelled network edge

is selected for matching.
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Thus, to insure precise doublet matching, a program user must be sure, for
every abutment containing a matching edge of a doublet design or wake network,
that this edge is a refinement of all the other network edges. Similarly, if
the abutment contains a supersonic edge, the leading edge of the most
downstream pointing network must be a refinement of the others. Finally, in
all other cases, some edge must be a refineme_t of all the others (recall
that, if two edges have identical paneling, each is a refinement of the other).

If these rules are followed, the edge chosen by the program as the
matching edge will in fact always be the most densely paneled one, so precise
doublet matching will occur. This does not necessarily mean that minor
violations of the rules will be serious. For instance, in figure F.9
(ignoring the gap - filling panels for the moment), the edge of the network A
is not quite a refinement of the edge of network B. There is no reason to
believe, however," that the doublet discontinuities which result from the small
discrepancies in figure F.9 are significant.

Next we must discuss the complications introduced into the above procedure
by considerations of symmetry. Fortunately, these are few and simple. First,
we must recognize that either all of an abutment lies on a plane of symmetry
or else no portion of it lies on a plane of symmetry - an abutment cannot
partially abut a plane of symmetry. If a network edge lies on a plane of
symmetry along part of its length and then breaks away, PANAIR will recognize
two abutments and place an extra control point at the network course grid
point at which the breakaway takes place.

Nowwhen an abutment lies on a plane of symmetry, doublet matching along
that abutment takes place automatically whenever the potential is symmetric
with respect to that plane of symmetry. Consequently we find in PANAIR that
abutment doublet matching conditions are imposed only on selected symmetry
conditions when the abutment lies on a plane of symmetry. These are given: i

o If an abutment lies on the ist plane of symmetry, impose edge
matching on _AS, _AA only.

o If an abutment lies on the 2nd plane of symmetry, impose edge
matching on _SA, _AA only.

o If an abutment lies on both planes of symmetry impose edge matching
on _AA only.

(Remark: The various symmetrized potentials, _SS, _AS, etc., are defined
as follows. The superscripts S or A indicate whether the given function
is symmetric or antisymmetric in a particular plane of symmetry. The first
(second) superscript indicates the function's symmetry property with respect
to the first (second) plane of symmetry.)
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F.5 Abutment Intersections

Within the interior of an abutment, the equation

X si ui = 0 (F.5.1)

can easily be imposed by assigning a particular edge as the matching edge, and

imposing (F.5.1) at the panel edge midpoints on this edge.

At abutment intersections, points where two or more abutments meet, (see

figure F.IO), the choice of points at which to impose (F.5.1) becomes more

difficult. Only one matching boundary condition may be imposed at a network

corner point (since only one control point is located there), yet the corner

point lies at the end of two distinct abutments. We will say that a corner
point C is "assigned" to an abutment A if the boundary condition imposed at C

is doublet matching across A.

A second complication is the danger of overspecification. Consider the

example of the abutment intersection formed by four networks, illustrated in

figure F.IO Let us define U, to be the doublet strength at the corner of

network Ni at Ithis intersection. In order to obtain doublet matching, we

require

Ul : U2 , U3 - U4 (F.5.2)

But these are only three equations. Thus, if we assign corner point CI to

- abutment AI, C2 to A2, and C3 to A3, that is, impose the boundary conditions

u I = u2 at C1

at C (F.5.3)
u2 = u3 1

and u 3 = u 4 at C3

we have satisfied (F.5.2). If we were to assign corner point C4 to abutment

A4 in addition, the resulting boundary condition

u4 = uI at C I (F.5.4)

would be redundant, since it follows from (F.5.3). If a row of the AIC matrix

corresponding to (F.5.4) were generated, the resulting matrix would therefore

be singular, since this row would be a linear combination of three rows

corresponding to (F.5.3).

Thus overspecification must be avoided if the program is to provide a
numerical solution to the potential flow problem. This is straightforward for

any reasonable example, but clearly the program must follow a well-defined

method which assigns corner points to abutments in such a manner that doublet

matching occurs at all abutments while no overspecification occurs. As an

example, the abutment intersection in figure F.11 may arise from a realistic
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airplane configuration, yet an automatic procedure assigning corner points to

abutments is not obvious. In this section, then, we will describe a graph
theoretic interpretation of this abutment intersection problem together with

the corresponding solution of this problem. This will be accomplished in two
phases. In section F.5.1 we will describe the graphical representation of an

abutment intersection in the "usual case" together with the corresponding
abutment assignment procedure. Following this, in section F.5.2 we will

outline those special features supported by PAN AIR that affect abutment

assignment together with the modifications to the basic assignment procedure

that enable PAN AIR to correctly implement those special features.

F.5.1 Graphical Representation of an Abutment Intersection

In figures F.]O, F.11 and F.12 we present diagrams for three examples of

abutment intersections. We will denote by PAI (the abutment intersection
point), the point at which the various abutments meet. The directed graph G
associated with the abutment intersection is constructed as follows.

Let a small sphere S be constructed with PAI as its center. The nodes of G
are to be identified with the points at which the various abutments pierce

S. The branches of G are to be identified with the lines on S along which the
various networks involved in the abutment intersection cut the surface of S.

An orientation (direction) for a branch/line is induced in a natural way by
the orientation of the network that generates it. To see how this is done,
let N be a network that is involved in the abutment intersection and let

LN (= N S) be the llne along which N outs S. Denote by N' the subsurface of

N that lies outside of S. Notice that the line LN is part of the boundary of
N'. Now since N' is a subsurface of N, the orientation of N provides an

orientation for N'. An orientation for N' in turn provides an orientation

(that is, a direction of traversal) for the boundary of N'. This traversal

direction is, of course, the usual counterclockwise traversal of the boundary

when the network is viewed from above. If then, one traces the boundary of N'
in the traversal dlreetion provided by its orientation, part of the trace will

move along the llne LN in a unique direction. This direction is the

orientation of LN. If we denote the a_utment at the beginning of the llne LN

by AN and the abutment at the end by AN then we say that the branch induced by

network N points from node/abutment AN to node/abutment AN

The procedure given above generates a directed graph G lying on the sphere

S. Such a graph can be spread out on a plane simply by puncturing S at some

point that does not lie on the graph and then stretching the surface S, with
the graph G imbedded in it, out onto a plane.

The zraphs generated by the abutment intersections of figures F.IO, F.11
and F.12 are drawn in figure F.13.

An alternative (and consistent) interpretation of branch orientation is

possible if, as is usually the case, the abutment intersection point PAI

coincides with a corner point of network N lying at the last point of edge
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k; and at the first point of edge kN(*). When this happens, we denote by

. .

AN the abutment in which edge kN participates and by AN the abutment in which kN

participates. Having done this, we say that branch/network N proceeds from
.

node/abutment AN to node/abutment AN •

Once the directed graph representing an abutment intersection has been

constructed, it is quite an easy matter to write down all of the doublet

matching conditions of the form (F.5.1) associated with the abutments in the

abutment intersection. Given a node/abutment A, we compute the values si
associated with the doublet matching condition according to the following
rules:

I +I if branch/network Ni is directed away from A

si = -I if branch/network Ni is directed toward A

O if branch/network Ni is not connected to A
(F.5.5)

Using these rules, together with the graphs provided by figure F.13, we obtain

the following sets of matching conditions

Figure F.IO

AI : + _I - _2 = 0

-- A2: + _2 - u3 = 0

A3: + u3 - u4 = 0

A4: - _I + _4 = O
(F.5.6)

Figure F.11

At: + _I - _2 - _3 = O

A2: + _3 - _4 - _6 = 0

A3: _4 . _5 = 0

A4: + _6 - _7 = 0

AS: + _2 - _5 = 0

A6: - _I + _7 = 0
(F.5.7)

.

* Remark: Usually it will happen that kN = k* where

k* = mod (kN, 4) + I. However if edge k* is a collapsed

edge of network N, we will have k; = mod (kN + I, 4) + I.
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Figure F.12

AI: uI - u2 + u3 = O

A2: u2 = 0

A3: - u3 + u4 = O

A4: - _I - _4 = 0

(F.5.8)

(The reader is urged to verify the correctness of these matching conditions by
carefully re-examlning the original figures).

The matching conditions glven above have been written down In a format such

that they can be readily re-expressed in the shorthand form

A(G) u = 0 (F.5.9)

where u is the vector of doublet values associated wlth the branches/networks

of the graph and A(G) is called the incidence matrix associated with a

directed graph G. For the three graphs given in figure F.13, the incidence
matrices are

i 001Fig. F.13a 0 1 -1 0
A(G) = O O I -I

-I 0 0 I

(F.5.10)

J

Fig. F.13b I -I -I 0 0 0 0
0 0 I -I o -I 0

A(G) = 0 0 0 I I 0 0
0 0 0 0 0 I -I

0 I 0 0 -I 0 0

-I 0 0 0 0 0 I

(F.5.11)

Fig13c1111o1ooIoA(G) = 0 0 -I I
-I 0 0 I

(F.5.12)
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Having expressed the doublet matching conditions at an abutment

intersection in terms of an incidence matrix A(G) for the directed graph G

describing the abutment intersection, we are now in a position to avail

ourselves of the many powerful results from graph theory. In fact, graph

theory not only provides theorems that yield much information about the
structure of abutment intersections, it also provides a number of powerful

algorithms that, when suitably tailored, generate the doublet-matching

boundary condition assignments required by PAN AIR. The standard reference

for all graph theoretical results quoted in this appendix will be ref. F.2, N.

Dec, "Graph Theory with Applications to Engineering and Computer Science."

Throughout the remainder of this appendix, it is assumed that the reader has

at least a nodding familiarity with the elements of graph theory.

The first result from graph theory that we shall need is given (of.

THEOREMS 7-2 and 9-6, ref. F.2)

Theorem* Let G be a connected directed graph containing n nodes and having
incidence matrix A(G). Then rank(A(G))=n-1. Furthermore, any set of

n-1 rows selected from A(G) is a linearly independent set.

This result can be extended to directed graphs G that are not connected by

observing that any such graph can be written as the union of connected

components. Thus, for a graph G with k components, we write

k

G = U G. (F.5.13)
i

i-I

The theoremcan now be applied individuallyto each componentGi. In fact,
wheneverG is not connected,PAN AIR performsdoublet-matchingassignmentsby
treatingseparatelyeach componentGi of G. Consequently,to simplifythe
discussion,we shall always assume in what followsthat the graph G associated
with an abutment intersectionis a connectedgraph.

We now turn to the problemof assigningdoubletmatchingconditions (nodes)
to replace user specifiedboundaryconditionsat controlpoints lying on a
network (branch)involved in the abutment intersection. At this point we
treat just the simple "usual case" characterizedby the followingconditions:

(i) the graph G associated with the abutment intersection is
connected,

(ii) each branch/network in the graph has a doublet distribution,

* For the reader familiar with electrical circuit theory, this result is

equivalent to the result that for a connected circuit with n nodes, the

Kirchoff current law provides n relations, any n-1 of which are linearly

independent.
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(iii) each branch/network in the graph has a control point available

for use as a doublet matching control point whose hypothetical -

location is essentially coincident with the abutment intersection

point PAI"

When these assumptions are made, the following procedure ensures that n-1

abutment matching conditions are selected to replace user specified boundary
conditions on n-1 networks

A.I Form a spanningtree T G. T must containall of G's nodes but have
no loops. (Remark: By a theoremof graph theory,T will contain
(n-l) branches.)

A.2 Select any node of G(T) and label it as the ground node.

A.3 DefoliateT by removingone branch at a time until all (n-l)branches
have been removed. Algebraically,this is accomplishedby
constructinga sequenceof trees T = T_ _ T_ _ _ ... _ TI where T_ isn n-1 i j

obtained from Tj+ I by finding a node of degree I in Tj+ I (not the
ground node), and removing that node and the single bPaneh to which
it is attached. As this is done, the doublet matching condition

associatedwith the node is assignedto replacea user boundary
conditionon the network associatedwith the branch.

In figure F.14 we illustratethe application of this procedure to the graph

given by figure F.13b.

F.5.2 Modificationsto the AbutmentAssignmentProcedure

The many specialfeatures supportedby PAN AIR, especiallythose features
associatedwith symmetry,add considerablecomplicationto the basic algorithm
for performingdoubletmatching at abutment intersections. In addition to
symmetry,the most significantcomplicatingfeaturesare,

(1) an edge of a networkmay be marked "no doubletedge matching"by the
user,

(il) a network'scorner controlpoint may be a "non-matchingcorner point"
in the sense that there is no boundary condition(i.e.,AIC row)
associatedwith the corner control point that might be replacedwith
a doubletmatching condition.

This presentationof our response to these complicationswill consistof three
parts. First, we will describesome of the generalconsiderationsthat must
be taken account of. Second, we will outline the numerousways by which
symmetry,"no-doubletedge matching"and "non-matchingcorner points"affect
the propertiesof networks,cornercontrol points,user boundaryconditions,
edges, abutmentsand abutment intersections. Third we will describe the
algorithmemployedby PAN AIR that producesa consistentset of doublet
matchingassignmentswhile satisfyingthe constraintsimposedby PAN AIR's
specialprogram features.
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GeneralConsiderations

In addressing the problem of symmetry, we adopt the fundamental point of
view of formulatingseparatelythe boundaryvalue problemsfor the various
symmetric and antisymmetric parts of the perturbation potential. Thus, when

two planes of geometric symmetry are present, our symmetrized potentials

(_SS, _AS, _AA, _SA, see appendix K for definitions)will generally be

required and a separate boundary value problem will be formulated for each.
If an abutment intersection lles away from any plane of symmetry, doublet

matching assignments will be the same for all symmetry conditions and indeed
will be the same as if no symmetry were present at all. On the other hand, if

the abutment intersection point lies on a plane of symmetry, doublet matching

assignments will be performed separately for each symmetry condition and it

becomes importantto know the followingfacts about the abutment intersection:

o which plane(s)of symmetry the abutmentintersectionpoint lies on,

o which plane(s)of symmetrythe individualabutmentslie on,

o which (if any) plane of symmetryan individualnetworkmay lie in_.__.
(N.B. A networkis said to lie in a plane of symmetry if all its
points lie on the plane of symmetry so that the networknormal is
parallelto the plane of symmetrynormal. See appendixH.I.2 for
more detail.)

The first of these facts must be known in order to determinewhich planesof
- symmetryare active, in the followingsense: the first (second)plane of

symmetry is said to be active if PAI lies on the first (second)plane of

symmetryand the symmetry conditionunder considerationis either _SS or

_SA (for the second plane of symmetry: or ). This informationis
importantfor two reasons. First, for an abutment lying on an active plane of
symmetry,doubletmatching is automaticallysatisfiedby virtue of the
symmetrypropertiesof the symmetrizedpotentials. Consequently,a doublet
matching conditionis never explicitlyimposedfor an abutment lying on an
active plane of symmetry. Second, the doubletdistributionon a network
lying in an active plane of symmetry is identicallyzero so that such
networks do not participateat all in the assignmentof doubletmatching
conditions.

Other SignificantConsiderations

Here we outline the ways in which the propertiesof networks,corner
controlpoints, etc. are modified by PAN AIR programfeatures. In additionwe
will discuss brieflythe mechanismsby which modificationstake place.
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Properties of Networks

o A network may lie in a plane of symmetry. A network will lie in a
plane of symmetry i'-_(i) the user explicitly informs PAN AIR of this

fact in the program input, or (ii) by examination of the network's

mesh points PAN AIR determines that all points on the network are
closer than the geometric tolerance distance to a plane of symmetry.

o The program user will assign to each network one of the following

network doublet types:

Matching Condition
Default

Doublet Analysis (DA)

Doublet Design I (DDI) Edges 1,4

Doublt Forward Weighted (DFW)
Doublet Wake I (DWl) Edge I

Doublet Wake 2 (DW2) Corner I

No Doublet (NOD)

Only those networks not marked "no doublet" are of in'crest when one

is analyzing doublet matching at an abutment intersection. In the

discussions that follow, it will be assumed that the matching edges
and corners for the various network types are given by the list of

defaults given above.

o If a network's doublet type is not "no doublet", the user may

specify the doublet value at all control points. Even if this

specification is _ = O, such networks are treated differently from
"no doublet" networks in the sense that these networks are always

involved in doublet matching along abutments and at abutment

intersections. In particular, the abutment intersection processing

may replace a specified doublet boundary eonditlon with a doublet

matehlng condition. As a consequence, the doublet strength may be

slightly nonzero near the boundary of a network for which the user

has specified _ - O.

Properties of Corner Control Points

o A corner control point may be a "matching corner point" in the sense

that no user specified boundary condition is available to generate an
AIC row that has been reserved for the control point. Thus, the

control point must have a doublet matching condition assigned to
it. A "matching corner point" is any corner control point of the

following types:

(i) any corner control point lying on the matching edge of a DWI
network. Thls includes corners I and 2 as well as any extra

control points along the matching edge.

(ii) the matching corner control point of a DW2 network
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(iii) any corner control point lying on edges I and 4, the

"doublet matching" edges, of a DDI network.

o A corner control point may be a "no matching corner point" in the
sense that no AIC row has been reserved for any boundary condition

associated with that control point. Control points of this type
include:

(i) corner points 3 and 4 of DWI networks

(ii) corner points 2, 3 and 4 of DW2 networks

(iii) corner point 3 of DDI networks

(iv) an_ extra control point on an edge that is marked with
either "no doublet edge matching" (a user specification) or

"non-matching edge" (edges 2, 3 and 4 of DWI networks; all

edges Of DW2 networks and edges 2 and 3 of DDI networks

(v) a regular corner control point (that is, one that has an AIC
row reserved for it) for which both adjacent edges are

marked "no doublet edge matching."

o A corner control point is said to lie on a plane of symmetry if its

hypothetical location lies on a plane of symmetry. It is possible

for a control point to lie on two planes of symmetry.

o A corner control point is said to lie in a plane of symmetry if it

lies on a plane of symmetry and, in addition, the panel normal at the

control point is parallel to the plane of symmetry's normal. (In PAN

AIR, the only control points that lie in a plane of symmetry are the

control points on networks that themselves lle in a plane of

symmetry.)

o A corner controlpoint always has associatedwith it two abutment
ends. (Note: In the code of the programDQG, the initialend of an
abutment is denoted by (+I) (Abutmentindex)while the terminalend
of an abutment is denoted by (-I) (Abutmentindex).) The orientation
of the network providesan ordering for these abutmentends, e.g.

<At, A2>, where AI and A2 are abutmentend indices. In figureF.15
we illustratethe anomaloussituationin which AI = A2. In
intersection,such a situationgives rise to a self-loop,which is
subsequentlyignoredduring the tree constructionprocess. This is
possiblebecause the network'ssplines imposedoubletmatchingat
such an abutmentend point.

o The single corner controlpoint at the end of a smooth abutmenthas
associatedwith it two non-smoothabutmentsas illustratedin figure
F.16.
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Properties of User Boundary Conditions

o When a doubletmatching conditionis assigned to a network lying in
an inactive plane of symmetry, the doublet matching condition will
replace the user specifiedantisymmetricboundarycondition. An

antisymmetricboundaryconditionhas the generalform
A

aA(_.n) A + cD u + tD.VU = b (F.5.14)

(Note: A doublet network lying in a plane of symmetry must be

assigned an antisymmetrie boundary condition of the form given
above.)

Properties of Edges

o A network edge may be marked "no doublet edge matching" by the

program user. When this is done, the network's doublet strength

along that edge will not participate in any doublet matehlng
conditions for the abutment(s) in which that edge is involved.

o A network edge may be marked "closure edge" by the user. If in

addition the user has specified that the closure boundary condition

override doublet matching, the network's control points will not be

used for doublet matching along the interior of the closure edge. It
is generally permissible for control points at the ends of a closure

edge to be used for doublet matching.

o Certain network edges are implicitly marked "matching edge" by PAN
AIR. These include:

(i) Edge I of a DWI network

(ii) Edges I and 4 of a DDI network

o Certain network edges are implicitly marked "non-matching edge" by
PAN AIR. These include:

(i) Edges 2, 3 and 4 of a DWI network

(ii) All edges of a DW2 network

(iii) Edges 2 and 3 of a DDI network

o Every portion of a network edge is involved in exactly one abutment.

Properties of Abutments

o Abutments involving any interior edge of a network are forbidden.

o The initialend of an abutmentmay participatein an abutment
intersectionwith the terminalend of an abutment. (FigureF.17
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illustrates how this situation can arise for a tube panelled as one

network.) Since doublet matching must, in general, be imposed at
both ends of an abutment it is necessary to distinguish the initial

and final ends of an abutment during abutment intersection

analysis. As noted above, the scheme used by PAN AIR labels the
initial end with (+I) (abutment index) and the terminal end with (-I)

(abutment index).

o An abutment may lie on O, I or 2 planes of symmetry. If any portion

of an abutment lies on a plane of symmetry, the whole of the abutment
lies on that plane of symmetry. If an abutment lies on an active

plane of symmetry, doublet matching along that abutment is

automatically satisifed by virtue of the symmetry properties of the

symmetrized potentials "¢ij . Thus, doublet matching conditions are

never enforced for an abutment lying on an active plane of symmetry.

o Smooth abutmentsdo not explicitlyenter into the analysisof an
abutment intersection.

Properties of Abutment Intersections

o An abutment intersectionmay lie on O, I or 2 planesof symmetry.

Selectionof MatchingConditions

We now describe the process by which doublet matching assignments are made
-- while carefully taking into account the considerations outlined above.

The basic procedure for performing doublet matching will remain essentially

the same as the tree defoliation procedure outlined at the end of section
F.5.1. The complete procedure, however, will be significantly more complex at

each stage of processing. A summary of the stages of the complete procedure
is given -

B.I Construct the graph G containing just those branches corresponding to

networks whose type is not "no doublet" and do not lie in an active

plane of symmetry. During this construction process, some

relabelling of nodes may be performed to account for the "no doublet

edge matching" feature. In addition, branches associated with

control points that cannot accept a matching condition (e.g. corners
3 and 4 of a DWI network) are excluded from G.
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B.2 Form a spanning tree for G, T _ G. If G has k components (G = U Gi), T _
k i=I

will have k components, T = U Ti (*). In contrast with the earlier
iffil

algorithm, T is not an arbitrary spanning tree of G, but rather is
constructed with careful regard for the properties of the
neworks/branches of G.

B.3 Without first selecting a ground node, each component tree T i is
defoliated, the removal of each branch providing an association of a
node with a branch. At the end of this process, there will be left

one node that is not associated with any branch, and this node

becomes the ground node for the tree.

B.4 Finally, the assignments are examined to determine if the requisite

doublet matching conditions have in fact been associated with

eligible branches. In addition, it is verified that all of those
branches that must receive a doublet matching condition have in fact

done so.

Several remarks about this algorithm are appropriate before proceeding with

its detailed exposition. First, steps B.I and B.4 are essentially

deterministic given the specification of the problem. Steps B.2 and B.3, on
the other hand are substantially heuristic, step B.2 being ambiguous with

regard to the choice of spanning tree and step B.3 being ambiguous with regard
to the defoliation strategy. Although the detailed exposition of the

algorithmwill resolvemost of these ambiguities,the solutionspresented
should not be regardedas unique. They are, nevertheless,very good.

B.I The detailed descriptionof an abutment intersectionincludesthe
followinginformation

o Symmetry condition,_ SS, AA or SA. [ISYM]**

o A description of the plane(s) of symmetry that the abutment

intersection point lies on. [LABT]

* Note, however, that if some componentGi of G containsonly one node, all

of its branches being self loops, then Ti = #. In practice,self loops
cause no specialdifficulty for the doubletmatching problemsimply because
the doubletstrength on a networkthat generatesa self loop "matches
itself."

** The expressionsgiven in bracketsare correspondingFORTRAN variablenames
for elements of the callingsequenceto subroutineABTINT (PALIB).
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For each network/control point/branch N involved in the abutment intersection,

the following information is given.

o The abutment ends in which N participates at PAI are given in

positive sequence <At, A2>. The two edge segments of N that are

involved in the abutments At, A2 are denoted EI, E2 respectively.

Because of the requirement that AI and A2 be given in positive

sequence, an oriented traversal of the boundary of N would encounter

edge segment EI followed immediately by edge segment E2. [IPQSEG]

o "No doublet edge matching" information is given for each edge segment

Ei. [NDMSEG]

o Let ti denote unit vectors drawn along edge segments Ei, pointing

away from PAI" Let s = (tI + t2)/. I+ _21 and c0
be the

"compressibility axis downstream parameter" a is defined by
A

c - s . c (F.5.15)
o

This parameter is given for each branch. [CSEG]

o Each branch is classified as follows [KSEG]:

O, no doublet network.

2, doublet network, but no corner control point is available to

enforce doublet matching.

3, doublet network with regular corner control point, but at least

one of the edges Ei is marked "no doublet edge matching."

4, doublet network with regular corner control point.

5, doublet network with "matching" corner control point

o The plane of symmetry in which N lies, if any, is given. [LSEG]

For each abutment-end/node involved in the abutment intersection, the

following information is given

o The global abutment-end index [IPNOD]

o a flag indicating which planes of symmetry the abutment end lies on
[LNOD]

Given the information outlined above, the graph G is constructed in three

stages. First, a graph G(l) is constructed using all those branches in
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classes 2, 3, 4 and 5. Second, a graph G (2) is constructed from G(I) by

examining each branch of G (I) for "no doublet edge matching" marks on either _
end of the branch. If such a mark is found, the corresponding branch-end is
detached from the node to which it is attached and a new node is created.

Third, a graph G(3) is constructed from G(2) by deleting all branches in class

2 and all branches (i.e., control points) lying in an active plane of

symmetry. The resulting graph G(3) is the graph G that we seek.

Once the graph G = G(3) has Seen constructed, all of the nodes in the

problem (that is all of the nodes of G(2)), are divided into three types:

Node type Characterization

"preferred ground node" - an extra node created during the construc-
[MNOD - -I] tion of G(2)

not a - an ordinary abutment for which matching

"preferred ground node" must be performed
[MNOD = O]

"automatic node" - a node appearing.io G(2) but not in G(3).

[MNOD = +I] These nodes of G£2) are characterized by

the fact that the only branches attached to
them are in class 2. Doublet matching is

assumed to occur "automatically" at such nodes.

The node type determines whether or not the corresponding matching condition

must be imposed. Basically, matching is imposed only for nodes that are not

"preferred ground nodes" (i.e., MNOD I 0).

The last node type, the "automatic node" can arise quite naturally when a

configuration includes compound wakes. To see this, consider figure F.IO with
all networks taken to be DWI networks for which edge I is the matching edge.

When this happens, the node corresponding to abutment AI will be an "automatic

node" since both CI = (network NI, corner 3) and C2 = (network N2, corner 4)
are "no matching corner points." In this particular instance, it is easy to

see that matching along abutment AI is already taken care of by a doublet

matching condition imposed at some point upstream of the abutment

intersection. In practice PAN AIR assumes that this is generally the case and

that doublet matching conditions at "automatic nodes" need not be explicitly

imposed.

Having classified the nodes of the problem, the number of required matching

conditions is computed:

Number of required matching conditions = NRE Q

= max (N_I+N0+NI-I_No+NI)
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where

N_I = number of "preferred ground nodes"

NO = number of "not preferred ground nodes"

N I = number of "automatic nodes."

This number is used at the end of processing to determine whether or not the

assignment procedure was successful. The test is passed if

NI + NACT _ NREQ

where NAC T denotes the actual number of matching conditions assigned.

B.2 Without loss of generality, we may suppose that the graph generated in

st----epB.I is connected. If in fact G is not connected, we simply perform steps

B.2, B.3 and B.4 separately on each of G's components.

Any given connected graph will, in general, possess many spanning trees and

the problem of determining all of the spanning trees of a particular graph is

very difficuit (el. ref. F.2, p. 280). The problem of determining a

particular spanning tree is fairly simple, however, and thestandard algorithm

is given in (ref. F.2, pp 277-279). Basically this algorithm proceeds by

considering in some order, each branch of the graph as a candidate for

_ membership in the spanning tree. If a branch causes a closed loop, it is

rejected, and if it does not cause a closed loop it is accepted.
J

It is clear that the spanning tree resulting from this procedure depends

crucially upon the order in which branches are examined. In PAN AIR, branches
are considered in order of decreasing priority in accordance with the

following priority scheme:

3 + _/2 class 3 branches

p = 4 + a/2 class 4 branches (F.5.16)

5 class 5 branches

Thus, branches with the highest values of p are considered first for potentia!

memebership in the spanning tree. Here, a is the "compressibility axis

downstream parameter" defined above by equation (F.5.15).

B.3 In this step of the algorithm, we must select a defoliation scheme for

the spanning tree T. If T has n nodes, then there are precisely n distinct
defoliation schemes that assign nodes to branches, one corresponding to each

choice of ground node in subalgorithm A.3 of section F.5.1. Thus, one

possibility that suggests itself is to examine each of the n possible
defoliation schemes and determine which one provides the most suitable set of
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assignments. It turns out that such a complex procedure is not necessary and
that a fairly straightforward modification of subalgorithm A.3 generates a --

suitable choice of ground node without an exhaustive search(*).

The modified defoliation algorithm proceeds as follows. As before, we set

Tn = T and define a sequence of trees Tn _Tn_ I _ ... _T I such that Tj is

obtained from Tj+ I by identifying in Tj+ I a node of degree I and removing that

node and the single branch to which it is attached. If there is more than one

node of degree I available, the choice is made by means of the following

prioritlzatlon scheme based upon node type ("preferred ground node" or not)
and branch class (3,4 or 5):

Branch Class

Node Type 3 or 4 5
[KB - O] [KB = +I]

"preferred ground node" 2 1
[MNOD = -I]

not a

"preferred ground node" 3 4

[MNOD : O]

Priority classes for removing a node/branch combination

Given this prioritizatlon scheme, the node/branch combination in the

highest priority class is selected for defoliation. In the event that there

is more than one node/branch combination in the highest priority class, the

one with the lowest value of p (see eqn. (F.5.16) above) is selected if the
node is a "preferred ground node" while the highest value of p (of. equation

F.5.16) is selected if the node is not a "preferred ground node."

B.4 The algorithm described above will have achieved a successful set of

doublet matching assignments provided the following conditions are satisfied

(i) all "matchlng corner point" branches (branch class 5) are

included in the spanning tree T.

(Ii) a "preferred ground node" is never assigned to a class 5 branch

(i.e., priority class I is never selected.)

(iii) the ground node actually selected for a tree T is a "preferred

ground node," if any appear in T.

(,)
Note that a completely exhaustive examination of all possible matching assign-
ments possible for a connected graph G would involve (n . s) separate cases,
where n is the number of nodes in G and s is the number of spanning trees.
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F.6 Gap-Filling Panels

Whenever a gap whose size is greater than the user-specified tolerance
distance occurs between portions of two or more network edges which form an
abutment, gap-filling panels are defined. The placement of gap-filling panels
is illustrated for an abutment containing two network edges in figure F.9.

Wenow briefly outline the process by which gap-filling panels are
constructed, first considering the case of two network edges. First, each
edge in the abutment is "parametrized." That is, each panel corner point on
the edge is assigned a real number t between 0 and I inclusive, where t is the
ratio of two distances. The first distance is the sum of the lengths of the
panel edges between the starting point of the abutment and the panel corner
point in question, while the second distance is the sum of the lengths of all
the panel edges on a network edge. Thus t represents the proportion of the
entire edge length which one has traveled in proceding from the start of the
abutment to the panel corner point in question. In figure F.9, each panel
corner point is given a value t.

Now, suppose the distinct values of t which occur for the two network
edges are to, tl,..., t n , where

0 = t o < t I <...< t n : I (F.6.1)

In the example of figure F.9, n = 9, since there are 11 panel corner points
other than the initial points, and the values t = .80 and t = 1.0 occur twice.

°_ Now, up to n gap-filling panels may be constructed to fill the gap in the
abutment. For each integer i, I < i < n, the quadrilateral region with corner
points lying on the two network edges, with respective parameter values t :
ti 1 and t : t i is examined. If t i is not the parameter value of a
co_ner point (for instance, .30 is not the parameter value of any cornerpoint
on network A in figure F.9), linear interpolation between corner points is
used to find the point on the panel edge with that parameter value. If three
or more of the four edges of this quadrilateral region have length greater
than the user-specified tolerance distance €, a gap-filling panel is defined.

Thus, for the abutment in figure F.6, no gap-filling panels would be
defined, since the gap size is uniformly smaller than €, and so all potential
gap-filling panels have two edges of length less than _. On the other hand,
if, in figure F.9, _ were approximately .05 times the abutment length, seven
gap-filling panels would be defined, while two potential ones would be
discarded because two edges of the panels would be too short. The reason that
very small gap-filling panels are never defined is that numerical difficulties
could occur in measuring the influence of these panels on control points. It
is not known at this time under which circumstances the resulting doublet
discontinuity might be significant.

Next, we address the question of how to define the doublet strength on the
gap-filling panels so that doublet continuity is attained. The edge splines
constructed in appendix I assure that, if one edge is a refinement of the
other, then the doublet strength matches at points on the two network edges
with the same parameter value t. Thus we want the doublet strength to be
constant on the panel along the direction perpendicular to the direction of
the abutment.
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We illustrate this in figure F.18 The four corner points of the panel{ I

are Pi and Pi+l on edge A and Pi and Pi+l on edge B. We then --
define Mi as the midpoint of the segment Pi Pi+l, and Mi' similarly.
Then, since Pi, Pi+1, and Mi each has the same parameter value as its
primed counterpart, it also has the same doublet strength, namely u, ui+l,+
or ui respectively. Thus, we have defined _ at six of the nine panel
defining points, and we define u at the remaining three panel defining points
in the natural way.

This defines u uniquely on the whole panel (see section 5.5). Further, it

insures continuity of u on the whole edge Pi Pi+l and the whole edge
P Pi+l, since these two gap-filling panel edges are subsets of
ordinary panel edges. Thus the doublet strength on the network edges is
defined by a single quadratic function in one variable, and therefore agrees
with the doublet strength on the gap-filling panel edge everywhere, since it
agrees at three points.

Finally we must consider the case of three or more network edges meeting
in an abutment, as illustrated in cross-section in figure F.19. There,
network Eo is the most densely paneled network edge, and so, if the user has
followed the paneling rules, it is a refinement of edges E_ and E2. We
construct gap-filling panels as illustrated in order to fill the gap in the
abutment.

It still remains to be decided how to define the doublet strength on the
gap filling panels. Wewant the doublet strength to be continuous across
edges EI and E2, while at Eo we want

"o - u(1) - u(2) : 0 (F.6.2)

where u(" is the doublet strength on the gap-filling panel spanning the gap
from E0 _ Ei. On the other hand, the doublet edge splines and matching
boundary conditions insure

Uo - ,i - _2 : 0 (F.6.3)

where wi is the doublet strength on edge Ei. Thus the specification

"(1) : "I

u(2) = u2 (F.6.4)

insures doublet continuity (in the form (F.I.I)) everywhere.

Thus the general procedure used by Pan Air for gap-filling panels in
abutments with three or more network edges is:

a. choose the most densely paneled edge (which should be a refinement of
all the other network edges),

b. define gap-filling panels in the gap between the finest edge Eo
and each other edge Ei, just as if this were an abutment with only
two edges, and
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c. define the doublet strength on the gap-filling panels to be equal to
the doublet strength on the edge Ei.

Note that this procedure works even if there are only two edges in the
abutment. Further, it insures that the equation

_-_si ui = 0 (F.6.5)

is imposed along all network edges.
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by a line vortex
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G.O ControlPoint Locations

In figure G.1 we illustratethe possible locationof points on a network,
called controlpoints,at which boundaryconditionsare defined. These
locationsare independentof the source type or doublettype of the network;
however,we will see in AppendixH that meaningfulboundaryconditionsare not
necessarilyimposedat all controlpoints (for instance,on wake networks,
boundaryconditionsare only imposedalong one edge).

Note that controlspoints are illustratedas being locatednear, but not
directlyon, midpointsof panel edges lying on networkedges. This is due to
the disastrousresultswhich would occur from attemptingto measure the
velocityor potentialat a controlpoint that lies directlyon a panel edge
(see section J.11). Later in this sectionwe describethe procedureused to
recede controlpoints from the panel edge.

When a networkedge is divided into distinctportionsbelongingto
separateabutments,as illustratedin figure G.2, an extra controlpoint, in
additionto those in figure G.1, is defined. The same data are computedfor
these controlpoints as for ordinarycontrolpoints.

In order to determineits location,a controlpoint is placed in one of

three categories: panel center controlpoints,edge midpoint controlpoints,
and panel corner controlpoints. The lattertwo categoriesare only defined
along the networkperimeter.The controlpoint is definedby prescribinga

_ "hypotheticallocation"(thecenter point, edge midpoint,or corner point at
which the controlpoint would ideallybe located),and a "recessionvector"
which describesthe extent to which the control point is receded into a
subpanelfrom its hypotheticallocation.

The size of the "recessionvector"has been determinedexperimentally.
Basically,it has been chosen as small as possiblewithoutcausing severe
numericalerror. We refer to figure G.3 in definingthe recessionvectors.
There,we show an edge controlpoint as P5 and a corner point at PI ; for
controlpoints at other points or edge midpointsthe procedureis Tdentical.

Panel center controlpoints are only recededvery slightlyfrom the center

point P9 since the doubletdistributionis differentiableand the source
distributionis continuousat P9 ; as a result (seesectionJ.11) the
potentialand velocity inducedby the singularitydistributionsare very well
behavedat P9- It is still necessaryto recede the controlpoint slightly,
however,because influencecoefficientscan not be computedfor a point lying
directlyon a sub-paneledge, becausethe calculationsyield singularresults
there. So, we choose the recessionvector to be

200 (G.O.I)
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Edge controlpoints are recededconsiderablyfurtherbecauseof the
discontinuitiesin doubletderivative,surfaceslope, and source strength
which occur at networkedges. Thus, for the controlpoint locatedat P5, we
define its recessionvector to be

R : 6{ _ '_8-_5' (P9 - P5)_+ '_9-_51 (P8 - P5)}

(G.O.2)

where

min<1_8-_1, I_-_1, l_-_l __ 1___51>0
lllO otherwise

(G.O.3)

Th_ recessionvector R bisectsthe angle betweenthe vectors (P8 - P5) and
(P9 -._5). If a were unity, the head of the recession_vector_Remanatingfrom
polnt P_ would lie on the line segmentjoiningpoints P8"and P9" If edge 1
is collapsedas in figure G.4, then a is taken to be a tenth. _The recession
vectorRwould also be used for any controlpoints locatedat P1 and P2 in
this case. If edge 1 is not collapsed,then a will be at most a tenth and
possibly less, if the panel is skewed. The recessionvectorsfor other edge
midpointcontrol p_int_ are definedanalogously,controlpointswhose hypothetical
locationsare P6, P7, P8 being withdrawn,respectively,into triangles6, 7,
and 8.

For the corner controlpoint locatedat PI which does not lie on a collapsed
edge the recessionvector is

Fo * - : -
(G.O.4)

This particularconstructionprovidesthe recessionvector R with
propertiessimilarto the edge controlpoint recessionvector in (G.O.2).
Note that the recessionvector in (G.O.4)lies in subpanel i. The recession
vectorsfor other corner controlpoints are handled in a similarfashion.

Some geometricquantitiesin additionto locationand hypothetical
locationare computed by the programfor each controlpoint. One of these is
the subpanelon which the controlpoint actually lies. This is needed later
(see section J.8) to insurethat an averagepotentialand velocity are _.
computedcorrectlyin measuringthe influencethat the sub-panelon which the
controlpoint lies exerts on the controlpoint.
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Also, for each edge or cornercontrolpoint at which a matchingboundary
Conditionis imposed,a set of "extra hypotheticallocations"and their
associatedsign is computed. These arise from the matching boundarycondition
(see sectionF.1)

si "i = 0 (G.O.5)

where the _i are the values of doublet strength on different networks.

In figure G.5, we illustrate an abutment containing three network edges.
Although the control point is receded from the edge, the matching boundary
condition involves singularity strengths at the edge; in this example (G.O.5)
becomes

2

_. si ,(H i ) : 0 (G.O.6)

i :0

where Ho is the (default) hypothetical location of the control point, while
HI and H2 are extra hypothetical locations.

In Appendix F we indicate how the signs s i are computed; here we
describe the computation of the extra hypothetical locations. Hypothetical
locations are computed one abutment at a time by parametrizing the abutment

- (see section F.4), a process that assigns to each panel corner point or edge
midpoint P on that portion of a network edge belonging to an abutment a real
number t(P) between 0 and i.

In figure G.6, we illustrate an abutment with two network edges. Given
the control point and default hypothetical location Ho , we compute the
extra hypothetical location H1 as follows. Parametrization of the abutment
gives us t(Ho), and also assigns a value t to every panel corner point and
edge midpoint on the edge of network 1.

By interpolation between these points, we find H1 as the point satisfying

t(H1) = t(Ho) (G.Q.7)

In addition to the coordinates of the extra hypothetical locations, the
program determines the panel and subpanel on which each extra hypothetical
location lies, so that the doublet strength can be computed there later.

Our discussion of matching boundary conditions has assumed we are dealing
with doublet matching. In the case of a source matching boundary condition
(which may occur on the edge of a source design network)

_-_si _i = 0 (G.O.8)

and extra hypothetical locations and signs are computed as before.
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There are two final pieces of geometric data, associated with control
points, which we have not yet discussed. These are the normal and conormal of
the subpanel on which the control point lies. The normal is needed in
post-processing to compute velocity from the potential and the normal mass
flux (see Appendix N), while the conormal _ is needed to compute the normal
mass flux from the velocity influence coefficient matrix by the formula

v • _ : w • B (G.O.9)
The computation of the normal is described in section D.2, while

n : [B o] n (G.O.IO)

where

[Bo] : I + (sB2 - 1) _o _ (G.O.II)

by equation (E.3.9).
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_ H.O BoundaryConditionsand Onset Flows

In this appendix,we describethe processingof the user-inputboundary
conditiondata by the program. The programis not (with one exception)
concernedwith the nature of the boundaryvalue problemdefinedby the user
(that is, whether or not it is well posed). Under certaincircumstances,
however,user-specifiedboundaryconditionsare over-riddenby the program.

In sectionH.1, we discussthe standardboundaryconditionequation,

aA WA " B + CA CA + _A" _A
(H.O.1)

+ aD a + CD _ +_D • v_ =b.

and describehow the programcomputesthe coefficientsof the left hand side
of the equation. In sectionH.2, we discussprogramoverridesof the
user-specifiedboundaryconditions. In sectionH.3, we discussthe
computationof the right hand side of (H.O.I)via onset flows.
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H.1 Standard Forms for BoundaryConditions

H.1.1 Reductionof User SpecifiedBoundaryConditionsto StandardForm

The programuser usuallydefinestwo boundaryconditionsat each control
point. Generallythis is done on a network-widebasis (especiallyin defining
the left hand side of (H.O.1)),but it may be done on a point-by-pointbasis.
The User'sManual (section3) explainshow to define the boundarycondition
coefficients;for standardcases it is done automaticallyby the program. In
any case, the user-inputboundaryconditioncan be much more generalthan
(H.O.1);it can be of the form (thoughalmostall coefficientswould generally
be zero);

aU wU . _ + c + . vU + e vU . B

+ a wL . _ + c eL + " VL + e vL .

+ a WA . _ + c CA + . VA+ e VA . _

+ a_ o + c_ _ + _ . _ + e_ YD" n = b
(H.1.1)

Here, the subscriptsU, L, A, D refer to upper, lower,average,and
- difference,while the superscriptI specifiesthat these are user-input

quantities.

Letting X stand for any of the quantities_, _, or 7, we have, by
definition,

1
XA = _ (Xu . XL)

(H.1.2)

XD = XU - XL

Inverting(H.I.2)we have

XU = XA + ½ XD

(H.1.3)

XL = XA - ½ XD

Thus, au Xu + aL XL = (aU + aL) XA + ½ (au - aL) XD (H.1.4)

where aU and aL are any real numbers.

Substituting(H.1.4)into (H.I.1),we have
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+ + + .VA+(e +e + •

1 + a_)+ (½ a_-_ a_ o

1

+ (½ e_- ½ e_ + e_) _D • B = b
(H.i.5}

Here, we have used the facts that o = wD • n and u = _D" So we have replaced

upper and lower flow quantitiesin (H.1.1)with averageand difference
quantities• But in order to put the equationin the non-redundantform
(H.O.1),we still have to eliminatethe normal velocityterms which may be
selected by a programuser in place of normalmass flux•

Now, we have alreadyshown (see 5.4.16a)that

. _ = _. B (H•1.6)

where n is the co-normal. Now, assuming

. B _ 0 (H.1.7)

(n . B = 0 is the case of a forbidden"Mach-inclined"panel),we have the
identity

_ 1 B + _' (H•I•8)
B.B

where

7 = B 1 B (H•I•9)
B.B

Now

B . ;" = I _ • B _ 0 (H•I•IO)
B.B

and so _ is in fact a tangentvector or zero•
Thus, by (H.I.8),

-- B 1 _ - -- 1 _ B + (H.I•11)V • - • _ + I" • V - • Ir . V
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Substituting(H.1.11)into (H.1.5),we obtain

auI aAI _ (euI eLI _ _A " "+ aLl + + ^ 1 + + e.l)) n(
n .

+ (CuI. CLI + CAI)6A

+ (_UI + _LI + _AI + (euI+ eLI . eAI)_) " _A

+ _ 1 + 1 (1 euI - ½ eLI * eDI)) a(laul aLl aDI , _ .

+ (lcu I - ½ CLI + CDI) p

+ (½_U I _ ½_LI + _DI + (½euI- ½eLI + eDI) T) .V. = b
(H.1.12)

Thus, (H.1.5)is of the form (H.O.1),with

+ 1 (euI + )
aA = auI + aLl + aAI _ . B + eLI eAI

cA = CuI + CLI + CAI

tuI tLI tAI euI eLI eAI 1 B)tA= + + + ( + + ) (n n̂ .

1 I I I ! _½eLI + eDI)aD = 2-aU - _AL + aD + ^ - (½euIn

tD = ½_U I - _I + _DI + (_ euI - ½ eLI + eDI) Cn 1 _)

(H.I.13)

H.1.2 Classificationof Control Points

The correctimplementationof symmetryin PAN AIR requiresthat the
boundaryconditionprocessingin overlays3 and 4 of DQG recognizesome
distinctionsconcerninga controlpoint's positionrelativeto a plane of
symmetry. These distinctions,to be definedpresently,are that a control
point lie:

o Away from a plane of symmetry

o On a plane of symmetry

o In a plane of symmetry
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In appendixK we show that when a configurationhas two planes of symmetry,
these two planes of symmetryare characterizedby the specification

Pi = { _. I (ni' _.- P+o) = 0} (H.1.14)

= i-th plane of symmetry

Here, P'ois any point lying on the intersectionof the two planes of symmetry
A

while ni denotesthe unit normals for symmetryplane Pi" The unit normals
A A

nI, n2 satisfythe conditions

A A

nI . n2 = 0

A A

ni • Co=0
A

where co is the compressibilityaxis.

With this notationdeveloped,we can now define our concepts. Let p be
the positionvector for the hypotheticallocationof a control point and let n
be the unit normal to the singularitysurfaceat._. Then, p is said to lie
away from any plane of symmetryif p € Pi' that Is, if

(away) (P-Po' _i) _ 0 (H.I.15)

Next, p is said to lie on Pi if p € Pi' that is, -

(_ on Pi) (P- P_o'_i) = 0 (H.I.16)

Notice that it is possible for _ to lie on two planes of symmetry.^Finally,A ,

is said to lie inPi if _ € Pi and in additionn Is parallelto ni. Thus

(P in Pi) (P --Po' _i) = 0, (_, _i) = 1 (H.1.17)
A

Becauseof the extra conditionthat _ be parallelto ni, it is impossiblefor a
control point to lie in two planes of symmetry.

In practicethese distinctionsare modified slightly. In the actual
implementationof PAN AIR, the only control points that are recognizedas
lying in a plane of symmetryare those controlpoints in a networksuch that
the wh_e network lies in a plane of symmetry. If a controlpoint does not
lie in a plane of sjnnmetry,the only way by which it will be recognizedas
lyin_on a plane of symmetry is if (i) it is a networkedge control point and,
(ii) t_ networkedge abuts a plane of symmetry. Of course if the network
edge abuts both planesof symmetry,the controlpoint will be recognizedas
lying on both planes of symmetry. Finally, if a control point is not found to
lie either on or in a plane of symmetryby these tests, it is said to lie away
from the planes of symmetry.

H.I.3 BoundaryConditionSymmetryTypes for NetworksLying in a Plane of
Symmetry

When a user has specifiedthat a configurationhas a plane of symmetry,
PAN AIR assumesthat the boundaryconditionto be imposedat p' the image of a
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control point _ has the form, (comparewith equation(H.O.I))

aA W_A(P')" R1 B + CA _A (_') + VA (P)" R1 t_A

+ aD a (_') + cD _ (_') + V_ (_') • R1 _D = b' (H.I.18)

where R1 denotes the usual reflectionmatrix definedby the normal_1 to the
plane of symmetry,(cf. Dahlquist,Bjorck,ref. H.I, p. 212)

^ ^ T
R1 = I - 2 nI nI .

Now when a controlpoint lies in the plane of symmetry,so that_ is identical
with p', the conceptof an image controlpoint breaks down and we find that
differentside conditionsmust be imposedupon the boundaryconditionsin
order to decomposethe originalboundaryvalue probleminto its symmetricand
antisymmetricparts. In appendixK it is shown that a doubletnetworklying
in a plane of symmetrymust have an antisymmetricboundaryconditionof the
form:

AntisymmetricBoundaryCondition

aA wA (_) • _ + cD _ (_) + V_ (p) • _D = b (H.1.19)

while a sourcenetworklying in a plane of symmetrymust have a symmetric
boundaryconditionof the form:

SymmetricBoundaryCondition

aD a (p) + cA _A (_) + VA (_) " _A = b (H.I.20)

These restrictionson the form of boundaryconditionsfor networkslying in a
plane of symmetryshouldbe regardedas the proper extensionof the
restriction(H.1.18)imposedupon boundaryconditionsat image controlpoints.
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H.2 BoundaryConditionOverridesand BoundaryConditionSelection

We discusshere all of the considerationsthat lead to the selectionof
the appropriateboundaryconditionsto be imposedat a controlpoint. Two
basic problemsmust be addressed.

First, the specificationof a boundaryconditionon the upstreamsurface
of a superinclinedpanel leads to an ill-posedboundaryvalue problem.
Consequently,if by user error or inadvertencethis situationshouldoccur,
the user specifiedboundaryconditionswill be modified by PAN AIR in a
prescribedfashionso as to eliminatethe difficulty. This modification
process,to be describedpresently,is quite straightforward.

Second,at some controlpoints more boundaryconditionsmay be available
for use than are actuallyrequired.

This situationmay arise in two possibleways:

(i) On a compositenetwork,one typicallyspecifiestwo boundary
conditionsat every controlpoint. However,there are always some
controlpoints (typicallyon the boundaryof the network)which
requireonly one boundarycondition.

(ii) PAN AIR is capableof internallygeneratingboundaryconditionsthat
take priorityover all user specifiedboundaryconditions. These
internallygeneratedboundaryconditionsincludethe following

o Degenerateboundaryconditionsof the form _A = 0 or _S = 0 for
networkslying in a plane of symmetry

o Doubletmatching conditions

o Velocityjump matchingconditions(also known as the vorticity
matchingKutta condition)

o Closureconditions

o Source matchingconditions

The problem to be addressed,then, is to determinewhich boundaryconditions
are to be imposedwhen more than enough are available. Any responseto this
problemmust address separatelythe differentcases indicatedby figureH.I.
Thus we must distinguishwhethera controlpoint is interiorto, on the edge
of, or on the corner of a network. Additionally,we must distinguishthe
cases for which the controlpoint lies away from, on or in a plane of
symmetry. Finally,we remark that whenever a control point lies on or in a
plane of symmetry,boundaryconditionassignmentsmust be done separatelyfor
each symmetrycondition. The reason for this last requirementis that
whenevera controlpoint lies on a plane of symmetry,there is the possibility
that a degenerateboundaryconditionis being imposednearby,and this fact
can cruciallyaffect the assignmentof matchingconditions,dependingupon the
symmetrycondition.

The approachthat PAN AIR uses to resolvethe dilemmaof too many boundary
conditionsis to define a boundaryconditionhierarchy. Thus, by defininga
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prioritizationof the availableboundaryconditions,PAN AIR is able to select
the top one or two in accordancewith its needs. This particularresolution
of the dilemmashould not be regardedas the only possibleor even the only
reasonableresolution. In fact, we shall see that it is not even adequateand
requires some modificationwhen the controlpoint lies in a plane of
symmetry. Alternativeapproachesthat could also be used include:

(i) The boundaryconditionsrequiredby PAN AIR could be tagged "source
type" or "doublettype," the basic idea being that "sourcetype"
boundaryconditionsare appliedat source boundaryconditionpoints
while "doublettype" conditionsare appliedat doubletboundary
conditionpoints (see figuresD.1, D.2, D.3). In addition,the DQG
generatedboundaryconditionscould also be typed in this way. For
example,we would define

^S
Degeneratedoublet,u = O, Doublettype

^A
Degeneratesource, a = O, Source type

DoubletMatching Doublettype

Source Matching Source type

VelocityJump Matching Doublettype

Closure Doublettype (if "no doublet
matching") --

Source type (if "no source
matching")

Finally,the two user specifiedboundaryconditionswould be typed,
one "sourcetype" and the other "doublettype" (this is the tricky
part). Then, during boundaryconditionassignment,a "doublettype"
DQG boundaryconditionwould replacea "doublettype" user boundary
conditionwhile a "sourcetype" DQG boundaryconditionwould replace
a "sourcetype" user boundarycondition.

For this scheme to work, we would have to ensure that a "doublet
type" ("sourcetype") DQG boundaryconditionnever be requested
unlessa "doublettype" ("sourcetype")boundaryconditionis
actually needed at that point. In addition,for class 4 and class 5
boundaryconditions,it would almostcertainlybe necessaryto
requirethat the user specifythe singularitytype of each of his
boundaryconditions.

(ii) The programcould proceedjust as it does now in terms of
prioritizinginternallygeneratedboundaryconditions,but impose
upon the user the requirementthat he assign boundarycondition
prioritiesto the boundaryconditionsthat he provides. (Section
H.2.7 summarizesPAN AIR's currentprioritizationof internally
generatedboundaryconditions.) --.

H.2-2



H.2.1 SuperinclinedPanel Override

In describingthe programoverridewhich occurs on superinclinedpanels,
that is, those for which

A

n • _ < 0 (H.2.1)

we will assume for conveniencethat the "upper"surfaceof the panel is the
"upstream"surface,that is, that

A A

n . c < 0 (H.2.2)
o

A

where co is the compressibilityvector.

This assumptionis not made within the program,of course,but is merely
used here to simplifythe discussion. Under this assumption,any upper
surface specificationis ill-posed,or very nearly so. Nevertheless,such a
boundaryconditioncould accidentallyoccur if a panel significantlyinclined
to the freestreambecomes superinclinedas the Mach number is increased.

We say that an upper surfaceconditionhas been specifiedif all the

coefficientsof XL's are zero, where XL is defined in (H.1.3),and X stands
for w . n, 6, or v. Using (H.1.3),we see that

XA - 1/2 XD = XL (H.2.3)

Now, an upper surfaceboundary specificationhas occurred if

aL = 0

cL = 0

and tL = 0 (H.2.4a)

that is, if aA = 2 aD

cA = 2 cD

and tA = 2 tD . (H.2.nb)

Whenever (H.2.4)occurs, the boundarycondition(H.O.1)is replacedby the
revised boundarycondition

-* A -_ A

• wAwL n = • n - 1/2 a = 0 (H.2.5)

or, if this boundaryconditionhas alreadybeen specifiedas the other
boundaryconditionat the controlpoint, (H.O.I)is replacedby

_L = 0 (H.2.6)
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Finally, if the boundarycondition(H.O.1)is

o : b (H.2.7)

the program assumes this to be an indirect upper surface boundary condition
associated with interior perturbation stagnation, and thus replaces this with
either the boundary condition (H.2.5) or (H.2.6) as appropriate.

Once this override of the user specified boundary conditions has been
performed, PANAIR proceeds with its analysis treating the new boundary
conditions exactly as if they had been directly specified by the user.

H.2.2 Boundary Condition Selection

The selection process for boundary conditions consists of four stages:

(i) The number of nontrivial boundary conditions to be imposed at a

control point is determined. Denote this number by NNTBCo (If the
control point lies in a plane of symmetry, these boundary conditions
must also be classifiedas to symmetrytype, symmetricor anti-
symmetric(cf. sectionH.1.3). In this case, two numbersare

S A
determined,NNTBC and NNTBC, the number of symmetricand antisymmetric
boundaryconditionsto be imposed.) FiguresD.1, D.2 and D.3 describe
the locationsof nontrivialboundaryconditionsfor the variousnetwork
types.

(ii) The internallygeneratedboundaryconditionsto be imposedat a
control point are determined. If the controlpoint lies on or in a
plane of symmetry,both the number and nature of these boundary
conditionsmay vary from one symmetryconditionto another. (For
control points lying in a plane of symmetry,these conditionsare
classifiedas to symmetrytype.)

(iii) The user boundaryconditionsassociatedwith a controlpoint are
determinedand then ranked in a hierarchy. (Again,if the control
point lies in a plane of symmetry,these boundaryconditionsmust be
classifiedas to symmetrytype.)

(iv) Finallyoalist of all availableboundaryconditionsis constructed.
The internallygeneratedboundaryconditionsare ranked accordingto
the prioritization

1. Degenerateboundarycondition

2. Doubletmatching/velocityjump matching

3. Closure

4. Source matching

Followingthese, the list of user specifiedboundaryconditions

developedin part (iii) is appended. Then, the first NNTBC boundary
conditions(cf. part (i)) are selectedfor impositionat the control
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point. If the combined list containsfewer than NNTBC boundary
conditions,the programterminateswith an error message.

(If the controlpoint lies in a plane of symmetry,two lists must be
prepared,one containingsymmetricboundaryconditionsand the other

containingantisymmetricboundaryconditions. LettingNNTBc,SNNTBCA

denoterespectivelythe number of symmetricand antisymmetricboundary

conditionsto be imposed,Awe select NNTBcSboundaryconditionsfrom

the symmetriclist and _N_TBCboundaryconditionsfrom the anti-
symmetriclist. If an insufficientnumber of boundaryconditionsof
the correct symmetrytype is available,the programterminateswith an
error message.)

When a control point lies away from any plane of symmetry,the above procedure
is carriedout only once, since the boundaryconditionsto be imposedare
independentof symmetrycondition. However,whenever a controlpoint lies on
or in a plane of symmetry,the proceduremust be repeatedfor each symmetry
condition.

In the remainderof this subsection(H.2.2),we discuss in detail part (i)
of the above procedure. Part (ii) is coveredin three sections,(H.2.3)on
degenerateboundaryconditions,(H.2.4)on sourceand doubletmatching
conditionsand (H.2.5)on closure boundaryconditions. Part (iii),the user
boundaryconditionhierarchy,is discussedin section (H.2.6). Part (iv) is
discussedin section(H.2.7)where it is shown that there will never be more
than two internallygeneratedboundaryconditionsimposedon a composite
network,and never more than one on a source alone or doublet alone network.

Let us now considerthe method by which the programdeterminesNNTBC, the

number of nontrivialboundaryconditionsto impose at a controlpoint. Here,
the underlyingprincipleis that the number of boundaryconditionsmust equal
the number of singularityparameters. But this principlehas alreadybeen
built into the definitionsof the variousnetworktypes, as illustratedby the
balance betweenx's and o's in figuresD.I, D.2, and D.3.

S and A byConsider then the followingprocedure. Define NNTBC NNTBC

S _ I if the controlpoint location is a boundarycondition
location for the network'ssource type

NNTBC = 0 otherwise (H.2.8a)

| 1 if the control point locationis a boundarycondition
NA locationfor the network'sdoublettype

NTBC = 0 otherwise (H.2.8b)

For the purposesof this computation,the boundaryconditionlocationpoints
are given by figureH.2 for source networksand figure H.3 for doublet
networks. The total number of nontrivialboundaryconditionsis the sum of
these two counts,
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S + _ (H.2.9)NNTBC = NNTBC TBC"

Notice that this procedurealso providesus with the numbersNNTBcSand NANTBC

of symmetricand antisymmetricboundaryconditionsto be imposedat control
points lying in a plane of symmetry.

If a controlpoint is an "extra"control point, the proceduregiven above

A by:must be modified slightly. Here we set NS = 0 always and define NNTBCNTBC

(extracontrol point case)

1 if the extra controlpoint lies on a doubletanalysis

I or doubletforwardweighted networkor else on a

NA matching edge of a doubletwake 1 or doubletdesign
NTBC = network

0 otherwise,or if the extra controlpoint appearson an
edge marked "no doubletedge matching"

(H.2.10)

H.2.3 DegenerateBoundaryConditions

If a controlpoint lies in a plane of symmetry,then for each symmetry
conditiona degenerateboundaryconditionmay be imposedby PAN AIR. The form
and type of the various degenerateboundaryconditionsis given in figure H.4a,
for configurationswith one plane of symmetryand in figure H.4b for
configurationswith two planes of symmetry. In additionto giving the actual
form of the degenerateboundaryconditions,these figuresalso give the
symmetrytype, in the sense definedin sectionH.I.3. The reason this is
necessary--i-s--thatwhen a control point lies in a plane of symmetry,one must
construct two boundaryconditionhierarchies,one for symmetricand another
for antisymmetrictype boundaryconditions(cf. the boundarycondition
selectionproceduredescribedin section (H.2.2)).

To be specificconsiderthe case of a compositenetworklying in a plane of
symmetry,the whole configurationhaving just one plane of symmetry. We
suppose that the user specifiedboundaryconditionsare:

bCl: o = bI (symmetrictype)
A

bc2: WA •n = 0 (antis3nnmetrictype)
The formulationof boundaryvalue problemsfor symmetryconditions*_S and _A
then leads to the followinghierarchies. (We ignore here any matchingor
closure boundaryconditions.) The formulationprocedurethat leads to these
hierarchiesis discussedin appendixK.3.

• ^A
* The symmetricand antis_nnmetricparts of the potential,_S and _ , are

defined by equation (K.3.22). When we treat the formulationof the

integral equation for _S (resp._A) we say that we are dealingwith the _S

(resp._A) symmetrycondition. These conceptsextend to the case of two

planes of symmetryin the obviousway. See eqn. (K.4.2Z)for _SS, etc.
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- b.c. hierarchyfor b.c. hierarchyfor
b.c.'s of symmetrictype b.c.'s of antisymmetrictype

^S
_S o symmetricpart of bCl: o _ = 0 (degenerate)

A S .

o = bI o symmetricpart of bc2:0 = 0

b.c. hierarchyfor b.c. hierarchyfor
b.c.'s of symmetrictype b.c.'s of antisymmetrictype

^A
_A o a = 0 (degenerate) o antisymmetricpart of bc2:

o antisymmetricpart of bCl: (W_ . _) = O:
0 = 0

Thus, settingup the two hierarchiesdefinitelyavoids the impositionof a
trivialconditionof the form (0 = r.h.s.),which would in turn generatean
identicallyzero row in the AIC matrix. If one did not set up the two
hierarchies,the usual selectionprocesswould lead to the boundaryconditions:

^s^s ^A ^: p = O, 0 = 0 o = 0, . n) = 0

These selections,which includethe singularboundarycondition0 = O, are to
be contrastedwith the boundaryconditionsactuallyselected:

bl ^A ^S: ^So= , S = O; o = O, • n) = 0

This examplealso servesto illustratethe distinctionbetween symmetry
^A

condition,which is a propertyof _S and _ , and the symmetrytype of a
boundarycondition. Thus, in this case, the symmetricpart of-l_h-_potential

_S has both a symmetric(_S = bl) and an antisymmetric(_S = O) boundary

conditionimposedupon it.

H.2.4 DoubletMatching,VelocityJump Matchingand SourceMatchingBoundary
Conditions

Eachabutment(cf.appendixF) in theconfigurationwill haveassociated
with it a doubletmatchingboundaryconditionof the form(cf.eqn.(F.5.1))

si _i = 0 (H.2.11a)

Here,the sumrangesover thosenetworksinvolvedin theabutmentand ui is
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the doubletstrengthon the i-thnetwork. The coefficientssi = • i or 0 are

obtainedby comparingthe orientationof the abutmentwith the intrinsic
orientationof the edgeon the i-thnetwork:

i + 1 if the edgeon the i-thnetworkis alignedwith

the abutment'sorientation

si = - i if the edge on the i-thnetworkis opposedto theabutment'sorientation
0 if the edge on the i-th networkis marked"no

doubletedgematching."

In general,thismatchingconditionmay be assignedto any networkinvolvedin
the abutmentfor which the doubletedge typeis neither"null"nor "no doublet
edge matching." The procedureby which a networkreceivesa matchingboundary
conditionis treatedin detailin appendicesF.4 and F.5. In appendixF.4,we
havedescribedthe procedureby which a networkis selectedto receivethe
doubletmatchingconditionalong the interiorof the abutment. Havingmade
the selection,condition(H.2.11a)is imposedat each edgemidpointcontrol
point of the selectednetwork. In appendixF.5 we have describedthe
procedureby whichmatchingconditionassignmentsare performedat an abutment
intersection.One finds,in general,thatwhen n abutmentscome togetherat
an abutmentintersection(n-l)of the doubletmatchingconditionsare assigned
to appropriatecornercontrolpoints.

Velocityjump matchingconditionsmay be imposedalonga networkedge
abuttingthe leadingedge of a DWI wake network. Theseboundaryconditions
have the form:

where si are the sameas for the doubletmatchingconditions,t is a vector
pointingdownstreamalong the wake and the velocityjump Avi on the i-th

networkof the abutmentis given by the Helmholtzrelation(cf.eqns.
(B.3.2g-31)),

^ ^ (H.2.12a)
a v i= o n/(n.-_)+ Vt_

Vt _ = (_xVp)x_/(_._) (H.2.12b)
The velocityjump condition(H.2.11b),which is alsocalledthe vorticity
matchingcondition,helps imposethe Kutta conditionin the neighborhoodof
the abutment(cf.appendixB). This conditionis imposedonlyon the interior
of an abutmentand only on some networkother thanthe networkthatperforms
doubletmatchingfor the abutment. Becauseof thisrestriction,no conflict
can occurbetweendoubletmatchingand velocityjump matching. For this
reason,there is no problemwith assigningvelocityjumpmatchingthe same
positionas doubletmatchingin any boundaryconditionhierarchiesthatwe
construct.

When _ is chosento pointdownstreamalonga wake, parallelto the
compressibilityaxis,the condition(H.2.11b)impliesthe matchingof upperand
lower surfacepressurecoefficients(linearCp rule) for both a thickand a
thin trailingedge. We illustratethesefactswith two examples.

H.2-8



Considerfirst the thin trailingedgeconfigurationillustratedby figure
-- H.Sa. Assumingt to be parallelto the compressibilityaxisCo, we findthat

(H.2.11b)implies

^ _w - _o _w 0co . a ake . A ing =

Now on the wing surface,

a _wing = (Vi6)u"(V{6)L

whileon the wake surface,

a V-*wake= [a _/(B._)+ Vt g]wake

Sincea = 0 on the wake,we find

co . a vwake = Co "Vt _ = Co " [(_ x V p)x_]/(n.v)

=Co"Iv" - B (;,v .)I(_,_)]

A

=.C O . V

A ^

since Co.n = O. But becausethe doubletsplinesare constructedso that

will be constant in the strea_ise direction along the wake, co . v _ = t. Vw = O.
A _

This implies co . A Vwake = O. Consequentlywe find

A _ A A

0 = co . _ Vwing= co • (V_)u - Co " (V_)L

I _fin+ ½.1in= - Cp,L_p,U

since the formulafor linearpressurecoefficientis just

lin ^
Cp = - 2 co . V

This gives us the resultwe require,thatupperand lowersurfacelinear
pressurecoefficientsmatch.

The case of a thicktrailingedge is handledessentiallythe sameway.
Considerthe case of figureH.5b. The matchingcondition(H.2.11b)becomes,
in light of the Helmholtzrelation,(eqn.H.2.12)

. { (+i)[°u_ul(_u';u)+vt"u]

(-I)[oL _L/(_L,_L) + Vt ,L]

. (-1)[ Vt"w ] } = 0
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Again,becauseof the constructionof the wake splines,(constantstreamwise), -_
we have

h

t . Vt _w " Co " vt _w = 0

Becauseof the stagnationcondition_ = 0 in the interiorof the airfoil,we
have

°u ul( u' }+vt"u--(V lu

A A

aL nL/(nL'VL) + Vt _L = (V_)L

Since_ pointsin the downstreamdirection_o' we observethat (_ .V) = (_o .V )

Puttingall these resultstogether,we obtain
A A

(+1)co • (V_)u + (-1)co • (V_)L = 0

which clearlyimplies,

clin .fin
p,U = _p,L

as we wishedto prove.

Sourcematchingconditions,which are much less importantthandoublet
matchingconditions,may be imposedalongan abutmentand have the form

si ai = 0 (H.2.13)

This expressionis interprettedverymuch the same as (H.2.11a)with the

understandingthatai denotesthe sourcestrengthon the i-thnetwork. Since
sourcematchingcan only be imposedalonga sourcematchingedge of a design
network,relativelyfew abutmentshave theseconditionsimposed. Usually,
only one of the networkedges involvedin an abutmentis a sourcematching
edge, so thatit is clearwhich networkshouldreceivethe sourcematching
condition. If two or more edges in an abutmentare designatedsourcematching
edges,then a selectionprocessis performedthat is quitesimilarto the
processperformedfor doubletmatching.

It is pertinentto remarkthat sourcematchingalong an abutmentinvolving
threeor more edges is highlyquestionablein lightof the definitionof a as
the jump in the normalcomponentof the mass flux_. In fact,sourcematching
makes senseonlya--_T6B-gthoseabutmentsat whichjust two networksjoin
smoothlywith a continuoussurfacenormal. Considerationsof thissortlead
to the furtherconclusionthat the onlyabutmentintersectionat whichone can
reasonablyexpectto imposesourcematchingconditionsare thoseof the form
illustratedby figureH.6, for which the graphis eithera ringor a partial
ring. (SeesectionF.5 for a full discussionof the constructionof the graph
associatedwith an abutmentintersection.)Selectingmatchingassignmentsfor
graphs/abutmentintersectionsof this form is quitea simpletaskand is

H.2-10



accomplishedverymuch the sameway as doubletmatchingis accomplished.

The proceduresoutlinedabovework quitewellas longas the abutment
alongwhich matchingis to be enforcedliesaway fromany plane of symmetry.
If an abutmentlieson a planeof symmetry,specialprocedures(fully
describedin appendixF) must be followedin orderto obtaincorrectmatching
conditionassignments.If a networklying in a planeof symmetryshouldbe
assigneda matchingboundarycondition,the-n'-itis importantthatwe knowthe
symmetrytype (in the senseof sectionH.1.3)of the matchingcondition. This
is necessaryin orderthat the matchingconditionbe enteredintothe correct
hierarchy.The symmetrytypes of the variousmatchingconditionsare given:

(i) Doubletmatchingis of antisymmetrictype,and may only be imposedon

an abutmentlyingon a planeof symmetryfor symmetryconditions_ij
antisymmetricwith respectto that planeof symmetry.

(ii)Whenvelocityjump matchingis imposedalongan abutmentlyingon a
planeof symmetry,a symmetrytypewill be definedfor it only if the

vectort (in equation(H.2.11b))is eitherparallelto or^perpendicular
to n, the planeof symmetrynormal. If t is parallelto n, Av

matchingwill have symmetrictype;if_ is perpendicularto _, (very

much more the usualcase) AT matchingwill have antisymmetrictype.
If neitherof theseconditionsholdsthe basicproblemcannotbe
decoupledintosymmetricand antisymmetricparts,and a fatalerror
results.

(ill) Sourcematchingis of symmetrictype,and may only be imposedon an

abutmentiyingon a planeof symmetryfor symmetryconditions_ij
symmetricwith respectto that planeof symmetry.

H.2.5 ClosureBoundaryConditions

Closureboundaryconditionsarisewhenone particularedge of a sourceor
a doubletdesignnetwork(SDI,SDZ, DDI, DFW) is designatedas a "closure
edge" by the programuser. Then, for each edgemidpointcontrolpointon the
closureedge, the boundarycondition

ff (aA wA . _ • aD o)dS = b (H.2.14)C

is imposed,where C is the row or columnof panelsheadedby thatcontrol

point,as illustratedin figureH.7. The coefficientsaA, aD, and b are
user-supplied,and once againcan be redundantlydefinedin termsof upper,
lower,average,and differenceterms. We will explain(H.2.14)by means of a
simpleexample.

In figureH.8,we illustratea thickwing on the upper surfaceof whichwe
•. desirea specifiedpressuredistribution(seeAppendixC for a discussionof

the designprocess). Now, aftersolvingthe potentialflowproblemand
reloftlngthe surface,we obtaina reloftedsurface,whose trailingedgemay
or may not coincidewith the unchangedtrailingedgeof the lower surface.
The closureboundaryconditioncan be usedto insurethat the trailingedges
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coincideafterreloftlng,that is, thatthe airfoil"closes."

But now,supposethe boundarycondition

A _u " n dl = 0 (H.2.151

is satisfied,where A and B are shown in figureH.8. Then clearlya mass flux
streamlineoriginatingon the wing uppersurfaceat A will end up at B. It
can not end up "above"B, sincethen a streamlinestartingslightlybelowA
would end up slightlyaboveB, and thus the integralof the mass flux through
the surfacewould be non-zero(seefigureH.9).

Now, a wing is a 3-dimensionalobject,and thus,in order to insurethat
any streamlineoriginatingat the leadingedge of the designnetworkwill
arriveat the trailingedgeof the designnetwork,equation(H.2.15)mustbe
imposedon a dense set of integrationcontoursoriginatingat the leading
edge,and followingthe wing surfacein a streamwisedirectionto the trailing
edge. Then the reloftedsurface,which is requiredto be impermeable,must
necessarilybe the surfacedefinedby the streamlinesoriginatingat the
leadingedge and endingat the trailingedge. So, the impositionof (H.2.15)
on a dense set of integrationlineswould insurethat the trailingedge of the
reloftedsurfaceagreeswith the trailingedge of the designnetwork.

Now, a panelmethodbeing a discretizationmethod,we do not impose
(H.2.15)at a dense set of lines,but insteadon a set of narrow
two-dimensionalsurfacesalignedstreamwise,namely,rowsor columnsof
panels. Thuswe imposethe boundarycondition -

IfC

Wu•_ --_A"B + I/2o (H.2.18}

and _L = 0 (H.Z.Ig)

becauseof the perturbationstagnationboundaryconditions(_L = 0). Thus
(H.2.16)can be written

[[ (o,v_ ._)dS=o (H.2.20}
C

or

JJ ods- b - SJ •Bds (H.2.21
C C

which is of the form (H.2.14),with aD = I, aA = O. The more generalformof
(H.2.14)is availablefor programusers solvingnon-standardproblems. _
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In order thattherenot be an excessivenumberof internallygenerated
- boundaryconditions,the user is requiredto specifywhetherclosureoverrides

a sourcematchingor a doubletmatchingboundarycondition. Thus, if the user
specifiesthatclosureoverridedoubletmatchingon a particularnetworkedge,
then noneof the edgemidpointcontrolpointson that network'sedgewill be
used for doubletmatching. Noticehoweverthatthisoverridefeaturehas no
effecton cornercontrolpoints,sinceclosureboundaryconditionsare not
imposedat suchpoints. Consequently,thisoverriderequirementdoesnot
introduceany extracomplicationinto the treatmentof abutment
intersections.(Remark: There is somedangerthat specifyingthatclosure
overridedoubletmatchingcouldresultin doubletmatchingnot beingimposed
on someabutment,a potentiallydisastrousevent. Usually,howevertherewill
be somenetworkavailableto acceptthe abutment'smatchingcondition.)

If a designnetworkhappensto lie in a planeof symmetry,then its
closureboundaryconditioncannothavet-B'egeneralform (H.2.14). Ratherit
must haveeitherthe form

II -antisymmetrictype, aA wA . _ dS = b (H.2.221
overridesdoubletmatching C

or else the form

symmetrictype, ff aD adS = b (H.2.23)
overridessourcematching C

If the closureconditionhas the first form,(H.2.22),then it must override
the doubletmatchingcondition. If on the otherhand it has the secondform,
(H.2.23),then it must overridethe sourcematchingcondition.

This completesour discussionof closureboundaryconditionsat this
time. In sectionK.I.3we describethe mannerin whichequation(H.2.14)is
transformedintoa linearequationinvolvingthe singularityparameters.

H.2.6 UserBoundaryConditionHierarchy

In this sectionwe describethe hierarchicalrankingof the user specified
boundaryconditions.As observedin sectionH.2.2,the reasonthisrankingis
necessaryis that thereare sometimesmore boundaryconditionsavailableat a
controlpoint thanare actuallyneeded. When this happens,a hierarchical
listof all availableboundaryconditionsis constructedand the required
numberof boundaryconditionsis selectedfromthe top of the llst.

In PAN AIR, the hierarchicalrankingof userboundaryconditionswas
motivatedby the followingconsiderations:

(a) potentialand doubletstrengthare quadraticallyvarying,while
sourcestrengthand velocityare linearlyvarying;thereforethe
formershouldbe specifiedratherthan the latter,sincequadratic
functionsare not amenableto extrapolation,but needto be "pinned
down" at networkedges.

(b) tangentialvelocityboundaryconditionsare less stablethannormal
velocityones, thereforethe lattershouldbe specified,givena
choice,and i
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(c) there are fewer source parametersthan doubletparameterson a
network,in general,so specifyingsource strength(especiallyon --
networkedges) risks overspecificationand a singularAIC matrix.

Based on these considerations,six categoriesof user boundaryconditions
are identifiedby a hierarchyrankingas indicatedby figureH.IO. In the
second part of figure H.IO we presenta logicalchart of the 6 boundary
conditioncategoriesthat clearly indicatestwo facts: (i) the categoriesare
mutuallyexclusiveand (ii) every nontrivialboundaryconditionfalls into
some category. This chart also indicatesthat category i and 4 boundary
conditionsshould not be specifiedon a "null doublet"networkwhile category
6 boundaryconditionsshould not be specifiedon a "null-source"network. If
these considera_ons are violated,it is very likely that a singularAIC
matrix will result.

If a control point lies in a plane of s)nnmetry,we must furthercategorize
the user boundarycondition_ccording to symmetrytype, in the sense of
sectionH.1.3. In figure H.11, we presentan augme_version of figure H.IO
that indicatesthe symmetrytypes of the variousterms of the generalboundary
conditionequation (H.O.1)togetherwith the extra restrictionsimposedwhen a
control point lies in a plane of symmetry. Again, it is easy to see that the
boundaryconditioncategoriesare disjointand complete providedthe given
boundaryconditionsare of purely symmetricor antisymmetricin type. We
emphasizeagain here that the user must providesymmetricboundaryconditions
for a source networkand antisymmetricboundaryconditionsfor a doublet
network,whenever the networklies in a plane of symmetry. The justification
of these restrictionsis given near the end of appendixK.3.

In concludingthis discussion,we remark that the definitionsand ranking
of the boundaryconditioncategoriescannot be rigorouslyjustified. Rather,
the boundaryconditionhierarchyis a heuristicconstruct,based upon example
and the generalconsiderationsoutlinedat the beginningof this section.

H.2.7 The Complete BoundaryConditionHierarchy

We are now in a positionto describe the constructionof the complete
boundaryconditionhierarchy. In describingthis construction,we will treat
in a case by case fashionthe 8 cases indicatedby figure (H.1). In addition,
for each case we will show that all of the internallygeneratedboundary
conditionsselectedby PAN AIR are actuallyimposed.

InteriorControlPoint, away from any plane of symmetry

In this instance,PAN AIR will not produceany internallygenerated
boundary conditionsso that the boundaryconditionhierarchycontainsjust the
user specifiedboundaryconditions,ranked in the order describedin section
H.2.6.
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Edge Control Point, away from any plane of symmetry

The internallygeneratedboundaryconditionsthat can be imposedalong an
edge includedoubletmatching,closureand sourcematching*. However,because
the programrequiresthat the user specifyfor closureto overrideeither
source or doubletmatching,there will never be more than two internally
generatedboundaryconditions. The varioushierarchiesthat can arise when
closureis imposedare indicatedbelow

Composite Composite Source Doublet
Network, Network, Alone, Alone,
Closure Closure Closure Closure
Overrides Overrides Overrides Overrides
w-matching o-matching o-matching w-matching

Closure [_ matching] Closure Closure

[a matching] Closure user b.c.'s user b.c.'s

user b.c.'s user b.c.'s

(H.2.24)

Symbolsappearingin brackets indicatethat a boundaryconditionof this form

may or may not appear. The number of requiredboundaryconditions,NNTBC, is

selectedfrom the top of the appropriateboundaryconditionhierarchy.-Note
- that user boundaryconditionsare enteredinto the hierarchyin the order

describedin sectionH.2.6 and illustratedby figuresH.10 and H.11.

If closureis not a considerationalong the edge, the varioushierarchies
that are possibleare as follows:

CompositeNetwork Source Alone DoubletAlone

[_ matching] [o matching] [_ matching]

[a matching] user b.c.'s user b.c.'s

user b.c.'s (H.2.25)

Corner ControlPoint, away from any plane of symmetry

Here, the boundaryconditionhierarchiesthat can arise are the same as
for an edge controlpoint at which closureis not imposed(cf. (H.2.25)above).

* PAN AIR canalso generatea velocityjump matchingconditionat an edge
control point. Such a conditionis entered into any boundarycondition
hierarchyin the same positionthat a doubletmatching conditionwould be
entered. Becauseit plays the same role in a boundaryconditionhierarchy
as that played by doubletmatching,an explicitdiscussionof the velocity
jump matchingconditionis unnecessary.
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Edge ControlPoint, on a plane of symmetry

When a controlpoint lies on a plane of symmetry,the boundarycondition
hierarchymust be constructedseparatelyfor each symmetrycondition (e.g.
^S

, _A etc.). Aside from this extra littlecomplication,these controlpoints
are no differentfrom edge controlpoints away from a plane of symmetry,the
possiblehierarchiesbeing given by (H.2.24)and (H.2.25). Of course it will
generallyhappen that a differenthierarchyis constructedfor each symmetry
condition. As a simple example,consideran edge controlpoint on a doublet
alone network. It is entirelypossiblethat the two hierarchiesshown below
would be constructed:

_S hierarchy _A hierarchy

user b.c.'s _ matchin9
user b.c.'s

Here, doubletmatchingwould never be imposedon _S since doubletmatching
is automaticallysatisfiedfor any abutmentlying on an active plane of
symmetry. (Remark: Notice that a singlehierarchyis constructedfor each
symmetrycondition. When we treat control pointslying in a plane of

^S ---AA
symmetry,we will have, for each symmetrycondition_ or _ , both an [S] and
an [A] hierarchy.)

Corner ControlPoint, on a plane of symmetry

The boundary conditionhierarchiesthat can arise for a control point on a -
plane of symmetryare the same as for a corner control point away from any
plane of symmetry,and are given by (H.2.25). Of course,a separatehierarchy
must be constructedfor each symmetrycondition.

We now addressthe issue of a control point lying in a plane of symmetry.
Our actual discussionwill treat only the case of one p--l-aneof symmetry,so

^A
that only two symmetryconditions,_S and _ , need be considered. The exten-
sion of our proceduresto a situationwith two planes of symmetryis fairly
straightforwardin principle,but intricatein implementation. In order to
illustratethe basic principle,considerthe case of a controlpoint lying in
the second plane of symmetry. In this case, we assign boundaryconditionsto

symmetryconditions_SS and _AS in essentiallythe same way as we assign

boundary conditionsto _S for problemswith just one plane of symmetry.

Similarly,_SA and _AA are to be handledvery much the same as _A is handled
for problemswith one plane of symmetry.

In the discussionsthat follow,we distinguishthe symmetricand

antisymmetricuser specifiedboundaryconditionsby the notationsbcS and

is denotedbcs while the antisymmetricpart of
bcA• The symmetricpart of

bcS

bcA is denotedbcA. One can also form bcA andj bcS, with the obvious
definitions. However, boundaryconditionsof this form are singularboundary
conditionsin the sense that they generatea zero row in the AIC matrix.
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Finallywe remark that when a controlpoint lies in a plane of symmetry,
P two hierarchiesare constructedfor each symmetrycondition,one with symmetry

type [S] from which NNTBcSconditionsare selected,and anotherof symmetry

from which NANTBCconditionsare selected.type [A]

InteriorControlPoint, in a plane of symmetry

Here, the only possibleinternallygeneratedboundaryconditionsare just
those degenerateones summarizedby figureH.4, neithermatching nor closure
being imposedat the interiorof a network. Consequentlywe obtain the
following boundarycondition hierarchies:

_S hierarchies,interiorcontrol point in a plane of symmetry

Composite Doublet Source
Network Alone Alone

[S] [A] [A] [S]

 S.o
..4)_S.. S"_A""

- _A hierarchies,interiorcontrol point in a plane of symmetry

Composite Doublet Source
Network Alone Alone

[S] [A] [A] [S]

a = 0 bc bc _A= 0 (H.2.27)

....

Notice that the singularboundaryconditionsbcA and bcS are always outranked

by an appropriatedegenerateboundarycondition.

Edge control point, in a plane of symmetry

Here we have the possibilitythat closuremay be imposedalong the edge.
Since closuremay take either of the two forms (H.2.22)or (H.2.23),we must
address both possibilities. In addition,we must treat the case in which no
closure conditionis imposedalong the edge. For the cases in which closure
is present,the variouspossiblehierarchiesare summarizedby fig. H.12. If
closure is not present,the possiblehierarchiesare given by fig. H.13.
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Corner controlpoint, in a plane of symmetry

In this case, the only possibleinternallygeneratedboundaryconditions
are the degenerateones summarizedby figure H.4 and source anddoublet
matching. The hierarchiesthat can arise are the same as for an edge control
point when closureis absent and are summarizedin fig. H.13.

A careful perusalof (H.2.26),(H.2.27)and figures(H.12)and (H.13)
leads to the observationthat when a controlpoint lies in a plane of
symmetry,no boundaryconditionhierarchycontainsmore than one internally
generatedboundarycondition. Consequently,an internallygeneratedboundary
conditionwill always be imposedprovidedan AIC row exists for the associated
controlpoint and symmetrytype.
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H.3 Onset Flows

Equation (H.O.1)is the most generalpossibleequation in _ and its
derivatives,but it is often inconvenientfor the user to evaluatethe scalar
b on the right hand side of (H.O.1). The most commonexample arisesfrom the
boundarycondition

Wu'A = 0 (H.3.1)

where W is total mass flux. Since

W : w + V_ (H.3.2)

equation (H.3.1)becomes

Wu'n = - V=='n = b (H.3.3)

The scalar b could, of course,be computedby the user at every controlpoint,
but much labor is saved by having the programdo so.

Similarly,considerthe tangentialvelocityboundarycondition

tU • VU = B (whereB is user-specified), (H.3.4)

which becomes

tu'vU = B - V_'tU (H.3.5)

Finally, supposea programuser wishes to define total internal
stagnation,as opposedto perturbationstagnation. The boundaryconditionsto
be imposedshould thereforeindirectly(that is by specifyingpotential)
specify

_L = 0 (H.3.6)

Thus, we specify

_L = 0 (H.3.7)

where €is definedby

W = v € (H.3.8)

on the surface,as illustratedin figure H.14.

Note that _ _ € , where V =V¢

Now, we prove that up to a constant,(H.3.8)requiresthat

$ (x) - I [_'o=, "_] + ¢(x-_)
sB2 (H.3.9)
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Wenow prove (H.3.9). We use reference coordinates. By (5.2.4)

_i [V_, x] : _ [go] ij _ [_= ,x]
j _xj (H.3.1Oa)

: (by (E.2.4))

[Bo] ij B ({_'o=} [Co] km Xm)
j,k,m _xj k (H.3.1Ob)

Noting that V_ and [Co] are independentof xj, while

(Xm) = ajm
Bxj (H.3.11a)

(theKroneckerdelta),we have

, x] :

[Bo]ij {Vm} k [Co]km ajm :
j,k,m

[Bo]ij [Co]kj {V_}k (H.3.11b)

Now, applying (E.2.9)to Bo and Co, and noting by (E.3.9)that Co is its
own transpose,

[_ , x-_= sB2 _ (H.3.12a)

Thus,

' (H.3.12b)\ SBZ

which implies(H.3.9).

So, the boundarycondition(H.3.7)is equivalentto

¢L (x) - -1 [_o=, "_]
sB2 (H.3.13)

The right hand side quantitiesof equations (H.3.3),(H.3.5),and (H.3.13)are _--
automaticallycomputed in PAN AIR for user convenience. But, in fact, PAN AIR
offers more generalright hand side optionswhich have a rather empirical
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justificationfor existence. These optionsarise from the introductionof an
- "onsetflow" i]"o with the assumption

_": _'o+ _" (H.3.15)

Now, there is nothingempiricalabout (H.3.15)unless we make the assumption

Uo _ V (H.3.16)

where V:: is the uniformfreestream,alignedwith the compressibility
directionCo-

Even so, at Hach zero, the boundarycondition

W.B = 0 (H.3.17)

combinedwit_ (H.3.15),where U-_ois a uniformvectorfield U-_ which is not
parallel to Vo: (see figure H.15) is still theoreticallyvalid, since the
Prandtl-Glauertequation reducesto Laplace'sequation,and thereforehas no
preferreddirection.

Now, at non-zeroMach number,it is stillpossible for the s_all
perturbationassumptionsto be satisfiedif UQ is very close to V:.
everywere. The most common applicationof thls is to simulateflow conditions
at multiple angles of attack which only differ slightlyby varyingthe uniform

onset flow without_aryin_the compressibilitydirectionCo" The advantage
is that as long as vo: = co is not varied,the same AIC matrix may be used
each time, thus savingon computationtime.

If the perturbationto the freestreamdefinedby the onset flow is small,
it need not be uniform. Considerthe case of a propellerslipstream(see
figure H.16). The action of the propellerscauses an increasedflow which
does not arise from the solutionof Prandtl-Glauertequation. Thus the
appropriateboundaryconditionto impose is (H.3.17)where

W = Voo+ aUi + w (H.3.18)

and AUi is the "local incrementalonset flow", in this case the incremental
flow due to the actionof the propellers. Once again, we can putWin the
form (H.3.15)by setting

Uo = Vo:+ aUi (H.3.19)

As a third example,we consider a case in which the onset flow is not a
small perturbationof the freestream,but is so in the neighborhoodof the
configuration. Considerthe case of an airplaneundergoinga small rolling
motion of magnitude I_-_Iin a "righthanded"rotationabout an axis with
direction_" througha point Po (see figureH.17).

Computationof the magnitude I_I from a particularroll rate (in radiansper
unit time) is discussedin section 7 of the User'sManual. This is an
unsteadyphenomenon,but we simulateit (callingthe flow "quasi-steady")by
definingan onset flow

Uo (P) = U::+ ,,x (P - Po) (H.3.20)
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where P is the controlpoint, and imposingthe boundarycondition.

_._ = -_o.n (H.3.21)

Note that Uo is unboundedas IT -_oI becomes large,and thus a
rotationalonset flow is never a "smallperturbation"in all of space, no
matter how small the rotationrate. Thus no theoreticaljustificationfor the
use of rotationalonset flows exists, and so rotationalonset flows must be
used with extremecaution. The use of a rotationalonset flow is generally
valid, however, if the perturbationit induces is small in the neighborhoodof
the configuration,and may be used to estimateaerodynamicderivativesdue to
steady roll, pitch, and yaw rates.

PAN AIR providesfor all these right hand side boundaryconditionoptions
by permittingan arbitrarylinearcombinationof the optionsdescribed. Thus,
in general,the user may define an arbitraryonset flow at a controlpoint P by

U-_o(P) = U_ + AUi(P) +_x (P - (H.3.22)

where the user definesU_ , a Ui , m, and Po. The vector U_ is defined
by a magnitude l_==I an angle of attack: and angle of sideslipB, such
that (comparewith (E.3.1))

I COS c_ COS B

= I_I  -sinB _

tsin : cos B (H.2.23)

The vector Z_J(P)is specifiedby the user on a controlpoint by controlpoint
basis either as a vector in referencecoordinates,or by specifyinga

magnitudeUl, and angles :l, and Bl (l stands for local) such that

cos _I cos B1

U1 = _= + _i = U1 -sin B1

sin :l cos Bl (H.3.24)

Now, the generalright hand side expressionwhich may be definedby a user
for a boundarycondition is

b(P) : bo - bn Uo'n --_T'Uo - b_ [_ ,-_]
sB2 (H.3.25)

where bo, bn, tT and b@ are user-definedquantities We mention in
passingthat various defaultoptions are availableto define the standard
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combinationswhichoccur. Theseoptionsare describedin the PANAIR User's
Manual.

This concludesour discussionof boundaryconditionsfor the present. In
appendixK, we present a detaileddescriptionof how boundaryconditionsare
transformedinto AIC constraints. In particular,the many complications
caused by symmetryconsiderationsare thoroughlydiscussed.
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Edge Corner

Interior [Abutmentinteriors][Abutmentintersections]

(no internally I _ matchl&_'match _ match AllSymmetry

Away from generatedboundaryI closure a match Conditions

P-O-S conditions) o match Identical

._ Each
matchIAY match" _ match Symmetry

On P-O-S closure a match ConditionHandled

a match Separately

Deg._[A] Deg.a[S] Deg._[A] Deg.a IS] LDeg._[A] Deg.a[S]

__ In P-O-S SSaDa=b_] SSWA._=b[A] a match[S]_match[A]

a match[S] _ match[A]!

Remark 1 For each case, the DQG boundaryconditionsthatmay occur for that
case are listed. For controlpoints lying in a plane of symmetry,

the symmetrytype (in the sense of sec. H.1.3_ for these boundary
conditionsis given in brackets(e.g. [S] or [A])

Remark2 For controlpoints lying on or in a plane of syn_etry.,selection
must be done separatelyfor each symmetrycondition(_S or _A)

Remark 3 No more than two DQG boundaryconditionswill ever be requested
since closuremust alwaysoverrideeither sourcematchingor

doubletmatching

Remark 4 Deg;_Degenerateboundaryconditionof the form_S=O or_A=O;
See figureH;4 and appendixK;3 for more detail;

Figure H.1 - Summaryof the separatecases that must be handledduring
boundary conditionselection
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a) Source analysis

x x x

M x x x

I X X X-N

b) Source design/1
(Arrowsshow default

x x x x directionsof
increasingrow index M
and column index N)

X X X X
M

X X X X

X X X X

matchingor closureedge
_N

c) Source design/2

X X X
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x x x

X X X

matchingor closureedge
_N

•. FigureH.2 - Boundaryconditionlocationsfor source networks
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a. Doubletanalysis/Doubletforwardweighted

X X X X X

X X X X X

X X X X X
M

X X X X X

X X X X X

_N
b. Doubletwake 1

(Arrowshowdefault
directionsof
increasingrow index

M M and col_ indexN)

X X X X X

matchingedge
wiN

c. Doubletwake 2

x

'matchingcorner
.N

Figure H.3 - Boundaryconditionlocationsfor doubletnetworks
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d. Doubletanalysisnetworkwith smoothabutment
J

IX X X X X

X X X X X

d

X " X X X X

X X X X X

X

smoothabutment

e. Doubletdesign --

x

X X X X

X X X X
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X X X X

X X X X x

matchingor closureedge

:-N

FigureH.3 - Concluded
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Symmetry
Condition: SS _A

Degenerate
Boundary A ^A 0US = 0 o :Condition

Symmetry type of
the degenerate anti symmetric symmetric
boundary condition
(cf. sec. (H.1.3))

Figure H.4a- Degenerate boundary conditions for configurations
with one plane of symmetry
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Controlpoint lies in first plane of symmetry

Symmetry A A _AA _SACondition: €SS (_AS

BoundaryDegenerate _SS = 0 _AS = 0 _AA = 0 _SA = 0
Condition

Symmetry

Type antisymmetric symmetric symmetric antisymmetric

Controlpoint lies in second plane of symmetry

Symmetry ^ _AS _AA _SACondition: €#SS

^AS _AA _SADegenerate ASS = 0 = 0
Boundary p = 0 _ = 0
Condition

Symmetry
antisymmetric antisymmetric symmetric symmetric

Type

FigureH.4b - Degenerateboundaryconditionsfor configurations
' with two planesof symmetry
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Figure H.5a - The velocityjump matchingconditionat a thin trailingedge
(Vorticitymatching)

(re)u
A

nu _ U (O,_)

Wake + I _ € _ 0

_L# _ L(O,_)
(V_)L

Figure H.5b - The velocityjump matching conditionat a thick trailingedge

(Vorticitymatching)
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\

_butm_nt IntersectionConfiqurations

AssociatedGraphs ( cf.appendixF.5)

Figure H.6 - Types of abutment intersectionsat which source
matching is a reasonable boundary condition
Notation: Ak = Abutment k

Nj = Network j
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closure edge

V_ x : closure

I controlpoints

Figure H.7 - Columnsof panelsillustratedby cross-hatching

A

f relofteOsurface
\ tD " _u " 0 _'_ _y-- originalsurface

_An_,. _ - _ , _ ^ _esign network)

network o = -V=,.n "_" B

FigureH.8 - Design of upper surfaceof thick wing
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streamlines

relofted surface

design network _ _ _ _ _L_

B

Figure H.9 - Pattern of streamlines on imposition of
a closure boundary condition

H.4-10



Boundary
Condition
Category/
Hierarchy Coefficient
Ranking Restriction Example

1 c D • O, all others = 0 _ = b

2 cA • O, aA = _A = 0 CA = b

^3 aA • O, t A : 0 • n = b

5 ,0 "v A :b

6 ' aD • O, aA : cA = _'A : 0 o : b

cD t D aD cA aA t A

(o) (€) (wn) (v)
I / 0 0 0 0 0

Boundary 4 ? / 0 0 0 0
Condition

Category/ 6 ? ? / 0 0 0
Hierarchy

Ranking 2 ? ? ? / 0 0

3 ? ? ? ? / 0

5 ? ? ? ? ? /

0 indicatesthe item must be zero

J indicates the item must be nonzero

indicatesthe item is allowed to be zero or nonzero

.- Figure H.IO - User boundary condition hierarchy
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co _ ao cA aA _
(_) (v_) (_) (_) (wn) (v)
[_] [_] [_] [_] [_] [_]

I [A] / 0 0 0 0 0

Boundary 4 [A] _ v' 0 0 0 0
Condition

Category/ 6 [S] 0 0 / 0 0 0Hierarchy

Ranking 2 IS] 0 0 ? / 0 0

3 [A] ? ? 0 0 / O

5 [S] 0 0 7 ? 0 /

aD CA _A CD _D aA

(0) ((_) (v-_) ()J) (%/Fi)(Wn)

BC Category/6 v' 0 0 BC Category/1 j 0 0
Hierarchy Hierarchy

Ranking 2 ? / 0 Ranking 4 ? v' 0 A

5 ? ? J 3 ? ? J

S3nnmetricBoundary AntisyTnmetricBoundary

ConditionCategories ConditionCategories

0 indicatesthe item must be zero

? indicatesthe item is allowedto be zero or nonzero

/ indicatesthe item must be nonzero

[S] indicatesa term or boundaryconditionof symmetrictype

[A] indicatesa term or boundaryconditionof antisymmetrictype

Figure H.11 - User boundaryconditionhierarchyfor control
points lying in a plane of symmetry
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(a) Case: Closure condition of the form (H.2.22)

Note - this closure condition is of type [A], and must
override doublet matching along the edge.
The network must have a non-null doublet type

a

€S hierarchies

Composite Network Doublet alone

[_] [_] [_]
[0 match] _S : 0 _S = 0

_c_ _o_o o_Io
SA hierarchies

Composite Network Doublet alone

[_] [_] [_]
_A = 0 closure

-_o_- bcX _c2

Figure H.12 - Possible boundary condition hierarchies for an edge control
point in a plane of symmetry, closure is present
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(b) Case: Closure condition of the form (H.2.23)
Note - this closure condition is of type IS], and must

override source matching along the edge.
The network must have a non-null source type

S hierarchies

Composite Network Source alone

Is] [_] is]
closure _S= 0 closure

_A hierarchies

Composite Network Source alone

IS] [A] IS]

_A : 0 [, match] _A: 0

Figure H.12 - Continued
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_S hierarchies

Composite Network Source alone Doublet alone

[_] [A] [_] [_]
[(_ match] IjAs= 0 [(; match] _S 0

_c# -_o_- _c_ -_-
A

(_A hierarchies

Composite Network Source alone Doublet alone

_A: 0 [IJ match] _A = 0 [IJ match]

-_o_- bc_ -_- bc_

Figure H.13 - Boundary condition hierarchies for edge and corner control
points in a plane of symmetry (no closure)
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FigureH.14 - Total internalstagnation

0 : -U_

._::_ ¢L :

V:= = freestreamalignedwith compressibilityvector

_== = uniformonset flow

FigureH.15 - Onset flow, not parallelto compressibilitydirection
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Figure H.16 - Propeller slipstream

onset flow

( )
rection of rollI T I I

Figure H_17- Airplane undergoing small rolling motion
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1.0 Singularity Splines

Singularity splines define the source and doublet distributions on the
entire configuration in terms of the source and doublet singularity
parameters. These distributions are defined by a collection of matrices.
First, the source and doublet distributions on a subpanel (recall from section
5.5 that a panel is partitioned into eight subpanels) are each defined by a
"subpanel spline matrix" (denoted, respectively, SPSPLS and SPSPLD) in
terms of five "panel source parameters" and nine "panel doublet parameters."
Thus there are eight of each of these matrices associated with each panel.

Next, the panel source and doublet parameters are defined by "outer spline
matrices" (denoted, respectively, by BS and BD) in terms of singularity
parameters located in the neighborhood of the panel. Each panel has
associated with it a continuous doublet spline matrix, a continuous source
spline matrix and, possibly, a discontinuous source spline matrix.

The subpanel spline matrices are defined by equation (5.5.7). That is,

[SPSPLS]3x5 relates the three coefficients _o' o{, On (which define a
linear source distribution on the subpanel) to the five panel source

parameters (that is, the source strengths at the five points on the panel

illustrated in figure l.la). Similarly, [SPSPLD]6x9 relates the, six

, (which define a quadratic doublet distribution oncoefficients Uo "'" Unn
the subpanel) to the nine panel doublet parameters (whose locations are

illustrated in figure l.lb).

The outer spline matrices are defined by equation (5.5.8). That is,
[B S] defines the five panel source parameters in terms of the neighboring
source singularity parameters (generally nine in number), while [B D] defines
the panel doublet parameters in terms of the neighboring doublet parameters
(generally 21 in number).

The subpanel and outer spline matrices are used in the influence
coefficient calculations. The subpanel spline matrices are first used in
order to compute "panel influence coefficient" (PIC) matrices (see sections
4.4.2 and J.l), and the PIC matrices are multiplied by the outer spline
matrices to obtain potential and velocity influence coefficient matrices
([_IC] and [VlC]) which give the perturbation potential and velocity at a
point, in terms of all singularity parameters, due to all the panels in the
configuration (see sections 4.2.3 and 5.9.1).

In section I.i we discuss the construction of outer spline matrices.
While their construction is simple in principle, based on a least square
procedure, in practice it is quite involved because there are many special
cases. In particular, a special "edge spline" is used near network edges,
which, in conjunction with the doublet matching boundary conditions discussed
in Appendix F, results in precise matching of doublet strength along network
edges. In section 1.2 we describe the construction of subpanel spline
matrices.
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In section 1.3 we discuss full panel and half panel spline matrices.
These matrices define source and doublet distributions specified by single
polynomials over the whole panel or half the panel, respectively, also in
terms of the panel singularity parameters. The distributions are rough
approximations to the 8 subpanel distributions defined by the subpanel
splines. They are used in "intermediate field" influence coefficient
calculation.

Next, in section 1.4, we discuss "far field moments", matrices describing
integrals of the singularity strength over a panel in terms of the panel
singularity parameters. The matrices are used in far field influence
coefficient calculation. Finally, in section 1.5, we discuss the theory of
the least squares procedure.

We now briefly discuss the reasoning behind the subpanel and outer spline
construction techniques. First (cf. section C.3), we require the spline to be
stable: the disturbance in the singularity distribution caused by a
perturbation of a boundary condition should die off quickly.

Second, the source spline should be linearly accurate and the doublet
spline quadratically accurate. That is, if the source parameters are defined
by a linear function, the source distribution defined by the spline matrices
should be exactly that linear function. An analogous property should hold for
the doublet splines. The justification for using a linear source and
quadratic doublet distribution is given in section B.5.

Third, the spline must be local in nature. That is, the singularity o_
distribution on a panel must depend on a reasonably small number of
singularity parameters. This is due to the storage problems which would occur
otherwise. That is, too much core and disk storage would otherwise be
required for each panel.

Fourth, the doublet strength should be continuous (see section B.4). It
would be preferable to have continuously differentiable doublet strength,
continuous source strength and smooth geometry as well, since these conditions
would permit a further integration by parts of the influence coefficient
integrals, reducing their singularity. Unfortunately, these goals are not
achievable without an unacceptable increase in the cost of evaluation of
influence coefficient integrals. Moreover, while it is a fairly
straightforward matter to achieve a continuous source distribution, it has
been found that without smooth geometry, continuous source splines induce
significant errors in the total source strength on a network, seriously
degrading the accuracy of the aerodynamic influence coefficient matrix.

Finally, the entries of the PIC matrices, which are defined as sums of
integrals, should be computable in closed form. That is, numerical
integration should not be required for the evaluation of the integrals. The
reason for this requirement is one of simplicity. The integrands in
(5.6.9-10) are far too singular to be integrated numerically as they stand.
It might be possible to partition the integral into a regular part, integrable
numerically, and singular part, integrable in closed form, but such a method
has not yet been developed.
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A It is the avoidance of numerical integration, in combination with the
maintenance of geometric continuity, that causes much of the complexity of the
spline construction. Geometric continuity between panels can be maintained
either by breaking up a panel into flat subpanels, or by defining a single
curved panel. The integrals over the curved panel are not computable in
closed form in supersonic flow, however.

Once one has decided to use flat subpanels, a minimum of five planar
regions (those of figure 5.2) is mandated to achieve geometric continuity
while avoiding any kink in the surface near a panel center control point. The
use of eight subpanels has been chosen because it offers a convenient method
of defining a continuous doublet distribution, while not requiring polynomials
of degree greater than two. An explicit polynomial distribution has been
chosen rather than a parametric distribution because the integration in
parametric coordinates can not be performed in closed form.
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1.1 Outer Splines

There are two basic methods that are used for the construction of outer
splines, corresponding to the cases in which the resulting singularity
distribution is required to be continuous, or is not. In PANAIR, a
continuous outer spline is constructed for the doublet distribution while both
types of outer sDline are constructed for the source distribution. The
discontinuous source spline is used in the computation of influence
coefficients and the evaluation of boundary conditions while the continuous
source spline is used just in the post processing modules. (It was originally
intended that the continuous source spline be used for all purposes. However
its inability to conserve total source strength led to the introduction of
discontinuous source splines in the solution portion of the code. Because the
post-processing modules had built into them the assumption that source
strength is single valued, the continuous source splines were retained for
these essentially less demanding functions.)

The construction of continuous outer splines is a two step process. In
the first step, row vectors SPS and SPD (called "spline vectors") are
formulated for grid points as illustrated in Figure l.lc for some typical
cases. These row vectors define the source or doublet strength at each
enriched grid point in the network as a linear combination of surrounding
singularity parameter values. In the second step, matrices [BS] and [BD]
are constructed for each panel, giving the source or doublet strength at the
appropriate grid points on the panel (panel singularity values) as linear
combinations of values of singularity parameters in the neighborhood of the

- panel.

Thus the matrices [B S] have five rows while the [B D] have nine rows,
since the source strength is defined at five prints on a panel (the panel
source parameter locations) by row vectors SP_ , while the doublet strength
is defined at nine points by row vectors SPD (see Figure I.i). The number
of columns in a matrix B is variable: it equals the total number of
distinct singularity parameters on which the panel source or doublet
parameters depend. The matrices B are assembled from the required row vectors
SP in a fairly straightforward manner described in the maintenance manual (see
the preface of SUBROUTINEVECUNMof the DQGmodule). Briefly, first row
vectors SP are computed for every grid point in the configuration (except that
row vectors SPS are not needed for panel source parameter locations) and
stored on disk. Then, when the spline quantities for a single panel are being
computed, the five (or nine) row vectors for each of the panel source
(or doublet) singularity parameter are fetched from the disk. These row
vectors are then amalgamated into a single matrix BS (or BD) by VECUNM.

In this section the discussion of continuous outer spline computation will
simply describe the computation of individual row vectors SPS or SPD. The
basic principle is simple. For source splines, the source strength at a grid
point is fit in a linearly accurate manner to as few surrounding source
parameters as possible while for doublet splines we do the same in a
quadratically accurate manner. But while the basic principle is simple,
implementation is complex because of a myriad of special cases which do not
fit the general rules.
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The construction of a discontinuous source outer splinematrix is also
performed in two steps. First, a linear function of the form Oo+ar _+onn
is obtained by performing a least squares fitting procedure that fofmall_ uses
the values of the global source parameters in the neighborhood of the panel.
(Here, the variables _ and n are local coordinates on the mean panel.)
Second, this linear function is evaluated at the five panel source parameter
locations, each evaluation generating a row of the source spline matrix, BS.

1.1.1 Source Splines for Analysis Networks

1.1.1.1 Source Spline Vectors for Continuous Splines

Computing the row vector describing the source strength at the center of a
panel in an analysis network is particularly simple, since a source
singularity parameter is located there. Thus the source strength is just the
singularity parameter value; that is,

_9 : _ = LI] _ (1.i.1a)

or LSP_ = L I] (l.l.lb)

the row vector of length 1 with unit value.

1.1.1.2 Neighboring Singularity Parameters

Next, to find the source strength at a panel corner, we perform a
"bilinear fit" (a process to be described below) to the four surrounding
source parameter values. In Figure 1.2, we show the variety of cases which
may occur in the course of determining the four neighboring source parameter
locations. In the "standard" case (A), the four source parameters are the
obvious adjacent ones. In cases (B) and (C), the network edge precludes the
existence of some of the obvious choices, and neighboring parameters must be
obtained by reaching toward the interior of the network. The logic used for
points B or C, however, when extended to D, results in a large number of
neighboring source parameters. To keep storage to a minimum, we choose (in a
fairly arbitrary manner) from this set of points, those points which are as
far as possible in index from the uncollapsed edges of the network.

1.1.1.3 Computation of a Local Coordinate System

Next we compute the source strength at a panel corner in terms of the four
surrounding singularity parameter values, once we have in fact located these
four parameters. The first step is to form a local coordinate system whose
( _, n) plane is the one in which the source strength is to vary linearly.
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The four singularity parameter locations determine (generally
non-orthogonal) basls vectors v and v_, connecting pairs of panel edge• H

midpoints, for this coordlnate _ystem as follows. Let Po be the grid point
at which we wish to find the source strength. Then for any point P on the
network, we want to be able to determine coordinates _(P), n(P), _ (P), such
that

(_-_o) = _(P) _ + n (P) _n * _(p) _ (1.1.2)

The (_, n, _) coordinates used here (in section I.i) are not related to the X'
coordinate system (also denoted ( _, n, _) at times) used in Appendix E and
section 1.2 Here, 4. is a vector perpendicular to the plane spanned by_
and v_. Such a vector _s, of course, a multlple of v_ x vn, but a slmple
dimensional argument shows that if v_ is to be independent of the scale of
coordinates (that is, if _ is to be doubled when every point coordinate in
the network is doubled), we must have

V_ X Vn
V_ =

I_ x_o1_/_ c_._._/

Now, to find the functions which define _, n, and _, let us first take the
cross product of (1.1.2) with v_ on the left, and then the dot product with
v-_. Next, we take._the cross, product with-_.,, on the right, and then take the
dot product with v_. Since

v_ x v_ : 0 : vn x vn

"_ 0 = Vn •V_ ° =

c_x_ l.v_ = o I_ x_I-v_ I_l
we obtain

v_ x (_--_o) : n (P) ( x vn)

1_-_oIxv%: _1_I_ x_oI
(_- _'o) °'_ : :(P) (v_-v_) (1.1.5)

Dotting the first two equations with-_ , we have

-_ x c_-_'o).-_: o(P)(_x-_)._'_= oc_)l_ix_-ot_z_
(_.1.6)

Thus, _(P) = _(P) =

(I.I.7)
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1.1.1.4 The Bilinear Fit at Panel Corner Points

Now, let PI,...,P4 be the four source parameter locations for any of --
S

the cases illustrated in figure 1.2, and let _i = o(Pi) denote these

source singularity parameters. Then these four values of source strength

define a "bilinear" function in _ and n, that is, a function

o(_, n) = o0 + oi_ + a2 n + a3_n (1.1.8)

(where the symbol oo as used in section 1.1 has a different meaning than in
section 5 or the remainder of Appendix I), which takes on exactly these four

values. The function o ( _, n) is defined by the fitting condition

"_1S• -1 {(P1) n(P1) {(PI)n(PI) _ °0"
S ol
2

p

_S = .................................................. " 0 2
3

xS 1 _(P4 ) n(P4) _(P4)n(P 4) o3

: [BL] o]

of

o" (1.1.9)

and thus

0 0 ^4

oI = [BL] -I x_
S

o2 x2

I
L°3 ,x , (I.1.10)

The points PI,...,P4 are not coplanar in general, and thus computing

o({,n) by (I.1.10) in terms of surrounding source parameters, ignores the

g-component of the parameter locations; in other words, we project the

parameter locations to the plane defined by v_'_and_n. This is justifiable --
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in view of the fact that a reasonable number of panels should be used in

_ defining a geometric surface, and thus the distortions due to curvature can be

neglected locally.

Now, by (I.1.7), _(Po) = n(Po) = O, and thus by (1.1.8),

o(po) : oo (1.1.11)

Thus by (I.i.i0),

(1.1.12)

Setting

[SPS] : 11 0 0 Oj [BL] -I (1.1.13)

we see that

o(po) = LSpSj I_!

Note that [SP_ is just the first row of [BL] -I. Now, by (1.1.14),
SPS is just the row vector we seek; namely, it gives the value of source
strength at the point Po as a linear combination of four neighboring
singularity parameters. A spline vector may similarly be constructed for
every panel corner point in the network, whereupon matrices BS may be
computed for each panel as discussed at the beginning of section 1.1.

This concludes the discussion of continuous source spline construction for
source analysis networks. Two special cases, networks with only one row or
column, and networks with only one panel, are discussed in the maintenance
document (see section 4-1.4 and SUBROUTINEONDFITof the DQGmodule).

1.1.1.5 Discontinuous Source Analysis Splines

The construction of a panel's discontinuous source analysis spline,
required for computation of influence coefficients, is achieved by solving for

coefficients oo, o_, on of the weighted linear least squares problem
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min G

ao,a _ ,arl

where the quadratic form G is defined by

n

G : _] [w i(o o + a{ {i + an ni _ _#)]2
i=l

Here wI denotes a weight and xS is a global source parameter at some point _'i' " 1

in the neighborhood of the panel. The coordinates ({i, ni) are obtained
by performing a length preserving projection of l_'i onto the panel's mean
plane followed by a transformation of this projected point into the mean plane
coordinate system• Passing over for the present the selection of wi and
_Si' we observe that the minimization problem we have posed has a solution of

the form

{o}: A xS
a_ •2
an :

Here, we have used the conventional notation A+to denote a matrix
pseudo-inverse. Now, letting (_k, _k), k = 1,...,5 denote mean plane
coordinates of the projection* of the five panel source parameter locations
onto the mean plane, we may evaluate the five panel source parameters by

ak = aO + a_ [k + an _k

This evaluation process induces an expression for ok in terms of s,
providing a definition for [BS], the source outer spline,

D m

" " i __i _i ""a A4i

a2 = 1 'n2 "2

a X$5 1 _5 _5 n
.mm

Bs -_=[ ]

* This projection is performed in scaled coordinates.
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We now return to the problem of selection of weights and global source
parameters to be used in the fitting process. In Figure 1.3 we illustrate
the variety of cases which may arise when identifying the neighboring source
parameters to be used in spline construction. For any given panel, the

parameters _S.are selected as indicated. The weights wi are chosen as follows:i

II f _S does not lie on the panel for which BS is

bein_ computed

wi :

i0000 if xS lies on the panelI

The choice of a very large weight for the panel's own source parameter is
crucial in that it is this condition that causes total source strength for the
panel to be correct to sufficient accuracy.

The foregoing procedure will fail to provide enough data points if the
network in which the _anel lies has only one row or column of panels. When
this happens, points Pi are selected as indicated in Figure 1.4. The value

of _ used for points _i that are not global source parameter points is justi

the value of source strength at the panel center.

1.1.2 Doublet Spline Vectors for Analysis Networks, Doublet Forward
Weighted Splines

- Doublet spline vectors SPD are more complex to compute for a variety of
reasons. First, the requirement of quadratic accuracy forces the doublet
strength at a grid point to depend on a greater number of singularity
parameters than the source strength. Second, to insure doublet continuity
across network edges on non-smooth abutments (along which boundary conditions
specifying the matching of doublet strength are imposed), we require that the
doublet strength at any point on a network edge depend only on the singularity
parameters located on the network edge. The example of a thin wing with a
curved planform illustrates the need for this requirement (cf. Figure 1.5).
The doublet strength is zero at the singularity parameter locations on the
free network edge. If the doublet strength at a panel corner point on the
edge depended on singularity parameters in the interior, it could not be zero,
independent of conditions in the network interior, as we wish it to be. But
by insisting that it only depend on edge parameters, we insure that it is zero.

A third cause of increased complexity in determining doublet spline row
vectors isthe introduction of "smooth abutments." These are abutments
consisting of portions of two distinct network edges, along which splines
rather than boundary conditions are used to enforce continuity of doublet
strength.

For grid points which do not lie on a network edge, obtaining the row
vector SPD which describes the doublet strength at each grid point in terms
of surrounding singularity parameters is a two step process. First, the set
of surrounding singularity parameters is determined. Second, the doublet
strength at the grid point is determined in a quadratically accurate manner in
terms of the neighboring singularity parameters.
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Doublet forward weighted (DFW) spline vectors are calculated in the same
manner as the doublet analysis spline vectors. The only difference being
weighting factors used in the least squares fit. A description of the -_
different weighting scheme is given in section 1.1.2.4.

1.1.2.1 The Quadratic Least Squares Fit for Panel Corners or Panel Edge Midpoints

This quadratically accurate procedure is somewhat more complex than the
bilinear fit employed for source splines. While there is generally a bilinear
function which exactly fits values at four points (unless three of the four lie on
a line, which is unlikely if they are panel centers), a quadratic function is less
well behaved. There is a unique quadratic through six points, unless these points
all lie on two lines. With very regular paneling, however, it is quite likely
that six center points chosen as neighbors of a grid point will, in fact, lie on
two lines. Thus, the procedure we choose for the quadratic fit is a "least
squares" procedure.

That is, we choose an excessive number of neighboring singularity parameters,
and find the quadratic function which takes on the values of the closest
singularity parameters exactly, while taking on the the values of the remaining
singularity parameters in a "least squares" sense. The row vector SPD for the
grid point is determined by the value the fitting function takes on at the grid
point, expressed as a linear combination of the neighboring singularity parameter
values.

We now describe this least squares procedure more precisely. Let

(_D i : i ,k) be the singularity parameters (in the neighborhood
, ,'''

of the selected grid point) to which we fit the quadratic function exactly.

Let (_, i = k + 1,..., k+m) be the remaining neighboring singularity

parameters." Let _D be located at (_i ni :i ) where thei , , ,

computation of these coordinates will be discussed shortly. Once again,

however, this is not the local (_, n, _) coordinate system denoted X' in

Appendix E.

Let A be the matrix
a

A = I _I i12 I: i12 n

......... ..... ..... o........................., m..=..o----------- .... ---- ..... ---- ......... -

2 2
1 {k nk 1/2 {k I_k nk 1/2 nk

- (1.1.z5)

This is the matrix for which any function

f({, n) = fl + f2{ + f3 n + 112 f4 {2 + f5 {n + 1/2 f6 n2

(1.1.16)
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_ taking on the values

f( _i' ni) : xDI i = 1, ..., k (I.l.17)

satisfies

"fl ^_

[A]k x6 f2 = ^2
q

i

(z.z.z8)f6 • K,

NOW,whenever k < 6 , as it will be in the current applications, equation
(1.1.18) does not fully specify the coefficients of f. The coefficients are
completely specified by requiring the minimization of

k+m

I = _ w2 If (I_ ni ) _ _ O]2i i' i

i=k+l (1.1.19)

- where wi is a "weight", to be discussed shortly, which depends on the
relative locations of the singularity parameter and the grid point.

If we write

i {k+m nk+m 1/2 _k+m I_k+mnk+m
(1.1.20)

equation (1.1.19) becomes

I : _ wi 2 _ (A'i-k,s)fs - (1.1.21)i =k+l s:l

The method by which we minimize (1.1.21), subject to the exact conditions
(1.1.18), is called a "constrained least squares" procedure, and is discussed
in section 1.5. The result of performing this procedure is a (6 x (k+m))
matrix LSQsuch that
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fl "

. = [LSQ]I"

iS6 1 "DtXk+ m (I.I.22)

Now, we will construct our (I_, n, €) coordinate system such that at the grid
point Po we have

(Po) = 0

n(Po) : 0 (1.1.23)

Thus,

xlD

f(Po ) = fl = LLSQI''] "

(1.1.24)

But we required the row vector SPD to define the value at Po of the
quadratic function f which satisfied (1.1.18) while minimizing (I.1.21), and
thus

LSPD LLSQI (I 1.25)] : ,.j

that is, SPD is the first row vector of the matrix LSQdefined by the
constrained least squares procedure.

In describing the construction of SPD for a grid point in a network
interior, we have deferred the discussion of three items. These are the
determination of the set of neighboring singularity parameters, their
({, n, €) coordinates, and the corresponding weights wi. Wewill discuss
them in order as follows.

1.1.2.2 Neighboring Points for Least Squares Fit

Figure !.6a illustrates the location of neighboring singularity parameters
for grid points which do not lie near a network edge. Note that, since a
singularity parameter is located at each panel center, the spline vector
SPu for a panel center point is (like the spline vector SP)) a vector of
length i with a unit entry.

Now, if the grid point (panel corner or edge midpoint) lies near (but not
on) a network edge, the set of neighbors must include singularity parameters
on the network edge. Actually, we fit a quadratic function to neighboring
grid points, where these grid point need only be singularity parameter
locations when they are in the interior of the network. The value of doublet
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strength at those grid points which lie on the network edge depends in turn on
a small number of singularity parameters located on the network edge. This is
a procedure which is defined in detail in the maintenance document (see
section 4-I).

Figure !.6b illustrates the neighboring points we use for the quadratic
fit to obtain a spline vector for a grid point which lies near (but not on) a
network edge which does not belong to a smooth abutment. Recall that only one
singularity parameter is located on a collapsed edge of a network.

Figure 1.6c illustrates the set of neighboring points when the grid point
in question lies near a smooth abutment. In this case, we see that the set of
"neighboring points" may lie in two distinct networks. This is because the
singularity parameters on the network edges on the smooth abutment (though not
at the corner points at the ends of the abutment) have been removed for
reasons of economy. The neighboring points in the same network as the point
Po are chosen in the usual manner (see Figure 1.6a) while those in the
adjacent network are chosen as illustrated. The precise method by which the
latter points are picked is described in the maintenance document (section
4-1.2.1.2).

1.1.2.3 Construction of a Local Coordinate System

Next we discuss the construction of a (€, n, _) coordinate system. This
system is similar but not identical to that of section 1.1.1.3, and totally

- distinct from the X' coordinate system X' of Appendix E or section 1.2.2.5.
First, we construct basis vectors v"E and _n as illustrated in Figure 1.7
That is, v"_. and _ span pairs of enriched grid points adjacent to the base
point Po" _Next, _e define _ by (I.1.3). Then, analogously to (1.1.17), we
define

= x = x =

(1.1.26)

The bars indicate that these are preliminary coordinate values which will
be adjusted to account for surface curvature. Consider a cylindrical surface,
as illustrated in Figure 1.8 If we use the coordinates _ and n above, we are
essentially projecting the surface down to the tangent plane at the point
Po. When the surface is highly curved, this makes the points A and D appear
to be closer to Po than they really are, since we are dealing with their
projected images A' and D'. The points B' and C' are also closer to the grid
point than B and C, but not in the same proportion.

We rectify this by scaling the _ and n coordinates of a point according to
its height above the tangent plane. Wedefine a scaling factor

A(P) : [ _(p)2 + _(p)2 + _(p)2]

_(p)2 + _(p)2 (1.1.27)
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Then we define

_(P) : A(P) _(P)

n(P) : A(P) _(P) (1.1.28)

This coordinate scaling assures that the contribution of distant points is
more accurately measured. Note that the denominator of A(P) is non-zero
provided P _ Po •

1.1.2.4 Weights for the Least Squares Fit

Next we consider the weights wi for the least squares procedure.
In order to provide stability, we would like to fit more closely to nearby
singularity parameters than further ones. This is done in part by fitting the
quadratic function exactly to the nearest parameters, as illustrated by Figure
1.6.

A second consideration in determining weights is the desire to give
heavier weights in supersonic flow to points which are upstream of the grid
point than to those which are downstream. This weighting has been found
experimentally to reduce instabilities which arise at high Mach numbers. In
recognition of these requirements, we set wi = w(P) where

w(P) = i + kM_(1 - 2o. (P - I P - Po )
(i + 2 kM_) (1.1.29)

The constant k is set to zero in subsonic flow in view of the lack of a
preferred upstream direction. That is, the compressibility direction co may
be replaced by _ without changing the solution to the equation. In• 0
supersonlc flow, k has been chosen by experiment, and has order of magnitude i.

Since the dot product of unit vectors lies between -i and i, the numerator
of (1.1.29) lies between 1 and (1 + 2k M_). Thus the ratio of weight
(neglecting the effect of distance) at a directly upstream point to that at a
directly downstream point is 1 + 2k M_ . For M_ = 3, and k : i (the
provisional choice for k), this ratio is 7.

The weights for the doublet forward weighted splines are obtained from
equation 1.1.29 by setting k = I and Mm : 2. Thus, the simple expedient of
changing the weights in a least squares fit transforms a doublet analysis
spline into a doublet design spline (DFW).

1.1.2.5 Edge Splines for Non-Smooth Abutments

Finally we consider grid points (panel corner points or edge midpoints)
lying on a network edge. A network edge is divided into distinct portions
belonging to different abutments. A doublet parameter is located at the grid
points which form the endpoints of the portion of the edge belonging to the
abutment (if such an endpoint is not a network corner point, the doublet
parameter is an "extra" singularity parameter (see figure 5.13)). Doublet
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parameters are also located at the panel edge midpoints unless the abutment is
a smooth one, in which case the parameters are removed (doublet parameters
located at abutment endpoints are retained for simplicity).

Wediscuss first the case of a non-smooth abutment. In that case, the
value of doublet strength at a grid point depends only on singularity
parameters located on the network edge.

Consider the abutment illustrated in Figure 1.9a, with one network edge
panelled more finely than the other and with a panel corner on the more finely
paneled network located wherever the more coarsely paneled network edge has a
panel corner. The goal is to find a splining method such that the imposition
of doublet matching boundary conditions of some or all of the control points
on the edge results in the exact matching of doublet strength on the whole
edge.

Experimentation with least-squares-type splines shows that they cannot
satisfy the above considerations. Let us consider, on the other hand, a
differentiable spline. Let the edge be divided into n intervals, as
illustrated in Figure 1.9b, It is reasonable to ask how many differentiable
functions exist, defined by a single quadratic on each of the n intervals.
Now, there are 3n linearly independent quadratic functions altogether (since a
quadratic function on an interval has 3 coefficients), and requiring
continuity at P2,.-',_n_l yields (n-l) constraints on the set of
functions, while requlrlng continuity of derivative at these points provides
(n-I) additional constraints. Thus, there are (n+2) linearly independent
piecewise quadratic functions with continuous derivatives.

But this is equal to the number of control points on the edge, and so
there is a unique differentiable function which takes on a prescribed set of
(n + 2) values at the midpoints of the intervals and the endpoints of the edge.

We can apply this result to the situation illustrated by Figure !.9a The
doublet distribution on the edge 1 will consist of some differentiable
function defined by a single quadratic on each interval of edge i. If we now
impose doublet matching boundary conditions at the control points of edge 2,
we obtain on edge 2 the unique differentiable doublet distribution defined as
a single quadratic on each interval of edge 2, which agrees with the doublet
distribution on edge I at the specified points. But, since every interval of
edge 2 is a subset of a corresponding interval on edge i, the doublet
distribution on edge I satisfies the above criterion too. So, since the
distribution is unique, the doublet distributions on edge i and edge 2 are
identical.

Summarizing, we have shown that if edges 1 and 2 form an abutment, and the
paneling on edge 2 is a "refinement" of the paneling on edge i (that is, every
corner point of edge 1 is also a corner point on edge 2, though edge 2 may
have additional corner points), then the imposition of doublet matching at the
control points of edge 2 results in exact matching of doublet strength along
the entire abutment. Generalizing, if several network edges meet in an
abutment, and one edge is a refinement of each of the other edges, then the
imposition of doublet matching boundary conditions on that edge forces the
alternating sum of the doublet strengths to zero:

_'_si ,i : 0 (1.1.30)
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where si =_+ I.

Unfortunately, the differentiable edge spline, while leading to doublet
continuity under a greater variety of circumstances, does not permit forward
weighting in supersonic flow. As a result, the differentiable edge spline is
insufficiently stable and cannot be used in Pan Air. This fact was determined
fairly late in the development of Pan Air, and thus a discussion of the
differentiable edge spline has been included in this document.

The spline which is actually implemented in Pan Air is a one dimension
quadratic least squares fit. Consider, for instance, a network edge as
illustrated in figure 1.9b. The points PI,..., Pn+_, and Mi,

i=l,...,n, are slngularity parameter locations, anG the doublet strength
there is defined to be equal to the value of the singularity located there.
Thus the doublet spline vector SPD for each of these points is a unit vector
of length one, as it is for panel center points in a doublet analysis network.

Next, the doublet strength at the points Pi, i=2,...,n-l, is obtained by
a constrained least squares analgous to that described in section 1.1.2.1, but
in one dimension. That is, the quadratic function f(t) (t a variable defining
distance along the network edge) is found such that

D (I.I.31a)
f(Mk) : "(Mk) : Xk k = i,i+l

and f(Mr) = ,(Mr) = _ r = i-i, i+2 (I.i.31b)

in a least squares sense.

Then the row vector SPD which defines ,(Pi ) in terms of the singularity
xDparameters ( k' k= i-i,..., i+2), is such that

,(pi) : f(pi) (I.i.31c)

We now discuss the differentiable edge spline which is not implemented in
Pan Air. First we must compute the spline matrices which correspond to this
differentiable piecewise quadratic distribution. It can be shown numerically
that such a function, if it has a non-zero value at one panel center, and is
zero at all other panel centers and the endpoints of the edge, is never
identically zero. Rather, it behaves as illustrated in Figure 1.10;
oscillating with an amplitude which diminishes rapidly but never reaches
zero. Thus, the spline is stable under doublet specification boundary
conditions; however, it is not local, since the doublet strength on an
interval depends weakly on the doublet strength at a panel center far away.

In order to avoid storing lengthy spline vectors, we must redefine our
doublet parameters to make the spline local. That is, a doublet parameter on
a network edge will not have as its value the doublet strength at its
location. For this purpose, consider the interval [-i, I] on which we
define the quadratic function
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u(x) = a + bx + cx 2 (I.i.32a)

Now, u(-l) = a - b + c

u(1) : a + b + c (1.i.32b)

du____(-i) = b - 2c
dx

d_____(i) = b + 2c
dx (1.1.33)

Thus,

u(-l) + du_.u__(-I) : a - c : ,(1) - d___u__(i)
dx dx (1.1.34)

Generalizing (1.1.34) to the interval [Pi, Pi.l] in Figure 1.9b, we
have

u(Pi) + i/2 u(Pi) (Pi+l - Pi)

: .(Pi+1) + 1/2 .(Pi+z) (Pi - Pi+1 ) (1.1.35)

We thus define

D Pi -" "" _))'i = u( ) + 112Vu(Pi)" (Pi+1- i

i = 1,...,n (1.1.36)

D
x.1 = ,(Pi),. . i = O, n+l (1.1.37)

Now, by (1.1.35)

_D : ,(Pi) + 1/2 _,(Pi ) (-_i-i -'Pi )i-1

i = 2,..., n.l (1.1.38)

Combining (1.1.40) and (1.1.42), and noting that #, is continuous, we have
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D+ -P ) )'i D(Pi - Pi-I ) xi (Pi+l i -i = -

du ( - P ) (Pi Pi )(Pi - Pi-I ) _(Pi ) + 1/2 dT Pi ) (Pi+l i - -i
(1.1.39)

d. (+ (Pi+l - Pi ) "(Pi ) + I/2 d--_--Pi) (Pi - Pi-i ) (Pi+l - Pi )

Thus,

Pi - Pi-1 xD.u(Pi) =

I_i-_i_iI. Fi.1-_ili

+ i+l - Pi D

t - +t
This defines the spline vector for Pi as computed with the differentiable
edge spline, which is not implemented in Pan Air.

Now, we wish to evaluate _(Mi), i=l,...,n. Again consider a function
_(x) on [-i, i] defined by (1.1.31).

Then

u(-l) = a - b + c

.(1) = a + b + c

u(-l) + du (-1) = a - c
dx (1.1.41)

So_
.(O) : a =

1/4 ,(-1) + 1/4 u(1) + i/2 [,(-1) + du (-i)]
dx (1.1.42)

Applying this to Figure !.9b. we see

,(Mi) : 1/4 u(Pi) + 1/4 ,(ui+ 1) + 1/2 _D

i : 1,...,n (1.1.43)
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This defines the spline vector for Mi.

Equations (1.1.37), (1.1.41), and (1.1.43) together describe u at grid
points which lie on a network edge belonging to a non-smooth abutment as
linear combinations of neighboring singularity parameters on the edge. We
again point out that this procedure is not implemented in Pan Air.

1.1.2.6 Edge Splines for Smooth Abutments

Wenow describe the computation of spline vectors for grid points lying on
smooth abutments. Once again, to obtain matching of doublet strength we
require that one network be paneled as a refinement of the other, as in the
example of Figure !.9a. Then, spline vectors for grid points on the more
coarsely paneled edge are computed first, followed by spline vectors for grid
points on the more finely paneled edge.

Spline vectors for grid points on the coarser edge are also computed by a
constrained least squares procedure, even though again the "neighboring
points" lie in two networks. Figurel.11ashows some representative examples
which illustrate the procedure for choosing the set of neighboring points.
The method is described precisely in the Maintenance Document (see Appendix I
of section 4).

Now, continuity of doublet stength along a smooth abutment is insured by
- requiring the doublet strength at a grid point on the more finely paneled

network to be identical (as a linear combination of surrounding singularity
parameters) to that at the "corresponding" point on the coarsely paneled
network. Wedetermine the corresponding point by "parametrizing" the
abutment, that is, assigning to each grid point a real number t, 0 < t < i,
which specifies the proportion of the total abutment length that the grid
point is distant from the starting point of the abutment. This procedure is
discussed in more detail in the maintenance document (see SUBROUTINEPRMEDGof
the DQGmodule).

Figure!.11b illustrates the parametrization of an abutment. Now, some
grid point P'i on the fine network will have parameter value t' i, where

tj < t' i < tj+ I (1.1.44)

for some integer j, that is, the corresponding point on the coarse network is
not a grid point. But, , must vary quadratically on the panel edge, so we can
obtain u(P'i) as a linear combination of u(Pj), ,(Pj+I), and ,(Pj+2)-

Now, it follows from (1.1.31-32) that on an interval [-i, i],

,(x) : a + bx + cx 2 =

,(0) + (1/2,(1) + 1/2 ,(-l))x

+ [1/2 ,(i) + 1/2 ,(-1) - ,(O)]x 2 (1.1.45)
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We can apply this to the interval in Figure 1.11cby making the
transformation

t - tjX i =

tj+ 2 - tj (1.1.46)

x = 2x' - i

2t - t j+ 2 - tj

tj+ 2 - tj (1.1.47)

Equation (1.1.46) maps the interval in Figure 1.11cto [0, 1], which in
turn is mapped to [-i, i] by (1.1.47).

Substituting (1.1.47) in (1.1.45), we obtain

2t - tj+ 2 - tj
,(t) : u(Pj+l) + [1/2 ,(Pj+2) - 1/2 ,(Pj)]

tj+ 2 - tj

* [I12 ,(Pj+2) + 112 ,(Pj) - ,(Pj+I)] t Z t___j+2- tj
tj+2 - _j (1.1.48)

Setting t = t' i, we have #(Pi) as a linear combination of #(Pj),
,(Pj+I), and ,(Pj+2):

u(P'i) : (-1/2 + i12 T2) #(Pj)

+ (I - T2) ,(Pj+I) + (112 + 112 T2) ,(Pj+2) (1.1.49)

2 t' i - tj+ 2 - tjwhere T :

tj+ 2 - tj (1.1.50)

This concludes Our discussion of spline vector construction for doublet
analysis networks. Wehave now discussed the computation of doublet spline
vectors for all enriched grid points in a doublet analysis network. In
practice, these vectors are all computed and stored on a disk. Then, within a
loop over panels, the spline vectors corresponding to the nine panel defining
points are retrieved from the disk, and merged into an outer spline matrix
BD by VECUNM.
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1.1.3 Doublet Spline Vectors for Wake Networks

-- Singularity parameter locations for doublet wake networks are illustrated
in Figure D.3. In addition, if the edge of the wake I networks on which
singularity parameters are located forms part of more than one abutment, an
extra singularity parameter is located at the abutment endpoints lying in the
interior of the edge.

The purpose of a doublet wake I network is to model a wake surface on
which the doublet strength is constant in the streamwise direction. Thus,
spline vectors for grid points are constructed as follows. First, spline
vectors are constructed for each grid point on the edge containing singularity
parameters, just as though the edge were part of a non-smooth abutment of an
analysis network (it should be noted in passing that smooth abutments are only
permitted between analysis networks). Then, the spline vector constructed for
a particular grid point on the edge is also used for every grid point lying in
the column or row of points emanating in an indicially perpendicular direction
from the edge. This produces a doublet strength which is constant in one
indicial direction, as desired. In general this direction is the direction of
increasing row index, though this program default may be overridden by the
user. See section 7, record N12, of the User's Manual.

Doublet wake 2 networks are used to define a constant strength doublet
sheet, whose strength is the value of the one singularity parameter in the
network. Thus, the identical spline vector is constructed for every grid
point on the network; namely the row vector of length one with unit entry.

1.1.4 Source Splines for Design Networks

1.1.4.1 Source Design 1

Only one type of source outer spline, a continuous one, is used for source
design I networks. Singularity locations for source design networks are given
by Figure D.I. Since a source parameter is located at every panel corner, the
spline vectors for these grid points are just unit vectors of length i.
Spline vectors for panel centers are also straightforward to compute:

SPS = L114 114 114 114j (1.1.51)

That is, the source strengthat a panel center is definedas the average
of the source strengthsat all the panel corners.

1.1.4.2 Source Design 2, Discontinuous Source Splines

For source design 2 networks source parameters are located at those edge
midpoints on edges parallel to the matching edge. To reduce the complexities
of splines PANAIR imposes two restrictions on source design 2 networks: They
may not have collapsed edges and they may not have just one column or one row
of panels.
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The discontinuous source spline for a source design 2 network, used for
influence coefficient computation and boundary condition evaluation, is
computed by means of a three stage process. First, spline vectors are
computed for the panel centers and for those panel edge midpoints that are not
source parameter locations. (See figure D.ic for an illustration of the
source parameter location on a source design 2 network.) Second, the five
source values on the panel, (the panel center and four edge midpoint values)
are fitted to obtain a source distribution function of the form ao + o_+ o n.n

bird, this distribution is evaluated at the five panel source parameter locations.

This process can be summarized by the equation

i r7 i 0 0 0 0 0 I Xl

, _3 = i _3 _3 L](3x5) 0 1 0 0 0 0 x3
^ * * 0 0 * * x4o4 i _4 £4

i 1 0 0 0 0 x5
_5. I 0 0 _

x6

Here, each stage of the process is represented by a matrix. -.

he first stage of this process requires further explanation. First the
source strength at the panel center is taken to be the average of the two
global source parameters that lie on the boundary of the panel. Next, the
extra panel edge midpoint source strengths are obtained by means of a bilinear
fit of neighboring global source parameter data, as illustrated in figure
!.12. he bilinear fit performed here is essentially the same as the bilinear
fit described in sections 1.1.1.3 and 1.1.1.4 in connection with continuous
source analysis splines.

1.1.4.3 Source Design 2, Continuous Source Splines

The continuous source spline for a source design 2 network, used by PAN
AIR's post processing modules for pressure, force and moment calculations, is
generated by computing spline vectors for the panel center and corners.
Taking the source strength at the panel center to be the average of the
panel's two global source parameters, we have

SPS : QI2 112j

The panel corner spline vectors are obtained by means of the usual sort of
bilinear fit using global source parameter data as indicated by figure 1.13.
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1.1.5 Doublet Splines for Design Networks

Figure D.2 shows the location of singularity parameters on a doublet
design network. For grid points in the interior of the network, spline
vectors are computed by fitting to neighboring points, as illustrated in
Figure !.14a For grid points on the "matching edges" (which have singularity
parameters located at the panel edge midpoints), the doublet analysis edge
spline of section 1.1.2.5 is used.

The only unusual aspect of doublet design splines is the edge spline for
non-matching edges. The doublet parameters are located at panel corners along
these edges (rather than panel edge midpoints) for stability, since the
boundary conditions in the vicinity of non-matching edges tend to be doublet
gradient boundary conditions. For nonmatching edges, as for matching edges, a
differentiable edge spline and a least squares edge spline are available,
though once again the least squares spline is implemented in Pan Air. The
least squares spline is similar to that for matching edges, except that now it
is at panel edge midpoints that the doublet strength is defined by least
squaring to the four surrounding edge doublet parameters, while at panel
corners the doublet strength is defined by a unit spline vector.

We now discuss the construction of the differentiable edge spline. Let

_i D be the value of the doublet parameter located as a panel corner Pi as

illustrated in Figure 1.14b Wedefine a row vector LYiJ, 0 _ i _ n (n the
number of panel corners on the network edge) of length n-as folldws. -We
define Yo and Yn to be row vectors with the entries I in the first entry
and the _th entry, respectively, and otherwise zero. For i < i < n - i, we
obtain Yi by performing a one-dimensional least squares fit to the 4 (or 3,
if i:1 or n-i) neighboring singularity parameters on the edge.

Thus, at each edge midpoint, and at the endpoints of the edge, a row
vector Yi is defined. This is analagous to the situation for the
differentiable doublet analysis edge spline. Wenow obtain _ at corner points
and edge midpoints by using the doublet analysis edge spline, but in terms of
the Yi rather than the singularity parameters.

For example, we have, analagously to (1.1.40),

- (1.1.52)

This concludes our discussion of spline vector construction. Details of
the construction are contained in the Maintenance Document (section 4-1.2.3).
We note that the "RESERVE"spline discussed there is in fact the least squares
edge spline implemented in Pan Air.
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1.2 SubpanelSplines

The subpanelsplinematrices define the coefficientsof the source and
doubletdistributionson a subpanelin terms of the panel singularity
parameters• The panel singularityparametersconsistof the source strengths

at five points,a1, a2, 03, 04, o9 and doubletstrengthsat nine pointsUl, u2'

...u9,the numberingof the variouspoints on the panel being illustratedby

figure 1.15. The relationof these panel singularityparametersto the global
singularityparametershas been treatedin depth in section 1.1. In this
sectionwe show how the panel parametersdefine the source and doublet
distributionson the panel• Specifically,we will describethe construction

of matrices SPSPL_ and SPSPL_ such that the singularitydistributions

restrictedto subpanelTk are given by the expressions

o1

o2

a = (1,_, n) [SPSPL_] 03 (1•2.1)

Tk 04

.o'9_

UI

u = (1,_, n, _2/2, _n, n2/2) [SPSPL ] u2 ]

Tk

ugJ
(i.2.2)

where (_,n) are local coordinateson the subpanelTk (cf. appendixE).

1.2.1 Basis Functionsfor Interpolationon Triangles

We lay some groundworkfor our discussionby describingthe construction
of the basis functionsfor polynomialinterpolationon a triangle.

Consider triangleT for which the coordinatesof the corners Qi are denoted

(_i' ni)' i = 1,2,3. Any linear function f definedon this triangleis

completelyspecifiedby its values f(Qi) at the three corners,and can be

expressed in terms of these values by the formula

f(Q) = f(Q1) LI(Q) + f(Q2) L2(Q) + f(Q3) L3(Q) (1.2.3)
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where Li(Q) denotesa linear functionof (f,n) takingon the value I at Q : Qi
and zero at the other two corners. If, for a given index i, we definej and k --
by the conditionthat (i,j,k)be a positivepermutationof the integers

(1,2,3), (cf. figure 1.16), then Li(Q) can be explicitlydefinedby the
expression

d m

n i _i ni 1

Li(Q) det _j nj I det _j nj i (I.2.4)

_k nk 1 _k nk 1

: + f det + n det det i _j nj
k nk nk I

i _k nk

+bE +
= ai i Cin

with the obvious definitionsto be given for the coefficientsai bi ci. It is

an easy matter to check that these functionsare linear in f and n and further,
that they satisfy the interpolationconditions(cf. figure 1.17),

Li(Qi) = 1 Li(Qj) = Li(Qk) = 0 (1.2.5)

The linear basis functionsLi(Q) can be used to constructquadraticbasis

function Bi(Q) and B_(Q) that are used to representquadraticfunctions

defined on T. To see how this is done, let Q_ denote the midpoint of the edge

lying opposite the corner point Q_ (cf. figure 1.18). Then any quadratic
function g(Q) definedon T can be'expressedin terms of the corner values

g(Qi) and the midpoint values g(Q}) by the formula

3

g(Q) = _ [g(Qi) Bi(Q) + g(Q_) B_(Q)] (1.2.6)
i=1

!

Here the quadraticbasis functionsBi and Bi are defined in terms of the
functionsLi by

Bi = (2 Li - 1) Li (I.2.7a)

B'.I= 4 LjLk (i,j,k)= positivepermutation
of (1,2,3) (1.2.7b)

In order to verify the validityof (I.2.6)it is necessaryto establishthe
interpolationconditions
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Bi(Q i) = I Bi(Q j} = 0 Bi(Q k) = 0 Bi(Q _) = 0 (I.2.8a)

I ! ! i !

Bi(Q_) = I Bi(Qj) : 0 Bi(Q_) : 0 Bi(QI) = 0 (I.2.8b)

These conditionsin turn followeasily from the interpolationconditions
(I.2.5)togetherwith the observationsthat

Li(Q_) = 0 Li(Qi) = Li(Q_) = 1/2 (I.2.9)

The verificationis straightforwardand is left to the reader.

We concludeour discussionof interpolationon trianglesby constructinga
i

cubic polynomialon T interpolatingdata at seven points,Qi' Qi and the
trianglemidpointM,

1
M =_ (QI + Q2 + Q3) (I.2.10)

While this problem does not have a unique solution,the solutionwe present
has certainvirtuesof symmetry. Given values of a functionh(Q) at these
seven points,we first constructa quadraticfunctionh2(Q) definedby

3

h2(Q) : _ [h(Qi) Bi(Q) + h(Q_)B_(Q)] (I.2.11)
i=1

and then patch it up to obtain the requiredcubic polynomialon T by defining

h3(Q) = h2(Q) + (h(M) - h2(M))C(Q) (I.2.12)

where C(Q) is a cubic polynomialin (_,n) definedby

C(Q) = 27 LI(Q) L2(Q) L3(Q). (I.2.13)

It is a straightforwardmatter to verify that

C(M) = i C(Qi) : O, C(Q_) = O. (1.2.14)

We find as a consequencethat:

h3(Qi) = h2(Qi) + (h(M) - h2(M)) C(Qi)

= h(Qi) + (h(M)) - h2(M)) . 0 = h(Qi)

h3(Q_) = h2(Q_) + (h(M) - h2(M))C(Q_)

!

= h(Qi) + (h(M) - h2(M)) . 0 = h(Q_)

h3(M) = h2(M) + (h(M) - h2(M)) C(M) = h(M)
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thus verifyingthat h3(Q) satisfiesthe requiredconditions.

1.2.2 SourceSubpanel Splines

Given the resultsof the previous sectionconcerninginterpolationon a

triangle,it should be clear that all that is needed to define a linear source
distributionon the triangularsubpanelTk is to relate the values of o at the

cornersof Tk to the panel'ssource parameters. An examinationof figure
(I.15) immediatelyshows that the only subpanelcorners at which we still need
to define the source strengthare panel points 5, 6, 7 and 8. These values
are defined in terms of the panel source parametersby performinglinear
interpolationalong each edge of the panel using the valuesof o at the panel
corners. This procedureleads to the definitions

1
a5 = _ (aI + o2)

i
o6 = _ (02 + a3)

(1.2.15)
1

o7 = _ (o3 + 04)

i (04 + °1)a8 =

Given these relationswe have definedo at every subpanelcorner in terms of

01 02 03 a4 a9 and consequently,by virtue of equations(I.2.3)and
(I.2.4),we have defined the distributionof o on each subpanel.

To illustratethe actual constructionof the subpanelsplinematrix SPSPL_,

we consider the specialcase of subpanel3. Referringagain to figure 1.15,
we observe that the cornersof subpanel3 are P3' P7 and P6" t4akingthe
identifications

P3 = Q1 ' local coordinates(_I nl)

P7 = Q2 ' local coordinates(_2 n2)

P6 = Q3 ' local coordinates(_3 n3)

and writing out the basis functionLi(Q) in the form (cf. (I.2.4))

lai 1

Li(Q) = ai + bi_ + cin = (1,_, n) bi (1.2.16)

ci __

we observe that o(Q) is given by
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o(Q) : o(Q1) LI(Q) + o(Q2) L2(Q) + o(Q3) L3(Q)

= o(P3) LI(Q) + a(P7) L2(Q) + o(P6) L3(Q)

= o3 LI(Q) + ½(a3 + a4) Lz(Q) + ½(o2 + o3) L3(Q)

a1

= (0, 1L2(Q), LI(Q) + ½ (L2(Q)+ L3(Q)),1L2(Q), 0) o2

°3

o4

(I.2.17)

1 1 ,
0 ½ a3 al+_(a2+a3) g a2 0 oI

o(Q) = (1,_, n) 0 ½ b3 bl+½(b2+b3) ½ b2 0
° 2

°3

- 0 ½c 3 c1+½(c2+c3) ½c20 a4

_ - .o9•
(1.2.18)

The source subpanelsplinematrix [SPSPL_]is then
identifiedwith the matrix

appearingin the right hand side of this expression.

1.2.3 Doublet SubpanelSplines

We now discuss the constructionof the doubletsubpanelsplinesmatrix

[SPSPLD] (cf. equation (I.2.2))that relatesthe coefficientsof a subpanel's

quadratic doubletdistributionto the panel'spanel doubletparameters,

(_i' i=1,2,...9). In view of the resultsof section1.2.1 concerningquadratic

interpolationon a triangle,it shouldbe clear that all that is needed to
completelyspecifythe quadraticdoubletdistribution_ on

subpanelTk is to give its values at the cornersand the edge midpointsof Tk
(cf. equation (I.2.6)with the substitutiong . _). The relationof

• to the six doubletvalues _(Qi) ,(Q_) is givencoefficients_o _ _n "" _nn
explicitly by the followingequationwhich is obtainedby combining(I.2.6)

and (I.2.7)with the representationfor Li(Q) given by (I.2.4):
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Uo u(QI)

"_ u(Q2)

un = [B] _(Q3) (I.2.19)

U_n u(Q_)

"nn I "(Q3)

Here the matrix [B] is given by

2a_-aI 2a_-a2 2a_-a3 4a2a3 4a3aI 4ala2

4albl-bI 4a2b2-b2 4a3b3-b3 4(a2b3+a3b2) 4(a3b1+alb3) 4(alb2+a2b1)

[B] = 4alCl-Cl 4a2c2-c2 4a3c3-c3 4(a2c3+a3c2) 4(a3c1+alc3) 4(alc2+a2c1)

4b_ 4b_ 4b_ 8b2b3 8b3bI 8blb2

4blCI 4b2c2 4b3c3 4(b2c3+b3c2) 4(b3c1+blC3) 4(blc2+b2c1)

(1.2.20)

The relationof the six doubletvalues u(Qi),u(Q_) to the nine doublet

parameters involvesthe considerationof a numberof specialcases and is some-
times quite complicated. In figure 1.19 we have drawn a typicalpanel with all
of its subpanelcornersQi denotedby e, and subpaneledge midpointsQ} denoted

by the various symbolso, O, x . The problemof defining_(Qi), u(Q_)

then reducedto the problemof definingu at these 25 points on the panel.
The definitionof _ at these points takes up the remainderof this section,
the discussionbeing divided into the followingparts:

(i) considerationsof continuity,leadingto the definitionof u at
points marked with o and Q ,

(ii) the definitionof the "x quantity"associatedwith a subpaneledge,

(iii) the computationof the four nontrivialx quantitiesx85, x56, x67

and x78 leadingto the definitionof u at the pointsmarked with x.

Of course it should be fairly clear from an examinationof figure 1.19 that the
subpanelcorner points marked with • are also the location of the panel
doubletparameters. Thus the definitionof u at these nine points is an

1.2-6



entirely trivialmatter.

1.2.3.1 Considerationsof Continuity

PAN AIR imposesthe conditionthat doubletstrengthbe continuousfrom
panel to panel as well as continuouswithin a panel in order that the line
vortex term be droppedfrom the expressionfor perturbationvelocity. We now
considerwhat consequencesthis requirementimposesupon the doubletdistri-

bution along edge 1 (consistingof points PI' P5' P2) of the panel diagrammed
in figure I.lg.

First, observethat continuityat the pointsPI' P5 and P2 requiresthat

the doubletouter splinematrix BD give the same value for _ at these points
whether they are consideredas lying on the panel diagrammedor on its
neighbor below. This requirementis satisfiedby the actual construction

process of BD (see section I.i) in which doubletvalues at fine grid points
(pointsmarked • in figure 1.19) are relatedto global doubletparameters
without considerationof which panel they are associatedwith. Now if

continuityof u at points PI' PS' P2 is to imply the continuityof _ all along

the edge, then the distributionof u along the edge must be determinedby its
values at these three points. An edge distributionof _ satisfyingthis
requirementis providedby a quadraticdistributionof _ along the edge. If
edge 1 is parameterizedby a variablet _ [-1, i] with the correspondences

t = -1 "-*P1

t = 0 _-_P5

t = +1 "-_P2

than a suitablequadraticdistributionis providedby the expression

I : _1[t(t_1)/2] + _5[l_t2] + _2[t(t+l)/2] (1.2.21)
Iedge 1

By setting t = -1/2 (resp.1/2) in this expression,we can computeu at the

subpaneledge midpoint (Q1 + Q5)/2 (resp. (Q5+ Q2)/2). we obtain

_15 = _((QI+Q5)/2) = _I(3/8) + _5(3/4) + _2(-1/8) (1.2.22a)

_52 = _((Qs+Q2)/2) = Pl(-1/8)+ _5(3/4) + u2(3/8) (1.2.22b)

By repeatingthis processfor the other edges, we can define the doublet
strengthat all the pointsmarked with (o) in figure 1.19.

Similarconsiderationsof the requirementthat _ be continuousfrom the
top half to the bottom half of the panel lead us to define u along the line

(P8' P9' P6) by a similarquadraticexpression,

1.2-7



I = u8[t(t-1)/2] + _9[I-t2]+ _6[t(t+1)/2]
I (p8,P9,P61 --

(1.2.231

As before we can compute, at the subpaneledge midpointsalong the line

(P8' P9' P6)" We obtain,

_89 = _((P8 + P9)/21 = u8(3/8)+ _9(3/4) + u6(-1/8)
(I.2.24a)

_96 = u((P9 + P6)/2) = u8(-1/8)+ _9(3/4) + u6(3/81 (I.2.24b)

By repeatingthis processon the line (P5' P9' P7)' we can define the doublet

strengthat all the points marked with (Q) in figure 1.19.

1.2.3.2 The Definitionof "Kappa"Quantities

We begin our discussionof the computationof u at the pointsmarked x in

figure 1.19 by defininga quantity"AB associatedwith a quadraticfunction
definedon a line AB:

--)- _ --)--€.

KAB : _(A) + (1/21V_(A) . (B-A) (1.2.25)

If the line AB is parameterizedby a variable to[-1,1] by the expression

P(t) = [(l-t)/2]A + [(l+t)/2]B (I.2.26)

then the quadraticfunction_(P(t)) is given by

. . -_ [l_t2] .u(P(t))= u(A) [t(t-1)/2]+ _(M) + _(B) [t(t+l)/2]
(1.2.271

where M denotes the midpoint, (A+B)/2. Note that

d . . _ . ..
d_ u(P(t))= V u(P(t)) . (d /dt)= Vu(P(t)) . (B-A)/2

(I.2.28)

Setting t=-l, we find that, since P(-1) = A,

(1/21 V_(A) . (B-A) d . I= _ u(P(t)) t=-i

3 . ½ .= - _ _(A) + 2 u(M) - _(B) (1.2.29)

Substitutingthis result into (I.2.25)we obtain

KAB = 2 u(M) - (u(A) + _(B)) (1.2.301 -.
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An entirely similarcalculationshows that

KBA = _(B) + (1/2)Vu(B) . (A-B) = KAB (I.2.31)

Notice that if KAB' u(A) and ,(B) are all known, then u(M) is immediately
given by

. 1 +1 21- .u(M) : _ [ KAB _ ,(A) + ,(B)] (1.2.32)

Since all that remainsto be computedare the values of u at the four
points marked x in figure 1.15, we only need to compute the valuesof
associatedwith the line segmentsP8P5, P5P6, P6P7, P7P8• In describingthis

computation,we will treat in detail the calculationof one of these
quantities(K85) and then simplyquote the resultsfor the other three.

1.2.3.3 Computationof the NontrivialKappa Quantities

The computationof the kappa quantitiesis most easily describedif we
introducea skewedcoordinatesystem for the mean panel. This coordinate
system is essentiallysimilarto the skewedcoordinatesystemsdescribedin
section1.1. We define this coordinatesystemas follows.

Let Ps' Pt and Pst be definedby

1 .
Ps =4 (54 + PI - P2 - 53) (I.2.33)

Pst= _ (PI - P2 + P3 - P4) (I.2.35)

and let N be the cross productof Ps and Pt:

. . _ (1.2.36)
N = Ps x t

Note that the panel center P9 satisfies

P9 - 41(P1 + P2 + P3 + P4) (I.2.37)

We define the skewed coordinatesP' of a point P by the equation

I" _. 2] T
. PtxN NxPs N (_ _9)
P' = INI 2 INI 2 3/ -

. (1.2.38)

Since P1 = P9 + Ps + Pt + Pst' we find that
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P_ = + c2 (1.2.39)

c3

where skewnessparameterscI, c2, c3 are defined

--_ ..).

Cl = Pt x N . _st/ (Nl 2 (1.2.40a)

..). -@. ..).

c2 = N x Ps "Pst/l_[ 2 (1.2.40b)

c3 : _ .;st/l_13/2 (1.2.40c)'

In an entirely similarfashionwe find

P_ = 1 - c2 , P_ = -1 + c2 , P 4 = i - c2

c3 c3 L-c3
(IL2.39)

Relationsof the form P5 = P9 + Pt lead to the results

P5 = 0

p; =

.P' = [i]- (I.2.40)

P_ = 0
0

Figure 1.20 is a diagramof the panel in this local coordinatesystemas it
appearsviewed from above.

Projectingthe panel onto the s-t plane, we are now ready to describethe
.,

computationof _58" First we observethat V'_ can be computed at point P5

providedwe know the two directionalderivatives:
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(PI - P2) " _'.(P_I = 2(I+c I, c2) • :'u( )

(P5 - P7) v'' • ,(P_) : 2(0. I) . v',(P_)
(1.2.41)

Each of these quantitiesis easily computedusing the fact that _ is a

quadraticalong the lines (P_ P_ P_) and (P_ P_ P_). We obtain

I I

(P1 - P2) " V u(P_) = uI - "2 (1.2.42)

I

(P5 " P7) " V'_(P_) = 3u5 - 4,9 + "7

Solving the equation

2 V',(P_) = (1.2.43)
L 0 1 3u5-4,9+,7

for V' .(P ) we obtain

V'.(P_) : -_ [ g "1 - g"2 US
3 i

"5 - 2"9 + _ u7

(1.2.44)

Forming _58 using the definition

_58 : "5 + 2 ( - ) • V', (P_)

= "5 + 21-(i, -1) V', (P_) (1.2.45)

we obtain

1 (1+c2+cl) 3 +1
_58 = "5 + 4(I+c1) ("1-u2)- 2(1+cI) (2 "5-2"92 u7)

1

{ + "5 (i-3c2+Cl)- 4(1+Cl) u1-_2

+ _9 4(1+C1+C2)- "7(1+C1+C2)}
(1.2.46)

A similarcalculationbased upon the directionalderivativeformulae
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(P_- P4) • V'u (P_) : 2 (c 1, 1 + c2) V'_ (P_)

= Ul - _4

(P_- ;_) • V'u (P_) : 2 (1, O) V'u (P_)

(1.2.47)
= 3_8 - 4_9 + _6

leads to the formulafor V'_(P_)

v',(P_) = g _8 - u9 g u6

1 [½_ I +½. ll(1.2.48)
Definingthe quantity _85 by

_85 = u8 + ( - P ) " V'_ (P)

1
= _8 + 2 (-i, I) V'_(P_) (1.2.49)

we obtain after some manipulation

i {K85 = 4(i+c21 _i - u4 + (i - 3CI + C2) u8

_9 4(1 + C1 + C2) - u6 (1 + cI + c2)}
(1.2.50)

Now, clearly, the definitionwe use for K58 should be some weighted

average of the two values we have calculated. Further,if (1+c1) or (1+c2)

is zero, one of the values of K58 goes to infinity,indicatingthe

impossibilityof providinga continuousdoublet gradienton that occasion
(this situationoccurs whenever the panel is triangular). Thus, our weighted
average should be such that zero weight is given to an infinitevalue of _58"
The simplestsuch weighted average is given below:

1 + cI 1 + c2

_58 2 + cI + c2 _58 + (I.2.51): 2 + cI + c2 _85

Upon substituting(I.2.46)and (I.2.50)into (I.2.51),we obtain the formula

for _58"
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i {2 Ul + (I-3c2+ci)u5 u2K58 : 4(2+c1+c2)

(I-3ci+c2)_8+ 8(1+ci+c2)u9 - (i.ci+c2)_6

-u4 - (I+c1+c2)_7 + 0 _3}

(1.2.52)

Similarformulaefor the other three valuesof are given by

1 { 2 u2 + (1-3Cl-C2)u6 u3K56 = 4(2+c1_c2)

(1+3c2+cl)u5 + 8(i+cl-c2)u9 - (i+cl-c2)_7

- _i - (1+Cl-C2)u8 + 0 u4)
(1.2.53)

1 I 2 _3 + (1+3c2"cl)u7 u4K67 = 4(2_c1_c2)

(1+3ci-c2)u6 + 8(1-Cl-C2)_9 - (1-Cl-C2)_8

-u2 - (1-Cl-C2)_5+ 0Ul}
(1.2.54)

i { 2 u4 + (1+3ci+c2)u8 " _I
_78 : 4(2_ci+c2)

(1-Cl-3C2)_7 + 8(1-ci+c2)_9 - (1-c1+c2)u5

"_3 - (1"c1+c2)_6+ 0u2)
(I.2.55)
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1.3 Full Panel and Half Panel Splines

Measuringthe influenceof a panel consistingof eight separatesubpanels
is quite costly in terms of computingeffort. Consequently,this procedureis
used just for those panels lying very near to a controlpoint. For panels
lying somewhatfurtheraway from a controlpoint, two "intermediatefield"
proceduresare availablefor estimatingthe influenceof a panel. In the
simplestof these procedures,the "quasi-farfield" method, the panel is
replacedby its mean plane projection,the sourcedistributionis approximated
by a single linear functionand the doubletdistributionis approximatedby a
single quadraticfunctiondefinedon the mean panel surface. Somewhatmore
comp!icatedthan this is the "quasi-nearfield"approach,which dividesthe
panel into two triangularhalf panels,approximatingthe source distribution
with a linear functionand the doubletdistributionwith a cubic functionon

each half panel. It is importantto realizethat while the more complicated
quasi near field proceduredoes maintaincontinuityof doublet strength,the
quasi far field proceduredoes not. Thus, in supersonicflow, the quasi far
field procedureis never used unless the panel lies well inside the control
point'sdomain of dependence,(i.e.,the Mach cone emanatingupstreamfrom the
controlpoint). The quasi-farfield'sreplacementof the exact doublet
distributionwith a discontinuousapproximationis safe, then, providedthe
panel lies well inside the domain of dependence. For, when this condition
holds, small changes in the doublet distributionproduce small changes in the
values of _ and _ at the controlpoint. This last fact followsfrom the
well-boundednessof (l/R) and V(1/R) at points sufficientlyfar away from
the boundaryof the Mach cone.

1.3.1 Full Panel Spline Matrices

The full panel splinematrices denotedPSPLS and PSPLD are used in
the evaluationof far field (cf. appendixJ.9) as well as quasi-farfield
panel influencecoefficients. These spline matricesgive the coefficientsof
a linear source distributiona(_,n) and a quadraticdistribution_(_,n) in
terms of the panel'ssingularityparameters,that is, the 5 panel source
parametersand 9 panel doublet parametersthat help define o(Q) and _(Q) on
the panel. Thus we have o and _ approximatedby

_(_,n) _ ao + a_ + a n (1.3.1)n

1 _2 + _n + 1 n2 (I.3.2)

where the polynomialcoefficientsare given by
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pOI •

a_ : [PSPLS] (I.3.3)
a3

a n
a4

ag •

"0 _1

_ _2 _ (I.3.4)

_n = [PSPLD] • '

1
• _, • _9 J

The (_,n) coordinatesused in these equationsare the first two componentsof
the average panel local coordinatesystem definedby equation (E.O.1),using
the panel center as the origin and taking _ to be the normal to the average _
plane. In what followswe will use the notation(_i' hi)' i=1, ... , 9 to

denote the local coordinatesfor the nine standardpoints on the panel at
which panel doubletparametersare located.

The source panel splinematrix PSPLS is constructedby a constrainedleast
squaresprocedurein which we enforce the constraint

o(_9' n9) = o9 (1.3.5)

while minimizingwith respect to co, 0( and 0 the expressionq

4

[c0 + of _i + a ni _ oi]2 (I.3.6)n
i=1

Since the panel center is the origin of the local coordinatesystem, (_9' ng) =
(0, O) and equation (I.3.5)impliesthat

a9 = a(_9, n9) = a (0,0) = a0 (1.3.7)

Thus 00 = 09 and the problem of minimizing the expression (I.3.6)can be
reformulatedas: _
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4

min _ [a_ _i + an ni - (ai - a9)]2 (1.3.8)
i=l

a_, an

The normalequationsfor this problemread

4 4 r4 4

i _ _i ni -a_, _ _i ai " a9 _ _i
i:l i=l i:l i:l

4 4 2 4 4
_] _i ni _ ni a _ ni ai -a 9 _ ni
i=1 i=1 i=1 i=i
D

(1.3.9)

14

P9 : ((PI + + + P4) is the originof the localBecausethe panel center

4 4

coordinatesystem,we have that _ _i = _ ni = 0. Using this fact to
i=1 i=i

simpli_ the right hand side of (I.3.9),we may write the followingexpression
for PSPLS.

m D

110 0 0 0 0 0 1

[PSPLs] = 01 C-I _1 _2 _3 _4 0 (1.3.10)0 nI n2 n3 n4 0
L

where C is the coefficientmatrixof (I.3.9):

4 4

i _ _i ni
i=1 i=1

C = (I.3.11)

4 4 2
_i ni _ ni

i=1 i=1

The constructionof the doubletpanel splinematrix PSPLD is accomplished
by ratherdifferentmeans. In order to explainthe process,it is necessary
to introducethe isoparametricrepresentationof a panel.

The isoparametricrepresentationof a panel consistsof a mapping_(s,t)
from the standardsquare I:
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I = ((s,t) ] -1 < s,t < 1}

= [-1,1]x [-1,1] (1.3.12)

onto the approximatepanel H. The mapping_(s,t)that definesthe approximate
panel H is constructedby performingbilinearinterpolationon I using the
data (cf.figure1.21)

:
_(-1,-1) : P3

_(i,-I) = P_4 (1.3.13)

The resultingmappingis given explicitlyby

q(s,t) (l+s)(l+t)PI + (l"s)(l+t)P2- 4 4

+ (1-s)(1-t).4P3 + (l+s)_l-t)p4 (I.3.14)

Writingthis as a polynomialin (s,t)yields __
._. .

+ _ s + qt t + st (1.3.15)=no s qst

where the coefficientsare given by

i i i i
. I
qs = IF 1 -1 -1 1 P2

-HP

qt I i -1 -1 P3 (1.3.16)

qst 1 -1 i -1 _ P4m
B

Note that qo = P9' the panel center. The parameterspace I and the mapping

_(s,t) up to the approximatepanel H are illustratedby fig. 1.21.

The approximatepanel H lies quiteclose to the actual panel and has
preciselythe same boundary. In point of fact, the approximatepanelH was
actuallyconsideredfor use as the standardpanel in PAN AIR. It was
discardedhoweveron the groundsthat its use makes it impossibleto evaluate
panel influenceintegralsin closed form. Since these integralsare in fact
nonconvergentfinitepart integralsin the case of supersonicflow,closed
form evaluationis quite essential. In spiteof this drawback,the
approximatepanel H frequentlydoes providea usefultheoreticalframeworkfor
constructingapproximatedoubletdistributions.
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The most naturalchoiceof a doubletdistributionon H is providedby

performingbiquadraticinterpolationon I using doubletdata associatedwith
correspondingpointson H. This processresultsin the doubletdistribution
on I given by

_2 u6 _3 L t(t-l)/2
I.3.17)

In order to transformthisexpressioninto a doubletdistributionon H, we use
the mapping_(s,t)from I to H to give us

_(_(s,t))= _(s,t) (1.3.18)

This distributionagreesexactlywith the PAN AIR doubletdistributionon the

boundaryof the panel and on the lines (P6'P9' P8)' (P5' P9' )"

Now the panel doubletsplinePSPLD is to be used to computea doublet
distributionon the mean panel. This distributionis definedby

_M(qM(s,t))= _(s,t) (1.3.19)

where _(s,t) denotesthe usual sortof mappingfrom I to the mean panel HM,
expressedin mean panel local coordinates.The approximatedoublet
distributionused for quasi far fieldcomputationsIs now obtainedby
computinga secondorder Taylor seriesfor the function_M definedby

(I.3.19). This computationrequiresthatwe compute_M(O,O)and various
partialderivativesof _M at (_,n)= (0,0).

In order to computethese derivatives,we need first to expressthe

mappingqM(s,t)in the followingform:

s _s + t _t + st _st _(s,t)

q._(s,t)= s ns + t nt + st nst n(S,t) (I.3.20)

0 0
m E

Here, the third componentis identicallyzero becauseqM(s,t)is a mappingfor

the mean panel. We will also need an expressiongivingthe function_(s,t)as
a linearcombinationof the panel doubletparametersui" This expression,

which is derivedfrom equation(I.3.17)by identifyingthe coefficientsof _i

as basis functions_i(s,t),has the form
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g _.

_(s,t) = _ _i _i(s't) (I.3.21)
i=1

The functions_i(s,t)are definedin the obviousway; for example,by
comparing(I.3.21)to (I.3.17)we readilysee that

¢5(s,t)= (l-s2) [t(t+l)/2] (1.3.22)

Combining(I.3.19),(I.3.20)and (I.3.21)we write

9

_M(_(s,t), n(S,t)): _ Pi _i(s't) (1.3.23)
i=1

Settings=t=O,we obtain

9

_M (0,0) = _ _i _i(0'0) = _9 _9(0'0) = _9 (I.3.24)
i=1

Differentiating(I.3.23)with respectto (s,t)and settings=t=O,we obtain

the followingimplicitrelationfor (a/a(,a/an) PM I o

, aUM/anlo = _ _i _a--g--'Tg -)
(aUM/a_ ns nt i=l s=t=O

(I.3,25)

If we denoteby J the Jacobianmatrixappearingon the left,

we obtain the followingrelationfor the gradientof UM:

If we differentiate(I.3.23)with respectto (s,t) twice and set s=t=O,we
obtain
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_t nt L32UM/B_ an B2UM/Bn2]o ns nt

_ss _st + BUM/an
+ aUM/a_ {st _tt nst nttJ

g Ia2¢i/as2 a2¢i/asat]= _] ui (I•3.28}

i:i " LB2¢ilBsat a2#i/at2 ]

Since a2 _ /as2 = a2_ /at2 : O, and similarlyfor n(S,t),we may rearrange
and simplifythis expressionto obtain

B2UM/B_an B2UM/Bn2 + _ ui ,st

i=I i,st _i,tt]
(1.3.29)

Now the doubletpanel splinematrix [PSPLD] expressesthe various

coefficients.#M(O,O),BUM/B_, .-. BUM/an2 as linearcombinationsof the panel

doubletparameters• Combiningequations(I.3.24),(I.3.27)and (I.3.29),we

can explicitlywrite out a formulafor the i-thcolumnof PSP_ :

¢i(°'° ) ]

}-_ ...........................

o Ls22 (Ai122

(1.3.30)
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Here, 2x2 matricesS and Ai are defined_ --.

Ai = j-T [B2€i/Bs2 a2¢i/BsBt_

j-1 (I.3.32)

_2_i/Bs@t B2_i/@t2

1.3.2 Half Panel SplineMatrices

Althoughthe quasi-nearfield procedurefor computingthe influenceof a
panel is somewhatmore complicatedthan the quasi-farfield procedure,the

half panel splinematrices[HPsPLS],[HPSPLD] associatedwith the quasi-near

field procedureare somewhateasierto computethan were [PSPLS] and [PsPLD].
We begin our discussionof theircomputationby statingclearlywhat they do.

Given a quadrilateralpanel with cornerpoints (PI'P2' P3' P4)' we begin

by dividingit into two triangularsubpanels. If the distancefrom P1 to P3

is less than the distancefrom P2 to P4' we performthe division(see-f_g.
1.22a)

d(Pl' P3) < d(P2' P4) : T2 = (P2'P3_ P1)

T4 = (P4'PI' P3) (I.3.33)

while if the oppositeconditionholds,we performthe division(seefig. 1.18b)

d(P2' P4) _ d(Pl'P3) : TI = (_i'P2' P4)

T3 = (P3'P4' P2) (1.3.34)

Havingdividedthe panel into two triangles,we addressthe problemof
computingthe coefficientsfor a linearsourceand a cubic doublet
distributionon each triangularsubpanel.

If we denote these distributionsby o(_,n)and _(_,n)respectively,the
variables({,n)being local coordinatesassociatedwith the triangularhalf
panel under consideration,then our task is to computehalf panel spline
matricessuch that
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,a I "

- }a a2

a_ = [HPSPLS] a3 (I.3.35)

an a4

• 0 9 .,

r _ • " _I _

_2
_ = [HPSPLD] ( 1.3.36)
. m

:

_nn _8

with functionsa(_,n)and _(_,n)then being given by

a({,n) = ao + a_ + an n (I.3.37)

_(_,n) = "o+ "_ + _nn

_2 + In + 1 n2

i _3 + i _2n + I n2 i n3

(1.3.38)

The computation of the source half panel splines is especially easy. To
illustrate the procedure, let the triangular half panel under consideration be

T4 of (1.3.33), (_4' _i' P3)" Using the formula (I.2.3) for linear interpola-
tion on these points, together with the identification of points

P4 = QI' localcoordinates(:i' nl)

_I = Q2' local coordinates(:2'n2)

P3 = Q3' local coordinates(:3' n3) (1.3.39)

then the sourcedistributionon triangle(P4'PI' P3) is given by

a({,n) : a4LI(Q) + aI L2(Q) + °3L3(Q)

Using the explicitformulafor Li(Q) given by (I.2.4),(Li = ai + bi: + ci n),

the functiona({,n)can be writtenout,
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l a 0 a3 aI 0 I ' al --o(_,n) = L1, _ , nj b2 0 b3 bI 0 _ a3c2 0 c3 cI 0 , 03

04

09

(1.3.41)

The matrix appearingon the rightlland.sid_of (I.3.41)is the sourcehalf
panel splinematrix for triangle(P4'PI' P3):

a 0 a3 aI 0 1

T4 : (P4'PI' P3) : [HPSPL_] : b2 0 b3 bI 0 I

c2 0 c3 cI 0 J
(1.3.42)

The procedureto be followedfor any other triangularhalf panel shouldnow be
apparentfrom this example.

Turningnow to the problemof computingthe doublethalf panel splines,we

again considerthe specialcase of triangleT4 = (P4' PI' P3)" Referringto

figure1.22a,observethat if the value of u were known at the seven points

(P4' PI' P3' M2' PT' P8' C4)' then a cubic distributionof doubletstrength
could be readilyconstructedusing the interpolationformulagiven by
equations(I.2.11)and (I.2.12). Now of these_even p_ints,five are
locationsof panel doubletparametersand two (M2 and C4) are not. Thus, if

..p --p

we can manage to express_(M2) and _(C4) in termsof the panel doublet

parametersby expressionsof the form

9

P(M2) = i=1_im2,i "i (I.3.43)

. 9

P(C4) = Z c4,i ui (I.3.44)i=1

then we will immediatelybe able to write down an expressionfor _(Q) on
-). -@. -@- g

(P4' PI' P2) as a linearcombinationof {Pi}i=1. This is done asT4

follows. Combiningequations(I.2.11)and (I.2.12)while makingthe identifi-
cations
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P4 = QI M2 : Q1

PI = Q2 P7 = Q2 C4 = M

P3 = 3 = Q (I.3.45)

we obtainafter somemanipulation

3 _ . _
,(Q) = _ u(Qi) [Bi(Q)-BilM) C(Q)]

i=1

_ -). -_. -_.

Qi i '+ Z "(') [B (Q) - Bi(M) C(Q)]
i=1

-4P -_

+ ,(M)C(Q) (1.3.46)

that is,

,(Q) = u4 [BI(Q)- BI(M) C(Q)]

+ "1 [B2(Q)-B2(M) C(Q)]

+ _3 [B3( ) - B3(M) C(Q)]

i=1

."7[a_(_l-8_(_)c(6)2

+"8Ea_(_l-B;(_)C(_I;

i=l

This last equationyields an expressionfor the doublethalf panel spline
matrixas follows. Let [G] be a matrixcontainingthe polynomialcoefficients

' C We expressthis fact algebraicallyby theof the basis functionsBi, Bi, .
equation

.61,82,B3,B_,B_,B_,C. =

2, _2 _j lox7= {n, .-. , [G]
L1, {, n, (I.3.48)
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Now using the facts that
.+

Bi(M) = -1/9 (I.3.49)
-.p

B}(M) = 4/9 (I.3.50)

we can write ,(Q) as givenby (I.3.47)in the form

"1

3 10x7 7x7 7x9
.(Q) : ,i, _, n, ... n [G] [T] [K] "2IT"

m

"9
(I.3.51)

where [T] accounts for the stray multiples of C(Q) appearing in (1.3.47):
D

i

[T] 7x7 = 1

1

1

1

1

i i i -4 -4 -4 i
!_ !_ z] z] z] _] (1.3.52)

D

9
and [K] expressesthe seven requiredvaluesof _ in termsof { _i}

i=i

.T
e4

+T
e1

[K] 7x9 = e_

m2,1 m2,2 • . . m2,9

.T
e7

.T
e8

_c4,I c4,2 . . . C4,g (1.3.53)
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Here, the notation_k denotesthe k-th naturalunit vectorin R9. The doublet

half panel splinematrix for the triangleT4 = (P4'PI' P3) is now given by

[HPSPL_]10x9 = [G]I0x7 [T]7x7 [K]7x9 (I.3.54)

that is, it is just the matrix sandwichedbetweenthe two vectorsin equation
(I.3.51).

All that remainsto be done now, is to describethe computationof the

coefficients (m2,i} and (c4,1} appearingin equations(I.3.43)and
(I.3.44). These coefficientsare computedwith the help of the isoparametric
representationof a panel (cf. equation(I.3.14))togetherwith the doublet
distributionp(s,t)on the canonicalsquareI given by equation(I.3.17)or

(I.3.21). We describethe procedurefor computing {m2,i} , the procedurefor

computing{c4,i}being essentiallythe same.

Now the computationof {_2,i} is essentiallyequivalentto the problem

of computingu(M2) or, sinceM2 may not actuallylie on the panel,of
_. _.

computing_(M2) where M2 is the point on the panel lying closestto M2. If,
_. _

insteadof findingM2, we find the point M2 on the approximatepanelH that is

closestto M2:

M2 = q(s , t ) (I.3.55)

then we may estimate u(M2) as _'(s , t ). Here (s , t ) are the s-t coordinates.-_'k

of the point M2cH that solvesthe minimizationproblem

=m,.
QcH

= min IM2 - q(s,t)l (1.3.56)
(s,t)_I

Given these coordinates(s , t ) for the pointM cH nearestto M2, we take

u(M2) = u(M2). Combiningthis choicewith equation(I.3.18)and (I.3.21)
yields:

p(M2) = u(M2) = p(_(s , t )) = _(s , t*)

9 * *

= _] _i 6i (s , t ) (I.3.57)
i=1
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Comparingthis last result to equation(1.3.43)leads immediatelyto the --

formula for the coefficients m2, I :

m2, i = ¢i(s , t ) . (I.3.58)

It shouldnow be clear how the coefficientsc4,i are computed: One simply

finds the s-t coordinates of the point C4 € H nearest to C4 and then performs
the evaluation

: ; = s ,t)c4, i ¢i(s t ) where C4 _( • (I.3.59)

1.3-14



1.4 Panel MomentMatrices

A numberof panelmomentmatricesare computedin PAN AIR for use in the
far field evaluationof panel influencecoefficients(see sectionJ.9) and for
certainpost-processingfunctions(see section0.2). In this sectionwe
definethese panelmomentsand describetheircomputation. Far fieldmoments
are treatedin section1.4.1,post-processingmomentsare treatedin section
1.4.2 and finally,in section1.4.3,the computationof the basic flat panel
momentsis described. These basic flatpanel momentsare definedby the
expression

_ _i nj d_ dn 0 < i+j_ N (I.4.1)
Cij = _

Here, ({,n)are localcoordinateson the surfaceof a flat panel _ . We
will find it convenientin our discussionof far field and post-processing
momentsto assume that flat panel momentsof the form (I.4.1)can be readily
computed,given the cornerpointsof _ in local coordinates.

1.4.1 Far Field Moments

The panelmomentsused in the evaluationof far field panel influencesare
now described. We begin by notingthat the far field PIC procedureestimates
a panel influenceby implementingthe followingapproximations:

(i) The panel is replacedby its mean panel.

(ii) Singularitydistributionso and _ are replacedby their quasi-far
field approximations(see section1.3.2).

(iii) The kernel functions(l/R)and V(I/R) are replacedby Taylorseries
approximationsof degree0 (monopole),1 (dipole)or 2 (quadrupole).

The analysisof theseapproximationsis carriedout in detail in appendixJ.9.
At this pointwe are merelyconcernedwith describingthe computationof the
far fieldmomentsthatare definedby thatanalysis.

Toward thisend, let the mean panel expressedin its local coordinates

(_,n)be denotedby _m" We definea collectionof basis functions_a(_,n),

definedon _m' as follows

Ca : [I,_, n, _2/2, _n, n2/2, _3/6, _2n/2, _n2/2, n3/6](I.4.2)

Thus, for example_8(_,n)= _2n/2. Using the alternatenotationfor _ and n:

Pl = _ (I.4.3)

P2 = n

we definethe far fieldmomentsas follows(formotivationof these
definitions,examinethe coefficientsappearingin equations(J.9.42-43)):
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sHaB : _ _a CB d{ dn 1 _<a_< i0 (1.4.4) _
I I<B<6m - -

s Pi Ca 6B d_ dn 1 < i < 2HiaB = _ - _ (1.4.5)
I l<a<6

m _

1 <B <3

In writingdown thesedefinitions,we have used the usual symbolss and _ to
denotethe following:

+1 subsonicflow,M_ < i
s = (I.4.6)

-1 supersonicflow,M_ > 1

4_ subsonicflow, M_ < 1
= (1.4.7)

2x supersonicflow, M. > 1

A quick examinationof the definitions(I.4.4-5)togetherwith a look at the

definitionsof Ca' (I.4.2)and Pi' (I.4.3)shows that the integralsin

equations(I.4.4-5)are all of the form

_ (constant)
J
n d{ dn , 0 < i+j < 5

Im

These, of course,are just integralsof the formCij (seeequation(I.4.1))
which we will discussin section1.4.3.

1.4.2 Post ProcessingPanelMoments

A number of the post processingoptionsin PAN AIR requirethe evaluation
of panel integralsof the followingform:

II
panel

panel

(Q- pg) f aS
panel

II + )(Q- xB f dS
panel
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Here, f is a functionspecifiedat the nine panel doubletparameterlocations
and extendedto the whole panelwith the doubletinner splines. The vector

is the panel'sunit normal,P9 is the panel centerand Q is a positionvector
on the surfaceof the panel. If we denoteby _ the vectorof the nine
specifiedvaluesof f our goal is to computematriceshaving the following
properties

SB f dS = LFFM j
K panel

s82 f dS:K

_anel

_f . _g) [NCPM1]3x9.(Q - f dS = f (I.4.10)

panel

_I . _ [NCPM2]3x9.(Q - Pg) x _ f dS = f (I.4.11)

panel

We begin our discussionof the computationof thesematricesby addressingthe

FFM_, as this allowsus to introducemost of the notationwecomputationof

will need to handlethe others.

D

We start the analysisof [FFM1] by breakingup the integralappearingon

the left hand side of (I.4.9)into integralsover the 8 triangularsubpanels,

Tk:

sB f _dS = _ sB2 f _ dS 11.4.121

panel k=l K
Tk

Now on each triangularsubpanel,the functionf is given by a formula
analogousto equation(I.2.2):

,_2 2 ,D. -"

Tk

: _T [SPSPL_]_ (I.4.13)

wherewe have introducedthe notation_T for the row vectorof basis functions

on Tk:
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i_T = (1,_, n, _2/2, _n, n2/2) (1.4.14)

Now a slightmodificationof equation(E.1.28)enablesus to write (BdS)in

terms of _'dS' = n'd_ dn. This expressionreads

dsI :
I
Tk

= d_ dn (I.4.15)

Substituting(I.4.13)and (I.4.15)into (I.4.12)yields then

panel k=l Tk

(1.4.16)

Identifyingthe coefficientof f in this expressionas the matrix [FFFI_],we
obtainafter some simplification

k=l Tk
(1.4.17)

In order to carry out a similarprocedurefor equation(I.4.8),we must

introducethe areaJacobianJk for the referenceto local coordinate
transformationon subpanelTk. This quantityis givenby equation(E.3.109).
Applying that formulato the case under consideration,we have

Jk : dS/dS' : i/[s i {nk,nk}i I/2] (1.4.18)

Using this quantityto transformarea integralsoverTk from referenceto

local coordinates,we obtain for the left hand sidemember of (I.4.8):

SB f dS : _ --K K

panel i=1
Tk

k:l K
(I.4.19)
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Clearly,the row vector LFFM_jmust be given by

D sB2 8 f_
LFFMoJ - K Z JR jj _T d_ dn [SPSPL_]

k=l
Tk (1.4.20)

The computationof [NCPM1],associatedwith equation(I.4.10)proceedsin
a similarfashion. Here howeverwe must introducesomemore specificnotation
to describethe transformationfrom the referencecoordinatesystemto

subpanelTk'S localcoordinatesystem. LettingPo,k denotethe originof this
coordinatesystemin referencecoordinates,the local coordinatesQ' of a point

Q are given

Q' = Ak (Q - Po,k) (I.4.21}

Note thatQ'P9 can be expressed

Q - P9 = Q - Po,k + Po,k - P9

= _ 9,k) (1.4.22)

where

P9,k = Ak (P9 " Po,k) (I.4.23)

Transformingthe variouspiecesof equation(I.4.10)into panel local
coordinates,we obtain

(Q-Pg)f dS = Z Jk AkI (Q"P9,k).' _T [SPSPL_]d_ dn f

panel k=l Tk

(1.4.24)

The expressionin curly bracketson the right is the matrix[NCPM1]:

8 I!! cT d, dnl [SPSPL_]

[NCPM1] = _ Jk AkI (Q'-_9,R)
k=l

• (1.4.25}

Note that the integralsare readilyreducibleto the formof the Cij
integrals,(I.4.1):
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: _a d_ dn --

Tk Tk

sl" " IfP' d_ dn : P' _a d_ dn9,k _a 9,k

Tk Tk

Weconclude our discussion by evaluating (1.4.11) to express the matrix

[NCPM2] in elementary terms. Proceeding as before, we find

fl (Q-P9)x n f dS
panel

: 2 _ Ak (Q - g,k" x A [SPSPL ] f d{ dn
k=l

Tk

k=1 --
(1.4.26)

Identifyingthe coefficientmatrixas [NCPM2],we have

k 1 ''k (1.4o27)

1.4.3 Evaluation of Elementary Flat Panel Moments

The evaluation of the elementary flat panel moments Cij defined by
equation (I.4.1) is now addressed. Webegin by applying Gauss' theorem in the
plane to obtain,

If _i nj d_ dn = 1 If a _i+l njCij = Ti_TT _ ( ) d{ dn

1 f _{ _i+1 nj ds (I.4.28)

Breakingthe boundaryintegralup into a sum of integralsover the individual

edges Ek of a_. , we obtain
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i _ {i+1 J ds (1.4.29)Cij = _ _ _ n
k

Ek

Let edge Ek be parameterizedby a variable _€ [0,i] so that along the edge,
and n are givenby

= {k + (A {k)_
(1.4.30)

n = nk + (ank)7 0 < • <__1

Note that the unit tangentt, the unit normal_ and the elementof arclength
ds are given by

= [A_2 + ank] (1.4.31)
Ank

I Ank ] 2 I/2

= [a{_ + Ank] (I.4.32)

-A_k

Combiningthe first componentof (I.4.32)with (I.4.33)gives for n{ ds:

n_ ds = Ank d_ (I.4.34)

Substitutingthis into (I.4.29)yields for Cij

Ank {1 _i+1 jCij = _] _ n dr (1.4.35)3k 0

Evidentlywe need to be able to computeedge integralsof the form

G!k) {i li j d_ (1.4.36):

lj jO

edge Ek

Once this has been done,we will be able to computeCij from
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ank GIk) (1.4.37)Cij : _ _ +l,j --
k

(k) we suppressTurningnow to the problemof computingthe integralsGij ,
the superscriptk and write

1

= I _i J dr 0 < i+j < N+I (I.4.38)Gij n _ _
0

with _(_) and n(') givenby

(I.4.39)
+ (an),n : nO

The entriesof G can be computedquite effectivelyby a simplerecursive

procedure. We begin by definingsome auxiliaryintegralsHij:

1 ,i nj d, _ i.j _ N+I (1.4.40)
Hii = 0 < <

0

These are easy to compute. The entriesof columnj=O are trivial:

Hio = 1/(i+1) (I.4.41)

and the entriesof subsequentcolumnscan be computedby the recursion

1

,i nj-1 (no + An.r) d,Hij = 0

= no Hi,j_1 + an Hi+l,j_I 0 _ i _ N+I-j (1.4.42)

The integrals Hij can then be transformed into the integrals Gij by performing
a similarprocedurefor each column of the array H. The recursionformula
reads

_i _k-1 + (A_)r),i-k nj d,1 _k _i-k nJ dr = (_o
0 0

= {o _k-1 i-k nJ d, + A{ f n d_
0

(1.4.43)
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A simpleAlgol-likeprocedureimplementingthese ideas is outlinedbelow. The
only featureof especialinterestis the fact that the recursionin the third
segmentis run backwardso that the procedurecan be performedin place.

Algorithmfor evaluatingedge integralsGij (cf.equation(I.4.38))

<Initialization:Equation(I.4.41)>

for i = 0(1) N+I do

Gio = i/(i+1)

end i

<Recursionfor n: Equation(I.4.42)>

for j = 1(i) N+I do

for i = 0(1) N+I-j do

Gij = no Gi,j_1 + An Gi+l,j_1

end i

end j

<Doublerecursionfor _ : Equation(I.4.43)>

for j = 0(1) N do

for k = 1(i) N+I-j

for i = N+I-j (-1)k <Recursionis run backward>

Gij w- _o Gi-l,j+ A{ Gij
end i

end k

end j
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1.5 Constrained Least Squares

1.5.1 Definition of the Problem

In this section we discuss the solution to the following rather general
problem, called the constrained least squares problem. Let A be a.jxn matrix,
0 < j < n, of rank j. Let A' be a kxn matrix, j + k > n. Let _, _ , and w be
vectors of length j, k, and k, respectively. Then we wish to find the nx(j+k)
matrix LSQ such that the vector _ satisfying

[a]jxn _nxl = _ (I.5.I)

while minimizing

k n

J = _ wi2 ( _ Ais' xs - b'i)2
i:1 s=l (1.5.2)

is given by

' (1.5.3)

1.5.2 Elimination of the Weights

Now, first we simplify (1.5.2) by noting that if we define a (kxk) matrix
[w]:

[W]ij = aij wi (1.5.4)

then

k n

J = T_ ( Z wi Ais' xs -w i bi')2
i =i s=l

k k n

: _] [ T. ( Z Wij A'js xs -Wij bj')]2
i =i j=l s=l

k n

= _ ( _ Ais Xs - bi)2
i=l s=l (1.5.5)

where

[A] : [W] [A']

b : [W] b' (I.5.6)
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1.5.3 The Case of No ExactConstraints

First,we will considerthe minimizationof J in (I.5.5)in the special

case when j=O; that is, when there are no exact constraintson x of the form

(I.5.1). Now, the quantityJ is a quadraticfunctionin the variables(Xs),

and since it is a non-negativefunction,we see that it is minimizedfor that

vectorx for which all firstderivativesof the expressionwith respectto the

x 's are zero. That is,minimizationof (I.5.5)is equivalentto thes
requirement

k n

a _ ( _ Ais Xs - bi)2 : 0
axI i=l s=1 (I.5.7)

1 = l,...,n

Now,

k n

a _ ( _ Ais Xs - bi)2 =
axI i=1 s=l

k n n

2( S Ais Xs - bi) a _ Ais xs =
i=I s=1 aXl s=1 (I.5.8)

k n

2 _ ( _ Ais Xs - bi) Ail =
i=1 s:l (1.5.9)

k

2 Z Ail (A_ - _)i : 2(AT _ _ - AT _)l : 0
i=i (1.5.10)

Since (I.5.10)holds for each valueof I,I = 1,...,n,we have

[AT A]_ = [AT] _ (1.5.11)

or

: [[AT X]-I AT] _ (1.5.12)
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Comparingto (1.5.3)and (1.5.6),and recallingj=O,we get

[LSQ] = [A'TWT WA']-1 [A'T WT] [W] (1.5.13)

Within the PAN AIR code, equation (I.5.11) is solved without actually

forming [AT A] and invertin_ it The method actually used there, whichinvolves factorization of [ T Ai into a product of lower triangular and
upper triangular matrices, is more efficient and more precise than the method
indicated by (I.5.13).

1.5.4 Reductionof the GeneralCase

Next, let u_ assumej > O, so that there are non-trivialexact constraints
of the form (I.5.1). Since A has rank j, its columnscan be rearranged
(that is "pivoting"performed)so that the first j columnsof the revised
matrixAS are linearlyindependent,and thus

[A*] = [All jxj I AI2 jx(n-j)] (1.5.14)I

Here, the relationshipbetweenA* and A is that

[A,]jxn = [A]jxn[p]nxn (I.5.15a)

_ where [P] is a productof matriceswhich are the identityexceptfor one
non-zerooff-diagonalterm (forany real numbera, addinga times column i to
columnj is performedby multiplyingon the right by the matrixwith l's on
the diagonal,the value a in the (i,j)position,and O's elsewhere;its
inversehas -a in the (i,j)position).

That is, a typicalmatrix P is

P = 0 i
0 0 1

O a O 1 (I.5.15b)

p-l: [_)10 0 1 010 -a 0 I (I.5.15c)

So, (1.5.1) becomes

[a]_ : [a*] [p]-l_ : [all:al2]jxn (p-1 _) nxl :
(1.5.16)
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Writing

p-l_ = _lJXl }_2 (n-j)xl 1.5.17)

we have

[All AI2] { _I} = B_2 (i.5.za)

while we also want to minimize

x2 (I.5.19)

where

[a2_XJ a2kx(n-J)] = [A]kXn [p-l]nxn (1.5.20)

Now, since the j columns of All are independent, All is invertible,
and thus, by (1.5.18),

[All] xI = -[A12] x2 + b (1.5.21)

or

_l(Jxl)
= [All-I] jxj _ [A12] jx(n-j) _2(n-J)xl + _(jxl) (I.5.22)

Substituting (1.5.22) into (1.5.19), we want to minimize

l[A21]_I+[A22]_2-_'I2 :

_[A21]kxj [A1_l]jxj [Al2]Jx(n_j) _2(n_j)xI 2

+[A21]kxj [A_]jxj _(jxl) _ _,(kxl) + [A22]_2
(1.5.23)

But this is just a least squares problem with no exact constraints, that
is, it requires the minimization of

I[A°]_2 _oI2 (1.5.24)
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where

[Ao]kx(n-j) : -[A21 ]kxj [A_] jxj [A12 ]jx(n-j) + [A22]
(1.5.25)

and

kxl = _[A21](kxj)[Al_]jxj1_ _(jxl) +
_, (kxl)

o (1.5.26)

This minimization procedure is described by equations (1.5.5-12), and
results in a matrix LSQ° such that

_2 (n-j)xl : [LSQ°](n'j)xk _o(kXZ) (1.5.27)

Combining (1.5.22), (1.5.26), and (I.5.27_, we !ave obtained _I and
_2, and as linear combinations of entries of b and b'. Thus, we have shown
in principle how the constrained least square problem is solved.
Considerations of efficiency cause complexities which will not be discussed
here.
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J.O Panel Inf.luence Coefficient Calculation

J.1 Introductionand Notation

In this appendixwe discuss the constructionof a panel influence
coefficientmatrix (PIC). Two such matrices (one correspondingto the source
distributionon the panel, the other to the doubletdistribution)are defined
for every pair of panel and controlpoint. Thus, for this entire appendix,we
will assumewe are dealingwith a single panel and a single control point. We
will see that as the locationof the control point with respect to the panel
changes, the method used to compute the PIC matricesmay vary.

The multiplicityof methods is necessaryfor efficiency: the "near field"
method, which is always accurate,is too expensivealways to be used, while
the less expensive intermediateand far field methods are not always
accurate. In this appendix,we will discuss the variousmethods and when to
use each, and will examinethe behaviorof the entriesof the PIC matrices in
certain limitingcircumstances.

J.1.1 Definitions

Given a panel _ and a controlpoint P, we definematrices PICS and
PICD as follows. Let al,...,a4, o9 be the five panel source

_ _arameters,_1,.-',u9 the nine panel doublet parameters. Let _s and
vs be the perturbationpotentialand velocitywhich the source distribution
on the panel defined by al,...,09 induce at the control point, that is,
(see (B.O.1)and (B.3.9))

_s : - TI ZnDpj'j" o(Q)(I) dS (J.l.l)

: - i__SI o(Q) ds
K )':nDp

Then we define PICs by the equation

_s} : [PICS]4x5 (J.1.3)Vs

Next, let _D be the perturbationpotential,and vD the regularpart of the

perturbationvelocity,which the doublet distributionon the panel defined by

u1"'" u9 induce at the control point. That is (again,see (B.O.1)and
(B.3.B)),
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1 ff [,(Q) _-V(_)]dS (J.I.4)_D- K
ZnDp

i
xvQ ,) x 5( 1 ) dS (J.l.5)VD-

_nDp

Then we define [PICD] by the equation

.... [PICD]4x9 (J.1.6)

VD J t u9

In the actual operation of the program, fewer than 4 rows of the PIC
matrices may be computed for reasons of efficiency. This subject is discussed
in the Maintenance Document (see section 5-D and the preface of SUBROUTINE
CONBLKof the MAGmodule); in this appendix, we will always consider the full
(4-row) matrix.

Finally, let vD i be the line vortex component of the velocity that the
doublet distributio_ defined by ul,..., u9, restricted to the ith edge of
the panel, induces at the control point. That is,

.=_

VD,i:* _1 _ v VQ(Z) x dl (J.1.7)
ith edge of R

Dp

Then we define matrices [LINVi] by

VD,i = [LINVi ] 3x9 (J.l.8)
_9

The computation of the matrix [LINVi] is not available in version 3.0 of Pan
Air.

J.1.2 Summary

J.1.2.1 Near Field Versus Far Field

The first step in computation of the PIC matrices is to determine which
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method should be used to compute them. In the near field method, the
integration required to evaluate the PIC matrices is performed analytically
over each of the eight subpanels. The resultant PIC matrices satisfy (J.l.3)
and (J.l.6) "exactly" that is, with no error other than that due to roundoff
in arithmetic calculations.

The near field method involves considerable computation, however, and thus
its use is reserved for the cases where the other methods are inaccurate.
Generally speaking, the farther (using a compressible distance metric) the
control point lies from the panel, the more accurate the intermediate field
and far field methods become. The algorithms summarized below, and described
in detail in section J.2, are purely empirical, and thus subject to
modification in time.

The first step is to determine if the panel center is in the domain of
dependence of the control point. A far field PIC is never computed unless
this holds, in which case we require in addition that the distance from the
panel center to the control point is at least five times the panel radius,
where all distances are measured by means of a compressible inner product.

If the far field test fails, an intermediate field test, described in
section J.2, is performed. If the test is successful, an intermediate field
PIC is computed. In computing such a PIC, the 8-segment panel and the
singularity distribution on it are approximated, while the influences defined
by these approximations are determined analytically.

J.I.2.2 The Domain of Dependence

In supersonic flow, the domain of dependence of a control point P is
limited to the forward Mach cone from P, as illustrated in figure J.l. The
panel E illustrated there is outside Dp, and thus has zero influence on P.

For subinclined panels, we will see in section J.3 that _ lies outside
Dp whenever all four edges do. For superinclined panels, this does not
hold, as illustrated in figure J.2. The test performed on a superinclined
panel to determine if it intersects Dp is also described in section J.3.

J.I.2.3 Near Field and Intermediate Field PIC Calculation

The principal step in computing a near field PIC matrix is the C

computation, for each subpanel, of "sub-panel integral" matrices SPINT# and
SPINT.D such that

1

_s

a_s/_n' = [SPINTs ] aF,

_)_s/_' an (J.l.9)
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_o

r _D

a_Dla_,

aCDlan' = [SPINTD] ,

a_Dla _,

t t _nn (J.1.10)

where _s and _D are the perturbation potentials induced respectively by

the linear source distribution defined by oo, _, and on, and the
quadratic doublet distribution defined by _o,..., Unn.

Equations (J.l.9) and (J.l.lO) define a perturbation velocity in local
(6', n', _') coordinates. It is easy to show ( cf., equation E.I.I1) that

: t I

where Ao is the matrix sending reference coordinates to local coordinates;

[Xo}[Ao] Yo = (J.i.12) -

z o

Finally, recall the definitions of subpanel splines from section 1.2.

-oI,
I

= [SPSPLs]

04 (J.1.13)

. a9.,w

"uo" "_1"_
t I

. ' : [SPSPLD] ' (J.1.14)

I I
i

,_nn. . u9 •
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Then, we may combine (J.l.3), (J.1.9), (J.i.11), and (J.1.13) to obtain

8 s s

[PlCS] 4x5 = _- [Ai] 4x4 [SPINTi] 4x3 [SPSPLi]3x5 (J.l.15)
i:l

where the subscript i refers to the ith subpanel, and

1 0 0 O]

Ol

i Ai T[Ai] : o,
0 ' (J.l.16a)

Similarly, for the 2-region intermediate field method, we have a corresponding

equation

2

[PlCs] 4x5 : _ [_i] 4x4 [HPINT_] 4x6 [HPSPL_]6x5 (J.l.16b)
i=l

- where i ranges over two "half panels," the half panel integral matrix HPINTs
defines the influence of the half panel on the control point, and the half
panel spline matrix HPSPLs, defined in section 1.3, gives a quadratic source
distribution in terms of the five panel source parameters.

Finally, the one region intermediate field procedure approximates the
panel by its projection to an average plane. In this procedure,

[PiC s] 4x5 = [_] 4x4 [PINT s] 4x3 [PSPLs] 3x5 (J.l.17)

where PINTs ("panel integral") defines the influence of the projected
panel on the control point, and [PSPLs] defines a source distribution on the
projected panel in terms of the panel singularity parameters.

Equations corresponding to (J.I.15-17) hold for the doublet distribution
as well. Thus the computation of PIC matrices by near field or intermediate
field methods has been discussed, except for the computation of the subpanel,
half panel, and panel integral matrices.

This is a rather complex subject and is discussed in full detail in
section J.6. In that section the influence°[So] of a quadratic source
distribution over a polygonal region and the influence [Do] of a cubic
doublet distribution over a polygonal region are computed in terms of certain
fundamental integrals we call "edge functions" and "panel functions". These
edge and panel functions are computed in section J.7, though the formulas
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derivedthere do not consider numericalinstabilitieswhich may occur during
the compuation. These numericalinstabilitiesare avoidedby means of
rationalizationformulas discussedin sectionJ.8. -

J.1.2.4 Far Field PIC's

Recall from (B.O.1)that the denominatorin the fundamentalintegralis
l/R, where in compressibilitycoordinates

R2 = (_-x)2 + s_2(n-y)2 + sB2(_-z)2 (J.l 18)

where the control point _'= (x,y,z),and the point of integration

Q:({,

Recallingfrom sectionE.2 the inner product

_-_,y_ = -_T [Co] _" (J.l.lg)

where in compressibilitycoordinates,

sB (J.l.20)

we see that --

R2 = [P - Q, P - Q] (J.i.21)

J

LettingQO be the panel center,

_o =_'- _o (J.1.22a)

we have

R2 = [go + _, To + _] (J.1.22b)

Now, the expressionR-N, N = 1 or 3, occurs in the fundamentalintegrals,
and the basis for the far field method is the equation

. .
: ([R o, Ro] + 2[Ro, AQ] + [AQ, AQ])-NI2 (J.1.23)

-_ -_ [Ro, AQ] _aQ AQ] -N/2
= [Ro, Ro] -N/2 (I + 2 + -_'-_ ) (J.i.24)

[_0, _o] [Ro, Ro]
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The factor [Ro, Ro]-N/2 is independent of Q and may thus be taken out of
the integral, while the remaining factor may be expressed by a power series in
AQ for which we ignore any terms of cubic or higher order.

We will show in section J.9 that the integrations (J.l.l) and (J.l.2) can
then be performed as a sum of multiplication of matrices, one whose entries
are computed from Ro, and one whose entries are integrals of powers of AQ,
which, since they are independent of P, may be performed in advance (and thus
need not be repeated for each control point).

J.l.3 Integration Techniques

The computationof the entriesof the subpanel integralmatrices [SPINT]
(cf., J.1.9-10)involvesconsiderabledetail (see sectionsJ.4 throughJ.6).
At this time, however,we will give a brief outlineof the processdescribed
in those sections.

In sections J.4 and J.5 we establish, respectively, special cylindrical
and hyperbolic coordinate system, the former for use in subsonic flow or with
superinclined panels, the latter for use with subinclined panels in supersonic
flow. The coordinate systems have two advantages. First, the kernel I/R of
the integrals (J.l.l-2) has a very simple form (cf., J.6.59). Second, the
limits of integration may also be expressed conveniently (cf., (J.4.62) and
(J.5.107)). In section J.6, we first express the entries of a subpanel
integral matrix in terms of fundamental integrals (a, a, etc., cf., (J.6.152)
and (J.6.164)). We then use the results of sections J.4 and J.5 to evaluate
these integrals.

It is worth noting,however, that there exist other ways of computingthe
entriesof the subpanel integralmatrices. While all these methods are
equivalent in that, if correct,they yield the same real numbersfor the
influenceof a particularsubpanelon a particularcontrol point, they may
have quite differentstructures. We now brieflysummarizethree alternate
methods.

One such method (for zero Mach number) is described in Appendix D.2 of
reference J.l. There, the entries of the subpanel integral matrices are given
in terms of fundamental integrals, some of which are singular even when the
control point is away from the panel. It can be shown that the singular
integrals always cancel, however, and thus the entries of the subpanel
integral matrix are finite.

A second approach is given in Appendix D.5 of reference J.l. Here, an
additional integration by parts is performed, with the result that the entries
of the subpanel integral matrices are computed exclusively as combinations of
non-singular integrals. Of all published methods for PIC computation, this
one most closely resembles that of section J.6. The fundamental integrals
are also similar, with H(I,I,3) in reference J.l being a multiple of the
integral a (cf., (J.6.165)). In fact, the computation of H(I,I,3), which uses
cylindrical coordinates as well, closely parallels the computation of a.

A third approach to PIC computation is contained in Reference 4.9 (Ehlers,
et.al.). There, rectilinear coordinates are used in evaluation of the
integrals. The resulting formulas appear totally different from those of
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section J.6 because the entries of the subpanel integral matrices are
expressed in terms of different (and also non-singular) fundamental -"
integrals. The verification that the entries of the subpanel integral
matrices as computed in reference 4.9 are in fact identical to the entries as
computed in section J.6 is a major one.

J.l.4 Notation

The discussion of PIC computation is lengthy, and many terms are defined
and then not used again until much later. The most frequently used terms are
listed in figure J.3 for convenient reference. All vectors and matrices are
in reference coordinates unless otherwise specified, except that those marked
with a prime are in local coordinates unless otherwise specified.

J.1-8



J.2 Distance Algorithm

In this section we discuss the algorithms we use to determine whether to
compute a far field, a one region intermediate field, a two region
intermediate field, or a near field PIC. First, we consider the requirements
for performing a far field PIC.

J.2.1 The Far Field Criterion

Consider equation (J.1.24). In order to ignore cubic terms in AQ, we must
have

<<
To determine a condition on Ro for which (J.2.1) holds, we digress into the
realm of linear algebra.

Let ( , )p be a positive definite inner product (not necessarily the
standard Euclidean inner product); that is,

>o (0.2.2)
if x is non-zero. Let

l_'Ip = (_,X-_)p (J.2.3)

Then we have the triangle inequality (see, for instance, page ii of
reference J.2):

IXlp + IYIp Z + p (J.2.4)

Squaring (J.2.4),

(X,X)p + 2(X,Y)p + (Y,Y)p < (X,X)p + 2 pl Y p + (Y,Y)p (J.2.5)

or

(_,_p <__I-XlpI_YIp (J.2.6)
a relation called the Cauchy-Schwartz inequality.

We generalize (J.2.6) for the specific positive definite inner product

[X,Y] p = _ [Col V (J.2.7)

where Co is the positive definite matrix

Co = B21 + (1 - S2) t o c_ (J.2.8)

Then one can show (though we will not do so) that

[X, Y] < IXIp IYIp = Co x) T Co y) (J.2.9)
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Substituting Ro for X and AQ or Ro for Y, we get

[_o, _] < I_olPIA-QIP (J.2.1o) --
and

[Ro, Ro] < o P (J.2.11)

Then consider the requirement

I-_olPI_lP << [To,_o] (J.212)
If (J.2.12) holds, we obtain

[R-_o,AQ] < {Rol P IP << [Ro, ] (J.2.13)

Thus, imposing (J.2.12), or the equivalent condition

- C o,
IAQIP<< iRolP (J2.Z4)

we insure that the condition (J.2.1) holds and we may perform a far field PIC
computation.

Now, the condition (J.2.14) must hold for all points Q on the panei, that
is, defining the "compressible panel radius"

CR(_) : max QolP
Q inZ (J.2.15)

we must have

[Ro, Ro]
(J.2.16)

k CR(}]) : i Rolp

where k is a "large" number.

Now, as the panel radius gets smaller and smaller compared to the
"distance" from the control point to the panel center, we may neglect first
the quadratic terms and finally neglect even the linear terms in AQ in the
expansion (J.I.24). The corresponding far field computations are called
dipole and monopole computations respectively, with the retention of quadratic
terms in AQ (but not higher ones) called the quadrupole computation.

In practice, we perform a monopole computation if the factor k in (J.2.16)
exceeds 24, a dipole computation for 8 < k < 24, a quadrupole computation for
5 < k _ 8, and a one region intermediate field computation if 2 < k < 5.
These are empirical results not justifiable by a rigorous error anal_sis.
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J.2.2 The Intermediate Field Criterion

As noted above, we perform a one-region intermediate field PIC computation
when the constant k in (J.2.16) exceeds 2. Wenow discuss the circumstances
under which we perform a two region intermediate field calculation, and if so,
which pair of half panels we use.

Consider the panel approximations illustrated in figure J.4. The outer
edges of the approximate panel coincide with the outer edges of the true
panel; therefore our approximation preserves surface continuity. Furthermore,
the doublet strength on the half panels, computed in section 1.3, is identical
to that of the exact panel on the panel edges; therefore doublet continuity is
preserved. Thus we may perform a two region intermediate field PIC
computation even though the control point is fairly close to the panel.

We require two criteria to hold before permitting a two region intermediate
field computation. The first is that the constant k in (J.2.16) exceeds 1.2.
Essentially, this means the "distance" from the control point to the panel
center must exceed 1.2 panel radii; in particular, the control point does not
lie on the panel.

To define the second criterion, let us recall some definitions from
appendix I. We construct a special panel-wide local coordinate system similar

- to that constructed in section I.I, but we use different notation to avoid
confusion with the coordinates (_, n, _) which occur in this appendix.

Let

Now, analogously to (1.1.3), let

WI x W2
W3 = __ __ (J.2.18)

I WI x W2 I 1/2

Next, for any control point P, analogously to (1.1.7), let
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I"_x_21312

('WI -_ -_ -_X (P - P9)) "W3
x2(P) - I"_x_21312

(P - P9) •W3
x3(P) -

I"_x"_1 (J2_9)
Also, recall from sectionP.2 the "skewnessparameters"

Cli = -i
(wI x w2) n

C21 - -1

(W-_Ix _2)" _ (J.2.20)

These parameters are zero if the panel is a parallelogram.

Now, we perform a two region intermediatefield PIC if

3

£ xi(P)2 > (1 + Ic111)2+ (1 + Ic121)2
i=l (J.2.21)

For a square panel, this permits a two region intermediatefield PIC to be
performedunless the controlpoint lies in the sphere,about the panel center,
whose radius is the panel radius (see figure J.5). For skewed panels, the
presenceof Cll and C12 in (J.2.21) insuresthat the controlpoint is
furtherfrom the panel.

Finally,the choice of diagonal along which the panel is sliced into two
half panels is chosen as follows: the value i, 1 _ i S 4, for which

[7- _i, _- _i] is minimized, is computed.

Then, the panel is split in two along the diagonal which does not lie on Pi,

that is, the diagonal with endpoints P(i+l) (mod 4) and P(i+3) (mod 4). An
example of splitting a panel is shown in figure J.6. Note there that since
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P1 lies closest to P in hyperbolic distance, the panel _ is split along the
_- diagonal connecting P2 and P4-

In closing this section, we note that whenever we fail to compute a far
field or intermediate field PIC, we compute a near field PIC. In the course
of this computation, we may determine that the panel has no influence on the
control point if the flow is supersonic, a subject we will discuss in the next
section.
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J.3 Supersonic Influence Test

In order to compute the influence of a subpanel on a control point P in
supersonic flow, one must know

(a) whether the subpanel intersects Dp,

(b) if so, which of its edges intersect Dp, and

(c) which of its corners lie in Dp.

Rather than compute this data one subpanel at a time, the program takes
several short cuts, which, if results are successful, give much or all of this
data for a minimum of computation. First, a simple test is performed to check
if the panel lies outside Dp (this test does not find all panels lying
outside Dp, but does eliminate many of them). Second, a test which
identifies panels lying wholly within Dp is performed. Finally, for panels
which are identified neither as lying outside Dp or wholly within Dp, the
influence test must be performed one subpanel at a time.

J.3.1 Definition of Dp

Given a control point P, we define Dp as the points Q, lying in the
upstream pointing Mach cone from P. The condition that Q lie upstream from P
is given by

(P - Q)" Co _ 0 (J.3.1)

The condition that _ lie in either the upstream or downstream Mach cone from
is given by

[_- _, _-_] _ 0 (J.3.2)

A point Q satisfying both (J.3.1) and (J.3.2) lies in Dp.

J.3.2 A Zero Influence Test

In this section, we determine the minimum distance d(Q, aDp) from a
point Q to the boundary aDp of the domain of independence of P. We use this
as follows. Let R(_) be the true radius (as opposed to compressible radius)
of the panel:

R (_) = max IP9 - Pi I (J.3.3)

I<i<4
m

Then if P9 does not lie in Dp, and

d(P9, aDp) > R (_) (J.3.4)

no point on _ can lie in Dp, and thus _ is wholly outside Dp and so its
influence on P is zero.
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The computation of d(Q, a Dp) is performed in the following manner.
This distance is most easily computed in a coordinate system X centered at the
control point P, aligned w_th the compressibility vector co and oriented
such that Q-P lies in the x-y plane with positive 7 coordinate, where the
axis is orthogonal to Co, as illustrated in figure J.7.

Now, in this coordinate system, the Mach cone is defined by the lines

(J.3.5)

since points on that line satisfy

_2 + sB2 }2 = 0 (J.3.6)

The line perpendicularto that definedby (J.3.5),passing throughthe origin,
is

= Bx (J.3.7)

and thus the line through Q perpendicular to the Mach line closer to Q is

- Yo : B(#- _o) (J.3.8)

Thus the point on B Dp lying closest to Q is the point (_,y) lying on
the lines

- Yo = B(_ - _o) (J.3.9)

= -X
B

Substituting (J.3.10) in (J.3.9),

-_ + Yo : B(x- xo) (J.3.11)
B

or

x = S o- o
B + 1/B (J.3.12)

and so

m_

-F

y = _ "0 _u
B2 + I (J.3.13)
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Then,

d(Q, a Dp) : _/(_- Xo)2 + (__ _o)2 (J.3.14)

So, d(Q, a Dp)2 =

- -lo)2.(-B;o+;o- o)2
e + lib B2 + 1 (J.3.15)

= i [e2 Xo - e Yo - (B2 + i) Xo]2 + i (-B xo - e2 yo)2
(e2 + 1) (e2 + 1)2

(J.3.16)

= i (-xo - B yo)2 + 1 (-B xo - B2 yo)2

(B2 + 1)2 (B2 + 1)2 (J.3.17)

= i + B2 Xo2 + 2 (i + B2) (_o + B yo)2

(B2 + 1)2 (B2 + 1)2

+ (1 + B2) (B2 yo)2

(B2+ I)2 (J.3.18)

= (_o + B 70)2

1 + B2 (J.3.19)

So, d(Q, a Dp) =

xo + B YO

i + B2 (J.3.20)

This formula holds as long as the nearestpoint on a Dp to Q is found by
droppinga perpendicularto the Mach line, that is whenever (see figure J.7)

Yo > B _o (J.3.21)

Otherwise, the nearest point on Dp to Q is P, that is,

d(e, a Dp) = I'P-'QI (J.3.22)
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Finally, we compute _o and Yo as follows. First, since the x-axis is
aligned with Co,

_o = (Q - P)" Co (J.3.23)

Next, since there is no coordinate scaling, we want

Xo2 + Yo2 : IQ--PI 2 (J.3.24)

or

°Yo : IQ - PI 2 _ _ (J.3.25)

Then, summarizing, d(Q, B Dp) is computed as

d(Q, B Dp)2 : (Xo + B yo)2/(1 + B2) Yo > B Xo

d(e, a Dp)2 = I_- 71 2 Yo < B Xo

(J.3.26)

J.3.3 Panels Wholly within the Mach Cone

Just as a panel whose center lies further from B Dp than the panel
radius has no influence on the control point if its center lies outside Dp, --
it analagously lies wholly within Dp if its center does. That is, if Po
lies in Dp, and

d(P 9, BDp) > R (_) (J.3.27)

then _ lies within Dp.

J.3.4 The Influence Test for a Subpanel

Finally, let us assume that the panel passes none of the simple tests
described above. For each subpanel (or half panel or projected panel, in the
case of intermediate field computations) we must determine which corners lie
in Dp, which edges intersect Dp, and whether the region as a whole
intersects Dp.

The corners of a subpanel are tested one at a time to see if they satisfy
(J.3.1) and (J.3.2). If all corners do, then the entire subpanel lies in
Dp. This follows from the fact that Dp is a "convex" region. A convex
region is one such that the line segment joining any two points in the region
also lies in the region. Thus if all vertices of a subpanel lie in Dp, then
any point on an edge lies in Dp. Thus, since any point in the interior of
the subpanel lies on some line segment joining points on edges, every point on
the subpanel lies in Dp. Next, if one vertex of an edge lies in Dp and
another does not, it is clear that both the edge and the subpanel lie
partially within Dp.
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J.3.4.1 The Point of Closest Approach

Let us assume neither vertex of an edge lies in Dp. Then we determine
whether the edge intersects Dp as follows.

First, suppose the edge is a "subsonic edge." That is, let t o be a unit
vector parallel to the edge. Then defining

% = [to, to] (J.3.28)

we call the edge subsonic if T > O, supersonic if T< O, and sonic if % = 0
(see figure J.8). A subsonic edge is inclined to the compressibility
direction at less than the Mach angle; thus every point on the edge is in the
domain of dependence of the most downstream point. So, if the most upstream
point lies outside Dp, the entire edge does. In particular, if both
vertices of a subsonic edge lie outside Dp, the entire edge does.

For a supersonic edge, this property does not hold, as illustrated in
figure J.8. Thus, for a supersonic edge whose vertices lie outside Dp, we
must check if the "point of closest approach" on the edge lies in Dp. If
not, then the entire edge lies outside Dp.

What we mean by the point of closest approach is that point R, on the
line containing the edge which lies closest to the line through P parallel toA

the compressibility direction Co, as illustrated in figure J.9. We find
R, as follows. Let

_R= _+-T- (J32g)
where R+ and R- are the vertices of the edge.

Now, let us write

: oR-+ (i - _)T+ = _+- _R (J33O)
for an arbitrary point on the line.

Then, the projection of R to the line parallel to Co containing P is

P + o (R - P) (J.3.31)

and so the square of the distance from R to that line is

d2 : IT- _- Co c_ (_-_)I 2 (J.3.32)

= (R - P).(R - P) - (_o.(R - p))2 (J.3.33)

: (by (J.3.30))

(_+-o;R-;I - -P1 (J.3.341
- (Co.(R+ - _AR - p))2

J.3-5



Now, d2 is minimized by setting

(d2): 0 : +-
dm

-2 o.(R+ - _AR - P)) (-Co'AR) (J.3.35)

: [2(AR-AR) - 2 (co -AR)2

-2 (R-_ - P).AR + 2(co - P))'(Co'AR) (J.3.36)

So, d2 is minimizedfor

, (R - P).AR - (Co" (R - P ))(Co"AR)(_ = O& =

(A-R.A-_) -- (Co" _)2 (J.3.37)

Thus, the point R, on the line containing the edge which is the point of
closest approach is

R, : a, R + (1 - _,) R (J.3.38)

Thus if R+ and R- both lie outside Dp, we compute _,. If
0 < a, < 1, the point of closest approach lies in the interior of the
edge, and we thus test if R, lies in Dp. If it does not, the entire edge
lies outside Dp.

For reasons of efficiency, the program actually computes

_, : (Co x AR). (G0 X (-R+- P))

Ico x a-Rl2 (J.3.39)

The equivalenceof (J.3.37)and (J.3.39)is easily seen in compressibility
coordinates,where

Co : 0

0 (J.3.40)

Then,

co •AR = (AR)x (J.3.41)

and so the denominatorof (J.3.37)is

(aR)y 2 + (AR)z2 (J.3.42)
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On the other hand

0
A

A

co x AR = -ARz

aRy (J.3.43)

and so the expression (J.3.42)defines the denominatorof (J.3.39).

Next,

-V))=

-ARz • -(R+ - P)z = (J.3.44)

aRy (R+ - P)y
J

aRy (R+ - P)y + ARz (R+ - P)z (J.3.45)

= AR'(R+- P) - (Co" AR) (Co.(_ - P)) (J.3.46)

and thus the numeratorsof (J.3.37)and (J.3.39)are equal.

J.3.4.2 The Winding NumberTest

Finally, let us assume that none of the edges of the subpanel intersect
Dp. Then if the panel is subinclined,we can see from figure J.10 that the
entire panel lies outside Dp, while for supersonicpanels this does not hold.

Thus in this case we computethe point P,, on the plane containingthe
subpanel,which is the intersectionof the line throughP parallel to co
with the plane of subpanel. It is clear that if P, lies in the interiorof
the subpanel,the subpanel intersectsDp, while if it lies in the exterior
of the subpanel,the subpanel lies wholly outsideDp.

Now, we can write

P* = P + B co (J.3.47)

and since P, lies on the subpanel,

(-P*--_i)" no = 0 (J.3.48)

where no is the subpanelnormal and Pi is a vertex. Substituting(J.3.48)
in (J.3.47),

(P* - Pi)" no + B(Co" no) = 0 (J.3.49)
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or

B =
_o" _o (J.3.50)

Now, if _ lies in the subpanel, the angles formed by Pi, _, and
Pi(mod 3) + 1 are all of the same sign. That is, P, is inside the subpanel

if and only if

((Pi - P_) x (Pi(mod 3)+I - _))'_o (J.3.51)

has the same sign for i = 1,2,3.

J.3.4.3 Half Panels and ProjectedPanels

Everything we have said about subpanels holds equally well for half
panels, since they are also triangular regions. It also holds equally well
for projected panels, used in the one region intermediate field computation,
provided the projected panel is convex. When the panel is not convex, there
is a small risk that the influence will be calculated erroneously. For this
reason, the program checks for non-convex panels and warns the user of their
existence.
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J.4 Cylindrical Coordinates

When the integrals (J.l-.l), (J.1.2), (J.1.4) and (J.1.5) are transformed
to local coordinates, they become integrals of the general form

_'nDp u(_', n' (J.4.1)

where (see section E.3)

R'2 : r(_' - x')2 + S(n' - y,)2 + rs (_' - z') 2 (J.4.2)

When rs = I (this covers both the case of subsonic flow and of superinclined
panels), these integrals are very naturally evaluated using cylindrical
coordinates. In section J.4, we derive basic results which are necessary to
perform these integrations. The case of rs = _ (subinclined panels in
supersonic flow) is best handled by hyperbolic coordinates discussed in
section J.5.

J.4.1 Fundamental_Results

Recall from sectionE.3 that in the local coordinatesystem,the.flow is
in the x' directionfor subsonicflow and in the *z' directionfor

- superinclined panels. Thus Dp is all space for subsonic flow, and (writing
P = (x',y',z') in local coordinates)

Dp : (_', n', _') (_' - z') 2 - ( ' - x') 2 - (n' - y,)2 > 0

and (_'- z') sign (Co" no) _ 0 (J.4.3)

(where no is the subpanel normal) for superinclined panels. Wecan rewrite
(J.4.3) as

Dp = (_', n', _')I _' - x') 2 + (n' - y,)2 < _ sign (Co. no)(_' -z')

(J.4.4)

Because both the function R' and the domain of dependence Dp exhibit
circular symmetry with respect to the point (x', y'), we will find it
convenient to use cylindrical coordinates centered at (x', y') to perform the
required integrations. In addition, because the boundary of the panel
image _' is composed of straight lines (the edges), local coordinate systems
having axes perpendicular and parallel to the edges also arise naturally.

We should note here that our results will hold for any planar region
which is convex. This, of course, includes subpanels and half panels, though
not necessarily projected panels (see section J.3.4.3).
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J.4.2 The Mach Disk

Since _' is a constant on the surface of integration _' (see section --
E.3), the region of integration E' N Dp may equally well be taken to be

'N Ch where Ch the "Mach disk" is defined by

Ch = {(_', n')l (_'- x')2 + (n'- y') 2 _ h} (J.4.5)
where

+:=ifs = 1

=

sign (no" Co)h if s = -1 (J.4.6)

where

: z' - _' (J.4.7)

The region of integration }i' {I Ch for a typical panel image _' is shown in
Figure J.12. Note that since both _' and Ch are convex, so is
S'N Ch.

A careful examination of figure J.12 reveals that the boundary of _'NCh
denoted B(_' N Ch) is composed of both curved and straight line segments.
Furthermore a(S' N Ch) has sharp corners in two possible instances,

(i) Whenever a corner of _' lies inside Ch.

(ii) Whenever an edge _' intersects the boundary of Ch.

Wewill develop a scheme for numbering the edges, Ek, corner points Pk'

and phases of corner points _k of the region _'n Ch. At the outset of
this discussion, we distinguish three separate cases

(a) _,n ch is empty

(b) _,nc h : ch (that is, Ch c S')

(c) _'NC h is a proper subset of Ch

Case (a) is of absolutely no consequence since _' N Ch is null and all
integrals over it are zero.

J.4.3 The Case of the Mach Disk Lying within the Panel

Case (b) is handledin the followingfashion (see fig. J.13). In the
first place, no edges are definedwhen _'N Ch = Ch. Next, some point
(_', n') lying on the boundary of Ch is chosen at random and _ =
(sI ,tl) is definedby
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p : (_' - x', n' - Y') (J.4.8)

-- Next,-_I*,p2 , _i±, _2- are definedby

-". -_2 "_- = Pl = - = P

_1- = _I + = ph (Sl, tl)

_2- = _1+ + 2_ (J.4.9)

Here, ph is the "phase function" in two real variables

ph(x,y) = arg (x + iy) (J.4.10)

where arg is the complex argumentfunction. Precisely,for any two real
numbersx and y, one of them non-zero,the equations

-x < ph (x,y) <
w

cos (ph (x,y)) = x / _{ x2 + y2 }

sin (ph (x,y)) = y / J{ x2 + y2 } (J.4.11)

uniquely define ph(x,y). It should be noted in passing that ph(x,y)-equals
the FORTRANfunction ATAN2(y,x).

With these definitions, it is clear that the integral J defined by

j : d_' dn'

_h 2 - (_' -x') 2 - (n' -y,)2 (J.4.13)

may equally well be computed by the expression

J+ _2- lhl
pdp

_I- ¢1+ o

(where Ch c_') and p : I_I), since

pdpd_ = d_' dn' (J.4.14)

J.4.4 Arbitrary Intersectionof the Mach Disk with the Panel

We now take up the difficultand interestingcase (c), when
E'n Ch @ Ch. For this discussion,the reader is referred back to Fig.
J.12. Startingwith any edge of _' that has some points lying insideCh, we
denote this edge E1 and begin proceedingaround the boundaryof S'nCh in a
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counterclockwise (positive) fashion. As we traverse 3(_'flCh), we will move
along straight and possibly curved pieces of boundary. The straight pieces of
boundary are named El, E2,... , En as they are encountered. Here, n is
the number of edges of _' that have some points lying inside Ch (see Fig.
a.14).

J.4.4.1 Corner Points

Having described the edge naming convention, the corner points p_ are
defined by

"_k- = (_', n') I -(x' , y') (J.4.15)

lower edge
of Ek

__* ± t±
The componentsof Pk are denoted (Sk, k) as follows

± __:

(Sk' tk) : Pk (J.4.16)

Also, the special corner point-_n+ 1 is defined

P n+l = P i (J.4.17)

J.4.4.2 The Phase Function

Finally, the phases of the corner points, _, are defined recursively
by

_1- : ph (Sl-, tl-)

.
Pk

_k+ : _k- + _ d@

Pk (J.4.18)

Great care must be taken here becauseof the problemof "phasewrap."
That is, the phase function is discontinuouson a closed path in the x'-y'
plane which does not contain the origin. Thus in the former case (that of the
second or third illustrationin figure J.14) _ is almost 2_ greater
than _1, while in the latter case the incrementof 2x does not occur.
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Next we compute

d_ : a_._ds + a___dt

as at (J.4.19)

Now, since, up to an additive constant,
P

= ph(s,t) = arg(s+it)

= Im log(s+it) (J.4.20)

(where Im is the imaginary part), we have

a_ = Im _ log (s+it) : Im (1)
as as s+it

= Im (s-it ) = -t

s2+t2 s2+t 2 (J.4.21)

Similarly,

a__ : Im (____" ) : Im (is -t .) : s

at s+i t s2+t 2 s2+t2 (J. 4.22)

Combining these results, we have

d_ = sdt - tds =
s2+t 2

(by definition of _)

(_'x d%)

p2 (J.4.23)

The integralsin (J.4.18)are_traig_forward to evaluate. Since (see
figure J.15) the angle _ betweenp_ and Pk satisfies

+ +

x k)z: sin
-__ + +

Pk" Pk = Pk Pk cos _ (J.4.24a)
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we have (by J.4.11)

P-k+l _, -_ -_
: 5 d_ = ph(_- k • p k+Z, (P-k x P+k)z)

+

P k (J.4.24b)

Now, geometric reasoning shows that in this case,

(ok x Ok)z > 0 (J.4.25)

and thus 0 < _ < _.

+ 1

On the other hand, the angle _' betweeen ok and Ok+1 may exceed
(see figure J.15), and must be correctly evaluated in view of phase wrap,

and thus

O-k+1 d@ ph( + +
_' = S+ : o k O-k+1' ( x ) )• P k °-k+l z

P k (J.4.26)

where ph is defined by

ph (x,y) = ph (x,y) + 2_n

0 < ph (x,y) < 2_

n : 0 or I (J.4.27)

W_th phases _k defined in this fashion, the phase of a point o on the

boundary of g' N Ch, defined by

O

€(_) = _1 + S de = €1 + ph(p'_". o-", (P-_Ix _)z )

(J.4.28)

is a continuous function for all points on the boundary satisfying
±

_(°k) : @k k : 1,...,n (J.4.29)

J.4-6



Because of phase wrap, it may happen that _-n+l _ _-1 but rather

- _-n+l = ¢-I + 2_. If this happens,it indicatesthat the center of

our coordinatesystem (x',y')lies inside _'. Definingthe center indicator
Ce by

I 1 if (x', y') € _'
Ca I0 otherwise (J.4.30)

we observe that

_-n+l = _-1 + 2x Ce (J.4.31)

J.4.4.3 Edges and the Mach Disk

The discussiongiven above provides a very precisedefinitionof the

phases _k once the corner points are known; however, the determination of

the edges Ek and the corner points ok will requiresome more detail
which we now provide.

An edge Ek of the region _' n Ch must be either part of, or all of'an
edge E of _'. Thus given an edge E of _', we seek to answer the questionof
when an edge E of _' is also an edge Ek of _' N Ch. Toward answeringthis
question,we assume that the upper or lowerendpointsof the edge E are given
by (see figure J.15)

Edge E's lower endpoint= (x',y')+ p-

Edge E's upper endpoint= (x',y')+ _+ (J.4.32)

Thus p-(p+) describesthe vector from (x',y')to the lower (upper)end point
of E. (The upper and lower endpointsof E may be assumedknown because they
are essentialto the definitionof E'). The componentsof-_* are denoted
(s±,t_), i.e.,

(s*, t*) = _ (J.4.33)

It should be noted that the designations"lower"and "upper"are designations
associatedwith the orientationof S'; as one traversesaE ' in a postive
(counterclockwise)fashion,one moves along edges from their lower to their
upper end.

J.4.4.4 Edge Tangents and Normals

Next,we definethe edge tangentt by

_" : n(_- _-) (J.4.34)
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where n denotes the normalization operation

- x
(J.4.35)

In component notation, t may be written

t = (t_, t n) (J.4.36)

We use this representation to define the edge outer normal n by

n : (t n, - t_ ) : (n_, nn) (J.4.37)

Clearly, n and t so defined satisfy the conditions

NormalizationConditions I?I : (t_+tn2)l/2 = i

= (n_2 + nn2)1/2 : 1 (J.4.38)

0rtho_onality n. t : n_ t_ + nn t n = 0 (J.4.39)

Cross Product (n x t)_ = n_ t n - nn t_ = 1 (J.4.40)

As a consequence of (J.4.38-40), the vector pair (n,t) (in that order)
comprises a right handed basis for (u,v) space as shown in Fig. J.16.

The (s,t) system illustrated there has been previously introduced and is
given by

X I I Ip (s,t) (_': : - , n - Y ) (J.4.41)

The coordinate functions u,v are defined by

u = n -p

v = t. p (J.4.42)

I{}{}v t_ t n t t (J.4.43)

Since A is orthogonal,

A-I : AT

and so

{}{}:[_= s = AT u tn t_ u tn + t{

t v t{ t v t_ t n (J. 4.44)
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or

p = un + vt (J.4.45)

For points lying on the edge E, we note that

VIE = p- + s t (J.4.46)

where s denotes arc length along E. Taking the dot product of (J.4.46) with n
and taking account of (J.4.39), we find

-_ -LIE "_ -_ (a )n .p = n. p- .4.47

that is, the expression n • p is a constant along the edge E; this observation
motivates the definition of a, the edge distance

-_ ;I _ -" -" _ (J 48)a = n. E = n .0- = n •0+ .4.

We may now expressthe vectors_± in the new coordinatesystem as follows.
Using (J.4.45)we have

p* = (n. p±) n + (t. p_) t (J.4.49)

Now, definingv* by

v± = p*" t .(J.4.50)

we find by (J.4.48)that (as illustratedin figure J.16)

0± = an + v± t (J.4.51)

Equation (J.4.51)describesthe endpointsof the edge E; for points interior
to the edge E we have

PiE = an + vt (J.4.52)

where

V = p ,t

The representation(J.4.52)now provides us with the informationnecessaryto
answer the question posed earlier (when is an edge E of _' also an edge
of _'N Ch). To see how this is done, we refer to figure J.17. First we

note that what we are really trying to determineis if_any points interiorto
E are also interiorto Ch. In particular,if either 0- or 0+ lies inside
_h the answer is YES. On tb_other hand, for all points_ in Ch, l_I <
h. Since the smal_t that IPlF can become is lal (see equation (J.4._2)),
we see that if lal > h '_ -_ - -then the answer is NO. Now if Ip+I> h, I_-I > h
and lal< h, we must still determinewhethe'_-ornot E passes throughCh
without either of its endpointsactually lying inside. This will happen
provided v- _ 0 _ v+ Otherwise,E will not pass throughCh. Thus we
have determined in all circumstanceswhetherE intersectsCh. These can be
summarizedby the followingalgorithm.
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Algorithm: (Does an edge E have any points in Ch)

lal > h NO

lal < h :

I P+l < h or Ip-I < h _ YES

I_I > h and _'-I >m

0 in Iv-, v+] YES

0 not in Iv-, v+]=)NO

Once we have made the determination that an edge E has points inside Ch,
we must assign it a number k (for Ek) and define the end points p_ for
Ek •

If we define the critical value of vc by

vc = Vh 2 - a2 (J.4.54)

then p_ are determined by the procedure

I -I -ok- = o- if < h

= an - vc t iflp- I >

Ok = P iflP+l<

= an + vctiflo+I > h (J.4.55)

J.4.4.5 The Function P(_)

We have now given completeproceduresfor the specificationof Ek,

Pk' _k" Before we can evaluate the integrals(J.4.1),we must

define a function P(_) (see Figure J.18) that describesthe upper limit of

integrationfrom (x',y')to the boundary of _' n Ch. P(_) is defined as
follows:

±

P(m): I lhr if _k < _ < _k+i

I
pk(_) if _k -<_ <-_+k (J.4.B6)

where on each edge Ek, Pk(_), is the distance from (x',y')to Ek

Pk(_) = _a2k + Vk(_)2 (J.4.57)
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In equation (J.4.57), Vk(O) denotes the local edge coordinate v, evaluated
on the edge Ek and expressed as a function of @. Although we will never use
it explicitly, we record it here for the sake of completeness

Vk(O) = ak tan (0 - Ok + ph(a k, vE)) (J.4.58)

With all these definitions available, it is now a fairly simple matter to
write down the integrals (J.4.1) using polar coordinates. For the sake of
concreteness, we evaluate the integral J

J : SS d_' dn '

E' n Ch {h2 _ (_, _ x,)2 _ (n' - y,)2 (J.4.59)

Converting to polar coordinates centered at (x',y'), we have

d_' dn' = pdpdO (J.4.60)

(_' - x')2 + (n' - y,)2 = p2 (J.4.61)

so that (see Figure J.19 for limitsof integration)

J : S}" pdpdO

'NCh _/h 2_ p2

n (_k + Pk(O) OE+I Ihl /: _ dO S pdp + S dO _ pdp

k:l \Ok- 0 _ Ok+ 0 '/_,,/

(J.4.62)

Evaluating the inner integrals in (J.4.62), we note

P Pk

J' pdp - -h2_-_-p2 =-h2V'_'_-p2+ ,hi
o _/h2_ p2 o (J.4.63)
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so that

n _k+ _k+l-

a = S (j" d_ (lh I - _h 2 - Pk(_)2 ) + _" lhld_)
k=l _k- _k+

n _k+ _k+l- h _k+

: h _ ( _ d_ + S d_) - T. S d_ h2 Pk(_) 2
k=l _k _k+ k:l _k-

n _k+

: lhl (_n+Z- - _I-) - _ _ d_Vh2 - Pk(_) 2

k:l _k- (J.4.64)

Nowequation (J.4.23) for d_ may be combined with the representation (J.4.45)
for p to yield

p2d¢ : :
(un + vt) x (n du + tdv)

= udv - vdu (J.4.65)

Now if we agree to restrict-_ to the edge Ek, we find u = const.
= ak, du = O, and for d_,

d6 - udv = ak dv

p2 ak2 + v2 (J.4.66)

Substitutingthis into (J.4.64)and noting that when _ = _, v = v_,
(at the points p_) we obtain

.

n vk ak dv _ _
J = lhl 2_ C, - E S V h2 ak2 v2

k=l vk- ak2 + v2 (J.4.67)

where we have used pk(_)2 = a_ + v2 on edge Ek. The integral
on the right may be evaluatedby elementarymeans to yield

n -F

J : 2x CelhI - }1 [h ph (ak Rk (v), hv) + ak ph(v, Rk(v))]vk
k=l Vk- (J.4.68)
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where

Rk (v) = _2 _ ak _ v2

This integral is verified in sectionJ.7.1.4,where it is identifiedas "I(X)."
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J.5 HyperbolicCoordinates

Having examined the geometryof the circle in such gruesomedetail we now
do the same for the hyperbola. The motivationfor this exercise stems from a
desire to developeffectivetools to deal with integralsof the followingform
arising from applicationof the transformationsdescribedin section (E.3) for
subinclinedpanels:

I$ f(R)£'nDp {_({, n) (J.5.1)

where

R = (_, _ x,)2 _ (n' - y,)2 _ (_, _ z,)2

Dp = {P' = (_', n', _')I (_' - x') < - (n' - y,)2 + (_, _ z,)2}

(J.5.2)

and _' is some convex region lying in the (_',n')plane with oriented normal
_' = (0,0,1). The points in _' are describedby (_',n',_')in the coordinate
system X', with _' constant.

J.5.1 FundamentalResults

As before, Dp denotes the domain of dependencedescribed in the panel
local coordinate system X'.

Becausethe geometryof the hyperbolais much less intuitivethan that of
the circle,our discussionwill have to rely rather heavily upon algebraic
arguments. We will, however,try to parallel the discussionof section (J.4)
as closely as possible.

We begin our discussionof (J.5.1)with a trivialchange of variables.
Variabless and t are definedby (see Fig. J.20)

S : _' - X'

t = n' - Y' (J.5.4)

and the constant h is definedby

h = z' - _' (J.5.5)

Using these new variables,the integral (J.5.1)can be written

,_ {a(x' + s, y' + t)} f(R)dsdtS'nHh ,(x' + s.y' + t) (J.5.6)
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where the panel _' is of course translated,and Hh denotesthe hyperbolic
region

= I
Using the new variables,the distancefunction R is

R = _s2 - t2 - h2 (J.5.8)

Having made this transformationof variables,we now remark that both the
functionR and the region Hh exhibithyperbolicsymmetrywith respect to the
origin (of the s-t coordinatesystem). By this we mean that if s,t are
definedby

{:} = [A] {i} (d.5.9a)

where

(J.5.9b)

and a2 - b2 = 1

a > 0 (J.5.9c) -_

and Hh, _ by

Hh = {(_,_)I _ -_2 + h2 }

R : _2 _ _2 _ h2 (J.5.10)

then

= R

and AHh = Hh (J.5.11)

that is to say, both the functionR and the region Hh are invariantin form

with respectto transformationsof the type (J.5.9).l)Wewill use this factvery heavily in the treatmentof the integrals(J.5..

A carefulexaminationof the region of integration _'N Hh (see fig.
J.20) revealsthat its boundary is composed of both straight and curved
segments. If the boundary of _'N Hh is traversedin a positive
(counterclockwise)fashion, the straight segmentsof boundary are named E1,
E2..., En (see fig. J.21), in the order they are encountered. Here, n is
the numbersof edges of _' having some points lying inside Hh_the position
of the lower end of edge Ek is denoted_k while the upper end is denoted

a+k. The s-t coordinatesof _+k are denoted (Smk, t±k), that is --.
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-- pk : (s_, t_) = lower end of edge Ek
.=_
+ + +

Pk = (sk, tk) = upper end of edge Ek (J.5.12)

!Next, we introducethe hyperboliccoordinatesystem for the regions,t) J s < - It_of the s-t plane. For a point _ = (s,t) lying in this
reglon, hyperbolicphase ¢ and hyperbolicradius p are definedby the
requirementthat

{sI {_ = =
t -p sinh (J.5.13)

Here,

cosh x = (ex + e-X)/2

sinh x = (ex - e-x)/2 (J.5.14)

We define

p = Vs2 _ t 2 , .(3.5.15)

and defining

tanh x = sinh x
cosh x (J.5.16)

and

tanh -I x = y such that tanh y = x (J.15.17a)

we obtain

= tanh-1 (t/s) (J.5.17b)

Solving (J.5.17),

e_ - e-_ = t

e¢ + e-_ s (J.5.18)

or s(e_ - e-_) = t(e_ + e-_) (J.5.19)

or (s - t)e¢ : (s + t)_ (J.5.20)

J.5-3



or e2_ = s+t

s-t (J.5.21) --

or _ = 1/2 log _s+t_
\s-t/ (J.5.22)

In particular, the hyperbolic phase of the points p_ is denoted _k:

: i121og S#. 1Sk±- tk ± (J.5.23)

It is well to notice that not nearly as much care is required in the
definition of hyperbolic phase as was required in the definition of circular
phase in sec. J.4. The reason for this simplicity is that phase wrap simply
does not occur when one is dealing with hyperbolic phase.

Having defined the edges Ek, corner points p_, and corner phases
@_ of the region _'N Hh we now de]ve more deeply into the problem of
determining which edges E of _' are also edges of _'N Hh. Thus, given an
oriented edge E with lower end point p- and upper end point p+, we seek to
determine if E has any points lying inside Hh; if it does, E, or part of E
will be an edge Ek of Z'A Hh. In addition, we will also want to
determine the point (or points) at which E enters or exits the region Hh.

In order to answer these questions precisely, we need to define a number
of new concepts. These include:

(i) A pseudo inner product < , >

(ii) The edge tangent "_

(iii) The edge normal _, and conormal

(iv) The edge distance a, and edge variable v, and

(v) Differentialarc length,ds, along an edge.

The pseudo inner producton two vectors,denoted < , > is defined by
the expression

< a, b > = -a_ b_ + an bn (J.5.24)

For points _ lying inside Hh, we have

< _, _ > = -s2 + t2 _ -h2 (J.5.25)

an inequalitythat follows directlyfrom the specification(J.5.7)of Hh.
This inequality,combinedwith the conditionthat s be negative,provides a
very useful characterization of those points lying inside Hh:

p € Hh if and only if s < 0 and <_, _> _ -h2 (J.5.26)
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The usefulness of this inner product stems from the fact that it is invariant
- with respect to hyperbolic transformations of the form (J.5.9). Thus, if

and _ are vectors of length two, and _ and _ are defined by

_=A_ A = __ a>0= A_ , a2 - b2 = 1 (J.5.27)

then

< _,_ > : < _, _ > (J.5.28)

The edge tangent _ to an edge E, with lower end point _ and upper end
point _+, is defined by the expression

t : t n) :
< _'+ - _'-, _+ - _- > (J.5.29)

We have chosen the normalization for _'given by (J.5.29) because this
particular normalization is invariant with respect to hyperbolic
transformations of the form (J.5.9). With _defined by (J.5.29), we can give
the corresponding edge tangent T' in the coordinate system X', we have,

T -- n

(d.5.ao)

Recall from (J.3.28) the definition of subsonic and supersonic edges. The
inner product [ , ], defined by

[_, _] : _T[Co]_' (J.5.31)

in reference coordinates, is given in X' coordinates by

[R", _"] = _'[C']_' (J.5.32)

where, from section E.3,

rs (J.5.33)

Note that in this section, we have r = I and s= -I (subinclined panel in
supersonic flow). Thus, E is a subsonic edge if any only if

[_', _'] > 0 (J.5.34)
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if and only if

t_2 - t_ > 0 (J.5.35)

if and only if

[< _, _ >] < 0 (J.5.36)

Similarly,E is a supersonicedge when

[< _, _ >] > 0 (J.5.37)

Note that (J.5.29) is undefinedfor sonic edges. We will not treat them
explicitly in this section; later we will deal with them by a limitingprocess.

Since the definition (J.5.29)of _ ensures that

I<_,_>I : i

we obtain the normalization conditions on t

(subsonic edges) < _, _ > : -t_ 2 + tn2 : -I (J.5.38)

(supersonicedges) < _, _ > = +I (J.5.39)

Next, the edge normal _ and conormal_ are defined by

= nn -t_ (J.5.40)

nn -t_ (J.5.41)

It is well to note that n as defined by (J.5.40) is an outward edge normal to
edge E. That _ is normal (i.e. perpendicular) to edge E follows from the
computation

_._ = tn t_ + (-t_tn) = 0 (J.5.42)

and that it points outwardfollows from the computation(see figure 5.22)

(_ x _)_ = n_ tn - nn t_ = t_ + t_2 > 0 (J.5.43)

Note that _ x _ points out of the page (its_ component is positive).
Finallywe note that for any vector _, the followingrelationshipholds by
virtue of the definition (J.5.41)of 4.
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_" _ : < R, _ > (J.5.44)

The edge distance a and the edge variable v are defined by

a : _._ : < 4, _ > (J.5.45)

v : < _, _ > (J.5.46)

where R is any point on the edge E (see figure J.16 or J.18). The number a,
of course, is independent of which point along the edge E is used to compute
it.

Note that the vectors _ and _ are linearly independent (i.e.,
nonparallel). This fact follows from the computation

x _)€ : _ t n - _n t_ : -tn2 + t_2 : ± 1 (J.5.47)

by (J.5.38-39). Thus, the position vector _ can be expressed as a linear
combination of _ and

: rl _ + r 2 _ (J.5.48)

Using the normalization conditions

< _, _ > : -(t_ 2 - tn2) .(J.5.4ga)

< _, _ > = __2 + Vn = -tn + t_ 2 (J.5.49b)

and the'orthogonality condition

< 4, _ > : _._ = 0 (J.5.49c)

we can solve for r I and r 2 in terms of a and v. Taking the pseudo inner
product of (J.5.48) with _ gives

a : < _, _ > : rl< _, _ > = rl(t_2 - tR) (J.5.50a)

while doing the same thing with t yields

2_ t2n= < p, t > = r2< t, _ > = -r2(t_ ) (J.5.50b)

Substitutingthese expressionsback into (J.5.48)and taking accountof the
fact that t_2 - t2n = "1 we obtain

= (t_ 2 - tn2) (a _ - v _) (J.5.51a)

or, using (J.5.38-39)

: a _ - v _ (subsonic edge) (J.5.51b)

p = -a _ + v t (supersonic edge) (J.5.51c)
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Equations (J.5.50-51) now enable us to relate the differential of the edge
variable, dv, to the differential arc length, ds. Differential arc length ds 4
is defined by

ds :
I_I (J.5.52)

Using (J.5.50-51)we then find

ds = -I_Idv (subsonicedge)

= l_Idv (supersonicedge) (J.5.53)

Thus, v decreasesalong subsonicedges and increasesalong supersonicedges.

With the machinerydevelopedabove,we are now in a position to determine
which edges E intersectthe region Hh. In doing this, we will treat the
cases of subsonicand supersonicedges separately. First, we treat the
subsonicedge.

J.5.2 Subsonic Edges

For E a subsonic edge with tangent_ definedby (J.5.29),we define an
edge coordinatetransformationof the type (J.5.9)

: : A = A_
(J.5.54)

where

A = s_
-tn t_ (J.5.55)

The matrix A defined by (J.5.55) maps the region Hh into itself and
preserves the pseudo-inner product < , > . The coordinate functions 5,
may be easily expressed using the pseudo inner product as follows

= s_ (t_ p_ - tn pn) = -s_ < _, _ >

= s{ (-tn p{ + t{ Pn) = -s{ (_, _) = -s_ < 9, _ >

(J.5.56)

Thus, for points _ lying on the edge E, the _ and _ coordinates are given

: -vs

= -a st = cons. (J.5.57) _

so that the image of E under A, denoted E, is a line parallel to the s axis,
as shown in figure J.23.
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Note that for the edge E in figure J.23,

s_ = 1

a : (_, _) < 0 (J.5.58)

and thus

= -a > 0 (J.5.59)

A careful examination of Figure J.23 reveals that it is a fairly easy matter
to determine if an edge imaqe.E has any points lying inside
Hh = _, _) I _ < (t 2 + h2)I/2_ Since E is parallel to the s axis and
since such lines can intersect the boundary of Hh at most once, E will have
points lying inside Hh if and only if one of the image end points, 2- or _+,
lies inside Hh. Furthermore, the point _c at which the edge E either
enters or exits Hh is given.

_c = _c = s_a (J.5.60)

The point _c will be a point of exit if s_ = +i and a point of entry if
s_ : -1.

Now since the transformation A is invertible, the above remarks about the
image edge E can yield similar statements about the original edge E. In doing
this, we must relate the position vector _to its image coordinates. This is
done by combining (J.5.57) into (J.5.51a) to obtain

= a _- v _ = s_ (-_ _ + _) (J.5.61)

With this connection established we can now state an algorithm for determining
if a subsonic edge E intersects the region Hh.

ALGORITHM: Does a subsonic edge E with lower and upper endpoints _-- and p-_

intersect Hh. If it does, compute Pk and

Pk appropriately.

Assume -t_ 2 + tR : -1 (subsonic)

p- CHh and p+¢H h =-=FNO

p-cH h or p+EH h ==_ YES (J.5.62)

Case s : +i (Edge E leaves H )

Pk : PC

Pk- = p- (J.5.63)
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Case s = -1 (Edge E enters Hh)

Pk = P+

Pk = Pc (J.5.64)

where, using (J.5.60) and (J.5.61),

¢c : s_ (-_c _ + _c_)

= a _- s _ Vh2 + a2 (J.5.65)

We complete our discussion of subsonic edges by developing the relation
between the differential of the edge variable, dr, and the differential of
hyperbolic phase, d_.

Wedefine the angle of hyperbolic rotation X by

X : tanh -I (tn-_--) = phh (It_l, s_tn)
t_ (J.5.66)

where "hyperbolic phase" phh is defined by (see J.5.22-23))

phh (x,y) = tanh-I (y) = 1 log
x 2 \x-y/ (J.5.67)

Then, the matrix A defined by (J.5.55) is given by

A = Fc°shx -sinhX]
t-sinh X coshX .J (J.5.68)

Substituting this expression and the expression (J.5.13) for p into
(J.5.54) yields for _: _ :

F os"" : {];c°'"<'">iL-sinh X cosh sinh sinh (t6-X)J (J.5.69)

Now, for points lying on the edge E, equation (J.5.57) gives the values for
the s-t coordinates, combining this result with (J.5.69) yields

,. {:1: :[-s_aj sinh (_-X)J (J.5.70)
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Solving equation (J.5.70) for ¢ and p now gives

_. P = _v2 - a2

= tanh-1 (a/v) + X (J.5.71)

We can differentiatethe secondof these quantitiesto obtain d_. First,we
develop two differentiationformulaswhich will be of use.

The first of these is

d___ph (x(t),y(t)) :
dt

d__ tan-1 (y(t)) :
dt x(t) (J.5.72)

(after some algebra)

x dy-ydx
dt dt

x2 + y2 .(J.5.73)

- The second of these is

d phh (x(t),y(t)) :
dt

d I log (x+y)
dt 2 x-y (J.5.74)

= xdY_ ydx
dt dt

x2 _ y2 (J.5.76)

Applying (J.5.76) to (J.5.71), and noting that a is a constant,

d_ = -a dv
dv dv

v2 - a2 (J.5.77)
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and thus

d6 - a dv

a2 - v2 (J.5.78)

A quantity that will be useful in our computation of the integrals (J.5.1) is
the value of v along an edge Ek. Taking the ratio of the two equations
contained in (J.5.70) yields

v = Vk(_) = a :
tanh (_ -X) (J.5.79)

(by definition)

a coth (_ -X)

This completes our study of subsonic edges. We now turn to the treatment
of supersonic edges.

J.5.3 Supersonic Edges

For E a supersonic edge with tangent t defined by (J.5.29), we define an
edge coordinate transformation of the type (J.5.9)

= : A :A_
(J.5.80)

where

A = Sn [_t n -t_]t_ t n (J.5.81)

sn = sign (tn)

That the matrix A so defined is a hyperbolic transformation of the form
(J.5.9_ follows from the normalization condition for _, (J.5.39),

tZn _-t :I.
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For a given point _, it is a trivialmatter to compute the corresponding_-_
coordinatefunctions. Doing this, and using the pseudo-innerproduct,we find

= Sn(tn p_ - t_ pn ) = Sn _. _ = Sn<_, _>

= Sn(-t_ P_ + £n Pn) = sn<_, _> (J.5.82)

Taking accountof the definitionsof a and v (J.5.45-46)we then find that,
for points _ on E,

= sn a = cons.

= sn v (J.5.83)

Thus E, the image of E, is a line parallel to the t-axis as shown in fig. J.24.

Note that for the edge illustrated there,

Sn = -I

a = 8._ > 0 (J.5.84)

and thus

= sn a < 0 (J.8.85)

A careful examination of fig. J.24 reveals that._the image edge E.can have
points lying inside Hh even when neither endpoint, p. nor _'- lies inside

- Hh. In particular, this can happen when the _ coordinate of the line E
satisfies _ _ - lhl and the t coordinate function has opposite signs when it
is evaluated at the two endp_ints of E. In light of equation (J.5.83) this
criterion can be written

n Hh is not empty if

= on a < - lhland __ _+ = v_ v+ < 0

where vm are defined

v± = <_, _> (J.5.87)

Having determined whether or not E intersects Hh, we now seek to
determine the point of entry or exit of the edge E. Any such entry or exit
point must lie on the boundary of Hh, that is its _-_ coordinates must
satisfy

_2 _ _2 = h2 (J.5.88)

Invoking the conditions (J.5.83) for points on E, this implies

a2 _ v2 = h2

or

Ivl : vc : _/a2 - h2 (J.5.89)
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where the above equation defines Vc, the critical value of the edge
variable. Since the variable v increases along supersonic edges, (by virtue
of (J.5.53) we have in general

v_ < v+ (J.5.90)

Now if an edge E that intersects Hh is such that _- € Hh, then we must
have

v_ < -v c (J.5.91)

and the v-coordinate of point of entry equal to -v .

Similarly, if E N Hh _ 0 but _+¢Hh, we have

v+ > vc (J.5.92)

and the v-coordinate of point of exit equal to vc.

As in the case of subsonic edges, we may transform these observations
about supersonic edges back into the s-t coordinate system by using the
identity (J.5.51)

= -a _ + v _ : -s n _ v + sn _ t (J.5.93)

We summarize our observations with the following algorithm.

ALGORITHM: Does a supersonic edge E with lower and upper endpoints

I

6'- and B'+ intersect Hh. If it does, compute-Pk and

Pk appropriately.

Assume -t_ 2 + t 2 = +1.n

Determination if ENH _ 0

_- _ Hh or _+ _ Hh _ YES

-=_ .=_

p- c Hh and p+ _ Hh

s a < -Ihl and v v+ < 0 _ YES

otherwise: NO
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Determination of Endpoints: If the result of the above performance is YES, do

the following

if 6_- _ Hh then _k : _-

else Pk = -a_- Vcl_

if p+ _ Hh then Pk = _+

else Pk = -a_ + Vct

We complete our discussion of supersonic edges by deriving the
relationship between de and dv. Proceeding as before, we now define X by

X : tanh -1 (t_) : phh(itnl ' Snt_)
tn (J.5.94)

With this definition of X , the matrix A of (J.5.81) can be written

- A = [ cosh -sinh 1
L-sinh cosh] (J.5.95)

Proceeding as before, we obtain the following relation analagous to (J.5.70).

• sn sinh(_-×) (J.5.96)

Solvingfor p and _ then yields

p = _a2 _ v2

= tanh-1 (v/a) + X (J.5.97)

Differentiatingthe second of these equationsyields (by (J.5.74-76))

d_ = adv

a2 - v2 (J.5.98_

a relation identical to (J.5.78). Finally, we note that along the edge Ek,
v is given as a function of hyperbolic phase by

v = Vk(_ ) = ak tanh (_ -X) (J.5.99)

This completes our study of supersonic edges.
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J.5.4 Computation of the Integrals

Weconclude our discussion of the geometry of the hyperbola by using our
plethora of newly defined quantities to evaluate the integral J

J = SS ds dt

_'N Hh R (J.5.100)

A suitably intricate region of integration, _' N Hh, is diagrammed in
figures J.25a and J.25b. In these figures, the cross-hatched regions make
positive contributions to the integral while shaded regions make negative
contributions. In Figures J.25 this corresponds to the fact that de > 0 along
edges 1,2,3 and 4 while de < 0 on edge 5.

Transforming the integral (J.5.100) to hyperbolic polar coordinates (cf.
(J.5.13)), we see that the Jacobian B(s,t)/B(p, _) of the transformation is
given by

B(s, t) = F-cosh _ -p sinh _]_(_, _) t-sinh _ -p cosh (J.5.101)

The determinant of this jacobian is easily computed

det (B(s, t) ) = p
(p, _) (J.5.102)

since

cosh2 @- sinh 2 _ = 1 (J.5.103)

so that the element of area is given by

ds dt = p dp d_ (J.5.104)

The functionR, given by (J.5.8),may be representedin polar coordinatesby

R = Vp2 - h2 (J.5.i05)

Substituting(J.5.104-105)into (J.5.100)yields for J

J = IS p dp d_

_'NHh o2 - h2 (J.5.106)
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Now using the definitionsgiven above it is easy to see that J can be
evaluatedas follows

n _k+ Pk(_)
J = _ f de f p dp

k=l CE o VP2 - h2 (J.5.107)

where, using (J.5.71)and (J.5.97),Pk (_) is given by

I IVk(_)2- a_ subsonicedges

Pk(_) =

_a_ - Vk(_)2 supersonic edges

and, from (J.5.79) and (J.5.99), Vk(_ ) is given by

Vk(_) = I ak coth (_ -X) subsonic edges
ak tanh (_ -X) supersonic edges (J.5.108)

Performing the inner integral in (J.5.107) yields for J

_ n _k+

J : _] J" de _/Pk(_)2 - h2

k=l Ck- (J.5.110)

Transformingeach of the integralsin (J.5.110)into an edge integralwith

respect to the edge variablev, we have

d_ = adv

a2 - v2 (J.5.111)

and

4.
n vk

a = _ f ak dv Rk(v )

k=l vk- ak2 - v2 (J.5.112)
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where Rk(v) is defined

2-a2-h 2 (subsonic edges)f

Rk (v) : V_k2 - h2 = I _a2_v2_h2 (supersonic edges)

(J.5.113)

and v_ are defined by the obvious relations

v_ = < , t k > (J.5.114)

Now the integral SaRdv/(a 2 - v2) can be evaluated by elementary means.

Doing this, one obtains (see the integrals J(X) in section J.7.1)

f __k ak dv = -h ph(a k Rk, hv) - ak tanh-l(Rk/v ) (subsonic case)ak2 - v2

: -h ph(ak Rk, hv) -a k ph(v, Rk) (supersonic case)

(J.5.115)

Thus, using hyperbolic coordinates, it is a fairly easy matter to evaluate the
integrals of type (J.5.1).
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J.6 The Panel Integral Matrices

In this section, we calculate matrices [So] and [Do] which define the
perturbation potential and velocity induced at a control point by a
quadraticly varying source strength or a cubicly varying doublet strength on a
convex, planar, polygonal region These are (4x6) and (4xlO) matrices
respectively, defined by the equations

: [So]
LVs n (J.6.1)

and

u°lu_

=
LVD _nn (J.6.2)

Here, the perturbationvelocityCs' inducedby the source strength and the
regularpart of _'of the perturbationvelocity inducedby the doublet
strengthare expressedin a local (_', n',_') coordinatesystem (see.section
E.3) with the property that _ lies in the plane _' = O, and the compressible

-- distanceR from the controlpoint P to the point of integrationQ is written

R2 = [P-Q , P-Q] = r(_'-x')2+ s(n,_y,)2+ rs(c,_z,)2

(J.6.3)

There in local coordinates

= (x', y', z')

= (_', n',_') (J.6.4)

Now, the values of Vs, VD, and R are independent of the origin
of the local coordinate system. The coefficients °o, Onn,.- , uo,-
"nnn of the source and doublet polynomials are not, however iafter ai_, _o
and Uo are the source and doublet strengths at the origin). We define S and
D to be the matrices for which (J.6.1) and (J.6.2) hold if the origin of the
(_', n', #') coordinate system is the point (x',y',O), that is, the projection
of P to the plane containing E • This control point - dependent coordinate
system origin is useful for computation of the panel integral matrix. In
section J.6.6 we compute the matrices So and Do which result from shifting
the origin back to the standard one which is independent of the control point
location.
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J.6.1 Preliminaries _.

J.6.1.1 Transformation Rules

Consider the reference to local transformation,

A: Xo---*X' (J.6.5)

We now review the transformation properties of various quantities
(see section E.3). Wehave

_' = [A]

where _ = _ - Q (J.6.6)

_' = [ A-T] _o (J.6.7)

where

_' dS' = (det A) [A -T] _ dS

and dS' = ! dS (J.6.8)
J

where

dS' : d_'dn' (J.6.9)

and J is the area Jacobian (the ratio of area in reference
coordinates to area in local coordinates). Next,

r (J.6.10)

Fr
[C'] = l S | = A-T Co A-1

L rs.] (J.6.11)
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_': B'_ : [B'] l_y' = A_
l_z' (J.6.12)

We also define _'Q and _ as gradient operators with respect to
the location of the integration point Q whose local coordinates are
(_',n',_'). Wedefine

_e (i_)G' = ' = [A] Go
R (J.6.13a)

where

_o : _e(l__)
R (e.6.13b)

J.6.1.2 Transformation of the Integrals

Now, recall from (B.O.1) that

I ff _(Q) ds_s = --
K _'N Dp R (J.6.14a)

- : -a ff o(4'. _')dS'
Z'N Dp R (J.6.14b)

= J Cs' (J.6.14c)

where

_s' : _1 ff o(_'. n')d_' dn'
}]'nDp R (J.6.14d)

Next,

_O : 1 ff , a._(1) dS
K S'NDp R (J.6.15a)

= _ SS_l_,,o'I{AT,,}._O_!__,_o,
Kdet A _'NDp R (J.6.15b)

_ 1 fS ,(_', n') (_'_)d_' dn'
Kdet A }]'NDp (J.6.15c)
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Now, by (E.3.90)

det A = 82 (J.6.16a)

and so, letting

4' - 1 _,

82 (J.6.16b)

we have

CD = _I II u(_', n')_'-4' d_'dn'
K }]'FIDp (J.6.16c)

Note that

i_. [B'] = s [C']
82 (J.6.17)

and so we can also write

H' : s[C'] _'Q (!)
R (J.6.18)

Next, applyin 9 (B.3.9),

_s = _P _s = [AT]_P ' Cs = J[ AT] _s' (J.6.20)

where

Vs = vp _S =

- ! ff oI€',o'I_' I_l_'_o'
K }i'nDp (J.6.21)

K E'flDp (J.6.22)

Finally,

9'D*' =
Z'(IDp (J.6.23)
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Applying the transformation rule for cross products (E.I.12) to

_O*' : I__ II [( i____[A T] _, dS') x (AT_'Q ,)] x (A-I _')

K Z'nDp B2 (J.6.24)

we obtain

¢D*' = 1 det (AT) (A-I(1._L_" dS' x_TQ' _)) x (A-1 G')

wc _'11Dp B2 (J.6.25)

=_ 1 [AT] II (_'Q x _")x _____'ds'

wc _'(IDp B2 (J.6.26)

= [AT] gD'* (J.6.27)

where

_D'* : _ i_ II (V'Q , x A')x _' dS'
z'nOp (J.6.28)

J.6.1.3 Singularity Strength Coefficients
I I

In Section J.6, we compute the quantities @s, _D, _s and
VD, in terms of the coefficients describing the source and doublet
strength on the panel. We now introduce some notation to describe the
variation in singularity strength.

Let

= on (J.6.29)

= Un (J.6.30)

[_] : a_n ann] (J.6.31)

"{n1[M] : U{n "nnJ (J.6.32)
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and let "_t be the 2x2x2 tensor

r ]T_ .,i =

U_nn ( J" 6.33)

LU_nn Unnn ( d. 6.34 )

Then,

a(_', n') : Oo + _T _ + i/2 [£] : [3 _T] (J.6.35)

where

(J.6.36)

and where for matrices A and B

[A] : [B] = _-:.aij gij (J.6.37)
lJ ----

Similarly

,(_', n') = uo + _T _ + 1/2 [M]: [_ _T]

+ 116 _ _h.ijk Pi oj Ok (J.6.38)
i,j,k

J.6.1.4 Uniform Formulas for Local Variables

Recall from sections J.4 and J.5 that we introduced certain expressions
depending on an edge Eh. These are the radius vector

tn y' (J.6.39)

(this is consistent with Section J.6.1.3 if the local coordinate system is
centered at the control point) with "magnitude" o satisfying

o2 : (_' - x') 2 + rs(n' - y,)2 (J.6.40)
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the height h above the panel

h = z'-{' (J.6.41)

the edge tangent

?k : _k+ - _k- (J.6.42)

where _ are the endpoints of Ek n Dp, the normalized edge tangent

:  k/l<Tk, T k>l1/2: tk /T
_k = tn (J.6.43)

where _k is a unit edge tangent, and for vectors a,b we define <_, _> by

<_, _> = rs a_ b_ + an bn (J.6.44)

the edge normal

-t_ .(J.6.45)

the edge distance

ak = _k" _ (J.6.46)

and the distance along the edge

Vk = <t k, _> (J.6.47)

In addition, we define the edge type indicator

qk : sign [t k, tk] : rt{ 2 + stR = s <_k, _k>
(J.6.48)

which is I for subsonic edges, -I for supersonic edges, the
edge conormal

_k = [G]_k (J.6.49)

where
rs

[G] =
(J.6.501
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and the edge cotangent

_k = [G]_k (J.6.51) --

In terms of these definitions we have, combining (j.4.51),
(J.5.50), (J.5.51), and (J.6.49),

_k = qk r ak v k + ak s vk _k (J.6.52)

From (J.6.44) and (J.6.49) we have

<vk, _k > = rs t + t_ 2 rs<t k, tk> (J.6.53)

From (J.4.46) and (J.5.53) we obtain the differential of arc length

ms : sq[_ k] dv (J.6.54)

Next,
<_k, _k > = <_k, _k> = t_ 2 + rst_

: rs<_ k, _k> = rssq : rq (J.6.55)

Further, ---

<_k, tk> = < > = 0

-t_ _ t n (J.6.56)

Thus, by (J.6.52)

<P-_k'_k> = a2k <_k, _k> + V2k <_k, _k>

v2= rqk a2k + sqk k (J.6.57)

So,

p2 : rs<_ k _k> : + (J.6.58)k ' sqk a2k rqk V2k

Finally,

r 2 : r(_', x') 2 + S(n' - y,)2 + rs(_' - z') 2

: rp 2 + rsh 2 =

rsqk a2k + qk + rsh 2 (J.6.59)

The above results will be used extensively in the following sections.
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J.6.1.5 Differentiation Formulas
o--

Now we introduce

R (J.6.60)

Many of our formulas will be terms of @; an interested reader may compute the
equations which would result if I/R were replaced by a different expression
such as the Helmholtz kernel eimR /R.

We now derive some integration and differentiation formulas concerning
which will be useful. First,

a_ _ a aR =

a_' aR a_' (J.6.61)

(by (J.6.41) and (J.6.59))

L (-rsh)
aR R (J.6.62)

Similarly,

_ a_ a_ aR

a_ aR a_ (J.6.63)

By (J.6.59),

2RdR = 2rp do (J.6.64)

and so

a_____: rp atP
ap R aR (J.6.65)

Thus,

a_ = -sh a_
a_' p ap (J.6.66)

Next, defining

a/an' (J.6.67)

J.6-9



(J.6.39-40) yield _
"I

V2,Q(O2) = 2rs_ (d.6.68)

or

V_,Q (p) : rs_.____
p (J.6.69)

Thus,

V_,Q (4) : rs_ @_/Bp
p (J.6.70a)

and

o atP : -sh_' a_; : -rh V2, e
a_' p ap (J.6.70b)

Finally, let us introduce

R
X(R) : S R _(R) dR

o (J.6.71)

Then

_X = aX _R = R (r__EP)= rp_
ap _R ap R (J.6.72)

This concludes our derivation of preliminary integral formulas.

J.6.2 Source Potential and Velocity
I !

In this section we compute the matrix S defining _s and vs in
terms of certain fundamental expressions.

J.6.2.1 Source Potential

From (J.6.18),

_, -1 SS a(_', n') d_' dn's =
_'nDp (J.6.73)

: (by (J.6.35))

1 (5 So o dS' +_S_T_ dS' + ½_S [S] : [_ _T] dS')- _ (J.6.74)
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Here we have used the fact that the coordinate system is centered on the
projection of the control point to the panel, and thus

_' - x'

: p

I I

n - Y (J.6.75)

So_

, }@s : °o (-i II*dS') + _T _'_, dS' + 1/2 [E]: [-ig_ _,T *dS']
K w_

(J.6.76)

Using (J.6.69) and (J.6.72),

' _ (p_)dS'ff _, ds = ff__
E' E'

:ff(rs_2,Q, p) (raX) :•_ (j.6.77)
}1'

Ss 2,Q' dS' = s v__y__X ds
Z' aE' I_I (J.6.78)

Equation (J.6.78) is obtained by using the two-dimensional version of
Gauss' theorem; if f is any function on a planar region ,

Sf S_f dS = n f ds

E aE' I_l (J.6.79)

Applying [G] to (J.6.79), and noting that

t_l = I_I (J.6.80)

we obtain

E aE' I_I (J.6.81)

Finally, using (J.6.69) and (J.6.72),

~, aX -,
v2 X : __ v2 p : s_ _

ap (J.6.82)

and thus

fS _ _T_ dS' = sfS _' v2'Tx ds (J.6.83)
£' E'
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Combining (J.6.76-78) and (J.6.83), we obtain ---
I

_s = _o(-z_S_dS,)
K

+_,TI_s S_×_1
K _Z' (J.6.84)

, It.I: [- s _ _ v_Tx as']
2K Z'

J.6.2.2 Tangential Source Velocity

Now, from (J.6.22) and (J.6.35)

vs = a(_', n') VQ,_ dS' (J.6.85)

where

_'Q = Blan' :
_/_' [ a/a_' (J.6.86)

f .

SO,

Vs,_, n = $$ °V'2,Q_bdS' (J.6.87)
E'

Applying (J.6.35)

_o If e'2
V's'_'n : T S' 'Q @ dS +

1 [$$ (_,Q _) _,TdS' "_ +

( ff 0i_j(_,q)k_aS')[Z]ij_C 1_3__
i,j 2K }1' (J.6.88)

Now, applying (J.6.79)

f..._rr_',Q__s= ds

_. _}1' I_I (J.6.89)
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To compute the second term of (J.6.86), we extend (J.6.79) to
a product fg of functions to obtain

ff _(fg) dS: ff _<m+g_f)dS
S' S'

aS' (J.6.91)

We thus obtain the general two dimensional integration by parts formula

IIf _,gds: I fg ,-_ds-.flg_f_s
Z' aS' S' (J.6.92)

For later use, note that applying the definitions of , p, and [G]
(equations (J.6.67), (J.6.36), and (J.6.50))

II f_2gds: I fg -; _s-f_g._ ds
Z' aS' I_I S' (J.6.93)

Now, applying (J.6.92)

SS_72, Q dppTds' =
2'

S @ _ _Tds _I_ @[I] dS'
aS' I_I }i' (J.6.94)

since

V2n p = = I0 (J.6.95)

Substituting (J.6.89) and (J.6.94) in (J.6.88),

-_'s_,n' T ,

+ _ _ i (_* dS') _aS'

+ r. 1(_" oi _j _7'2q¢)dS'[_]ij
i,j 2K S' (J.6.96)

J.6.2.3 Normal Source Velocity

Finally

-_'s,_;': Z II o a_.__dS':
K _, a_' (J.6.97)
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(using J.6.66)

-sh SS i a_o -- m ds' =
K: _, p ap (J.6.98)

(by J.6.35)

(-sh Si i a_ dS')o o sh SS _i" a___ dS'
K: _], p ap L K _, p ap

i sh .0" _T a_ dS'] : [_]]
_]' p ap (J.6.99)

Now, by (J.6.70),(J.6.79)and multiplicationby [G] ,

ff dS' : f rs _2,Q'_ ds
£, p ap a£'

= rs aS' _ ds (J.6.100)

Next, by (J.6.70)

II
[p _T] I_. a..__._dS' : rs_S(RT'2,Q ) _T dS'y, p ap (J.6.101) __

= (using the integrationby parts formula (J.6.93))

rs I _ _T f_" ~
a}]' _ ds - rs _#, _,Q _T dS' (J.6.102)

: rs I _ _'Tds - rs II S'
a_' _ _' _ [G] d (J.6.103)

since

, {rs alan']_2,Q _T = al_n'J L_' n'" (J.6.104)

s = [G] (J.6.105)
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Combining (J.6.99-104), we have

-sh ff i a_
JJ ; T_ dS) _o

f _ _T
rh ds

fl"1
, .,; dS'l CG]:CZ]

_' (J.6.106)

J.6.3 Doublet Potential and Velocity

J.6.3.1 Doublet Potential

From (J.6.10) and (J.6.18)

CD'- ,_,T [C,]v q_ dS' (J.6.107)

: (applying (J.6.7) and (J.6.11))

r II a_ dS'
_' " a-_' (J.6.108)

: (applying (J.6.66))

-rsh ff i a_

K J_, _ P ap dS' : (J.6.109)

( fS i a_ dS') ,0
_rsh

_' p ap

-rsh ff _ T a_ dS_L _

K _' p ap

If _T a_ dS'] : [M]
_ r S h

[ _, p ap

6K ijk Pi Pj Pk ; a-'_ dS' "_.ijk (J.6.110)

The first three integrals are identical to those arising in the evaluation of
_S,_, and thus we need only consider the fourth integral.
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Now, using (J.6.70)

fl Pi Pj Pk i a_ dS' =
_:, p ap

rs IIPi Pj (_2,q)km dS'_' (J.6.111)

NOW,substituting equations (J.6.100), (J.6.103), and (J.6.111) in
(J.6.11), we obtain

-rsh ( _,i i a__6 - _ p ap dS') P0

h 5 _T
- _-_ a_' 15"---1"dsj g

h _ _ T[ , @ _ ds] : [M]

, Sf
+ 2--_(S' _ dS') [G] : [M]

h T.
(_I PiPj 0_2,Q)k@dS')_lijk-6_ i,j,k (J.6.114)

J.6.3.2 TangentialDoubletVelocity

Combining (J.6.7),(J.6.18),and (J.6.28),we have

VD = _1 II au/an' x x a_/an dS'
K E, ap/a_' 1 a_/a(,'

[ 0f ap/an'l {rs a_la_'}
=_i J'J" |-a,/a_' x a_/an' dS'

K: }i' ra_Pla_' (J.6.115)

I+ -r(apla_')(a_/a_i ) 1

= _I_ _5 -r(aplan')(a_la_ ) dS'
£-

Irs (aula_' Ia_lana/a_'}
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I-r,..}-_- _f_. dS'= - T_r

_2,Q p " Q (J.6.116)

In particular

-_,* r ff (_2 ) a_ dS'VD - _ T.' ,Q_ a_"--r (J.6.117)

Applying (J.6.38) and (J.6.66)

-,,* -rsh ff i a_
VD,_,n = _ _' p ap

. _e,' (Z: o_oj,,k'_jk)}ds'6 2,Q i,j,k (J.6.118)

- = (applying(J.6.90))

rsh ( Ill a@ dS')3 rsh ff i a_ [M] _ dS'
_: T.' p ap K y., p ap

£ (ff 1
rsh6_i,j _' P aP PiPj dS') _,i,j+_i,.,j+'_q_i,j,.)

(J.6.119)

Inspectionof (J.6.33)and (J.6.34)shows that

]qq'l,i.j=_i,l,j =_i,j,1 (J.6.120)

and similarlyfor'_2,i,j,and thus

"}q_'.,i,j+_i,.,j +_i,j,. = 3_.,i,j (J.6.121)
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Now, substituting (J.6.100), (J.6.103), and (J.6.121) in (J.6.119), we obtain

rsh SI i a_ dS' _'
_D',_',n' : - T S' p ap

h S _ h _ _ [I--_P'T]i'Jds . i,j- _ [M] aZ' _ ds - _ i,j aS'

+ 2---_- i,j " (J.6.122)

J.6.3.3 Normal DoubletVelocity

By (J.6.I16),

._ ,. 1 II (_72,Q_) (_2',Q_)dS'
vD,_' = -'_ S' (J.6.123)

Applying (J.6.38) and (J.6.70)

_,S rspj a_-,,* 1 _ _2,Q,j (pi_i) p _ dS'VD'_' = - _ i,j

rspk a_
1 _ SS_,Q,k(PiPj)[Mij] p _p dS'
2K i,j,k S'

~ , rspl a_
I _ SS V2,Q, 1 (PiPJPk) (_ijk) dS'

- 6 ijkl S' p ap (J.6.124)

Applying (J.2.90)

_,_ rs S (SS Pi a_ dS')_i
VD'_' = _ i _, P ap

la_ S'
- rs _ II (_ikPjPk + 6ijPiPk) p-_p d [M]i j
-T_ijk S'

_ _ Pl a_
rs _ lidS' (6ilpjpk + ajlPipk+ 6klPiPj)"/Y_ijkp ap
6 ijkl S'

(J.6.125)
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--- Using the definitionof the delta function,

,. rs s (ffpia_
_D,€ - K i _, p ap dS') ui

___ 1 a_
rs _] II PiPj p _p dS' [M]i j
K ij S'

i aS dS,TY_ijkrs _ IS PiPjPk _
- 2-_ ijk S' (J.6.126)

Substituting (J.6.70) into (J.6.126),

v_'_=- _ _ _ ' i

--1 S SS Pi (_2,Q)j_ dS' [M]ij
K ij S'

i _ SS PiPj 2,Q) k dS' (7_)ijk
2K ijk S' (J_6.127)

Applying (J.6.81),(J.6.93),and (J.6.104-105),

,. i I _--!T_ds'_
VD,z - K aS' I_I

ds
_1 [ S_'T _T]: [M]

aS'

+--i SS _ dS' [G] : [M]
£'

1 ,j_., _', 0iPj 0_2,Q)k* dS' 0_)ijk-T_- i " k (J.6.128)

J.6.4 Reduction to Fundamental Integrals

In this section, we will see that the entries of the matrices S and D,
describing source and doublet potential and velocity, are all combinations of
a small number of fundamental integrals.
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J.6.4.1 Definitionof the Integrals

We define the integralsas follows.

a --sh _ i a____dS'
K }i'P ap (J.6.129)

b- -I _'_ dS'
_' (J.6.130)

" I IT_nl*dSa = _ aS' (J.6.131)

-s f dsb_ _ X
aE' _ (J.6.132)

[B] : _ , _ _ ( _dS') [I] (J.6.133)

where I is the identity matrix.

s L_ _ _' T _ dS'
IF] : _ Z; P_72'Q (J.6.134)

Finally, let H be the 2x2x2 tensor

II Ce21Q)k (J6 3slHijk = _ _, PiPj _ dS'

J.6.4.2 Source Potential and Velocity

Applying the above to (J.6.84), we see

_S' = b°o + _T__ 1/2 [F] : [S] (J.6.136)

From (J.6.96) we get

_'S,_',n': aO _ + [B]B' + _ ij [}]G ,I Hijl]_ij1 " (J.6.137)

since

[G] _,e :_,e (J.6.138)
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Finally, (J.6.106) yields

,41

vS,_ = a a0 - rh (Ga)T

-rh [GB] : [_]
7 (J.6.139)

With a few simple definitions, we can write down the matrix IS] such that

_S' o_
_s _',n' : IS] on (J.6.140)

,'
Vs' [

First, for a (2x2) matrix [A], let ,AJ3 be the row vector of length 3:

LA_3 = LAI1 (AI2 + A21) A22J (J.6.141)

For a (2x2x2) tensor {T} , let LTj 4 be the row vector of length 4:

LTj4 = LTIll (TII2 + TI21 + T211) (T122 + T212 + T221) T222j (.J,6.142)

and let [Tk] (k = I or 2) be the 2x2 matrix

[Tk]ij : (T)ij k (J.6.143)

We easily see thatif [A] is a 2x2 matrix,

(J.6.144)

Thus, from (J.6.136)

_i LF- o__'S = b°o + _T__ 2 3
[_nnJ (J.6.145)

and by (J.6.139)

_'s,_' : aoo - rh[G] _T_

rh GB { o_€1
-'_-, j3 O_n| (J.6.146)

Onn J
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Finally, we note that

GII Hijl = rS[Hl] (J.6.147)
1

while

Z G21 Hij I = [H2] (J.6o148)
1

Thus,

ijl

while

_Onn j (J.6.150)

Applying (J.6.149-150)

= _oa + [B] _
_IS, n '

rr ] {I+ _- L ,H2. 3
°nn (J.6.151)

Substituting (J.6.145-146) and (J.6.151) into (J.6.140),

I 2 3

1 -b -_T I-112_F_3 -

I rs[S] : 2 -_ B T- LHI_ 3

i
_- LH2j 3

1 a I -hr(G-_)T I -rh _GBj_ _-- 3 (J.6.152)
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J.6.4.3 Doublet Potential and Velocity

Applying (J.6.129-135) to (J.6.114), we see that

h
_ = ra uO - h (G_)T _ - _ [GB] : [M]

- h iPlijk
"6 ijk Hij (J.6.153)

Next, from (j.6.122), we obtain

h _ [GB]ij_.,i,j
_[5,_',n'= ra _ - h[M] (G_)- _ ij (J.6.154)

Finally, from (J.6.128),

7'*D,_'= - (Ga)T _'- [GB] : [M]
1

_ - }1. Hijk_ijk (J.6.155)
2 i,j,k

Now, recallingthe definition(J.6.33-34)of_9_,we see that if T is a
2x2x2 tensor,

_] TijkT_ijk : _Tj4
i j k • '_ n

P_On

_nnn (J.6.156)

where _T_4 is defined by (J.6.142).

Now, applying (J.6.156) and the doublet equivalent of (J.6.144) to (J.6.153),
we have

_'D = ra,o - h (G_)T

-h h

3 ,_n I _LH, 4 _n L

Pnnn ) (J.6.157)
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Next, expanding (J.6.154) into two equations, _

V"D,_ : ra ,_ - h Z Mij (Ga)jJ
h

- _ Z [Gg]i j_l,i,j (J.6.158)
ij

= (using the definitions (J.6.32-34) of M and _)

ra u_- h(G_')T ["_nJ-7 3
(J.6.159)

Similarly,

h Y. [GB]ij_2ij_'D,n' = ra "n - h _. M2j (G_)j -_3 ij (J.6.160)

h _GBj ,_nnl (J.6.161)= ra Un - h (G_)T [P_n_ - _- 3
LUnnJ iJnnn,

Finally, applying (J.6.156) and the doublet equivalent of (J.6.144) to
(J.6.155),

'O,_' : - (G_)T_ - LGB_3 "
t"nnJ

i "Hj4 _"€€n _,- -2 |"_nn |
L, nnnJ (J.6.162)

so, we can now write down the matrix [D] such that

_0

',n : [D]

VD,
_nnn (J.6.163)
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From (J.6.157), (J.6.159), (J.6.161), and (J.6.162), we have [D] 4XI0 =

i 2 3 4

i ra -h (G_) T I h LGBj h .H_4
I -2 3 -_

I I

h_Ga_ IO-h (G_)T_ 0 -g a
2 0 ra[l] I I

I I

0 I -h(G_')T 0 I - _- LGB.j3
I i

1 LH"1 0 - (G_)T - ,_GBj3 - _ 4

(J.6.164)

J.6.5 The Fundamental Integrals in Terms of Panel and Edge Functions

The seven fundamental integrals which define the entries of the matrices
[S] and [D] can themselves be reduced to simpler expressions. The only
integrals involved in these expression are a single "panel function" and one

_ "edge function" for each edge of the region.

J.6.5.1 Computation of a.

By (J.6.129),

sh II i _a : - dS'
K: Z' P ap (J.6.165)

Thus, for subsonic flow and superinclined panels

€)k+ Pk(_)

a = - sln _ J" d_ J" pdp @_

edges _k 0 P aP (J.6.166)

by (J.4.56-57) and (J.4.60).

Note that this integral is always finite unless the control point lies on
the panel edge.
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Now,

Pk(_) a_ dp _(Pk(_)) t_(O)$ _ :
0

I

= @(Pk(_)) - _ (J.6.167)

Thus,

a = - -_-edges @d(_

sh (_ 2_
--_- q-Fi-c°) (J.6.168)

where C_ is defined by (J.4.30).

For subinclined panels,

a = - sh IS 1 a@dS' : (cf.(J.5.104))
K _, p ap

_ Pk(_)
- s--hE S d_ S a-"_'_dpK k ap

_k- Ihl (J.6.169)

Unlike the integral J.6.166, we will see shortly that this integral is in fact
infinite. We have

a - sh [k_ lim_ j" d(b (_-_)
€)OT _E _ h2 + €2 (J.6.170a)

K _ ¢_

sh _ J" d_- lim 1 d_= - _ k=l €,0 _" T

_E _ (J.6.170b)

We now evaluate the first term of this integral, which is the "finite
part". Wediscard the second term, or "infinite part", for reasons discussed
in section J.6.7. Thus, setting Cs = 0 for subinclined panels, we always have

sh [_ S d_- 2_ c_]a = --'4"-
_E (J.6.171)
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Setting
+

_k
Jk (4)= }" d_

Ck (J.6.172)

and J : _ hJk(_) - 2x sign(h) Co (J.6.173)
k

we have
S

a = - _ J (J.6.174)

The function J is called the panel function.

J.6.5.2 Computation of b.

By (J.6.130),

-i ffb= -_ dS'
_' (J.6.175)

Thus

@k+ Pk(_)

I T. S dQ_ f _pd(bb : -_k
_k- lhl (J.6.176)

Now, by (J.6.72)

Ip_ dp : rX= rR (J.6.177)

and thus for subsonic flow or superinclined panels

_k+

r _ j. d_ (R - lhl)b=--_ k
Ck- (J.6.178)

-r Ck+

: _ [ _k j" Rd(_- 2_lhl Co] (J.6.179)

Ck-
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since R = lhl when p = 0 and thus

Pk(_)

f pdp = r(R-lhl) (J.6.180)
ihl

For subinclinedpanels,R = 0 when p = lhl, and thus

-rZ
b = _ k _"Rd¢ (J.6.181)

Ok-

Thus b is defined in all cases by (J.6.179)by settingCo = 0 for subinclined
panels.

J.6.5.3 Computationof a.

By (J.6.131),

-_ 1 I _ ds
a = - _ a_' In_ (.J.6.182)

Applying (J.6.54), and noting from (J.6.45) that l_l = l_, we have

d_g Vk+-_ I _ _ sq_ dv s _ _k qk f _ dva : _ e e = _ k
vk- (J.6.183)

Defining

+
Vk

Ik = _" @ dv
vk- (J.6.184)

we have

-_ s _ _ka = _ k qk Ik (J.6.185)

J.6.5.4 Computationof b.

By (J.6.132),

-s I _X ds = -1 Vk+
b - K a_' T_T _ _ _k qk _ Rdv ---

k Vk- (J.6.186)
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: (by (J.6.54))

+

-s ! _sqxdv -I Vk, = -_" _ _k qk I RdvaL
Vk- (J.6.189)

Integrating by parts,

#, #, aR
.,Rdv: Rv-., v T_dv (J.6.190)

where (by J.6.59)

aR
2R _= 2qv (J.6.191)

Thus

Vk+ Vk+ Vk+

S Rdv: [Rv] - $ _ v2dv
Vk- Vk- Vk- (J.6.192)

= (once again applying (J.6.59))

_ Vk+ Vk+ R2_ rsqkak 2- rsh 2
[Rv] - J" R dv

Vk- Vk- (J.6.193)

Collecting terms,

Vk+ Vk+ Vk+ rsqk ak2 + rsh 2
2 J" Rdv = [Rv] + _" R dv

Vk- Vk- Vk- (J.6.194)

Substituting (J.6.184) and (J.6.194) in (J.6.189)

b -1 _ a(Rv) rs S
- 2K k _k qk - _ k _k (ak2 + qkh2) Ik (J.6.195)

where, for any quantity f, we define

af : f(vk +) - f(vk) (J.6.196)

J.6.5.5 Computation of B

By (J.6.130) and (J.6.133),

[B] : b [I] + 1 J
_T

a_' I-TnT @ ds (J.6.197)
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Applying (J.6.52) and (J.6.54)

+
Vk

[B] : b[l] + 1Sk f _k @(qkrak_k T + qksv _kT) qk s dv

Vk- (J.6.198)

By (J.6.191),

DR
_v - q v_ (J.6.199)

and thus

Vk+

[B] : b[l] + rs_ k nk ak _kT f _dv + 1 _ _kTk qk _k AR (J.6.200)
vk-

: (using (J.6.184))

b[l] + rs }]7 k _k ak _kT Ik + 1__ qk _k _kTAR (J.6.201)Kk

J.6.5.6 Computation of F

By (J.6.134),

s fS _' _,T
IF] : _ S' $72,QX ds' (J.6.202)

= (using J.6.93)

s S _ _T_Xds _ s _ ' -,' _T,P ]'_'T _- X _2,Q p dS' (J.6.203)

= (applying(J.6.52)and (J.6.54))

+

S}] S '
k f (qk r ak _k + qk SVk _k) _kT X s qk dv - _ ( X dS ) [G]

Vk- (Jo6.204)

We first compute ff dS'.

Wecompute the integral using either circular cylindrical or hyperbolic
cylindrical coordinates. In the derivation that follows, we assume that
lhl > 0 so that we need not concern ourselves with the problem that hyperbolic
phase becomes unbound on the lines (_' - x °) = +_ (n' - y'). The upper
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__ limit of integration with respect to p is Pk (_); the lower limit is O, lhl
or 0 in accordance with whether s = +1, rs = -1, or r = -i. We write then,

SIX dS _ _k+
, rR3 P(_)

= k S de T (J.6.205)
_k- p = 0 or {hi

_k+ _D3 P(_)

d6 _-_ (J.6.206)= k
_k- P = 0 or lhl

@k+ {R3- lh13}
r _ _ d(_ or (J 6.207)-3 k

_k- R3

Now the sum over k in equation (J.6.207)is over all segmentsof the boundary
of _, a_ , both straightand curved segments. On curved segmentsR = 0 so
that we may write

_k+

"J5XdS: S R3 - • co (J.6.208)

edges k _k-

We now examine integralsof the form _R 3 d_. Transformingthis integral
into an integralwith respectto v, the intrinsicedge variable,we find
(using (J.4.66),(J.5.78),and (J.5.98))that

_+ v+ v+
= adv R [qrs (a2 + rsv2) + rsh2]

adv R3 _ a2 + rsv2R3 d_ = S a2 + rsv2
_- V- V-

(J.6.209)

V+ V+

adv R =
= aqrs _ Rdv + rsh 2 S a2 + rsv2

V- V-

V . V + V + adv

dv + rsh 2 _ a2 )R]aqrs S Rdv + rsh 2 [aqrs _ R ( + rsv 2V- V- v-

(J.6.210)

Defining

g2 : ra 2 + rqh 2, and SRdv : I (X) = 2I-- [Rv + sqg2 1 (_)] (J.6.211)
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where I dv_--: I (_) (see J.6.194) (J.6.212) ---

adv dp j(_;) (J.6.213)and I (a2 + rsv2)-_ - R -

we find that

R3d_ : [aqrs I (X) + (aqrs) rsh 2 I(_) + h4 J (_)] (J.6.214)
0-

Substituting this expression into (J.6.208) and recalling the definition
(J.6.173) of the panel function j we find

II r (h3X ds = _ J + _ aqrs) (J.6.215)k

Recalling the computed values (J.6.179) and (J.6.181) of b, the integral
IXdS can be written

+
V

r h2 -_bfIX dS =_ ( (--7) + rs _ aq I (X) ) (J.6.216)
V-

V+

II -rs sor X dS : T h2_ b + _ aq I(X) (J.6.217)
V-

Applying (J.6.212) and (J.6.194)

V+ V+ 1 1 V+
rsqa 2 rsh 2

I(X) : J" Rdv : _ A(Rv) + _ J"
Jr

R dv (J.6.218a)
V- V- V-

V+: a(Rv) + ½ (rsqa2 + rsh2) I(_) (J.6.218b)
V-

by (J.6.212).

Recalling the definition (J.6.184) of I k we have

,dS -rs h3 b + s _: ak qk A(Rv) +_ ak qk (rs qk ak2 + rsh2)Ik- 3 6 k ' (J.6.219)
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We now considerthe other terms in (J.6.204).

We have

+ +
Vk Vk

5 vXdv = J" Rvdv _- (J.6.220)
vk- vk-

(by (J.6.191))

aR aR
SR(qR T_) dv = qf R2 -aT dv = _ a (R3) (J.6.221)

Substituting (J.6.194), (J.6.219), and (J.6.221) in (J.6.204)

IF] s k_ -_ _T sqk { (rsq k a2 + rsh 2) ik }
= _ qk rak Vk A(Rv) +

+ S _kT R3 -s [G] -rs
_kqk_k qk (-_a ()) _ (T h2K: b + 61--k_s ak qk a (Rv)

I
+-6 kE akqk (rqk ak2 + rh2) Ik) (J.6.222)

J.6.5.7 Computation of H.

Recalling the definition (J.6.135)

i SS k_ ds (J.6.223)Hijk :_ _, Pi Pj (_'2,Q)

we apply (J.6.93) to obtain

f 41 ffi I ! I

J Pi Pj #J _ (_2 (Pi Pj) dS (J.6 224)Hij] : _aZ' _ _ ds - _ Z' ,Q)I

NOW,

I

.(_72,Q)1 (pi pj) : pi [G]Ij + [G]li Pj (J.6.225)

Combining (J.6.77-78) with (J.6.132), we see

-, SS ,
:_ _, p_ dS (J.6.226)
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and thus

- 3 _ (_72,Q)k (Pi oj)dS' :

iII_ (Pi +- _ [G]kj [G]ki pj) dS' "
£'

= [G]kj _i + [G]ki _j (J.6.227)

We now consider the first term of (J.6.224).

By (J.6.52) and (J.6.54)

I Ùi _j _IT_-¢ ds :a_'

I (qra_ i + qsvti) (qravj + qsvtj) _I sq _ dv (J.6.228)
a_'

+
Vk

= S ak2 (_k)i (_k)j (_k)l sqk S @ dvk
vk-

.
Vk

+ _ rsak (_k)i (_k)j (Gk)l sq S _ dvk
v_

+
Vk

+ (t'k)i (_k)j (_k)l sq S _ v2 dv (J.6,229)
vk-

Now by (J.6,191)

aR qv
av - R - qv_ (J.6.230)

Thus

+
Vk
_" _v dv : qk AR (J.6.231)
Vk -
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and
r
i

+ +

Vk Vk I
aR

f _ v2 dv : S qk _ v dv (J.6.232)
vk- vk-

: (applying (J.6.194))

Vk+ rsqk ak2 + rsh2 dv
qk (vR)-1qk (vR) S R (J.6.233)

Vk-

i qk (rsq + rsh 2) I: _ qk A(vR) 2 k ak2 k (J.6.234)

where we have used the definition (J.6.184) of I k. Applying the latter
definition, along with (J.6.231) and (J.6.234) to (J.6.229), we define

- I S PiPj VlHijl = _ a£' _T _ds =

s _ ak2 (_k)i (_k)j (_k)l qk Ikk

+ rz ak (_k)i (_k)j (_k)l aRK_k

+Sk_ (_k)i (_k)j (_k)l I a(vR) - 12K (rsq k ak2 + rsh 2) I k (J.6.235)

Substituting (J.6.227) and (J.6.235) in (J.6.224)

Hijk = Hijk + [G]kj _i + [G]ki _j (J.6.236)

This concludes the reduction of fundamental integrals to the edge and
panel functions.

J.6.6 The Origin Shift

The computation of the entries of the matrices [S] and [D] has been based
on the assumption that the local (_', n') coordinate system is centered on the
projection (x', y') of the control point to the plane of the panel. In

practice, however, we require the matrices [So] and [Do] corresponding to
a (_o', no') coordinate system centered on a fixed point (0, O) on the
panel.
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That is, S and D were defined in terms of coefficients ao, aE, "",
, "" defining a source distribution and double_

distribution

, I (no' - y.)2_(_o, no') : oo+ "'" + _ Onn

, , , i (no' - y,)3u( o , no ) = "o + "_ (_o - x') + ..- + _ "nnn (J.6.237)

The matrices So and Do are defined in terms of coefficients
°o°, "", ann°, uo°, "", _n_n defining the same
source and doublet distributlons by

, , i o ,2
a(_o , no') : oo0 + a_0 _o + "'" + _ ann no

, _o , 1 ,3U(_o . no') = .o 0 + _o + "'" + _ .nn 0 no (J.6.238)

Then, while [S] and [D] are defined by (J.6.1-2), [S o] and [Do]
are defined by

vs, o (J.6.239)

D : [Do]
.VD n (J.6.240)

To obtain [So] and [Do] from [S] and [D], we must compute the matrices

]6x6 [TD]IOxlO[T S and such that

: [Ts]

a n %o (J.6.241)

.o .o°1
• = [TD] ._

"nnl "nn°J (J'6"242)
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for then, combining (J.6.1-2) with (J.6.239-242), we have

[S o] : IS] ITs] (J.6.243)

[Oo] = [D] [To] (J.6.244)

Thus we need to compute ITs] and [TD] , or, in particular TD,
since [Ts] is just the upper left (6x6) corner of [TD]. So, we rewrite
the second equation in (J.6.238) as

' + o ' ' o , ,, no ) : ,o 0 _ - x + x ) + "n (no'-Y + Y )

+_I "_° (_o' - x' + x')2 + ...

1 , y, )3
+ _"nn_ (no - + Y' (J.6.245)

Now, we equate the coefficients of (_o' - x') i (no' - Y')J, i + j < 3,
in (J.6.237) and (J.6.245) to obtain

0 uo = uo° + x' + unOy' + u_° x,2 + ... + 61Unn_ Y'3_. (J.6.246a)

0 "_ = ,_o + u_o x' + ,_n 0 y' + ,_ x,2

+ ,_R x'y' + ½,_nR y,2 (a.6.246b)

Un : _n° + o x' + o y, + _ o x,2

+ "_nR x'y' + ½,nnR y,2 (J.6.246c)

(d.6.246d)

(d.6.246e)
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Unnn = Unn0 (J.6.246g)

Comparing (J.6.242) with (J.6.246), we see that the latter equation defines
the entries of TD :

[TDI =

' I ½ ½,I _x ½x _xj x,_, x,_x,_, ,_ ,_ ,_,, ,_,__-_,_I € I

I _,_ ,_,, _,_
o I _o i x, _,, o i _x x _, o

I
I I _ o o i x, ,, o o

o i o [ o _ o o x, _, o0 0 I I 0 0 x' y'
II

I [ I _ o o o
I i o _ o o

0 I 0 0
I 0 0 1 0

.I I o o o
J.6.247)

Introducing

d = (J.6.248)

and recallingthe notation (J.6.141-142)which definesrow vectors from
tensors, and definingD as the 2x2x2 tensor

Dijk = di dj dk (J.6.249)
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we have TD =

i 2 3 4

i I _T _ 3 _.o. 4

i .ddT I 0

2 0 I

I I
_Z 0 21--_T_ I o 1 ; '

I I I _T 0 0

3 o I o I i I o _T o
I I 0 0 _T

4 0 0 0 I

(J.6.250)

Similarly, TS is just the quadratic )ortion of T :

I "_T I o

ts : __0 1 1 ]--,--__0]

0 I 0 I
- - (J.6.251)
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Combining (J.6.152), (J.6.243) and (J.6.251) we get [S o] =
1

i .F.

__ az _-_T 3 + LBI, --_T3 + rs _HI, 3
_' a_T+ B I

I I_ a2 ._T 3 + _B2," d-_T-3+ :H2-3

I
I _- a Ld--_Tj3 - hr .[G] [adT]j3

a I a_T - hr (G_)T

rh LGB_
_ I - T 3 _ (J.6.252)

Combining (J.6.164), (J.6.244) and (J.6.247), [Do] =

re _d-_TJ3- h

ra .z)j4 - _ L(G_)i djdkj4 .-.

ra rad-_T - h (G_)T I h _[G] [-_T]j 3 I- _- ,[GB]ijjdk 4 - _h ,Hj4h

I -_ "_ I
l rad T _ (G_) T 0 J ra ._d-_j3 J- 0

h .GB, l
h .(Ga) dT3 -_ 30 ra I

J 0 Jra_T- h (G_)T 0 r a L_Tj 3
h _GBjI -" _c__ 3- _

-- l- T
o I -_oa_ - _°__ -__°___'°

1 LH"- LGB-3 - _[GB]ij dk, 4-_- 4

(J.6.253)
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J.6.7 Finite Parts of Integrals

In section J.6.5.1 we evaluated the integral

a - -sh II i _ dS'

_'nDp P ap (J.6.254)

for _' a subinclined panel. In doing so, we discarded a term, leaving the
justification for discarding that term to this section.

Wewill show in section J.6.7.4 that the term we discard is in fact zero
if we only consider the "finite part" of the integral (J.6.254). The finite
part of an integral is a concept we define in section J.6.7.1, and for which
we cite certain well-known properties in section J.6.7.2. Next, in section
J.6.7.3, we review the manipulations of integrals we have performed prior to
Appendix J and conclude that they are still valid if we consider only the
finite parts of various integrals. We then note in section J.6.7.4 that we
really want to compute only the finite part of (J.6.254), and thus we properly
discarded the extra term which appeared in section J.6.5.1.

J.6.7.1 Definition of a Finite Part

Let f be a function on a surface S (though our definition will have an
obvious extension to functions on a line or in a volume of space) of finite
area. Let S€ be the set of points in S which are distance greater than €
from any point on S at which f is infinite, where E > O. Then we define

ff f dS = lim II f dS (J.6.255)
S €_O Sc

and we call the integral on the left side of (J.6.255) the finite part of
the integral of f over S. Wecall

IIf dS - _'_" f dS (J.6.256)
S S

the infinite part of the integral whenever it is non-zero.

J.6.7.2 Properties of a Finite Part

Several important properties of ordinary integrals of bounded functions
also hold for finite parts of integrals. First, the standard integration by
parts theorems in several variables (the divergence theorem, Stokes' Theorem,
Green's Theorem) hold for finite parts of integrals.

Second, differentiation with respect to a parameter on which f depends may
be moved under the integral. That is, if f is a function of t,

SS = _ dS (J.6.257)Bt S S
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These results are discussed in the paper of Robinson (reference J.3).

J.6.7.3 Finite Parts and the Integral Equation

In section B.O, we quoted the fundamental integral equation (B.O.1),

: _i snDpSf_R_ +"B • _(_) dS (J.6.258)

But thereafter, we treated this integral as though it were an ordinary
integral rather than a finite part integral. In particular, we applied
Stokes' Theorem and took the gradient operator under the integral equation to
obtain (B.3.31)

(am
SNDp

+ 1 S_" ,_Q (1) x d-_ (J.6.259)
K: SNDp

The derivation of (J.6.259) from (J.6.258) is only justifiable, however, in _--
light of the results we quote in section J.6.7.2.

J.6.7.4 Finite Parts and PIC Computation

Now, in appendix J, we have consistently ignored the fact that we really
were interested only in the finite parts of the integrals which defined.
Until section J.6.5.1, where we attempted actually to evaluate such an
integral, this caused no problem. In that section, however, we obtained an
infinite term because we failed to evaluate only the finite part of the
integral (J.6.254). That is, we should compute

a = SS i a_ dS'
_'NDp p _P

sh lim 5S 1 B_ dS' (J.6.260)
- K _,0 Ii'€p ap
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where E_ is a polygonalregion,entirelywithin Dp, which approachesE'nDp
as € goes to zero (cf., figure J.26)

Then, if E'€ has K€ edges, by (J.6.169-170),we have

lim -sh _€ Ck+ _k+ I d_ (J.6.261)
a = €_O -_" k=l _ _d_ - _

_k- _k-

Ck+v
Iim 1 '_.€

- f= €>O K k=l
_k-

_k+
lim i _€

- €.O T k=l f de (J.6.262)
Ck-

But it followsfrom sectionJ.5 (cf. (J.5.22),along with figure J.20, which
shows that (s+t)/(s-t)> O) that € is a smoothfunction on Dp, and bounded
on E_ . In particular,_ is single-valued. Thus by the fundamentaltheorem
of calculus

_€ _k+
k=l _ de = _ de = 0 ij.6.263)

Ck- BE_

and thus the second term of (J.6.262)is zero, and thus should be neglected,
as we do in sectionJ.6.5.1.

J.6.7.5 Summaryof Finite Part Integrals

We now briefly summarizethe role of finite parts of integralsin
influencecoefficientcomputation. First, we state the fundamentalintegral
equation (B.O.1),which involvesthe finite part of a surface integral,and
whose validitywe do not prove, but is discussedin Ward (reference1.5) and
in more detail in Ehlers,et. al. (reference4.9). Second,we derive (B.3.31)
from (B.O.1),a derivationwhich is only valid becauseof the properties
(whosevaliditywe also do not prove) of finite parts of integralscited in
sectionJ.6.7.2. Third, for reasonsof clarity,we leave the finite parts
symbol off many integralsin appendixJ. Fourth,we see that a term which
appears in sectionJ.6.5.1must be discarded,since we only requirethe finite
part of the integralwhich is being evaluated. In sectionJ.7 we will see
that the remainingterm in this expressioncan be evaluatedin closed form.
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J.7 Edge and Panel Functions

In sectionJ.7.1, we computethe edge function

Vk+

Ik(_) - S _dv (J.7.1)
vk-

and the function

_k+

Jk (_) : [ _d_ (J.7.2)
_k-

where the panel function J is given by (cf. (J.6.173))

J = _ h Jk (_) - 2_ sign (h) Ce (J.7.3)

We also compute integralsI(X) and J(X)used in sectionsJ.4 - J.6
(cf.(J.4.68),(J.5.115),(J.6.212))

+
Vk

IR(X) = S Rk dv (J.7.4)
vk-

Vk+ Rak _k+

Jk(X) = S p-_ dv : _ Rd@ (J.7.5)Vk- _k-

J.7.1 Expressionsfor Edge and Panel Functions

J.7.1.1 SubsonicFlow

Since the flow is subsonic,r = s = qk = 1, and (J.6.58-59)become

pk2 = ak2 + Vk2 (J.7.6)

R2 = ak2 + Vk2 + h2 (J.7.7)

By (J.4.66)we have

+

Vk ak
Jk (@) = _" + dv

Vk- ak2 Vk2
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.
Vk

(J.7.8)
= S Rk(ak2 + Vk2) dv
vk-

We now exhibitwithoutderivationthe functionswhich are the indefinite

integralsI(_), J(_), I(X), J(X). The integrationscan be verified by
differentiatingthe functionswith respectto v, while noting (J.7.6-7). The
differentiationsare tediousbut straightforward.

We find

dv I logfR+v _ (J.7.9)I(_) = S R - 2 \R-v/

a dv = hI-ph (hv,aR) (J.7.10)
J(_) = _ R(a2+v2)

I(X) = SRdv = ½ (vR + (a2 + h2)l(@)) (J.7.11)

a R dv h2 j(@)+ al(@) (J.7.12)
J(X) = S a2 + v2 -

Clearly

Ik(_) = I (_) (Rk+, Vk+) - I (_) (Rk-, Vk-) (J.7.13)

Similarly,evaluationat both endpointsof the intersectionof the panel edge
and the domain of dependencegives us the remainingdefinite integrals.

J.7.1.2 SubsonicEdges of SubinclinedPanels in SupersonicFLow

Now (J.6.58-59)become

p2 = v2 _ a2 (J.7.14)

R2 = v2 _ a2 _ h2 (J.7.15)

since s = -i, r = +1, q = + 1. Also, we have

.

Vk akR

JR(@) = _ v2 dv (J.7.16)
Vk- ak2-
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The indefiniteintegralsnow become

I(_) = sdv i l /v+rlR - _ og_) (J.7.17)

adv 1

J(_) =S(a 2 _ v2)R = -_ph (hv, aR) (J.7.18)

I(X) = S Rdv = ½(vR - (a2 + h2) I(_)) (J.7.19)

aR dv h2 J(_) - al(_) (J.7.20)
J(X) = S a_ _'v2

J.7.1.3 SupersonicEdges of SubinclinedPanels

Now r = +1, s = -1 = q, so

p2 = a2 _ v2 (J.7.21)

R2 = a2 _ h2 _ v2 (J.7.22)

and
+

Vk akRdv
JR (4) = f a 2 _ v2 (J.7.23)

Vk- k

The indefiniteintegralsbecome

dv _-ph (v,R) (J.7.24)I(_) --S R

adv 1

j(_) =_(a2._v_,R_j_ -_ ph (hv,aR) (J.7.25)

I(×) =_Rdv = ½ (vR + (a2- h2) I(_)) (J.7.26)

faRdv h2 J(tp)+ al(_) (J.7.27)
J(X) -a2 _ v2 _ -

J.7.1.4 SuperinclinedPanels

Now r = s = q = -1, and

p2 : a2 + v2 (J.7.28)

R2 = h2 _ a2 _ v2 (J.7.29)
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and --
+

Vk akdV (J.7.30)Jk(_) : S
Vk- (ak2 + v2)R

The indefinite integrals become

I(_) : S dvR-- = -ph(hv,R) (J.7.31)

adv i ph(hv aR) (J.7.32)
J(_) = _ R(a2 + v2)' = -_

I(X) : SRdv :1 (vR-(a2 -h2) I(_)) (J.7.33)

aR dv h2 J(_) - al(_) (J.7.34)J(X): S a2 + v2 -

J.7.1.5 Uniform Formulas

We unify the results of section J.7.1 for Ik(_) and Jk(_)" We obtain

i logtR+v_l+Ik(_) - 2 'R-v' _ s = I -_

1 rv+R_l+
log,v_R,l_ s = -1, q = 1

-ph (hv,R) q = -I (J.7.35)

I I.Jk(_) : _ ph(hv,aR)_ (J.7.36)

where evaluationoccurs at the two endpointsof the intersectionof the edge
and the domain of dependence.

J.7.2 Computationof Edge and Panel FunctionArgumentsin Reference
Coordinates

In this section,we compute h, v, a, and

_rsq a2 + rsh2 (J.7.37)g

in referencecoordinates. These quantitiesare computed in reference
coordinatesin PAN AIR to minimize numericalerror. --
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J.7.2.1 Computationof h

By (J.6.41)

h = z' - _' = • A (P - QO) (J.7.3a)

where QO is any point on the panel, such as the panel center,and A is the
referenceto local transformation.

Thus

h = L0 0 1j [A] (P - QO) (J.7.3g)

= £ A3j (P - QO)j (J.7.40)
j=l

Applying (E.O.I)

B -.w ._.

h = {no,_-_o}no • (P - Qo) (J.7.41)

J.7.2.2 Computationof v

By (J.6.47)

<_k -" -_kT -_ (J.7.42)v = , p> = [G] p

where G, t k, and p are defined in section J.6.1.4. Now, define a 3-vector

t' : (J.7.43)

Next, we note from (E.3.24)that

[r ] = [A-T] Co[A-l]srs (J.7.44)

J.7-5



so [rsv = tkT 0 P

I
rs

: t'T 1 (J.7.45)
S

st T r: ' s A ( - _') (J.7.46)
rs

= s-_'[A-T] CO (Q'-'P) (J.7.47)

AI I _ .-_ .._= s [ t', Q - P] (j.7.48)

:sIA-I_'l[_o,_-_] (j.7.4g)o

where to is the unit edge tangent,P is the field point, and Q lies on the
edge.

Noting (J.6.42-43),we see that

-_' At (J.7 50)t = I

I -" -_I<At, At>

where t is any tangent vector in reference coordinates. Thus we define

1

T -IA_I_,i=

logoi] i i: lt_TAT Atol_ : I-_oT C?oi_

1

= I[£o, £o]I _ (j.7.51)

where we have chosen a unit tangentvector to-

Then

v = ¥ o, Q - P] (J.7.52)
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J.7.2.3 Computationof a

The edge distanceak is (cf (J.6.46))

ak = nk " Pk (J.7.53)

where

{to}o-_ : -tE (J.7.54)

Note that

_'xn'= n x 0 : t
i (J.7.55)

Thus

a : t' x . (Q' - P') (J.7.56)

= • ((Q'- P') x t'
1

: . A(Q - P) x % (J.7.57)

°etA{: (cf. (E.I.12)) . _ A-T ((_--P) x to) (J.7.58)

det A -1 -_ -_
_ (A.,3) • ((Q - P) x to) (J.7.59)%

: (cf (E.3.59))

det A r -_ -_
T 1 Bo no " ((Q - P) x _:o)

Bl{no,no}l2 (J.7.60)
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Finally,applying (E.3.90)to obtain det A,

r B
a = i {no, (7 -P) x £o} (J.7.61)

T I{nO' nO}I_"

J.7.2.4 Computationof g

Applying (J.6.59)

g2 __sq (R2 - qv2) (J.7.62)

Now we use the following identity, which we prove shortly. For arbitrary
vectors a and b, and a matrix C,

(a x-_)T [C-I] (_" x-b) = det (C-1)(_ T Ca) _T Cb-_) _ _T C-_)2) (J.7.64)

We apply (J.7.64) to (J.7.63) with

a:Q-P

T

[C] = [CO] (J.7.65)

Since (cf. E.2.g))

Co_1 1 Bo (J.7.66)- sB_

we get (by J.7.64)

- P) x t, (Q - P) x :

_B4 ([Q_ p, Q- P] [t,t] - _ , )2 (J.7.67)

: (cf. (J.7.51))

s g2
(J.7.68)

Here we use the fact (cf. (J.7.51))

[to, _:o] = q T2 (J.7.69)
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--- Thus

g2= xT' -
We now need only to prove (J.7.64)

We prove in general, for vectors, a,b, d, and a_matrixC:

x T C (c x d) =

(det C) [(_TC-lc-_)(b-_Fc-I_)- (a-'rc-l_)(-bTC-Ic-')] (J.7.71)

Now, by (E.I.23)

[C] (c x d) = (detC) (C-I-_) x (C-I d) (J.7.72)

Thus
(_'x'_) T [C] (_x _) =

(det C) (a x b) • (C-I c x C-I d) (J.7.73)

Now, using the notation of section B.3, for vectors a, b, e, f,

- (a x b) . (e x f) =.E (cij k aibj) (Cmnkemfn)
lJmn (J.7.74)

Now, recalling(B.3.31):

(a x b) x c = -(b • c) a . (a • c) b (J.7.75)

we convert to _ notation and obtain

( x b) x c) k :

E cijk (Cmni am bn) cj = (J.7.76)
ijmn

- (b'' c)a k + (a. c) bk =

- E(b n Cn) ak + _am cm bk : (J.7.7'7)n

- E 6j n 6km ambncj + E 6jmakn ambncjjnm jmn (J.7.78)

where a is the Kroneckerdelta (zero unless the two subscriptsare equal, in
which case it equals one).
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Now, noting that cijk = cjki, (J.7.76-78)yield

E CjkiCmni = ajm6kn - ajnakm (J.7.79)
i

Applying (J.7.79)to (J.7.74)

x b) • (e x f) = Z Cijk Cmnkaibjemfn
ijmn (J.7.80)

= .._ (aim6jn - ain6jm) ai bj em fnIjmn

(_ _) _ _ _ _ _= • (b • f)- (a • f) (b • e) (J.7.81)

Substituting(J.7.80-81)into (J.7.73)

x T C (c x d) =

_T C-1_)(-bT C-I_) _(det C)

(-_Tc-1-_) (_T C-I c)/ (J.7.82) ----

which is (J.7.64)with C-1 replacingC.
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J.8 RationalizationFormulas

The computationof the edge and panel functionshas been described in
sectionJ.7. These formulasare not alwayscomputationallystable. In this
sectionwe describethe actual formulaswe use to computethe edge and panel
functions.

J.8.1 Edge Functions

In this sectionwe will discuss the computationof the quantites

Iv +i :_ I(,) (J.8.1)
% V-

%21 ½ v+
- - ) (J.8.3)(qaR (v+ + v_) I(4)I

V-

where
1

% :lEio, £o]J _ (J.8.4)

q : sign [£o, to] (J.8.51

• I _ /v+R\ +1

: ,og q:
I(4) t-ph(V,R) q = -1 (J.8.6)

r = p - Q (J.8.7)

1

R : [r-_,-_]_- (J.8.8)

and r+, v+ denote the values of r and v at the upper and lower end points

of EnDp, where E is the edge in question. We use a a to denote the
differenceof a value at the endpoints,and a bar to denote the average.

The procedureused to evaluate these edge functionsis as follows.

In section J.8.1.1,we will discussedges for which

T 2 > 10-4 (J.8.9)
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We will call these non-sonicedges, and will distinguishfour cases. We will
first consider the case where at most one endpointof the edge lies in the

interiorof Dp, dividingthis into the regularcase of a supersonicedge or
R < .95v, and-a specialcase of a subsonicedge and R > .95v. We will also
co_siderthe case of both endpointslying within the interiorof Dp. This
is divided into a regularcase and a specialcase in which v changessign
(v_ < 0 < v+) and g2 << I.

In sectionJ.8.1.2we will discussnearly sonic edges, for which

10-10 _T 2_ 10-4 (J.8.10)

Here the regularcase is

q = 1

or sign (R+R_+ v+v_) = 1 (J.8.11)

In sectionJ.8.13, we will consider essentiallysonic edges, for which

T2 < 10-10 (J.8.12)

J.8.1.1 Non-SonicEdges

We will calculate

q (i(_)l _ i(_)I ) (J.8.13): T V+ V_

and __ -_ -_

I _RI (j.a.141AR = R r+ r_

When an edge intersectsthe Mach cone, it is possibleto computethese
functionswithout actuallyevaluatingthe point of intersection. We have

: 0 (J.8.15)
R IMach cone

(subsonic)

l(_)Iv+,Mach cone = 0 q = +i

l(_)Iv_, M.C. : 0 (J.8.16)

(supersonic)

I£_Jlv+, M.C.
0

q=-I

I(_)Iv_,M.C. = 0 (J.8.17) --
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Thus, when only one endpointof the edge E lies insidethe Mach cone, (we
are now treatingthe case of supersonicflow), we need computeonly one
elementarytranscendentalfunction. For a subsonicedge, we would then compute

v+RI(_) : log _ (q : +1) (J.8.18)

while for a supersonicedge we would have

l(_)Jv = -ph(v,R) (q = -1) (J.8.19)

If we recall equation (J.7.62)we obtain

v _ g2 (q = +1, s = -1)R2 = qv2 + sqg2 = g2 _ v2 (q = -1, s -1)
(J.8.20)

we see that some difficultiesmay arise in the evaluationof I(_)J v for
subsonicedges when g2 is very small, for then R _ v and the log function
in equation (J.8.18)blows up. Thus, for the very specialcase in which

(a) one end of ENDp lies on the Mach cone (E subsonic)and (b) g2 is very
small, the followlngprocedureshould be used

1 v+R
- l(_)J v : _ log v---ZiT

: log (v+R) - ½ log(g2) (v > O)

I log(g2)_ log (R + v ) (v < O) (j.8.21):

: sign(v) (log(Ivl+ R) - ½ log g2 (J.8.22)

where g should be computedby the relation (see SectionJ.7.2.4)

g2 : B2 -"{_ox _;o, ro x to} (J.8.23)

The initialtest for small g can be made by askingwhetherR > .951vi. If
this test is satisfied,g2 is small and the specialprocedureoutlinedby
equation (J.8.22)shouldbe used.

This completesthe discussionof what must be done when one endpoint of
EIIDplies on the Mach cone. We now turn our attentionto the case in which
both endpoints lie insidethe Mach cone. We begin this discussionby deriving

v+

some expressionsfor I(@)J that are generallyvalid; that is, they do not
V_

depend upon the assumptionthat both endpointsof EIIDplie inside the Mach
cone.
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Using equation (J.8.6), we have, for subsonic edges

Iv+ 1 v+RIV+ (J.8.24a)I(_) v_ = g l°gv--Z-Rv_

(v+v_ - R+R_) + (R+v_ - v_R+)
1 log
2 (v+v_- R+R_) - (R+v_ - R_V+)

1 l+z (J.8.24b): _ log 1-_

where z is definedby

R+v_ - R_v+

z - v+v_ - R_R_ (J.8.25)

The definition (J.8.25)for z may be arrangedsomewhatby using equation
(J.8.20)to obtain

R2 = v2 + sg2 (J.8.26)

Then

R+v_ - R_v+ R+v_ + R_v+
z = (J.8.27a)

v+v_ - R_R+ R+v_ + R_v+

R+2v_2 - R_2v+2
(J.8.27b)

- R+v+(v_2--R_2) + R_v_(v+2 - R+2i"

v+2 _ v_2
(J.8.27c)

= R+v+ + R_v_

In a precisly analogousfashion,we have for supersonicedges

iI(*) v_ : -ph(v,R) v_ : - [_- ph(R'v)]_+- (J.8.28)

= ph(R+,v+)- ph(R_,v_)

= ph(R+R_+ v+v_, v+R_ - v_R+)
(J.8.2g)

= ph(a, _) (J.8.30)
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where in this case we define a and z by

a = sign (R+R_ + v+v_) (J.8.31)

~ v+R_ - v_R+ (J.8.32)
z = R+_R_+ v+v_

As before,the definitionof _ may be rearrangedsomewhatwith the help of
equation (J.8.20). Doing this, we find

: _ R+v_+ R_v+
R+v_ + R_v+ = (J.8.33)

v+2 - v_2
= z (J.8.34)

= R+v+ + R_v_

Thus, _ = z and we can drop the tilde. Summarizing,we have found,

I l+z +i

_log _ q :V+

I(¢)I :
v_ ph(a, _z) q = -1 (J,8.35)

where

v+2 - v_2 (v+- v_)(v++ v_)
Z = R+v+ + R_v_ = R+v+ + R_v_

= sign(R+R_+ v+v_) (J.8.36)

V+I

stable and accurateevaluationof I(@)I inEquation (J.8.35)will permit
I

V_

all instanceswith the exceptionthat when g2 is small, q = +1, and v
changes sign along the edge, some additionalcare must be taken. We now
describe the procedureto be used in this case.

Since v changes sign along the edge, the flow must be subsonic.
Consequently,equation (J.8.20)gives us

R2 = v2 + g2 (J.8.37)

Next, we note that the function I(@) may be written

v+R 1 R+v_ + iI(_) - log _ - _ log (- R-v' 2 (J.8.38)
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-½ R+v -_Concentrating on the function log _ , we find

R+v log g - log (R-v) (J.8.39)log R-v -

Evaluating I(@) at the two limits and noting that since v_v+ < O, we must
have v_ < 0 < v+, we get

I v+ ½ R+v_ i R+v_I(_) : ( log R-v' - ( log R-v'v_V_ V+

: (log (R+ + v+) - log g) - (log g - log (R_ - v_))

: log ((R++ v+)(R_ + v_ )) -2 log g
(J.8.40)

or

i v+ (R. + v+)(R_ v_ ) s : 1, q : 1= log g2 (J.8.41)I(_) v_ v_ < 0 < v+

With g2 computedfrom equation (J.8.23),equation (J.8.41)may be used for

v+ is small +1 and changes signthe evaluationof I(_) v_ whenever g , q = ,
V

along the edge.

This completesour discussionof non-sonicedges.

J.8.1.2 Nearly Sonic Edges

The very fact that we are discussingnearly sonic edges ensures us that
the flow itself is supersonic,that is, s = -i. Thus, equation (J.8.20)
gives us

v _ g2 q = +1

R2 = (J.8.42)
g2 v2 q = -1

Also, we know that on subsonicedges, v cannot change sign. Note also that in
the evaluationprocedurefor AIC's for nearly sonic edges, the expressionAR
is not needed. However, as we will shortlysee, it will be necessaryto
compute _ for nearly sonic edges (recallthat r-_,are the values of_-_at the
first and last points of ENDp).
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_ The basic idea of the evaluationprocedurefor nearly sonic edges is to

I v+use equation (J.8.35)for I(_) v and at the same time notice two facts: (a) z
will almost always be quite small-and(b) on supersonicedges, we will almost
alwayshave a = +1. The first of these two observationsfollowsfrom the
calculation

(v+ - v_)(v+ + v_) (av)_ qSaSoV

z = R+v+ + R_v_ _ _ = _=_ (J.8.43)

where the definitionof G, _ = _v, and (cf.(J.6.54))

AV : TqS(aSo) (J.8.44)

have been used. Becauseof the presenceof the coefficientT in equation
(J.8.43),we may expect that z is of orderT, and consequentlythat it is
small. The secondof these two observationsfollowsfrom the fact that if
is to be equal to -1, v must change sign along the edge. Consequently,the

edge and cogtrol point mustlbe arrangedas shown in figure J.27, where theangle a : T_/2 is very smal . (Recallthat an edge is said to be nearly
sonic only ifT< .01. This impliesa < .00005)Invokingour two assumptions,
and expandingequation J.8.35) in a maclaurinseries,we obtain

Z z2J + 1
v+ j=0 2j + 1 q = +1

I =
v_ z2j + 1

(-l)J -1 +i
j=0 2-J--+--I-- q = ,a = ,• Izl < 1

v+ _ _ q = -1
l(_)l = z }i. o = +1

v_ j=0 2j + i Izl < 1 (J.8.45)

We may now use this expressionto obtain stable and accurateexpressionsfor

I, K. We begin by defining the function_q(Z) such that

I v+I(_) = z (1 + Z2_q(Z)) (J.a.46)
V_

Evidently,for IZl < 1 and _ = +1, _q has the expansion

_q(Z) = q _ (qz2)j-I
j=l _I- (J.8.47)
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Substituting^theexpression (J.8.46)into (J.8.1)and (J.8.3)yields the
resultsfor I, K

= %-_-(1 + z2 _q(Z)) (J.8.48)

1 (--_T2z3) _q(Z) (J.8.49)= (%--2-(q AR - _z)) -

We now show how to evaluate the three expressions

qZ 1 _ z3
T ' 2 (qaR - vz), -_ (J.8.50)

First,

qz _ RAR RAR (J.8.51)
T : Tt_KvJ: _-T_-T- _

Now

Rv - R v : _ (R+v++ R_v_) - (R+ + R_)(v+v_)

1
: T ARAv (J_8.52) --.

Thus RAR
qz :

(R_+ '_ARAv)T

aR (J.8.53)
v . (sq _2 ASo)_R/g

since

sq T2 AsO : av (J.8.54)

Next,

(1/_) (qaR - _z) = (l/T2)(qaR-_ a(v--_2)) = (J.8.55)2Rv

q [2R-vAR - 2vR AR]
q [2_ AR - _A(R2)] - T2(2_-_)T2(2R'v) (J.8.56)
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= ----q--- [2AR • -_ aRav]T2.2_ -

1 (Ta___)(AR)2 (J.8.57): T T R-_

1 (AR)2 1 R(AR)3
: T s Aso _ - 4

(J8ss)

Finally,

vz3 )3= qT_ (%_- (J.B.5g)

where (qZ/T) is given by (J.8.53). In derivingthese equations,we have used
(J.8.54)and the definitionof _.

To summarizeour procedurethen, _ and K are to be evaluatedusing
equations (J.8.48-49)for all subsonicedges and for supersonicedges when
a = +1. When Izl < .3, say, the series (J.8.47)shouldbe used to evaluate

_q; howeverfor larger Izl,one should use

l+zlog Tz-_- z q = +1

_q(Z) = z3 izl > .3 (J.8.60a)

ph(1,z) - z q : -1 (J.8.60b)
_q(Z) - z3 IZl > .3

where now, Fortran libraryroutines shouldbe used for the evaluations. The
expressionz should be computedby

I
A

qsLksov

z = T _-_ (J.8.61)

We know in particular that this approach works for supersonic edges even when
iZl > 1 provide only that o = +I. This is because, as long as a = +I,

V+l(_U) : ph(1,z) : z(l+z 2 _q(Z)) (J.8.62)
V_
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Consequently,we are done except for the case of supersonic,nearly sonic
edges for which

a = sign(R+R_+ v+v_) = -1 (J.8.63)

In this case, both _ and K are quite close to an actual singularityof
strength(l/T). Consequently,we will only show how the quantitiesTI, %K can
be stably evaluated. The first of these is trivial. Using (J.8.1)and
(J.8.35),

^ )Iv+ : -ph(-1, -z) (J.8.64)
%I = q I(_ v_

where z may again be computedfrom (J.8.61). For %K, we have, using (J.8.2)
and (J.8.35),

% K = q (-_) - T ph(-1, -z) (J.8.65)

We now conclude our discussionwith a prescriptionof what is to be
done in and case of edges that can only be regardedas truly sonic,

T2 < 10-10.

J.8.1.3 EssentiallySonic Edges

In this case, the only reasonablething to do is to evaluatethe limits,̂
as T+0 of the functions I, AR, K. AR is trivialto compute,but both I and K
requiregreat care. We begin with equations(J.8.48-49)and evaluate the
followingexpressionsin the limit as T+O :

qz I (qaR - vz) vz3
T ' _ ' T ' z, _q(Z) (J.8.66)

First, equation (J.8.53)gives us

lim qz = _ (J.8.67)
T_0 % v

Next, from (J.8.58)

and

lim R'_ = R v (J.8.68)
%20
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--. we obtain

lim I__( SaSo (AR)2 I (A_R__ (J.8.69)
qaR - _z) - 4 R _ - 4 (_)zT2T)0

Again, equation (J.8.59)combinedwith (J.8.67)yields

_z3 - _)3
%>01imT2 - q _ (ARI (J.8.70)

lim
Finally, equation (J.8.67)impliesthat T.0 z = 0 so that

lim _q(Z) .= _q(O) = q/3 (J.8.71)T)0

Combiningall these results,we find

ilT:o: lim T_ : AR/_ (J.8.72)T)0

and

KIT=0 = lim (_(qaR- vz) vT)0 - _-__q(Z))

SASo (AR)2 m A--_R)3 q (J.8.73)
: 7_ _v_- -qv ( v

Now

(SaSo)( ): qavT :T

_a(v2) : ½ AR2 : RAR (J.8.74)

so that

: v ( )3v

i AR_ 3 (J.8.75)
: T (Q)2
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J.8.2 Panel FunctionComputation

The panel function J is definedby

J = -sign(h) J'

Vk+

J' = 2xCm + _ ph(lhl v, akR)Ivk_ (J.8.76)edges

where Co =

1 if (x',y') € _'n Dp' and rs = +10 otherwise (j.8.77)

In sectionJ.8.2.1we computea "standardrationalization"which is valid
even for a panel with sonic edges. In sectionJ.8.2.2we considerthe special
case

g2 << 1 (J.8.78)

In sectionJ.8.2.3we consider a point on the panel.

J.8.2.1 The Standard Rationalization

Defining h' = lhl (J.8.79)

we have

j, = _ph(h,Vk+, akR+) - (x sign ak - ph(-h'Vk',akR-))

+ 2_Ce =

(ph(h,Vk +, akRk+) + ph(_h,vk- , akRk-)) - _ _sign ak - 2_Ce

(ph(h,vk +, akRk+) + ph(_h,Vk+l , ak+lRk+1)) - _ _sign ak
k corners

+ 2_Ce (J.8.80)

We now define

m

Qk = ph(h'vk+, akRk+) + Ph(-h'Vk+l'ak+lRk+l) (J.8.81)
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Then, using the sum of anglesformulas,

1 (_h2vk+v_+l_ akak+lR2)
cos Qk - RkRk+l

1 (h'R(ak+lVk+ - akv_+1 )) (J.8.82)
sin Qk - RkRk+l

We then define

2 . --
Qk = ph(-h vk Vk+I - akak+lR2, h'R(ak+lVk+ - akVk+l)) (J.8.83)

We now investigatethe sign of ak+1 Vk+ - ak Vk+1 . First, by

definition,(cf. SectionJ.6.1.4)

a = _tn - nt_

v = rs_t_ + n tn

tk = (t_, tn) , tk+1 = , _n) (J.8.84)

Thus

ak+lVk+ - akv_+1 = (_tn - nt_)(rs_t_+ ntn) (J.8.85)

: _2(rs _nt - rs tn__) + n(-rs_t_ + _ntn . rst_ - t_n)

+ n2(--t_tn+ t6n ) (J.8.86)

: (rs_2 + n2) (t_ n -_t n)

= rspZ(_kx t-_k+l)_ (J.8.87)

Now since the region is convex,

(_'k x "_'k+l)_ > 0 (J.8.88)

Thus

sign(ak+1Vk . - ak V_+l)= rs (J.8.89)

We first consider the case of rs = 1.

Carefulconsiderationof the range of Qk, Qk and ak shows

J' = _Qk - 2x - x sign ak + 2_Ce

= ZQk - _ + 2_ + K (J.8.go)
k
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where mk : 1 if ak < 0 and ak+1 < 0 , zero otherwise,and

K = Z _ - 2_ - _12_mk - _ _ sign ak + 2_Ce (J.8.91)
k k k

Let Tk : 1 if ak > 0

Tk = 0 if ak < 0 (j.8.92)

Then
sign ak = 2Tk - 1

mk = (1-Tk)(1-Tk+1)

Ce : xTk (J.8.93)

and
K = Z [_ - 2x(i - Tk)(1 - Tk+1) - x(2Tk- i)] + 2_(Ce - 1)

k

= _2_(1-Tk)Tk+1 + 2_(Ce - 1) (J.8.94)
k

or _-

K _ (1 - Tk) Tk+1 + _Tk - 1 (J.8.95)
2x - k

It followsby a careful analysisfrom the convexityof the polygonalregion
that K = 0.

Next, we assume rs = -I.
By definition,Ce = 0.

Defining Ik = 1 if ak > 0 and ak+1 > 0 , it followsthat

Qk = Qk + 2_Ik (J.8.g6)

Thus
J' = }:Qk+ 2xlk - _ sign ak

= (QR + 7) - 2_ + K (J.8.97)

So,
K = 2_ - _ + E2x I k - x _sign ak (J.8.98)
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or

K
-½ 1 l;(2Tk_ 1)2_ - 1 - }] +%T k Tk+1 _ _-

: 1 + _Tk(Tk+1 - 1) : 0 (J.8.99)

Thus in general

j, = Z Qk + rs(2_ - _] _) (J.8.100)
corners edges

NOW, Qk =

ph(-h2vk+Vk+l- akak+lR2, h'Rrsp2 (t-"k x t-'k+1)_) (J.8.101)

So,

J =-sign(h) J' =

- sign(h)rs(2x -T. x +_ ph(_h2vk+V_+l_ akak+lR2,lhl Rp2(tk x tk+l)_))E

(J.8.102)

We now define

Xk :-h 2 V_Vk+1 - akak+lR2

Yk =lhlRp2(tkx tk+l)_ (J.8.103)

Then

Xk = -h2VkVk+l- akak+1(rsh2+ rp2) (J.8.104)

Now,

Vk+Vk_1 + rs akak+1 = (rs_t_ + ntn)(rs_ _ + n_n)

+ rs(_t n - nt_)(_ n - n_) (J.8.105)

= _2(t_t_ + rstntn) + _2(tnt n + rst_t_)

+ rs _n(tn__ + _nt_ - t6n - _t n) (J.8.106)
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: p2(t_ + rStn_n) : p2rs <t-_,t-_k+1> (J.8.107) _.

So,

Xk = _h2p2rs <t-_k,tk+l> _ akak+lrp2 (J.8.108)

Thus

J = -sign(h)rs(2x- S _ + _ ph(Xk,k+1,Yk,k+l)) (J.8.109)
E C

where

Xk,k+1 = -h2rs <t-'k,t_'k+l> _ rakak+1

Yk,k+l = R h (t-"k x t-'k+l)_ (J.8.110)

Using the resultsof SectionsJ.7.2.1and J.7.2.2we find for Xk+1

Xk,k+l = - i{_o,To 112 r Itk, tk+1] --.

-r< B_I{no,Bo}ll/21! -_ -- -_ --{no,(_o- Xo)X-_o,k} {no,{({o-Xo)x to,k+1}(j.8.111)

_ C(no,Xo-#o)2[?o,k,?o,k.1]
no,no

+ {no, (_o - Xo) x to,k} {no, (_o -Xo) X-_o,k+1}

-B2 (J.8.112)
: {Bo,Bo_ Go

We will now simplify the expressionGO (J.8.112). Employingthe identity
(J.7.64)with

a:c=no, = - x

C_I = Bo (J.8.113) _.
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-- we find

Go = (no, X-_o- F,o)2 [to,k, to,k+Z]
.=_ .=_

+ (noTBono)((_o- Xo) x to,k) T Bo ((_o- _'o)x-_o,k+l)

- (no x ((_o- Xo) x to,k))T Bo-i
det go-l' (no x ((_o - _'o)x to,k+I))

(J.8.114)

Now (cf. (B.3.31))

_oX_(_o-Xo)xto,k_=(_o-Xo_(_o,_o,k_-_o,k(_o,_o-_o_
= (_- _o, no) to,k (J.8.115)

Similarly

no x ((_o- Xo) x to,k+I = (_o-_o, no) To,k (j.8.116)

Using the results (cf.Appendix E)

CoBo = sB21

det Bo = B2 (J.8.117)

we find

B°-i = CO (J.8.118)
detBo-1'

Consequently,we find for Go

Go : (no,_o - _o)2 [_o,k,To,k+l]

+ {no, no} ((_o - Xo) x to,k)T Bo ((To- Xo)xTo,k+I)

- (no, X-_o-_-_o)(t-_o,kT C t-_o,k+l)(no,_o -Co) (J.8.119)

The first and last terms cancel and we are left with

_ _ _o _ k) T _ _Go = {no, no} ((_o - ) x to, Bo ((_o - Xo) x to,k+I) (J.8.120)

Substitutingthis result into equation (J.8.108)we find

= -_ _-_ )TXk,k+l -rB2 ((_o Xo) x t-_o,k Bo ((To- _o) x _'o,k+l) (J.8.121)
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Turningnow to Yk,k+l,we find

Yk,k+l = R lh(tk x tk+l)I (J.8.122)

The expression insidethe absolutevalue sign can be written

h(tk x tk+1) = (z' - _')(tk x tk+1)

= (x' - 5') " (tk x tk+I) (J.8.123)

Transformingthis expressioninto the referencecoordinatesystemwe find

-_ T _
= (_o - _o) AT(det A) A-T (to,k x to,k+1) =

ZoB2 (x0 - ) • (to,k x to,k+1) (J.8.124)

Thus for Yk,k+lwe have

Yk,k+l : B2R I(_o - _o) " (to,k x t-_o,k+l)l (J.8.125)

UBon comparingequations(J.8.121)and (J.8.125)we see that the factor
B /TkTk+l can be extractedfrom each of them and that we can write

ph(Xk,k+1,Yk,k+l)= Ph(_k,k+1,_k,k+1) (J.8.126)

where

_k,k+l : - {(_o - Xo) x £o,k, (_'o-_o) x _:o,k+l}

7k,k+I = R I(_o- X-_o, £o,k x to,k+l)l (J.8.1271

Thus we obtain the standardrationalization

J = -sign(h) rs(2_ - _ _ + _ Ph(_k,k+l,_k,k+1)) (J.8.128)edges corners

J.8.2.2 A SpecialRationalization

In equation (J.8.128)the summationextends over the straight edges of _'
and over the corners of _' internalto Dp'. When h)O, the form
(J.8.128)may not be sufficientlystable for accurateevaluation if on any

edge ak = O. The precise situationin which resolvabledifficultiescan

arise is when gk2 = r(qkh2 + ak2): 0 and the panel is subinclined

J.8-18



o

(r : +1). Although it can happenthat g_ : 0 for some edge on a
superinclinedpanel (see figure J.28) the difficultiesassociatedwith

evaluatingthe panel functionfor this configurationare quite unavoidableand
the standardrationalizationmust be regarded as optimal. To illustratethis
difficulty,we point out that for the configurationshown, the value of lhl
decreasesdown to the inner circle.

Having identifiedthe situationg2 _ 0 as a sourceof difficulty,we now
show how this problemmay be resolved (when it is resolvable). Thus we define
the procedureto be used for evaluatingJ'.

First, if r =-1

or r = 1, s = -1 and g2 > 10-4 max(a2 + h2' DZ2)

on all subsonicor nearly sonic edges

or r = i, s = +1, and g2 > 10-4 DZ2 (J.8.12g)

(whereDE is the panel diameter)we use the standardrationalization.

Otherwise,we calculateJ' by

J' = 2xCe + E Qk (J.8.130)
edges

where (cf.(J.8.81)

Vk+

QR = ph(lhl v, aR)I
vk-

We now describvestablemethods for computingCe and Qk-

Since either the flow is subsonicor C_ = O, the most directway of
getting Ce is by the formula

1 if {n, (Q'k- _k) X_k} > 0 for all kCe = 0 otherwise
(J.8.133)

The topologicaljustificationof the proceduredefinedabove stems from
the followingobservation. As one traversesthe boundaryof a convex
polygonalregion, proceedingin a positive fashion,any point inside the
region always lies to the left of the extensionof the edge. Thus the edge
distanceak is always positive.
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We now provide a detailedprescriptionfor the computationof Qk. This -
descriptionwill consist of two parts.

(i) Evaluationof ph(_hlv, aR) when R = 0 togetherwith the evaluationof
Qk on edges that intersectthe Mach cone, and

(ii) Evaluationof Qk when both end points of edge k lie inside the
domain of dependenceDp.

It is a fairly straightforwardmatter to show that the value of v at the
point at which an edge enters the domain of dependencesatisfiesthe inequality

IR=O < 0 (J.8.134)
vk-

Similarly,when an edge leavesDp, v_ satisfiesthe inequality

Vk+i R=O >

m

(J.8.135)0

These inequalitiescan in fact be verifiedby a careful study of the special
cases in figure J.29.

As a consequenceof these observations,we see that

ph(lhl v_, ak R)IR=O = sign(ak)x (J.8.136)

and

' I = 0 (J.8.137)ph (lh_ v_ akR) R=O

If just the lower endpoint of the edge intersectsDp, Qk is given by

QR = ph(lhi v_, ak RE) - x sign ak (J.8.138)

If just the upper endpoint intersectsDp we have

QR = -ph(lhl v_, akR_) (J.8.139)

Finally if both endpointsintersectDp

Qk = -x sign ak (J.8.140)
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We now developa rationalizationfor Qk when Rk , O, R_ , O.
Evaluating(J.8.128)we have

Qk = ph(lhl v, ak R)Ivk+ =
vk-

Ph(lhl Vk+, ak Rk+) - ph(lhl Vk-, ak Rk-)

= Qk + 2xn n an integer (J.8.141)

I

where Qk is definedby

Qk = ph(h2vk+Vk- + ak2Rk+Rk-, lhl ak(Rk+Vk- - Rk-Vk+)) (J.8.142)

In order that we might determinen, we investigatethe sign of Rk+Vk- - Rk-Vk+.
+

Vk

"Kvk- Rk+'vk+_=-Rk+Rk - S d(_) (J.8.143)Rk.Vk- - Rk-Vk+ = Rk+Rk-(D-_-_
vk-

Now R2 : sqg2 + qv2, hence,

1 qv2 sq_2 (J.8.144)
(R)_= _ R3 - R3

d

Consequently
. _ - .

sign(Rkvk - RkVk) = -sqk (J.8.145)

Thus
-sqk sign(ak)Qk _ (o,_) (J.8.146)

Now an inspectionof equation (J.8.138)shows that Qk €(O,_).
Consequentlywe see that no phase wrap is possible,and that n = 0 and

Qk = Qk (J.8.147)

Multiplying both arguments of Qk by (Rk+Vk- + Rk-Vk+), we find that

Qk = Qk = ph(X,Y) (J.8.148)
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_X = Rk+Vk+(h2Vk-2 + ak2Rk-2) + Rk-Vk-(h2vk+2 + ak2Rk+2)

Y = Jhl ak sign(Rk+Vk- + Rk-Vk+)(sqg2)(Vk-2Vk+2) (J.8.149)

Now,

sign(R+v- + R-v+) = -sq sign((R+v-)2 - (R-v+)2)

= -sq(sq) sign(v-2 - v+2)

= sign(v+2 _ v-2)

= sign(v+ + v-) (J.8.150)

Consequently,Y is givenby

Y = -ak lhlg2 jA(R2)J (J.8.151)

Next, we examine X. First, note that

h2v2 + a2R2 = (h2 + qa2)(v2 + rsa2) = rqg2(v2 + rsh2)

= rg2(qv2 + rsq) = rg2(R2 - rsh2) (_.8.152)_

Consequently _X =

(Rk+Vk+(Rk-2_ rsh2) + Rk-Vk-(Rk+2 _ rsh2)) rg2 (J.8.153)

Comparing (J.8.152)and (J.8.153)we see that they contain a common factor of
g2. We remove this common factor to obtain the rationalizedexpression
for Qk

Qk = -Ph(a[Rk+ Vk+(Rk-2 - rsh2) + Rk- Vk-(Rk+2- rsh2)]'Taklhlla(R2)l)
(J.8.154)

This is the basic formulawe use to computeQk for subsequentsubstitution
into equation (J.8.130)for J'. The argumentsfor the expression (J.8.154)
may be computed in the obviousfashion using the relationsfound in Section
(J.7.2).

We can now evaluate J° if lhl = O. In doing this, we use the following
formulafor J' (cf. J.8.109-110)

J' =rs (2x - _ x + _ ph(-h2rs<tk, tk+l> - rakak+l, lhl Rk+tk • tk+l))
E c

(J.8.155) _.
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-- Setting lhl = 0 we find

J'J h =0 = rs(2= - Z _ + Z ph(_rakak+1,0+)) (J.8.156)E c

Since ak > 0 for all k, we then obtain

J'l h =0 = rs(2_ - Z _ + (l+r) Z _) (J.8.157)E 2 C

We can now examinethe three specialcases describedby Figure J.30. First,
considers = 1. Then r = +1 and the number of cornersin the domain of
dependenceequals the numberof edges (=n, say). Thus

Z _ = n_, Z _ : n_
E c

and

J' J : 2_ (J.8.158)h =0

Next, supposers = -1. Then r = +1, s = -1 and the number of straightedges
of D' exceedsthe number of interiorcornersby 1. Hence

Zx:(m+l) x
E

Z _ = mr (j.8.159)
C

and

J'J : -_ (J.8.160)h :0I

Finally, supposer = -1. Here, r = -1, s = -1 and D' has no straightedges
or corners. Hence

J'J h =0 =
2x (J.8.161)

Summarizing, for a field point lying on the panel

'2_rs if rs = iI

J, J : (J.8.162)
h :0 _rs if rs = -I

In general we write

h =0 = rs + 3) (J.8.163)

J.8-23



Of additionalinterestis the jump in J and the averagevalue of J. In -
order that we might define the jump in J we must define it by

[j] = €_0+lim [j('_+ on) - J(_'- €_)] (J.8.164)

The average value, (J)Av, is the average of these two quantities. First let
s = 1. Here

[J] : -2_ - (2_) : -4_

(J)Av = ½(-2_ + 2x) =
(J.8.165)0

Next, considerrs = -1. Here

[J] :

(J)av : 0 (J.8.166)

Finally let r = -i. Here we must proceed very carefully. First we must
recall that a panel may influencea point only when

sign(h)sign(_,Co)= i (J_8.167)_

Next, _ must computethe sign of h for field points lying just above thepanel + on) and for points just below the panel. Now

sign(h(P'_€_)) = _ i (J.8.168)

Thus,
[J] =Z_ sign(n,Co)

(J)Av = X sign(n'Co) (J.8.16g)
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J.9 Far Field PIC's

As noted earlier in appendix1.4, the far field estimationof a panel
influenceis calculatedby implementingthe followingapproximations:

(i) The panel is replacedby its mean panel

(ii) Singularitydistributionsa and u are replacedby their quasi far
field approximations(see section 1.3.1)

(iii) The kernel functions(l/R) and V(1/R) are replacedby Taylor series
approximationsof degree 0 (monpole),1 (dipole)or 2 (quadrupole).

In this sectionwe carry out the analysisof these approximationsas they
relate to the computationof the integralsdefinedby equations(J.1.1),
(J.1.2),(j.1.4),(j.l.5).

We begin this analysisby noting that the far field evaluationprocedure
is used only when the panel _ (and its mean plane approximation _m) is

completelycontainedwithin the domain of dependence,Dp. In fact, all
points of _ are requiredto be some distanceaway from the boundaryof
Dp. As a consequence,we find that for all cases of interest,

(1D = _ (far field evaluationcondition)
P

- _m flDp = _m iJ.9.1)

The local coordinatesystemassociatedwith the mean panel is definedby the
panel centerP9' and the mean panel normalnm, which determinesthe reference

to local transformationmatrix Am by means of equation (E.O.1). This transfor-
.._ -+

mation gives the local coordinatesQ' of a point Q by the formula

Q' = Am (Q _ p9) (J.g.2)

The area JacobianJ for this transformationis given by (E.3.109),(withm

appropriatemodifications)by

Jm = I/[B){Bin'Bm}II/2] (J.9.3)

Using the basis functions_a defined by

[_ ] : [1, _, n, _2/2, _n, n2/2] (J.9.4)
(I

we write the mean panel singularityapproximations(I.3.1)and (I.3.2)in the
form

3

o = _ aa _a (_' n) (J.9.5)
a:l
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6

= _ uB _B (_' n) (j.9.6) -_
B=I

If we now substituteall these results into the defining relationsfor 16s, vs

given by (j.1.1-2),replacingintegralsover _ with integralsover _m
we obtain the followingapproximations

16s -= _ ( Z _ ¢ ) (1) (dm d_ dn) (J.9.7)
a:l

I_m

3

.Vs ___ _1 _( _ °a _ )( VQ _)(Jm d{ dn) (j.9.8)
a:l

Zm

The correspondingtransformationsfor 16D, vD requiresthe use of the identity
(cf. (E.1.28))

I AT B, dS' (j.9.9)
n' dS' = B2 A-T nm dS, nm dS = B-_

and the identity

: B V = B AT V' (J.9.10)

The crucialcalculationfor the treatmentof 16D reads

1

nm dS . v = B-_ (AT _' dS') . B AT v'

1 B, dS (A B AT) V' s _'dS' D V'
{J.g.11)

where D = diag (r, s, rs) (see equation (E.3.31)). In derivingthe last
result we have used the identity (E.3.106),modified for the presentcontext,
that

A B .AT = sB2 D (j.9.12)

Substituting(J.9.11)into the definitionof _D' (j.1.4),and taking account
of our earlier observationsyields:

s "B ) dS'.D v' ) (j.9.13)_D ---_ ( _1B

Zm
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_ The crucialcalculationfor the treatmentof _D reads

(nm dS xV.) x _f = (I__AT _, dS' x AT V'.) x B AT v'f
B

1 AT ,_ AT
= _ [(fi'dS' xV ) x A B V'f]

= s AT [(B' dS' x V'_) x D V'f]
(J.9.14)

Here we have used twice the standardidentityfor the transformationof a
cross product (cf. equation (E.1.12)):

G_ x Gy = det(G) G-T (_ x _)

as well as the result (J.9.12). Substituting(J.9.14)into (j.1.5)as usual

we obtaln for VD:

. SAT _vD = _ (n' dS' x V',) x D V' ( ) (J.9.15)

_m

Having implementedthe first two approximationsset forth in our list at
the beginningof this section,we now simplifyour expressiona bit and
identify some con_nonintegralsbefore proceedingfurther. We begin this
simplificationprocessby examiningin somewhatgreaterdetail the form of our

integralsin the local coordinatesystem for _m"

In panel local coordinates,the metric matrix C' is definedby equation
(E.2.18)to be

C'= A-TcA -1

By taking the inverseof equation (E.3.31)and recognizingthat the matrix D
is its own inverse,we conclude that

I r ]

C' = (C')-1 = D = S (J.9.16)
rg

Letting P" denote the local coordinate representation of the control point _,

P' = Am (P - P9) (d.9.17)

we find that the kernel function (l/R) has the followingrepresentationin
local coordinates

J.9-3



_/R--Wr_' - _",_' - _,y2

: 1/ [CQ' - _,)T C' (Q' - _,)]i/2 (J.9.18)

Introducingthe followingnotationfor the componentsof Q' and P',

Q' = n 1J.9.19)

p, = (J.9.201

we obtain for the kernel

(I/R) = 1/ [ r (_- x)2 + s (n -y)2 + rs ({- z)2 ]i/2
(J.9.21)

Ratherthan compute V'(1/R), we prefer to work with the quantityD V' (l/R).
On the mean panel I , _ = 0 and we obtain

m

D V' (IlR) = Y- n (J.9.22) --.

{ :0 z

We now write out the formulasfor _s and _s that we require:

3Jm d{ dn (j.9.23)
Cs : --_ _ °_ _ R

a=l _m

3 E;]= n d_ dn
VS K a _ Z

a=l Zm
(j.9.24)

The formulafor Ts follows from (j.9.8)by using (J.9.22)togetherwith the
result

V : AT V' : ATD (D V') .

Upon examiningthese equationswe are led to define the integrals _a and W_ by

s _ Card{ dn (j.9.25)

_m
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Ew1,al[x ]1W3,a] _m z
(J.9.26)

The reason for including the factor (s/K) will become apparent when we
consider.the case of the doublet influence coefficients. Using the quantities
_a and Wa, we can rewrite Cs and vs as

3

CS = -Sdm _ _a _a (J.9.27)

a=l

3

;s : SJm ATD _ aa _a (J.9.28)

a=l

The correspondingequationfor CD is obtainedby using the fact that

and substituting(J.9.22)into (j.9.13)to obtain

6

B=I
I;m

6

: _ "B W3,B (J.9.30)

B=I

The required equationfor V_Dis obtainedby first recognizingthat the
integrandin equation (j.9.15)can be written

_ z/R3

(_' x V'_) x D V' (I/R) = _ z/R3 (j.9.31)
n

-_{ (x-_)/R3- Pn (Y-n)/R3..a
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Differentiating the relation (j.9.6) for _ yields

3

(J.9.32)
_ = _2 €1 + _4 ¢2 + u5 ¢3 = _] _x,a Ca

a=l

3

Pn = _3 €i + _5 ¢2 + u6 ¢3 = _ "y,a 6a (J.9.33)
a:l

with the obviousdefinitionsfor "x,a and Uy,a" Substitutingthese expressions

into (J.9.31)and the result of that back into (j.9.15)yields after some
manipulationand taking account of the definitionof Via,

ix 1= AT _] (J.9.34)_D _y,a W3,a

= -_x,a Wl,a -_y,a W2,a

We have now reducedthe problemof computingthe approximateinfluence

coefficientsfor _s' _s' CD and _D down to the evaluationof the integrals

_za and _ definedby (j.9.25)and (J.9.26). We will now focus our attention
on the computationof these quantitiesbringing into play our final
approximationtechnique,the Taylor expansionof the kernel functionsabout
the panel center.

Letting Ro denoted the value of R at the panel center, the origin of the
local coordinate system,we observe (cf.J.9.21)

1/2

Ro = [rx2 + sy2 + rsz2] (j.9.35)

We may expand (l/R) in a Taylor series about the point Q' = 0 and obtain on
the surfaceof Zm (_=0):

(l/R) - (1/Ro)

+ (rx/R3o)+ n Csy/R3o)

+ '2 f3x2 -_3o) + _n (3rsxy I + n2 f3y2 - s ) --Ro Ro
(j.9.36)
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Using these we can write for Wa:

-xH - H1 -

Wa = YHa - H2a (J.9.48)

zH

Consequentlywe obtain for our variouspanel influences

3

€S = -SJm _ oa _ (J.9.49)
a=l

3 F xHa - Hla

Vs = SJm ATD _ aa LYH - -H2a (J.9.50)a=l zHc

6

_D = _ _B zHB (J.9.51)
B=I

r
1 °v_ = AT a'_l "x,a 0 + Uy,a zHa

= - HI=-XHc H2a-YHa-
(J.9.52)
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J.lO Line Vortex PIC's

The line vortex term of the velocity is given by (cf.(B.3.55))

i I ._(_)xJl (JioI)
_D* = "_ aSnDp

Differentiatingin compressibilitycoordinatesyields

_7(R1-)= -sB2 (_- _) /R3 (J.I0.2)

and thus

* -sB2 I u (Qo _o) x d_ (J.10.3)
VD - K BSnDp R-_ -

In general,the doublet strengthis assumedto be continuouseverywhere,
and thus the line vortex contributionto the velocitycancels and may be
ignored. In addition,evaluationof this integralis not possible in
supersonicflow without additionalassumptions.

In subsonicflow, however,the inclusionof a "line vortex"corresponding
to a discontinuityin doublet strengthmay be meaningful (see Appendix B).
The option is not availablein version1.0 of Pan Air, but the theory is
includedhere as backgroundmaterial. In this section,we computethe 3x3• • • _ •

matrix whlch glves vD in terms of u , Uo, and u+, the values of
doubletstrength at the initialpoint, center point, and endpointof a line
segment, such as a panel edge.

J.10.I Computationof vD

Now along a straight segmentof aS o, we have

d_xo= to dso (J.10.4)

where to denotesthe unit edge tangent in referencecoordinatesand dso
denotesthe elementof arc length. Also, as one moves along such an edge, the
point of integrationQo varies accordingto the rule

Qo:_o(°)+ tos (j.io.5)

Thus ds°

_(_)x_xo=sB2_ (_o(O)-_o)x_o R--_ (0.10.6)
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Substitutingthis into equation (J.10.3)we obtain the line vortex velocity -.
due to a straight segmentof edge E

* -sB2 (Qo(0) - Po) x to) S u dso
VD = ---_-- E R_ (J.i0.7)

This equationmotivates us to define the integral

= _ _ dso (J.10.8)
E T

so that _D is given by

* -sB2 ((Qo(°) - _o) x to) _ (J.10.9)vD -

Thus _D is a constantvector ti_s the integralm. We evaluatem by
applying a co_dinate transformationfrom the referencesystem Xo to a local
coordinatesystem X' such that in X', the elementof arc length along the edge

= sqdx'. Our new coordinatesystem is definedby
image is dS'ledge
the transformations

F E A (J.10.i0)
Xo _ X . X . X'

The transformation r is discussed in Appendix E. The coordinates X are
compressibilitycoordinates,while E is a scalingtransformation,

[I] (J.lO.ll)
E=

B

We define

!1Ii oA: L- oO  zlo0 -T-z/ _, ty/_J
(J.lO.Z2)

where
_:E r_o
_2 = _x2 + _y2

q = sign It, t] (J.I0.13)

Before proceedingfurther,we note in passing that when to is chosen to have
the normalization

[to, to] = q = !1 (J.10.14)
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then t, t, and t', definedby

t= F o

_:E_

_'= _ { (J.I0.15)

retain this normalization

[t', _]x = [t, t]_ = [t", _']x' = q (J.10.16)

Becauseof this nice property,we will assume that_o has the
normalization(J.10.14). We can now prove the two identities

dso:I_oIds' (J.i0.17)
ds' = sq dx' (J.10.18)

The first identity is proved by the calculation

(ds')2: (_, ds') • (_.'ds') : (_x') (a'x,)

= (A-EF a'Xo)• (_ r a'Xo)= (J.i0.19)

(A-Er _co dso) (A-Er to dso) :

(dso) 2 i_-_ F tol 2 (J.10.20)

Now since to : _o/I_oI , we find

(ds') 2 : (dso) 2 IA'E F_o{ 2/I_oI 2

(dso)2 I_,12/" 2= Itol (J.I0.21)

wherewe have usedequation(J.10.15)to noticethat

_, = _ F _o = X _ (J.10.22)

m

The quantity A t is readily computed:

I } {1oiAt: 0 : sq_/I[_,_]I
, 0 0

(J.10.23)
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Invokingthe normalizationcondition(J.I0.16)we then find that

_, = i 7 = sq , I_ 71 = 1 (J.lo.24)

Using this in equations (J.I0.21-22)then yields the required identity

I_o_ ds' = dso (J.i0.25)

The second identity(J.10.18)can be proved by noticingthat

t I _

_, _ it, I _ t'=sq (J.10.26)

The identitydx' = t'ds' then provides the desiredresult as follows

dy'| = d_' = t'ds' = ds' (J.i0.27)
dz'J

It should be noted that the ratio of arc elements,I_ol (cf.(J.10.17),is
closely related to the quantityT definedby

T2 = I[to,toil (J.I0.28)

To see this relationshipnote that

£o £o (J.10.2g)

_o : i[_o' £o]11/2- T

Taking norms and rememberingthat Itol= 1, we find

i (J.10 30)I%1:T

The next piece of informationwe will need is the form of the function R
in the coordinatesystem X'. Using the fact that in X, R2 is given by

R2 = (_ _ x)2 + s(n - y)2 + s(_ - z)2 (J.10.31)

one may then use the definition (J.I0.12)of A to computeR2 in X'. One
quicklyfinds that

R2 = q(_' - x')2 + sq(n' - y,)2 + s(_' - z')2 (J.I0.32)
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If we now define the edge variablev and the edge parameterg by

v = _' - x' (J.10.33)

sqg2 = sq(n' - y,)2 . s(_' - z')2 (J.10.34)

one quicklyobtainsthe necessaryexpressionfor R2

R2 = qv2 + sq g2 (J.10.35)

We may now write the integralm in the conciseform

I ol ds' sq _ . dv,.,= _ _ _ (J.I0.36)

E R3 T E _/qv2 + sqg2 3

Now on a given edge E, _ is assumedto be a quadraticfunction,completely
determinedby its values at the lower and upper endpointsv_ and v+ and
at the midpointvD = 1/2 (v_ + v+). The correspondingvalues of _ are
denotedu_, u+, uo- As a functionof v, u may be written

. : .(v): ._f_ (v)+ .ofo(v)+ .+f+,(v)

= _u-uo _+j fo (J"I0.37)
f+

where the functionsf are defined

(v- Vo)(V- v+)
f_(v)--(v_- Vo)(V_- v+)

(v- v_)(v- v.)
fo(v)--(Vo- v-)(Vo- v+)

(v - v_)(v - vo) (J.10.38)
f+ (v): (v'_-v_)(v.-Vo)

If we introducethe basis functions_o (v), _1 (v), _2 (v) by the
definitions

Av = v+ - v_ (J.10.39)

_o (v) = 1
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V - V0
€1(v) :7

av

(v- Vo)2
€2(v) = i I

T (av)2 (J.lO.40)

we see that the f functionscan be written

fo = 0 - €I

f 1 €2_J_- (J.10.41)

Substituting(J.10.40)into (J.10.36)and thence into (J.10.35)we obtain for =

== o T1

---2- -- =0 "

= 13_uo_+_l 0 - =i
1 '"2

(J.I0.42)

where =i are definedby

=i sq _ €idv (J.10.43)
=-_-E R_

The functions=i can be computedby repeated integrationby parts. In doing
this, we treat the general case of a quadraticbasis function€. We
consider then

=(€) sq _ € dv (J.10.44)

- T _qv2 + sqg2 3

dv
U : _ dV =

qv2 + sqg2 3

v (J.10.45)
dU = ¢'(v) dv V = sq--_gR
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Thus
V+

i $ _ _v] (J.iO.46): [s  2R v_
Again integratingby parts, let

v dv
U : €_'(v) dV : "-IT--"

dU : _'(v) dv V : qR (J.I0.47)

Thus,
V+

_v
m(_) _ sq _ _,

I

sqg_ [_ qR + q_' SRdv] (J.I0.48)V_

Now, note that

_v R2 - sqg2(vR)= R + q_2 R + R

: 2R - _ (J.10.49)
R

Consequently

IRdv:½[vR+sqg2IdvIR] (J.I0.50)

and we obtain for m(_).

V.

q_,'
m(_) _ sq [R_--V-v- _R + (vR +sqg_ --2--- sqg21(_)_ (J.lO.51)V_

where, of course, I(_) is given by

dv _½1og v + R +1
S v - R q =

I(_) = R-: t -ph(v,R) q : -1 (J.10.52)
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We now apply the formula (J.10.50)to the evaluationof mi, i = 0, 1, 2.

V+

sq v I sq/T v+ v_

First mo : _ R Iv_ - _ (_ - _)

sqlT R_v+ - R+v_ R_v+ + R+v_ (J.10.53)
- sqg2 R+R_ R_v+ + R+v_

sqlT sqg2(v+2- v-2) (J.i0.54)
- sqg_-" R+-R_(R_v++ R+v_

sq 2av Vo . (J.i0.55)
- T R+R_(R_v++ R+v_)

where

Vo = ½(v_+ v+) (J.I0.56)

In perofrmingthis evaluation,we have taken specialcare that the possibility
that g2= 0 not cause any difficulty.

Next, we considerml, which correspondsto

€i(v_) = -I

€i(v+) : +1

_1' = -2/av (J.10.57)

Using equation (J.10.50)we find

v_+v_ 2q(R+ R_)] (J.I0.58)ml - sq [R+ +sqg_ _ -

After considerablemanipulation,one then finds

1 i (J.i0.591ml = -_ [a( )]2 s
TXTTI_T

where the overscoredenotesthe averagevalue of the quantityat the lower and
upper endpoints. Finallywe computem2, which correspondsto

_2(v+): _2(v_): o
4

_2'(v+): -_2'(v_) : _

8 (J.10.60)
_2" - (av)_
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_ Applyingequation (J.lO.50),we find

m2 - sq [_ 4q 4q
(sqg2) A-T(R+ + R_) + (av)_ (a(vR)+ sqg2al)]

4s [-av(R++ R_) + a(vR) + sqg2 al]
- Tsqg2(av)2 (J.i0.61)

Now

- Av(R+ + R_) + A(vR) : _AR +RAv - 2AvR

: _AR - avR : v_R+ - v+r_ (J.I0.62)

sqg2(v-2 - v+2) (J.10.63)
= v_R+ + v+R_

Consequently

4s a(v2) ] (J 10.64)
_2 - (av)-_ [al v_R+ + v+R_

This may be written

4s [al_2 - ] (J.10.65)
av av R+R_- (v-7-R)

As in the case of mo and ml' we have found a form that is perfectlywell
behaved in the limit g2: O. Of course, the expressional must be

calculatedin a stablemanner. This problem has alreadybeen consideredin
SectionJ.8.1.
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J.11 SingularBehaviorof Integrals

In this sectionwe will examinethe behaviorof the perturbationpotential
and velocity inducedby a discontinuoussource strength,a discontinuous
doublet strength,or a discontinuousdoubletgradient. It can be seen that no
generalityis lost by examiningthe potentialand velocity inducedby various
non-zerosource and doublet distributionson the triangularregion in figure
J.31.

We will consider the cases of discontinuoussingluaritystrengthor
gradientacross edges in subsonicflow, and subsonic,supersonic,or nearly
sonic edges in supersonicflow. The case of € = O, M_= 0 will be of
sufficientgeneralityin subsonicflow. For supersonicflow, the cases of
subsonicand supersonicedges may be treatedby consideringedge 3, and € a
small positiveor negativereal number. Finally,the compressibility
directionmay always be taken to be the x-direction,except when considering
the case of a superinclinedpanel. Thus with the exceptionof this last case,
the referenceto local transformation(cf.(E.O.1))is the identity.

In the sectionswhich follow,we will first computethe potentialand
velocity inducedby the three discontinuitiesin singularitystrengthor
gradient in terms of edge and panel functions. We will then evaluate the
computed expressionsfor each of the flow regimes. We will borrow heavily
from the notationof SectionJ.6, especiallyJ.6.1.4 and J.6.5.

J.11.1 DiscontinuousSourceStrength

The source strengthmay be discontinuousacross a panel edge in such a
fashion that the discontinuityretainsthe same magnitudealong the entire
edge, in which case the tangentialderivativeof source strength is
continuous. On the other hand, the magnitudemay vary, in which case the
tangentialderivativeis discontinuous. The two representativecases are the
constant source strength

al(x,y)= I (J.ll.l)

and the linearlyvaryingstrength

a2(x,Y)= x - y (J.11.2)

We will now considerthe potentialand velocity inducedby aI and a2.
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We recall the definitionof [So]

a0

OX

= [So]4x6 .

VS_

ayy (J.11.3)

and note that therefore

0

__ o= [So]4x6 0
I lJ 0
-VS-aue to 0 (J.11.4)

gl

{iltvsjdu_2to _(J.ll.5)

Applying (J.6.25),we have

VsJ 1 (J.11.6)

and __ ._
_i +bdl - b2 - bd2

{_s 1 _la'l+ B11-_1_2- B12VsJ 2 : _2a'i + B21 - _2a'2 - B22

_a'I - mr (G_) I - _a'2 + hr (G_)2
(J.11.7)

where a, b, _, _, and B are the fundamental integrals of Section J.6.5, and

{x°l: _o' : Yo'J (J.11.8)

the local coordinatevalue of the field point.
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We first consider the potentialand velocity inducedby the source
distributiona1.

We have (cf. J.6.179)

_k+

b--r (_k )K _" Rd_ - 2xlhl Co (J.11.9)
_k-

= (cf(J.7.5))

-r

kE Jk(X) (J.11.10)

: (cf(J.7.3),(J.7.12),(J.7.27),(J.7.34))

-sh j _ s
_ _ akqklk (J.11.11)

where (cf(J.7.3))

J : E h Jk(_) - 2x sign(h)Cg (J.11.12)k

is the panel function and Ik is the edge function. Ik and Jk are
definedby (J.7.1)and (J.7.2)respectively.

Next,we have (cf(J.6.174))

-S
a : _ J (J.11.13)

and (cf(J.6.185))

•_:_kS E _kqklk (J.11.14)

Thuswe have

_s,1= b - -sh j sK - _ E akqklk (J.11.15)

(V's,1)x,y : _ : _ Enkqklk (J.11.16)

-S

(Vs,1)z = a = _ J (J.11.17)
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Next we consider the potentialand velocity inducedby the second source o_
distribution. We have (cf(J.6.195))

= _-I_kqk a(Rv) --_-rsI_k_k(ak2 + qkh2) Ik (J.11.18)

Thus

_s,2 = I_l- _2 + b(d'l- d_2)=

1 rs

-_ kE (_k,l - _k,2) qk A(Rv) -_ kE (_k,l- dR,Z) (ak2 + qkh2) Ik

+ _s,1 (Xo' - Yo') (J.11.19)

Next, by (J.6.201)

[B] = b I + rs S n-_ak_kT ik + 1__F.qk_k_kTaR (J.11.20)K k Kk

Thus

_s,2,x = _1(d_1- d'2)+ BI1 - BI2 =

_s,1,x (Xo' - Yo') + _s,1 +

rs

k_ _k,1 ak(_k,2- _k,1) Ik +

1__ qk _k,l(_k,1- _k,2) AR (j.11.22)Kk

Similarly,

_s,2,y = _2(d_I- d'2)+ B21 - B22 (j.Ii.23)

= Cs,l,y(Xo' - Yo') - 6s,1

+ rs S _k,2 ak(_k,1- _k,2) IkK k

" + 1_S qkB'k,2(_k,1- _k,2) AR (J.11.24)Kk

Finally, _
_s,2,z= a(dl- d2) - hr((G_)1- (G_)2) (J.11.25)
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.Now,
G_ : ; (J.11.26)

and so

_s,2,z = _s,l,z(Xo ' - Yo')

hrs S (B'k,I _ _k,2) qklk (J.ii.27)k

J.11.2 DiscontinuousDoubletStrength

A completediscussionof the potentialand velocity inducedby a
discontinuousdoubletstrengthwould requireconsiderationof a varying
doubletdistributionas well as a constantone, in parallelwith the
discussionon discontinuoussource strength. This processwould be lengthy,
however,and not contributeany additionalinsight,and so will be neglected.
We thus consider a panel with constant doubletstrength_ = 1 only.

J.11.2.1DoubletPotential

Wehave

IXI01_D : [Do]I,.

.UnnJ (J.11.28)

where Do is given by (J.6.253),and _o = 1, while all other coefficients
are zero.

Thus
-rs

_D : ra - _ J (J.11.29)

_ -rsK(_ h J(_) - 2_ sign(h)Co) (J.11.30)

J.11.2.2DoubletVelocity

To computethe velocity indeucedby a discontinuousdoublet strength,we
must use the resultsof SectionJ.lO. We consider (J.10.41)in light of the
fact that u = 1 on the entire panel. Thus

_1 = _o = _+ = 1

J.11-5



and

_ = L1 0 O.j _1 = _o (d.ll.31) _
_2

(J.11.32)

Combining (J.lO.g) and (J.11.32)

* -SB2 _
((Qo- Po) x To) _o (J.11.33)VD,edg_- K

where Qo is any point on the edge. From (J.10.52),

1 v+ v_)
_o : _ (_++- ___ (j.11.34)

and thus

" V,_D*edge= -sB2 v+ v_ -_
(_++- ___) (Qo - _o) x to (J.ii.35)

J.11.3 Discontinuitiesin DoubletGradient -

Since a discontinuityin the tangentialderivativeof doublet gradient
produces a doublet discontinuityof the type we are neglectingto consider,we
need only consider a discontinuityin the normal derivativeof the doublet
gradient across a panel edge. It is clearlynot possible to find a panel with
a quadraticdoubletdistributionwhich has zero doublet strengthon its
perimeterwithout being identicallythe zero distribution. Thus we look at
the effect of a discontinuousdoublet gradientacross a single edge of the
panel. We must later considerthe possibilitythat some of the singular
behaviorof the inducedpotentialor velocity is artificial,resultingfrom
the isolationof a single edge. That is, the contributionfrom a neighboring
panel may cancel the contributionfrom this panel edge.

We thus assume that the coordinatesystem is translatedso that it lies on
the kth edge of our triangularregion, k = 1, 2, 3, and that the doublet
strengthon the panel is given by

_k (Q) = Q " nk

where
nk = T_k (J.11.36)

and _k is the outward pointingedge normal,normalizedby (J.6.43)and
(J.6.45). Thus u = 0 on the kth edge, while the normal derivatriveof _ jumps
by 1 on the edge.
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Thus, applying (J.6.240)and (j.6.253),the potentialand velocity induced
by Uk is

1 2

1 - ra I ra_T - h (G_)T

_D} L

= 2 0 I ra I
I
]

VD I
k I 0 I-(G_) T

m

(J.Ii.37)

We now recall that referenceand local coordinatesare identical. Thus
(cf(J.6.39)and (J.6.46))

i a"• _k (J.11.38)ak = -d • _k = - ¥

and (cf(J.6.44),(J.6.49-50),and (J.6.55))

(G B'k)"_k = _k " _k = qkrT (J.11.39)

Thus,
= ra _T _k - h (G_) T _k

= -ra Tak - h (G_) T _k (J.11.40)

Thus, by (J.11.13-14),and (J.11.39)the contributiondue to the kth edge is

_k - rshTK Jkak rshTK Ik (J.11.41)

Next,

[rank }v =__(Ga)T _k (J.Ii.42)

Thus

-rs Jk _k (J.11.43)_k,x,y - K

while
-rs

Ik (J.ii.44)Vk,z-

This concludesour reductionto fundamentalintegralsof the potentialand
velocity due to discontinuoussingularitystrengthor gradient. We now
consider the behaviorof the panel functionJ.
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J.11.4 Singularitiesof the Panel Function

The panel functionJ is definedby (J.11.12)where (cf SectionJ.7)

-I I+Jk(_) = _ ph(hr,aR) (J.ii.45)m

We also have (cf.J.8.105-106)

J = -sign(h)rs 2_ - _ _ + _ ph(Xk,k+l,Yk,k+l)
edges corners (J.11.46)

where

Xk,k+l = -h2rs <tk, tk+l> - rakak+l

Yk,k+l = Rlhl l_:kx tk+ll (J.11.47)

J.11.4.1The Plane h = 0

We see that a possibleregion of discontinuityfor J is the plane h = O.
On this plane,

Xk,k+1 = -rakak+1 _

Yk,k+l = 0 (J.11.48)

Thus J is not readilydefined on the h = 0 plane whenever a = 0 for some edge,
that is, whenever the field point lies on the line containingthe edge. In
addition,on all Mach lines downstreasmfrom the panel corners, the number of
edges or number of corners in DD may change,and thus J may experiencea
jump. In figure J.32, we illustratepotentiallines of discontinuityfor the
expression

J+ = lim j = -rs(2x - _x + _ ph(-rakak+I, 0+)) (J.11.49)
h_O+ E c

These lines includesome which are upstreamof the panel and thus apply only
in subsonicflow.

We now claim that J+ has a constantvalue on the exteriorof the panel
and a (perhapsdifferent)constantvalue on the interiorof the panel. This
assertionmay be proved by carefulexaminationof the behaviorof J+ in the
vicinityof a Mach line or a panel edge extension. In any region which does
not contain such a line, the number of cornersand edges in Dp is a
constant,while in addition akak+1 never changes sign, and thus J+ is a
constant.
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Now, carefulexaminationof figure J.32 makes it clear how J+ changes
when an extensionof a panel edge (thoughnot part of the panel edge) is
crossed. If the panel is superinclinedit has no influenceon the field point
since h = O. If the flow is subsonic,ak changes sign, for some edge Ek,
while all the ai, i = k, have unchangedsign. Thus ak_lak and
akak+1 both change sign, and so two of the phase functionschange in
value, one from zero to x, the other from x to zero. Thus J+ remains
unchanged.

Next, when the extensionof the edge Ek of a subinclinedpanel in
supersonicflow is crossed,then either both the (k-l) and kth corners lie in
Dp or neitherdoes. In the former case, the value of J+ remains unchanged
fbr the same reasons as in subsonicflow. In the lattercase, none of terms

of J changes,since the summationover corners includesonly those in Dp.

Next we considerthe behaviorof J+ as Mach lines are crossed. Here we
need only consider subinclinedpanel in supersonicflow, since for
superinclinedpanels the Mach cones from panel corners intersectthe h = 0
plane only at the corner itself. Carefulconsiderationof figure J.33 yields
the followingconclusions.

First, supposesign (akak+l)= +1. Then as the field point P moves

such that the kth corner moves into Dp, the number of edges intersecting

Dp increasesby one. On the other hand, if sign (akak+l)= -1, then as

the kth cornermoves into Dp, the number of edges intersectingDp

increasesby zero (if the panel alreadyintersectedDp) or by two (if the

panel did not previouslyintersectDp).

Thus in the first case, as the corner enters Dp, the sum in (J.11.49)
over edges decreasesby _ while the sum over corners increasesby _, and so J
remains constant. In the second case (FigureJ.33b) the sum over edges is
unchanged,but -rakak+1 > O, and so the sum over corners is changedby

ph(1, 0+) = 0 (J.11.50)

In the third case, J+ is zero when the corner is outside DD since by

convexity,the entire panel is outsideDp (note that (J.11_49)is not valid
when the entire panel is outsideDp). Now, when the corner enters Dp,
J+ becomes

J+ = -rs(2_ - _ _ + _ ph(1,0))= 0
E 1 corner (J.11.51)

Thus in all cases, J+ remainsconstant acrossMach lines,even if the

point Po lies on the panel. In addition,J+ remain constant across panel
extensions. Thus in supersonicflow, J+ = 0 wheneverPo is outsidethe
panel, since it is zero for a point Po for which the panel lies outside
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Dp. On the other hand, if Po lies insidethe panel, akak+I is always
positive,and so in both supersonicor subsonicflow we have -

J+ = -2_rs (J.11.52)

by choosingPo such that the same number of edges and corners lie in Dp.

Finally,consideringa point Po outsidethe panel in subsonicflow, we
see that as Po crosses from being insidethe panel to outside, sign
(akak+l)changesfrom +1 to -1 for exactlytwo corners, and so -rsJ.
decreasesby 2x from its value insidethe panel of 2=.

Summarizing,

J+ =-2xrs Po inside panel
(J.11.53)

J+ = 0 Po outside panel

We may go throughthe same argumentsfor J_,

J_= lim J = rs(2_ - _ x + S ph(-rakak+1, 0+)
h>O- E c

A

= _J+ (J.11.54)

But now, the panel lies outside Dp for a superinclinedpanel, and thus

r = +1, or
J_ = 2xrs

Po insidepanel

r = -1, or
J_=O

Po outsidepanel
(J.Ii.55)

We thus see that J is continuouson the h = 0 plane except on the panel
itself,where J experiencesa discontinuity

J+ - J_ = _(r + 3)s (J.11.56)

J.11.4.2DiscontinuitiesDue to Ce

Let us recall our originaldefinitionof J (cf(J.11.12)and (J.11.45))

J = _ hJk(_) - 2_ sign(h)Co (J.11.57a)
k
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where

(J.11.57b)

We now wish to investigatewhetherthe discontinuityin Cereflectsa true
discontinuityin J. To do so, we consider the formulation(J.11.46-47)of J.
Note that we need only consider subsonicflow and superinclinedpanels. We
also assumeh = O, and that we are not directlyabove a corner of the panel.
Thus v_ < 0 < v+.

Now considerFigure J.34. If the point Po is moved so that it lies
.

above the panel, crossingedge 1, then aI changessign, while h, v1-,

and R1 + remain essentiallyunchanged. If R1 +- - > O, we have

ph(hvl +-, alRl) = ph(sign(hv_), 0_-) (J.11.58)

If we first considerthe case of h = O, aI > 0 we have

I+ph(hvl,alR1) = ph(1,O +) - ph(-1,O .) = -_ (J.11.59)

If h = O, aI < O, we have

ph(hvl, alR1) = ph(1,O-) - ph(-1,O-) = (d.ll.60)

Thus as P moves from being not above the panel (a > O) to being above
it (a < 0_,

ph(hv, alR1)l +

jumps by 2_. In general,by consideringh < O, we find

Jl(_)outer- Jl(_)inner= 2_ sign(h) (J.11.61)

On the other hand, when we consider any other edge, we find that the small
change in point locationhas no effect on Jk(). That is,

Jk(_)outer- Jk(_)inner= 0

if k _ 1 (J.11.62)

If we combine (J.11.56)with (J.11.61-62),we find

Jouter - Jinner = 0 (J.11.63)

Thus under the assumptionsvm @ O, R > O, the functionJ has no

discontinuitywhere Ce does.
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These are not regionsof discontinuityeither,however. The lines -

v, = 0 cannot be regionswhere a jump of 2_ occurs,since jumps in a
functioncan only occur across a surface. The problemof R = 0 may be handles

by redefiningJk:

Jk(_) : lim ph(hv+, akR)
R)R+

- lim ph(hv-,akR) (J.11.64)
R>R-

Summarizing,we find that the discontinuityin C_ is exactlymatched by a
correspondingdiscontinuityin Jk(_)-

J.11.4.3 Discontinuitiesin Jk(_)

We note that the function

f(x,y) = ph(x,y) (J.11.65)

may be discontinuousif

x < 0 and y = 0
or

x = 0 and y= 0 (J.11.66)

We have already noted that if h m O, a discontinuityin Jk(_) due to ak
changing sign is matched by a correspondingdiscontinuityin Ce, providedthat
PO lies directlyabove the panel. We now consider the case where ak
changes sign, while PO is not directly above the panel. Then defining

AJk = (JR faR>O) - (Jkl ak<O) (J.11.67)

AJk = ph(hv+, 0+) - ph(hv-, 0+)

-(ph(hv +, 0-)- ph(hv-,0-)) (J.11.68)

= ph(hv., 0.) - ph(hv+, 0-)

- (ph(hv-,0+) - ph(hv-,0-)) (J.11.6g)
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Defining + .
s- : 0 if hv- > 0

: 1 if hv_< 0 (J.11.70)

aJk = 2_s+ - 2xs- (J.11.71)

since
ph(-l,O+) - ph(-l,O-)= 2_ (J.11.72)

But, lookingat the point PO' in figuresJ.34 and J.35, with subsonic
flow in figure J.34, we see that if ak changessign and PO does not lie
directly above the panel, then v+ and v- have the same sign. Thus s+ =
s-, and so

aJk = 0 (J.11.73)

So, we conclude that if a = O, h = O, then J is a continuousfunction.

Thus we can assume that aR has constantsign (sinceR _ O) as PO moves
slightly,though perhapswith changingmagnitude. Since we need onlyconsider
the case

v+ = 0
R _ 0
lal >0
lhl > 0 (J.11.74)

Now, by (J.6.59),

R2 = rsqa2 + qv2 + rsh2 > 0 (J.11.75)

Thus (J.11.74)can only be satisfiedif

rsqa2 + rsh2 = 0 (J.11.76)

that is, if
sign(rsq)= sign(rs) (J.11.77)

But this is equivalentto

q = -1 (J.11.78)
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Thus we need only look at a supersonicedge, as illustratedin figure J.36.
For PO as locatedthere,

Jk = Ph(hv+, aR+) - ph(hv- , aR-)

= ph(hv+, aR+) - ph(hv-,O) (J.11.79)

: ph(hv+, aR+) - xs- (J.11.80)

But as PO is moved slightly,aR may range over small numbersof constant
sign, while hv+ ranges over small number of constantsign. More precisely,
for any real number € > O, and any real number x, -_ < x < _ , there exists a
point P such that

IP-PoI< €
and

ph(hv+(P),aR+(P))= x (J.ii.81)

This, by definition,means that the phase function is discontinuousat
PO- Since s- is a constantwhich is not dependenton the precise location
of PO, the functionJk is in fact discontinuousat PO"

Finally, let us consider the behaviorof the phase function in the -_
neighborhoodof PO'- Then if the edge intersectsDp,

-hJk = ph(hv, aR)l+

= lim (ph(hv+, aR) - ph(hv-,aR))
R>O+ (J.11.82)

Since
v- < 0 < v+ (J.11.83)

we have (consideringthe four separatecases for sign h and sign a)

-hJk = -x sign(h)sign(a) (J.11.84)

On the other hand, if the edge does not intersectDp, Jk is zero.

• J.11.4.4Summary of Panel Function Behavior

We now summarizethe resultswe have obtainedconcerningthe panel
function. We find that J experiencesa simple jump discontinuityof magnitude

J+ _ J_ = _(r+3) s (J.11.85)
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across the panel. In addition,J experiencesa jump

J+ - J_ = -x sign(h)sign(ak) (J.11.86)

across a portionof the boundary "Mach wedge" emanatingdownstreamfrom any
supersonicedge. We illustratesuch a Mach wedge in cross-sectionin figure
J.37a, where the plane of the paper is a plane downstreamfrom the edge and
perpendicularto the flow direction. If the panel is subinclined,it is a
plane of constant ak, while if superinclined,it is a plane of constanth.
In figure J.37b, we illustratea Mach wedge in three dimensions.

Finally,there are certain lines in space along which J takes infinitely
many values over a range of 2x as a point on the line is approachedfrom
differentdirections. These lines are the panel edges and the lines emanating
from a supersonicpanel edge along which v = 0 and R = 0 (see figure J.37a).

J.11.5 Singularitiesof the Edge Function

By (J.7.35)

4-

I-7 _ ifqk=

.
= -ph(v,R) if qk = -I

- (J.11.87)

J.11.5.1SupersonicEdges

We first consider the behaviorof the edge functionfor a supersonic
edge. Defining

Ik* = -ph(v±, R*) (J.11.88)

we see that Ik * is continuousif vm = O, since if v* < 0 and R* = O,

Ik* = -lim ph(vm ,R) = -ph(-1,0)= -x (J.11.89)
R_O+

But by (J.6.59),for supersonicedges,

R2 = r(a2 - h2) - v2 (J.11.90)
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Thus
R=.v=O

lal = Ihl (J.11.91)

We thereforesee that Ik is discontinuousalong the lines definedby the
intersectionof the Mach cones with the planes v+__= 0 (cf. figure J.37), the
same lines along which Jk is discontinuous.

Even when PO approachesthe panel edge (exceptat its endpoints),Ik
is continuousprovidedthe limit is taken such that the edge intersectsDp.
For then

v*=* Icl _=0

R* = 0 (J.11.92)

Thus Ik =

.

-ph(v,R)l = -ph(I¢l,0+) + ph(-Icl,0+)1

= x _J,11.93)

regardlessof the directionfrom which the point approachesthe edge, unless
the edge is approached so that it does not lie in Dp, in which case the
limit is zero.

J.11.5.2 Subsonic Edges

By (J.11.87)we see that Ik is continuousunless

IR±I = Iv_l

or R±2 - v_2 = 0 (J.11.94)

By (J.6.59)we have,sincer = q = 1,

R2 = v2 + s(a2+ h2) (J.11.95)

Thus Ik may be singularwhen

iR,2 _ v.21= is(a2 + h2)l = g2 = 0 (J.11.96)

that is, whenever the field point PO lies on the line containingthe panel
edge. Now, if PO lies on an extenslonof the edge, v+ and v- have the
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same sign, and are non-zero. Applyingthe rationalization(J.8.35-36)

Ik = ½ log rl + z__-I'-Z'-ZzI (J.Ii.97)

Z (v+- v_)(v++ v_)
= R+v+ + R_v_

v+2 _ v_2

(v+2 + v_2) sign(v+) (J.11.gs)

we see that Izl < 1. Thus Ik is a continuousfunction in this case.

Next,supposePO liesverynearthe paneledge. If the flow is
supersonic,thismeansR- = O, and thusby (J.8.27)

v+2 _ v_2

z = R+v+ (J.11.99)

As long as the point is away from the edge, v+ < R+ , v_ > O, and so
Izl< 1 , making Ik continuous. But as PO approachesthe edge, v+
approachesR+ , v_ approacheszero, and solzlapproaches1. Thus Ik
becomes infiniteas the point approachesthe panel edge.

For subsonicflow, if PO approachesthe panel edge, v changessign along
the edge and we thus use the rationalization(J.8.40-41))

Ik : log (R+ + v+)(R_+ Iv_l)
g2 (J.11.100)

The denominatoris non-zero,and thus we see that is both subsonicand
supersonicflQw, the edge function Ik becomes logarithmicallyinfinitewhen
the field point approachesthe edge.

J.11.5.3Subsonic Nearly Sonic Edges

The same argumentsused for subsonicedges show that the only potential
singularityoccurs when v = R, that is, when the point Po is on the line
extendingthe subsonicedge. This situationis illustratedin figure J.38.

Defininga unit edge tangent

£o:
i'_++ "Q_I (J.ll.lOl)
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we see that

= IQ_- 2 [to, o] = %2 IQ±- 2 (J.11.102)

while

v, = [to, Q, - P0] = Q* - P0 = R, (J.11.103)

Applying (J.11.97-98)

1 rl + z_ (J.11.104)
Ik = _ log _'l-_--_J

where __

I_+- POI2 -IQ-_--PO_ 2 (So + as)2- So2

z - IQ+ - Pol2 + IQ- - Pol2' -- (So + as)2'+So2' (J.11.105)

where we have used the notationof figure J.38.

So,

I IIzl=2So2 + 2Soas + AS2' < 1 (J.11.106)

whenever so > O. But as so approacheszero, z approaches1. In fact

1 l+z
lim Ik = _-lim logSo_,O So_,O

= ½ lim log - 2s°As + As2
solO 2So2 + 2SoaS + as_ (J.11.107)

1 lim log 2(2s°2 + 2s°as° + As2) (J 11.108)
= _ solO 2So2 "

1 lim log As2 (J.11.109)
= _ so,O S_o

Thus as P approachesthe endpointof the edge, Ik becomes logarithmically
infinite. Otherwise,however, Ik is continuous.
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j.11.5.4SupersonicNearly Sonic Edges

We have seen that v = R only when the point Po lies on the line
containingthe edge. But a supersonicedge has the propertythat no point on
the edge lies in the domain of dependenceof any point on the line containing
the edge. Thus, if v = R, the edge does not influencePo. Thus Ik is
continuouseverywhereexcept along the edge itself.

J.11.5.5EssentiallySonic Edges

Combining (J.8.13)and (J.8.72),we see that for essentiallysonic edges

Ik(_) : lim qTI : lim qTA____R_R (J.ll ii0)
T_O T_O _

NOW,

T 1 2
=- ^ - (J.ll 111)
v v+ + G_ v++ v_

But v can not change sign for an essentiallysonic edge, in fact, both v+
and v_ will be very large numbers (of order l/T) of the same sign, unless
Po lies very near to the edge itself. We thus find that Ik is not only
continuous,but of order T, everywhereexcept at the edge.

J.11.6 Singularitiesin SubsonicFlow

In this section,we considerthe effect of a continuoussource strength,
doubletstrength,or doubletgradienton the potentialor velocity in subsonic
flow. We illustratethe distancesh,v,a,gand R for subsonicflow in Figure
J.39.

J.11.6.1DiscontinuousSource Strength

We see by (J.11.15)that the potentialdue to a panel with source strength
1 is

-sh s
_s,1 - _ J - _ £akqklk (J.11.112)

But by SectionJ.11.4.4,J is continuous in subsonicflow except for a
jump by 4_ across the panel. Thus hJ is continuouseverywhere in subsonic
flow except near the panel edge, where

Ik = log (constant_ (J.11 113)
• g2 '

= constant - 2 log Igl
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But g2 = a2 + h2

or Igl _ lal (J.II.114)

and thus akIk is continuousand boundedeverywhere. We thus see that in
subsonicflow the potentialdue to a constant strengthsource panel is
continuouseverywhere.

Next we consider the velocity due to the constantsource distribution. By
(J.11.6)

: (J.11.115)

where

-_ 1 _kla=_ k

-s
a =_ J (J:11.116) --

We thus see that the componentof the source velocityperpendicularto the
edge becomes logarithmicallyinfiniteas we approachthe panel edge.

That is,

Vs,x,y = boundedterms - n-_klog(g) (J.11.117)

as Po approachesthe kth panel edge.

In addition,the z-componentof velocityjumps as the panel is crossed,
which is to be expected in light of the definitionof source strength as the
jump in normal mass flux (or normal velocityat Mach zero).

We will leave considerationof the varying source distribution
(cf.(J.11.5))to the reader. We do note, however,that no new discontinuities
or singularitiesappear.

J.11.6.2DiscontinuousDoubletStrength

By (J.11.29)the potentialinducedby a constantstrengthdoublet panel in
subsonicflow is

1 (J.11.118)
_D : ra = _ J
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This function is continuousin subsonicflow except for a jump across the
panel, which is to be expectedsince the doubletstrengthis defined as the
jump in potential.

Next,the linevortextermof the doubletvelocityis givenby
(cf.(J.11.35))

_,. _B2 v+ v_

VD,edge: _ (--_- -_) (_o - _'o)x £o (J.11.119)

Thus in subsonicflow this velocity is continuouswheneverg = O. Applying
the rationalizatibn(J.10.54)for the case g = O,

. __2 _v(v++v_) IQ--_oIx;o
VD,edge - KT R+R_(R_v+ + R+v_ (J.ll.120)

we see that if

R_v++ R+v__ 0 (J.11.121)

the velocity is again well-behaved,since (J.11.120)cannot occur whenever
R+ or R_ is zero. But if g = 0

R_2 = v_2

R+2 = v+2 (J.11.122)

and so
R_v+ + R+v_ = 0

R+ = v+

-R_ = v_ (J.11.123)

That is, v+ and v_ have opposite sign unlessone of them is zero. Thus,
the point Po lieson the panel edge. So, the velocity is well-behavedfor
all points which do not lie on the panel edge.

We now considerthe limitingvalue of the velocity as Po approachesthe
panel edge. By (J.11.122)

V+ V_
= 2 (j.II.124)

R+ R_

except perhapsat the endpointsof the edge. Further,it is easy to see that

l(ToTolx_oI=_ (__
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and thus

* 2B2 (J.11.126)lim vD _
Po>edge K g

That is, the velocity has a magnitudeproportionalto the inverseof the
distance from the point to the edge.

J.11.6.3 DiscontinuousDoubletGradient

We have seen that the potentialdue to a discontinuityin the normal
componentof doublet gradient is (cf(J.11.41))

-rshT ak rshl
_k - K Jk +_K Ik (J.11.127)

Examinationof sectionJ.11.4 shows that the panel functioncontributionto
the potential is continuousexcept on the panel surface. On the other hand,
(J.11.100)describesthe edge functionbehavior in subsonicflow. We thus see
that the potentialbecomes infinitein the neighborhoodof a panel edge, and
is proportionalto the logarithmof the distancefrom the edge.

J.11.7 DiscontinuousSource Strength in SupersonicFlow

J.11.7.1Source Potential

We recall from (J.11.15)that the potentialdue to a constant source
panel is

-sh s _ ik (J.11 128)6s - _ J - _ akqk

An examinationof the resultsof SectionsJ.11.4 and J.11.5 show that hJ and
are continuouswith severalexceptions. One exceptionfor J is that if the
kth edge is supersonic,and a = h, R, = v, = O, Jk may take on any
value (cf. SectionJ.11.4.3). Also, if R+ = 0 = R_, h = a , then Jk
undergoesa jump across the "Mach wedge" locatedthere. On the other hand
(cf. SectionJ.11.5.1)I has discontinuiutesat the same locations.
Considerationof (J.11.82)and (J.11.88)shows that if h = a

-h Jk = -sign(h)sign(a) Ik (J.11.129)

Thus

-sh sak
(hJk) + -_- I k = O (J.ii.!30)
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when Jhl: lal. So, while Jk and Ik are discontinuousaway from the
panel, the sum _s is continuouseverywhereexcept on the panel.

J.11.7.2Source Velocity

By (J.ii.16-17)

s Zk-nkqklk

-sj
K

(J.11.131)

Thus the z-componentof the velocity is alwaysfinite, though it is
discontinuouson the panel and on the Mach wedges emanatingfrom supersonic
edges. On the other hand, by SectionJ.11.5,the tangentialcomponentof
becomes logarithmicallyinfiniteas the point Po approachesa subsonicor
sonic edge and is discontinuousas Po approachesa supersonicedge.

._ Now, for nearly sonic edges, Ik remainsboundedbut non-zero. Since
nk = Rk/T is of order l/T, the velocity in a very small region (that is,
along the extensionof the edge) is of order 1/T. This is not a singularity
since for any particularnearly sonic edge the resultingvelocity is bounded.

Finally, for essentiallysonic edges, the edge function is of order T
everywhereexcept at the edge, and thus the sourcevelocityremains bounded.

J.11.8 DiscontinuousDoubletStrengthin SupersonicFlow

By (J.11.29-30),the potentialdue to a panelwithunitdoubletstrengthis

-rs j (J.11.132)_D - K

Thus the singularitiesof the doubletpotentialare exactlythose of the
panel function. That is (cf SectionJ.11.4.4)the potentialhas a jump across
the panel, snd across the Mach wedge emanatingfrom any supersonicedge, and
is discontinuouswith multiple limitingvalues at panel edges and the lines
R+ = v+ = O.
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Next, we consider the doubletvelocity. By (J.11.35)

v_* -sB2 v+ v_ (_o _'o) x _:o (J.11.133)- - [) -
We state here without proof that a "finitepart" of the doubletvelocity

line vortex term may be computed as

, -sB2 ^

VD,finite=---_-g (_o -_o) x to •

edge vertices g sign(vertex)
\ in Dp (J.11.134)

Using (J.11.134),it is straightforwardto show that v is boundedover any
region of space which does not includethe Mach cone emanationg__downstream.
from the verticesof the edge. In the vicinityof these cones, v is of order
(I/R).

J.11.9 DiscontinuousDoubletGradient in SupersonicFlow

By (J.11.41),a discontinuousdoubletgradient along an edge yields a
potential

hrs - rsh
_k- _ TakJk _ TIk (J.11.135)

It can easily be seen thatthis function is continuousalong panel edges,
since h and ak are zero there. In addition,the discontinuitiesof Jk and
Ik on the surface lhl = lal cancel (cf(J.11.129)).Thus the potentialdue
to a discontinuityin doubletgradient is continuousaway from the panel.

Next (cf(J.11.43)),

-_Vk,x,y_ -rsKJknk (J.11.136)

and so is discontinuouson the Mach wedge emanatingfrom a supersonicpanel
edge. Finally (cf(J.11.44))

-rs Tik (J.11.137)•K,Z -

and so the normal velocity is logarithmicallyinfinitein the neighborhoodof
subsonicedges, and discontinuouson the Mach wedge emanatingfrom a
supersonicedge.
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FigureJ.1- Domainof dependence

A

CO

FigureJ.2-Superinclinedpanel partially

within Dp without cornersin Dp
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Notation

Co unit compressibiltyvector

[Co] metric matrix

Co:sB21+(1-sB2)_o_T

[_o] positivedefinitemetric matrix

_o = B2I + (1-B2)^cô coT

Dp domain of dependence

[Bo] .dualmetric matrix

Bo = I + (sB2-1)^cô coT

P controlpointor fieldpoint

Q point or panel, point of integration

Qo panel center

Qi' i=1""'9 panel definingpoints

[ ] compressibleinner product,
' correspondingto [Co]

{ , } dual inner product,correspondingto [Bo]

_-_

no subpanelunit normal vector

to unit edge tangent

A° referenceto local transformation

Ai referenceto local transformationfor ith region

FigureJ.3-Notation used frequently in AppendixJ
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_ a. Panel P4 P7 P3

P P6

P1
P5 P2

b. Two half panels

c. Two half panels

FigureJ.4 - Two region approximationsto panel
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FigureJ.5- Region in which intermediatefield PIC is not performed

P4

P3

Mach cone

Dp

P

FigureJ.6-Splitting a panel into half panels
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FigureJ.7 (_,_) coordinatesystem

isubsonic edge /

. ge /

•. . _supersonic edge

FigureJ.8 - Subsonicand supersonicedges
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FigureJ.9-Point of closestapproach

V::

subinclined

n_p . subpanel

su_e;_nc_o__

P

Figure J.lO- Subinclinedand superinclinedpanel ._
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P3

P2

FigureJ.11 - P. lies in the interiorof the subpanel

n

straightportionof boundary

_ curved portionof boundary

h

FigureJ.12 - Region of integration,_'T_Ch for a typicalsubpanel
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Figure J.14- Edge numberingfor variouspanel configurations
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FigureJ.15 - Phase angle _' exceeds
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Figure J.16 - Coordinate systems in the (_',n') plane
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(a) (b) (c)
._. -%-

t n

lal>h (no) ]P-]< h , I_+I< h (yes) IP-I< h (yes)

(d) (f)

Ip_1 < h (yes) la I < h (yes) lal < h (no)

and Oc Iv-, v+] and O¢[v-, v+]
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Figure J.29 - Evaluatingv on the boundaryof Dp : the
variousspecialcases

J.12-20



A

= =211

C° 1 J' llhl: o

a. s=+l

, _. TI
Co = 0 J llhl=0

b. rs--I

= =21T

co i J'llhl=°

c.r:-I
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FigureJ.32 - Potentiallines of discontinuityin J --.
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FigureJ.37a - The Mach wedge in cross-section
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_- K.O AIC Matrix Assembly

The process by which a boundary conditionis transformedinto a row of an
AIC matrix was discussedbriefly in section5.7.1. Here, we discussthose
details of the AIC assemblyprocessomitted from section5.7.1. Initially,we
will study this processwhen no symmetryexists in the problem. Having done
this, we will then study the problem formulationin the presenceof first one,
and then two planes of symmetry. When we do treat the symmetrycases,we will
first pose the problemas though it had no planes of symmetry,and then use
the symmetryside conditionsto formulatea boundaryvalue problemfor each of
the varioussymmetricand antisymmetricparts of the perturbationpotential,
_. For example,when one plane of symmetry is present,we will obtain a

boundary value problemfor each of the two potentialfunctions,_S the

symmetricpart of the _ and _A the antisymmetricpart of _. When one plane of

symmetry is present,PAN AIR obtainsand solves matrix equationsfor _S and _A.
This approach of formulatinga separateboundaryvalue problemfor each
symmetryconditionturns out to be quite fruitfulwhen we address the problem
of enforcingdoubletmatchingat abutmentsand abutment intersections. In
particular,when an abutmentor abutment intersectionlies on a plane of
symmetry,doubletmatchingwill usuallybe performeddifferentlyfor each
symmetrycondition.

Having given the overallplan of the analysis,the individualsectionsof
this appendixare now brieflysummarized.

In sectionK.1, the generationof rows of the AIC matrix is discussed
under the assumptionthat no planesof symmetryare presentin the
configuration. In particular,the constructionof a row of the AIC matrix is
describedin detail for three forms of boundaryconditions: (i) general
boundaryconditionsof the form (5.6.1)(includingsingularityspecification
boundaryconditions),(ii) matchingboundary conditionsof the type discussed
in detail in appendixF and in appendix (H.2.4),and (iii) closureboundary
conditionsof the form (5.7.3).

Next, the concepts of symmetry are introducedin sectionK.2 where the
constraintson the admissableplanes of symmetryare derived.

For the case of one plane of symmetry,sectionK.3 then definesthe
^A

symmetrizedpotentialfunctions_S and _ , investigatestheir propertiesand the
form that generalboundaryconditionstake when imposedon these functions.
Using the ideas developedin this section,the same analysis is repeatedfor
configurationswith two planes of symmetryin sectionK.4.

Much of the analysisof sectionsK.3 and K.4 is then combined,refinedand
summarizedin sectionK.5. In this section,explicit detailedinstructions
are provided for the evaluationof potentialand velocityinfluence
coefficientswhen symmetryis present.

In sectionK.6 the generationof rows of the AIC matrices for the various
symmetry conditionsis describedin terms of the symmetrizedinfluence
coefficientsdescribedin sectionK.5. As in sectionK.1, we describe the
constructionof an AIC row for general,matchingand closure boundary
conditions.
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Finally, in sectionK.7, the implementationof the IC updatecapabilityin
the constructionof the AIC matrix is discussed. This capabilitypermitsa
user to change the geometryof a portionof a configurationand then analyze
the modifiedconfigurationwithout recomputingthe entire influence
coefficientmatrix.
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K.I Generationof AIC's in the Absenceof Symmetry

K.1.1 Transformationof a GeneralBoundaryConditioninto an AIC Row
(No Symmetry)

We now describethe processby which a generalboundaryconditionof the
form (5.6.1)is transformedinto an equationwhich can then be enteredas a
single row into the AIC matrix. Recallingthe boundaryconditionequation
(5.6.1),imposedat a point _, we write,

- = b (K.I.I)
[ aA _ + CA _A + " + aD o + cD _ + tD .V_]

where the coefficientsaA, CA, _A, aD, CD, _D, b are assumed to be
known. A singleequation to be imposedupon the global singularityparameters

_I is obtainedby combiningthe basis functionrepresentationsof o and

(cf. (3.3.1)and (3.3.2))

N

_(_) = _ si(_) xI (K.I.2)
I=1

N

_(P) = _ mI(P) _I (K.I.3)
I=1

togetherwith the integralrepresentationsof _(_) and _(_) (cf. (5.2.8)and
(B.3.9)with the line vortex term removed)

_(_):(i/_)_[-o(_)/R+.(_)_(_)_q(I/R)]dSq (K.I.4)
S(IDp

_¢_):(1/_)_ o(_)Vq(_/R)dSq (K.I.5)
SIIDp

+ (l/K) SS [(_ dSq) x V_] x Vq(1/R)

SnDp

and then substitutingthese representationsinto equation (K.1.1). There
resultsfrom this processthe aerodynamicinfluenceequation

N

AICI _I = b (K.I.6)
I=1

where

^ . (Ki= aA WA,I . n + cA • •

+ aD sI(5) + cD mI(-p) + tD " Vpml(-_)
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and,

_A,I(_) : average potentialinducedat__.bya source distributionSl(_)
and a doublet distributionmi(q) (K.1.8)

_A I(_) = averagevelocity inducedat _ by a source distributionsi(_)
, and a doubletdistributionmi(_) (K.1.9)

_A,I(_) = Bo_A,l(p) (cf. equation (5.4.10)). (K.I.IO)

Thus, _A,I(_) is obtained by performingthe substitutionso(_)_Sl(_),

u(_) -- ml(_) in equation (K.I.4)while_A,l(_) is obtainedby performingthese
same substitutionsin equation (K.1.5). The evaluationof integralsof the
form (K.1.4)and (K.1.5)when o(q) and u(_) are polynomialfunctionsof the
local coordinateson S has alreadybeen treatedin exhaustivedetail in

appendixJ. Since si(q) and mi(_) are explicitlyknown functionsof this

type, the evaluationof _A,I(_)and _A,I(_) clearlypresentsno difficulty.

Turning now to the terms si(P),mi(P) and tD " V mi(_) appearingon the

second line of equation (K.I.7),we readilysee that

sl(P) : L1, _', n j [SPsPLS]3x5 B 5xl

,212ix6 6xg{.Djgx1ml(P) = L1, _', n', _'2/2, _'n , n [SPsPLD] _I
(K.1.12)

where:

(_' n') are the local coordinatesof the control point_ on the subpanel
in which it lies

[SPSPLS] is the source subpanelspline matrix for the panel in which _ lies

{B_} is the column of the source outer spline matrix BS corresponding

to _I" (Zero, if no such column exists)

[SPSPLD] is the doublet subpanel splinematrix for the panel in which-_ lie:

{ B_ } is the column of the doubletouter spline matrix BD corresponding

to _I" (Zero, if no such column exists)

The evaluationof tn • v mi(_) _presents somewhatmore difficulty.
" _ " " d " _First of all, since the Tunctionmi(P) is only deflne for points p in the

singularitysurfaceS, we must first be sure that this expressionis well
defined.
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To see that this is so for p _ S, recall that for an arbitraryfunctionf(-_),

the directionalderivative(_D "Vf)) _ satisfiesthe relation

(-tD"v f) _ = [(d/dT) f(_(T))] (K.1.13)• : 0

whenever c'(T)is some curve lying in S and satisfying

= p (K.1.14a)

(dc'/dT)o = _D (K.1.14b)

Thus, for _D " VmI(p) to be well defined,we merely need to observethat the

functionmi(c'(_))is well defined by virtueof the fact that c'(_)lies on S, on

which mI is well defined. In order to obtainan explicit formula for

tD .Vm I (p) we must now introducethe local coordinatesystem for the panel in

which _ lies (cf. equation (5.2.23)with the origin shift 7o included):

q' = A(q- To)

)TFor points q lying on the subpanel,q' has the form (_' ', n , o . Thus, since
_(_) lies on the subpanel for • in some neighborhoodof • = 0, we have

A(c'(,) - 7o) = n(_)

0

Moreover,given the local coordinatesof a point_, mI is given by equation
(K.1.12);thus

2( )/2jlx6mi(_(T)) : J _(_) n(_) _2(_)/2 _(_)n(_) n • x

[SPSPLD]6x9{B_} 9X1

Differentiatingthis and evaluatingat _=0, we find

[i'° i]d d_ dn 0] 0 I 0 _(0) n( ) x
['6_mI(_'(_))]0 = [(dT)O, (d-T)O, 0 0 0 0

D 9xl
[SPsPLD]6x9 {BI}

Now (_(0), n(O), 0) and (d/d_) (_(¢), n(¢), 0)o can be readilyevaluated:

[] [](o1

n (0) = A(_(0) - 9o ) = A (p - q'o) = n'

0 0
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while

d_ d = (did,) [ A(_(,)-qo) ] : A(dcld_)o : AtD

o

Consequentlywe find,

d
mI (_(T))o = tD " Vml(P) :

_.DTAT[! i 0 _' n' _]0 0 0 0

(K.I.15)

as asserted in equation (5.7.17.

K.1.2 Transformationof a MatchingBoundaryConditioninto an AIC Row
(No Symmetry)

In the absence of a plane of symmetry,the conversionof a doublet
matching boundarycondition (cf. equation (F.5.1)or (H.2.11a))

Sk _k = 0 (K.I.16) --
k

into a row of aerodynamicinfluencecoefficientsis straightforwardin light
of the explicitrepresentationof _ providedby equations (K.I.3)and
(K.I.12). To see this suppose that Pk is the evaluationof p(_) at pointPk'

I

and that (_'k' nk) are the local coordinatesof p in the panel in which it
lies. Combining(K.I.3)and (K.I.12)we then obtain

N ' 2/2 ' ' 2/2j [SPSPL_] {BD
I=1 "

(K.1.17)

Here, [SPSPLD] is the doublet subpanel splinematrix for the subpanelin which

-'Pklies while {Bk,ID} is the column correspondingto 11 in the doubletouter

spline matrix of _k'S panel. Combining (K.1.16)with (K.1.17)leads to an
equation

N

AICl _I = 0 (K.1.18)
I=1

where
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k k,I
(K.1.19)

(Remark: The actual determinationof the form of the matchingconditions,
i.e., the values of sk and P-k,is fully discussedin appendixF).

The conversionof a sourcematching conditioninto an AIC row is performed
in essentiallythe same way. Here, the representationof o providedby
equations(K.1.2)and (K.1.11)allows us to transformthe sourcematching
condition(cf. equation (H.2.13))into an AIC equationof the form (K.I.18).
The result reads,

Sk ak = Z AICI _I = 0 (K.I.20)
k I

where the matrix entriesAICI are given by

k (K.1.21)

The conversionof the velocityjump matching conditioninto an AIC row is
slightly more complicated. Combiningthe basic matching condition(H.2.11b)with
the formulas for the velocityjumps avk given by the Helmholtzrelation (see
equation (H.2.12)),we obtain after some manipulation,

0 = _ sk t . avk
k

A A n_ _l _ A

= _ sk (o(t.n)/(n._)+ ({vxtjxn).V,/(n.u) }
k k

(K.1.22)

Upon using the representations(K.1.2)and (K.1.3)for o and ,, togetherwith
the evaluationformulae (K.1.11) for si(_k) and (K.I.15)for the tangential

derivative.ofmi(P), this becomesan AIC equation of the form (K.I.18)with the AIC
row entriesgiven by the formula

sk(t._k)/(nk.Vk) LI _ nkJ [SPSPL ] B ,IAICI = k

sk 1+ _ [Ak((Vkxt)xnk)] 0 0 i 0 _ nk [SPSPL] BD^ k,T
k (nk " _k) 0 0 0 0 0 0

(K.I.23)
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K.I.3 Transformationof a Closure BoundaryConditioninto an AIC Row -
(No Symmetry)

The closureboundary condition(see equation (5.7.3)or (H.2.14))may be
imposed in place of a source or doubletmatchingboundaryconditionat the
control points on a matching edge of a sourceor doubletdesign network. The
boundaryconditionis

_ (aA _A-n + aD _)dS = b (K.1.24)
column
or row

where the column or row of panels is that one which is headed by the edge control
point.

The row vector which definesthe above integralin terms of the singularity
parametersis computedby approximatingthe average normalmass flux and source
strength on a panel by their values at the panel center. That is, we estimate

_(aA_A._ + aD a)dS = _ Ak (aAwA'n _k + aD_I-') =panels Pk

^T Bo [ViCk]+ aD LI' _k, nk j= _ Ak aA nk ' [Bk]
panels

(K.1.25) --.

Here Ak is the area of the k-th panel, VICk is the VIC matrix for Pk' the
center controlpoint of the panel (see below for a complete definition),

I

(_, nk) are the local coordinatesof Pk' [SPsPLS]the source subpanelspline

matrix for the subpanelin which Pk lies, and B_ the 5xN matrix (N the total

number of singularityparameters)which is the extensionof the panel'souter
spline matrix from 9 columns to N columns. Thus the row of the AIC matrix
correspondingto the closure boundaryconditionis given by the row vector

multiplying_ on the right side of (K.1.25). The 3xN VIC matrix VICk is

definedin terms of the velocity influencecoefficientsof equation (K.1.9)by

[VlCk] = [V'AI (Pk) ; I = 1, ... , N] (K.1.26)
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K.2 Symmetry

Having discussedthe process of AIC constructionin the absenceof
considerationsof symmetry,we must now addressthe problemof AIC construc-
tion when symmetry is present. Much of our discussionwill consistof careful
definitionsof symmetricand antisymmetricparts of the perturbationpotential,
6. Once these definitionshave been carefullylaid out and the appropriate
representationformulaeobtained (i.e.,formulaeanalogousto (K.1.4)and
(K.1.5) for the varioussymmetryconditionsof _), it will be a relatively
straightforwardmatter to derive the form of boundaryconditionswhen symmetry
is present. In the processof analyzingwhat is to be done when symmetryis
present,we will find that the most intricatetechnicalquestionsarise from
the treatmentof boundaryconditionson the plane of symmetry. BecausePAN
AIR performscontrolpoint recession,the only control points that actually
lie on a plane of symmetryare those that lie in a plane of symmetryin the
sense defined in section(H.1.2).

K.2.1 Admissible Planes of Symmetry

The basic principleof symmetry is that for each point _ on the configura-

tion of networks and panels, there is also an image point p' lying on the

configurationof networksand panels. The point_' is the reflectionof p in

some plane containingthe point Po and having normal _ (cf. figure K.1)

- = (i-2 ST) (K2.i)
that is,

p' : p - 2 _ (_,_ - Po) (K.2.2)

If we assume that the plane of reflectiondefinedby Po and _ containsthe

origin of the coordinatesystem (i.e., (_, 0 - 50) = 0), then we obtain

_' :__ 2_ ^-' : -(n,p) (I 2 _ _T)_ (K.2.3)

If this reflectionin a plane of symmetry is to be of any use, the
compressiblelength of a vectormust be invariantwith respectto reflection.
Thus, we require that

[_', _'] = [p, p] (K.2.4)

where [.,.] denotesthe compressibleinner productof section (E.2). Defining
the reflectionmatrix [R] by

[R] = I - 2 _ _T (K.2.5)

notice that [R] satisfies

[R] = [R]T = [R]-1 (K.2.6)
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and that _' is given terms of p and [R] by __

-_'= [R] _ (K.2.7)

Now the invariancecondition(K.2.4)can be written

_T [Co] _ = [_',_]= [5',P']=

=-_T [R]T [Co] [R]

If this conditionis to hold for all vectorsp, we must requirethat

[CO] = [R]T [CO] [R]

or equivalently,since [R] [R]T = [R]T [R] = I,

[R] [CO] : [CO] [R].

Substitutingthe definitionof [R], equation (K.2.5),into this yields

[R] [CO] : (I - 2 _ _T) [Co] : [Co] _ (2 _ _T) [Co]

= [Co] [R] = [CO] (I - 2 n _T) = [Co] _ [Co] (2 _ _T)

Thus, we find

_T [Co] = [Co] _ _T

Substitutingformula (E.3.9)for [CO] then yields, in a similarmanner, the
identity

^ ^ AT ^
(I_sB2)(n,Co) [_ Co_ Co _T] : 0

A

This relationwill hold and n will be admissableas a normal to a plane of

symmetryprovided one of the followingthree conditionsis satisfied:

(i) 1 - SB2 = 0 <=> Mm = 0 (incompressibleflow) (K.2.8a)

or (ii) (_, to) = 0 (_ is perpendicularto _o ) (K.2.8b)

or (iii) [_ coT ^ ^ ^ ^^ _ Co _T] = 0 <=> _ = * co <=> (n,co) = ± 1 (K.2.8c)

Having obtained a characterizationfor the normal to a single plane of^ ^

symmetry,we next characterizea pair of vectors n1, n2 that are taken to be

normalsto two planes of symmetry. Defining [R1] and [R2] by

Ri ^ ^ T i = 1,2 (K.2.9)[ ] = I - 2 ni ni
^ A

it is easy to see that both nI and n2 must satisfyone of the restrictions
(K.2.8) if the compressiblelength of a vector is to be invariantwith respect
to reflectionin each plane of symmetry. In addition to these conditions,we
also require that the reflectionof _ in both planesyield a unique point,
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-- independentof the order in which the two reflectionsare performed. Thus,
for arbitraryp we requirethat (see figureK.2 for a geometric
interpretation),

[R1] [R2] P = [R2] [R1]

which implies

[RI] [R2] = [R2] [RI].

Substitutingthe definitions(K.2.9)into this expressionyields, after some
manipulation,the condition

^ ^ n2T _2 _I T] = 0(nl' n2) [nl

which holds provided

(i) (nl' n2) = 0 (nl and _2 are orthogonal)

^ A A

or (ii) nl = , n2 <=> (n1, n2) = ,1.

The second of these conditionscorrespondsto two identica_plane_of symmetry;
consequentlywe ignore it. Summarizingour results then, nI and n2 are
admissablenormals for a pair of planes of symmetryprovided

(i) (_i' _2) : 0 (K.2.1Oa)

(_i ^ ) = O, ,1 (K.2.1Ob)and (ii) either M= = 0 or , co

In practice,the program requires that somewhatmore stringentconditionsbe
satisfied,regardlessof Mach number. These conditionsare:

(i) (nl, n2) = 0 _ Two planes of (K.2.11a)

(ii) (_i, _o) = 0 i = 1,2 I symmetry (K.2.11b)

Similarly,for just one plane of symmetrythe programrequiresthat _ satisfy

ĉo) = 0 (one plane of symmetry) (K.2.12)

In what follows,we will assume that whicheverof these conditionsis
appropriate,is in fact satisfied.

Reflectinga moment on the significanceof the restrictions(K.2.11)and
(K.2.12),we see that if there are two planes of symmetry,they must be
perpendicularto one another and that the compressibilityaxis must be
perpendicularto any plane of symmetrynormal. This secondrestriction
implies that when PAN AIR is used to computea potentialflow solutionfor a
symmetricconfigurationwith nonzerosideslipin the onset flow, the
compressibilityaxis will not be alignedwith the onset flow. Thus, an
additionalapproximationis implicitlyperformedin the treatmentof
nonsymmetricflows about symmetricconfigurations. Note however that for
incompressibleflows (M= = 0), no approximationis made.
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K.3 ProblemFormulationfor One Plane of S_nnmetry

In figureK.3 we illustratea configurationwith a single plane of symmetry

with normal nl" The singularitysurfaceS on which sourcesand doubletsare

defined is decomposedinto three parts: S+, the principalimage, lying in the

interiorof the region C+ : {_ I (5, _1) > 0}; S-, the reflectedimage of S+

lying in the interiorof the region C - (p I (p,_I) < 0}; and SI that part of

S lying on the plane of symmetryC1 = (_ I(_,_I) = 0}. The singularitydistribu-

tions on S+ (S-) are denotedo+, u+ (o', u-). In contrast to this, the source
^S ^A

and doubletdistributionson S1 are denotedoI and _1 respectively. The reasons

^Afor these conventionsare that the potentialsinducedby _ and Ul' given by

_1,o(_)= -(l/z)S_1S(q)/R dSq (K.3.1)

SIN Dp

S1n Dp

are respectivelysymmetricand antisymmetricfunctionsin the sense that

_1,o (RlP) = _1,o (5) (K.3.3)

_1 (RlP)= -_i (P) (K.3.4)

We will prove the two identities (K.3.3)and (K.3.4)in the course of our discussion.

The perturbationpotentialinducedby all of the singularitydistributions

* ^So , _ , oI and is given by the formula

i € {+1,-1) sin Dp

+ _1 (1/,) Sf i(_)_(_) . _q Cl/R(_,q)dSq

i _ (+1,-1} Si{IDp

- olLql (1/R(_,_))dSq

SlnD P

^ A (_)_(_) . _q (1/R(_,_))dS

$111D
P (K.3.5)
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Notice that we use the set {+1, -1_ as an index set for the summation.
This will be the usual index set in all the expressionsthat follow,so that --
we will frequentlywrite ( _ ) with the implicitconventionthat i is to take

i (+i) +
on the values +1, -1. Notice also that _ and _ refer to the same function-
because the index set is just I+1, -1} , it is only necessaryto specifythe
sign of a particularsuperscript.

Our next task will be to introducethe definitionsthat will enable us to

express the integralsin equation (K.3.5)as integralsover the regionsS+ and

S1. First, we define Ri, the reflectionmatrix that maps Si into S+.

+
R = I

^T (K.3.6)
R- = I - 2 _1nl

Next, observethat the functionsoi, i are definedonly for points _ € Si.

, S+Thus we define _i(_) 5 € by

-i oi Ri _ +o (_) = (q) q € S (K.3.7)

Notice as well that the unit normal in Si is related to the unit normal in S.
by the relation,

_ (Ri_) = Ri _ (_) _ € S+ (K.3.8)

Next observe that the invariancerelationfor the compressibleinner product
gives us

R2 (_, RiS) = [p- Ri _, P - Ri _] = [Ri (Ri__ _), Ri (Ri _- _)]

= [Ri _ _ _, Ri __-_] = R2 (Ri _, _) (K.B.B)

Using these relations,one has

oi (_) = a-i(Ri_) (K.3.10)

i-+ " (K.3.11)
R(_,_) = R(R p, RI_) (q € Si, Ri 5 _ S+)

dS(5) = dS(Riq) (K.3.12)

i : ", (5) (RI_) (K.3.13)

Vq(I/R)= •R
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: _(Ri_).(-sB2)(Ri_-Ri_)/R3(Ri_,Ri_)

: [n(u')"Vu (IlR(_'_)]I(_ : Ri _), (u : Ri q)

(K.3.147

Thus the expression(K.3.5)may be rewritten

6(_) = Z - (l/K) SS TTi(q)(I/R(Rip',q))dSq
i S+N Dp

+ _ (1/.)SS _i(_.)_(_). _q (1/R(Ri_,_))dSq
i S+NDp

- (l/K) SS ^SoI (_)(i/R(_,q))dS
S1N Dp q

+ (1/_) SS ^ A
_1 (_) _(q)" _ (i/R(p',q'))dSq

S1N Dp (K.3.15)

If we define operators • (_,o), _ (p,_), _l,o(p,o)and ¢I, (_,,) by the
relations:

s+N D
p

(_,_) = (i/_) SS _(q) _(q) • Vq (1/R(_,_))dSq (K.3.17)

s+N Dp

_1 (_,o) =-(l/K) fS o(_) 1/R(_,q)dS (K.3.18)
,o SIN Dp q

^
= n(q) • Vq(1/R(_,q))dSq (K.3.19)

¢1,_ sIN Dp

then 6(P) can be written in shorthandform as
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_(_) = _ {_ (Ri_-, _i) + _ (Ri -_, _i}l
i a ,

+ _1, (5, SlS) + _i (5, _1A) (K.3.20)0 ,_

We now have the machinerynecessaryto define the symmetricand antisymmetric

part of _. LettingHlj be the 2x2 matrix

[HHI[ ]= (K.3.21)

H-+ H-- 1 -1

we define _i(_) by

_i(_) = _ HiJ _ (RJ_'). (K.3.22)
J

With functions_i so defined,we remark that _+ is called the symmetricpart of

and is frequentlydenoted _s, while _- is called the antisymmetric.partof
^A

and is frequentlydenoted_ . The symmetryrelationssatisfiedby _I may be
compactlysummarizedby the expression

_i (Rj_) = HiJ _i(-_) (no summation) (K.3.23) -

The proof of (K.3.23)depends upon two easily proved facts:

RiRj = R(i.J) (K.3.24)

Hi(J.k) = HiJ Hik (K.3.25)

Using these facts we write

¢i (Rj P) = _ Hil ¢(RI(RJP_) : _ Hil ¢(RI'J_)
l l

Let k = l.j; then as l range over (+1, -1} , so does k, independentof the

value of j. Notice also since j2 = 1, l = j.k. Thus changing the index of
summationto k we find

_i (Rj P) = _ Hi(j'k) _(Rkp) : _ Hij H ik _(Rk_)
k k

: Hij _ Hik _(Rk_) : HiJ _i (5)
k

This proves the assertionof equation (K.3.23).
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If functions_i and _i are definedby

_i(5) = _]Hij _J(5) = _ HiJ oJ(RJP) (P € S+) (K.3.26)
J J

^i : HiJ _j j, (5) _ (5) : _ HiJ (RJP) (K.3.27)
J J

then we will show that equation (K.3.20)impliesthe followinganalogous
representation

_i(_) = _ HiJ. (RjS, _i) + HiJ. (RjS,_i)
j _ u

+ 2 i+.1,o(_.,_1s) + 2 6i- *1,u (5, _1A) (K.3.281

Here, ij denotes the usual sort of Kroneckerdelta, 6ij = 1 if i=j and 0
otherwise. The proof of this assertionfollowsdirectlyfrom the following
facts:

•" -_ -k Hil Rl ^iH13 , (RJRk p, a ) = _ . ( p, a ) (K.3.29)
j,k a l o

HiJ. (RJRk-_,-_k)= Z Hil • (Rl_.,_i) (K.3.30)
j,k u l

^ Gls)j HiJ*1,a (RJP" alS) = 2 ai+* I,o (5, (K.3.31)

_i HiJ"1 (RJP'_iA) = 2 6i-.1 (5'_1A) (K.3.32)J ,. ,.

which we now prove. Equation (K.3.29)is establishedby the followingargument.

Hi(l.k). (Rl_,_k)
_i HiJ, (Rj RkS, _k) l,k oj,k o =

: _ Hil _ HiK_ (RIS,_ k)
l k a

= _ Hil . (Rl5,-_ Hik _k)
l _ k
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: _ Hil€ (Rl_,_i)
l o

Equation(K.3.30)is establishedin an identicalfashion. Equations(K.3.31)
and (K.3.32)followfairlyreadilyfromthe standardsymmetryrelations

¢l,o(Rl_,a) :¢1,o(_,a) (K.3.33)

¢1,_(RI_'u) = -¢1 (P,u) (K.3.34)

which we now prove. For the first we have, using the definition(K.3.18),

¢l,o(Rl_,a) = -(I/K) _ o(q) 1/R(RIP,q)dSq (K.3.35)
S1(IDp

Now by the invariancecondition (K.2.4)appliedto R1 we have

R2(RlP,q)=[RlP - q, RlP- q] = [P- Rlq,P- R1 q]

= R2(_, Rlq)

For _ € SI, Rlq = q so that we obtain

R2(RlP,q)= R2(p,q) (q € S1) (K.3.36)

Substitutingthis into the expression (K.3.35),we find

¢l,o(R1_,a) =-(I/K) _o(q) 1/R(p,q)dSq

S1(lDp

= ¢l,a(P,a)

and we are done. Turning now to equation (K.3.34)we find, using the definition
(K.3.19)

¢1 (RlP) = (1/,) JS,(_) _(q)T Vq(1/R(RI_,_))dSq
,u S1[IDp

Now, for _ € S1

(I/R(RlP,_))= _ss2 q-RIP

q R3(RI_,_)

= -SB2 Rl(q-p)/RB(p,-q)

= R1 Vq(I/R(_,_)) (K.3.37)
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-- Now for networks lying in the plane of symmetry, _(_) = :nl, a : * 1, so that

)T AT ^T ^ AT AT_(q RI : a nI RI : _ nI (I - 2 nI nI ) = -_ nI

= _ _(_)T (q _ SI) (K.3.38)

Using all these observations,we find

_1 (RlP'_)= (I/K)ff _(_')_(_)T RI Vq (I/R(_,_))dS
,u SIflDp q

= fS
S1n Dp f q(note the minus sign)

and we are done.

We have derivedall of the representationand symmetryresultsthat we
require for the potentialand must now state and prove the implied

representationand symmetryresults for _(_) = Vp _(_)

With the understandingthe line vortex velocitysingularitiesare always
to be removed,one finds after some manipulationthat _(_) is given

g(_) = Vp _(_) = _ Ri[v (R p, ) + V (Rip, )]

Vl "_ ^ S _i, (_,_A+ ip,oI ) + ) (K.3.39),o i

where the operators , , are defined

Vo(p,o) : -(I/,) f_ o(_) Vp(i/R(p,q))dSq (K.3.40)
S+a D

P

S+fl D
P

Vl,o(p,o)=-(I/K) ff o(q) Vp(1/R(p',q))dS (K.3.42)
S1 n Dp

V1, (p,o) = (i/_) ff (_(_)dSqx Vq,) x Vq(1/R(_,_))
SlflDp (K.3.43)
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Notice that V and Vl, are not definedas the gradientsof _ and _i, in that
the line vortex singularityhas been removed. Neverthelessfor all practical

purposes,_ and V1,u behave like the gradientsof._u and _1,_" Formal
differentiationof the definition(K.3.22)for 51 leads to the followingdefini-

A"

tion for v1(p):

_i(5) = _ HiJ Rj _ (RJP) (K.3.44)
J

The symmetry relationanalogousto (K.3.23)is given

_i(RJ_) = HiJRJ_i(_) (no summation) (K.3.45)

and is provedjust as easily -

_i(RJ_) = _ HiIRl_(RIRJp)= _ Hi(j'k)R(J'k)_(Rk_)

l k

= HiJRj _ HiRRR_(Rkp)= HiJRJ_i(_)

k

The representationresult analogousto (K.3.28)is given

^" Rj[_ Rj " + Rj_^iv1(p) = _ HiJ (_,_I) V ( p,u )]
j

+ 2 i+ Vl "_ ^ S. i _ _1A),olp,aI J + 2 _ -V1,_(_, (K.3.46)

The first two parts of this identityare generatedin the obviousway from the
correspondingterms in equation (K.3.39)while the last two parts follow from
the symmetryrelations

VI,o(RI_'a) : RI _l,a (p,a) (K.3.47)

VI,_ (RIP'")= -RI _i,, (P,u) (K.3.48)

The proof of (K.3.47)is trivial in view of the symmetry relationfor _l,a'

and the definitionof _l,a' (K.3.42). The proof of (K.3.48)offers(K.3.33)

somewhat greaterchallenges;using (K.3.37)we find,

VI (RI_.,)= (IlK)_ (_(_)dSqx v,) x _q (IIR(R17._))

S1n Dp

: xv.)x
S1n Dp
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__ = (I/K)(det RI) Ri-Tff [Rl(_(_)dS q x Vu)] x _q (i/R(_.q))
SnD
i p

RIT = RI. det RI = -i and on the surface SI lying on the plane of symmetry.
Now

A ^ ^ T ^
Rl(n x V.) = (I - 2 nI nI ) n x V.

A A ^ ^

= n x V. - 2 nI (n I n x =,)

^

=nx V_

since for points q E SI, n(q) = ±nI. Consequently

71,u(R1P,u)= (1/.) (-1) R1Sf (n(_)dSqxV,)x Vq(1/R(p,q))

SI(IDP

and we are done.

We have now derivedall of the machinerynecessaryto performthe
symmetrizationof boundaryconditions. In symmetrizingthe boundary
conditions,we treat first the case of a controlpoint not lying in the plane
of symmetryand then the case of a controlpoint lying Tn-the plane of
symmetry. (Note: A controlpoint _ is said to lie in _-B-eplane of symmetry

provided (i) R1 p = p an___d_d(iiJ n{p} = ±n1. See appen--_ix(H.I.2)for a
detailed discussionof control point classification.)

+
Symmetrizationfor _ € S

S+Let _ _ be a control point not lying in the plane of symmetry;then

R1 p € S- is the image of _ in the plane of symmetry. Using the notationdeveloped

earlier in this section,we can write the boundaryconditionsat _ and RI_ with a
single formula:

bcj: ( aAnT(p)Bo + tAT) RJ(_(RJp'))A + CA(¢(RJ_))A

_J(_)[ : bj
+ aA aJ(RJP) + cD uJ(RJP) + _DTRj vv ._ = RJ_

(K.3.49)

Notice that we requirethe scalar coefficientsof the boundary conditionto be

identicalfor both the control point _ and its image RI_ while the vector

coefficientsare reflectedby R1. Multiplyingequation (K.3.49).by Hij, summing
over j and taking accountof the definitions(K.3.22)of _i, (K.3.44)of _i

togetherwith relations(K.3.26)and (K.3.27)for _i and _i, yields, after some
manipulation,
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bci: (aA nT(-p)Bo +-_AT)(Gi(_'))A+ CA(_i(_))A

+ aA _i(_) + CD _i(_) . _DT Vp _i(_) = _] HiJ bj
J (K.3.50)

SymmetrizationFor p € SI, n(p) parallelto nl

When a control point lies in a plane of symmetry,very specialcare must
be used in order to achieve the desiredsymmetrization. Part of the problem
is caused by the fact that we do not really have enough boundaryconditionsto

fully determinethe source and doubletparametersassociatedwith both _S and

_A. Thus, the user specifiedboundary conditionsmust be supplementedby
special, programsupplied,degenerateboundaryconditions. We begin our
treatmentof symmetrizationfor control points in the plane of symmetryby
deriving the form of these specialdegenerateboundaryconditions.

Let _ € S1 be a control point lying in the plane of symmetry and let _ be the

normal to S1 at p where n = ±n1. Let _S and A be respectivelythe symmetricand
antisymmetricpart of _ as definedabove. Then the followingjump conditions

^A
hold for _S and € .

E _S(_) _]= lim [(_S(p^ -++ E_) - _S(__ E_)] = 0 (K.3.51) --
_-* 0

^ ^ Iim • - _)] 0E B _A/an _]= [B-V _A (_ + €_) - _ V _A(_ =
€ -_0 (K.3.52)

The first of these relationsfollows from the argument,

. .{p+€ = =

= +

In this sequence of equalities,the first equality followsfrom the general
symmetrycondition (K.3.2_3_3)with i = +i, j = -_ while the third equality
followsfrom the facts RlP= _ (p € S1) and R1n = -n (n = ±_1).

Relation (K.3.52)is proved by first noticing that the relation (K.3.23)
with i = -1, j = -1, implies,

_A (RI_) = __A(_).

Applying Vq to this, we obtain,

R1 V _A(RI_) : - V _A (_)

K.3-10



/% __,

Letting_ = 5 + _n, we see as before that Rlq : p - E_ so that

RI V _A(__ €_) = - v6A(p + E_)

Multiplyingby _T and recallingthat _TRI = __T, we get

__T v_A (__ €_) = __T v_A (P + _n)

Equation (K.3.52)now follows immediately.

As a consequenceof these jump conditions,we are led to the conclusionthat

the doubletstrengthassociatedwith _S and the source strengthassociatedwith

_A are both zero for points_ € S1. Thus, we write

_IS(5) = 0 (5 € S1) (K.3.53)

_IA(_) = 0 (P _ SI) (K.3.54)

These then are the degenerateboundaryconditionsto be imposedon, respectively,
the symmetricand antisymmetricproblems.

Turning now to the symmetrizationof a regularaerodynamicboundarycondition
imposedat _ € S1, we use the relations

6(5):½ ^s-(6 (P) + _A(_)), (K.3.55)

_(5) : 1 (_S(_) . GA(5)) (K.3.56)

(whichfollow directlyfrom the definitions(K.3.22)and (K.3.44))to obtain

^T (1)( + . +(eAR Bo + _T) _S(_) _A(_))A CA(1)(_S(_) _A(_))A
(K.3.57)

^A

+ aA _IS(_) + cD _iA(p) + _DT V_l = b

where we have used the fact that the sourceand doubletdistributionson S1 are

denoted_1S and _1A. Considerablesimplificationis obtainedby recognizingthe
followingaverage value formulae

(_A(_))A: 0 (K.3.58)

(t_AT GA(;))A : 0 (K.3.59)

(_TBo _S(_))A : 0 (K.3.60)
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^A
Of these formulae,the first is an obviousconsequenceof the asymmetryof _ , the
second is an easy consequenceof the symmetryrelation (K.3.45)and the identity

R1 _tA=^_A'^andthe ^third^isa consequenceof (K.3.45)^̂t°getherwith the identi-
ties Bon = n (sincen = ±nI and (nl' _0) = 0), R1n = -n. Using the relations
(K.3.58),(K.3.59),(K.3.60),the boundarycondition(K.3.57)becomes,

I ^A _ ^A._,
aA _T Bo(V (P))A + CD UltPJ . _ V_lA

+ _1TAT (_S (P))A + ½ CA(_S (P))_ aD _1S(_) = b (K.3.61)

A notable featureof this equation is the fact that the coefficient(i/2)
appears in three of the terms, that is, those terms that are computedfrom IC
integrals. [This minor nuisancecould be avoided if we were to change the
definition (K.3.22)to

_i(_) : (½) _ HiJ _ (Rj_)
J

and similarlyfor (K.3.44). However,we choose to leave things as they are.]

Without furtheradditionalassumptions,it is impossibleto do any more about
symmetrizinga boundaryconditionin a plane of symmetry_ However,a careful --
examinationof (K.3.61)reveals that if either (aA, cD, tD) = 0 or (aD, cA, _A) = O,

then equation (K.3.61)becomesa conditionon just the symmetricor just the
antisymmetricpart of _. Thus we are led to the definitions:

Symmetricboundarycondition. A boundaryconditionon a plane of symmetry is
Sald to be a symmetricboundaryconditionif (aA, cD, tD) = O. From (K.3.61)

we observe that a symmetricboundaryconditionimposesupon _S the condition

• ^S
1 _AT(_S(p))A+ ½ CA(_S(_))# aD °1 (_) : b (K.3.62)

The associatedboundarycondition (of symmetrictype) to be imposedupon _A is the
degenerateboundarycondition (cf.(K.3.54))

_IA(p) = 0

Antisymmetricboundarycondition. A boundaryconditionon a p_ane of symmetry

is said to be an antisymmetricboundaryconditionif (aD, cA, tA) = O. From

(K.3.61)we observethat an antisymmetricboundary conditionimposesupon _A
the condition

1 A
aA BT BO (_A(_))A + CD _IA(_) + _DT V_ 1 = b (K.3.63)
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e associatedboundarycondition(of antisymmetrictype) to be imposeduponis the degenerateboundarycondition(cf. (K.3.53))

_iS(_) = 0

We find, then, that the boundaryvalue problemfor _S can be fully decoupled

from the boundaryvalue problem for _A only if the user specifiesa symmetric
boundaryconditionon a source networkand an antisymmetricboundarycondition
on a doubletnetwork for any networklying in the plane of symmetry. This
conditionshouldbe regardedas the naturalextensionof the conditionthat
boundaryconditionson oppositesides of the plane of symmetrybe connected
with one anotheras indicatedby (K.3.49).

Having performedthe analysisto this level of detail,we can now make
fairly precisestatementsabout the efficiencygains that can be achievedwhen
a plane of geometricsymmetry is present.

First, even if no specialconditionsare imposedupon the boundary
conditions,the cost of computinginfluencecoefficientscan be cut in half.
This efficiencygain is achieved becauseit is not necessaryto computethe
influencesof any image panels on the control points,a fact which is clearly
indicatedby equation (K.3.20). [Note: The evaluationof influence
coefficientsassociatedwith ¢o(_,_-) requiresno extra effort over the
evaluation_o(_, _+)].

Second, if specialsymmetryconditionsare imposedon the form of the
boundaryconditions(equation(K.3.49)and the symmetric/antisymmetric
propertieson the plane of symmetry),then it is possibleto reduce the matrix
solutioncost by a factor of 4 by solvingtwo AIC matrices of size N rather
than one AIC matrix of size 2N.

Third, if there is partial geometricsymmetrytogetherwith partial
boundaryconditionsymmetry,some efficiencygains are possibleprovidedone
is willing to develop quite complex influencecoefficientgenerationand
linear equationcodes.

In the PAN AIR program, the decisionhas been made to implementgeometric
symmetry for only that case which yields the greatestefficiencygains, that
is the case in which the boundary conditionssatisfythe symmetryconstraints
(K.3.49)away from the plane of symmetryand (K.3.62),(K.3.63)in the plane
of symmetry. Thus, when it is appropriate,we obtainthe efficiencygains
describedin the second of the three situationsdescribedabove.
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_ K.4 Problem Formulation for Two Planes of Symmetry

In this section, we extend the results of the previous section to the case
in which the configuration has two planes of geometric symmetry. In figure
K.4 we illustrate such a configuration where the unit normals to the planes of

A a

symmetry are denote nI and n2 and these normals satisfy the usual conditions
(cf. equation (K.2.11))

A A A A A A

nl.n 2 = nl.c o = n2.c o = 0

The singularity surface S on which sources and doublets are defined is
decomposed in eight parts as follows

• •
+.1- -I-. +. A ^

SIJ: S = S n c , c : (p I (_,nI) > O, (p,n2) > 0 } (K.4.1)

S-+ : S n c-+, c-+ : IP I (_,BI)< o, (_,_2)> 0 }

s+-:snc.-, c+-:{_I (_,_i)>o,(_,_2)<o }

s--:snc--, c--:{_ I (_,_i)<o,(_,_2)<o}

sIJ" Sl+ = S n Cl+, Cl+ = { P I (-P,nl): O, (_,_2) > 0 } (K.4.2)

S1- : S flC1-, C1- : {P I (P,_I)= O, (_,_2).<0 }

$2i" S2+ : S(l C2+, C2+ : {P I (P,_I)> 0, (p,_2): 0 } (K.4.3)

S2- : S n c2-, c2- : { P I (_,_i)< o, (P,n2) : 0 }

Allowing the symmetrysuperscriptsi,j to range over the index set {+1, -1J,

"" ij j Sj _IAJwe denote the singularitydistributionson Sij by 013, _ , on S1 by _1 '
i _iS _iA

and on S2 by 02 ' _2 " The tilde written above the singularitydistributions
on the planes of symmetry is intendedto indicatethat these functionsare
already partiallysymmetrized. The perturbationpotentialinducedby these
singularitydistributionsis given by the formula(comparewith (K.3.5)),

_(_) : (l/K) Z II E-_iJ(_)/R(_'q)+ ij¢_) _. Vq¢l/R(p,q))]dSq

i,j SijllDp

+ (l/K)E _ E-_Jcq)/RCP,q) +_Aj(q)B._q (1/R(_,_))]dSq
J J(ID

$1 P (continuedon followingpage)
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i "n DpS21 (K.4.4)

Proceeding as before, we now define a family of reflection matrices Rij that
allow us to express all of the integrals appearing in (K.4.4) as integrals

. +

over the principal images of the various singluarity surfaces, S++ SI and S29 •

R++ = I

R-+ = RI = I - 2_I _i T

AT
R+- = R2 = I - 2 _2 n2

R-- = RI R2
(K.4.5)

These reflectionshave the propertiesthat

(Rij) = (Rij)T = (RiJ)-1 (K.4.6)

RiJ Rkl : R(i.k) (j.l) (K.4.7)

and also that

q"€ C++ ij. Rijq"_ C
++ (K.4.8)

_ Cij . RiJ_ _ C

Using these reflectors,we define some auxiliarysingularitydistributionson
the principalimage of the configurationby

oij(q"): _iJ(Rij-q) i (K.4.9)

q'€ Sij

ij _ij( (K.4.10)(q')= Rij_)

_Sj(_,) (R+J_) 1 (K.4.11)
°1 : _ISJ " q € SlJ

_IAJ(_) : _iAj(R+J_") j (K.4.12)

_2iS(_) : _2 S(RI+_) (K.4.13)

€ $2i

_2iA(_) : _2iA(Ri+_) (K.4.14)
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-_ These auxiliarysingularitydistributions,togetherwith the following
integraloperators(comparewith equations(K.3.16)- (K.3.19)),

=-(I/K1ff dSq (K.4.1S)
S.+flD

P

¢,(_',,): (l/K) ff u(q) _(q) • _q(1/R(p,q))dSq (K.4.16)
++1]S D

P

¢1,o(_,o) =-(l/K) ff o(_)/R(_,_)dSq (K.4.17)
.

S1 fl Dp

$1 (-P'u)= (l/K)ff _(q) _(_) . Vq (1/R(p',_))dSq (K.4.18)
.

S1 rl Dp

+

S2 n Dp

¢2, (_,u) = (I/K) ff _(_) _(_) • Vq (1/R(_,-_))dSq (K.4.20)
+

S2 n Dp

allow us to write _(p) in the shorthandform

6(_) = _ [ ¢ (RiJ_,_ij) + ¢ (RiJ_,_ij)]
i,j o

+j- • +j_ •
+ _ [¢i a(R p' _1SJ) + ¢i (R p, _IAJ)]

j ,

i+-._2iS) _2_A+ T_ [ o(R P' + ¢2 (Ri+_ "i ¢2, ,_ p, )] (K.4.21)

Our next definitionwill be of the varioussymmetricand antisymmetricparts of

€. Using the 2x2 matrix [Hij] = 1 - 1 as before,we define _ij by

_ij(_) = _ Hik Hjl _(Rkl_) (K.4.22)
k,l
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A, °

The four functions61J possess the followingsymmetrypropertiesand alternative -
names:

1st pos 2nd pos alias

2++ symmetr i c symmetric _SS

_-+ antisymmetric symmetric _AS

_+- symmetric antisymmetric _SA

A

6-- anti symmetr i c anti symmetri c _AA

These symmetryconditionsmay be stated conciselyas

_iJ(Rkl_)= Hik HJl _ij(_) (no summation) (K.4.23)

The proof of (K.4.23)follows quite readily from the definitionof _ij by using
the identities(K.3.25)and (K.4.7). The calculationgoes as follows

_iJ(Rklp): S Him Hjn 6 (Rmn Rkl P) A
m,n

: _ Him Hjn _ (R(m'k)(n'l)_)
m,n

= _ Hi(p'k) HJ(q.l){6(RPqp")
P,q

: Hik Hjl _ Hip HJq _ (RPq_)
P,q

= Hik HJl _ij(_)

The representation(K.4.21)inducesan analogousrepresentationfor _ij.
In order to state this representation,we need to define symmetrized
singularitydistributionsas follows.

^ij . Hik HJl _kl(_)_] Hik HJl klo (p): _] : o (Rkl_)X (K.4.24)
k,l k,l

^ij Hik HJl _kl Hik HJl kl(P) = _ (P) : _ _ (Rklp) (K.4.25)
k,l k,l
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- _Isj(_) : Z HJl _iSl(_) = _ HJl _lSl (R+l_)
l l (K.4.26)

_IAJ(_) : 2 Hjl _1Al(_) : Z Hjl -UlAl (R+l_)

l l (K.4.27)

_2iS(p): S Hik _kS(_): S Hik _2kS (Rk+_)
k k (K.4.28)

_2iA(p) : Z Hik _2kA(_) : _ Hik _2kA (Rk+_)
k k (K.4.29)

A, •

The requiredrepresentationof _13 is then given (comparewith equation
(K.3.28)),

_kl-_ _ij l-_ ij_ij (_): _ Hik Hjl [¢(K p, ) + • (Rk p, _ )]
k,l o

+ 26i+ _ HJl _I (R+Ip'_1sj) . 2 6i-_ Hjl _1 (R+Ip'_1Aj)l ,o l '_

+ 26J+ _ Hike2 (Rk+p'_2iS) + 26i- _ Hik_ (Rk+p'_2iA)
k ,o k 2,u

(K.4.30)

For the most part, the proof of this representationis a straightforward
computation. To illustratethe method of proof,we simply prove the identity
correspondingto the fourth term on the right:

+I_ Aj
Hik HJl _i (R.q Rkl _' _iAq) = 2ai- _ Hjl _ (R p, _1 )

k,l,q '_ l 1,_

Since R+q Rkl = Rk(q'l), the expressionon the left is equal to:

L.H.S. = k,n,q_ Hik HJ(n'q)_1'_ (Rknp'_lAq)

= _ Hik HJn_l (Rknp' _ Hjq _Aq)
k,n '_ q

= _ HJn (_ Hik_l (Rknp'_IAj))
n k 'u
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Now *I is antisymmetricin the first plane of symmetry,that is,

+n--,

*i (R-np"") : -*i (R p, ,) (K.4.31),Ft ,_

Consequently, we have

k Hik*l'" (Rknp'_lAj) = { 0 +n-- i = +I2-i (R p, _iAj) i : -I

Thus the left hand side is equal to:

+n-_ Aj
L.H.S. = _] HJn (2ai-)"1 (R p, _1 )

n '_

and we are done. The validationof the remaining parts of the identity requires
the use of the symmetryrelations

+n-_

*i (R-np' _) = +*I (R p, o) (K.4.32),0 ,0

• _m +--_

*2,, (Rm-p'"):- "2,_ tK p, _) (K.4.33)

•_m +-_

*2,o (Rm-p'°)= "2,o tK p, o) (K.4.34)

Just as we found in the case of one plane of symmetry,all of the relations
we have found so far have counterpartrelationsfor velocities. The first of
these relations,the representationof g(_) in terms of singularity

_1_distributions_ij, -_ij,_iSJ _2iS _ iA' ' ' "2 is given

_(_) : _ RiJ [_ (RiJ_,_ij) + _ (RiJ_,_ij)]
i,j o

• - +j-.: Sj - +j_ 1AJ+ Z R+j [V1 (R p, oI ) + V1 (R p, _ )]
j _0 ,_

+ Si Ri+ [_2,a (Ri+p'_2is) + #2,, (Ri+-'P'_2iA)]
(K.4.35)

where operatorsVo, V_ etc. are definedby

(S++ + +
, S1 , S2 )(IDp (K.4.36)
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- (V,'VI,, V2,,)(_'") : (llK)ff(_(_)dSq x V,) x Vq (IlR(_,_))

(S++,S_, +S2 )(l Dp
(K.4.37)

The symmetrizedvelocities,_ij(_),definedby

_ij(5) = Z Hik Hjl Rkl #(Rkl_) (K.4.38)
k,l

satisfythe symmetryrelations

_ij (Rkl_)= Hik HJl Rkl _ (Rkl_) (K.4.39)

The representationformula for _ij that correspondsto the representation

(K.4.30)for _ij is given by the formula

_ij(_,)= _ Hik HJl Rkl [7 (Rklp,_ij) + _ (R kl_, _ij)]
k,l o

+ Z HJl R+l [26i+_1 o(R+I_'_iSj)+ 2ai-VI,. (R+l_'_1Aj)]l

-" +-* ^ iS) +2aj-_2 (Rk+p' _2iA)]+ _ Hik Rk+ [2aJ+ V2,° (Rk p, aI ,_
k (K.4.40)

The proof of this representationformulais a fairly straightforwardmatter,

given the symmetryformulae for ,a' ,_' '

Vl,o (RlP' o)= R1 V1,° (_,_) (K.4.41)

_1,_ (RlP'U)= -R1 _1,_ (P'_) (K.4.42)

V2,a (R2P'°)= R2 V2,o (_,o) (K.4.43)

_2 (R2_.,):-R 2 V_ (P,u) (K.4.44)_P _P

Symmetrizationfor _ € S++

S++Let _ € be a control po!nt not lying in any plane of symmetry. The

four images of _ are given by R13p and the boundaryconditionsat these points
are requiredto have the form
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bckl (aA _T(p)Bo + TAT) Rkl (_(Rkl_))A+ cA (_ (Rkl_))A -

kl Rkl ukl (-u)l = bkl+ aA okl(Rklp") + cD _ (Rklp)+ tDT Vu Rklp (K.4.45)

As before, the scalarcoefficientsare independentof image while the vector
coefficientsfor the variousimages are relatedto the vector coefficientsfor

the principalimage by way of the reflectiontransformationsRij. Multiplying

equation (K.4.45)by Hik Hjl and summingover k and l, yields, after the
appropriatesimplificationsare made,

bcij (aA nT(p)Bo + -tAT) (_iJ(_))A + cA (_ij(p))A

. aA _ij(_) + CD _ij(p) + tDT v_ij = _ Hik HJl bkl
k,l (K.4.46)

-" + _(_) parallel to _1Symmetrizationfor p € S1 ,

Just as we found in the case of one plane of symmetry,specialdegenerate
boundary conditionsmust be imposed in order for the problemto be solvable.
For a control point_ lying in the first plane of symmetry,these conditions --
are

^ AS ^ AA
01 = aI = 0 (K.4.47)

_iSS = _iSA = 0 (K.4.48)

For a control point p € S1 , the boundaryconditionsat p and at its image point

R+- _ can be written together as

bClI (aA nT(p)Bo + _AT) R+I (_(R+I_))A+ cA (¢(R+Ip))A

+ aD _iS1 (R+I_)+ cD _iA1 (R+I_) + _DT R+Iv-_IAII = blR+I_
(K.4.4g)

Because this equationrepresentsonly two boundary conditionsit is not possible

to fully symmetrizeit. However,we can multiply by Hjl and sum over l to obtain
a partialsymmetrization. Using equations(K.4.26)and (K.4.27)to simplify
the terms involvingthe singularitydistributions,we obtain
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(aA _T(p)Bo + TAT) ( Z Hjl R+l _ (R+l_))Al

+ cA (_ Hjl _ (R+I_))AI

+ aD ^ Sj + c _IAJ + -_ T ,, Aj y_ HJl b1al D D . Vu I = (K.4.50)
I

Now if we multiply (K.4.22)by Him and sum over i, we obtain

(note: _ Him Hik = 2 6mk),
i

_] Him _ij : 2 _] Hjl € (Rml_)
i l

Settingm = +1, we obtain

_Sj + _Aj = 2 _] Hjl ¢ (R+l_) (K.4.51)
l

In a similarfashion,multiplying(K.4.38)by Him and summingover i, yields,
for m = +1,

_Sj + _aj = 2 _] Hjl R+I _ (R+I_) (K.4.52)
l

Thus, we obtain for the partiallysymmetrizedboundarycondition

(aA _T(-_)Bo . _AT) _ (_Sj(_)+ _Aj(_))A + CA (½) (_Sj(_)+ _Aj(_))A

_ISJ+ aA + CA ^ Aj + tD V^ Aj _] HJl bl_1 Ul = " (K.4.53)
l

The symmetrypropertiesof _ij and _ij provide the followingsimplifications
(comparewith (K.3.58),(K.3.59),(K.3.60)):

(¢AJ(-p))A = 0 (K.4.54)

(_/ ^vAJ"(P))A : 0 (K.4.55)

(_T Bo _Sj(_))A = 0 (K.4.56)

Thus we obtain finally
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i AT ^ " -" _i Aj(_) + -_DT V _i Aj2 aA n Bo (vAJ(p))A + cD

+ 21tAT (_Sj(p))A + ½ CA (_Sj(-_))A+ aD _Sj(_) = _l HJl bl
(K.4.57)

Here again, we find it necessaryto insist that a boundaryconditionbe either
purely symmetric,on a source network,or purely antisymmetric,on a doublet
network. Thus, given a purely symmetricboundarycondition,the

constraintsthat shouldbe imposedon the various_iJ's are given:

Symmetricboundaryconditions in first plane of symmetry

(vSj(p))A _ CA ( (P))A 1SS and SA: ½tAT ^ "-" + _Sj + aD _J(_) =_ Hjl bl

(K.4.58)

AS and AA: _J = 0 (K.4.59)

For a purely antisymmetric boundary condition, the constraints have the form:

Anti symmetric boundary conditions in first plane of symmetry

AS and AA:a I_TBo (_Aj(_))A + CD _IAJ(_)+ _DT V _iAj = _ Hjl blA2 l
(K.4.60)

^Sj
SS and SA: _1 = 0 (K.4.61)
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K.5 Evaluationof ¢IC's and VlC's when Symmetry is Present

We now consider the evaluationof potentialand velocityinfluence
coefficientswhen symmetryis present. Our goal is to providerepresentations
of the form

N iI ^ij _IciJ {_ij} (K.5.1)_ij(_)= Z ¢IC j _I =" "
I=1

N

_ij(_) : _ VI_Ij _ij : [vIciJ] {_ij} (K.5.2)
I=1

for the various symmetricparts of _ and v, where _ij denotesthe vector
of singularityparametersassociatedwith the (i,j) symmetrycondition. An
additionalgoal will be to provide proceduresfor the evaluationof _IC's and
VIC's that involvea minimum amount of specialcase logic. Toward this latter
goal, we initiateour investigationsby developingsomewhatmore symmetric

" ^i ij _ijformulaefor the quantities_i v _ and than the formulae (K.3.28)
(K.3.46)(K.4.30),(K.4.40).

K.5.1 One Plane of Symmetry

It turns out that when the problemhas one plane of symmetry,_i and
_i as given by (K.3.28)and (K.3.46)can also be expressedby the somewhat
more symmetricalformulae

_i(_) = _ [HiJ _ (Rj_, _i) + HiJ _ (Rj_,_i)]

i HiJ Rj_, i+ Z [HiJ _1 (RJP'_1 ) + _i ( _I )],(7 11_
J (K.5.3)

_i(_) = _ HiJ Rj [_" (Rj_,_i) + V (RJp,_i)]
j o

i _ i
+ Z HiJ RJ [Vl,o (Rj_' _i ) + VI,_ (RJP'_i )]

J (K.5.4)

The proof of these formulae is fairly straightforwardonce one noticesthat the
degenerateboundaryconditions (K.3.53)and (K.3.54)which state that
^S ^A
_1 = oI = 0 imply that

i+ ^ S ^ i

a Ol = Ol (K.5.5)

i-^A ^i
"1 = _1 (K.5.6)
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Consequentlywe find (workingbackward)that

(i) _ Hij _l,a(Rj_, ^i HiJ _ i+ ASoI) = _ • (RJ_. _ oI)
j I,oJ

: 6i+ [2 ¢1,o (5, _1s)] (K.5.7)

(usingequation (K.3.31))

(ii) _ Hij _1 (RJP" _ii) : _ HiJ _i (RJP' 6i- _IA)
j ,_ j ,_

= i- [2 ¢I,_ (5, _IA)] (K.5.8)

(usingequation (K.3.32))

i i+ RJ Vl ^ S(iii) _ Hij Rj (RJ_ 51 ): a Z Hij (RJp, 01 )]
j Vl,a , j '_

+ ^ S)]
= i [Vl.o (5. sIS) + RI Vl.a (RIP'°I

i+ (_,_1S) (K.5.9) --,= 6 (2) Vl.°

(usingequation (K.3.47))

(iv) _1 HiJ RJ _1 , (RJF'_Ii) : i- _ HiJ RJ _1., (Rj F'_IA)
j ' j

= i- [Vl.u_(P._IA) - RI _1._ (RlP' _1A)]

= 6i" (2)Vl, (p,_1A) (K.5.10)

(usingequation(K.3.48))

Recall that from their definitions, and _i are defined only for p € S..

If we now choose to extend their definitionto points_ € S1 by the obvious
specifications

^i J ^ i
I = °l (K.5.11)
SI

K.5-2



^i ^ i
u = uI (K.5.12)

S1

and then define operators . , * , V , V by

• a* (p,a): *a(_'a) + "1 (p,a) (K.5.13),(7

* (P,,) : * (P,u) + "1 (P'") (K.5.14)

--w. _.

V (_,a) : V (_,o) + V a(_,a) (K.5.15)a o i,

--* * --_ .__

V, (_,,) : V, (P,u) + Vl,, (5,,) (K.5.16)

then we are simply left with the compact formulae

_i(_) = _ HiJ [ . (Rj_, (7i)+ . (Rj_, _i)] (K.5.17)
j a u

^i Rj * " *v (5) = Z Hij [7 (Rj_, _I) + # (Rj_,_i)] (K.5.18)
j (7

We can now describethe computationof potentialand velocity influence
coefficients. Recallingthe representations(K.1.2)and (K.1.3)for (7and u in

the absenceof symmetry,we observethat _i and _i have the representationin
terms of spline basis functionsand singularityparameters,

N

_i (_): Z sI (_)_i i (K.5.19)
I=1

N ^i
^i,(_) = _ ml(q) _I (K.5.20)

I=1

Upon substitutingthese representationsinto the formulae for _i and _i we
obtain

• N i ^ i " i
_I(_)= _ .ICI XI :.*ICl, {_ } (K.5.21)I=1

^i N
V (_): Z _TCIi _ i ^iI:l I = [VlCi]{_ } (K.5.22)
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where

• , , j_.
_ICIi _ H13 [ _ (RJ_, sI) . ¢ (R p, m )] (K.5.23)

= j a _ I

VI_Ii _] Hij Rj _ * (RJ_, s ) + V * (RJ_,ml)]
= j o I u (K.5.24)

Having derived these formulae for potentialand velocity influence
coefficients,we are still not finished. Rather,we must investigatein some
detail the correct interpretationof these expressionswhen the evaluation
point _ lies on S+ or S1. The case of _ € S1 is especiallydifficult
becauseof the fact that a network that is recognizedas lying in a plane of
symmetrymay in fact lie some small distanceaway. The proper interpretation
of the formula (K.5.23)and (K.5.24)which we now describewill consistof
specific instructionsfor the evaluationof the integralsthat arise.

First we treat the case in which _ lies in S+, away from the plane of
symmetry. If we write the integraloperator ¢* as a sum of integralsovero

the constituentpanels Q of S1 and S+, then we have

(_,s) = _ _oQ (_,s) , (K.5.25)a

Q € SiUS +

where _ Q has the obvious definition
(_

Q (p,s) -(l/K) fS s(_) I/R(_,_)dSq (K.5.26)(1)° =

QnDp

Clearly, the integraloperators ¢ , V ,and V have preciselyanalogous

decompositionsinvolvingpanel integraloperators ¢ Q, V"Q and V Q. Given thesep o p

decompositions,the interpretationof the influencecoefficientexpressionsis now
summarized.

+ (Rj +AlgorithmA : Evaluationof • Q P, s), etc., when p € S0

+ Q
j = +I, R = I: ¢ (p,s)o

Use the average value of ¢ Q(_,s) for points
above and below Q. o

Proceed naively: • Q (_,s) is regular (has no jumps)
o

for _ in a neighborhoodof i. (By "proceedingnaively,"
we mean that no specialcare is requiredto evaluate the
PIC's in order to avoid ambiguitiesassociatedwith jumps
in the PIC integralsacross the singularitysurface.)
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j = -1, R- = R1 : _Q (RI_, s)

Proceed naively: _ Q (F,s) is regular (has no jumps)
o

for _ in a neighborhoodof RlP. Thus we evaluate

aQ (RIP'S)

, S+Thus when p _ , the only specialcare requiredis that averagevalue
integrals(aboveand below the panel Q) be used whenever the controlpoint
lies directlyon Q. This is done becausethe general form of a boundary
condition, (K.1.1),specificallyimposesa conditionon the averagevalues of

potential,velocity and mass flux, _A' V-'Aand WA" With this interpretationof

what is to be done with integralsover the panel in which p lies, equations
(K.5.23)and (K.5.24)providea preciselyaccuratedescriptionof the actual
IC computationsperformedby PAN AIR for the case-p € S+.

The case in which p lies in SI, that portionof the configurationon the
plane of symmetry,is somewhatmore difficult. The rules we actuallyuse for
the evaluationof influencecoefficientsare motivatedby two requirements:

(i) The evaluationproceduremust be consistentwith the programcontrol
structuresimplicitin a "naive"interpretationof equations(K.5.23)
and (K.5.24)

(ii) The evaluationshouldyield influencecoefficientsthat possess the
basic symmetrypropertiesfor _ _ S1

a) _A (5) : 0

^ ^ T (K.5.27)
b) (I - nlnI )_A(_)= 0

^ AS
v (5)= oc) n1

(comparethese with equations(K.3.58),(K.3.59),(K.3.60))

The actual rules for the interpretationof (K.5.23)and (K.5.24)are now given

in terms of instructionsfor the evaluationof _Q.

AlgorithmAI: Evaluationof CQ J_o (R p, s) etc., when-_ € S1

+ _Q (-p,S)j=+l R =I:
' 0

p_Q
Q .

Use the averagevalue of _o(p,s) for points_ above and
below Q.

p¢Q

Proceednaively
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j = -I, R- : RI: _Qa (RlP'S) -

Use the averagevalue of CQ (_,s) for points_ above and
o

below Q. Note that we use _ and not RI P.

P#Q

Use _Q(_,s)
o

Thus, we.proceedmuch the same as we procededbefore except that the control
point p is never actuallyreflectedin the plane of symmetry,even if it does
not lie exactly on the plane of symmetry. It is also importantto note that
the same influencecoefficientsare generatedfor j = +I and j = -i.

Consequentlywe find that when p _ S1

• IC : _ H+J [¢a(p,s I) + ¢ (_,mI) ]
j

= 2 [¢ (_,Sl) + _ (_,ml) ] (K.5.28)o

• ICA = 0 (K.5.29)

_+_ _+ --_V-I'C : (I + R1) [Va(p,sI) + V (-_,ml)]

A AT _* _ _*
= 2 (I - nlnI) [Va(p,sI) . V (_,mI)] (K.5.30)

= 2 _lnl^T[7 (_,Sl) + V_ (_*,ml)] (K.5.31)

These resultsverify that the influencecoefficientsexhibit the basic
symmetry propertiesof equation (K.5.27).

It is interestingto compare the formulae(K.5.28) through(K.5.31)with
what one would obtain from a straightforwardapplicationof equations(K.3.28)
and (K.3.46). This comparisonis summarizedin figure K.5. The differences
between the two methods are of three types: (i) some extra integralsover S1
appear in the expansionsof equations (K.5.28)- (K.5.31),(ii) some of the

S+integralsover are different(e.g., _a (P'Sl) replaces _a(R1P, Sl) and

(iii) there are some very definitedifferencesin form for the remaining

integralsover SI.
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The first type of differencesare of no consequencein view of the restric-
^i

tions on _I impliedby the degenerateboundaryconditions,_ = O, _ = O.
These restrictionsread:

sI _ 0 ---" Xl = 0 (_A = O)
$I (K.5.32)

ml $1

The terms appearingin figure (K.5) which can be neglectedbecauseof these
considerationshave been lightlycrossedout with an arrow ( --_ ).

The differencesof the second type have the forms

(_,s) - _o(Rl_,S)o I I

(_,mI) - _ (RlP,mI)U

RI[_o(P'Sl)- Vo(RI_'Sl)]

R1[_u(p,mI) - V (RlP,mI)]

These differenceswill all be negligibleby virtue of the fact that Ca (P'Sl)'

¢_(_,ml), etc. are continuous functionof p for _ in the neighborhoodof the
plane of symmetry. This continuity,coupledwith the bound

J _- R1 _J < 2 (geometrictolerancedistance)

ensures that all the differencesof the second type are small.

The third type of differenceshave the forms

^ ^ T _i (P'Sl)- 2 nlnI ,a

2 (I - _1_1T) 71,_ (P'ml)

These differenceswill be identicallyzero providedboth S1 and _ lie
exactly on the plane of symmetry. If S1 deviatesslightly from the plane of
symmetry,these differenceswill still be small provided_ lies on S1 and
average value integralsare systematicallyused.

Thus the method of calculatingIC's describedin this sectioncan be
expected to yield very similarresults to the method of sectionK.3. We
choose to use the algorithmA1 becauseit permitsmuch simplerprogram
structureand at the same time it enforces the symmetryconditions(K.5.27).
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K.5.2 Two planes of Symmetry _

In this section, we devise influence coefficient evaluation procedures for
the case of two planes of symmetry. We begin this task by transforming

equations (K.4.30) and (K.4.40) for _ij, Gij into the following symmetrical
forms :

_ij Z Hik HJl [ • (Rkl_ ^ij ij= p, a ) + ¢ (Rkl_,_ )
k,l a

ij 1, (Rkl_, ^ ij+ ¢1,o(Rkl_' _1 ) + ¢ Ul )

+ ^ + (Rkl_, _2ij)]_2,o(Rkl_'a2ij) ¢2,,
(K.5.34)

: ^ij -_(Rkl_,_ij)_ij _ Hik Hjl Rkl [_(Rkl_, o ) + V
k,l

^ (Rkl_,_ ij
+ Vl,o (Rklp'alij) + 71,, 1 )

RKI_, j _ Rkl ""+ V2,o( _21 ) + V2 ( P, _213)]
(K.5.35)

The proof of equation (K.5.34) depends upon identities of the form

A ^

Hik HJl ¢1 (Rklp' al ij) = 2 ai+ _] Hjl ¢l,a(R+l_, alSJ)k,l ,a 1

k,l_ Hik Hjl ¢1,, (Rkl_,_1ij) : 2 i- _]l HJl _I,,(R+Ip"_IAJ)
(K.5.37)

which followeasily from the observations

^ ij i+ ^ Sj. ^ij i- ^ Aj
01 = a Cl ' _1 = a _1

^ ij aj+ ^ iS. ^ ij 6j- f,iA°2 = °2 ' _2 = _2
(K.5.37)

togetherwith symmetryrelations
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¢l,a (R-IP'_) = ¢l,a (R.IP' °)

sl.l

¢2,a (Rk-_,a) : ¢2,a (Rk+_'a)

¢2,u (Rk-_''_) = -¢2 (Rk+p'_)

Equation.(K.5.35)is proved in very much the same way as the formula (K.5.4)

for _, using the relations(K.5.37)togetherwith the symmetryrelations(K.4.41)
- (K.4.44)for the operatorsV

Our expressionsfor _ij, _ij can be compressedeven furtherif we extend the

definitionsof _ij and _ij in the obvioussort of way:

^ij J ^ij ijI ^ij(7 S = (7 _ = _ (K.5.38)a S

If we then define ¢ *, ¢ * etc by
(7 I_

€ = € + €1 +¢2,

= ¢ + €i + ¢2,

V = V + V1 + V2(7 (7 _(7 _(7

V =V +_i

we obtain finally

Hik Hjl * _ A_ _ * Rkl_ _ijij = T. [€ (Rklv,ij + € ( P, )]
k,l (7

(K.5.39)

= + * (Rkl _ij_ij _- Hik Hjl Rkl [V* (RRI_,_ij) _ _, )]
k,l (7

(K.5.40)
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As before,much care must be exercisedin the evaluationof these expressions.
++ +

Three separatecases must be treated: (i) p € S , (ii) _ € SI and (iii)_ € $2+. ....

The first case p _ S++, _ , in which p lies away from either plane of symmetry
is fairly straightforward. The only specialcare that must be taken is in the

evaluationof panel integralsof the form cQ (Rklp,a), cQ(Rkl_,_), etc., when

_ Q and k = l = +1. (We are using here the naturaldecompositionof ¢ into
o

* Q ) For this particularcase,panel integrals,viz., _a = _ _a "
++ + +

Q € S U SI U S2

care must be taken that the averagevalue of the panel integrals ¢_' ¢_' _a and
vQ be computed.

+

The second case, _ E $1, in which _ lies on the first plane of symmetryis

handledessentiallythe same as the case of one plane of symmetry. Our description
of it, howeverwill be somewhatdifferent. First, observe that if S1 truly lies

on the first plane of symmetryand _ _ $1, then Rkl _ = R+l_. Using this relation
in (K.5.39)and (K.5.40)we find,

(_ € $1+1

_ij(_) = _ Hik HJl [ * (R+l_,_ij) + _* (R+l_,_ij)]
k,l a (K.5.41)

oij(_) = _ Hik HJl Rkl [_ (R+l_ _ij)+_* (R+l_,_ij)]
k,l '

(K.5.42)

Here again the evaluationof cQa (R+l_' a), ¢_ (R+l_,,), etc., must be

handled carefullywhen p € Q and l = +1. Thus when p € Q=S 1, average value

integralsmust be used for both the principalimage condition(k = +1, l = +I)
and its reflectionin the first plane of symmetry (k = -1, l = +1). When
equations (K.5.41)and (K.5.42)are used in this way to generate IC's when

€ S1, the followingimportantsymmetrypropertiesare preservedeven if SI

does not lie preciselyon the first plane of symmetry:

a) _Aj(_) = 0

b) (I - _I_IT) _Aj(5): 0 _S 1

c) _iT ,_Sj(_): 0 (K.5.43) "-"
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The third case, _ € $2+, in which -_lies on the second plane of symmetryis

- virtuallyidenticalto the second case. The point_ satisfiesthe relation

Rkl _= Rk+_ and the expressionsfor _ij and _ij read

_ij(_)= _ Hik HJl [_* (Rk+_,,_ij) + €* (Rk+_,_ij)] (K.5.44)
k,1 a v.

-_* _ij_ij(-_)= _ Hik HJl Rkl [_* (Rk+_, _ij) + V (Rk+_, )] (K.5.45)
k,l o

Summarizingour treatmentof the case of two planes of symmetry,we observe
that influencecoefficientsare computedas follows:

--_ S++Case p _ : Use (K.5.39),(K.5.40),
--_ +

Case p _ S1 : Use (K.5.41),(K.5.42),

--_ +

Case p € S2 : Use (K.5.44),(K.5.45).
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K.6 Generationof AIC's when Symmetryis Present

In this sectionwe discussthe constructionof rows of the AIC matrixwhen
symmetry is present. Given the influencecoefficientswhose computationwas
describedin the previoussection, the constructionof AIC's in the presence
of symmetry is very much the same as in the absence of symmetry. The only
essentialdifferenceoccurs when a control_ lies in a plane of symmetry.
When this happens,the contributionsof the integralinfluencecoefficients

(e.g. ¢IC_, VICe) to an AIC row must be multipliedby (1/2) before the

correspondingcontributionsare includedin an AIC row. This factorof (1/2)
appearsclearlyin equation (K.3.61),the generalform of a boundarycondition
on a plane of symmetry. As we noted when equation (K.3.61)was first derived,
these anomalousfactorsof (1/2) appear because the symmetricand
antisymmetricparts of _ are definedby

_i = _ HiJ _ (Rj_)
J

rather than

_i I Z Hij _ (RJ_)
J

Of course if one were to change the techniqueof symmetrizationto this second
form, one would have to investigatevery carefullyits impact on the form of
matching conditionsat a plane of symmetryas well as the interpretationof
singularitydistributionson the plane of symmetry.

The actual discussionof AIC constructionwill consistof four parts.These include-

o General BoundaryConditions

o Matching BoundaryConditions

o Closure BoundaryConditions

o DegenerateBoundaryConditions

In the discussionsthat follow we will freely use the symbols ¢ICI, VICI
i _ '¢IC I, VIC , etc., to refer to the potentialand velocity influence

coefficientsassociatedwith a particularbasis function,sI or mI.* Formulae
for these influencecoefficientsare summarizedon the followingpage. These
expressionsreflectall of the specialprecautionsrequired to ensure that the
various symmetrizedpotentialsand velocitieshave the correctpropertieswhen
evaluatedon the plane of symmetry.

* For any given singularityparameter_I' only one of the functionsSl, mIwill be not identicallyzero.
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Summary of IC formulae

No plane of symmetry ---

¢ICI = ¢o (_'Sl)+ ¢,(_'ml)

VICI = V (p.sI) + V (p.mI)o

1 plane of symmetry

_€ S+

iI * ,• IC = _ Hik [_ (RRp" sI) + ¢ (Rk_.ml)]k a '

V_ _ Hik Rk [_* k-_ -'* (Rk_.mi= (R p,sI) + V )]
k _

PcS 1

iI * ,¢IC = _ Hik [ • (_.s) + ¢ (_.m)]
k a I _ I

v_iI = _ H ik Rk [V* (p.sI) + V* (_.ml)]k _

2 Planes of Symmetry _

-_ st+pc

i . . Rkl-._IC j : _ Hik Hjl [_ (Rkl_,sl) + _ ( P,ml) ]k.l a u

= -'* Rkl_,mI)]V-_ j Z Hik Hjl Rkl [V* (Rklp.sl) + V (
k.l

.

_€ S1

iI * * R+Ip'ml• IC j _ Hik Hjl [_ (R+l_.s) + ¢ ( )]
= k,l a I

il +l_ -** R+l-_.mlV-_ j = _ Hik Hjl Rkl [V* (R p.sI) + V ( )]
k.l _

+

-_cS 2

il = * *¢IC j _iHik Hjl [¢ (Rk+_.Sl)+ ¢ (Rk+_.ml)]
k.l o

v-Tcj = _ Hik Hjl Rkl [V* (Rk+p.s) + V (Rk+p.ml)]
k.l a I _
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K.6.1 General BoundaryConditions

When one plane of symmetry is presentand the controlpoint _ lies away
from the plane of symmetry,the general symmetrizedboundarycondition
(K.3.50) inducesthe symmetrizedAIC equations

N

AICI _i = _ Hij bj (K.6.1)
I=i j

AICI are given
where

+ i ¢iCili (aA _T Bo tAT) _I + CAAICI =

+ aD sI(P) + CD ml (P) + _D " XlpmI (_)
(K.6.2)

S+(pc )

If the control point _ lies in the plane of symmetry,then a general
boundaryconditionwill induce an AIC equationonly if the symmetrytype of
boundary conditionand AIC equationagree. For example, the symmetric
boundary condition(cf. (H.1.20))

tA * +aD =b (K6.3
is equivalentto the symmetrizedboundarycondition(cf. (K.3.62))

(1/2)tAT ^S-*(v (P))A + (1/2) cA _S (_) + aD _1S (_) = b
(K.6.4)

ASwhich in turn inducesthe AIC equation for _ ,
N

AIC xI = b (K.6.5)
I=1

AIC_ is given by
where

AIC_ = (1/2)_T _-_ + (1/2)CA¢IC_ + aD si(_) (K.6.6)

On the other hand, an antisymmetricboundarycondition(cf. (H.1.19))

AT ^IA( -- _iAaA n Bo (_(P))A+ CD " P) + tD'V = b (K.6.7)

is equivalentto the symmetrizedboundarycondition(cf. (K.3.63))

^T A(p 1A( _ ^ A(1/2) aA n Bo (_ ))A + CD _ P) + tD " V _1 = b (K.6.8)

which inducesthe AIC equation for _A,
N

A ^AAIC _1 = b (K.6.9)I=1
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where

AIC_ = (1/2) aA _T Bo VI'C_+ cD mI (p) + _D.V ml(_)
(K.6.10)

When two planes of symmetryare present,equation (K.4.46)providesus
with the symmetrizationof a generalboundaryconditionaway from either plane
of symmetry. Using it, one obtains the symmetrizedAIC equations

N • °

AICIIj _ilJ= T Hik Hjl bkl (K.6.11)
I=1 k,l

where

AiCilJ= (aA _T BO + _AT) _TclJ + cA ,iciij

+ aD sI(P) + CD mI(P) +-tD " Vp ml(P) (K.6.12)

If a controlpoint _ lies in the first plane of symmetry,then symmetric

boundary conditionsat _ and at R2_ can be written conciselyas

aD _IS1 (R+Ip)+ CA (_(R+Ip))A+ _A " (_(R+Ip))A= bl (K.6.13)

These conditionscan be symmetrizedto give (cf.K.4.58) _

aD _iSj (-p)+ (1/2) cA (_SJ(_))A + (i/2)_A . (_Sj(p))A = _ Hjl b1l
(K.6.14)

which in turn yields the two AIC equations

I=i

where

AIC)J = aD sI (_) + (1/2)cA ¢IC)j + (1/2)_A . VT'C)j (K.6.16)

Similarly,an antisymmetricboundary Conditionon the first plane of symmetry
yields the AIC equations (cf. K.4.60)

N

AIcAIj _? = _ Hjl bI (K.6.17)I=i l

where

AIC_J = (1/2)aA _T BO VTc)j + cD mi(_) + _D "Vml (K.6.18)

The treatmentof control points lying in the second plane of symmetryis
essentiallythe same. -_
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K.6.2 Matching BoundaryConditions

In this section,we examine the impositionof matchingconditionswhen a
configurationpossessessome symmetry. Our discussionwill concentrateon
doubletmatching,source matching being handled in an essentiallysimilar
fashion. Notice howeverthat the concept of source matchingalong an abutment
involvingmore than two networks is not really sound, since even the idea of a
continuoussurfacenormal is ill-definedin the neighborhoodof such an
abutment(*). For this reason,we prefer to deal with the conceptof doublet
matching,which has a thoroughlysound theoreticalbasis.

Our discussionwill consist of two major parts. First, we will
investigatethe forms that doubletmatching takes when symmetry is present.
In the second part, we will show how these matching conditionsinduceAIC
constraintrelations.

K.6.2.1 The Form of DoubletMatchingConditions

If an abutmentlies away from any plane of symmetry,doubletmatching
along the abutmentand its imagescan be expressedby (cf. eqn. (H.2.11a)or
(F.5.1))

Sk uki...(Rip)= 0 i _{+i -1}k

if the configurationhas one plane of symmetry,and by

sk ,_J-(Rijp)= 0 i,j €{+l,-l}k

if the configurationhas two planes of symmetry. These conditionscan be
symmetrizedin the obvious fashionto yield the symmetrizedmatching
conditions,

one plane of
symmetry _ Sk _k (P) = 0 (K.6.19a)

k

two planes of ^ij
symmetry _ Sk _k (P) = 0 (K.6.19b)k

^i
Here _k(_) denotes the evaluationof _i(_) on the k-th network of the abutment
^i • •° , •

being definedby (cf. (K.3.27))_i(_) = _ H13 3(R3_).
J

(*) Recall that source strength is defined, for incompressibleflow, by
o = (_._) + (n.v_ -. If v is continuous,a will not likely be
continuousunless n is continuous. In any event, the whole issue of
sourcematching is not of much consequencesince it can only arise when
(a) one uses design networksand (b) one specifiesthat closureoverride
doubletmatching (not recommended).

K.6-5



If an abutment lies on a plane of symmetry,four separatecases,
illustratedby figure K.6, must be analyzed. These are

(a) there is just one plane of symmetry

(b) the abutment lies on the first of two planes of symmetry

(c) the abutment lies on the second of two planes of symmetry

(d) the abutment lies on the intersectionof two planes of symmetry

We study each of these cases in turn.

In fig. K.6a, we illustratethe case of just one plane of symmetry. Six

networksare involvedin the abutment,Na and Nd in the plane of symmetryand. .

Nb , Nb, Nc, Nc, the images of Nb and Nc. In line with our conventionof

denotingthe doubletstrength ôn^S1 by _1A, we denote the doublet strengthson

networks Na and Nd by _?,a_and _?,d'_ The doubletmatching conditionfor this
abutment is, clearly,

^A + + ^A - _c + "b : 0_l,a - _b + _c - _l,d

Rearranging,we write

+ (+ ^A^Aul,a- (_b - _ _c - _ _l,d = 0

^A + ^A
+ - _b) as _b and ("c Uc) as Uc' this yieldsRecognizing(_b

^A ^A ^A ^A
_l,a - _b . _c " _l,d = 0 (K.6.20)

a matching conditioninvolvingjust the antisymmetricdoublet strengths.
There are no symmetricdoubletmatching conditionsat a plane of symmetry.
This can be clearlyseen in fig. K.7 for which one can see that the doublet
matching conditionreducesto the trivialcondition,0 = O.

In fig. K.6b, we illustratethe case of an abutment lying on the first
plane of symmetrywhen two planes of symmetryare present in the problem. The
doublet matching"conditionson the abutmentand its image read

~A+ ++ ++ -+ -+
_l,a + _b - Uc + _c - _b = 0

._ ._

~A- + "b - "C + "C- - "b- : 0_l,a

Adding and subtractingthese two conditions,and taking account of the

relations^AS ~A+ _A- ^AA ~A+ ~A- --
Pl,a = _l,a + 1,a ' _l,a = _l,a - _l,a , we obtain
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^AS _S ^AS_l,a + - _c = 0

^AA + ^AA _AA (K.6.21)
_l,a Ub - _c = 0

Notice that when the abutment lies in the first plane of symmetry,both of the
doubletmatching conditionsare antisymmetricwith respectto the first plane
of symmetry.

The case of an abutment lying in the second plane of symmetry,illustrated
by fig. K.6c, is handled in essentiallythe same way as the previouscase.
The resultingdoubletmatchingconditions,

S ^SA^SA +_A+ =0_2,a _c

(K.6.22)

A _AA^AA +_A+ =0
_2,a _c

L

are both antisymmetricwith respectto the second plane of symmetry.

When an abutmentlies on the intersectionof both planes of symmetry,as
illustratedby fig. K.6d, there is only one doubletmatching condition.
Referringto fig. K.6d, it is easy to see that for this example the matching
conditionreads

++ +- -+ -.A _-A
_A+ _A- + b- - = 0_l,a - _l,a _b - _b + _ - _b + _2,c _2,c

Recognizingthe variousantisymmetric/antisymmetricparts, this simplifiesto
read

_AA _AA
1,a + _bAA + 2,c = 0 (K.6.23)

Notice that this conditionis antisymmetricwith respect to both planes of
symmetry.

A carefulperusalof equation (K.6.20),(K.6.21),(K.6.22)and (K.6.23)
leads to the followinggeneralconclusions.

(i) if an abutment lies on a plane of symmetry,the matchingconditions
imposedfor that abutment are antisymmetricwith respect to the plane
of symmetry

(ii) the doubletmatching conditionshave the same form as the doublet
matchingconditions for just the principalimage of the

.

configuration,S U S1 when one plane of symmetry is presentand
. .

S++ U S1 U S2 when two are present.

Consequentlywe find that equations(K.6.19)capturethe correct form of the
doubletmatching conditionseven when the abutment lies on a plane of symmetry.
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K.6.2.2 The Impositionof DoubletMatchingConditions

We now study the impositionof the doubletmatchingconditions,(K.6.19).
In order to simplifythe discussion,we treat only the case of one plane of
symmetrywhere the matching conditionsare given by (K.6.19a).

We begin by observingthat the basic problemto be addressedis the
^i

problemiofexpressingUk(_) in terms_ofthe global singularityparameters_.

_k denotesthe restrictionof _i to Nk, the k-th networkof the abutment.
Here,

Following the notationof section(K.1.1),we observe that

N

_ki(_) : _ ml(P)I _iiI=1 Nk (K.6.24)

Here, mIINk denotes the restrictionof the global basis functionmI _to the

network_Ik. It may be written

(K.6.25)
where

({',n') are the local coordinatesof the matching point _ in the subpanel
in which it lies,

[SPSPL_] is the doubletsubpanel spline for the subpanel in which _ lies,

in network Nk

Bo Dk,I} is the column of the doubletouter spline matrix [Bk] correspond-

ing to xI and associatedwith the panel of Nk in which _ lies.

With this understandingof how one computesmil.Nk, it is easy to see that
a matching conditionof the form (K.6.19a)inducesAIC constraintrelationsof
the form

N

AICI _i
I=l I = 0 (K.6.26)

where
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K.6.2.3 Source Matching (DesignCases Only)

When symmetryis present,the enforcementof the symmetrizedsource
matching conditionsis handled in essentiallythe same way as the doublet
matchingconditionsdiscussedin the previous section. Away from any planes of
symmetry the symmetrizedmatchingconditionsread (comparewith equations
(K.6.19))

^i _) 0 (K.6.28a)One plane of _ sk ak( =
symmetry k

^ij(_) 0 (K.6.28b)Two planes of _ sk ak =
symmetry k

If the sourcematchingabutment lies on a plane of symmetry,the source
matching conditionsare still of this form, but are imposedonly on

symmetrizedpotentials_i (or _ij) that are symmetricwith respect to the plane
of symmetrycontainingthe abutment. If the sourcematching conditionis to
be imposedat a controlpoint lying in the plane of symmetry,it must replace
the user boundaryconditionof symme_ic type (in the sense of section
(H.1.3)).

In any event, the sourcematching boundaryconditionscan be transformed
into AIC constraintrelationsof the form (K.6.26)with numbersAIC

I given by
the same formula,equation (K.1.21)that we obtained for the case of no
symmetryat all. The only modificationthat is requiredin our interpretation
of equation (K.I.21)is that the summationover k be restrictedto networks
lying in the principalimage of the configuration.

K.6.2.4 VelocityJump Matching

The symmetrizationof the velocityjump matching conditionsis now
described. In order to simplifythe discussion,we restrictoutselvesto
configurationswith just one plane of symmetry. The extensionof the results
to configurationswith two planes of symmetryis straightforward.

When the abutment lies away from any plane of symmetry,we obtain the
usual results (comparewith equation (K.1.22))

Sk {_i (_._)/(_._)+ ((_)x_). v_i/(_._)} k = 0k

(K.6.29)

This relationcan now be transformedinto an AIC equation for each symmetry
conditionin the usual way with equation (K.1.23)giving the formulafor the
AIC row entries for all symmetryconditions.

When the abutment lies on a plane of symmetry,the situationis
significantlymore complicatedthan anythingwe have treatedup to this
point. Consider figureK.8, which gives an edge-on view of an abutment lying

on a plane of symmetry. For this situationthe expression _ sk a_k can be
written, using the notationof figureK.8,
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- +]Sk aVk = (+I) [a+ _+/(_,_)++ X/t.

(-i)[o-_-I(_,_)_+ vt.-]

(-I) [_S ni/(_,_)i+ vt_A]

(K.6.30)

J A" A °Using the relations(K.3.26)and (K.3.27)relatingoJ _J to oJ, uJ,
we obtain

+ I 1 _S _A
° {_+ = _ ( + ) _+ (K.6.31a)P

o- 1 (_S _A) I (K.6.31b)__:_ - R1_

_ = (_S + _ (K.6.32a)
P

I

. 5:½(_s_A1 RI_ (K632b) --
Applying vt to these last two equationsand recognizingthat Vt behaves
just like the regulargradientoperator,we obtain

Vtu+{ 1 _s _A l_+ = _ ( Vt + Vt ) _+ (K.6.33a)P

yr.I =½RI( Vt _s vt_A) I _-p. - RIp (K.6.33b)

Substitutingrelations(K.6.31)and (K.6.33)into (K.6.30)and recognizing
that the evaluationpoint _ of equation (K.6.30)satisfiesRlP= p, and thatA+ A_

n = RI n , we obtain

Z sk a Vk (+i) ½ (I R1) [_S ^+..^_. S]: - n /{n.vj++ Vt

A A .__

(-1)½ (x-RI)[;_.i/(n,_)1]

(+1)½ (I + R1) [_A _+/(_,_)++ vt _A]

(-i)_ (I + RI) r vt _l
(K.6.34)
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Now the reflectormatrix RI satisfiesthe relations

1 ^

(I - RI) = nI _iT = projectionin directionof _i

1 ^ AT
(I + RI) = I - nI nI = projectionorthogonalto nl

Using these relations,we can write the followingdecompositionof _.sk AVkinto symmetricand antisymmetricparts,

_Sk a_k = ( _ Sk avk)S + ( _s k a_k)A (K.6.35)

where we define

( 31.sk aVk)S = (_i _iT) { (+1) [_S _+/(_,_)++ Vt _S]

(-1) [_1S _i/(_,_)1] }

( _ sk a_k)A = (I - nl _IT) {(+I) [_A _+/(_,_)++ Vt _A]

(-1) [ Vt _iA] }
(K.6.36)

Now in section(K.4) we found that it is necessarythat boundary conditionson
the plane of symmetrybe either purely symmetricor purely antisymmetricin
order for the symmetricand antisymmetricproblems to decouple. In terms of
the velocityjump matching condition

t . _ sk a_k = 0

this clearly requiresthat either

(i) _" nl _iT = 0

or

• A AT,
(ii) _ (I - nln1J : 0

In the first instancewe obtain the antisymmetricmatching condition:

_" nl = 0 : _. {(+1) [_A B+/(_,_)++ Vt _A]

(-1) [ Vt _1A] } = 0 (K.6.37a)

while in the second instancewe obtain the symmetricmatching condition
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1T) -+ { S]t . (I - _i _ : O: t. (+1) [_S B+/(_,_)+-_+ vt

(-i} [_1S _i/(_,_)1] } = 0 (K.6.37b)

The first of these conditionsrepresentsthe usual case in which the network
lying in the plane of symmetry is a wake network,as illustratedin figure
K.8. The form of the symmetrizedmatchingconditions (K.6.37)is the same as
the usual form (K.6.29)with the followingrestrictions

(i) the sum over k in equation (K.6.29)must be interprettedas being
just a sum over those networks in the principalimage of the
configuration,S+ U S1

(ii) the symmetrizedsingularitydistributionsin the plane of symmetry

_1A ,,Ssatisfythe usual degenerateboundaryconditions, = O, _I = O.

K.6.3 ClosureBoundaryConditions

We now study the generationof a closureAIC equation for those problems
possessingsymmetry. Two basic cases must be treated, (i) the case in which
the control point lies away from any plane of symmetryand (ii) the case in
which the control point lies in a plane of symmetry. For the secondcase, two
subcases exist, correspondingto the situationsin which the closurecondition
is of symmetrictype or of antisymmetrictype. In the discussionthat
follows,we describe in detail only those problemshaving one plane of --_
symmetry. The extensionto problemswith two planes of symmetryis fairly
obviousand its treatmentis summarizedwith only cursory discussion.

When a closurecontrol point lies away from the plane of symmetry,the
closure boundary conditionat _ and at the image point R- _ may be concisely
summarizedby (comparewith (K.I.24))

= bj (K 6.38)
f: [aA _T RJBo_ (Rj_) + AD oj(Rj_+)]dSq

column or row of

panels in image S+

+

Notice that we performour integrationon the principalimage S , so that the
integrationspace is the same for both boundaryconditions. Multiplyingthis

by Hij and summingover j yields

AT ^i(_) + ^i = _ HiJbj
jj [aA n-BoV aD a (_)]dSq (K.6.39)

J
column or row of +
panels in image S

To obtain this result,we have used the definition(K.3.26)of _i and the

^i RJBo BoRJ
definition(K.3.44)of v , togetherwith the fact = .
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Proceeding now as in sectionK.I.3, we approximatethe integralon the left by
evaluatingthe integrandsat the panel centersof the particularrow or
column, multiplyingthese values by the panel area, and formingthe sum. One
obtains the approximateequation

.AT_ ai I ^i
_] Ak [aA(Pk) {n boV )I + aD(_k) o (pk)] = _] HiJbj
k -PR J

(K.6.40)

This immediatelyprovidesthe AIC constraintequations
N

l^i_] AIC xI = _ Hijbj (K.6.41)
I=1 j

where

AT IAIC{ : _ Ak [aA(_k) (n Bo V-ICi) + aD(_k)Si(_k)]
k Pk

(K.6.42)

If a closurecontrol point lies in the plane of symmetry,it must lie on a
networkthat itself lies in the plan_of symmetry. When this happens,the
closureconditionmay have either the form

symmetric _ _IA(_)closure aD dSq = b (K.6.43)
condition column or

row in S1

or else the form

antisymmetric /_ aA nT B _(q)dS = b (K.6.44)closure o q
condition column or

row in S1

A symmetricclosureconditionof the form (K.6.43)clearly providesthe
symmetricAIC constraintequation

N

AIC_ x_ = b (K.6.45)
I=1

where

AIC_ = )_ Ak aD(_k) sI (pk) (K.6.46)k

The antisymmetricclosurecondition, (K.6.44),is a bit trickierand requires
the use of the generalidentity (cf. eqn. (K.3.56))

:½ ^s(v (q) + _A(_)}
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togetherwith the observationthat for _ € SI, _T Bo _S (_) : 0 (cf. eqn.

(K.3.60)). These two observationsimply that (K.6.44)is equivalentto

_I aA _T Bo (½)_A (_)dSq = b (K.6.47)
column or

row in S1

This clearlyprovides the antisymmetricAIC constraintequation
N

^AAIC _I = b (K.6.48)I=1

where

Notice the appearanceof the factor of (1/2) as a coefficientof the integral

influencecoefficient V_.

We now turn to the case of two planes of symmetry. If the closurecontrol
point lies away from both planes of symmetry,then the four image closure
conditions

II -"
[aA _T Rkl Bo _ (Rkl_) + aD okl(Rkl_)] dSq

column or row of

panels in image S+. = bkl

(K.6.50)

yield, upon symmetrization,the four AIC constrainequations

N _ ^ij ik HJl klAIC j x = _ H b (K.6.51)
I=1 I

k,l

AIC_j are given by
where

AIC_j = Z Ak [aA(_k) (_T Bo v_j) _ + aD(_k)Si(_k)]
panels k Pk

(K.6.52)

If a closurecontrol point _ lies in the first plane of symmetry,then the

closure boundaryconditionsat _ and its image R+- p will have either the
symmetricforms
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_ _ aD _1Sl (R+lq)dSq : bI (K.6.53)
column or row of

+

panels in S1

or the antisymmetricforms

_I = bI (K.6.54)a A aT R+l Bo _ (R+lq)dSq
column or row of

.

panels in S1

The pair of equations(K.6.53)inducesthe pair of AIC constraintequations,

AI = T (K.6.55)
I=1 l

where the AIC's are given by

AIC_J = _ Ak aD(_k)sI (pk) (K.6.56)k

The pair of equations (K.6.54),on the other hand, induces the pair of AIC
constraintequations,

N

AIcAJ _Aj = T Hjl bI (K.6.57)I=1 l

where the AIC's are given by

• IAICA3 = _ _ Ak aA (_k) aT B V-I-CAIJ (K.6.58)k o -_
Pk

Notice that here, as in the case of one plane of symmetry,that the integral
influencecoefficientsare modified by a factorof (1/2).

K.6.4 DegenerateBoundaryConditions

In this section,we discussthe AIC constraintequationsinducedby
degenerateboundary conditions.

Recall from sections (K.3) and (K.4) that when a controlpoint lies in a
plane of symmetryit may receive some degenerateboundaryconditions. These
conditions,which have the various forms
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(DegenerateSource

Condition in a Plane _1A = 0 (K.6.5ga)
of Symmetry)

(DegenerateSource _AIAS 0
Conditions in first (K.6.59b)
Plane of Symmetry) ^ AA

aI = 0

^ SA
(DegenerateSource a2 = 0
Conditionsin Second (K.6.59c)
Plane of Symmetry) ^ AA

a2 = 0

(DegenerateDoublet

a -_1S = 0 (K.6.59d)
Condition in
Plane of Symmetry)

(DegenerateDoublet _1SS = 0
Conditions in First (K.6.59e)
Plane of Symmetry) ^ SA = 0

^ SS
(DegenerateDoublet _2 = 0
Conditionsin Second (K.6.59f)^ AS
Plane of Symmetry) _2 = 0

The implementationof these conditions is fairlyobvious, given the
representationformulaefor source and doubletdistributions,

^i N
o (p)= Z si(_) _ii (K.6.60a)

I=1

^ij N
o (p) = _ s (_) ^ ij

I=1 I Xl (K.6.60b)

^i N ^ i
(P) = _ mI(5) Xl (K.6.61a)I=1

^ij N ..
, (p)= _ mi(_) _ilj (K.6.61b)I=1

In fact,for most controlpoints-pat whichtheseconditionsare to be

imposed,onlyone of the basisfunctionssI or mI will be nonzero. Thus the

conditions_lA(p)= 0 or _lS(p)= 0 will usuallyreduceto either
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^A
sK(P) _K = 0 (K.6.62)

or

mK(P) _KS = 0 (K.6.63)

When this happens, one has the choice of characterizingthe boundarycondition
as a "singularityspecification"boundarycondition,in which case it induces
a row in the AIC matrix, or as a "known singularity"boundary conditionwhich
does not inducea row in the AIC matrix. To determinethe characterization,
we must employ the generalprincipalthat the AIC matrix must have the same
size for all symmetryconditions. In practice,this means that we must
examine the boundaryconditionwhich the degenerateboundary condition
replaces. If the boundaryconditionthat gets replaced is a "null" or "known
singularity"boundary condition,the correspondingdegenerateboundary
conditionmust be either "null" or "knownsingularity." If, on the other
hand, the boundaryconditionthat gets replaced is "general,""singularity
specification,""closure"or "matching,"the correspondingdegenerateboundary
conditionmust be a "singularityspecification."
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K.7 The IC Update Capability

The purposeof the influencecoefficientupdate capabilityis to permit a
programuser to make changes in the geometry (or, occasionally,the left hand
side of the boundaryconditionequation (5.6.1)of a portionof a configura-
tion), and to solve the resultingpotentialflow problemmore economicallyby
making use of the previoussolution.

The program user specifiescertainnetworksas "updatable,"that is,
subjectto futuremodification,when specifyingthe originalpotentialflow
problem. The program then identifieseach control point and each singularity
parameteras either "updatable"or "non-updatable,"and resequencesthem so
that the updatableones occur last. The resultingAIC matrix can then be
partitioned

m

AICNu AICu,1

[AIC] =

AICu,2 AICu,3 (K.7.1)

When the modified flow problem is solved,the matrix AICNu remains

unchanged,and need not be recomputed. Only the matrices AICu,i i = 1, 2, 3,
defining the influenceof the updatableportionof the configuration,and the
influenceon the updatableportion,need to be computed. Thus, if r is the
fractionof the configurationwhich is non-updatable,a proportionof the AIC

computationof size r2 is saved.

The impositionof doubletmatching causes the specificationof updatable
control points and singularityparametersto be non-trivial. Clearlyevery
control point and singularityparameteron an updatablenetwork is itself
updatable. In addition,though,controlpoints on an edge of a non-updatable
networkwhich abuts an updatablenetworkmust be made updatable. This arises
from the possibilitythat the abutment in questionmay change by the addition,
deletion,or change in panel density,of the updatablenetwork. As a result,
the boundaryconditionson the edge of the non-updatablenetworkmay change
from matching to a standardaerodynamicboundarycondition(5.6.1)or vice
versa.

In addition,the modificationof the updatablenetworkmay cause the
definitionor deletionof extra singularityparameterson the edge of the
non-updatablenetwork (see figureK.9). Thus the edge splineon this edge may
change,and so the singularityparameterson this edge must be specifiedas
updatable.
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S Plane of symmetry

^
n

_[_.c_-_o_]
p, _P

_o

_,:_-2R[_.(_-_o)]

Figure K.1 - Reflectionof point (_) in a plane of symmetry
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First plane _
of symmetry

2nd image --_ n1

: ^^T-
-_(2) (I - nln I ) _ __ Principal image

P (Input configuration)

I

A

I n2 Second plane
of symmetry

I
I I
I I
I I
I i
v __

_i_1 T) : A ^ T ---_(3) : (I - p-_4) -_(4) (I - n2n2 )p

(I A ^ T,-_(2): _ n2n2 )

3rd image 4th image

Figure K.2 - Reflections of a point-_ in 2 planes of symmetry

(AsummesPo.nl = Po.n2 = 0)
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Plane of symmetry

- .

^- S1 ^+
n ^A n
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S = S+USIUS -

Figure K.3 - A configuration with one plane of geometric symmetry
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Figure K.4 - A configuration with two planes of geometric symmetry
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€IC_

(K.3.28) Ca (-_'Sl)+ €0 (RI_,SI) + ¢p (-_,mI) + ¢p(Rl-_,mI) + 2€i,o (-_,SI)

(K.5.28) 2€0 ('_,sI) + 2¢p (-_,ml) + 2€1,o(-_,SI) + 2€,_(-P;ml )

€ICA

(K.3.28) @o(-_,Sl)- @o (Rl-_,Sl)+ @p(_,ml)_ @p(Rl_,ml) + 2¢i,p (_,ml)

(K.5.29) 0

VIC_

(K.3.46) V-_o(-_,Sl)+RlV-_o(RlP-_,Sl)+ V-_(_,ml)+ RIV%(RI_,ml)+ 2Vl,o (_,Sl)

"-_ "_ _ -'_ A AT --_(K.5.30) Vo (_'Sl)+ RIVo (_,sI) + _p(_,m I) + RIVp (P,mI) + 2(l-nlnI) _'l,o(P,SI) + 2 ml)

vIcA_

(K.3.46) V% (p-_,Si)- RIV-_o(RI_,SI)+ _p (_,ml)_ Rl_p (R1-_,ml)+ 2V-_l,p(_,ml)

-_ -_ -_ "_ -_ -_ 2_-_ ,_A AT _ (_,ml)(K.5.31) Vo ('p,SI) - RIVo (p,SI) + Vp(p,ml) - RIV_ (P,ml)+ ^ AT-_ ) # znlnI Vl,p

oo
!

_n Figure K.5 - Comparisonof AIC formula obtainedusing (K.3.28),(K.3.46)with (K.5.28-31)
when_ ESI



(a) ^A
Pl,a +

^A + - + -) _ _APb _b IJ1, a -(IJ b - IJb) + (U c -IJ c 1,d = 0

or

_C + _A _ AA AA _ _AC 1,a _ b + _c 1,d = 0
AA
_l,d

~A+

(b) _ _l,a ++
_b+ _b

"l,a-AJ+ (._j _pbJ) (.c j -IJc j) : 0

-. ..
_c IJ

c Symmetrizingwith Hj£,

__ _+-
)Jc c

^A!& ^A£ ^A£
_l,a + _b - _c = 0\

.-

_b _b

1,a

(c) _+ _+
++ +.

_c _b _b _c

_-A _+A 2,1 + (_b " Ub " c - U =

2,a 2,a_ _/ Symmetrizingwith Hki

__ _ "AkA + _kA _ kA+_ +_ P2,a b + = 0---- C

Pc- Pb Pb Pc

Figure K.6 - Four cases of an abutment lying on a plane of symmetry -_

K.8-6



A+ ~ A+ A-
(d) l,a Pl,a- _l,a

Pb b + ( 1.,1++ +- -- +)b - _b + #bb - Pb

~+A 2A,+(IJ2, c - fi c) = 0

_cIi_ x t_._
IJb -"'_I_- Simplifying,

AAA AAA AA_A- IJl,a + P + _2,c = 01,a

Figure K.6 - Continued
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Doublet matching: -IJa c c a

Figure K.7 - Doublet matching for $S at a plane of symmetry
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S"F

O+,_+/
^ _ Upper surface

n+w J
At ^A 1

S1

/ _-=____._owo,surface
,, . . o-,_-_

Abutment lylng In
the plane of symmetry

S-

Antisymmetric (+1)[_A _+/ (_,_-_)++ _/t_A]
Matching:

I-_l[v__] =o

Symmetric (+1)[_S _+/ (_,-_)++ _/t_S]
Matching:

(-_)[;,__/(_,_ ] : o

Figure K.8 - Velocityjump matching on a network lying on a plane of symmetry

K.8-9



Non-updateabl e
network

X

Updateable network

• Extra singularityparameter

x Extra controlpoint

FigureK.9 - Extrasingularityparameterand controlpoint
dependenton existenceof updateablenetwork
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L.O The Constraint Matrix

In this section we describe the theory underlying the activities of the

programs RMS and RHS in the PAN AIR system. The basic function of this pair
of programs is to organize and execute the calculation of the symmetrized

singularity vectors _ij that satisfy AIC constraint equations of the form (we

assume two planes of symmetry)

° °

[A ciJl-  L01)
In this equation the pair of indices (i,j) corresponds to one of four possible

symmetry conditions (cf. the definition of ;ij in appendix K.4) while the
index a is a solution index. That is, a is associated with a particular
choice of onset flow. The four major topics associated with the treatment of
equation (L.O.I) are listed below:

(I) The calculation of the matrix [AICIJ]. This calculation process must
deal with the complexities introduced by considerations of symmetry,
by configuration updatability and by the distinction between "known"
and "unknown" singularity parameters.

(2) The calculation of the constraint vectors [b_J}

(3) The solution of the linear system of equations, (L.O.I).

(4) The desymmetrization of the vectors _lj to obtain the singularity

vectors _ij associated with symmetry image (i,j) and the onset flowa
with index e.

Of these four topics, the first has been treated in Section 5.7 and in much
more detail, in appendix K. In particular, the details of symmetry were
discussed in sections K.2 through K.6 while configuration updatability was
discussed in section K.7. The exploitation of the computational efficiencies
associated with the distinction between known and unknown singularity
parameters was discussed in section 5.7. See especially equation (5.7.12).
The remaining three topics are discussed in the following three subsections of
this appendix.
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L.] Calculation of Constraint Vectors

In Section H.3 we have discussed in detail the automatic options for the
calculation of the onset flow. In general, the onset flow defines all of the

non-zero entries of the constraint vector ;ij. In the case where there is no

configuration symmetry and only one onset flow (solution) is specified, an
entry of the constraint vector has the form (cf. eqn. (H.3.25))

- b

_- b(;) - b° - bn _o.n- bT_o._T- _ [_.,;1 eL.11)
SB2

A

where bo, bn, bT, t T and bp are user specified, U is the uniform onset flow
and U is the total onset flow

o

_0 " I]o(;) " _" + AU(;) + _ X (l_-p O) (L.1.2)

with AU, m and Pc also being specified by the user. For a configuration that

has configuration symmetry as well as multiple onset flows, we need to

define Bij, the entry in the constraint vector associated with onset flow aa

and control point image _lJ. Using the notation of appendix K.2 and K.3 for

Rij we write

• " " _ii _ii ij ^ _lj (_lj).R t TBazJ : biJ(_ zj) - b - b Uo]a( p _).R n - bT lj .(_ O,(l n o,(_

(L.I.3)
b

p " _lj
s82 [u,_, ]

where bo,a, bn, bT, tT and bp are user specified as before U is the' m (I

uniform onset flow for solution a and _ij is given by
0,(I

; ;ij) . ;1j ;o)oij (ij) ,,_ +AUij ( + (_ x ( - (L.I.4)

° °

Here again, U A_ Ij and m are user specified. Having computed Blj the

ij of the constraint vector _lj is computed according tocorresponding entry ;a a

the rules developed in sections K.3 and K.6. For a control point that does
not lie in any plane of symmetry we have (cf. equation (K.6.11) with
appropriate modifications)
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''8_j = Z Z Hik HJ_ Bk_ (L.I.5)

For control points lying in a plane of symmetry the situation is more
complicated and is summarized by the two tables below. Notice that for a
control point lying in the first (resp. second) plane of symmetry, the false

image quantities B-_ (resp. 8k-) are neither needed nor used.

Symmetry Boundary Condition Boundary Condition
Condition of Symmetric of Antisymmetrie
(i,j) Type [S] Type [A]

(+I,+I) (S,S) Z H+_8+_ 0

(-I,+I) (A,S) 0 Z H+_ B*_
a

(-I,-I) (A,A) 0 Z H-£ 8+_

(.I,'I)(S,A) Z H-_ B*_ 0
_ a

Table L-I: Control point lles in Ist plane of symmetry:

Evaluation of _lj
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LSymmetry Boundery Condition Boundary Condition
_-- :Condition of Symmetry of Antisymmetrlc

(i,j) type iS] Type [A]

(+1,+1) (S,S) _ H+kBk+ 0
k

(-1,+1) (A,S) _ H-k 8k+ 0
k "

(-1,-1) (A,A) 0 _ H-k 8k+¢tk

(+1,-1) (S,A) O _ H.k Bk+
k c=

Table L-2: Control point lies in 2nd plane of symmetry:
A • •

Evaluation of 813
c:

For configurations with just one plane of symmetry the corresponding table is
substantially simpler and is given as follows:

Symmetry Boundary Condition Boundary Condition
Condition of Symmetric of Antisymmetric
(1) Type iS] Type [A]

(*1)(S) 8* O

.
(-I)(A) 0 S

Table L-3: Control point lies in a plane of symmetry:

Calculation of 8_ when there is one plane of symmetry

A_

The zeros appearing in all of these three tables are just the zero values that
appear on the right hand side of a degenerate boundary condition.
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L.2 The Solutionof a LinearSystemof Equations

The process by which PAN AIR solves a linear system of equations of the

form (L.O.I) will be more clearly explained if we suppress the indices (i,j)
and a and consider the standard llnear system of the form

A x = b (L.2.1)

where A is an NxN AIC matrix, x is a singularity vector and b is a constraint
vector• Now since most problems of aerodynamic interest result In the matrix
A being too large to fit in the main memory of the computer, it was found
necessary to develop an out of core linear equation solver for PAN AIR. The
basic operation of this solver proceeds as follows•

First the matrix A is divided up into rectangular blocks as follows:

A11 A12 • . . A1n

A _ A21 A22 . . . A2n

• • • (L.2.2)

Anl An2 • . . Ann

where the rectangular components of A are of the form

block (i,j) of A : AIj : Pl x pj matrix (L.2.3)

Here the matrix partition dimensions ,,[Pil n satisfyi=I

n

[ p_ - N, the dimension of A (L.2.4)
i=I

,K

Having partitioned A as shown by (L.2.2), one can conceptually
describe the operation of the PAN AIR solver as performing a sequence of
transformations of the form listed below with the result that matrix

A(nn) Is lower triangular• (The calculation of the transformation

matrices Tij is described below in detail by equations (L.2.13-18).)
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A(1'1) = A T1 1

A(1,2) . A(1,1)TI transformations T 1,j
,2 > j = I, n

••• 1 oeeA(1,n) = A(1,n-1)T1,n

A(2,2) = A(I,n)T2,2

A(2'3) = A(2'2)T2,3 transformations T2,j

A(2,n) . A(2,n-I)T2,n

A(n-l,n-1) . A(n-2,n)Tn_1,n_l transformations Tn_1,j

A(n-l,n) : A(n-l,n-1)Tn_1,n

A(n,n) A(n-1 ,n)Tn }= ,n Tn,n

(L.2.5)

It is worth emphasizing here that the transformations TIj are NxN matrices,

and not submatrices of any larger matrix T. If we aggregate the relations of

(L.2.5) together and denote the lower triangular matrix A (n,n) by L, we obtain

L = A(Tll T12 ... Tln)(T22 T23 ... T2n)...(Tn_l,n_ 1Tn_l,n)(Tnn )

(L.2.6)
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We note in passing that the intermediate matrix A (i,j) has the partially upper
triangular structure:

L 0 .... 0
X L 0
X X L 0 . . . 0 . 0

(i,j)
A = •

X X X . . L 0 0 0 0 0

X X X . . . X L 0 0 X X }+row block i
X X X . . . X X X X X X
• • • • • • •

• • • . • • .

. • • • • . •

x x x . . . x x
-- . . -

column block j j+]
(5.2.7)

The operation

A(i'j+1)= A(i'j)Ti,j+I (L.2.8)

will then serve to introducezeros into block (i,j+1)of A(i'j+1). An
alternativeand convenientway of viewing the sequenceof transformations
(L.2.5)is expressedwith the help of the replacementsymbol (.) by the pidgin
Algol,

for i = 1, 2, ...n

forj = i, i+I, ...n

A . A Tij [A . Tij replaces A]

end j

end i (5.2.9)

Before proceeding further with the discussion of the operations of (5.2.5)
we briefly describe how the transformation process expressed by (5.2.6) allows

us to solve (L.2.1). Letting y satisfy,

L y = b (L.2.10)

observe that x defined by

x = (T11T12...T1n)(T22...T2n)...(Tn_I,n_ I Tn_1,n)(Tnn)_

(5.2.11)
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satisfies

Ax = A ( 1...Tnn = A( 1...Tnn) = L y

= b
(L.2.12)

Returning now to the process described by (L.2.9), we observe that Tij
must introduce zeros into block (i,j) of the working array A. (Notice that

here and throughout the rest of this section we use the notation A to denote

the current contents of a working array. This working array is further

partitioned as indicated by (L.2.2)). The transformation Tij consists of a

product of interchanges and elementary transformations of the form

Tij = (PIUI)(P2U2) "'" (PPi Upi)" (L.2.13)

The pivot matrix Pk is either the identity matrix or else it is used to

interchange column k in the i-th block of columns with column qk in the jth
block of columns, where qk is defined by the condition

max

[case(i=j)]I (Ail)k,qkI = k_£_plI (All)k,£ I (L.2.14a)

[case (i,J)] I (Aij)k,qk I = max I (Aij)k, £ I (L.2.14b) ---1_£_pj

The matrix Uk is an elementarycolumn transformationdesigned to introduce

zeros into row k of block (i,j)of A. It is given as follows

Case i=j

(1)

I
I

Uk (forTii) : I
(i) vk

I

I
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where

I

Vk =

I mk+ I mk+ 2 ... m + row k
Pi

1

I

m£ = - (Ail)k,£/(Aii)k,k £ = k+1, ... , Pl

Case i_J

(i) (j)

I

Uk (for TIj) =

- (i) I Vk

(j) I

I
where - --

Vk = k,1Vk,2 ''' Vk,p . row k

0

Vk, _ = -(Aij)k£/(Ail)kk £ = 1,...pj (L.2.16)

The selectionof the pivot matrices Pk deserves furthercomment• In order
to best maintainnumericalstability it would be desirableto choose Pk
accordingto the classicalpivotingstrategy
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I if I (Aii)kk I > I (Aij)k,qk IPk

interchange of column k of column block i with column qk of
column block j if the inequality does not hold

(L.2.17)

In the case that i,j, such a stringent pivoting strategy Is not necessary and
could significantly increase the I-O costs associated with the solution

process. In order to keep the I-O costs down while still preserving numerical
stability, the following "threshold pivoting strategy" is used when (i,J):

/

= _ I if I (Ail)kk I > _ I (Aij)k,qkIPk

L interchange of column k of column block i with column qk of
column block j if the inequality does not hold

(L.2.18)

In PAN AIR the parameter _ that controls pivoting has been set equal to (.2).

Now while the foregoing discussion is an accurate presentation of the
mathematics underlying PAN AIR's out-of-core solution package, it is somewhat
incomplete in that the question of algorithmic organization has not been fully
addressed. We now remedy that deficiency. _

In the algorithm to be given presently we use the notation

(Aki,Akj) Tij : [Apply Tij in row block k] (L.2.19)

to indicate that the effect of transformation Tij upon block row k is to be

computed. This is a natural notation since Tij acts on block column (i) and

block column (J). In a similar spirit we use the notation

(Aki) Tii : [Apply Tii to block row k] (L.2.20)

to indicate that Tii is to be applied in block row k to the subarray Aki.

Given this statement of notation, we can now state the reduction algorithm.
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Algorithm: Out-of-Core Factorlzatlon of A

for k = I, 2, ... n do

<Part A: Perform Crout Style eliminations>

Perform the following indicated transformations (for k-l, do nothing)

{(Aki Akk)Tik}_Z1 {(Aki Ak )Ti k-1 {(Aki k-1' I ' ,k+1 ,k+1}i-1 "'" ,Akn)Tin}i=I

k-1
{(Ak+1,i'Ak+;,k)Tik}l=1

I

{(Ak+2,i,Ak+2,k)Tik}_1

k-1
{(An,i,An,k)Tik}i=I

<Part B: Generate New Factors, Apply Tkk>

Form Tkj , j-k,k+1,...,n while performing the following transformations

(Akk)Tkk (Ak,k,Ak,k+I)Tk,k+] .-. (Ak,k,Ak,n)Tk,n

Apply Tk_ in block column k

(Ak+I,k)Tkk

(Ak+2,k)Tkk

(An,k)Tkk

end k
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A few remarksare in order concerningthis algorithm. When in part A we
perform a set of transformationsof the form

the algorithmproceedsas follows

Read Akq

for i = I,..., k-1 do

Read Aki

Read Tlq

Perform (Akl, Akq)Tiq

Conditionalwrite Akl

[If Tiq involvesany interblockinterchanges,the

array Aki has been modifiedand must be
rewritten]

end i

write Akq

This particular organization is very effective at minimizing disk I-O. In a

similar fashion, the sequence of operations

{(Apl Apk)Tik}k-1' I=I (L.2.22)

is implementedvia the followingsequenceof operations:

Read Apk

for i - I,...,k-Ido

Read Apl

Read Tik

Perform (Apl, Apk)Tik

Conditionalwrite Api

end i

Write Apk
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The volume of I-O performed by this algorithm when it is carefully coded

satisfies the following bounds, where we assume that all n partition

dimensions Pi are equal size: (Pi " b).

2

n (n2+6n+2)b 2 _ [number of words of I 2 7 n+½)b 2disk input-output J _ n(n .2

(L.2.23)

Since the total dimension of the matrix A is given by

dim(A) - N - n . b

we see that A has N2 - n2b2 elements. Thus, the total I-O volume lies roughly
between 2n/3 and n times the volume of I-O required to read the matrix A. It
should be noted the lower bound in (L.2.23) is attained if no interblock
pivotting is performed (as would happen if we set _I 0 in (L.2.18)) while the
upper bound is attained if interblock pivotting is performed by every

transformation Tij, i-j.

The skeptical reader may perhaps doubt that this out-of-core factorization

algorithm actually generates and applies the transformations Tij in such an

order that the mathematical development presented earlier is correctly
realized. To help convince such suspicious individuals I have provided in
figure L.] a complete list of all the transformation processes, in the order
they are performed, for the case n-5. In figure L.2 is provided a diagram

indicating the precise stage of the algorithm at which Tij is applied to an

appropriate pair of arrays (Aki, Akj). The careful reader will study these

figures, meditate a while, and, after a day or two of quiet obsession, will
convince himself that the algorithm really does work. I leave it at that: a
complete proof of the algorithm§ correctness is beyond my endurance, and
probably beyond the endurance of the reader as well.
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L.3 Desymmetrization of Singularity Parameters

In this section we describe and comment upon the process of desymmetrizing
A • .

the singularity parameters {_J}that are obtained by solving equation

(L.O.I). Suppressing, for the purpose of this discussion, the solution index
_, we rewrite equation (L.O.I) for the case of just one plane of symmetry as

[AICi] {_i} = l_i} (L.3.1)

Denoting the J-th entry of {_i} by we observe from equations (K.3.26)

and (K.3.27) that this symmetrized singularity parameter must be related to
+

the corresponding principal image singularity parameter Aj and the reflected

singularity parameter _j by the relationimage

ljAi. [ Hik ljk (L.3.2)
k

This relation is trivial to invert (see equation (K.3.21), the definition of

Hik). Doing this, we find

xRAj = Ajk

iS clear that the singularityvectors _]}v and {_j} must determine
Nowit

respectivelysingularitydistributionson S+ (theprincipalimage) and S- (the

reflected image)of the configuration.

These distributionsare given explicitlyby the formulas (comparewith
equations(3.3.1-2))

N . + (L.3.4a)+ -_ .

o (p) = [ lj sj(_) p € S
J=1

N

_-(_)- _:_j sj(_) __s- (L.3.4b)
J=l

N

U (P)= X _j mj(p) p E S (U.3.5a)
J=1

N

u (P) - [ Aj mj(R1P) p £ S (L.3.5b)J-1
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What is not immediatelyclear is how the singularitydistributionsare
determinedon SI, that part of the configurationlying on the plane of

symmetry. While it is clear that equations(L.3.4a)and (L.3.4b)can be

evaluatedat points p _ SI , it turns out that when this is done, we obtain
(I/2) of the correct values for the singularitystrengths.

To demonstratethis result,we begin by recallingthe developmentof
section K.3 that states that for networkslying on the plane of symmetry,

o (restricted to the plane of symmetry) = ;_
(L.3.6)

(restricted to the plane of symmetry) - _ (L.3.7)

and (cf. equations (K.3.53) and (K.3.54))

^ A
01 --0 (L.3.8)

^ s 0 (L.3.9)

Consequentlywe find that when J is an index of a source parameterlying on SI
we obtain from equation (L.3.3)the result,

½source parameterAj on Si = ( ) [ H+k "kAj

= (2)[),j+

= (2) [jS (using (L.3.8))

(L.3.10)

where rj is the location of _j on SI. A very similar calculation shows that

for doublet parameterslying on SI, we obtain (using (L.3.9))the result -

+ ½ ^Adoublet parameter Aj on SI = ( ) ul (rj) (L.3.11)
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A close inspection of equations (L.3.10) and (L.3.11) together with equations

+( +(L.3.6-7) shows that the functions o _) and u (_) (defined by (L.3.4-5)) wil!

yield (I/2) of the correct value of the source and doublet strength when

evaluated at p c SI. This is the general result we seek that tells us how to

interpret the result of the desymmetrizing relation (L.3.3).

The case of two planes of symmetry is not much more difficult. In place of

the relation (L.3.2) we have (compare with (K.4.22))

_J = y. _ Hik HJl _l (L,3o12)
k £

As before, this is trivial to invert. This time we obtain,

= _j (L.3.13)
k £

Defining the singularity distributions oiJ(_), ij(_) for the various symmetry

images by the equations

N
• ij

olJ (P)= Z Aj sj (Rij _) p € Slj (L.3.14)
J=1

N

uiJ (p)*= Z _jljmj (Rij _) _ c Slj (L.3.15)
J=1

we are again confronted with the problem of interpretting these relations for
points lying on the planes of symmetry. By means of the same sort of argument
as we used in the case of one plane of symmetry, we obtain the following
results

.j I _ j
(_) = _ a (evaluated at p _ SI )

+J I * j)(_) = _ U (evaluated at p € SI

i+ * I s2i )o (p) = _ o (evaluated at _ €

i+ I $2i)U (P)= _ U (evaluatedat 6 € (L.3.16)

As a general rule, then, we find that for networks lying on a plane of
symmetry, the values of the singularity distributions obtained by using the
functions
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or

+j .j_ i. i+O t , 0 ,

should be doubled in order to obtain the singularity strengths on such

networks. This action is in fact performed by PAN AIR.
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At:k-l, part A: no-op

B1:ksl, part B: Form Tij, j=I(I)5; then apply T11 in column I

(A11)T11 (A11,A12)T12 (A11,A13)T13 (A11,A14)T14 (A11,A15)T15

(A21)T11

(A31)T11

(A41)T11

(A51)T11

A2:k_2, part A: Perform elimination in block row 2, block column 2

(A21,A22)T12 (A21,A23)T13 (A21,A24)T14 (A21,A25)T15

(A31,A32)T12

(A41,A42)T12

(A51,A52)T12

B2:km2, part B: Form T2j j _ 2(I)5; then apply T22 in column 2

(A22)T22 (A22,A23)T23 (A22.A24)T24 (A22,A25)T25

(A32)T22

(A42)T22

(A52)T22

A3:k=3, part A: Perform elimination in block row 3, block column 3

(A32,A33)T23) _(A32,A34)T24 ) [(A32,A35)T25 J

(A41,A43)TI31(A42,A43)T23)

I _A51,A53)T13}(A52,A53)T23

Figure L.I Order of Transformation Application for the
case ns5 (page I of 2)
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B3:k-3, part B: Form T3j , j=3(I)5; then apply T33 in column 3

(A33)T33 (A33,A34)T34 (A33,A35)T35

(A43)T33

(A53)T33

A4:k=4, part A: Perform elimination in block column 4, block row 4

(A4,,A44)T141 I(A41,A45)T15)

(A43,A44)T3_) I(A43,A45)T35J

(A51 ,A54)T14_

< (A52,A54)T24 _

(A53,A54)T34 J

B4:k=4, part B: Form T44. T4_; then apply T44 in column 4

(A44)T44 (A44,A45)T45

(A54)T44 _

AS:k=5, part A: Perform elimination on A55

r(A51,A55)T15 _

(A52,A55)T25

(A53,A55)T35

(A54,A55)T45

B5:k=5, part B: Form T55

(A55)T55

Figure L.I Order of Transformation Application for the
case n=5 (Page 2 of 2)

L.4-2



Tll T1 2 T13 T14 T15

R.TTT..BI Bm A.F77B1 BI BI
P..._ BI CP... A2 C.P.. A2 C..P. A2 C...P A2

P.... BI CP... A2 C.R.. A3 C..R. A3 C...R A3
P .... BI CP... A2 C.R.. A3 C..R. A4 C...R A4

P .... BI CP... A2 C.R.. A3 C..R. A4 C...R A5

T22 T23 T24 T25

B2 .AP.. B2 .A.P. B2 .W..P B2

.P... B2 .CW.. A3 .C.W. A3 .C..W A3

.P... B2 .CW.. A3 .C.A. A4 .C..A A4

.P... B2 .WW.. A3 .C.A. A4 .C..A A5

Symbols

R = item read T33 T34 T35
W = item written

A = item is available
in memory ...............

P = item is both read ...............
and written ..R.. B3 ..AP. B3 ..W.P B3

C = item is read, and ..P.. B3 ..CW. A4 ..C.W A4

written if interblock ..P.. B3 C..CW. A4 ) ..C.A A5

transfers have occurred //

This indicates that the operation
T44 T45

A53,A54!T34 is performed
urlng stage A4 of the algorithm. -- --

At the end of this step, A54 is ..........

written out and A53 is written ..........
out if any inter-bIock transfers eoo.e ..or.

have happened .... R. B4 ...WP B4

...P. B4 ...CW A5

T55

.eeoe

ooeoe

.eeoo

eoeeo

....P B5

Figure L.2 Diagram Describing the Application of Tij
to Various Subarrays of the Working Array

A = [AIj ; i,j = I(I)5]
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M.O Computation of the Minimal Data Set

It is desirable that the solution of the potential flow problem (that is,
the combination of the Prandtl-Glauert equation with a set of boundary
conditions) be distilled into the smallest possible amount of data, yet still
be readily convertible to data of aerodynamic interest. This smallest amount
of data is called the minimal data set, and consists of the average potential
and normal component of mass flux, source strength, and doublet strength at
each control point and each grid point on the configuration. Each of these
items exists for each solution, that is, for each column _i of the solution
matrix [A] (cf. (L.O.I)). In our discussion here, we will assume we are
dealing with only one solution, even though the program deals with blocks of
solutions.

Under certain circumstances, an additional vector is added to the minimal
data set. This vector is the average velocity, as computed from the velocity
influence coefficient matrix. This occurs when the standard spline method of
velocity computation (called the "boundary condition method" for simplicity;
see section B.4.1 of the User's Manual), which computes the velocity from the
potential and normal mass flux, is of insufficient accuracy for the purposes
of the program user.
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M.1 Recoveryof the SingularityParameters

The recoveryof the singularityparametersfor the varioussymmetryimages
of the configuration(i.e.,St+, S-+, St- and S--) has been treatedin
detail in sectionL.3. In this sectionwe merely restatethose resultsusing
the notationand terminologyused by MDG and the post processingmodulesof
PAN AIR.

In MDG, the varioussymmetryconditionsare denotedby the names listed in
the tables below.

Case: 1 plane of symmetry

_S = 1st symmetrycondition, St = S(1) = ist image

_A = 2nd symmetrycondition, S" = S(2) = 2nd image

Case: 2 planes of symmetry

_SS = 1st symmetrycondition S++ = S(1) = 1st image

_AS = 2nd symmetrycondition S-. = S(2) = 2nd image

_AA = 3rd symmetrycondition S-- = S(3) = 3rd image

_SA = 4th symmetrycondition S+- = S(4) --4th image

Having listed these correspondences,we can give the singularityparameter

vectors_(k) for the two (or possiblyfour) imagesof the configuration. In
i
and x_j- defined in sectionL.3. We have:

terms of quantities_j

Case: 1 plane of symmetry

1st image x = _ = [_ ] = (_S +

2nd image_ = 3(2) = [_j] = ½ (iS + iA)

Case: 2 planes of symmetry

1st image_ x(I) ++ _ _AS _SA:. = [xj ] : (_SS + + _AA + )

2nd image x _(2) -. 1 (_SS ^AS ^AA _SA.= : [xj] :_ - x - x + )

3rd image_ = _(3) = [xj-] = _ (_SS _ _AS + _AA _ _SA)

4th image_ =_(4) = [x;-] = _ (_SS + _AS _ _AA_ _SA)
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Given the vectors_(k), the singularitystrengthscan be directly __
evaluatedon the variousimages of the configuration. This processis
completelystraightforwardunless a networklies on a plane of symmetry. The
followingtables summarizethe treatmentof that situationfor the various
cases that arise. Notice that the straightforwardproceduregenerates(1/2)
of the singularitystrengthsfor networkslying on a plane of symmetry. This
result is more fully explainedin appendixL.3.

Notation

P1 (P2) = first (second)plane of symmetry

N1 (N2) = a networklying on the first (second)plane of symmetry

+ .

N1 (N2) same as N1 (N2). (Principalimages).

N1 (N2) = the reflectionN1 (N2) in the second (first)plane of symmetry.
(Reflectedimages).

Case: 1 plane of symmetry

N1 : Use-_(1),obtain o/2 and _/2

Case: 2 planes of symmetry

+ 1)
NI : Use _( , obtain o/2 and _/2

N1 : Use-_(4),obtain o/2 and _/2

+ 1)
N2 : Use _( , obtain _/2 and _/2

N2 : Use-_(2),obtain a/2 and u/2
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M.2 Singularity Strength Calculation

Obtaining the source and doublet strength at a control point or grid point
P, with local coordinates (_',n'), from the vector of singularity parameters,
has in fact already been described. If the source and doublet subpanel spline
and outer spline matrices for the subpanel and panel on which the control
point lies are SPSPLS, SPSPLD, BS, and BD respectively, then by
(5.6.2) and (K.3.11)

o (P) = L 1 ._' n'] [SPSPLS] [B S]

_S (M.2.1)

and

u(P) = LI _' n' I/2 6 '2 _'n' I12 n '2] [SPSPLD] [BD]

_D1

(M.2.2)

S D
Here, _i and _i are the source and doublet parameters in the
neighborhood of the panel, and are entries of _'.
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M.3 Computation of Potential and Normal Mass Flux

Three approaches to the computation of potential and normal mass flux at
control points are described in section 5.9. One is the multiplication of the
influence coefficient matrices by the vector of singularity parameters (cf.
(5.9.1)). The second makes use of the boundary conditions to obtain _A from
p and _A • _ from o. For instance, suppose the boundary conditions

_t : 0 (M.3.1)

o : -Vo: • _ (M.3.2)

are imposed.

The specification of (M.3.1) insures perturbation stagnation in the
configuration interior. Thus

_L : 0 (M.3.3)

So, _

$_t • H : _ • _ : 0 (M.3.4)

Combining (M.3.2) and (M.3.4),

W-_A• _ : 1/2 (w-_. n + W-_L• n) : I/2 W-_u•

= 1/2 (_. _ - w-_. _) : I/2 _ (M.3.5)

Similarly,

_A : I/2 p (M.3.6)

Thus both average normal mass flux and average potential may be obtained
directly from the singularity strength.

Wenote that (M.3.6) follows directly from (M.3.1), while (M.3.5) only
holds when both (M.3.1) and (M.3.2) are imposed. The average normal mass flux
can however be computed directly from the boundary conditions in other
circumstances as well. For instance, if the boundary condition

_u" _ : b (M.3.7)

is imposed, then it follows from the definitions of source strength and
average normal mass flux that

wa. _ : 1/2 (wu- _ + wL, _) : wu. _ - I/2 (W-_u• n - _L.n)

= b - I12 o (M.3.8)

Once average potential and normal mass flux have been computed at control
points, they may be computed at grid points by a splining method virtually
identical to the method used to construct the doublet spline vector SPD
which defines the doublet strength at a grid point as a linear combination of
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surrounding doublet parameters. The spline vector SPD consists of a row of
an outer spline matrix BD (cf., section I.I). That is, if P is one of the
nine "panel defining points", then the spline vector SPD corresponding to P
is defined by

u (P) = LSPD] Ixk " (M.3.9)

_ k _ 12

where the _ are the doublet parameters located in the neighborhood of
the grid point.

Similarly, a "potential spline" row vector LSPP] is computed such that

L_A (P) w_(P), a] : LSPP (Ixk)j

_k (_A" _)k

(M.3.10)

where _i and (_. n)i are average potential and normal mass flux at the
neighboring cQntrol points, rather than singularity parameter locations. The
row vector SPP is computed by the same least squares method as the row
vector SPD, but the choice of the set of surrounding control points is o_
slightly different from the choice of surrounding singularity parameters, as
illustrated in figure M.I.

In particular, the potential at grid points on a network edge depends on
control points in the interior of the network. An "edge spline" can not be
used because the edge control points are receded from the network edge, while
singularity parameters are not.

Whenever the program computes the velocity at control points by the
influence coefficient method, the same potential spline vectors may be used to
define an average velocity vector at each grid point P by

T = Lspp J (lxk) • I_A_I} T I (kx3){_A (P)}

"-_[_VA_k} T ] (M.3.11)

where V-_A,iis the average velocity, computed by the influence coefficient
method, at the ith control point in the neighborhood of P.
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• grid point
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x x x x neighboring
control

x points
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X X X X X XX

X X X

X X X

X X X X X XX

X X X X X XX

X X X

XX X

X.X X X X X
_<X X X _ X

FigureM.1 - Neighboringcontrolpointsfor potentialspline computation
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N.O Surface and Wake Flow Properties

With the construction of the minimal data set, the potential flow solution
is complete. The items in the minimial data set, however, are not generally
of great aerodynamic interest. Of more interest are the velocity and pressure
at points in the configuration. In section N.I, the computation of velocity
from the elements of the minimal data set is discussed. In section N.2 the
computation of pressure from velocity is discussed. In section N.3, two
semi-empirical velocity correction formulas are discussed. These are of use
where the magnitude of the total velocity is significantly less than
freestream. In section N.4, the effect of a non-uniform onset flow on
pressure coefficient formulas is considered. Finally, in section N.5, we
define the additional quantities computed by PANAIR at points on the
configuration surface.
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N.I Velocity Computation

The splining method defines a distribution of potential on the
configuration surface, with this distribution being defined by a single
quadratic function on each subpanel. This distribution, when differentiated,
defines the tangential component of the velocity. On the other hand, the
normal mass flux, equal to the conormal component of the velocity, is also
known. From these two components, we may reconstruct the entire velocity
vector.

First, assume the distribution of potential on a subpanel is given by

= _s (_', n') (N.I.I)

where (_',n') are the subpanel local coordinates, and the subscript
emphasizes that this is a distribution on the configuration surface.

Now, applying (K.3.15)

a_s/aXo = _s : [ AT] _a_s/an'
/

_slazo La_sla_'

13_sI aF.'I:[AT] [a_sl; n' (N.1.2)

where A (cf., equations (E.O.I) and (E.1.1)) sends reference coordinates to
local coordinates.

Next, the tangential component of the velocity _is clearly equal to that
of _ ; that is, for any tangent ,vector-_',

t. v = t .V_ s (N.1.3)

On the other hand,

v : w.n (N.I.4)

where _ is the conormal to the surface.

Since any two linearly independent tangent vectors, along with _, form a
set of three independent vectors, there is a unique vector'_which satisifes
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(N.I.4), and also (N.1.3) for all tangent vectors t. Now, consider the
expression

"n (_" _)T _ + _'. nV_o: (5 (_)T -
_ _. _ (N.I.5)

where (_ _)T is the tangential component of the gradient of the potential.

We see that for any tangent vector _,

t • vo : t • (V _)T (N.I.6)

and that

• vo = w.n (N.1.7)

Thus, vo satisfies (N.I.3-4) and so

v : vo (N.1.8)

Equations {N.I.5) and {N.I.8) apply equally well to average and difference
velocity. That is, applying (N.I.2),

VA = [ AT] _' _a - _ " {AT _'_A} _ + -_A " _
• _ _ • _ (N.1.8a) --

VD = [AT] _'u - n " {AT _ ' u} _ + _
. _ _ . _ (N.l.8b)

where

_' = _/_n'

0 (N.I.9)

o}Wenote from {E.3.70) that _ is a multiple of A-1 0
1

Thus

 .(AT5') = •5'

f°ti' i' t= 0 . I_' = 0

(N.I.IO)

N.1-2



where a is some real number.
Substituting (N.I.IO) in (N.I.9)

-_ AT -_ wA •VA = (_7'(_a) +
_._ (N.l.lla)

VD : AT(_,,) + a
_._ (N.l.llb)

We have thus decomposed the average and difference velocity at a surface point
into tangential and _ormal components. In addition, we see that they can be
computed from the "minimal data set" consisting of _A, WAn, _, and _.

Finally, upper surface and lower surface velocities may be computed from
average and difference quantities:

vU = vA + 1/2 vD

_t : _ - 1/2 vD (N.I.12)
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N.2 Pressure Formulas

_ In this section, we assume the existence of a uniform freestream velocity, aligned with the x-direction of the compressibility coordinate system,
and a perturbation velocity at a point P:

lul?(P) : v

w (N.2.1)

In this section, we derive the pressure coefficient Cp at P under a variety

of simplifying assumptions, thus obtaining a collection of pressure
coefficient formulas.

The assumption that the freestream and compressibility directions are
identical is a necessary one in order to derive the results of this section
(except when the Mach number is zero). In practice, however, Pan Air does not
require these directions to be identical. If the user chooses the "uniform
onset flow method" of pressure computation, then all the equatior[s of this
section are applied with V_ replaces by the uniform onset flow Uoo defined in
Appendix H, and with the compressibility coordinate system replaced by a
"wind-axis system" whose x-axis is parallel to i_ .

In addition, Pan Air makes available a "total onset flow" method of
pressure computation. This will be discussed in section N.4.

N.2.1 Preliminary Results

First, let us define the pressure coefficient as

p-_
Cp :

112 _ • I_I 2 (N.2.2)

where p is pressure and _ is density. In order to compute C_ from velocity,
we need some basic results which hold for "one-dimensional" flows from
Liepmann and Roshko (Ref. 1.4). A precise definition of one-dimensional flows
is given there on p. 39. A tube of streamlines in a uniform fluid flow in
three dimensional space, perturbed by an object of finite size, is such a flow.

The results we use are:

(a) Bernoulli's equation (2.18b in Liepmann and Roshko)

Ivl 2 + I dP = constant
2 _ (N.2.3)
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where the path of integration is a streamline, and V is velocity at a point, ---

(b) The integrated form of Bernoulli's equation for a perfect gas (see p. 55
of Liepmann and Roshko):

Y P + I12 171 2_ y P_ + I12 I_'_I2
y - I p y - 1 p:= (N.2.4)

where y is the ratio of specificheats (715 for a diatomicgas), and

(c) an expressionfor the local speed of sound (equation2.23)
m

a2 = Y P
p (N.2.5)

We also define the local Mach number

M= Igl
a (N.2.6)

Finally,for isentropicflow in a perfectgas (cf., Liepmann and Roshko,2.21a) --.

Pp_ (N.2.7)

N.2.2 Constant DensityFlow

If the density p may be assumedto be a constant p_ (for instance,for an
incompressiblefluid or at zero Mach number),then (N.2.3)reducesto

IVI 2 + p : Ivml2 + p==

2 p_ 2 % (N.2.8)

Solving for P,

P : i12 e_ (_==I 2_ I-_I2) + p== (N.2.9)

and so, by (N.2.2),

cp : 1 - IvJ2
Ig=l2 (N.2.10)
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N.2.3 Compressible Flow

We first apply (N.2.7) to (N.2.4) in order to eliminate p from the
equation. It follows from (N.2.7) that

-I

p-1 = p_ -1 P y (N.2.11)

Thus

y-i

y-I y-i (N.2.12)

and so (N.2.4)becomes

2 y-1

y-1 (N.2.13)

Next, we apply (N.2.5-6)to the freestreamto Obtain

aj : _P_ : __
o_ _ (N.2.14)

Thus

2m_ m

M_P_
2 (N.2.15)

Substituting this into (N.2.2),

Cp : 2 (p _ _ ) : 2 (P - 1)
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The quantityP/_ may be calculatedby rearranging(N.2.13):

y-1

y _ (N.2.17)

= (substituting(N.2.15))

2i - 1712_ig.12
2 i_12 (N.2.18)

Thus

Y

P [1 ( 2: - - i) • ( y-__j_l) , Mo=2 ]

p_ I_I2 2 (N.2.19)

Substituting this expression in (N.2.16),

_Y
2 y-1

Cp : 2 [1 + y-I (1- _I_I2 ) Moo ] -i
2

y Moo 2 I_'==I2 (N.2.20)

This is often called the isentropicpressurecoefficientformula. In section
N.2.5, we will consider certainsimplifyingassumptions,and the behaviorof
the pressurecoefficientformulaunder these assumptions.

N.2.4 Limitationsof the Formula

Under certain circumstancesthe velocitycomputedby the potentialflow
solution is so unrealisticthat the resultingpressurecoefficientis
meaningless. One such case is a velocityfor which the correspondingpressure
coefficientis more negative than the "vacuumpressure." A secondcase is
that of a local flow exceedingthe speed of sound while the freestreamflow is
subsonic.
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N.2.4.1 The Vacuum Pressure Coefficient

The isentropic pressure coefficient may only be evaluated if the
expression in (N.2.20) which is raised to the power y/(y- I) is non-negative.
Thus the isentropic pressure coefficient reaches its minimum, or vacuum, value
when this expression equals zero. So, we write

-2
Cp,vac = 2

y M_ (N.2.21)

The velocity Vm for which Cp,vac is attained is therefore given by

t + Y-_£ (i- l_ml2 ) _ = o
2 l_=ol 2 (N.2.22)

Solving,

l ml2 = I+ 2
ill 2 (v-l) M2_ (N.2.23)

Thus the speed

Vm : ILl [i + 2 ] 1/22
(y-1)M=o (N.2.24)

is called the maximumspeed, since for any speed in excess of Vm the vacuum
pressure is exceeded.

N.2.4.2 The Critical Spee_

In subsonicflow, if the magnitudeof the velocityexceedsthe local
speed of sound,the Prandtl-Glauertequation is clearly invalid. Thus a
programuser may be interestedto know if the "criticalspeed,"that is, the
local speed of sound,has been exceeded.

To computethe local speed of sound,we substitute(N.2.11)in (N.2.5)to
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obtain

-I

a2 = yp_l . (p) y
p:: (N.2.25)

= _( P ) •
p_ _ (N.2.26)

: (applying (N.2.5))

_-I 2
(P__) Y • a:=

p_ (N.2.27)

Thus by (N.2.19)

a2 = i - (y-l) M_ (I _72 - I)
aoo_ 2 I_"_ 2 (N.2.28) -_

So_

so I_l2 = I_!2 .. _ . a_, 2 :

a2 I'_:,=l12 a,_ 2 a2

I_l 2
[I + _-__1.M_ (i - l_12 )] l-_ool 2

2 l_':=l_ (N.2.29)

Defining the local Mac_ number

M1 =
a (N.2.30)

we see that the speed attains its critical value Vc if the local Mach number
is I, or if
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(Vc)2 Mm2 : [I + _-I . M2_ (1 - ___Vc)2 )] I_I 2
2 I_I 2 (N.2.31)

Solving,

(Vc)2 = y-1 + 2

2 (,.2.32)

Applying (N.2.24),

Vc : (y-1)I/2 Vm
y+1 (N.2.33)

The Pan Air user may request the program to compute the critical and maximum
speeds, and the corresponding pressure coefficients.

N.2.4.3 Pressure Coefficient at the Critical Speed

Substituting (N.2.32) in (N.2.20) yields, after some algebraic
manipulation, the value of the isentropic pressure coefficient at the critical
speed. It is

Y

y-1

Cp,c = 2 [ 2 + y-1 • _ ] - I
2 y+l y+l

yM (N.2.34)

N.2.5 The Isentropic Formula under Simplifying Assumptions

For completegenerality_,we have avoidedthe assumptionthatI_I = 1.
Thus we can write, in compressibilitycoordinates,

0 (N.2.35)

w (N.2.36)
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Thus cp is a function of u, v, and w, the components of the perturbation
velocity. We now look at (N.2.20) under a variety of small perturbation
assumptions.

N.2.5.1 Second Order Theory

First, let us make the assumptionthat cubic and higher order terms in u,
v, and w may be ignored. This is called secondorder theory.

Accordingto the binomialtheorem,

Y

y-1

(I + _) = 1 + Y • € + 1/2 (Y___%---).€2
y-1 y-1

+ cubic and higher terms in € (N.2.37)

We will substitute(N.2.37)in (N.2.20)with

2 I_:=I 2 (N.2.38)

= y-1 (I- (I_I + u) 2 + v2 + w2) M_,

2 Iv:= 1 2 (N.2.39)

= y-I • M_ . ( -2u _ u2 + v2 + w2 )

2 2 (,.2.4o)
We see that, neglectingcubic and higher order terms

€2 = (y-l)2 M_ u2

I 12

N.2-8



and
r--

Y

y-1
(i +€) : i + _ _ (-2u _ (i-_)u2+v2w2)

2 Iv_l 2 (,.2.42)
So, neglecting cubic and higher order terms in (N.2.20),

Cp : 2 ((I + €) y-1 - 1) = -2u _ (1 - M_ )u 2 + v2 + w2

yM2 _ I_l 2

(N.2.43)

: (alternatively) 1 - I-_ 2 + M_ u2

2 19_12 (N.2.44)

This is the second order pressure coefficient formula.

Now we consider the evaluation of a number of other quantities under the
assumption of neglect of cubic and higher terms. First, we see that (N.2.28)
remains unchanged under the assumption, and so (N.2.29) still holds. That is,
the local Mach number is still

.=_

M1 = V Mo=

IT_I [I+ (y-l)M2 (1- I_I2 )]IZ2
2 iv_=_2 (N.245)

Similarly, equation (N.2.24) for the maximumspeed Vm and equation (N.2.33)
for the critical speed still hold. To obtain Cp.c, the pressure coefficient
at the critical speed, it does not suffice to su6stitute (FL.2.32) in
(N.2.44). In addition, a second order expression for u2/IV_I2 at the
sonic speed must be computed.

Noting that I_I2 = I + 2u
1_12 I_1

+ second order terms (N.2.46)
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and substitutingin (N.2.32),we see that at the criticalspeed

1 + 2u + higher terms = y-.___l+ 2
2

IF I y+1 (..2.47)

Thus to secondorder

u2 - 1/4 [ y-_i_1+ 2 _ i]2

I_'::1 2 y+1 (y+1)M_2 (N.2.48)

at the criticalspeed. Substituting(N.2.32)and (N.2.48)in (N.2.44)we
obtain a second order expressionfor the criticalpressurecoefficient

Cp,c = 1 - y-1 _ 2 + 1 [Mm2 _ 2 + 1 ]

y+l (y+l)M2 (y+l)2 M_ (N.2.49)

= 1 (2y + M_ _ (2y + i)
(y2 + I) M_ (N.2.50)

N.2.5.2 The Second Order Theory under AdditionalAssumptions

It may under certaincircumstancesbe of interestto calculatethe
pressurecoefficientunder the additionalassumptionthat the freestreamMach
number is nearly zero, and thus terms with coefficientM may be neglected.
Combiningthis and the secondorder assumptionyields the "reducedsecond
order" pressureformula (cf., (N.2.44))

Cp = i - Ivl2
IT®I2 (N.2.51)

Note that this is equivalentto the constantdensityor incompressible
pressureformula (N.2.10). Further,if the Mach number is zero, they are both
equivalentto the secondorder pressureformula. Finally,the reader may
verify that, in the limit as Mach number approacheszero, the isentropic
pressureformula (N.2.20)becomesequivalentto (N.2.51)also.

Another possiblesimplifyingassumptionis that the configurationis
sufficientlyslender that quadraticexpressionsin u may be ignored. This
results in the slender body pressureformula:

Cp = -2u _ v2 + w2
IT_I I_::I2 (N.2.52)
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Finally, one may neglect all quadratic expressions in components of the
perturbation, and thus obtain the linear pressure formula

Cp = -2u
(,.253)

The local Mach number, the critical speed, and the pressure coefficient at
the critical speed may be computed under each of these simplifying
assumptions. The validity of these expressions is questionable, since the
existence of a point at which the local Mach number equals I is evidence that
the particular assumption is not valid.
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N.3 Velocity Corrections

The empirical observation on which the two velocity corrections are based
is that the linearized mass flux computed by a panel method under some
circumstances more accurately represents the true mass flux than the computed
velocity represents the true velocity, Thus a corrected velocity _' may be
calculated from the computed mass flux by the equations below.

o V,x = Wx
% (N.3.1a)

V'y = Wy (N.3.1b)

V' z = Wz (N.3.1c)

or by

P V' = W

% (N.3.2)

That is, to arrive at the first velocity correction formula,the exact
relation for isentropic flow

o V = W

o_ (N.3.3)

is applied to obtain a corrected value of the freestream or x-component of
velocity. To arrive at the second velocity correction formula, equation
(N.3.3) is used to obtain a corrected velocity vector which is a multiple of
the mass flux vector.

N.3.1 The First Velocity Correction

This velocity correction is only applied, and in fact is only well-defined
if the local flow is slower than freestream, that is, if

u : v .V_ < O

(N.3.4)

In that case, (N.3.1) is applied.
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Now, substituting (N.2.7) in (N.2.19) we see that

1

o : [I*(_)_ (i- I;I2 )] _-i
°== I_I 2 (N.3.5)

Thus (N.3.1a) becomes

1

y-i
Wx= [i. (Y-__Z1)M2 . (I- l?'i 2 )] v'×

2 ]_]2 (N.3.6)

It follows easily from (N.3.6) that Wx is a monotonic function of Vx.
That is, as Vx increases, so does Wx. Thus a simple iterative method
(Newton's method) is available for numerically computing V' x as a function
of Wx while V'y and V' z are obtained from (N.3.1).

N.3.2 The Second Velocity Correction

Under the second correction, the corrected velocity is some multiple of
the mass flux. This correction is divided into two cases.

In the first case, we assume the local flow is again slower than
freestream; that is, that (N.3.4) holds. Then (N.3.2) is applied, but using
the linear density relationship

= I + (sB2- I) v • V.
p_ ILl 2 (N.3.7)

To see that (N.3.7) follows from (N.3.5) to first order, we apply the binomial
theorem to (N.3.5), to obtain

= 1 -M ( V 2 - 1) + higher terms

oo 2 I_l 2

= I - M_ ( 2 v.V_ ) + higher terms

2 IT.12 1,381
and then (N.3.7) follows from the definition sB2 : i - M_. _-_
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--- Thus for slower than freestream flow, the correction which is applied is

V': W

i + (sB2 - I) _. Vo:

2 (,.3.91
In the second case, the local flow is faster than freestream. That is

u : v.V_ > 0

iLl 2 (N.3.10)

Under these circumstances,the magnitudeof the velocity is left unchanged,
while its directionis changedso that it is proportionalto the mass flux.
That is

V' : W

(N.3.11)

where V is the uncorrected velocity computed by the program.
This concludes our discussion of the velocity corrections.
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N.4 Onset Flow Calculations

Wenow consider the effect of a non-uniform onset flow on the pressure
formulas. That is, we assume that the velocity is

: ? , 7= . _ (N.4.1)
where AM is the "incremental onset flow" and includes both rotational onset
flow and a local incremental onset flow. In the notation of appendix H,

aV = Uo - (N.4.2)

Our final equations will be based on a number of simplifying assumptions,
which will be discussed as they come up. The first assumption is that

: 7= (,4.2b)
That is, the uniform onset flow must be aligned with the compressibility
direction for our formulas to hold. For the remainder of this section, we
will assume that (N.4.2b) hol_s. Whenthe pressures a_e computed by the
program, however, the vector Um is used in place of V== whether or not
(N.4.2b) holds. Thus if the program user violates (N.4.2b), the resulting
presssures may not be correct, nor does any correct method for computing the
effect of the incremental onset flow on the pressures exist. A user may
violate (N.4.2b) by setting a _ ac, B _ Bc (see section (B.2.2) of the
User's Manual for definitions of these quantities).

N.4.1 Bernoulli's Equation

We now need to revis_2eBernoulli's equation (N.2.4) to account for the
incremental onset flow aV. Both (N.2.3) and its integrated form (N.2.4) state
that t_he total energy per unit mass (kinetic energy in the form
i12 IV::I 2 plus potential energy xp/((_ - 1)9) is constant at any point on
a streamline. Thus to correct (N.2.4) to account for the incremental onset
flow we must add to the right hand side the energy per unit mass aE added to
the system by the incremental onset flow:

. P + 1/z _lvlz: _. _ + l za '_'lv=lZ+ AE

x-1 p _ y-i q=

(N.4.3)

Now, this added energy speeds up the fluid at infinity. Writing _V=: for
the incremental onset flow along the streamline infinitely far from the
configuration, we have

1/2[g=l2 + AE: 1/2 It + Avl2 (,.4.4)
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Thus

AE : _" _v_ + 1/21Cv_l2 (N.4.5)

At presentthere is no mechanismfor the programuser to specifyeither
AE or , equivalently,AV . For many problems involvingonset flow, it will be
quite reasonableto make the assumption

aV (N.4.6)

This is especiallytrue if the controlpoint at which the incrementalonset
flow is defined lies far from the source of the added energy. An example
would be the analysisof an airplaneflying in the onset flow generatedby a
second airplane. On the other hand, (N.4.6)would be highly inaccuratefor a
controlpoint on an airplanewing directlybehind the propeller.

Nevertheless,at present,the program assumesthat (N.4.6)holds. That
is, it computes AE by

2 .AE = 2_ • a-_ + Ia-_l 2 (N.4.7)

Wemay now recompute all the equations in section N.2 using (N.4.3) in
place of (N.2.4). Following the algebra of section N.2, (N.2.17) becomes

Y-_£

(__L) Y _ _= i - i/2 ( Ivl2- Iv_l2 _ 2AE) ( y-1 ). ___
Pm Y

(N.4.8)

N.4.2 Pressure Formulas

Similarl_ (N.2.20)becomes

._!_
y-1

Cp , isentropic = 2 . [1 + y-1 (1-1-_12- 2 AE )M_ ] -1
2 -

2 I 12

(N.4.9)

The vacuum pressure is still given by

-2
Cp,vac = 2

y M_ (N.4.10) P-
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- but now (N.2.22) becomes

i + y-I (I - (Vm)2- 2AE ) M_ = 0
2 I_ 1 2 (N.4.11)

and (N.2.24) becomes

i12

Vm = IV=:l [I + 2 + 2AE ]
(_-_)M_ I_0012 (N.4.12)

Next, (N.2.29) becomes

M12: I-_12_ I_I2 M_2
a2 I_-I2 I + (Y-I)M=: 2 (I- [_J2_ 2AE )

2 ILl 2

(N.4.13)

Setting M1 = 1, the critical velocity becomes

Vc : y-I + 2 + y-1 ( 2 E )

I_==I 2 y+l (y+l)M_ 2 y+l [_I 2 (N.4.14)

or (from (N.4.12))

Vc : (Y---Z1) Vm
y+l (N.4.15)

Now, substituting (N.4.14) into (N.4.9),

Y

y-1

Cp,c : 2 [ 2 + y-I M_ (1 + 2,__,AE )] - I
._ 2 y+1 y+l IVo:l2

(N.4.16)
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N.4.3 Simplifying Assumptions

Next, we may apply second order theory to (N.4.9), and thus we obtain

Cp,2nd order : i - I_I 2 + 2 AE + M_ (u + AU)2
I_.l 2 1_.12

(N.4.17a)

where AU is the x-component of AV.

Applying equation (N.4.5-6), we then obtain

Cp,2nd = 1 - I_12 + 2AU + _ + M_ • u2Iv_l2 -F_ _121I -1_1-2
(N.4.17b)

Note from equation (N.4.5) that AE is the sum of a first order and a second
order quantity. Thus if 2AE is user-specified, it is no longer clear how to
evaluate a second order expression for the pressure coefficient. One possible
solution may be to use the user-specified value of 2AE only for the
computation of the isentropic pressure coefficient formula. Wewill not
address this problem at the present time; rather, we will assume that (N.4.6)
holds.

Now, to obtain a second order expression for Cp,c, we first note
that by (N.4.1)

I_l 2 = Ivl 2+ I_l 2 + 1_12 + 2_. _-_+ 2v.g_ + 2 _ .
(N.4.18)

ThusI_12:

1712 + 2u + 2AE + second order terms

I_1 2 I_l (,.4.19)

Substituting into (N.4.14) we see that at the critical speed

2u + 2 _E : _-_! + 2 . _-_!(_,_)
I + IT_l 17_l2 _+_ (_+_)M2 _+_I_l 2 .

(N.4.20)

+ second order terms
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or

2u = 2 (1 + 2AE ) + 2

l_12 (,.i) l_12 (y+1)_
(N.4.21)

+ 2nd order terms

or

u2 = 1 (i + 2AE _ 1 )2

I_l 2 (y+l) 2 ]_l 2 M_ (N.4.22)

at the critical speed,to second order.

Substituting(N.4.14)and (N.4.22)into (N.4.17)

1 2(y + M_) • (1 + 2AE _ M:=2_ (2y+1))Cp,c,2ndorder =
(_+_)2 17_l2 M2

(N.4.23)

Further simplifying assumptions may be applied to (N.4.17). The "reduced
second order" or small Mach number assumption yields

Cp : I _ l_llv12_ 2AE

I_1 2 (,.4.24)
We note from (N.4.18) that

_ ITI2-2_E: -2u _ 2;.av + I;12
I_12 I_1 I_12 (,.4.-2s)

and thus the slender body assumption, applied to (N.4.17b), yields

Cp : -2u _ 2(vav + WAW)+ V2 + W2

I_1 I_12 (,._._
where we again make use of (N.4.5-6), and Av and Aw are y and z-components
of _v.

Finally, the linear assumption yields

Cp = -2u
(N.4.27)
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N.4.4 Velocity Corrections

In the presence of an onset flow, (N.3.6) becomes

I

y-1

Wx : [1 + (Y----_-I)M2(1- I_']2 + 2AE )] Vx
2 I .l (,

and is used to solve-for V' x to obtain the first velocity correction. Also,
(N.3.8) becomes

-T_T -2" + higher terms2 _ 2 (N.4.29)

Applying (N.4.19),

p = I - M2 • u + higher terms

(,.43o)
and thus (N.3.7) still holds. Thus equations (N.3.9) and (N.3.11), which
define the second velocity correction, remain valid in the presence of an
incremental onset flow.

This concludes our discussion of the computation of pressure coefficients
in the presence of an onset flow.

It should always be remembered, however, that the presence of an onset
flow violates the basic assumptions from which the Prandtl-Glauert equation
was derived. In addition, the inability of the user to specify 2.AE means
that even if the potential flow solution represents the true flow well, the
effect of the onset flow on the pressure may be incorrectly calculated.
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N.5 Associated Datat_

The PANAIR program user has a large number of options available to
instruct the program in calculating flow properties at a point on the
configuration surface. Wediscuss here the effect that certain of these
options have. Someoptions, such as choosing a value for y other than 7/5,
are implemented in such an obvious manner that they require no discussion.
Someoptions, such as the choice of velocity corrections, have already been
discussed in detail.

One user option is a reference speed Ur for pressure calculations. This
speed is then used in place of I_=I whenever that quantity occurs in pressure
comj_utation formulas. This speed must be specified in the rare case that

IV==I is zero,_that is, when there is no freestream. Otherwise the
appearance of _Vc:l in the denominator of various expressions will cause the
program to terminate. The value the user chooses for Ur depends very
heavily on the physics of the problem, and will not be discussed in this
document.

Another user option is the "computation option for pressures." The user
may choose to compute pressure using the uniform onset flow U_ , in which
case, the formulas of the previous sections are applied with U_ substituted
for _== . Second, he may choose to compute pressures using the
compressibility vector, in which case Vo= is replaced by Ur co where Ur
is the reference speed for pressure calculation defined above. In both of
these case__, the incremental onset flow is assumed to be zero, that is, the
vector 6V is set to zero for all the equations in section N.4. Finally, if
the user requests that t_he loca__lonset flow be used to calculate pressures,
then _ is replaced by U_ and AV is included in all equations in section N.4.
No guidelines are given to the user on the appropriate option to use, since
under practically all circumstances, the uniform onset flow option, which is
the default, is appropriate.

Next, the user may request the co_m,putation of the angle between theo

surface vorticity y and the velocity V, where y is defined by

y : n x _ (N.5.1)

(see section 5.6 following equation (5.6.11)). The program also prints the
components of V_ in reference coordinates.
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0.0 Forces and Moments

In this appendix we describe the computation of forces and moments in the
PANAIR system. In section 0.1 we comment briefly on the defining equations.
In section 0.2 we describe the method by which PANAIR performs the required
integration. In section 0.3, we discuss edge forces, which must be calculated
separately because the true potential flow solution for velocity at a subsonic
edge of a thin configuration is infinite, while that calculated by a panel
method is finite. In section 0.4 we compute the properties of force and
moment vectors under a coordinate transformation.
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-- 0. i Basic Formulas

A force is defined as a time rate of change of momentum. Ward
(reference 1.5, equation 4.6.3) shows that for potential flow, equation
(5.9.9) holds. PANAIR actually computes a coefficient of force defined
analagously to the pressure coefficient (cf., (N.2.2)):

CF : -_____iff [ V(pV.n) + Cp n]dS
SR i12_= IV==I2 (0.1.1)

where SR is a user-specified "reference area" available for normalization of
the force coefficient.

Applying the relation (N.3.3) between velocity and mass flux, we have, for
either the upper or lower surface of a network,

CF : - i__i SS[ 2v(_.n) + Cp n]dS
SR I_12 (0.1.2)

We note that the first term, called the "momentumtransfer" term, is zero
for impermeable surfaces. This term makes a contribution to the force on the
surface, however, when the normal mass flux is non-zero. Note that the net
force on a network of panels is the difference between upper and lower surface
forces. Thus the net force on a fully permeable nacelle face is zero, though
both the upper and lower surface forces are non-zero. The momentumtransfer
term is only computed in Pan Air when requested by the user.

The coefficient of moment cM is similarly derived from (5.9.10) and is
defined by

_M : - i ]']" [ { Q _ Ro} x V (2W.n)+ Cp {Q - Ro} x dS
LR 1 ' 12 (o.i.3)

Here LR is a user-specifiedreferencelength,Q is a point of integration
and Ro is the point about which the moment is calculated. Once again the
first term is the momentum transferterm. If the surfaceis impermeable,this
term makes no contributionto the angularforce exerted by the fluid on the
body.
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-- 0.2 Integration Procedure

The integrand in (0.1.2) may be evaluated from the velocity (see Appendix
N). The velocity, in turn, may be computed at any point on the configuration
by the splining methods (see section N.I). In fact, a velocity distribution
may be computed on each subpanel, and so it is theoretically possible to
integrate this distribution exactly over the entire configuration to obtain
the resulting force distribution. In fact, the integrals are precomputed (in
the DQGmodule) for an arbitrary piecewise quadratic pressure distribution, so
that the integral over a panel may be obtained by the CDPmodule during
post-processing by matrix multiplications.

This procedure makes use of the far field moments already required for far
field influence coefficient calculation. Recall from section 1.4.2 the row
vector FFMD and the matrix FFMD defined by

o 1

sB2 SS _ dS = .FFMD_j .
Z " 0

.9_ (0.2.1)

sB2 SS G ndS =[FFMD]3X9K_ I {_.i}_'9 (0.2.2)

But now, if we assume that the pressure varies in a piecewise quadratic
manner (as _ does) on each panel we may apply (0.2.2). This is actually a
fairly reasonable assumption. Since we approximate the doublet strength by a
quadratic function and the source strength by a linear function, (N.l.llb)
shows that the velocity is of linear accuracy. Thus by (N.2.43) and
(N.2.51-53), the second order, reduced second order, slender body, and linear
pressure coefficient formulas can be adequately represented by quadratically
varying fuctions. Further, the small perturbation assumptions on which the
Prandtl-Glauert equation is based insure that differences between the
isentropic and the second order formula should be negligeable anyway.

So, we may compute the pressure coefficient Cp,q at the nine panel
defining points, and obtain

sB2 _S Cp _ dS = [FFMD] C-_p
S 1 (0.2.3)

.=_

where Cp is the vector of length 9 whose qth entry is Cp,q.

Similarly, since the velocity on a panel is of linear accuracy, _ (7.n)
also may be described by a piecewise quadratic, and so, writing {_Q}i for
the ith entry of Vq, the 3xl column vector giving the velocity at the qth
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panel defining point, the first term in (0.1.2) may be computed by,

s 1:1 nll5_"{_}i (2-W.n)dS = LFFMo.i. .

: 2[VWN]i," :FFMDj (0.2.4)U

where VWNis the 3x9 matrix whose i,q entry is the ith component of Vq
times the normal mass flux at the qth defining point.

Thus, equation (0.1.2) becomes

9

SR {C-_}i = -K Z Z { 2 [VWN]i q LFFMDjqsB2 all panels q=1 I_I 2 0

+ [FFMD]iq Cp 1I 'q (0.2.5)
J

Next we consider the calculation of the moment coefficient. Assume that
we have computed the 3x9 matrix NCPMI ("normal cross-product moment") -_
defined by

-_9) . ms = [NCRMI] .

Z (0.2.6)

where P9 is the panel center.

This matrix is precomputed in the same manner as the remaining far field
moments. Similarly, let us define a 3x9 matrix [NCPM2] by

SS, (Q'- _9) x n dS : [NCPM2]-_ (0.2.7)

The computation of NCMPI and NCMP2 is described shortly. Wemay then
compute (0.1.3) using the above two matrices.

_ n]First, we easily see that _'_"[Cp (Q - Ro) x dS =

ff cp(_- P9)x _ as+ (T9-_o_ xfScp_ dS (0.2.8)
z Z

-_ -Ro) D -_= [NCPM2] Cp + (-_9 - x _K [FFMI] Cp
sB2 (0.2.9)
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Next we recall from appendixE the permutationsymbol

cijk: 1 < i,j,k<_3

= I if i,j,k are distinctand cyclic

cijk - -1 if i,j,k are distinctand in reversecyclic order

0 otherwise (0.2.10)

which has the propertythat for vectorsv and w,

('_'x _') k : Z _ijk vi wj

i,j (0.2.11)

Thus 5.f [ (Q'-"R'o) x _" (W-_.n)]dS :

E (Q'-"_o)i Vj (_.n)cijk dS +i,j

[ CP-_9-Ro) x ._'_" (_'.n)dS] k (0.2.12)

Then ._" [ (Q - Ro) x V (W.n)] k dS :

i,j,q [NCPM2]iq [VWN]jq _ijk

D
+ Z (_9 - _o)i K [VWN]jq :FFMo_q cijk

i,j,q SB2 (0.2.13)

Combining (0.1.3),(0.2.9),and (0.2.13),

LR C-M = Z -[NCMP2] "C'P-(_9- "_'°) x _ [FFM_ ] _Pt
panels sB2

9{ o}* - ,FFMo q .,q2 Z [NCMPI].,q _ (Pq x [VWN]

I_,1 2 q=l SB2

(0.2.14)
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This completesour discussionof the integrationof (0.1.3);the
computationof the matrices [NCMP_] has been discussedin detailin
section 1.4.2,equations(I.4.21)through (I.4.27).
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0.3 Leading and Side Edge Force

0.3.1 Linearized Three-Dimensional Theory

Consider a flat plate at an angle of attack, as illustrated in figure
0.i. It is known that such a configuration experiences zero drag in subsonic
two-dimensional potential flow, where drag is the component of force in the
freestream or x-direction. Yet the surface normal has an x-component and the
surface is impermeable, and thus equation (0.i.i) indicates non-zero drag.

The resolution of this contradiction is found in the existence of a
leading edge force resulting from an infinite leading edge velocity (see
Ashley and Landahl, Ref. 5.3, section 5.3, or, for more detail, Hancock and
Garner, Ref. 5.2, part II). This leading edge force exactly cancels out the
drag computed by integrating the pressure over the configuration surface.
Since the surface is impermeable, the momentumtransfer term gives no
contribution to the force on the surface.

A formula for the edge force magnitude per unit distance (on a three
dimensional wing) is given in Hancock and Garner (ref. 5.2). This formula,
valid for all subsonic edges (there is no edge force on a supersonic edge)
gives edge force per unit length by

dSldy n : (x18) Bn [ lim (,IV_n)] 2 (0.3.1)
xn . 0

where, S is the edge force, Yn measures distance along the edge, xn
measures distance perpendicular to the edge and in the plane of the surface,
is the doublet strength on the surface and Bn is given by

2 2 (0.3.2)Bn : i - Mn

where Mn is the Mach number in the direction of the edge force. Thus,
Mn = Mm cos ^ where ^ is the sweepback angle as shown in figure 0.2. The
edge force direction is away from the edge and perpendicular to both the edge
and the surface normal, also as shown in figure 0.2.

0.3.2 Application in PANAIR

To apply equation (0.3.1) in PANAIR, we must first consider the
evaluation of the limit. First note that it is known that if zn is a
polynomial in x n and Yn, then the exact value of _/X_ncan be uniformly
approximated by a polynomial. Given this fact, it is tempting to estimate the
limit by evaluating u/_n at the fi st and second panels from the edge and
extrapolating these values to xn : _. representsHowever, because PANAIR

itself as a quadratic polynomial in xn and Yn' the expression _pA/V-_n (we

denote the doublet distribution computed by PANAIR as upA) will not

converge uniformly to u/_/-_n in the neighborhood of the edge. Consequently,
if we denote the computed and exact values of u at the center of the first

panel by ul,PA and Ul,exact' then ul,PA/_l,exact will not converge to i as the
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number of panels is increased. Similarly, _2,PA/_2,exact does not converge to
I. These ratios will, however, converge to finite values, the specific values
depending upon the solution details, especially the panel spacing and
density. For example, different limit ratios are obtained for uniform spacing
than for cosine spacing. Also, since a potential flow field near an edge is
mathematically similar to two-dimensional flow about a flat plate, the
convergence properties for three-dimensional cambered surfaces will be similar
to those for three dimensional flat plates. Thus, we assume that the limiting

behavior of _l,PA/_l,exact for a three-dimensional cambered surface will

closely resemble the behavior of ul,PA/_l,exac t for a 2-D flat plate as the
number of chordwise panels is increased.

In light of these considerations, the following method is proposed as one
that (i) will yield reasonably accurate results without an excessive number of
panels and (ii) will converge to exact results as the number of panels is
increased, provided certain panel spacing rules are followed. Referring to
figure 0.3, define Y1, Y2 by

Yi = "/V'_-n i : 1,2 (0.3.3)
X
n,i

where Xn < denote the values of x. at the first and second panel center
away fr_'the edge (see figure 0._ for definition). These two evaluations now
immediately provide an extrapolated value of u/V_n at xn = O:

G = (Y1Xn,2 - Y2 Xn,l)/(Xn,2 - Xn,1) (0.3.4)

If u/V_n converged uniformly to its limit value we could approximate

lim _I_/'R'- _ Gn

Xn_ 0

In fact, using equation (0.3.1) we write

dS/dy n = (x/8) Bn G2 f (0.3.5)

where the correction factor f (which is 0(i)) is determined from
program/theory comparisons for a series of two-dimensional flat plate
problems. The correction factor f depends on the number of panels and the
panel spacing method. The total leading edge force is computed from the
formula

S : (dS/dy n) (0.3.6)
Yn,1 dYn _

where the integral is evaluated by the midpoint rule using the formula (0.3.5)
to provide values for (dS/dYn).
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Correction factors for three types of panel spacing and various panel
counts are given in figure 0.4. Correction factors for untabulated values of
NPAN, the panel count, are obtained by interpolation, where f is regarded as a
function of (1/NPAN). Correction factors have not been computed for any other
types of panel spacing, and results obtained by PANAIR for such types of
panel spacing may be neither accurate nor convergent.

The correct use and interpretation of figure 0.4 requires that one know
precisely what is meant by "cosine spacing" and "semi-cosine spacing." Let t
be a nondimensional coordinate defined such that the value t:O coincides with
the edge on which the edge force acts and t : i coincides with the opposite
edge. Then the panel corner points for cosine spacing are located at the
t-stations given by

(cosine-spacing) t i : (1/2)[1 - cos((i-1)_/NPAN)] i=I,...,NPAN+I

(0.3.7)

while for semi-cosine spacing these x stations are given by

(semi-cosine spacing) t i = 1 - cos[(i-1)_/(2"NPAN)] i=1,..., NPAN+I
(O.3.8)

0.3.3 Edge Force Verification

A leading edge suction distribution has been computed by PANAIR using the
technique described above for a 60° delta wing in incompressible flow. This
distribution is compared in figure 0.5 to the result derived in Medan, (ref.

0 1) Notice that the quantity (dS/dYn)/[(1-n) "28154 2]• . _ is plotted against n

where n represents "spanwise fraction," the fractional transverse distance
from the centerline to the outboard tip and _ is angle of attack. This
scaling of the leading edge suction distribution is based upon the theoretical
results derived in (ref. 0.i). In fact, as n approaches i, dS/dy n itself
tends to zero so that the differences between results shown in figure 0.5 are
not significant when scaled and integrated to obtain overall forces. Note
also that PANAIR results appear to converge to the theoretical values except
for the panels closest to the tip. In fact, the PANAIR computed suction
force on the tip panel will never converge no matter how densely the wing is
panelled. This is another manifestation of nonuniform convergence arising
from the fact that PANAIR constrains the doublet distribution to be a
quadratic function of the surface coordinates. Nevertheless, overall forces
and moments do converge as panel density increases.

Drag values predicted for a supersonic delta wing are compared in figure
0.6 to the theoretical results presented in figure A,14m of Jones and Cohen
(ref. F.I). The PANAIR results lie very Close to the theoretical curve.
Since edge suction is a significant contributor to drag, this close comparison
provides some verification of the validity of PANAIR's method of computing
edge suction forces.
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0.4 Coordinate Transformations

In this section we examine the behavior of force and moment vectors under
an orthogonal transformation of coordinates

X Xl 1

F : y _ y'

z z' (0.4.1)

This is necessary because the program permits force and moment computation
in a multiplicity of axis systems. These axis systems are defined in section
B.2.1 of the User's Manual.

We know from appendix E that velocity and normal vectors are dual vectors
w transforming according to

-_ _ (0.4.2)w = FT w'

But since we assume F is orthogonal, its inverse is its transpose, and so

_' = F_" (0.4.3)

.=_

Further, if w is a vector rather than a dual vector, it also obeys (0.4.3),
according to appendix E, because det F = I. In fact, because F is
orthogonal, vectors and dual vectors behave identically in all cases, and so we
make no further distinction between them.

Applying (0.4.3) in (0.I.i) we obtain

c' F = Fc F (0.4.4)

since

{o F V}. n : o-_T FT F n : o _'n (0.4.5)

and F , being a matrix of constants, may be taken out of the integral
(o.i.1).

Next, we consider the transformation of the moment coefficient. Let us
assume we have computed the moment vector cM about the origin in reference
coordinates. That is,

_'M : - I H [Q x V( 2W.n ) + Cp Q x _]dS
LRSR _ (0.4.6)

We now wish to compute the moment coefficient CM in the primed coordinate
system about a point Ro. That is, C'M is defined by (0.1.3) with Q,

Ro, -_, W_ and n replaced by primed counterparts.
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SO, _.

CM [ { FQ - FRo}x FV(2 F_.Fn ) + Cp {FQ FRo} x Fn]dS
LRSR I_I 2

(0.4.7)

But for vectors wI and w2, we have (cf. (E.I.12-13)):

x : x (0.4.8)
Thus

-_'CM= - _1 [ F{Q-_xV"_}(2w'._) + Cp r[_x n}]dS
LRSR l_

+ 1 [ F{R-_x _}( ,--_--r-,_.2_'n_ + Cp F{R-_x _}]dS
LRSR iV==I t (0.4.9)

Noting that both F and Ro may be removedfrom the integral,

-_' -" 1 F {R0 xjjL ,,--_--r-2,CM : FCM + ({r-_(2_.n _ + Cp _]dS
LRSR I_ I (0.4.10)

So, substituting(0.1.2)in (0.4.10),

CM = r CM - i r{Ro x cF}
LR (0.4.11)

Thus moment vectorstransformlike force vectors,exceptwith an extra
term which resultsfrom a shift in the point about which the moment is
calculated.

An additionminor complicationis cause by the use of separatescaling
factorsfor differentcomponentsof the moment coefficientvector. The effect
of separatescalingfactors on (0.4.11)can easily be computed and is given by
the code in SUBROUTINETRNSFM of the CDP module.
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0.5 Added Mass Coefficients

The inertial properties of a submerged body moving in a fluid are affected
by the motion of the fluid surrounding the body. These properties, which
become quite significant when the mass of the displaced fluid is commensurate
with the mass of the body, are concisely summarized by a collection of tensors
called "added mass coefficients." In this section we will define the added
mass coefficients, describe their computation and derive some of their
transformation properties.

0.5.1 Formulation of Added Mass Coefficients

Consider an impermeable body B with boundary surface S moving through a
fluid. We suppose that the fluid has constant density p and that the fluid
motion is itself irrotational. Thus, a velocity potential exists and
satisfies Laplace's equation. At the instant of observation, the motion of
the fluid is observed from an axis system fixed in the undisturbed fluid and
momentarily coincident with a body fixed axis system. The velocity of any
point _on the body's surface is given by

+ _ x (_ - Po)

where _ specifies the body's translational velocity and _specifies its
rotational velocity about a center of rotation P_o. The harmonic velocity
potential for the fluid's instantaneous velocity is now uniquely determined by
the impermeable surface boundary condition

a61an = (_ +_ x (g-_o)) • B on S (0.5.1)

An equivalent form of (0.5.1) using the implied summation notation is

= _ : _ _ (0.5.2)_/_n ui ni + _i _ x _)i ; r P - Po

where we introduce the shorthand _ for the vector from the center of rotation
to a point on the body surface. Evidently, _ can be written in the form

= ui _i + _i _i (0.5.3)

where 6i and _i are harmonic velocity potentials satisfying the boundary
conditions

B_i /an = ni

B_i/Bn = (_ x B)i on S (0.5.4)

The potentials introduced in (0.5.3) are associated with motion along an axis
in the case of _i, and with rotation about an axis in the case of _i-

The expression for added mass coefficients is obtained by computing T, the
kinetic energy of the fluid induced by the motion of the body. Summarizing
the development given in ref. 0.2, T is given by
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T : (p12) Ill (q_) 2 dV -

R3_B

=-(p/21 If _ (a_/an) dS (0.5.5)
S

Substituting (0.5.3) into (0.5.5) yields for T

. + (112)m _-_'i u.T : (112) ui Mij uj i j J

+ (I/2) ui Sij _j + (i12) _i lij "'j (0.5.6)

where we define the various added mass coefficients by the expressions

Mij = -p ff QSi (_(_j/_n) dSS

Sij = -p fl (_i (3_j/_n) dSS

_-_-ij = -p II _i (_(_j/_n) dSS

lij = -P _ _i (_,j/an) dS _ (0.5.71S

The coefficients Mi< are called inertia coefficients while li_ are called
moment of inertia c_efficients; Sii and _]ii are called mixedJ
coefficients. Green's second identity impl_es that M and I are symmetric and
further, that

sij =  ]ji (0.5.8)
Thus, the full 6x6 added mass coefficient matrix given by

i (0.5.9)
is symmetric.

0.5.2 Integration Procedures

Because the method by which PANAIR solves for _i and _i ensures
internal stagnation (_i = _i = 0 interior to B), the integrals appearing
in equation (0.5.7) can be expressed quite simply in terms of the fundamental
singularity distributions. Letting _i, _i denote respectively the doublet
distributions associated with _i, _i and using the boundary conditions
(0.5.4), we obtain
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Mij = - p _sfUinj dS

Sij = - p _sI_i(_'xB)j dS

_'i j : - p ff i n dSS J

lij : - p _sI_i (_" x _)j dS (0.5.10)

Clearly these integrals can be evaluated by techniques similar to those

described in section 0.2 by using the moment matrices [FFM_] and [NCPM2].

It is important to note that the added mass coefficients given by equation
(0.5.10) are not precisely the results computed and printed by PANAIR.

Rather, scaled quantities Mij, _ij, >-_-ij and _ij are printed. These
are defined by

Mij = Mij/(½ p SL)

_ij = Sij/(½ p SL2)

_ij = _]ij/(-12p SL2)

lij = lij/(2I-p SL3) (0.5.11)

where S is a user specifiedreferencearea and L a user specifiedreference

length. Notice that if one takes S = L = p = i, one finds that Mij = 2 Mij,

_ij = 2 Sij, etc.

0.5.3 Orthogonal Transformation

Added mass coefficients computed in a body axis system which has been
subjected to an orthogonal transformation r can be defined in terms of added
mass coefficients in a reference coordinate system. Using primes to denote
quantities in the transformed system, the boundary conditions can be written as

(a_lan') = (r_) i (0.5.12)

I I

(a_ i/an ) = [ r(_x _)]i on S

Equation (0.4.8) was applied to the second part of (0.5.12). For (0.5.12) to
be satisfied, it must happen that
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€_ : rij _j _
(0.5.13)

$_ = rij _j

Substituting(0.5.12)and (0.5.13)into a primed form of (0.5.7)will show that

M'.. : (0.5.14)
_j rik Mkl rjl

The other coefficientstransformidentically.

0.5.4 Translation

Added mass coefficientscomputed about an arbitrarymoment referencepoint

_'ocan be defined in terms of coefficientscomputedabout the origin. The

techniqueis similarto that of section0.5.2. The boundary conditionsbecome

_/an' = ni

I I _0 •B_il n = (_"x _)i - ( x _)i (0.5 15)

To satisfythese boundaryconditions,the potentialsin the translatedsystem
must take the form

_i =_i

*i = €i - Cijk ro,j _k (0.5.16)

denotesthe usual permutationsymbol, (cf. eqn. B.3.21 and ff.).
where cijk
Substitutionof (0.5.15)and (0.5.16)into a primed form of (0.5.7)gives

M!. = M..
1J 1J

S!. = S -€. M
Ij ij Ikl ro,k lj

_]_j -- _ij- Cikl ro,k Mlj

lij = lij - Cilm ro,l Smj - Cjlm ro,l _]im

+ _inp Cjlm ro,n ro,l Mpm (0.5.17)

0.5.5 SymmetricConfiguration

If the surfaceS consists of a surface S' and its mirror image S", the
added mass coefficientson S" can be defined in terms of those on S' Suppose

the plane of symmetrypasses through_s and has a unit normal _. A point _'

on S' and its image point _" on S" are relatedby
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II I

Pi : Rij Pj + Xo,j (0.5.18)

where Rij : aij - 2 vi vj

and Xo, j : rs, j - Rjk rs, k

The point x-"o is the image point of the origin and R is the reflection matrix.

With primes and double primes denoting entities related to S' and S"
respectively, the boundary conditions become

_i"/_n" : Rij nj

_¢_/_n"_l = - Rij (_' x _')j + Rij (X'o x _')j (0.5.19)

where _' is the vector from P"o' the center of rotation, to _'.

: -
The second part of (0.5.19) required applications of (0.1.12) and (0.5.18).
To satisfy (0.5.19), the potentials take the form

I

_V : Rij _j
(0.5.2o)

@V = -Rij _ + Rij Cjkl Xo,k 61

Applying (0.5.19) and (0.5.20) to a form of (0.5.7) yields

MV. M' R
IJ : Rik kn jn

S'_. : _. xo oqIJ jlm ,I Mim - Rik Skq R.

+ M"
_-_._'j : -Rik_'_._l Rjl Cipq Xo,p qJ

". I' + S" (0.5.21)
lij = Rik kq Rjq Cikn Xo,k n,j
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F : integratedpressures

Ft°t Fp Pi J

S _ _ S leadingedge force

___== _'_ F^t_ot net force

Figure0.1 - Effectof leadingedge force

V_

leadingedge

_y

Xn

plan view side view

Figure 0.2 - Leadingedge force on a three-dimensionalthin wing
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Figure 0.3 - Definition of Xn, 1 and Xn, 2
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Correction Factors f
(Derived Using PAN AIR Version 1.0)

NPAN Uniform Cosine Semi-Cosine

2 1.1579008 1.1579008 1.4059546

3 1.3289155 1.4039062 1.4977210

4 1.3462617 1.4766240 1.5680541

5 1.3513135 1.5336144 1.5985113

7 1.3544339 1.5852960 1.6212810

lO 1.3557162 1.6149452 1.6323902

14 1.3562257 1.6294277 1.6359293

20 1.3564644 1.6373295 1.6407743

40 1.3566063 1.6431274 1.6435113

60 1.3566336 N.A. 1.6442279

80 1.3566417 N.A. 1.6444954

NPAN= Number of panel rows or number of panel columns,
depending on which edge the edge forces are
calculated for.

Figure 0.4 - Edge force correction factors
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U _ 1.0

61o l n
J

\

(dS/dy n )

(Z2(l_T1) .28154
.9_

Numberof Panels

® 8 semi-cosinechordwise,20 cosine spanwlse(½ span)

[] 5 semi-cosinechordwise,10 cosine spanwise (½ span)

3 semi-cosinechordwise,6 cosine spanwise (½ span)

(panellingshown for this case)

Theory (Medan)Ref. 0.I ---,

I
.8 .9 1.0 _ --

Figure 0.5 - Comparison of leading edge suction predicted

by PAN AIR with theoretical results.
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CD.

0.6 _m

\ e PANAIR,
\ 3 semi-cosine chordwise
\ 6 cosine spanwise (½ span)_

\ AR = 2, M=I.53, _.=63.4349 uO.5
\
\ _ PANAIR,

\ 5 semi-cosine chordwise
\ 12 cosine spanwise (½ span_

AR = 2, M=I.118,_=63.4349 UO4• F I, page 202

0.3

0.2

0.I

i I I J f !

0 0.2 0'4 0.6 0.8 1.0 1.2 1.4

m = _ cot^, B = [M_ - I] ½

Figure 0.6 - Comparison of drag predicted by PAN AIR with theory

for a delta wing in supersonic flow
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P.O Flow Propertiesat Off-BodyPoints and StreamlineCalculation

Once the potentialflow problemhas been solved,the programuser
frequentlyhas the need to evaluate the potentialand velocityfield at points
away from the configuration,to aid in flow field visualization. In this
appendixwe will outlinethe processesby which flow propertiesare calculated
at off-bodypoints and then describe the calculationof streamlines. The
basic idea underlyingboth of these proceduresis that, once the potential
flow problemhas been solved,both the sourceand doubletdistributionare
known on the full singularitysurfaceS. Then, by virtue of the
representationformulas for potential_ (equation(3.2.7))and perturbation
velocity _ (equation(B.3.9))it becomespossibleto evaluate_ and _ at any
point in the flow field. This evaluationof _ and g at an off-bodypoint is
central to the evaluationof off-bodyflow propertiesas well as streamline
calculation. For off-bodyflow properties,the connectionis straightforward:
given _ and _ one simplyapplies the proceduresof appendixN to obtain the
variouspressurecoefficientsand correctedvelocities. In the case of
streamlinecalculation,the perturbationvelocity_ is combinedwith the onset

flow to obtain a total velocity (V) or mass flux (W) vector field which is
then integratedto trace the streamlines. This processis describedmorefully in sectionP.2.
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P.I Evaluationof Potentialand Velocityat Off-BodyPoints

Once the potentialflow problemhas been solved and the global singularity

parameters{_i} N are evaluated,the source strengtha and doubletstrength
i=1

are given everywhereon the singularitysurfaceS by (cf. equations(3.3.1-2))

N

a(_) : _ xI sI (_) (P.I.I)
I=1

N

u(_) : _ xI mI (_) (P.I.I)
I=1

Here, q denotesan arbitrarysource point on S.

When no symmetryplanes are present,we may combinethese relationswith
the representationformulas (3.2.7)and (B.3.9)and obtain for _(_) and _(_):

fJ€(_1 = - T (g g) dSq (P.1.31
SND

_ p

i _ (-1R) dSQ i

SNDp S n Dp
(P.I.4)

Note that we have droppedthe line vortex term from _.

The evaluationof these formulaeis now achievedby dividing S up into panels
and evaluatingindividualpanel contributionsin the fashiondescribedin
detail in appendicesJ and K. The resultingevaluationproceduremay be
summarized,using the notationof appendixK.6 (cf. page K.6-2):

N

¢(P) = _ _ICI _I
I=1

N

: _ [ _o(_' Sl) + ¢ (P' ml)] _I (P.1.5)
I=1
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N

_(P) = _i VI--_I_I
I=1

N

= _1 [V (p, s ) + _ (p, ml)] _ (P.1.6)o I _ I
I=1

Here, the variousoperators ¢ , ¢ etc. have the obvious definitions:
o

.0(7, Sl) : - 1_( ff sI(_)/R(_,_) dSq (P.I.7)

SN Dp

, (_,ml)= 1 _S mi(_) a . Vq(I/R(g,ql)dSq (P.1.81p K
SnD

P

1
II dsq
SNDp

Vu(P,ml) = 1_Kff (_ x Vq mI) x _q(i/R(_,_))dSq

SN Dp (P.1.101

Up to this point, the evaluationof _ and _ has offeredfew surprises.
The situationbecomessomewhatmore complicatedwhen we introducethe concept
of symmetry. Fortunatelymany of the complicateddetailshave already been
worked out and presentedin appendixK. Throughoutthe remainderof this
sectionwe assume that the reader has a good familiaritywith the resultsof
appendixK.

We begin our presentstudy of symmetryby recallingthe definitionof _i,
equation (K.3.22). Invertingthis definition,we obtain

€(_i_) = ½ _1 Hij _J (_) (P.I.II)
J

Setting i = +1 and noting that H+j = 1 and R+ = I (cf. (K.3.6)and (K.3.21))
we find _(_) given by

_(_) = 1 (_S(_) + _A(_)) (P.I.12) --
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Now _S(_) and _A(_) are given by equation (K.5.17)combinedwith the repre-
^i.

sentations(K.5.19-20)for Gil •

A i

"" * * j_ i
Rj ) + • (R P,ml)] xI (P.I.13)16 = _ _] H13 [ o ( P'Sl

I j

Substitutingthis result into (P.I.12)we obtain

1 •• * "_ * "_ ^i
16(p)=2 _ _] _] HIJ [_a (R3p'sI)+ _(R3p'ml)] _I (P.1.14)

I i j

Introducingthe followingnotation(and definition)for desymmetrized

singularityparameters_ :

x_ = ½ _] HiJ _i (P.1.15)
i

we obtain for 16(p)the equation

= * .. ¢_( J.16(p). _] _] [_a(RJp,sl) + R p,mI)] x_ (P.I.16)
I j

The correspondingformulafor _(p) is obtainedby formallyapplying Vp to the
above result and using the operatorequations

Vr • (r,s) : V (r,s)

* (_,m) : V* (r,m)
Vr _u

One obtains

_(_) = _] _ RJ[_IRJ_,sl) + _(RJ_,ml)] xi (P.1.17)
I j

As before the variousoperator integralsare computed by accumulating
individualpanel contributionsas describedin appendixJ.

Having treated the case of one plane of symmetry,the handlingof two

planes of symmetryis easy. One obtainsfor _(p) :

:r_.-;..... T;-L-_-"J_-Z$."1. 1. >,jl_(F) _ _. _] [@_-CR p,sI) + @*(Rj )] . (P.1.18)= _ P'ml
I j l

Here, xjl are desymmetrizedglobal singularityparameters:I

P.1-3
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