
N 8 4 - 2 7 0 7 7

NASA Technical Memorandum 85832

INVESTIGATION OF FAST INITIALIZATION OF SPACECRAFT
BUBBLE MEMORY SYSTEMS

KAREN T, LOONEY, CHARLES D, NICHOLS., AND PAUL J, HAYES

JUNE 1984

NASA
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

SUMMARY

Bubble domain technology offers significant improvement in reliability

and functionality for spacecraft onboard memory applications. In considering

potential memory system organizations, minimization of power in high capacity

bubble memory systems necessitates the activation of only the desired portions

of the memory. In power strobing arbitrary memory segments, a capability of

fast turn-on is required. Bubble device architectures, which provide

redundant loop coding in the bubble device, limit the initialization speed.

Alternate initialization techniques have been investigated to overcome this

design limitation. An initialization technique using a small amount of

external storage has been demonstrated, using software written in 8085

assembly language and PL/M. ' This technique provides several orders of

magnitude improvement over the normal initialization time.

INTRODUCTION

Bubble memory systems are quickly becoming a preferred storage medium in

environments where a non-volatile storage medium is required. The utilization

of a bubble storage system offers the benefits of increased reliability,

reduced maintainance, and permanent data integrity. The implementaton of

large bubble memory systems in spacecraft applications requires that the

memory modules be power strobed for the conservation of the available energy

resources. Each time a module is turned on for use it must be initialized to

code the redundant loop information of the selected bubble devices into the

bubble controller. Present structures of bubble systems dictate that a faster

initialization procedure is needed in order to capitalize on the advantages

offered by a bubble memory system. Use of brand or trade names herein does

not imply NASA endorsement.

NEED FOR FAST INITIALIZATION

A proposed structure for a large spacecraft memory system(ref. 1) is

shown in figure 1. The system controller module translates high level user

commands into simple digital signals for use by the bubble controller. The

bubble controller takes these digital signals and outputs the specific current

and voltage levels and timing characteristics that are required to drive the

bubble memory boards. Each of these memory boards contains N parallel

devices, where N is determined by the desired system data rate. The size of

the overall system is determined by the number of memory boards present.

Since each of these boards require about 50 watts of power, they cannot be

left powered up in a spacecraft environment where power is limited. It is

more advantageous to power up a single board only when data needs to be read

from or written to that particular section of memory. Fast access to a

portion of memory now becomes a function of how quickly a board can be turned

on. Current bubble device architecture limits the amount of time it takes to

initialize a memory device to prepare it for use.

The functional organization of all bubble devices used today is a major

track/minor loop architecture similar to that shown in figure 2. Refer to

Appendix A for a more detailed description of bubble memory devices. This

architecture is desirable because it provides a shorter access time than the

previous serial designs and improves manufacturing yields in high density

devices. Each minor loop is for the storage of data, while the major tracks

provide the input and output circuitry. Up to 15% of these loops are

redundant to allow for processing defects. The location of the defects will

T~
UJ

ID
D
O

or
0

UJ

UJ
_j
CO
ID
CQ

2
O
r~~ ^«
Q- <T

O
<3

cc
UJ
CO
D

-

'

^_

cc
o
UJ

•

DC
O

UJ

^

UJ
_J
CQ
CG

CD

O '

^

'

DC
UJ

0
cc
H
2
0
o
2
UJ
\-
co
>
CO

Q
DC
< ^>*£.
O
CQ

0

•
*

Q
CC
< f—'
O
m

DC
UJ

_J
0
DC
1-

' 2
O
O

r- O C\J

i 4i

2

LL) f-
_J < t

g 1 !

S |

f
c r l
UJ V
CO

3••<.

2

UJ
_J

Q
O

DC
O

UJ

UJ
_J
CQ
CQ
ID
CQ

• • •

' ̂

CC
1 1 1LL!

:> H

S
Y

S
T

E

C
O

N
T

R
O

l

V

>-

0
S
LU
2

>
Dt
C

L̂L
3

|

O

t

v>
S •
>>
*'

C
c
<

S
•

•
•

- (.
'•> I
I i

II
_J
3Q
GQ

CQ

*k

D
C
f 2

Q

D
r
< T

D
Q

DC
UJ

_j
O
DC
1-
"Z.

O

0

i

>

CM

i

rt
^*

I
cc >
UJ _J
^ Q-

w>1

ce:
:c^
<c

3
CQ

oo
CO

CD

PQ
PQ

PQ

CXI

Q, t_J s
|_ <C -̂

o i—

co o

4 1

o
CM
ro

£X '
o
o .

* \

1— (
CO

Q-
o
o

CM

O-
O
O

O-
o
o

<c
o
on
Q-
o
o

o
o
CQ

îfc-* r̂ ^*^~^

it IT

c/l
O- O-
O O
O O

CQ

CTl
O

ID
Q
LUor

PQ
PQ
rD
CQ

CD

2^
CD

5
s
CD

CD

<C

O

O
cc:
o

LU i—
_J <C
OQ a;
CQ LU
ra -z.
CQ LU

O

I
CNI

LU

vary from device to device, but post-fabrication testing can determine

which loops are available for use. The code used to identify the good loops

is currently stored in a separately accessible bootloop on the device.

Initialization of most commercially available bubble devices requires the
4

readout of the entire bootloop to a register in the control circuitry. The

«

time required for this operation is determined by the rotation time of the

field coils and the length of the minor loop. In application this

initialization scheme could result in a loss of data because the memory may

not be ready to accept data when the data is ready to be transmitted.

The achievement of higher data rates requires the paralleling of the

bubble devices. Table 1 shows the number of devices required to produce a

desired average useful data rate and the initialization times needed for each

configuration using the Intel 1 Mbit bubble device. These initialization

times are a reasonable estimation for other manufacturers devices. Intel's

device was chosen to demonstrate the fast initialization concept due to its

commercial availability. The architecture of the Intel controller (BMC)

dictates that each bubble device be initialized in series, even though the

devices can operate in parallel. The initialization time required for a

1 megabit data rate is on the order of 2 seconds, which is a very high time

price to pay every time a device needs to be accessed. It is more desirable

to get the initialization time down into the millisecond or microsecond range

so that a memory segment can be accessed quickly to accommodate complicated

mission scenarios. Since the present initialization scheme is dependent on

the internal architecture of the device, the bootloop data must be stored
V

externally in order to provide a faster initialization.

Table 1. Initialization Times

//OF DEVICES
1" '
8
16

AVERAGE
USEFUL
DATA RATE
68 kb/s
544 kb/s
1088 kb/s

INITIALIZATION TIME

NORMAL
80 ms
640 ms
1280 ms

MAXIMUM
160 ms
1280 ms
2560 ms

FAST INITIALIZATION

Specific Implementation

A single Intel bubble memory device was used to test the concept of fast

initialization. The result of this experiment can be applied to higher

density systems and to other manufacturers' devices. Figures 3 and 4 show the

flow charts for the normal and the fast initialization procedures. The main

difference between the normal and fast initialization procedures is a reliance

on either hardware or software, respectively, for the completion of the

initialization process. Both initialization procedures require a system reset

(ABORT) prior to the actual command being sent to the controller. When the

system is initialized normally, the bubble memory controller (BMC) reads the

entire bootloop, decodes it, transfers it to the bootloop register in the

format/sense amplifier (FSA), and places the bubble at page zero. This

process could take up to 160 ms since there could be two rotations of the

minor loops to find and read the bootloop code. Before calling the Intel

initialization routine, the parametric registers must be properly set up in

the RAM. The routine BMINIT in Appendix C was written to set up the 8085

registers, and addressable memory. Alternatively, the fast initialization

procedure uses system software to load the bootloop information from an

external memory into the bootloop register of the FSA. The first different

V

V

SET UP
PARAMETRIC
REGISTER DATA

IN RAM

,

SYSTEM

t

RESET

(ABORT)

FIGURE 3.- FLOW CHART FOR NORMAL INITIALIZATION.

0

RETURN

FI PURE 'I.- FLOW CHART FOR FAST INITIALIZATION,

step in the fast initialization process is to issue the purge command to clear

the controller registers. Next the parametric register data must be loaded

with the same data as required for the normal initialization. Upon completion

of this, the bootloop register must be loaded from the external memory to the

bootloop register in the FSA. This is accomplished by using the "write

bootloop register masked" command, which insures the loading of exactly 272

ones in the bootloop register. (It is important to note that there must be

exactly 272 ones in order for the read command to be properly implemented.)

The fast initialization routine (FSTINT) in Appendix C implements this

procedure. Table 2 contains a description of the alternative external storage

methods that were considered. EPROM was chosen for this implementation

because it was the simplest method available for the illustration of the

concept. The external EPROM for this experiment was located on the single

board computer, along with the system software. This configuration allowed

for easy comparison of the normal and fast initialization processes.

Table 2. Alternate External Storage Methods

MEDIUM
CORE

ROM

EPROM

E2Prom

ADVANTAGE
Rewrite capability
in system

Space qualified

High density
Space qualified

High density

Reprogrammable
Space qualified

High density

Rewrite capability
in system

DISADVANTAGE
Low density

Not Reprogrammable

No rewrite in
system

Required more
extensive development

HARDWARE INTERFACE - , . .

The Intel bubble memory requires a smart controller to take commands from

the user and translate them into digital commands for the bubble controller.

The controller chosen for this experiment was an Intel 8085 based single board

computer, the iSBC 8024. Interfacing the bubble memory to the computer was

simply a matter of constructing an interface to the Intel multibus. A block

diagram of the experimental configuration is shown in figure 5. Table 3 shows

the necessary hardware interface signals and a schematic of the hardware

interface can be found in Appendix B. The interface required the use of

address buffers and decoding, data and control signal buffers, acknowledge

decode and a clock generation circuit(ref. 3). Buffering of all signals that

cross the bus is necessary so that there is no confusion about who has control

of the bus and to prevent the garbling of data. Address decoding is required

for selection of the bubble controller for issuing commands or the

transmission pf data. An acknowledge is needed from the bubble contoller to

let the single board computer know the information has been received. The

clock generation circuit must provide a 4 MHz asynchronous TTL level clock,

according to the specifications given in Table 3. These clock tolerances must

he strictly observed to assure the stability of the rotating field. More

detail about microprocessor interface requirements can be found in Intel's AP-

119(ref. 3). Our particular implementation required that the user be able to

issue commands to the bubble memory module and receive status information back

from the controller during the testing of the device. This required the

connection of a terminal to the single board computer card in order for the

user to control the system. It is important to note that DACK/ and WAIT/

10

LU CD

OQ =r:r> o
PQ <_>

A
<SL
eel

LU Q LU
_J 0£ |—
t£3 <c rr>
is: o o_
•— PQ si
CO CD

C/)
=>
CQ

o
PQ —I prj LU

PQ ^ ea
PQ

PQ

A

LU
Q_
X

I

LO

LU

CD I—
co s:
CO LU
LU s: s:
C_> Q_ LU
CD O t—
ce: _j co
C_ LU >-
CD >• CO
ce: LU
<_> a

11

should be tied to +5V, as shown in the diagram in Appendix B, or the

controller will function erratically. Everything possible must be done to

insure that the system is free of spurious signals on the data and control

lines: decoupling capacitors should be used on all integrated circuits, all

line lengths should be as short as possible, and the data lines should be in

twisted pairs. The system will not function properly if any spurious signal

activity is present.

Table 3. Bubble Device Interface Signals(ref. 4)

SIGNAL
AO

DO-D7
D8
7220 CS/

RD/
WR/
DACK/

.WAIT/

CLK

RESET/

7242 CS/

FUNCTION
Address line, selects:
A0=0 FIFO or parametric registers
Al=l Command /Status registers

Bidirectional data bus
Optional odd parity bit
BMC chip select input
CS/=0 controller select
CS/=1 tri-state interface signals

Read 7220 registers or data FIFO
Write 7220 registers or data FIFO
DMA acknowledge — requires an external
pullup resister to V (5.1 kohm)

Used when BMC's are operated in
parallel — causes halt when an error
is detected in a BMC — requires

4 MHz T2L level clock
clock period=250 ns(0.25 ns tolerance)
dutv cvcle= 50% (5% tolerance)

A low on this pin forces the interruption
of any 7220 activity, performs a
controlled shutdown and initiates a
reset sequence

Should be tied to ground for single
bank systems

12

SOFTWARE INTERFACE

Intel Software Routines

The basic 8085 to BPK-72 (Intel's bubble module kit) software driver

routines can be found in reference 4, along with a detailed description of

each routine. These programs are a set of subroutines that can be called to

perform commonly used bubble memory commands. This software driver is written

in 8085 assembly language and can easily be incorporated into existing systems

as part of a utility program to transfer data between a user and the bubble

memory module. Usage of these driver routines requires that certain 8085

registers and specific locations in memory be properly set up in order to

satisfy the restrictions placed on the user addressable registers. Additional

software was also required for our application to take the commands from the

*user terminal and interpret them for the BMC. The software listed in Appendix

C was written, in 8085 assembly language and PL/M-80, to utilize the Intel

driver routines, get information to and from the terminal and perform the fast

initialization command.

Table 4. Parametric Register Set Up for Initialization(ref. 4)

REGISTER

Utility
Block Length
Enable
Address

VALUE

anything
1001H
OOH
OOOOH

Test Software

The test driver routines listed in Appendix C are the routines that were

necessary to utilize the basic Intel driver routines. These routines form the

13

Interface between the user and the BMC. The main controlling program, BMCOM,

continually takes the commands entered by the user and allows them to be

executed if they are valid commands. The module DOCMD contains the programs

necessary to actually implement the commands. Two modules, called BMIO and

IOMOD, contain the programs which query the user about various transfer

parameters (number of pages to transfer, once or continuously, page number

desired in the bubble memory) and translate the requests for use by the BMC.

The program modules used for getting messages to and from the terminal are:

MENU, CHKVAL, CNVERT, ERRMOD, TERMIO, TSTMOD. All of these test driver

modules are linked together with the Intel driver routines and an operating

system for the iSBC 8024 board to make up the software package used to fully

exercise the Intel bubble memory module.

* TEST PROCEDURE

Comparison of the normal and fast initialization times was done by

calculating the number of clock cycles (T-states) required by the

microprocessor to complete the process(ref. 5). Each initialization routine

was executed several times, with one bubble memory device in place, to

determine the number of times any software loops within the routines were

called. All of this data was used to calculate the time required to complete

the normal and fast initialization processes.

TEST RESULTS

Calculation of the normal initialization time was done from the time the

command was issued to the BMC (letter A in Fig. 3) to the time that an op

complete status was received in the status register(letter B in Fig. 3). The

loop POLLIN, within the program INBUBL, contains 61 T-states for each complete

14

run through this loop. Twenty-seven T-states are required the last time

through the loop when the op complete status is detected in the status

register. A total of 9288 times through the loop was required to successfully

complete the normal initialization process. With the 4.8 MHz clock that is

used on the 8024 single board computer, the calculation for the normal

initialization time (tn) yields:

tn= [(9287)61 + 27] x (0.208 us/T-state)= 117.84 ms

This initialization time is for one bubble memory device. The time required

to initialize 8 or 16 devices in parallel would be 8 or 16 times greater than

the above calculated value. The results of these calculation are shown in

Table 5.

Execution of the fast initialization process requires more software than

the normal initialization process so the calculation of the time required to

complete the process is slightly more complicated. Routines which are called

by both the normal and fast initialization procedures were excluded from the

calculations for purposes of comparing only the time required for the

transference of the bootloop data to the controller. The calculations of the

fast initialization time began with the issuance of the PURGE command (letter

C in Fig. 4) and ended with the receipt of an op complete in the BMC status

register after the completion of the "write bootloop register masked" (WRBLRM)

command (letter D in Fig. 4). Calculation of the fast initialization time

(t-r) is as follows:

Total // of T-states=(PURGE)+(CKSTAT)+(error check)+(WRBLRM)
=875 + 44 + 27 + 2136
=3082

15

tf - (3082) x (0.208 us/t-state)= 0.64106 ms

The calculation for the initialization of 8 bubble devices in parallel is

similar to the calculation above, with the exception that:

WRBLRM=368+(8)WRFIFO = 368+8(1768)

The "write FIFO" (WRFIFO) routine must be called to transfer the bootloop data

for each bubble device. Resulting initialization times for 8 and 16 parallel

bubble devices are shown in Table 5.

Table 5. Experimental Initialization Times(ms)

tn (ms)

tf (ms)

of parallel bubble devices
1

118.03

0.641

8
943.72

3.215

16
1885.44

6.43

The results of this experiment show that the fast initialization concept

provides several orders of magnitude improvement over the normal

initialization scheme. Although these results were obtained with an Intel

1 Mbit device, they are applicable to higher density devices. The improvement

in the initialization time can be projected for similarly organized bubble

devices of various capacities. For normal initialization

t o
minor loop length

n field rotation rate

16

for fast initialization

t a minor loop length

Several hypothetical device configurations which have been considered are

listed in Table 6. The initialization times for these device configurations

is depicted in figure 6 for a parallel group of 8 devices. The shaded region

indicates the time range that is achievable for the fast initialization

scenario, depending on the controlling microprocessor and the efficiency of

the system software. The 50 kHz and 100 kHz lines represent the normal

initialization times required for various device configurations. It is seen

that very long initialization times can occur if fast initialization

techniques are not incorporated. The lower limit of the shaded region is due

to the minimum time to transfer data out of the EPROM.

Table 6. Bubble Device Configurations

Device
A
A'
B
B'

Intel
C
D
E
E'
F

Capacity (bits)
256k

1M
1M
1M
1M
2M
8M
4M
4M
4M

Field
Rate
100k
50k
100k
50k •
50k
100k
100k
50k
100k
100k

of
Minor Loops

256
256
512
512
272
163
587
512
512
163

Minor
Loop Length

1024
1024
2048
2048
4096
4103
4103
8192
8192
8206

17

Q.
O
o

ce:
o

CD
U_

O

(SW) 3WI1 NOIlVZnVIilNI

FIGURE 6.- GRAPH OF I N I T I A L I Z A T I O N TIMES,

18

CONCLUDING REMARKS

A method for the fast initialization of a bubble memory system, involving

the usage of a small amount of external storage, -has been presented. Specific

information on the implementation of an Intel 1 Mbit bubble memory device has

also been included to illustrate the methodology. The fast initialization

technique presented here is conceptually applicable to all bubble devices and

to higher density systems.

After an evaluation of the external storage mediums available, EPROM was

chosen as the simplest method to demonstrate the viability of this fast

initialization technique with Intel devices. A hardware interface was

designed to interface the controlling microprocessor to the bubble memory

circuitry. System software was written to exercise the various functions of

the bubble memory system. A comparison was made between the normal and fast

initialization techniques. The fast initialization method has been

demonstrated to reduce the initialization time by several orders of

o '
magnitude. Future implementations of this approach will utilize the E PROM to

provide greater system flexibility.

19

REFERENCES

1. Hayes,, P. J..; Stermer, R. L., Jr.: "Bubble Domain Technology for

Spacecraft Onboard Memory," Advanced Remote Sensing; Proceedings of SPIE 26th

Internat'l Technological Symposium, Vol. 363, pp. 136-146, Aug. 22-27, 1982.

2. Intel Corp.: "Bubble Memory System Design Workshop: Student Study

Guide," Version 1..0, Nov. 1981.

3.. Intel Corp.: "Microprocessor Interface for the BPK-72," Intel

AP-119, June 1981.

4. Intel Corp.: "8085 to BPK-72 Interface," Intel AP-150, July 1982.

5. Intel Corp.: MCS-80/85 Family User's Guide, Oct.1979.

20

APPENDIX A

INTRODUCTION TO BUBBLE MEMORY DEVICES

Paul J. Hayes
Langley Research Center

May 1983

21

APPENDIX A

INTRODUCTION TO BUBBLE MEMORY DEVICES

Magnetic bubble memory chips are fabricated by depositing a thin magnetic

garnet film on top of a non-magnetic garnet substrate. As sketched in

figure 7(a), a random arrangement of serpentine magnetic domains forms in the
, , •

magnetic film with half of the domains oriented in one direction and half in

the opposite direction. The film deposition process induces anisotrophy in

the magnetic film which causes the domains to be oriented perpendicular to the

surface.
'• ' •. -• . t*

If a d.c. bias field Hfi (external magnetic field) is now applied

perpendicular to the surface, these serpentine domains already oriented in the

direction of the bias field will grow at the expense of those oppositely

oriented as depicted in figure 7(b). As the bias field strength is increased

this process continues until a field value is reached where the oppositely-

oriented serpentine domains shrink into small cylindrical domains

(Fig. 7(c)). These cylindrically-shaped domains are referred to as bubble

domains, or simply as bubbles, and are stable in their cylindrical shape over

a reasonably wide range of magnetic bias field. Should the bias field be

increased beyond the stable range the bubbles will finally collapse (reverse

orientation to align with the bias field), resulting in a single domain

aligned in the direction of the applied field (Fig. 7(d)).

The stable bias field for bubbles may be provided by a permanent magnet,

thus maintaining a digital storage medium without applied power

(nonvplatile). Digital data may be represented by the presence and absence of

bubbles. The presence of a bubble may represent a logical "1" and the absence

of a bubble may represent a logical "0." The condition for having stable

22

(a) No bias field (b) Small bias field

(c) Bias field for stable
bubbles

(d) Excessive bias field

Figure 7.- Domain patterns in magnetic garnet film.

23

APPENDIX A

bubbles is not by itself sufficient for practical application. Device

features must be included which, identify specific data storage sites, provide

bubble generation, annihilation (erase), and detection techniques, and provide

for propagation of bubbles to and from the storage sites.

Bubble devices may be classified by the technique used to define data

positions and the method of propagating or accessing data. The four major

classifications are indicated in figure 8. Three device types within

classification 1 and one within classification 4 are currently being- assessed

for aerospace onboard applications. Two device types within classification 1,

conventional permalloy and wide-gap permalloy, have matured sufficiently to be

considered for near-term onboard system development. Figure 9 illustrates the

shape of permalloy features identifying storage sites in these two device

types. Rows of these asymmetric chevrons are fabricated over the top of the

magnetic garnet film. Each permalloy chevron is a data storage site and the

bubble is located in the garnet film underneath the chevron. The data site

period determines the device density (density is inversely proportional to the

square of the data site period). Conventional permalloy is further along in

commercial applications but the wide-gap structure, by virtue of its shape and

a 50% wider gap between sites, offers lower power, higher density, and

potentially lower cost.

The propagation of data is now discussed for the conventional permalloy

device, however, propagation is similar in the wide-gap device. The propagate

structure (and also detectors, generators, etc.) is patterned over the

magnetic garnet film as shown in figure 10(b) and the resulting chip is

24

—• O Q_ CD
_J <C _l Q_
—I CD

m
0)
o

•o
. o
1-1
JO

co
o

cd
o

CO
CO
td

o

oo

0)
Jj
C>0
•H
J*4

25

o
1
ui
D

o*j
**«0
p.
cio

t

DO

&
V<
3
00

UJ o

-I O
n. -j
i

O
Ul

u oc
5 £ a T

o
P
o

u
-J
to
CO
=>
CQ

CQ

CO
o
tH
O

U
Q>

o
1-1
iH

<u
CU

t-l
rt
c
o
•rl
4J
C

I
Ou

0)
3
er
•rl
C.Co
0)

eg
60to
P.o
H
ft.

0)
1-1

I
I

O"
,-<
0
M

00
•H
(K

27

APPENDIX A

located Inside a pair of orthogonal coils and between permanent magnets

(Fig. 10(a)). The pair of coils is used to generate a rotating in-plane

magnetic field. The magnetization of the permalloy chevrons aligns with the

in-plane field so that each chevron simulates a small bar magnet which

generates a local field to position the bubble. The bubbles are attracted to

the magnetized chevrons and move along from one chevron to another as the in-

plane field rotates (Fig. 10(c)). Bubble domain motion does not involve the

moving of matter, but rather consists of reorienting the magnetizaion of

adjacent microscopic regions of the garnet. This reorientation occurs very

rapidly to enable fast propagation times and, hence, fast data rates.

Figure 11 illustrates the conditions for bubble operation and techniques

for bubble generation and erasure. The nominal operating point (bias field

and in-plane field magnitude) coincides with the center of the stable region

indicated as PROPAGATE in figure ll(c). Bubble annihilation and generation

may be accomplished by modifying the bias field at specific data sites. This

is done by locating very tiny current loops in the data stream of the device

as indicated in figures ll(a) and ll(b). For annihilation (erase), a current

pulse is passed in a direction which increases the bias field beyond the

stable operating region within the area of the current loop (Fig. 11(a)). For

bubble generation, a current as shown in figure ll(b) produces a field which

opposes the d.c. bias field, thus momentarily shifting the local bias field

within the area of the current loop below the stable region. While the local

field is depressed a bubble will spontaneously nucleate. The current loops

are fabricated as photolithographically etched aluminum-copper patterns and

are separated from the permalloy by a silicon dioxide spacing layer.

28

A

Q-i
HI

iZ
ui
z
<
-I
a

ui
-i
m
GO
3
0

CC

o
u.

^

o

z ui
O a.
o o
u

Q13U svis

co
•H

0)
a
o
(U
o

•H-

(U

-: (7

CO CC w< o -
5*£

z
• z
<
o
I-
a.
O.
o_i
h-
Z UI
LU U
a m
cc ca
=) ZJ
O CO

ra

pa

oc
•H

29

APPENDIX A

Bubbles are detected by being routed underneath a permalloy element which

is connected to a bridge circuit suitable for monitoring the instantaneous

resistance of the element. Since permalloy is magneto-resistive, its

resistance will change as the magnetic field changes. Thus, the presence or

absence of a bubble immediately underneath the detector element modifies the

resistance of the element and these resistance changes serve to detect

bubbles.

The bubble device architecture presently used by all manufacturers is the

major track - minor loop scheme sketched in figure 12. The organization has

an input track, an output track, and a large number of parallel minor storage

loops. The two principal advantages of this architecture are fast access to

blocks of data and redundant minor loops for increased device yield.

Approximately 15% of the minor loops are redundant to allow for processing

defects. Defects occur at random locations on the device and post-fabrication

testing determines which loops are to be used. The code identifying (or

mapping) the useable loops may be stored either on a separately accessible

bootloop on the device or on an external memory device. The bootloop code is

used when writing data to interject a "0" at locations in the data stream

which correspond to the unused minor loops. Thus, user data is stored only in

the predetermined good loops. Similarly, the bootloop code is used when

reading data to ignore data positions corresponding to the unused minor loops.

Data is accessed in blocks equal to the number of useable minor loops.

In writing, the data block is generated one bit at a time and the data

propagated until all bits are positioned at the swap gates. A pulse of

current in the swap gates simultaneously transfers the block of data into the

30

i i f R n r»T i nnp I i

\

INPUT
TRACK

FGEN
^ •

^

t

4

i

i — »•"• . ' i

S~ ' "\\(1 I ")
V J

•*— *• • —
/" .s(i Mv J

^ ™

r i iAi i i j
V ^7

•*— *r —

A ' i Af 1 1 }
\^ J

STORAGE
LOOPS

r i a"\r \ i }v :y
•*-*• ' -

, /r,. ..A
(1 I }
V. ^S

* * • —
h •

/^ i A
(4 I J
V V

-•-*- —
x1 . _S ,(i i)1 - V * J

n*"

»

»
j

>

»

»

»
i

>

»

^-*v DETECTOR

OUTPUT
TRACK

k

SWAP REPLICATE '
GATES GATES

Figure 12.- Major track-minor loop device architecture..

31

APPENDIX A

minor loops for storage and an equivalent data block out of the minor loops

and onto the input track. The old data block is then propagated to a guard

rail annihilator while the next block of data is being generated and brought

into position for the next swap.

In detection, the desired data block is first positioned at the replicate

gates. A pulse of current in the replicate gates causes the data block to be

replicated onto the output track where it can be propagated into the

detector. The data in the minor loop is not erased but is maintained

indefinitely until new data is stored in its place as described in the write

process above.

Although device densities are suitable now for onboard system development

Q

in the 10 bit capacity range and megabit data rates, there remains a

significant potential for substantially increased capacity and data rate.

Device data site period (and density) is limited by the minimum feature which

can be photollthographically delineated. Ion implant technology

(classification 1 of Fig. 8) offers an order of magnitude density increase

over conventional permalloy for a given resolution and operational power. The

self-structured current access technology (classification 4 of Fig. 8) offers

an even further increase in system density by eliminating the in-plane field

coils. Current access techniques also offer an order of magnitude increase in

data rates. Ion implant and self-structured current access devices are under

9 10development for potential application in systems in the 10 bit and 10 bit

capacity ranges^respectively.

32

APPENDIX B

HARDWARE INTERFACE SCHEMATIC

33

34

APPENDIX C

TEST SOFTWARE ROUTINES

35

APPENDIX C

The software routines contained in this appendix are the test driver

routines necessary to utilize the Intel driver routines, get information to

and from the terminal, and perform the fast initialization command. These

routines, listed here in alphabetical order, are written in 8085 assembly

language and PL/M-80. An outline of standard PL/M-80 program format is shown

in figure 7.

M:DO /*beginning of module*'/
external procedure declarations
variable declarations
PROCEDURE number_pne;

DO
END; /*number_one*/

PROCEDURE number_two;
DO
END; /*number_two*/

END M; /*end of module*/

Figure 7. General PL/M-80 Format

The main controlling program, BMCOM, continually takes bubble memory

commands from the user and allows them to be executed if they are valid

commands. The module DOCMD contains the programs necessary to actually

implement the commands. BMIO and IOMOD contain the programs which query the

user about various transfer parameters and translate the requests for loading

into the BMC. The program SETPAR sets up the initial values for the

parametric registers. CKSTAT accesses the status of the controller after each

operation and issues error messages when necessary. The fast initialization

procedure is implemented in the FSTINT module. The other program modules

listed here are for getting messages to and from the terminal. These programs

36

APPENDIX C

are: MENU, CHKVAL, ERRMOD, TERMIO, and TSTMOD. A short description is

provided at the beginning of each program. The Intel driver routines(see

reference 4) that are referred to in these program listings are: ABORT,

FIFORS, INBUBL, INTPAR, MBMPRG, RDBLRS, RDBOOT, RDBUBL, WRBLRM, WRBLRS, and

WRBUBL.

37

$NOLIST
r
DESCRIPTION: EXTERNAL DECLARATIONS FOR THE MAIN PROGRAM MODULE

$LIST

CI:PROCEDURE BYTE EXTERNAL;
END CI;

PRINT$MENU:PROCEDURE EXTERNAL;
END PRINT$MENU;

INVALID$CMD:PROCEDURE EXTERNAL;
END INVALID$CMD;

ECHO:PROCEDURE (CHAR) EXTERNAL;
DECLARE CHAR BYTE;
END ECHO;

CHK3:PROCEDURE EXTERNAL;
END CHK3;

SEND$MESSA6E:PROCEDURE (PTR) EXTERNAL;
DECLARE PTR ADDRESS;
END SEND$MESSAGE;

EXECUTE$COMMAND:PROCEDURE (NUM) EXTERNAL;
DELCARE NUM BYTE;
END EXECUTE$COMMAND;

CROUT:PROCEDURE EXTERNAL;
END CROUT;

FETCH$CMD:PROCEDURE BYTE EXTERNAL;
END FETCH$CMD;

/*MONITOR*/

/*MENU,PG. */

/*ERRMOD,PG. */

/*MONITOR*/

/*CKSTAT*/

/*TERMIO*/

/*DOCMD*/

/*MONITOR*/

/*DOCMD*/

38

$NOLIST
r
DESCRIPTION: VARIABLE DECLARATIONS

$LIST

DECLARE (BLADDR.BLFSA) ADDRESS PUBLIC;
DECLARE (BCREG,WRRAM,RDRAM) ADDRESS PUBLIC;
DECLARE (ERR$FLAG,EXIT$FLAG,RW#FLAG) BYTE PUBLIC;
DECLARE CMD$NUMBER BYTE PUBLIC;
DECLARE FOREVER LITERALLY 'WHILE EXIT$FLAG=1';

39

$NOLIST

DESCRIPTION: CONSOLE MESSAGES

DECLARE CR LITERALLY 'ODH'.LF LITERALLY 'OAH';
DECLARE MSG (*) BYTE DATA

('0 NORMAL INITIALIZATION ',CR,
'1 FAST INITIALIZATION ',CR,
'2 READ BUBBLE DATA ',CR,
'3 WRITE BUBBLE DATA ',CR,
'4 READ BOOTLOOP REG. ',CR,
'5 WRITE BOOTLOOP REG. ',CR,
'6 READ BOOTLOOP ',CR,
'7 RESET FIFO ',CR,
'8 MBM PURGE ',CR,
'9 ABORT ',CR,
'A EXIT ',CR);

DECLARE MSO (*) BYTE DATA
CENTER THE COMMAND NUMBER',CR);

DECLARE MSI (*) BYTE DATA
('INVALID COMMAND—TRY AGAIN'.CR);

DECLARE MS2 (*) BYTE DATA
('OPERATION INCOMPLETE',CR);

DECLARE MS3 (*) BYTE DATA
CENTER # OF PAGES TO BE TRANSFERRED—o TO 255',CR);

DECLARE MS4 (*) BYTE DATA
CENTER PAGE LOCATION IN BUBBLE MODULE—o TO 2043',CR);

DECLARE MSB (*) BYTE DATA
CENTER A CARRIAGE RETUREN TO CONTINUE',CR);

DECLARE MS6 (*) BYTE DATA
('ABORT PHASE',CR);

DECLARE MS7 (*) BYTE DATA
('PURGE PHASE',CR);

DECLARE MS8 (*) BYTE DATA
('ILLEGAL ENTRY—TRY AGAIN' ,CR) ;

DECLARE MS9 (*) BYTE DATA
('CONTINUOUS READ OR WRITE?—Y/N1 ,CR);

DECLARE MS 10 (*) BYTE DATA
('INPUT AN "A" TO ABORT',CR);

DECLARE MS11 (*) BYTE DATA
('OPERATION ABORTED'CR); '

DECLARE MS12 (*) BYTE DATA
(' N O W EXECUTING COMMAND # ' ,CR);

DECLARE MS13 (*) BYTE DATA
('EXECUTING A CONTINUOUS READ' ,CR) ;

DECLARE MS14 (*) BYTE DATA
('EXECUTING A CONTINUOUS WRITE' ,CR);

DECLARE MS15 (*) BYTE DATA
('HAVE A NICE D A Y ' . C R) ;

$LIST

40

PL/M-80 COMPILER BMIO--6/6/83 PAGE 1

ISIS-II PL/M-80 V4.0 COMPILATION OF MODULE BMIO
OBJECT MODULE PLACED IN :F1:BMIO.OBJ
COMPILER INVOKED BY: PLM80 :F1:BMIO.PLM DEBUG

$TITLE('BMIO--6 /6 /83 ')
1 B M I O : D O ;

$INCLUDE(:F1:MSGMOD.LIT)
= $NOLIST

20 1 ABORT:PROCEDURE EXTERNAL; /*ABORT*/
21 2 END ABORT;
22 1 RDBUBL:PROCEDURE (BCREG.BLADDR) EXTERNAL; /*BUBIOR*/
23 2 DECLARE (BCREG.BLADDR) ADDRESS;
24 2 END RDBUBL;
25 1 WRBUBL:PROCEDURE (BCREG.RAMAD) EXTERNAL; /*BUBIOW*/
26 2 DECLARE (BCREG.RAMAD) ADDRESS;
27 2 END WRBUBL;
28 1 SETPAR:PROCEDURE (P,B) EXTERNAL; /*PARMET*/
29 2 DECLARE (P,B) ADDRESS;
30 2 END SETPAR;
31 1 SEND$MESSAGE:PROCEDURE (PTR) EXTERNAL; /*TERMIO*/
32 2 DECLARE PTR ADDRESS;
33 2 END SEND$MESSAGE;
34 1 QUICK$CI:PROCEDURE BYTE EXTERNAL; /*TERMIO*/
35 2 END QUICK$CI;
36 1 CHK3: PROCEDURE EXTERNAL; /*CKSTAT*/
37 2 END CHK3;
38 1 CHK2: PROCEDURE EXTERNAL; /*CKSTAT*/
39 2 END CHK2;
40 1 CHK1: PROCEDURE EXTERNAL;
41 2 END CHK1;
42 1 DECLARE (BCREG,WRRAM,RDRAM) ADDRESS EXTERNAL; /*BMCOM*/
43 1 DECLARE (PAGENUM,BMPAGE) ADDRESS EXTERNAL; /*IOMOD*/
44 1 DECLARE RW$FLAG BYTE EXTERNAL;
45 1 DECLARE KEY BYTE;
46 1 DECLARE STOP LITERALLY '41H1;

41

PL/M-80 COMPILER BMIO—6/6/83 PAGE 2

$EJECT
47 1 READ$BUBBLE:PROCEDURE PUBLIC;

/iiitititiiicic-kicii***-!

DESCRIPTION: CONTINUOUSLY READS A GIVEN NUMBER OF PAGES
IN THE BUBBLE MODULE—UNTIL ABORTED BY THE USER

INPUTS: P—# OF PAGES TO READ
B==# FIRST PAGE TO BE READ IN THE BUBBLE MODULE

OUTPUTS: BUBBLE DATA TO RAM, APPROPRIATE MESSAGE TO CONSOLE

CALLS: RDBUBL,SEND$MESSAGE,SETPAR,ABORT,C1,CHK2

DESTROYS: B.C.D.E

48 2 CALL SEND$MESSAGE(.MB13);
49 2 KEY-OOH;
50 2 DO WHILE KEYOSTOP; /*READ TILL USER ABORT*/
51 3 CALL SETPAR(PAGE$NUM:BM$PAGE); /*SET UP PARA REG DATA*/
52 3 CALL RDBUBL(BCREG,RD$RAM); /*READ BUBBLE DATA*/
53 3 CALL CHK2; /*CHECK STATUS*/
54 3 CALL ABORT; /*END READ CMD*/
55 3 KEY=QUICK$CI; /*CHECK FOR USER ABORT*/
56 3 END;
57 2 CALL ABORT;
58 2 CALL SEND$MESSAGE(.MS11); /*SEND ABORT MSG TO CRT*/
59 2 RW$FLAG=0;
60 2 END READ$BUBBLE;

42

PL/M-80 COMPILER BMIO--6/6/83 PAGE 3

$EJECT
61 1 WRITE$BUBBLE:PROCEDURE PUBLIC;

I*

DESCRIPTION: CONTINUOUSLY WRITES A GIVEN NUMBER OF PAGES
IN THE BUBBLE MODULE—UNTIL ABORTED BY THE USER

INPUTS: P--# OF PAGES TO WRITTEN
B==# FIRST PAGE IN THE BUBBLE MODULE TO BE WRITTEN TO

OUTPUTS: DATA TO THE BUBBLE MODULE, APPROPRIATE MESSAGE TO THE
CONSOLE

CALLS: WRBUBL,SEND$MESSAGE,CI.SETPAR.ABORT,CHK1

DESTROYS: B,C,D,E

62 2 CALL SEND$MESSAGE(.M214);
63 2 KEY-OOH;
64 2 DO WHILE KEY<>STOP; /*WRITE TILL USER ABORT*/
65 3 CALL SETPAR(PAGE$NUM:BM$PAGE); /*SET UP PARA REG DATA*/
66 3 CALL WRBUBL(BCREG,WR$RAM); /*WRITE BUBBLE DATA*/
67 3 CALL CHK1; /*CHECK STATUS*/

CALL ABORT; /*ABORT WRITE CMD*/
68 3 KEY=QUICK$CI; /*CHECK FOR USER ABORT*/
69 3 END;
70 2 CALL ABORT;
71 2 CALL SEND$MESSAGE(.MS11); /*SEND ABORT MSG TO CRT*/
72 2 RW$FLAG=0;
73 2 END WRITE$BUBBLE;
74 1 END BMIO;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
147 LINES READ
0 PROGRAM ERRORS

0351H
0001H
0002H

84 9D
ID
2D

END OF PL/M-80 COMPILATION

43

PL/M-80 COMPILER CHKVAL 1/7/83 PAGE 1

ISIS-II PL/M-80 V4.0 COMPILATION OF MODULE CHKVAL
OBJECT MODULE PLACED IN :F1:CHKVAL.OBJ
COMPILER INVOKED BY: PLM80 :F1:CHKVAL.PLM DEBUG

$TITLE('CHKVAL1)
$DATE(1/7/83)

1 CHKVAL:DO;
2 1 ILLEGAL$ENTRY:PROCEDURE EXTERNAL;
3 2 E N D ILLEGAL$ENTRY;
4 1 DECLARE ENTRY$FLAG BYTE EXTERNAL;
5 1 DECLARE INDEX BYTE EXTERNAL;
6 1 DECLARE VALID$CHAR(256) BYTE;
7 1 DECLARE BUFFER(256) BYTE EXTERNAL;
8 1 DECLARE N BYTE;

/*ERRMOD*/

/*IOMOD*/
/*TERMIO*/

/*TERMIO*/

44

PL/M-80 COMPILER CHKVAL 1/7/83 PAGE 2

$EJECT
9 1 PA6E$CHECK: PROCEDURE;

DESCRIPTION: VERIFIES THE NUMBER OF PAGES TO BE TRANSFERRED\

INPUTS: CHARACTERS IN THE INPUT BUFFER

OUTPUTS: ERROR MESSAGE TO CONSOLE FOR AN INVALID ENTRY

CALLS: ILLEGAL$ENTRY

DESTROYS: NONE

TO 2 IF INDEX>3 THEN CALL ILLEGAL$ENTRY;
ELSE

12 2 DO CASE INDEX-1;
13 3 IF VALID$CHAR(0) THEN CALL ILLEGAL$ENTRY;

IF VALID$CHAR(0) OR VALID$CHAR(1) THEN CALL ILLEGAL$ENTRY;
DO;

18 4 IF BUFFER (0)<30H OR BUFFER (0)>32H THEN
19 4 CALL ILLEGAL$ENTRY;

ELSE
20 4 DO;
21 5 IF BUFFER(0)=32H THEN
22 5 DO;
23 6 IF BUFFER(1)<30H OR BUFFER(1)>35H THEN
24 6 CALL ILLEGAL$ENTRY

ELSE
25 6 IF BUFFER(1)=35H AND (BUFFER(2)<30H OR

BUFFER(2)>35H)
26 6 CALL ILLEGAL$ENTRY;
27 6 END;

ELSE
28 5 IF VALID$CHAR(1) OR VALID$CHAR(2) THEN
29 5 CALL ILLEGAL$ENTRY;
30 5 END;
31 4 END;
32 3 END ;
33 2 END PAGE$CHECK;

45

PL/M-80 COMPILER CHKVAL 1/7/83 PAGE 3

$EJECT
34 1 CHECKBMPAGE: PROCEDURE;

DESCRIPTION: VERIFIES THE PAGE NUMBER REQUESTED IN THE BUBBLE MODULE

INPUTS: CHARACTERS IN THE INPUT BUFFER

OUTPUTS: ERROR MESSAGE TO CONSOLE FOR AN INVALID ENTRY

CALLS: ILLEGAL$ENTRY

DESTROYS: NONE

35 2 IF INDEX>4 THEN CALL ILLEGAL$ENTRY;
ELSE

37 2 DO CASE INDEX-1;
38 3 IF VALID$CHAR(0) THEN CALL ILLEGAL$ENTRY;

IF VALID$CHAR(0) OR VALID$CHAR(1) THEN
41 3 CALL ILLEGAL$ENTRY;

IF VALID$CHAR(0) OR VALID$CHAR{1) OR VALID$CHAR(2) THEN
43 3 CALL ILLEGAL$ENTRY;

DO;
45 4 IF BUFFER(0)<30H OR BUFFER(0)>32H THEN
46 4 CALL ILLEGAL ENTRY;

ELSE
47 4 DO;
48 5 IF BUFFER(0)=32H THEN
49 5 DO;
50 6 IF BUFFER (1)<>30H THEN CALL ILLEGAL$ENTRY;

ELSE
52 6 IF BUFFER(2)<30H OR BUFFER(2)>34H THEN
53 6 CALL ILLEGAL$ENTRY;

ELSE
54 6 IF BUFFER(2)=34H AND BUFFER(3)<30H

OR BUFFER(3)>38H THEN
CALL ILLEGAL$ENTRY;

55 6 END;
56 6 END ;
57 5 END;
58 4 END ;
59 3 END;
60 2 END CHECKBMPAGE;

46

PL/M-80 COMPILER CHKVAL 1/7/83 PAGE 4

$EJECT
61 1 CHECK$ENTRY$VALUE:PROCEDURE PUBLIC;

/itic***************ii********ic*itic****iric********ii*-k****-ic***ic**-ki!*+*+-it*i

DESCRIPTION: VERIFIES THE INFORMATION THAT THE USER ENTERED AT THE
CONSOLE

INPUTS: INPUT BUFFER

OUTPUTS: ERROR MESSAGE TO CONSOLE FOR AN INVALID ENTRY

CALLS: PAGE$CHECK,CHECK$BM$PAGE

DESTROYS: NONE

62 2 DO N=0 TO (INDEX-1);
63 3 VALID$CHAR(N)=BUFFER(N)<30H OR BUFFER(N)>39H;
64 3 END;
65 2 DO CASE ENTRY$FLAG;
66 3 CALL PAGE$CHECK
67 3 CALL CHECKBMPAGE;
68 3 END;
69 2 END CHECK$ENTRY$VALUE;
70 1 END CHKVAL;

MODULE INFORMATION:

CODE AREA SIZE = 0131H 481D
VARIABLE AREA SIZE = 0101H 257D
MAXIMUM STACK SIZE = 0006H 60
121 LINES READ
0 PROGRAM ERRORS

END OF PL/M-80 COMPILATION

47

ASM80 :FI:CKSTAT.S MACROFILE PAGEWIDTH(IOO) DEBUG MOD85

ISIS-II 8080/8085 MACRO ASSEMBLER, V4.1 CKSTAT PAGE 1
CKSTAT—3/10/83

LOG OBJ

C

E

0000 C5
0001 47
0002 EE40
0004 CAODOO
0007 78
0008 EE42
OOOA C40000
GOOD Cl
OOOE C9

OOOF C5
0010 47
0011 EE40
0013 CA1COO
0016 78
0017 EE48
0019 C40000
001C Cl
001D C9

001E EE40
0020 C40000
0023 C9

PUBLIC SYMBOLS
CHK 1 C 0000

C

E

LINE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

SOURCE STATEMENT

$TITLE('CKSTAT—3/10/83')
NAME CKSTAT
EXTRN ERROR
9

.***

;DESCRIPTION:

• INPUTS:

; OUTPUTS:

; CALLS:

; DESTROYS:

CHECKS THE STATUS REGISTER OF THE 7220

NONE

ERROR MESSAGE WHEN APPROPRIATE

ERROR

NONE

• **,
CSEG

CHK1:

OKAY1;

CHK2:

OKAY2:

CHK3:

PUBLIC CHK1
PUSH B
MOV B,A
XRI 40H
JZ OKAY1
MOV A,B
XRI 42H
CN2 ERROR
POP B
RET

PUBLIC CHK2
PUSH B
MOV B,A
XRI 40H
JZ OKAY2
MOV A,B
XRI 48H
CNZ ERROR
POP B
RET

PUBLIC CHK3
XRI 40H
CNZ ERROR
RET

END

;CHECK WRITE OPERATION
;SAVE B REG
;SAVE A REG
;SUCCESSFUL OPERATION??
;IF YES, RETURN
;RESTORE A REG
;IF NOT, CHECK OTHER VALUE
;SEND MESSAGE FOR ERROR
;RESTORE B REG
;RETURN

;CHECK READ OPERATION
;SAVE B REG
;SAVE A REG
:SAME AS CHK1

;CHECK OTHER OPERATIONS
;SAME AS CHK1 AND CHK2

CHK2 C OOOF CHK3 C 001E

48

PL/M-8Q COMPILER CNVERT--4/29/83 PAGE 1

ISIS-II PL/M-80 V4.0 COMPILATION OF MODULE CNVERT
OBJECT MODULE PLACED IN :F1:CNVERT.OBJ
COMPILER INVOKED BY: PLM80 :F1: CNVERT. PLM DEBUG

$TITLE('CNVERT— 4/29/83')
1 CNVERT:DO;
2 1 DECLARE BUFFER (256) BYTE EXTERNAL; /*TERMIO*/
3 1 DECLARE DUMBUF BYTE;
4 1 DECLARE N BYTE;
5 1 DECLARE X ADDRESS;
6 1 DECLARE OR LITERALLY 'ODH';
7 1 ASCOOTOBINARY: PROCEDURE ADDRESS PUBLIC;

DESCRIPTION: CONVERTS CHARACTER FROM ASCII TO BINARY

INPUTS: ASCII CHARACTERS IN A BUFFER

OUTPUTS: BINARY EQUIVALENT

CALLS: NONE

DESTROYS: NONE

8 2 X=0;
9 2 N=0;
10 2 DO WHILE BUFFER(N) <> CR;
11 3 DUMBUF=BUFFER(N)-30H;
12 3 X=10*X + DUMBUF;
13 3 N=N+1;
14 3 END;
15 2 RETURN X;
16 2 END ASCIITOBINARY;
17 1 END CNVERT;

MODULE INFORMATION:

CODE AREA SIZE = 0040H 64D
VARIABLE AREA SIZE = 0004H 40
MAXIMUM STACK SIZE = 0004H 4D
31 LINES READ
0 PROGRAM ERRORS

END OF PL/M-80 COMPILATION

49

PL/M-80 COMPILER DOCMD—6/6/83 PAGE 1

ISIS-II PL/M-80 V4.0 COMPILATION OF MODULE DOCMD
OBJECT MODULE PLACED IN :F1:DOCMD.OBJ
COMPILER INVOKED BY: PLM80 :F1:DOCMD.PLM DEBUG

$TITLE('DOCMD-6/6/83')
1 DOCMD:DO;

$INCLUDE(:F1:PRMOD2.EXT)
= $NOLIST

53 1 DECLARE (PAGENUM,BMPAGE) ADDRESS EXTERNAL; /*IOMOD*/
54 1 DECLARE (BLADDR.BLFSA) ADDRESS EXTERNAL; /*BMCOM*/
55 1 DECLARE (BCREG,WRRAM,RDRAM) ADDRESS EXTERNAL; /*BMCOM*/
56 1 DECLARE (EXIT$FLAG,RW$FLAG) BYTE EXTERNAL; /*BMCOM*/

50

$NOLIST
r
DESCRIPTION: EXTERNAL DECLARATIONS FOR THE DOCND MODULE

*i
/*MONITOR*/

$LIST

ECHO PROCEDURE (CHAR) EXTERNAL;
DECLARE CHAR BYTE;
END ECHO;

CROUT:PROCEDURE EXTERNAL;
END CROUT;

BMINIT.-PROCEDURE EXTERNAL;
END BMINIT;

INBUBL:PROCEDURE EXTERNAL;
END INBUBL;

ABORT:PROCEDURE EXTERNAL;
END ABORT;

FAST$INITIALIZATION:PROCEDURE EXTERNAL;
END FAST$INITIALIZATION;

FIFORS:PROCEDURE EXTERNAL;
END FIFORS;

RDBUBL:PROCEDURE (BCRE6,RAMAD) EXTERNAL;
DECLARE (BCREG.RAMAD) ADDRESS;
END RDBUBL;

WRBUBL:PROCEDURE (BCREG.ROMAD) EXTERNAL;
DECLARE (BCREG.ROMAD) ADDRESS;
END WRBUBL;

READ$BUBBLE:PROCEDURE EXTERNAL;
END READ$BUBBLE;

WRITE$BUBBLE:PROCEDURE EXTERNAL;
END WRITE$BUBBLE;

RDBLRS:PROCEDURE (BCREG.BLADDR) EXTERNAL;
DECLARE (BCREG.BLADDR) ADDRESS;
END RDBLRS;

WRBLRS:PROCEDURE (BCREG.RAMAD) EXTERNAL;
DECLARE (BCREG.RAMAD) ADDRESS;
END WRBLRS;

MBMPRG:PROCEDURE EXTERNAL;
END MBMPRG;

RDBOOT:PROCEDURE (BCREG.BLADDR) EXTERNAL;
DECLARE (BCREG.BLADDR) ADDRESS;
END RDBOOT;

IO$DEFINITION:PROCEDURE EXTERNAL;
END 10$DEFINITION;

CHK1:PROCEDURE EXTERNAL;
END CHK1;

CHK2:PROCEDURE EXTERNAL;
END CHK2;

CHK3:PROCEDURE EXTERNAL;
END CHK3;

SETPAR:PROCEDURE (BC.DE) EXTERNAL;
DECLARE (BC.DE) ADDRESS;
END SETPAR;

INTPAR:PROCEDURE EXTERNAL;
END INTPAR;

CI:PROCEDURE BYTE EXTERNAL;
END CI;

/*MONITOR*/

/*INIT*/

/*INIT*/

/*ABORT*/

/*FSTINT*/

/*FIFO*/

/*BUBIOR*/

/*BUBIOW*/

/*RDWR*/

/*RDWR*/

/*BTLOOP*/

/*BTLOOP*/

/*BUBIOW*/

/*BTLOOP*/

/*IOMOD*/

/*CKSTAT*/

/*CKSTAT*/

/*CKSTAT*/

/*PARMET*/

/*PARMET*/

/"MONITOR*/

51

PL/M-80 COMPILER BMCOM—9/16/83 PAGE 1

ISIS-11 PL/M-80 V4.0 COMPILATION OF MODULE BMCOM
OBJECT MODULE PLACED IN :F1:BMCOM.OBJ
COMPILER INVOKED BY: PLM80 :F1rBMCOM.PLM DEBUG

$TITLE ('BMCOM—9/16/83')
1 BMCOM:DO;

DESCRIPTION: MAIN PROGRAM TO INITIALIZE THE SBC 80/24 AND THE
BMC 7220.

INPUTS: USER COMMANDS FROM A CONSOLE

OUTPUTS: COMMANDS TO THE BMC 7220 AND MESSAGES TO THE CONSOLE

CALLS: PRINT$MENU,ECHO,EXECUTE$COMMAND,TNVALID$COMMAND

DESTROYS: NONE

$INCLUDE(:F1:PRMOD1.EXT)
= $NOLIST

$INCLUDE(:F1:DECMOD.LIT)
= $NOLIST

$INCLUDE(:F1:MSGMOD.LIT)
= $NOLIST

46 1 MAIN:PROCEDURE PUBLIC;
47 2 BCREG=7300H; ^LOCATION OF PARA. REG. DATA*/
48 2 BLADDR=7800H; /LOCATION TO WRITE BTLOOP DATA TO*/
49 2 BLFSA=7800H; /*BTLOOP DATA IN ROM-(TEMP IN RAM)-*/
50 2 WR$RAM=7255H /*START ADDR. OF DATA TO BE WRITTEN*/
51 2 RD$RAM=792BH; /* ' READ*/
52 2 EXIT$FLAG=1;
53 2 DO FOREVER; /*LOOP UNTIL EXIT COMMAND RECEIVED*/
54 3 ERR$FLAG=1;
55 3 RW$FLAG=0;L
56 3 CALL PRINT$MENU;
57 3 CMD$NUMBER=FETCH$CMD;
58 3 IF CMD$NUMBER<0 OR CMD$NUMBER >10 THEN
59 3 CALL INVALID$CMD;

ELSE
60 3 DO;
61 4 CALL EXECUTE$COMMAND(CMD$NUMBER);
62 4 END;
63 3 END;
64 2 CALL SEND$MESSAGE(.MS15);
65 2 END MAIN;
66 1 END BMCOM;

MODULE INFORMATION:

CODE AREA SIZE = 0329H 809D

52 f

PL/M-80 COMPILER DOCMD--6/6/83 PAGE 2

SEJECT
57 1 FETCH$CMD: PROCEDURE BYTE PUBLIC;

ft***

DESCRIPTION: GETS THE COMMAND NUMBER FROM THE TABLE VALUE
ENTERED BY THE USER

INPUTS: COMMAND FROM USER

OUTPUTS: APPROPRIATE COMMAND NUMBER FOR USE BY THE
EXECUTESCOMMAND ROUTINE

CALLS: CI.ECHO.CROUT

DESTROYS: A

58 2 DECLARE CMD BYTE;
59 2 CMD=(CI AND 7FH) - 30H;
60 2 CALL ECHO(CMD + 30H);
61 2 CALL CROUT;
62 2 IF CMD >9 THEN CMD=CMD - 7;
64 2 RETURN CMD;
65 2 END FETCH$CMD;

53

PL/M-80 COMPILER DOCMD—6/6/83 . PAGE 3

$EJECT
66 1 EXECUTE$COMMAND: PROCEDURE (NUM) PUBLIC;

DESCRIPTION: CALLS THE APPROPRIATE ROUTINE TO EXECUTE THE COMMAND
GIVEN BY THE USER

INPUTS: CMD$NUMBER

OUTPUTS: NONE

CALLS: BMINIT,INBUBL,FSTINT,IO$DEFINITION,RDBUBL,CHK2,WRBUBL,.
CHK1,RDBLRS,WRBLRS,ABORT,RDBOOT.FIFORS.MBMPRG, .
READ$BUBBLE,WRITE$BUBBLE,SETPAR

DESTROYS: B,C,D,E,H,L,A
*********************:

67 2 DECLARE NUM BYTE;
68 2 DO CASE NUM;
69 3 DO;
70 4 CALL BMINIT; /*NORMAL INIT*/
71 4 CALL INBUBL;
72 4 CALL CHK3;
73 4 END;
74 3 CALL FAST$INITIALIZATION; /*FSTINT*/
75 3 DO; /*READ BUBBLE DATA*/
76 4 CALL IO$DEFINITION;
77 4 IF RW$FLAG=1 THEN
78 4 CALL READ$BUBBLE; /CONTINUOUS READ*/

ELSE
79 4 DO;
80 5 CALL SETPAR(PAGENUM,BMPAGE);
81 5 CALL RDBUBL(BCREG,RD$RAM);
82 5 CALL CHK2;
83 5 END;
84 4 END;
85 3 DO; /*WRITE BUBBLE DATA*/
86 4 CALL IO$DEFINITION;
87 4 IF RW$FLAG=1 THEN
88 4 CALL WRITE$BUBBLE; ; /CONTINUOUS WRITE*/

ELSE
89 4 DO;
90 5 CALL SETPAR(PAGENUM,BMPAGE);
91 5 CALL WRBUBL(BCREG,WR$RAM);
92 5 CALL CHK1;
93 5 END;
94 4 END;
95 3 DO;
96 4 CALL RDBLRS(BCREG.BLADDR); /*READ BOOTLOOP REG*/
97 4 CALL CHK3; /*CHECK STATUS*/
98 4 END;

54

PL/M-80 COMPILER DOCMD—6/6/83 PAGE 4

99
100

3
4

101 4
4
3
4
4
4
3
4
4

102
103
104
105
106
107
108
109
110 4
111 3
112 4
113 4
114 4
115 3
116 4
117 4
118 4
119 3
120 3
121 2
122 1

$EJECT
DO;

END;
DO;

CALL WRBLRS(BCREG.BLFSA); /*WRITE BOOTLOOP REG*/
CALL CHK3; /*CHECK STATUS*/

CALL RDBOOT(BCREG.BLADDR); /*READ BOOTLOOP*/
CALL CHK3; /*CHECK STATUS*/

END;
DO;

CALL FIFORS;
CALL CHK3;

END;
DO;

CALL MBMPRG;
CALL CHK3;

END;
DO;

CALL ABORT;
CALL CHK3;

END;
EXIT$FLAG=0;

END;
END EXECUTE$COMMAND;
END DOCMD;

/*RESET FIFO*/
/*CHECK STATUS*/

/*PURGE*/
/*CHECK STATUS*/

/*ABORT*/
/*CHECK STATUS*/

MODULE INFORMATION:

CODE AREA SIZE = 011FH
VARIABLE AREA SIZE = 0002H
MAXIMUM STACK SIZE = 0002H
167 LINES READ
0 PROGRAM ERRORS

END OF PL/M-80 COMPILATION

28 70
2D
2D

55

PL/M-80 COMPILER ERRMOD--6/2/83 PAGE 1

ISIS-II PL/M-80 V4.0 COMPILATION OF MODULE ERRMOD
OBJECT MODULE PLACED IN :F1: ERRMOD. OBJ
COMPILER INVOKED BY: PLM80 :F1:ERRMOD.PLM DEBUG

$TITLE('ERRMOD— 6/2/83')
1 ERRMOD: DO;

DESCRIPTION: OUTPUTS ERROR MESSAGES TO THE TERMINAL

INPUTS: NONE

OUTPUTS: THE APPROPRIATE MESSAGE

CALLS: SEND$MESSAGE,CI

DESTROYS: NONE

2 1 C I : PROCEDURE BYTE EXTERNAL /*MONITOR*/
3 2 END CI;
4 1 SEND$MESSAGE: PROCEDURE (PTR) EXTERNAL; /*TERMIO*/
5 2 DECLARE PTR ADDRESS;
6 2 END SEND$MESSAGE ;

INCLUDE(:F1:MSGMOD.LIT)
= $NOLIST

25 1 DECLARE (ERR$FLAG,RW$FLAG) BYTE EXTERNAL; /*BMCOM*/
26 1 WAIT: PROCEDURE;
27 2 CALL SEND$MESSAGE(.MS5);
28 2 DO WHILE (CI AND 7FH) <> CR; /*WAIT FOR USER TO*/
29 3 END; /*ENTER CARRIAGE RETURN*/
30 2 ERR$FLAG=1;
31 2 END WAIT;
32 1 INVALID$CMD: PROCEDURE PUBLIC; /***INVALID COMMAND MSG**/
33 2 CALL SEND$MESSAGE(.MS1);
34 2 CALL WAIT;
35 2 END INVALID$CMD;
36 1 ERROR: PROCEDURE PUBLIC; /**OPERATION INCOMPLETE MSG**/
37 2 CALL SEND$MESSAGE(.MS2);
38 2 IF RW$FLAG=1 THEN CALL WAIT;
40 2 END ERROR;
41 1 ILLEGAL$ENTRY: PROCEDURE PUBLIC; /*MSG—USER ENTERED WRONG INFO*/
42 2 CALL SEND$MESSAGE(.MS8);
43 2 CALL WAIT;
44 2 END ILLEGAL$ENTRY;
45 1 END ERRMOD; .

MODULE INFORMATION:

CODE AREA SIZE = 0301H 769D
VARIABLE AREA SIZE = OOOOH 00
MAXIMUM STACK SIZE = 0004H 4D

56

PL/M-80 COMPILER FSTINT—8/26/83 PAGE 1

ISIS-II PL/M-80 V4.0 COMPILATION OF MODULE FSTINT
OBJECT MODULE PLACED IN :F1:FSTINT.OBJ
COMPILER INVOKED BY: PLM80 :F1:FSTINT.PLM DEBUG

$TITLE('FSTINT—8/26/83')
1 FSTINT: DO;

$INCLUDE(:F1:MSGMOD.LIT)
= $NO LIST

20 1 ABORT: PROCEDURE EXTERNAL; /*ABORT*/
21 2 END ABORT;
22 1 CHK3: PROCEDURE EXTERNAL; /*CKSTAT*/
23 2 END CHK3;
24 1 MBMPRG: PROCEDURE EXTERNAL; /*BUBIOW*/
25 2 END MBMPRG;
26 1 SEND$MESSAGE: PROCEDURE (PRT) EXTERNAL; /*TERMIO*/
27 2 DECLARE PRT ADDRESS;
28 2 END SEND$MESSAGE;
29 1 WRBLRM: PROCEDURE (BCREG.BLADDR) EXTERNAL; /*BTLOOP*/
30 2 DECLARE (BCREG.BLADDR) ADDRESS;
31 2 END WRBLRM;
32 1 TEST:PROCEDURE EXTERNAL; /*TSTMOD*/
33 2 END TEST;
34 1 BMINIT:PROCEDURE EXTERNAL; /*INIT*/
35 2 END BMINIT;
36 1 INTPAR: PROCEDURE EXTERNAL; /*PARMET*/
37 2 END INTPAR;
38 1 DECLARE ERR$FLAG BYTE EXTERNAL; /*BMCOM*/
39 1 DECLARE (BCREG,BLFSA) ADDRESS EXTERNAL; /*BMCOM*/

57

PL/M-80 COMPILER FSTINT--8/26/83 PAGE 2

$EJECT
40 1 FAST$INITIALIZATION: PROCEDURE PUBLIC;

I*
DESCRIPTION: INITIALIZES THE BUBBLE MODULE BY FETCHING THE

BOOT LOOP INFORMATION FROM AN EXTERNAL EPROM

INPUTS: NONE

OUTPUTS: PROPER PARAMETERS AND THE BOOT LOOP DATA TO THE
7220 BMC

CALLS: ABORT,MBMPRG,CHK3,BMINIT,INTPAR,TEST

DESTROYS: B,C,D,E

41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56

57
58
59

2
2
2
2
2
3
3
3
3
4
4
4
4
4

3
3

2
2
1

CALL TEST;
CALL ABORT;
CALL CHK3;
IF ERR$FLAG <> 1 THEN
DO;

CALL MBMPRG;
CALL CHK3;
IF ERR$FLAG <> 1 THEN

DO;
CALL BMINIT;
CALL INTPAR;

/*SEND ABORT TO BM*/
/*CHECK STATUS*/
/*PROCEED IF SUCCESSFUL*/

/*PURGE PARA. REG. DATA*/
/*CHECK STATUS*/
/*PROCEED IF SUCCESSFUL*/

END;
ELSE

/*SET PARA REG DATA*/
/*LOAD PARA REGS*/

CALL WRBLRM(BCREG,BLFSA); /*LOAD BL REG.*/
CALL CHK3; /*CHECK STATUS*/

END;
ELSE
CALL SEND$MESSAGE(.MS7); /*MSG—PURGE INCMPLT*/

CALL SEND$MESSAGE(.MS6); /*MSG--ABORT INCMPLT*/
END FAST$INITIALIZATION;

END FSTINT;

MODULE INFORMATION:

CODE AREA SIZE = 0309H
VARIABLE AREA SIZE = OOOOH
MAXIMUM STACK SIZE = 0002H
115 LINES READ
0 PROGRAM ERRORS

END OF PL/M-80 COMPILATION

777D
OD
2D

58

PL/M-80 COMPILER IOMOD—5/25/83 PAGE 1

ISIS-II PL/M-80 V4.0 COMPILATION OF MODULE IOMOD
OBJECT MODULE PLACED IN :F1:IOMOD.OBJ
COMPILER INVOKED BY: PLM80 :F1:IOMOD.PLM DEBUG

STITLEC IOMOD—5/25/831)
1 IOMOD: DO;

$INCLUDE(:F1:MSGMOD.LIT)
= $NOLIST

20 1 SEND$MESSAGE: PROCEDURE (PTR) EXTERNAL; /*TERMIO*/
21 2 DECLARE PTR ADDRESS;
22 2 END SEND$MESSAGE;
23 1 SETPAR: PROCEDURE (PAGENUM,BMPAGE) EXTERNAL; /*PARMET*/
24 2 DECLARE (PAGENUM,BMPAGE) ADDRESS;
25 2 END SETPAR;
26 1 READ$CONSOLE: PROCEDURE EXTERNAL; /*TERMIO*/
27 2 END READ$CONSOLE;
28 1 ASCIITOBINARY: PROCEDURE ADDRESS EXTERNAL; /*CNVERT*/
29 2 END ASCIITOBINARY;
30 1 ECHO:PROCEDURE (CHAR) EXTERNAL; /*MONITOR*/
31 2 DECLARE CHAR BYTE;
32 2 END ECHO;
33 1 ILLEGAL$ENTRY:PROCEDURE EXTERNAL; /*ERRMOD*/
34 2 END ILLEGAL$ENTRY
35 1 CI:PROCEDURE BYTE EXTERNAL; /*MONITOR*/
36 2 END CI;
37 1 CROUT:PROCEDURE EXTERNAL; /*MONITOR*/
38 2 END CROUT;
39 1 CHECK$ENTRY$VALUE:PROCEDURE EXTERNAL; /*CHKVAL*/
40 2 END CHECK$ENTRY$VALUE;
41 1 DECLARE (PAGENUM,BMPAGE) ADDRESS PUBLIC;
42 1 DECLARE BUFFER(256) BYTE EXTERNAL; /*TERMIO*/
43 1 DECLARE (ERR$FLAG,RW$FLAG) BYTE EXTERNAL; /*BMCOM*/
44 1 DECLARE YES LITERALLY '59H',NO LITERALLY '43H';
45 1 DECLARE ENTRY$FLAG BYTE PUBLIC;
46 1 DECLARE TWO$CHANNELS LITERALLY '1000H';

59

PL/M-80 COMPILER IOMOD—5/25/83 PAGE 2

SEJECT
47 1 FETCH$NUMBER: PROCEDURE ADDRESS;

I .

DESCRIPTION: FETECHES INPUT FROM THE TERMINAL AND CONVERTS TO
THE DECIMAL EQUIVALENT

INPUTS: DATA FROM THE TERMINAL

OUTPUTS: NONE

CALLS: READ$CONSOLE,ASCII$TO$DECIMAL

DESTROYS: NONE

**

48 2 DECLARE TEMP ADDRESS
49 2 ERR$FLAG=0;
50 2 TEMP=OOOH;
51 2 CALL READ$CONSOLE;
52 2 CALL CHECK$ENTRY$VALUE;
53 2 IF ERR$FLAG=0 THEN TEMP=ASCII$TO$BINARY;
55 2 RETURN TEMP;
56 2 END FETCH$NUMBER;

60

PL/M-80 COMPILER IOMOD--5/25/83 PAGE 3

$EJECT
57 1 IO$DEFINITION: PROCEDURE PUBLIC;

/***•
DESCRIPTION: ALLOWS THE USER TO DEFINE THE I/O INFORMATION

FOR THE BUBBLE MODULE FROM THE TERMINAL
INPUTS: PAGE$NUM—NUMBER OF PAGES TO BE TRANSFERRED

BM$PAGE—LOCATION IN THE BUBBLE MODULE
OUTPUTS: PAGE$NUM AND BM$PAGE TO THE PROPER LOCATION

IN THE RAM FOR LOADING IN THE 7220 BMC
PARAMETRIC REGISTERS,ERROR MESSAGES TO USER

CALLS: SEND$MESSAGE,READ$CONSOLE,SETPAR,FETCH$NUMBER,CI
ILLEGALSENTRY

DESTROYS: B,C,D,E,H,L

58 2 DECLARE KEY BYTE;
59 2 AGAIN1: CALL SEND$MESSAGE(.MS3);
60 2 ENTRY$FLAG=0;
61 2 PAGE$NUM=FETCH$NUMBER OR TWO$CHANNELS;
62 2 IF ERR$FLAG=1 THEN GOTO AGAIN1;
64 2 AGAIN2: CALL SEND$MESSAGE(.MS4);
65 2 ENTRY$FLAG=1;
66 2 BM$PAGE=FETCH$NUMBER
67 2 IF ERR$FLAG=1 THEN GOTO AGAIN2;
69 2 REPEAT: CALL SEND$MESSAGE(.MS9);
70 2 KEY=CI AND 7FH;
71 2 CALL ECHO(KEY);
72 2 CALL CROUT;
73 2 IF KEY=YES THEN
74 2 DO;
75 3 CALL SEND$MESSAGE(.MS10);
76 3 RW$FLAG=1;
77 3 END;

ELSE
78 2 IF KEYoNO THEN
79 2 DO;
80 3 CALL ILLEGAL$ENTRY;
81 3 GOTO REPEAT;
82 3 END;
83 2 END IO$DEFINITION;
84 1 END IOMOD;

MODULE INFORMATION:

CODE AREA SIZE = 0360H 864D
VARIABLE AREA SIZE = 0008H 8D
MAXIMUM STACK SIZE = 0004H 4D
154 LINES READ
0 PROGRAM ERRORS

61

PL/M-80 COMPILER MENU 6/6/83 PAGE 1

ISIS-II PL/M-80 V4.0 COMPILATION OF MODULE MENU
OBJECT MODULE PLACED IN :F1:MENU.OBJ
COMPILER INVOKED BY: PLM80 :F1:MENU.PLM DEBUG

$TITLE('MENU')
$DATE(6/6/83)

1 MENUrDO;
$INCLUDE(:F1:MSGMOD.LIT)

= $NOLIST
20 1 DECLARE SP LITERALLY '20H1;
21 1 DECLARE P BYTE;
22 1 DECLARE Q ADDRESS;
23 1 DECLARE ERR$FLAG BYTE EXTERNAL; /*BMCOM*/
24 1 CO:PROCEDURE (CHAR) EXTERNAL; /*MONITOR*/
25 2 DECLARE CHAR BYTE;
26 2 END CO;
27 1 SEND$MESSAGE:PROCESURE (PTR) EXTERNAL; /*TERMIO*/
28 2 DECLARE PTR ADDRESS;
29 2 END SEND$MESSAGE;

62

PL/M-80 COMPILER MENU 6/6/83 PAGE 2

30
$EOECT
MOVE$CURSOR:PROCEDURE (1,0);
/****************************;
DESCRIPTION: SENDS THE CONSOLE THE REQUESTED NUMBER OF CARRIAGE

RETURNS, LINE FEEDS AND SPACES

INPUTS: NUMBER OF CARRIAGE RETURNS, SPACES AND LINE FEEDS
DESIRED

OUTPUTS: CR, SP AND LF TO TERMINAL

CALLS: CO

DESTROYS: A

31 2 DECLARE (1,0) BYTE;
32 2 IF I <>0 THEN
33 2 DO P=0 TO I;
34 3 CALL CO(CR);
35 3 CALL CO(LF);
36 3 END;
37 2 IF J <>0 THEN
38 2 DO Q=0 TO J;
39 3 CALL CO(SP);
40 3 END;
41 2 END MOVE$CURSOR;

63

PL/M-80 COMPILER MENU 6/6/83 PAGE 3

$EJECT
42 1 PRINT$MENU:PROCEDURE PUBLIC;

I***
DESCRIPTION: DISPLAYS A LIST OF THE COMMANDS IN MENU FORM

INPUTS: NONE

OUTPUTS: NONE

CALLS: SEND$MESSAGE,MOVE$CURSOR

DESTROYS: NONE

43 2 CALL MOVE$CURSOR(5,8);
44 2 DO P=0 TO 10;
45 3 Q=P*26;
46 3 . CALL SEND$MESSAGE(.MSG(Q));
47 3 , CALL MOVE$CURSOR(0,8);
48 3 END;
49 2 CALL MOVE$CURSOR(4,0);
50 2 CALL SEND$MESSAGE(.MSO);
51 2 END PRINT$MENU;
52 1 END MENU;

MODULE INFORMATION:

CODE AREA SIZE = 0368H 872D
VARIABLE AREA SIZE = 0005H 50
MAXIMUM STACK SIZE = 0004H 4D
120 LINES READ
0 PROGRAM ERRORS

END OF PL/M-80 COMPILATION

64

ISIS-II 8080/8085 MACRO ASSEMBLER, V4.1
PARMET-1/13/83

PARMET PAGE 2

LOC OBJ

0013 210073
0016 36FF
0018 23
0019 71
001A 23
OOAB 70
001C 23
001D 3600
001F 23
0020 73
0021 23
0022 72
0023 C9

LINE

37
38
39;

SOURCE STATEMENT

PUBLIC SETPAR

**

INPUTS:

OUTPUTS:

CALLS: NONE

DESTROYS: B,C§D,E,H,L,A

40;
41; DESCRIPTION:
42;
43;
44;
45;
46;
47;
48;
49;
50;
51;
52;
53;
54;
55;

*/
56;
57 SETPAR
58
59
60
61
62
63
64
65
66
67
68
69
70;
71 $EJECT

THIS PROGRAM SETS THE INITIAL VALUES OF THE
PARAMETRIC REGISTERS OF THE 7220 BUBBLE MEMORY
CONTROLLER

B/C REGISTER-* OF PAGES TO BE TRANSFERRED
D/E REGISTER-PAGE NUMBER IN BUBBLE MEMORY

A REGISTER—RETURNS VALUE OF 7220 STATUS REGISTER
MEM 3000-3005H—PARAMETRIC DATA

LXI
MVI
INX
MOV
INX
MOV
INX
MVI
INX
MOV
INX
MOV
RET

H, 7300H ;BEGIN LOADING PARAMETRIC REGISTER DATA
M.OFFH ;UTILITY REGISTER
H ;NEXT LOCATION
M,C ;BLOCK LENGTH REGISTER LSB
H ;NEXT LOCATION
M,B ;BLOCK LENGTH REGISTER MSB
H ;NEXT LOCATION
M.OOH ;ENABLE REGISTER
H ;NEXT LOCATION
M,E ;ADDRESS REGISTER LSB
H ;NEXT LOCATION
M,D ;ADDRESS REGISTER MSB

65

PL/M-80 COMPILER TERMIO-1/11/83 PAGE 1

ISIS-II PL/M-80 V4.0 COMPILATION OF MODULE TERMIO
OBJECT MODULE PLACED IN :F1:TERMIO.OBJ
COMPILER INVOKED BY: PLM80 :F1:TERMIO.PLM DEBUG

/*ENTRY POINT INTO SYSTEM.!IB*/

/*ENTRY POINT TO SYSTEM.LIB*/

$TITLE('TERMIO—1/11/83')
1 TERMIO:DO;
2 1 CI:PROCEDURE BYTE EXTERNAL;
3 2 END CI;
4 1 CO:PROCEDURE (CHAR) EXTERNAL;
5 2 DECLARE CHAR BYTE;
6 2 E N D C O ;
7 1 ECHO PROCEDURE (CHAR) BYTE;
8 2 DECLARE CHAR BYTE;
9 2 END ECHO;
10 1 DECLARE BUFSIZE LITERALLY '256';
11 1 DECLARE BUFFER (BUFSIZE) BYTE PUBLIC;
12 1 DECLARE INDEX BYTE PUBLIC; /*INDEX INTO BUFFER*/
13 1 DECLARE CR LITERALLY 'ODH1; /*CARRIAGE RETURN*/
14 1 DECLARE LF LITERALLY 'OAH'; /*LINE FEED*/
15 1 READ$CONSOLE:PROCEDURE PUBLIC;

/**v

DESCRIPTION: READS A STRING OF CHARACTERS FROM THE CONSOLE
DEVICE

INPUTS: CHARACTERS FROM THE CONSOLE

OUTPUTS: CHARACTER TO BUFFER AND TO CONSOLE

CALLS: CI;ECHO

DESTROYS: NONE

16
17
18
19
20
21
22
23

24
25
26
27

2
2
2
2
3
3
4
4

4
4
3
2

INDEX=0;
BUFFER(INDEX)=CI AND 7FH; /*READ CHAR AND STRIP OFF PARITY*/
CALL ECHO(BUFFER(INDEX));
DO WHILE BUFFER(INDEX)oCR;

IF INDEX<LAST(BUFFER) THEN
DO; /*CONTINUE READING UNTIL A*/

INDEX=INDEX+1; /*CARRIAGE RETURN HAS BEEN*/
BUFFER(INDEX)=CI AND 7FH; /*INPUT OR BUFFER IS

FULL*/
CALL ECHO(BUFFER(INDEX));

END;
END;

END READ$CONSOLE;

66

PL/M-80 COMPILER TERMIO-1/11/83 PAGE 2

$EJECT
28 1 SEND$MESSAGE:PROCEDURE (PTR) PUBLIC;

DESCRIPTION:

INPUTS:

OUTPUTS:

CALLS:

DESTROYS:

OUTPUTS A STRING OF CHARACTERS TO THE CONSOLE

CHARACTER TO BE SENT

CHARACTER TO THE CONSOLE

CO

NONE

29 2 DECLARE PTR ADDRESS,CHAR BASED PTR(l) BYTE;
30 2 INDEX=0;
31 2 CALL CO(CHAR(INDEX)); /*OUTPUT FIRST CHARACTER*/
32 2 DO WHILE CHAR(INDEX)<> CR; ^CONTINUE OUTPUTTING*/
33 3 INDEX=INDEX+1; /*UNTIL A CARRIAGE RETURN*/
34 3 CALL CO(CHAR(INDEX)); /*IS OUTPUT*/
35 3 END;
36 2 CALL CO(LF);
37 2 END SEND$MESSAGE;

67

PL/M-80 COMPILER TERMIO-1/11/83 PAGE 3

$EJECT
38 1 QUICK$CI:PROCEDURE BYTE PUBLIC;

/***

DESCRIPTION: READS A CHARACTER FROM THE CONSOLE IF THERE, IS ONE
RETURNS WITH A 00 IF NO CHARACTER IS READ.

INPUTS: CHARACTER FROM THE CONSOLE

OUTPUTS: CHARACTER READ

CALLS: NONE

DESTROYS: A

39 2 DECLARE X BYTE;
40 2 DECLARE READY LITERALLY '02H1;
41 2 DECLARE CNINPT LITERALLY 'OECH1;
42 2 DECALRE CNSTATPT LITERALLY 'OEDH';
43 2 IF (INPUT {CNSTATPT) AND READY)<>READY THEN
44 2 X=0;

ELSE
45 2 X=INPUT (CNINPT) AND 7FH;
46 2 RETURN X;
47 2 END QUICK$CI;
48 1 END TERM10;

MODULE INFORMATION:

CODE AREA SIZE = OOBCH 188D
VARIABLE AREA SIZE = 0104H 260D
MAXIMUM STACK SIZE = 0002H 2D
96 LINES READ
0 PROGRAM ERRORS

END OF PL/M-80 COMPILATION

68

PL/M-80 COMPILER TSTMOD —1/5/83 PAGE 1

I SIS-I I PL/M-80 V4.0 COMPILATION OF MODULE TSTMOD
OBJECT MODULE PLACED IN :F1:TDTMOD.OBJ
COMPILER INVOKED BY: PLM80 :F1:TSTMOD.PLM DEBUG

/*MONITOR*/

/*MONITOR*/

$TITLE('TSTMOD—1/5/83')
1 TSTMOD:DO;
2 1 CO PROCEDURE (CHAR) EXTERNAL;
3 2 DECLARE CHAR BYTE;
4 2 END CO;
5 1 CROUT:PROCEDURE EXTERNAL;
6 2 END CROUT;
7 1 SEND$MESSAGE:PROCEDURE (PTR) EXTERNAL; /*TERMIO*/
8 2 DECLARE PTR ADDRESS;
9 2 E N D SEND$MESSAGE;

10 1 DECLARE CMD$NUMBER BYTE EXTERNAL; /*BMCOM*/
11 1 DECLARE C BYTE PUBLIC;

$INCLUDE(:F1:MSGMOD.LIT)
= $NOLIST

30 TEST PROCEDURE PUBLIC;
/***^

DESCRIPTION: SENDS A MESSAGE TO THE SCREEN TO INDICATE WHICH
COMMAND IS EXECUTING

INPUTS: NONE

OUTPUTS: MESSAGE TO CRT

CALLS: SEND$MESSAGE,CO,CROUT

DESTROYS: NONE

31 2 DO;
32 3 C=CMD$NUMBER+30H;
33 3 CALL SEND$MESSAGE(.MS12);
34 3 CALL CO(C);
35 3 CALL CROUT;
36 3 END;
37 2 END TEST;
38 1 END TSTMOD;

MODULE INFORMATION:

CODE AREA SIZE = 02C1H
VARIABLE AREA SIZE = 0001H
MAXIMUM STACK SIZE = 0002H
88 LINES READ
0 PROGRAM ERRORS

END OF PL/M-80 COMPILATION

705D
ID
2D

69

1. Report No.

NASA TM-85832

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

Investigation of Fast Initialization of Spacecraft
Bubble Memory Systems

5. Report Date

June 1984

6. Performing Organization Code

506-58-13-03

7. Author(s) Karen T. Looney
Charles D. Nichols
Paul J. Hayes

8. Performing Organization Report No.

10. Work Unit No.
9. Performing Organization Name and Address
Langley Research Center

Hampton, VA 23665 11. Contract or Grant No.

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Bubble domain technology offers significant improvement in reliability and
functionality for spacecraft onboard memory applications. In considering potential
memory systems organizations, minimization of power in high capacity bubble memory
systems necessitates the activation of only the desired portions of the memory. In
power strobing arbitrary memory segments, a capability of fast turn-on is required.
Bubble device architectures, which provide redundant loop coding in the bubble
devices, limit the initialization speed. Alternate initialization techniques have
been investigated to overcome this design limitation. An initialization technique
using a small amount of external storage has been demonstrated. This technique
provides several orders of magnitude improvement over the normal initialization time.

17. Key Words (Suggested by Author(s))

Bubble memory, Spacecraft memory system,
Fast initialization

18. Distribution Statement

Unclassified - Unlimited

Subject Category 33

19. Security Cawif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

70

22. Price

A04

N-305 For sale by the National Technical Information Service. Springfield, Virginia 22161

