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FOREWORD

The scope of this study was to plan, develop,
and implement methods for analyzing and improving
the performance of digital data smoothing filters
used in the Radar Data Reduction System at the Wallops
Flight Facility (WFF). During the study the following
primary objectives were accomplished: (1) The accu-
racy of the current WFF data smoothing technique was
analyzed for a variety of radars and payloads, using
tracking data provided by WFF for this purpose;
(2) alternative data noise reduction techniques were
assessed and recommendations were made for improving
radar data processing at WFF; (3) a data-adaptive
algorithm, based on Kalman filtering and smoothing
techniques, was developed for estimating payload
trajectories above the atmosphere from noisy time-
varying radar data; (4) the new trajectory estima-
tion algorithm was tested and verified using radar
tracking data from Peru provided by WFF.

Significant contributions to this study were
made by the following individuals: A.R. Leschack
provided the algorithm for computing Keplerian trajec-
tories in Section 5.3 and provided an independent
numerical check of the nominal-trajectory algorithm
in Section 5.4; J.D. Goldstein provided the discrete-
time linearized equations of motion for small per-
turbations about the Keplerian trajectory used in
Section 5.4; and A.E. Rhenals developed software for
analyzing the WFF data tapes, performed a significant
part of the radar data error analysis under Tasks 1
and 2, and contributed theoretical analyses of the
effects of smoothing filters' on nominal payload
trajectory signals and data noise covariances.
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1. INTRODUCTION

1.1 OBJECTIVES OF THE STUDY

The scope of this study was to plan, develop, and

implement methods for analyzing and improving the performance

of digital data smoothing filters. These filters are used in

the Radar Data Reduction System at the Goddard Space Flight

Center/Wallops Flight Facility (GSFC/WFF) to reduce noise levels

in radar tracking data. The study had four primary objectives:

• To develop stochastic models for radar
tracking data provided by WFF

• To determine the propagation of the radar
data errors through the WFF noise-reduction
filters into positional data products

• To assess alternative noise reduction
techniques and to make recommendations
for improving the current filtering
techniques

• To develop and verify an algorithm for
smoothing radar tracking data to estimate
trajectories above the atmosphere.

To meet these objectives, the study was divided into

four tasks:

• Task 1 - Analysis of Radar Data

• Task 2 - Analysis of Existing Filters
and Error Propagation into Positional
Data
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Task 3 - Assessment of Alternative Noise-
Reduction Techniques

Task A - Development and Verification of
Trajectory Estimation Algorithm.

1.2 TECHNICAL APPROACH

The analysis of WFF radar data and smoothing filters

(Tasks 1 and 2) is based on stochastic modeling and covariance

analysis of noise-like errors. A combination of autoregressive

and state-space techniques is used. The autoregressive models

provide a cross-check on the more flexible state-space mo'dels.

To estimate the root-mean-square (rms) noise levels, state-space

covariance analysis is used.

The assessment of alternative smoothing techniques

(Task 3) is based on the results of the first two tasks and

the theory of Kalman optimal filtering and smoothing.

A new algorithm for processing noisy radar data for

trajectories above the atmosphere is developed and verified

under Task 4. The algorithm is based on Kalman filtering and

smoothing techniques. Radar tracking data from Peru (provided

by WFF) are used to verify the effectiveness of the algorithm

with real data, including data from two radars simultaneously

tracking a single payload.

1.3 ORGANIZATION OF REPORT

Each task of the study is documented, in a separate

chapter (Chapters 2-5). The report ends with Chapter 6, which
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provides a summary of the investigation, the primary conclu-

sions, and recommendations for further study. Supporting

mathematical definitions and analyses are presented in Ap-

pendices A, B, C, D, and E. In particular, the coordinate

systems used in this study are defined in Appendix D.
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2. TASK 1 - ANALYSIS OF VFF RADAR DATA

2.1 INTRODUCTION

2.1.1 Objective

The main objective of Task 1 is to develop error models

for WFF radar tracking data. The data consist of azimuth,

elevation, and range measurements for a variety of payloads

and radars a^ provided by the WFF PASS-1 data processing program

(Ref. 1). The noise-like zero-mean errors in the radar data

are modeled as stochastic processes. In contrast, the system-

atic errors in the radar data and the payload trajectories are

modeled as polynomials.

2.1.2 Radar Data

The radar data sets analyzed in this study are listed

in Table 2.1-1. The first three radars listed in the table

(Radars Nos. 3, 5, and 6) correspond to data analyzed under

Task 1. The remainder of the data sets (Radars Nos. 8 and 41)

are analyzed under Task 4.

2.1.3 Approach

The technical approach for analyzing the radar data

consists of three steps:

• Model the nominal trajectory for each
time series using least-squares orthogonal
polynomial functions of time

2-1



TABLE 2.1-1

RADAR DATA SETS ANALYZED

RADAR RADAR
LOCATION
N.LATITUDE
E.LONGITUDE
HEIGHT

TRAJECTORY

NAME, MODEL NO., DATE

NO. 3
(WFF)

NO. 5
(WFF)

NO. 6
(WFF)

NO. 8
(PERU)

NO. 41
(PERU)

37.841309 deg
-75.485102 deg
14.08 m

37.860229 deg
-75.509309 deg
16.66 ID

37.841585 deg
-75.484692 deg
9.43 m .

-12.4993 deg
-76.7965 deg
74.26 m

-12.4990 deg
-76.7954 deg
71.02 m

ZUNI, El-0425... 0427, 12/1/82
S. LOKI OPTICAL, (MODEL & DATE UNKNOWN)

S. LOKI SPHERE, Tl-0503, 4/25/83
S. LOKI OPTICAL, (MODEL & DATE UNKNOWN)

S. LOKI OPTICAL, Tl-6615, 12/11/81

NIKE-ORION 31.027, TU2-0367, 3/9/83
TERRIER-MALEMUT£ 29.019, TU-0364, 3/15/83

NIKE-ORION 31.027, TU2-0367, 3/9/83

Select the appropriate degree for each
polynomial by using a spectral analysis
of the residual tracking data (residual
data - polynomial)

Develop stochastic state-space models
for the noise-like residual tracking
data (azimuth, elevation, and range).

Detailed information about the technical approach is presented

in Section 2.2.

2.1.4 Interpretation

The polynomials fitted to the data are nominal estimates

of the payload trajectory plus any systematic measurement errors.

The residual data (actual measurements minus a polynomial) are
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a combination of measurement errors and zero-mean noise-like

signals caused by payload dynamics. The statistics of the

residual data are used to model the noise in the radar measure-

ments.

2.2 TECHNICAL APPROACH

2.2.1 Data Signal Components

The radar tracking data may be represented as the sum

of three signal components:

Tracking _ Payload + Systematic Noise-Like
Data ~ Motion Error Error

(2.2-1)

The goal of the analysis is to estimate the statistics of the

noise-like errors in real tracking data. This requires that

the noise-like error signals be distinguished from the payload

motion and systematic error signals. The following criteria

are used to distinguish between the data signals:

Payload Motion | • Polynomial-like
and /

Systematic Error { • High Coherence between Azimuth,
Elevation, and Range Data

I * Zero-Mean Random Noise
'

• Low Coherence between Azimuth,
Elevation, and Range Data

These criteria are the logical basis for the data analysis

described in the next section.
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2.2.2 Data Analysis

The radar tracking data are analyzed in three steps:

• Step 1 - Fit orthogonal polynomials to
the raw tracking data. The purpose of
this is to estimate the signal components
caused by payload motion and systematic
error. Orthogonal polynomials are used
to avoid numerical problems that can
otherwise make it difficult to fit the
polynomials accurately.

• Step 2 - Develop stochastic models for the
residual tracking data. The residual
data (raw data minus polynomial) are
expected to consist mostly of noise-like
radar measurement errors when the degree
of the polynomial is appropriate. The -
stochastic models for the residuals are
developed using autoregressive and state-
space modeling techniques.

• Step 3 - Select appropriate polynomial
degrees based on power spectra and spectral
coherences. The stochastic models developed
in Step 2 are used to estimate the spectra
and coherences. The appropriate polynomial
degree is selected so that the azimuth,
elevation, and range residuals have small
coherences and nearly flat power spectra
at low frequencies.

A block diagram of the data processing is shown in

Fig. 2.2-1. Each block in this figure is explained in the

following discussion.

Inputs - In Fig. 2.2-1 the inputs are "raw data."

This means that the input data are in the form provided by the

PASS-1 data processing program used at WFF. After plotting

the individual time series for azimuth, elevation, and range

data, obviously incorrect data are replaced by reasonable values

using simple linear interpolation. If a low-frequency analysis
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• PLOT
• EDIT

EXTREME
OUTLIERS

EDITED
RAW DATA
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RESAMPLING

E.G. 1 SAMPLE/SEC
(NO SMOOTHING)

RESAMPLED
DATA FIT POLYNOMIAL

USING LEAST SQUARES

CHANGE ORDER

I IF SCOOPED-OUT
AT LOW FREQUENCIES
REDUCE POLYNOMIAL

ORDER

POWER
SPECTRA

IF LARGE AT LOW
REQUENCIES. INCREASE
POLYNOMIAL ORDER

.COHERENCES

PLOT
POWER SPECTRA
AND SQUARED
COHERENCES

STOCHASTIC
MODEL FOR

RESIDUAL DATA

STOCHASTIC
MODEL FOR

LRESIDUAL DATA i

JPOLYNOMIAL
ORDER

RESIDUAL DATA

AUTOREGRESSIVE
AND

STATE-SPACE
STOCHASTIC MODELING

Figure 2.2-1 Block Diagram of Data Analysis

is being performed, the optional resampling is performed at a

slower sampling rate than the raw data. No anti-aliasing filter

is used in this resampling operation.

Fitting Polynomials - Orthogonal polynomials are fitted

to subsets of the resampled data using least squares. The

outputs of this procedure are: (1) the coefficients of the

polynomial and (2) the residual data. The residuals are defined

as the resampled data minus the polynomial. Typical subsets

contain 500 measurements, and polynomial degrees usually range

from A to 10 for the data sets analyzed in this study. The

mathematical details of the polynomial fitting are presented

in Appendix A.

Modeling Residual Data - The residual data are analyzed

using autoregressive and state-space stochastic modeling tech-

niques. (Mathematical discussions of these techniques are

presented in Appendices B and C.) The stochastic models are
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shaping filters, i.e., difference equations driven by white

noise. The steady-state solutions of these difference equa-

tions define random processes that are models of the residual

radar data. Power spectra and spectral coherences for the

models are computed using formulas presented in Appendix B

and Section 2.3.3.

Polynomial Degree Selection - The power spectra and

spectral coherences are examined to determine if the polynomial

degree is too small or too large. If there is significant

coherence (>25%) at low frequencies, then the degree is judged

to be too small. And if the power spectrum is scooped-out at

low frequencies, the degree is judged to be too large. These

criteria are consistent with the goal of distinguishing the

signals caused by payload motion and systematic error from the

signal caused by random measurement noise. As indicated in

Fig. 2.2-1, if the degree needs to be changed, then the analysis

process is repeated starting with a different polynomial degree.

2.2.3 Example Results

As an example of the results obtained, Figs. 2.2-2 to

2.2-4 depict the raw tracking data and residual data for Radar

No. 3 tracking a Super Loki Optical payload. The ejection of

the payload occurs at approximately 120 s.

Azimuth Data - Figure 2.2-2 shows that azimuth was

nearly constant at 134 degrees (deg). A degree-10 polynomial

is appropriate for modeling the payload motion and systematic

error over this segment of data. The residuals about this

polynomial look like homogeneous random noise. There is no

visible anomally caused by the payload ejection.

Elevation Data - Figure 2.2-3 depicts the Loki-Optical

elevation data. In this case a degree-8 polynomial was found
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Figure 2.2-3 Loki Optical Elevation Data
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to be appropriate. The residuals appear to be more random

than the azimuth residuals shown in Fig. 2.2-2, which was con-

firmed by spectrum analysis. (The more random appearance

corresponds to more power at higher frequencies.)

Range Data - The Loki-Optical range data are shown in

Fig. 2.2-4. In this case a degree-8 polynomial was appropriate,

Although the payload ejection is not visible in the raw range

data, a strong localized inhomogeneity caused by the ejection

is seen in the residual data. This is an example where the

residual data contain a combination of both measurement noise

and residual payload motion.

RANGE DATA RESIDUAL RANGE DATA

250

111
(9

1

ISO

TIME (sec) TIME (sec)
130

Figure 2.2-4 Loki Optical Range Data
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Loki-Sphere Range Data - Figure 2.2-5 shows data from

Radar No. 5 tracking a Super Loki Sphere payload. Two sets of

analysis results are included for comparison. The pair on the

left in Fig. 2.2-5 shows the residual range data for a degree-6

polynomial and the power spectrum estimated from the residual

data using the autoregressive modeling technique described in

Appendix B. The polynomial degree in this case is not too

large because it yields a nearly flat power spectrum at low

frequencies. In contrast, the right pair of plots show the

results of using a polynomial of degree 15, which is too large.

The degree-15 polynomial partially fits the low-frequency ran-

domness of the radar data, as indicated by the dip in the power

RESIDUAL RANGE DATA

o.os

TIME (sec)

RESIDUAL POWER SPECTRUM

O.S 1.0

FREQUENCY (Hz)

RESIDUAL RANGE DATA
20

ui
0

I

•38

POLVNOMINAL DEGREE = 15

RADAR NO. 5

37 93
TIME (sec)

RESIDUAL POWER SPECTRUM

DIP CAUSED
BY TOO LARGE
DEGREE

0.05 0.5 1.0
FREQUENCY (Hz)

Figure 2.2-5 Example of Selecting the Trajectory
Polynomial, Loki Sphere Tracking Data
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spectrum. The result of using the degree-15 polynomial would

be to slightly underestimate the low-frequency noise in the

radar data. Therefore, the degree-6 polynomial is preferred.

2.3 ANALYSIS RESULTS

2.3.1 Introduction

Section 2.3 presents the results of applying the data

analysis described in Section 2.2 to a variety of data sets

provided by WFF. The principal results of this analysis are

stochastic state-space models for residual radar tracking data.

These models are used to estimate the power spectra, spectral

coherences, and covariance matrices of noise-like errors in the

tracking data. The covariance matrices are used in Chapter 3

to estimate the rms random errors in positional data products

expressed in latitude, longitude, and height.

2.3.2 State-Space Models

In this secton the concept of a state-space stochastic

model is introduced. Mathematical details about the state-space

modeling technique used in this study are provided in Appendix C.

State-Space Equations - The residual tracking data

consist of three time series, one for each of the azimuth,

elevation, and range measurements. The three channels of data

are combined to form a 3-veetor:

azimuth

elevation

range

at time k = 1,2,3... (2.3-1)
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A state-space model for the vector random process y, is repre-

sented by two equations: (1) a vector difference equation for

the states; and (2) an algebraic equation relating the states

to the observed process y,. The algebraic equation is:

xk = nxl matrix of n state varibles

H = 3*n output matrix

£k
 = 3x1 matrix of 3 white-noise processes

Cov(yk) = R = 3x3 covariance matrix (2.3-2)

The white noise v, is called the innovations vector because it

represents that part of the residual radar data y, which is

uncorrelated with the past radar data; the term Hx, in Eq. 2.3-2

represents that part of yk which is correlated with the past.

The state vector x, contains all necessary information about

the past data <y_k-i » y_k_2 » • • • ) •

The state vector satisfies the following difference

equation:

<f> = nxn transition matrix

G = nx3 noise-gain matrix (2.3-3)

Equations 2.3-2 and 2.3-3 represent a state-space model in the

innovations form. There are other forms of state-space models,

but this is the form that is appropriate for stochastic modeling

based on empirical data.
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Modeling - The method of stochastic state-space mod-

eling used in this study is based on a canonical-variates (CV)

analysis of the data. (Mathematical details are described in

Appendix C.) The canonical variates are used as estimates of

the state variables:

1st canonical variate

2nd canonical variate

nth canonical variate

most important state

2nd most important

«- least important state

(2.3-4)

By defining .the state variables with the most important state

listed first and the least important state listed last, it is

straight-forward to compute a family of models by adding one

state (canonical variate) at a time. In this way, a CV anal-

ysis of the radar data that yields n canonical variates can be

used to compute the <J», G, H, and R matrices for n+1 different

models. Each model contains a different number of state vari-

ables, ranging from zero states (a pure white-noise model) to

an n-state model of maximum complexity. The Akaike information

criterion (AIC) (Refs. 2-4) is then used to select from this

family the one model that is best justified by the finite

amount of radar data that was used for the analysis. This

procedure avoids the problems of under modeling with too few

states or over modeling with too many states.

2.3.3 Applications of State-Space Models

Power spectra - In this study, the state-space models

are used to estimate power spectra, spectral coherences, and

covariances of residual radar data. The power spectral density

matrix of the residual radar data y_, is a 3x3 matrix:
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syy
.SRA SRE SRR

'AA -AE -AR A~ AZIMUTH

E ~ ELEVATION

R ~ RANGE (2.3-5)

The elements along the main diagonal (S,*., SEE, and Spp) are the

auto spectra for the azimuth, elevation, and range data. The

off-diagonal elements are cross spectra between the indicated

pairs of measurements. The spectral density matrix is computed

as follows using the state-space parameter matrices <J>, G, H,

and R:

I - Oirtr ' 'I I I T -: Ot»r T ~ T I
H[Ie l2nF - *] G+l] Rll+GT[Ie- l 2 n F - <t,T] HT J

(2 .3-6)

F = Normalized Frequency [cycle/sampling interval]

I = Identity Matrix (either nxn or 3x3)

The elements of matrix S are expressed in the same units as

the corresponding elements of the covariance matrix of y, . The

normalized frequency F ranges from -1/2 to 1/2 [cycle/sampling

interval] and is related to the sampling frequency fsamD [Hz]

and the regular frequency variable f [Hz] as follows:

F = f/f (2.3-7)
samp

The spectrum S y(F) has the units of [variance]. It can be

scaled to have the units of [variance/Hz], which are convention-

ally used for continuous-time signals, and then expressed as

S (f), a function of the frequency variable f [Hz] as follows:

s (f) -
 syy<£/fsamp>

yy fsamp (2.3-8)
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The covariance matrix P of y, is equal to the integral ofyy K
the power spectrum (integration of the spectral density matrix

element-by-element):

1/2 £„ /2

P.yy = J Syy(F) dF = [syy(f) df (2.3-9)

Spectral Coherence - The cross spectra (off-diagonal

elements of S ) are complex valued because they represent the

phase of the cross correlations between pairs of measurement

processes. To suppress the phase information and focus attention

on the magnitudes of the correlations as a function of frequency,

the squared coherence (spectral coherence) is computed for

each pair of measurement processes. For example, the squared

coherence between the azimuth and range measurements, C.p(F),

is defined by the formula:

IS (F)|2

CAD(F) = **SM(F) SRR(F)

The coherence between any other pair of measurements is defined

in the same way.

The spectral coherence ranges in value from 0% to

1007<>. It measures how much of the variance of one random proc-

ess can be explained as a linear transformation of another

random process. Put differently, the coherence measures how

much power the two processes have in common with each other on

the average.

The coherence is a function of frequency and provides

more information about the crosscorrelation structure than
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simple correlation coefficients. (The squared correlation

coefficient is equal to the area under the squared coherence

function.) The spectral information contained in the coherence

function is used in this study to determine when residual radar

data from two different measurements (e.g., azimuth and range)

contain correlated low- frequency signals (polynomial-like tra-

jectory signals or systematic error signals). A significant

occurrance of these signals produces coherence larger than 25%

and indicates that a higher-degree polynomial is appropriate

for computing the residual data.

Covariance Matrices - The state-space models are also

used to compute covariance matrices for the residual radar

data. The method for computing covariances described in this

section is much more convenient than evaluating one of the

integrals in Eq. 2.3-9. These covariances are used in Task 2

to estimate the rms errors in positional data derived from the

radar measurements.

The covariance matrix of the residual radar measure-

ments is denoted Pyv- It is computed by solving the following

matrix equations, which contain the state-space parameter

matrices <|> , G, H, and R.

PV = cov(y, ) = Covariance Matrix of Azimuth,V
yy Elevation, and Range Data

PXX = cov(x̂ ) = Covariance Matrix of State Vector

Pyy = H P HT + R (2.3-11)

Pxx = * Pxx *T + GRG? (2.3-12)

A practical way of solving equation 2.3-12 is to set

PXX initially equal to the nxn identity matrix and use this
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matrix to evaluate the right side of Eq. 2.3-12. Then the new

value of P is used to evaluate the right side again, etc.

until the value of P remains unchanged to within the desired

computational accuracy. This algorithm converges if <|> repre-

sents a stable state-space model (i.e., all eigenvalues of <J>

have moduli less than unity). Once P is computed, P is
xx yy

computed using Eq. 2.3-11.

2.3.4 Error Models

In this section state-space models are presented for

noise-like radar measurement errors. These models are based

on analyses -of residual radar data from WFF Radars Nos. 3, 5,

and 6, which were tracking Zuni, Loki Optical, and Loki Sphere

payloads. Root-mean-square (rms) values, power spectra, and

spectral coherences are discussed.

Estimated rms Error Levels - Table 2.3-1 summarizes

the rms values of the residual tracking data from four data

sets. These rms values are estimates of the rms noise levels

in the tracking data. The rms values were computed from

stochastic state-space models for residual tracking data and

do not include systematic errors in the tracking data. The

residual angle data from radars Nos. 3 and 5 have rms values

ranging from 2.9 mdeg to 11.4 mdeg, while the rms range data

are more tightly clustered from 5.5 ft to 6.8 ft. Radar No. 6

has significantly higher estimated noise levels because it is

a wide-band acquisition radar, which is not intended for accu-

rate tracking. The Zuni error model is based on the analysis

of three trajectories, while the other models are based on

segments from single trajectories. More information about the

estimated noise levels is presented in the following discussions

of power spectra and spectral coherences.
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TABLE 2.3-1

ESTIMATED RMS NOISE LEVELS

DATA SET

ZUNI
(Radar #3)
(3 Trajectories)

Azimuth
Elevation
Range

LOKI SPHERE
(Radar #5)
(37s to 93s)'

Azimuth
Elevation
Range

LOKI OPTICAL
(Radar #3)
(80s to 130s)

Azimuth
Elevation
Range

LOKI OPTICAL
(Radar #6)
(22-27 min)
(33-38 min)

Azimuth
Elevation
Range

NOMINAL
PAYLOAD
COORDINATES

132 deg
15 deg
27 kft

137 deg
42 deg
27 kft

139 deg
78 deg
220 kft

98 deg
18 deg
260 kft

RMS
RESIDUAL

TRACKING DATA

4.4 mdeg
6.2 mdeg
5.5 ft

2.9 mdeg
4.7 mdeg
6.0 ft

11.4 mdeg
11.4 mdeg
6.8 ft

53 mdeg
41 mdeg
41 ft

Radar No. 3 Power Spectra and Coherences - Figure 2.3-1

depicts the estimated power spectra (PSDs or £ower jspectral

densities) and squared coherences for the errors in the Zuni data

from radar No. 3. These graphs were computed from the stochastic

model derived from an analysis of the residual tracking data

for three trajectories at a sampling rate of 10 samples per

second. The coherence plots on the right side of Fig. 2.3-1

indicate that the squared coherences are less than 25% at low
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frequencies. At the same time, the spectrum plots on the left

side are flat at low frequencies. This verifies that the low-

frequency signals caused by payload motion and systematic

measurement, errors have been appropriately modeled and removed

from the residual data.

According to Fig. 2.3-1 the range errors have the

most nearly white (flat) spectrum, while the elevation errors

are more nearly band limited. The frequency at which the

elevation PSD decreases to half its low-frequency value is

1 Hz. The corresponding half-power frequency for the azimuth

errors is 2.5 Hz.

Figure 2.3-2 depicts another set of estimated PSDs

and coherences for noise-like errors in the data from radar

No. 3. In this case, the radar was tracking a Super Loki

rocket prior to ejection and its Optical payload after ejec-

tion. These plots were computed using a 10-sample/second

tracking data shown in Figs. 2.2-2 through 2.2-4. The local-

ized inhomogeniety in the range data (Fig. 2.2-4) is caused by

the payload ejection and produces the hump in the range PSD

(Fig. 2.3-2) at 0.7 Hz. Aside from this anomaly, the range

PSD in Fig. 2.3-2 for the Optical payload is similar to the

range PSD in Fig. 2.3-1 for the Zuni trajectories.

The azimuth and elevation PSDs in Fig. 2.3-2 for the

Loki Optical tracking errors are significantly different from

their Zuni counterparts in Fig. 2.3-1. The Loki Optical error

spectra have 10-100 times as much power at low frequencies;

while at high frequencies the two sets of PSDs are more nearly

equal.

Radar No. 5 Power Spectra and Coherences - Figure 2.3-3

depicts the estimated PSDs and coherences for noise-like errors
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in tracking data from radar No. 5, which was tracking a Super

Loki Sphere payload. The state-space model used in this anal-

ysis was developed from a segment of the tracking data extending

from 37 s to 92.7 s with a sampling rate of 10 samples per

second. The small coherences and flat PSDs at low frequencies

indicate that polynomials of appropriate degree were used in

computing the residual data. The flat portions of the azimuth

and elevation PSDs at high frequencies indicate definite white-

noise floors in the angular measurements. The magnitudes of

these floors denote less high-frequency noise in Radar No. 5

data as compared to corresponding noise levels in Radar No. 3

data represented by Figs. 2.3-1 and 2.3-2. At low frequencies

the Radar No. 5 data have noise power levels that are between

those estimated for the Loki Optical and Zuni data from Radar

No. 3.

2.4 SUMMARY AND CONCLUSIONS

2.4.1 Summary

Under Task 1 of the study, the noise-like errors in

radar tracking data were modeled using state-space techniques.

The data sets included tracking radars Nos. 3 and 5, and acqui-

sition radar No. 6. The trajectories analyzed were for Zuni,

Super Loki Optical, and Super Loki Sphere payloads.

Random measurement noise signals were separated from

trajectory signals and systematic tracking errors in the data

by subtracting least-squares orthogonal polynomials from segments

of the data. The resulting residual data were used as estimates

of the noise-like error signals in the tracking data. The

appropriate degrees of the polynomials were determined from

spectral analyses of the residual data using an autoregressive

modeling technique.
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2.4.2 Conclusions

The analysis of data from tracking Radars Nos. 3 and 5

and acquisition Radar No. 6, leads to the following conclusions:

• The estimated rms noise levels in tracking
data from Radars Nos. 3 and 5 vary from
2.9 millidegree (mdeg) to 11 mdeg in
azimuth and elevation, and 5.5 ft to
6.8 ft in range, depending on the radar
and the payload (Zuni, Super Loki Optical,
and Super Loki Sphere)

• The estimated rms noise levels in Super
Loki Optical data from the wide-band
acquisition Radar No. 6 are 53 mdeg for
azimuth, 41 mdeg for elevation, and
41 ft for range.

2-23



3. TASK 2 - ANALYSIS OF ERROR PROPAGATION
INTO POSITIONAL DATA

3.1 INTRODUCTION

3.1.1 Objective

The main objective of Task 2 is to determine the propa-

gation of the radar data errors through the WFF noise-reduction

filters into positional data products expressed in latitude,

longitude, and height. The noise-reduction filters currently

use'd at WFF are digital finite-impulse-response (FIR) smoothing

filters (low-pass filters with symmetric impulse responses

that produce zero phase shift). The parameters of the filters

are manually selected to attenuate the high-frequency noise in

the radar tracking data. The radar data are passed through

these filters in the SMAD data processing program (Ref. 1),

which produces smoothed tracking data as output. These smoothed

data are then used as inputs to the MESUP and POSDAT programs

(Ref. 1) that generate positional data products. The objective

of this task is to estimate the rms noise-like errors in these

data products, based on the data error models developed under

Task 1.

3.1.2 Approach

The technical approach used in the analysis of error

propagation consists of three steps, which are depicted in

Fig. 3.1-1 and discussed in the following:

• Step 1 - Develop state-space equations
for the WFF smoothing filter being analyzed.
The input to this step is the impulse
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response of the WFF filter. The output
is a set of state-space equations that
are mathematically equivalent to the
specified impulse response.

Step 2 - Compute the error covariance
matrices of the smoothed radar tracking
data. The inputs to this analysis are
the equations from Step 1 and the stochas-
tic model for residual tracking data,
which was developed under Task 1. The
output is the covariance matrix for the
noise-like errors in the smoothed residual
tracking data.

Step 3 - Compute the error covariance
matrices of positional data products
expressed in latitude, longitude, and
height. The inputs to this step are the
covariances from Step 2, the radar posi-
tion coordinates, and the nominal payload
coordinates. The output is the error
covariance matrix of the positional data.

IMPULSE RESPONSE
OF WFF

SMOOTHING FILTER

COMPUTE STATE-SPACE
REPRESENTATION FOR

WFF FILTER

STOCHASTIC MODEL
RESIDUAL

TRACKING DATA FROM
TASK 1

RADAR POSITION
AND NOMINAL

PAYLOAD COORDINATES

FILTER
EQUATIONS

COVARIANCE
ANALYSIS

COVARIANCE MATRIX
OF SMOOTHED
RESIDUAL TRACKING DATA

COORDINATE
TRANSFORMATION

COVARIANCE
MATRIX OF
POSITIONAL

DATA
(LAT. LONG. HEIGHT)

Figure 3.1-1 Block Diagram of Error Propagation Analysis
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In addition to the analysis of noise-like errors, a

systematic filtering error is also analyzed. This systematic

error is caused by the slight distortions suffered by each

payload trajectory signal as it is processed by the WFF filters

This error is called filter-induced trajectory bias. It is

analyzed in this study by computing the distortions suffered

by polynomials (which model nominal payload trajectory signals)

when the polynomials are smoothed by the WFF filters.

3.2 STATE-SPACE FILTER EQUATIONS

The purpose of this section is to describe a state-

space representation for WFF smoothing filters. This repre-

sentation is convenient for computing the error covariance

matrices of smoothed radar tracking data, given state-space

models for the noise in the unsmoothed tracking data.

The impulse response h, of a FIR filter is represented

by the sequence of numbers

n_L» n-L+l' • • • » n-l» nO ' nl ' • • • » nL-l' nL (3.2-1)

In Eq. 3.2-1, L denotes the half-length of the impulse response

The smoothed output y^ (for k = L+l , L+2 , ...) produced by an

input sequence uk (for k = 1, 2, ...) may be represented by

the following convolution:

hj uk-j

An equivalent representation, and one that is more convenient

than Eq. 3.2-2 for covariance calculations, is the following
i

state-space model with the n'xl state vector x, (the number of
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states n1 equals the number of samples in the support of the

filter's impulse response sequence, i.e., n1 = 2*L+1):

G'u

0 1
0 0
0 0

•

0
0, ,

0
1
0

0
0 0
1 0. . .0

'. • 6
O' l

0

G' —

H' = [h-L h-L+l •••

[Ixl]

[n'xi]

[n'xn'J

[n'xl]

(3.2-3)

(3.2-4)

(3.2-5)

(3.2-6)

(3.2-7)

Equation 3.2-3 states that the filter output y, is a linear

function of the state vector x, , H1 is a Ixn' matrix, which

contains the impulse response of the filter as defined by

Eq. 3.2-7. Equation 3.2-4 is the state propagation equation

in which <J>' is the n'xn' transition matrix and G1 is the n'xl

input matrix.

In Eqs. 3.2-2 and 3.2-4, the input sequence u, repre-

sents the noise-like error signal in radar tracking data (azimuth,

elevation, or range measurements). Stochastic state-space models

for u, were developed under Task 1 as discussed in Chapter 2.

Such noise models are represented here by the following equations
n

involving the n"*l state vector x, :
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uk = H"-k vk ' = R" (1x1) (3.2-8)

G"v (3.2-9)

Equations 3.2-8 and 3.2-9 are a stochastic model for the radar
ti

noise u, ; the scalar white noise v, driving this model is called
K K ii

the innovations and is uncorrelated with x. for j <_ k.

For covariance calculations, the two state-space models

for the WFF smoothing filter and the radar noise are combined

to form one larger model of the following form, where n = n'+n":

-k+1 = 0x, -i- Gw, [nxl] (3.2-10)

(3.2-11)

The matrices in Eqs. 3.2-10 and 3.2-11 are defined as follows:

H

L^kJ

<J>' G'H"

0 $"

[H' 0]

0

[nxl]

[nxn]

Q = cov(i 0 0

0 R"

2x1]

[2x2]

(3.2-12)

(3.2-13)

(3.2-14)

(3.2-15)

(3.2-16)
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3.3 ERROR COVARIANCE EQUATIONS

The steady-state error variance of the smoothing filter

output y, is denoted var(y). From a covariance analysis of

the Eqs. 3.2-10 through 3.2-16 (Ref. 5), it can be shown that

the variance of the noise in the filter output may be computed

using the following equations:

var(y) = H'P'H'T [1x1] ' (3.3-1)

P' = <|>'P'<|>'T+ 4>'SH"TG'T+ G'H"ST<t>tT

+ (GfH")P"(G'H")T+ G'R"G'T [n'xn'l (3.3-2)

In Eq. 3.3-2, P1 is the steady-state error covariance of the
t

filter state vector x, . To solve Eq. 3.3-2 for P1 , the matrices

S and P" are first computed using the following equations:

P" = <|>»p"<|>"T+ G"R"G"T ln"xn"] (3.3-3)

S = <t>'S<|>"T+ G'H"P"<D"T+ G'R"G"T [n'xn"] (3.3-4)

The recommended procedure for solving these equations

is to (1) solve Eq. 3.3-3 for P", (2) solve Eq. 3.3-4 for S,

(3) solve Eq. 3.3-2 for P', and (4) use Eq. 3.3-1 to compute

var(y). Equations 3.3-2 through 3.3-4 are equilibrium equa-

tions describing statistical steady-state error covariances.

They may be solved by using iteration, e.g., Eq. 3.3-3 may be

solved by initially setting P" equal to the n"xn" identity

matrix, evaluating the right side of the equation, using the

new value for P" to re-evaluate the right side, and continuing

until the elements of P" remain unchanged to within the desired

numerical accuracy. This iterative method converges to the

unique solution of the equation whenever the steady-state covar-

iance exists (i.e., when the eigenvalues of P" have moduli

less than unity).
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3.4 COORDINATE TRANSFORMATION EQUATIONS

The last step in determining the rms errors in posi-

tional data products is to transform the error variances of

the smoothed tracking data (azimuth, elevation, and range)

into the corresponding error covariances of the positional

data (latitude, longitude, and height). The equations for

this transformation are discussed in this section, while the

mathematical details are presented in Appendix D.

The coordinate transformation is performed in three

steps as discussed in the following:

• Step 1 - Transform from radar az-el-range
coordinates to topographic north-east-
down (NED) coordinates.ThisIsa non-
linear transformation because radar
coordinates are not Cartesian.

• Step 2 - Transform from topographic NED
coordinates to geocentric Cartesian
coordiantes. This is a linear trans-
formation from one Cartesian system to
another.

• Step 3 - Transform from geocentric
Cartesian coordinates to geodetic lat-long-
height coordinates. This is a nonlinear
transformation.

The propagation of the error covariance through this

sequence of transformations is accurately approximated by

linearizing the nonlinear transformations (in Steps 1 and 3)

about the nominal payload coordinates. This approximation is

accurate because the rms tracking errors are a small fraction

of the nominal payload coordinates.
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3.5 ANALYSIS RESULTS

This section presents rms error estimates for posi-

tional data products expressed in latitude, longitude, and

height. The error estimates were computed using the analysis

techniques described in Sections 3.2 - 3.4 and the stochastic

error models developed under Task 1. The accuracy estimates

are for noise-like errors and apply to WFF radars Nos. 3 and 5

tracking Zuni, Super Loki Sphere, and Super Loki Optical

payloads.

3.5.1 Rms Errors of Smoothed Tracking Data

Rms error estimates for smoothed radar data (azimuth,

elevation, and range measurements) are presented in Table 3.5-1.

The first column indicates the payload and data sets used for

analysis. (Data from wide-band radar No. 6 are excluded from

this comparison because this radar is not intended for precise

tracking applications.) The third and fourth columns give the

estimated rms noise levels in the data before and after proc-

essing with the WFF smoothing filter. (For these data sets,

which were analyzed at a sampling rate of 10 samples/second,

the appropriate WFF smoothing filter is designated by the code

FOO.040.10.) The last column in Table 3.5-1 indicates the

percent reduction of rms noise in the smoothed data as compared

with the rms noise before smoothing.

The data in Table 3.5-1 lead to the following con-

clusions. The percent reduction in estimated rms noise due to

smoothing falls in the range of 71% to 147o. The estimated rms

angular errors for Radar No. 3 vary significantly with payload:

the Zuni trajectories have rms accuracies of 1.5 mdeg in azimuth

and 2.7 mdeg in elevation; in contrast, the Loki Optical payload

was tracked with accuracies of 9.5 mdeg in azimuth and 8.2 mdeg
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TABLE 3.5-1

STANDARD DEVIATIONS OF SMOOTHED RESIDUAL
TRACKING DATA

DATA SET

ZUNI
(RADAR #3)
(3 TRAJECTORIES)

AZIMUTH
ELEVATION
RANGE

LOKI SPHERE
(RADAR #5)
(ORIGINAL DATA)

AZIMUTH
ELEVATION
RANGE

LOKI OPTICAL
(RADAR #3)
(ORIGINAL DATA)

AZIMUTH
ELEVATION
RANGE

NOMINAL
PAYLOAD
COORDINATES

132 deg
15 deg
27 kft

137 deg
42 deg
27 kft

139 deg
78 deg
220 kft

RMS
BEFORE
SMOOTHING

4.4 mdeg
6.7 mdeg
5.5 ft

2.9 mdeg
4.7 mdeg
6.0 ft

11.4 mdeg
11.4 mdeg
6.8 ft

RMS
AFTER

SMOOTHING

1.5 mdeg
2.7 mdeg
1.7 ft

2.5 mdeg
3.8 mdeg
3.5 ft

9.5 mdeg
8.2 mdeg
2.0 ft

PERCENT
REDUCTION
OF RMS

66
60
69

14
19
42

17
28
71

in elevation. This difference may in part be caused by the

much larger nominal slant range for the Optical payload as

compared to the Zuni. The rms accuracy for Radar No. 5,

tracking a Loki Sphere, is similar to the results for Radar

No. 3 tracking the Zuni trajectories.

3.5.2 Rms Errors in Positional Data Products

The rms error estimates for positional data products

are presented in Table 3.5-2. The rms latitude errors are in
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TABLE 3.5-2

ESTIMATED RMS OF NOISE-LIKE ERRORS IN
POSITIONAL DATA

DATA SET

ZUNI
(RADAR #3)

LATITUDE
LONGITUDE
HEIGHT

LOKI SPHERE
(RADAR #5)
(ORIGINAL DATA)

LATITUDE
LONGITUDE
HEIGHT

LOKI OPTICAL
(RADAR #3)
(ORIGINAL DATA)

LATITUDE
LONGITUDE
HEIGHT

RMS
ERROR

3 Mdeg
5 Mdeg
0.4 m

6 Mdeg
8 Mdeg
0.8 m

65 Mdeg
73 Mdeg
2.1 m

MEAN
SLANT
RANGE

27 kft

27 kft

220 kft

the range from 3 pdeg to 65 Mdeg, with the largest error oc-

curring at the largest slant range. The rms longitude errors

are similar and range from 5 pdeg to 73 Mdeg. Estimated rms

height errors range from 0.4 m (1.3 ft) to 2.1 m (6.9 ft).

Again, the largest error occurs at the largest slant range.

3.6 SMOOTHING-FILTER TRAJECTORY BIAS

The smoothing filters are intended to reduce high-

frequency noise levels in the radar tracking data without
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significantly changing the low-frequency signal component

representing the payload motion along the trajectory. In prac-

tice, the smoothing filter systematically distorts the nominal

trajectory slightly. This section describes the results of an

analysis of this systematic error component in smoothed tracking

data.

The technical approach of this analysis is explained

with the aid of Fig. 3.6-1. The raw tracking data (azimuth,

elevation, or range measurements) are decomposed into two signal

components: a polynomial that represents the nominal trajectory

and the residual data that represent the noise-like errors.

This decomposition was previously introduced in Chapter 2.

The effect of the smoothing filter is to smooth the residual

data and to distort slightly the nominal trajectory polynomial.

The distortion of the polynomial is termed smoothing-filter

trajectory bias because it can produce a systematic bias-like

error in the smoothed data.

RAW TRACKING DATA

NOMINAL
TRAJECTORY
POLYNOMIAL

098660

SMOOTHED TRACKING DATA

DISTORTED
NOMINAL

TRAJECTORY
POLYNOMIAL

RESIDUAL
DATA

SMOOTHED
RESIDUAL '

DATA

Figure 3.6-1 Smoothing-Filter Trajectory Bias
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An example of smoothing-filter trajectory bias is

shown in Fig. 3.6-2. The plot on the left depicts the raw

range data from Radar No. 3 for a Super Loki Optical payload.

To model the trajectory signal, an orthogonal polynomial was

fitted to the range data using the technique discussed in

Section 2.2. The plot in Fig. 3.6-2 labeled "Range-Bias" shows

the distortion of this polynomial that was produced by passing

it through the WFF FOO.40.10 smoothing filter. More than

3 ft of bias was produced over most of the data segment. This

bias is larger than the estimated rms noise level (2.0 ft) in

the smoothed data.

Trajectory bias from the smoothing filter does not

always produce errors larger than the noise. Figure 3.6-3

shows the azimuth and elevation biases for the Loki Optical

data from Radar No. 3. These biases are much less than the

rms estimated noise levels (9 mdeg).

SLANT RANGE RANGE BIAS

260

!K
ui
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I

ISO

•2.5
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O -3.0
Z
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80
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130
•3.5
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Figure 3.6-2 Filter-Induced Range Bias for Loki Optical
Tracking Data, Radar No. 3
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Figure 3.6-3 Filter-Induced Azimuth and Elevation Bias
for Loki Optical Tracking Data, Radar No. 3

The analysis of trajectory bias leads to the conclu-

sion that the smoothing filters can produce systematic errors

that are larger than the rms noise levels in the smoothed data.

A recommended way of avoiding this error is to smooth only

residual tracking data and then add the trajectory polynomial

to the smoothed residuals at the output of the filter.
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3.7 SUMMARY AND CONCLUSIONS

3.7.1 Summary of Task 2

Under Task 2 the following objectives were met:

• The propagation of noise- like errors in
radar tracking data into positional data
products was analyzed. A state- space
covariance analysis was performed based
on the stochastic error models developed
under Task 1 .

• The systematic smoothing error, termed
smoothing- filter trajectory bias, was
identified and analyzed.

3.7.2 Conclusions

The analysis results of Task 2 lead to the following

main conclusions:

• Rms noise-like errors in smoothed track-
ing data vary with payload for radars
No. 3 and 5. The estimated rms noise
levels of the smoothed data and positional
data products are in the following ranges
for the data analyzed in this study:

AZ and EL: 1.5 mdeg to 9.5 mdeg

RANGE: 1.7 ft to 3.5 ft

LAT and LONG: 3 Mdeg to 73

HEIGHT; 1.3 ft to 6.9 ft

The bias- like errors caused by WFF smooth-
ing filters can exceed the rms noise
levels in smoothed tracking data when
raw tracking data are passed through the
filters.
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4. TASK 3 - ALTERNATIVE NOISE REDUCTION TECHNIQUES

4.1 INTRODUCTION

The purpose of this chapter is to present recommenda-

tions for improving the noise reduction techniques currently

used at WFF for processing radar tracking data. These recom-

mendations are based on the results of Tasks 1 and 2 of this

study and an assessment of practical alternative algorithms.

The current WFF data processing system is depicted in

Fig. 4.1-1. At the top of this figure, the radar data tape

provides inputs to the PASS 1 program, which produces as its

output a working data tape. Data calibration and editing (e.g.,

RADAR
DATA TAPE

Q
GENERATION
OF WORKING
DATA TAPE

I
DATA

CALIBRATION
AND EDITING

NOISE-LEVEL
REDUCTION

GENERATION OF
POSITIONAL DATA

PASS 1 PROGRAM

DATA PROC. REAP. ZONBIT PROGRAMS

SMAD PROGRAM

MESUP AND POSDAT PROGRAMS

POSITIONAL
DATA TAPE

Figure 4.1-1 Review of Current WFF Smoothing Technique
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to correct extreme data outliers) are then performed using

programs such as DATA PROC and ZONBIT. The calibrated and

edited data are next processed using the SMAD program to reduce

the noise level in the data. It is in the SMAD program that

the smoothing filters (analyzed under Task 2 of this study)

are used to process the azimuth, elevation, and range data.

The smoothed data are finally processed using the MESUP or

POSDAT programs to produce data products, including data on

payload position expressed in latitude, longitude, and height.

The rms noise levels in these positional data products were

estimated in Task 2 of this study.

4.2 DISCUSSION OF CURRENT FILTERING TECHNIQUES

The current WFF smoothing filters are low-pass zero-

phase finite-impulse-response (FIR) filters. The parameters

of these filters are specified each time the SMAD program is

run. Appropriate parameter values depend on the radar, the

type of data being processed (azimuth, elevation, or range),

the payload, and the portion of the trajectory that is being

estimated. For example, data for ECC BALLOON, SUPER LOKI

OPTICAL, and ZUNI ROCKETS are usually smoothed with filter

parameters designated by the WFF code "FOO.040.10." In contrast,

THRUSH data may be analyzed using an FOO.090.04 filter. For

SCOUT and TAURUS ORION data, a variety of different filter

parameters may be used, corresponding to different segments of

the trajectory.

According to the error analysis presented in Chapter 3,

the rms noise levels in ZUNI, SUPER LOKI SPHERE, and SUPER LOKI

OPTICAL data are significantly reduced by filter FOO.040.10.

However, the percent reduction of the noise level varied from

147o to 71% for the data sets analyzed in this study. A main
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conclusion to be reached from these results is that the current

VFF filters can be effective in reducing rms noise levels, but

the final noise levels in the smoothed data vary from data set

to data set, and these noise levels are not estimated by the

current WFF smoothing techniques.

Another finding from Chapter 3, is that the current

VFF smoothing technique can result in a systematic error,

called filter-induced trajectory bias. This bias-like error

is a slight distortion of the nominal trajectory signal as it

is processed by the smoothing filter. For some of the data

analyzed, the bias exceeded the rms noise level of the smoothed

radar data. This finding can be interpreted positively as a

verification that the noise levels are currently low and do

not have to be reduced. Or the bias can be viewed as a known

error source that should be eliminated. Fortunately, this

error can be avoided by a simple modification of the current

WFF smoothing procedure, as explained in Section 4.3.

4.3 ALTERNATIVE NOISE REDUCTION TECHNIQUES

4.3.1 Avoiding Filter-Induced Trajectory Bias

The smoothing filter causes trajectory bias because

in the SMAD program the nominal trajectory signal is smoothed

along.with the noise in the data. The nominal trajectory signal

is much larger than the noise, and so very small relative dis-

tortions of the trajectory signal cause bias-like errors in the

filter output. To avoid this bias, a polynomial estimate of the

nominal trajectory signal should be subtracted from the radar-

data to yield residual radar data. The residual data, which

consist mostly of measurement noise and only small-scale payload

motions, would be smoothed using the current WFF filtering
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technique. Finally, the polynomial estimate of the nominal tra-

jectory signal would be added back into the smoothed residual

data. By using this technique, the current WFF filters can

reduce the noise level without producing significant bias error.

A.3.2 Estimating and Minimizing Noise Levels in
Smoothed Data

As discussed in Section 4.2, the current WFF smoothing

technique yields no estimate of the noise levels in the smoothed

radar data. As a consequence, the noise levels in positional

data products are also left unestimated. To correct these

deficiencies, a more complicated data processing algorithm is

required. In this section, two alternative approaches to esti-

mating noise levels are discussed. The first is the simpler,

.and requires an additional stage of signal processing to estimate

the high-frequency noise levels in the data. The second approach

is capable of higher accuracy, but is much more complicated.

It is based on Kalman smoothing techniques, which are optimal

with respect to prior information about the geometry of the

tracking system, the physics of the descending payload, and

the statistics of the measurement noise.

Estimating High-Frequency Noise Levels - The high-

frequency noise levels in smoothed radar tracking data (out-

puts from the current SMAD program) can be estimated using the

following procedure:

• Step 1 - Select segments of the tracking
data for analysis. The lengths of these
segments may be as short as a few hundred
data samples (e.g., ZUNI data processed
under Task 1 of this study typically
contained about 300 to 400 measurements
per trajectory). For long trajectories
spanning tens of thousands of measurements,
segments may be selected from the beginning,
middle, and end of the trajectory.
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• Step 2 - For each segment compute residual
azimuth, elevation, and range data by sub-
tracting orthogonal polynomials from each
channel of data. The polynomials are
fitted to each data segment using least-
squares as discussed in Appendix A. The
degree of each polynomial is not critical
for estimating high-frequency noise levels.
Appropriate polynomial degrees for the
tracking data analyzed under Tasks 1
and 2 of this study are in the range
6 to 10 for segments containing about
500 data samples.

• Step 3 - Process each channel of residual
data with the autoregressive modeling
algorithm discussed in Appendix B. The
output of this procedure is a stochastic
model for the residual data.

• Step 4 - Use the autoregressive models
from Step 3 to estimate the power spectra
of the azimuth, elevation, and range data
for each segment.The rms high-frequency
noise level in each data set is inferred
from the level of its power spectrum at
high-frequencies as indicated in Fig. 4.3-1.

This method for estimating noise levels can be implemented in

a new computer program. By running this program on the outputs

of SMAD, POSDAT, or MESUP, noise levels can be estimated for

smoothed tracking data or positional data products.

An Alternative Smoothing Technique - Optimal estimation

techniques can be used instead of the current WFF smoothing

procedure. The motive for using optimal smoothing is to obtain

the most accurate data products together with reliable error

estimates. This requires that the smoothing algorithm be opti-

mized with respect to several kinds of prior information about

the tracking system geometry, the physics of the descending

payload, and the statistics of the measurement noise and other

uncertainties. Incorporating this information optimally requires
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Figure 4.3-1 Estimation of High-Frequency Noise Variance
from Power Spectral Density (PSD),
f = Data Sampling Frequency [Hz] and
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a much more complicated processing algorithm than the one cur-

rently used at WFF. In the majority of cases, where well cal-

ibrated low-noise tracking data are being processed, the added

complexity of an optimal estimator may not be justified. How-

ever, for special cases in which the measurement noise is

large, the radar calibration is not precise, or the tracking

data contain long gaps due to missing measurements, optimal

smoothing may be essential for jneeting the objectives of the

data analysis.

The recommended way of implementing an optimal esti-

mator for processing radar tracking data is to use Kalman

filtering and smoothing algorithms. There is .a well developed

software technology and mathematical theory to support the de-

sign and implementation of Kalman-type processors (e.g., Refs. 5

and 19). Moreover, the mathematical formalism is very .flexible,
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which makes it possible to improve the accuracy of the processor

by adding new or improved error models or additional data inputs

to the smoother, without redesigning the software.

Specific examples of tracking data that are candidates

for the use of Kalmari estimation techniques are NIKE-ORION and

TERRIER-MALEMUTE data from Radars Nos. 8 and 41 in Peru. For

these examples, the payloads were tracked above the atmosphere

(above 50 km) so that the physics of the payload descent can

be represented with a relatively simple mathematical model.

The primary sources of uncertainty in the estimates of payload

position are uncertainties in the radar calibration, random

noise in the radar data, and possible data gaps caused by missing

measurements or high noise levels. A Kalman smoothing algorithm

for these data sets is developed and verified under Task 4 of

this study. The detailed specification of the algorithm and

examples of its performance with data provided by WFF is pre-

sented in Chapter 5.

4.4 SUMMARY OF RECOMMENDATIONS FOR IMPROVING THE CURRENT
WFF NOISE REDUCTION TECHNIQUES

Based on the results of (1) the error analyses of the

current WFF radar data smoothing fiters (conducted under Tasks 1

and 2 of this study) and (2) an assessment, of alternative tech-

niques, the following recommendations are made for improving

the noise reduction techniques used at WFF:

• To avoid filter-induced trajectory bias,
residual radar data should be smoothed
instead of raw radar data. The residual
data may be computed by subtracting from
the raw data low-degree orthogonal poly-
nomials, which are least-squares estimates
of the nominal trajectory signal in the
raw data.
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• To estimate the high-frequency rms noise
levels in smoothed tracking data produced
using the existing smoothing filters,
residualsmoothed data(i.e.,either
smoothed residual data or smoothed raw
data minus an estimated nominal trajec-
tory signal) may be processed with the
autoregressive (AR) modeling algorithm
discussed in Appendix B. The noise level
is estimated from the high-frequency
part of the power spectrum of the AR
model.

• To process the radar tracking data opti-
mally, an alternative Kalman filter/
smoother algorithm is recommended. Optimal
estimation is much more complicated than
the current smoothing procedure because it
uses prior information about tracking
system geometry, the physics of the de-
scending payload, and the statistics of
the measurement noise, radar calibration
errors, and other uncertainties. It is
expected that optimal•smoothing tech-
niques would be most appropriate for
processing tracking data having high
noise levels, significant data gaps, or
large uncertainties on radar calibration
errors.
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5. . TASK A - DEVELOPMENT AND VERIFICATION OF AN
ALTERNATIVE SMOOTHING ALGORITHM

This chapter describes the development and verifica-

tion of a new smoothing algorithm for processing radar tracking

data. The algorithm takes as inputs the tracking data (azimuth,

elevation, and range) from one radar and provides as outputs

estimates of payload position and velocity as functions of

time. The algorithm is a Kalman filter/smoother that is optimal

(i.e., unbiased and minimum-variance) with respect to prior

information about the tracking system geometry, the physics of

the payload descent, and the statistics of measurement noise

and radar calibration errors. The algorithm, in its present

form, is intended for estimating trajectories'above the atmos-

phere (height > 50 km). The algorithm detects and appropriately

processes isolated data outliers. Moreover, extended measure-

ment gaps (caused by missing data or high noise levels) are

processed optimally when their locations in the data set are

specified as input parameters. The performance of the algorithm

is verified using tracking data provided by WFF for this

investigation.

This chapter is organized- as follows. Section 5.1

describes the Task 4 objectives and the technical approach for

meeting these objectives. Section 5.2 provides an overview of

the algorithm, while the mathematical details are discussed in

Sections 5.3 through 5.7. The verification of algorithm per-

formance with tracking data from Radars Nos. 8 and 41 in Peru

is presented in Section 5.8. The accomplishments of this task

are summarized in Section 5.9.
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5.1 INTRODUCTION

5.1.1 Objective

Task 4 has two main objectives:

• Develop an algorithm for processing noisy
radar tracking data to estimate payload
trajectories above 50 km in altitude.
The algorithm should handle data outliers
and gaps caused by missing data or high
noise levels, and should provide a real-
istic estimate of rms error for the esti-
mated trajectory.

• Verify the performance of the algorithm
using radar data provided by WFF.

5.1.2 Technical Approach

To meet the two objectives, the algorithm was devel-

oped using the established theory of Kalman optimal filtering

and smoothing (Ref. 5). The technical approach consists of

four steps:

• Compute a Nominal Trajectory - The nom-
inal trajectory is computed using (1) a
best-guess initial position and velocity
for the payload, and (2) deterministic
models for normal gravitation and nominal
atmospheric drag accelerations'.

• Compute Nominal Radar Measurements - The
nominal radar measurements are time series
for azimuth, elevation, and range corres-
ponding to an ideal radar tracking the
nominal trajectory.

• Compute Residual Radar Measurements - The
residual radar measurements are defined
as the actual measurements minus the
nominal measurements computed in Step 2.
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• Estimate Corrections to the Nominal
Trajectory - The corrections to the nom-
inal trajectory are computed by processing
the residual radar data from Step 3 using
a Kalman filter/smoother. The final opti-
mal trajectory estimate is then computed
by adding these corrections to the nominal
trajectory from Step 1. The error covar-
iance matrices of the trajectory estimates
are computed by the Kalman smoother.

There are two main advantages to processing residual

radar data. The first is that the relation between residual

tracking data and residual payload motions about a nominal

trajectory can be accurately modeled by linear time-varying

state-space difference equations. (The reason for this is

that, with high probability, the actual payload motion is a

small percent perturbation about the nominal trajectory. This

expectation is justified for trajectories above the atmosphere,

i.e., height > 50 km, because at high altitudes the accelera-

tions caused by atmospheric drag and gravitation, can be ade-

quately represented using simple models.) The state-space

difference equations are precisely the type of mathematical

model that is consistent with the recursive Kalman filter/

smoother algorithms.

The second advantage to processing residual radar

data is that they can be accurately modeled as realizations

of zero-mean non.-stationary random processes. Moreover, these

processes can be represented as outputs from linear time-varying

state-space difference equations driven by white noise. This

is the type of data for which Kalman filter/smoother algorithms

are statistically optimal (i.e., the trajectory estimates are

unbiased and have the smallest possible error variances).
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5.2 OVERVIEW OF ALGORITHM

The front end of the trajectory estimation algorithm

is a pre-processor that (1) computes a nominal trajectory for

the payload, and (2) processes the raw radar data (e.g., output

data from the WFF PASS 1 program) to produce residual radar

data as outputs. Figure 5.2-1 depicts the pre-processor, its

inputs, and its outputs. The inputs are:

• Best-Guess Initial State of Payload - The
estimatedposition and velocity of the
payload at the initial time expressed in
earth-centered Cartesian inertial
coordinates

• Nominal Gravitation Model - The normal
corrections to a point-mass gravitation
model, which account for the oblateness
of the earth's gravitational field

• Nominal Atmospheric Drag Acceleration
Model - The expected atmospheric drag as
a function of altitude and payload veloc-
ity, based on the U.S. Standard Atmosphere,
1976 (Ref. 6)

• Geodetic Coordinates of the Tracking Radar -
Expressed in terms of latitude, longitude,
and height with respect to the reference
ellipsoid currently used in the WFF data
processing programs

• Actual Radar Measurements - Time series
of azimuth, elevation, and range measure-
ments taken at uniformly spaced time
intervals.

The outputs of the pre-processor are used by the

filtering and smoothing stages of the algorithm. As indicated

in Fig. 5.2-1, the outputs are:
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Figure 5.2-1 Block Diagram of Pre-Processing for
Trajectory Estimation

Keplerian Payload Trajectory - The ideal-
ized trajectory which the payload would
follow if the earth were a point mass,
the atmospheric drag accelerations were
zero, and the initial position and veloc-
ity of the payload were known exactly

Nominal Payload Trajectory - The expected
trajectory forthe payload, given the
initial estimate of the payload position
and velocity at the initial time, the
normal gravitation of the earth, and a
model for the nominal drag accelerations
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• Residual Radar Measurements - The trans-
formed radar data, which contain all
available information about the actual
departure of the payload trajectory away
from the nominal trajectory. The residual
data are inputs to the Kalman filter in
the second part of the trajectory esti-
mation algorithm.

The second half of the trajectory estimation algorithm

is a Kalman filter/smoother. A block diagram of the filter

and smoother is presented in Fig. 5.2-2. As shown in this

diagram, the Kalman filter algorithm has six inputs:

• The Processing Mode - a parameter that
determines whether the algorithm is to
be optimal for base-line measurement
noise (mode 1), for data gaps caused by
missing data or very noisy data (mode 2),
or for automatic detection and optimal
processing of isolated data outliers
(mode 3)

• An Estimate of the Payload's Initial State
Vector and the Error Covariance Matrix of
this Estimate - the best-guess estimate
(••before any radar data are processed) of
the payload's position and velocity with
respect to the nominal trajectory at the
initial time

• The Residual Radar Measurements and the
Time Between Successive Measurements - the
residual radar data computed by the pre-
processor

• The Keplerian Trajectory - the trajectory
based on a point-mass earth, which is
computed by the pre-processor

• The Nominal Radar Measurements - nominal
tracking data corresponding to an ideal
radar tracking the nominal payload tra-
jectory, which are computed by the pre-
processor
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Figure 5.2-2 Block Diagram of Kalman. Filter/Smoother
for Trajectory Estimation

The Error Model - a state-space stochastic
model for radar measurement noise and
radar calibration errors. (The model
could also represent acceleration noise
caused by small unpredictable perturba-
tions in the gravitational field away
from the normal field for an ellipsoidal
earth. Based on the results of processing
WFF radar data from Peru for Radars Nos. 8
and 41, it was concluded that gravitational
errors are much smaller than radar measure-
ment errors. Therefore, an error model
for gravitational noise is not included
in the present version of the trajectory
estimation algorithm.)

The residual radar measurements are processed causally

by the Kalman filter, starting with the initial time and pro-

ceeding to the end of the data set. The outputs of the Kalman

filter are three time series:
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• Filtered State Estimates - The estimated
position and velocity of the payload
with respect to the nominal trajectory
as a function of time, together with
additional state variables that model
radar measurement errors. These esti-
mates are optimal with respect to a causal
processing of the data.

• Error Covariances - The error covariance
matrices of the filtered state estimates.

• Innovations and Their Variances - The
innovations are the prediction errors
made by the filter as it predicts what
the next residual measurements of azimuth,
elevation, and range will be one time-step
ahead. In the data-adaptive mode (mode 3)
of the trajectory estimation algorithm,
the innovations and their variances are
used to detect outliers.

As indicated in Fig. 5.2-2, the smoothing algorithm

processes the outputs of the Kalman filter. The smoother is

also recursive, but it works backward in time, starting at the

end of the input time series, and running back to the initial

time. Because the smoother runs in reverse, the outputs of

the filter are stored in random access files so that they can

be accessed in the reverse order to which they were stored.

The outputs of the smoother are optimal estimates of

the payload position and velocity (with respect to the nominal

trajectory) as a function of time and the error covariances

for these estimates. Also included in the outputs of the smoother

are estimates of the radar calibration errors that are modeled

by the algorithm and their covariances.

In Sections 5.3 through 5.7, the mathematical details

of the trajectory estimation algorithm are discussed. The

organization of these sections follows the order in which cal-

culations are performed when radar data are being processed.
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5.3 KEPLERIAN-TRAJECTORY MODULE

The first step in computing the nominal payload tra-

jectory is to compute a good approximation to it, called the

Keplerian trajectory. The Keplerian trajectory is the position

and velocity of the payload as a function of time for the ideal-

ized model of a point-mass earth and a point-mass payload.

Using earth-centered Cartesian inertial coordinates (defined

in Appendix D), the payload position r(t) and velocity v(t) at

time t can be expressed as linear combinations of the position
and velocity at t=0.

v(t)"= r(t) = velocity vector (5.3-1)

r(t) = f(t)r(0) + g(t)v(0) (5.3-2)

v(t) = f(t)r(0) + g(t)v(0) (5.3-3)

In Eqs. 5.3-2 and 5.3-3, the scalar functions f(t) and g(t) are

known as the "f and g functions" (Refs. 7 and 20). They are

computed using the canonical units .of length and time, UL and UT,

which are defined in terms of the semi-major axis, a [m] , of

the reference ellipsoid for the earth and the gravitational
3 -2constant GM [m -s ] of the earth as follows:

UL = a [m] (5.3-4)

UT = I*) (5.3-5)

The initial position r(0) and velocity v(0) are scaled using

the canonical units:
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= r(0)/UL (3.5-6)

= v(0)-UT/UL (3.5-7)

From these scaled initial conditions, the following parameters

are computed (superscript T denotes a matrix transpose):

(5.3-8)

(5.3-9)

RV = r VQ - (5.3-10)

« = lY0l
2 - llj (5.3-11)

co = 1 + o-lr^l (5.3-12)

(5.3-13)

The parameters defined by Eqs. 5.3-8 to 5.3-13 are used to

compute the four additional parameters E , e, M , and N as

follows:

If CQ ? 0 then EQ = tan"
1 [̂ r] + n-(c^< 0) (5.3-14)

where the quantity TT-(C < 0) = n if c < 0, and 0 otherwise

If CQ = 0 then EQ = sign(RV)-n/2 (5.3-15)

where sign(RV) = 1 if RV > 0

sign(RV) = 0 if RV = 0

sign(RV) = -1 if RV < 0
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If cos(EQ) X 0 then e = CO/COS(EQ) (5.3-16)

If cos(E ) = 0 then e = - — - (5.3-17)
° A-sin(EQ)

MQ = EQ - RV/A (5.3-18)

N = A"3 (5.3-19)

For each time t of interest, the f and g functions

and their derivatives are computed as follows:

f(t) = !-(!- cos[E - E0])-f̂ -r ' (5.3-20)
'-o1

g( t ) =[t/UT - [E - EQ - s in(E - E O ) ] /N] UT (5.3-21)

r-tr I ' sin(E • !/UT ( 5 .3 -22 )
— o

g(t) = 1 - • [1 - cos(E - E0)] (5.3-23)

In Eqs. 5.3-20 to 5.3-23, the parameters r and E are computed

using the following three-step iterative technique:

Set M = MQ + N-t/UT (5.3-24)

£max = (5-3'25>

E =0 (5.3-26)

Step 1 set e = M + e-sin(E) - E (5.3-27)
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Step 2 if |e| > e (5.3-28)

then set E = E + e/1.4
and go to Step 1

else, go to Step 3

Step 3 set r = A2-[l - e-cos(E)] (5.3-29)

The algorithm specified by expressions 5.3-24 to 5.3-29 is the

recommended way of solving Kepler's equation for E:

M - E - e-sin(E) (5.3-30)

5.4 NOMINAL-TRAJECTORY MODULE

This section discusses the mathematical details of

computing a nominal trajectory for the payload at altitudes

greater than 50 km. The nominal trajectory is computed by

adding small corrections to the Keplerian trajectory defined

in Section 5.3. These corrections are based on deterministic

models for the normal gravitation of the earth and the expected

atmospheric drag force acting on the payload.

The approach is to compute the perturbations in gravi-

tation and the small atmospheric drag forces which the payload

would experience if it were to follow the Keplerian trajectory.

These small quantities are then used to compute the corrected

payload trajectory (nominal trajectory) by using the linearized

equations of motion for small departures from the Keplerian

trajectory.

5.4.1 Normal Gravitation

The normal gravitation of an ellipsoidal earth model

is computed using the reference ellipsoid parameters listed in
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Table 5.4-1. These are the parameter values for the reference

ellipsoid used in the WFF POSDAT program. The normal gravita-

tional acceleration a (r) at position r with respect to the
o

center of the reference ellipsoid is expressed as follows:

ag(r) =
GM

|r|:
lm-s'2] (5.4-1)

The first term in Eq. 5.4-1 is the gravitation of a point-mass

earth model. The second term is the correction for the normal

gravitation of the reference ellipsoidal model. The radial

and tangential components of the correction are first computed,

then they are transformed to Cartesian inertial coordinates.'

The equations for these calculations are given below:

= (3/4)C2G[l 3-cos(2-Ao>] [m s~2]

(5.4-2)

6atangnt - cos(AQ) ]/sin(AQ)

(5.4-3)

TABLE 5.4-1

GEODETIC PARAMETERS FOR REFERENCE ELLIPSOID

a =

b =

f =

0 =

GM =

6.378166-10° [m]

6.356784-106 [m]

1/298.3

7.292115147-10"5 [rad/s]

3.986005-1014 [m3-s~2]

= semi-major axis

= semi-minor axis

= flattening

= earth's angular
rotation speed

= earth's gravitational
constant
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In Eqs. 5.4-2 and 5.4-3, the parameters C~, G, and A are com-

puted as follows:

C2 = 1.082626-10~
3/<GM/a2) (5.4-4)

G = GM/|r|2 (5.4-5)

AQ = (n/2) - A1 (5.4-6)

The parameter A, (north latitude) in Eq. 5.4-6 is computed

using the earth-centered Cartesian inertial coordinates r of

the payload position:

r = [r r r]T (5.4-7)

[ + r2 + r2 (5.4-9)

If r12 > 0 then A^ = tan"1(r3/r12) (5.4-10)

If r12 = 0 then AI = sign(r3)-n/2 (5.4-11)

In Eq. 5.4-11, the sign(x) function is defined as follows:

sign(x) = 1 if x > 0; sigri(x) = -1 if x < 0; and sign(x) = 0

if x = 0.

The Cartesian inertial components of the gravitational

correction are computed using the radial and tangential compo-

nents (defined in Eqs. 5.4-2 and 5.4-3) as follows:

6ag = [6agl 6ag2 6ag3]
T (5.4-12)

6a 1 = G12-CL (5.4-13)

5-14



6ag2 = G12-SL (5.4-14)

6ag3 = 6aradiarsin(Al> ' 6atangnt-CO8(Al> (5.4-15)

In Eqs. 5.4-13 to 5.4-15, the parameters G12 , CL, and SL, are

defined as follows:

G12 = 6aradial-cos(Al> + 6atangnt' sin(V (5.4-16)

If r12 > 0 then CL = r1/r12 (5.4-17)

and SL = r2/r12 (5.4-18)

If r12 = 0 then CL = 0 (5.4-19)

.and SL = 0 (5.4-20)

5.4.2 Atmospheric Drag

The nominal atmospheric drag force f, acting on the

payload at altitudes greater than 50 km is computed as follows:

(5.4-21)

The symbols in Eq. 5.4-21 have the following meanings:

f^ = drag force (vector) (N)

h = payload altitude [m]

v /a = velocity of payload with respect ,
to the atmosphere (m*s ]

Cd = payload drag coefficient [1 <_ C^ <_ 2]

2
A = payload cross-sectional area [m ]

_ o

p(h) = atmospheric mass density [kg-m ]
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The nominal mass density is computed using the follow-

ing model, which is based on the U.S. Standard Atmosphere,

1976 (Ref. 6):

p(h) .= 2.2-10~6>5'10 'h (5.4-22)

In Eq. 5.4-22, the payload height h above the reference

ellipsoid is computed using the ellipsoid parameters (a = semi-

major axis, f = flattening, b = (l-f)*a = semi -minor axis) and

|r| , the distance of the payload from the center of the ellipsoid;

h = [r12]/cos(LT)] - N (5.4-23)

Lt = . tan"1lT/(l - f)2] (5.4-24)

T = r3/|r.| . (5.4-25)

N= a2- (a2-cos2(LT) + b2- sin2(LT) ]~ (5.4-26)

In Eq. 5.4-21, the nominal velocity v , of the payloadp/a
with respect to the atmosphere is computed from the position

of the payload r with respect to the center of the earth, the

velocity v of the payload with respect to an inertial frame,

and the angular velocity ft of the earth with respect to an

inertial frame:

Yp/a = v - ftxr (5.4-27)

The three Cartesian inertial components of v . , v, and ft are— p/ a — —
indicated in the following equations:

v.
Y = [V v v] (5.4-29)

ft = 10 0 Q]T (5.4-30)
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In Eq. 5.4-30, the first two components of ft are zero because

the first two Cartesian inertia! axes span the earth's equa-

torial plane, while the third axis is the rotational axis of

the earth model. (ft is the earth's rotational rate [rad«s~ ].)

Using Eqs. 5.4-28 to 5.4-30 in 5.4-27 leads to the following

expressions for computing the relative velocity vector v . :p/a

"(1) = Vj + ft-r2 (5.4-31)

vp/a = V2 - fi'rl (5.4-32)

Vp/a.=v3 (5.4-33)
•

By using Eqs. 5.4-22 to 5.4-33, with r and v evaluated

on the Keplerian trajectory, the drag force vector f, is computed

from Eq. 5.4-21. The inertial acceleration a, of the payload

caused by the drag force f, is then given as follows:

ad = (iDp)"1-^ (5.4-34)

where m is the payload mass [kg).

5.4.3 Trajectory Corrections

In this section the equations are presented for com-

puting a nominal payload trajectory, given the Keplerian tra-

jectory defined in Section 5.3, the gravitational correction

defined in Section 5.4.1, and the atmospheric drag acceleration

defined in Section 5.4.2. The approach is to compute position

and velocity corrections that are added to the Keplerian tra-

jectory. These corrections are computed by solving the line-

arized equations of motion for the payload, which govern small

perturbations about the Keplerian trajectory.
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The dynamical state of the payload on the nominal

trajectory is represented by the state vector X, which is de-

fined in terms of the nominal payload position R and velocity

V. R and V are measured with respect to the center of the

earth and are expressed in earth-centered Cartesian inertial

coordinates:

X =

R =

V =

R

V

' "i RO "o'

v2 v3]

(5.4-35)

(5.4-36)

(5.4-37)

The dynamical state of the payload along the Keplerian

trajectory is defined in the same way:

X(K) _

v
(5.4-38)

In Eq. 5.4-38, the position r and velocity v are expressed in

earth-centered Cartesian inertial coordinates. The nominal

and Keplerian state vectors are functions of time t and are

related to each other as follows:

X(t) = X(K)(t) 6x(t) (5.4-39)

In Eq. 5.4-39, 6x(t) is the correction that is added to the

Keplerian state at time t to account for the influence of normal

gravitation and atmospheric drag. In the remainder of this

section, equations are presented for computing 6x(t) at uniformly

spaced times t = k-6t, k = 0, 1, 2, ..., 6t = sampling inter-

val Is]. The following notation is used for sampled values:
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6x, = 6x(k-6t) for k = 0, 1, 2, ... (5.4-40)

The linearized equations of motion for small perturba-

tions about the Keplerian trajectory are as follows:

6x(t) = F(t)6x(t) + 6u(t)

6u(t) = " °3 "

6a(t)
, o3 ,

0
0
0

(5.4-41)

(5.4-42)

In Eq. 5.4-42, the disturbing acceleration 6a^t) is the sum of

the gravitational and atmospheric drag accelerations defined

in Sections 5.4.1 and 5.4.2:

6a(t) =

The matrix F(t) in Eq. 5.4-41 is defined as follows:

(5.4-43)

F(t) = °3 X

J(t) 0
(5.4-44)

In Eq. 5.4-44, 0^ is the 3x3 zero matrix, I* is the 3x3 identity

matrix, and J(t) is the 3x3 matrix defined as follows in terms

of the Keplerian position r(t):

J(t) = GM Kt)lr(t)]1

3 =5— - I.
|r(t)r

(5.4-45)

In Eq. 5.4-45, GM is the gravitational constant multiplied by

the mass of the earth, and r(t) is the position of the payload

on the Keplerian trajectory. As shown in an unclassified sec-

tion of Ref. 8, the sampled values of 6x(t), t = k-6t, k = 0,

1, 2, ..., satisfy the following equation:

(5.4-46)
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In Eq. 5.4-46, the 6x6 transition matrix <)>, is defined as

follows:

_ 0F-6t _- e
<t>21 <t>22

(5.4-47)

The 3x3 submatrices in Eq. 5.4-47 are computed using the follow-

ing equations:

a = GM 1/2

A =
r ( t ) - r ( t )

I / *. \ I ^

(5.4-48)

(5 .4-49)

- cos(or6t)] -A

(5 .4-50)

12 = I/a • (-—sinh(a«6t->/2) - s in(a-6t)]-A + s in (a«6 t )« I»
U2 3J

a • |[>/2'sinh(or'6t->/2) + sin(or6t)]«A - sin(a-6t)-I.

(5.4-51)

(5.4-52)

In Eq. 5.4-46, the 6x3 input weighting matrix f\ is defined as

follows:

(5.4-53)

Y! = !/«• [ 2 0 * a J * A "

cos(of6t)-l

a

(5.4-54)
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h(cf6t'V2) sin(a*6t) sin(a-6t)
a A3

(5.4-55)

The above equations are used to compute the state

corrections 6x, for k= 0, 1, 2, ..., given the disturbing

acceleration 6a,. The sample values X, of the nominal tra-

jectory are then computed by adding the corrections to the

Keplerian state:

Xk = x + 6xk (5.4-56)

'5.5 RADAR-MEASUREMENTS MODULE

5.5.1 Introduction

The purpose of this section is to present the mathemat-

ical details of the radar-measurements software module, The

module is used to compute both nominal radar measurements and

residual radar measurements. As depicted in Fig. 5.5-1, this

module has the following inputs:

• Nominal Payload Trajectory - expected
payload position and velocity expressed
in earth-centered Cartesian inertial
coordinates

• Radar Position - geodetic coordinates
(longitude,latitude, and altitude) of
the tracking radar, defined with respect
to the reference ellipsoid

• Radar Tracking Data - real tracking data
expressed in radar coordinates.

The outputs of this module are (1) a time series of

nominal radar measurements and (2) a time series of residual
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Figure 5.5-1 Radar-Measurements Module

radar measurements, both time series expressed in radar coor-

dinates (azimuth, elevation, and range). The nominal measure-

ments are the data that would be acquired if an ideal radar

were to track the payload along the nominal trajectory. The

residual measurements are the corrections that are added to the

nominal measurements to produce the actual radar measurements.

5.5.2 Transform to Geocentric Coordinates

As indicated in Fig. 5.5-1, the inertial coordinates

of the nominal trajectory and the geodetic coordinates of the

radar are transformed to geocentric (earth-centered and earth-

fixed) Cartesian coordinates. The equations governing these

transformations are presented in the following:
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-(geo) _ T(geo) (in)
- ' T(in) £

v(geo) = T(geo), (in) _ M I
- (in) x-

(5.5-1)

(5.5-2)

In Eqs. 5.5-1 and 5.5-2, the following definitions are used

.(geo) _

.(in) _

payload position vector expressed in
geocentric Cartesian coordinates

payload position vector expressed in
earth-centered Cartesian inertial coordinates

T(geo)
'(in) = inertial-to-geocentric transformation matrix

v

v

(geo) _

(in) _

payload velocity expressed in geocentric
Cartesian coordinates

payload velocity expressed in earth-centered
Cartesian inertial coordinates

M = Coriolis transformation matrix

The transformation matrices T?eo and M are defined as
in

follows (t = time{s] and ft = earth's angular rotation speed

[rad-s"1]):

T(geo) _
Min) '

cos(ftt) sin(ftt) 0
-sin(Qt) cos(fit) 0

0 0 1

M =
0
Q
0

-ft
0
0

0
0
0

(5.5-3)

(5.5-4)

The geodetic position coordinates of the tracking

radar (LO = east longitude, LA = north latitude, H = height

above reference ellipsoid) are transformed to geocentric
/ T"i5fliay* \

Cartesian coordinates Rv ' using the following equations

(a = semi-major axis and b = semi-minor axis of the reference

ellipsoid) (Ref. 9):
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R(radar) _ (5.5-5)

R, = (N + H ) - c o s ( L A ) - c o s ( L O ) (5.5-6)

R0 = (N + H) -cos (LA)-s in (LO) (5.5-7)

13 = [(b/a) -N + H j - s i n ( L A )

N = a 2 - [a 2 -cos 2 (LA) + b2-sin2(LA)]"1 /2

(5.5-8)

(5.5-9)

The nominal payload position relative to the radar,

r/p/r; , is expressed in geocentric Cartesian coordinates as

follows:

.(p/r) _ (geo) R(radar)— r - K (5.5-10)

5.5.3 Transform to Topocentric Coordinates

As depicted in Fig. 5.5-1, the next step in computing

nominal radar measurements is to transform the payload position

relative to the radar, r , to topocentric Cartesian coordinates

R/ne (n = north, e = east, d = down) with the origin located

at the radar position. The equations governing this transforma-

tion are given in the following:

(ned) _

R(ned) _ T(ned). (p/r)
* ~ T(geo) ^

•sin(LA)-cos(LO) -s in(LA)•sin(LO)
-sin(LO) cos(LO)

•cos(LA)«cos(LO) -cos (LA)-s in (LO)

(5.5-11)

cos(LA)
0

-s in(LA)

(5.5-12)
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R(ned) _=

Rn
Re
Rd

=

north

east

down

Transformation to Radar Coordinates

(5.5-13)

The final transformation indicated in Fig. 5.5-1 is

the conversion of Cartesian north-east-down coordinates to

spherical radar coordinates (AZ = azimuth, EL = elevation,

RA = range). Azimuth is measured positive eastward, with

AZ = 0 for due north. Elevation is measured positive toward

the zenith, with EL = 0 for the horizontal. Range is measured

positive away from the radar, with RA = 0 at the radar. The

radar measurements are computed from R^ned' using the following

equations:

ne ' VR?£

cos(AZ) = Rn/Rne

sin(AZ) = Re/Rne

EL = tan"1(-Rd/Rne)

PA — AP*- 4. P*- 4- P''
^ " VKn Ke Kd

(5.5-14)

(5.5-15)

(5.5-16)

(5.5-17)

(5.5-18)

5.5.5 Outputs

The outputs of the radar-measurements module are the

nominal measurement vectors (Z(t)) and the residual measurement

vectors (z(t)) for each time t = k-6t, k = 0, 1, 2, ..., along

the nominal trajectory:
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"•k
= Z(k-6t) = ELk (5.5-19)

RAk

zk = z(k-6t) = z^actual) - Zk (5.5-20)

where

^(actual) , c . , . , .
Z£ - vector of actual tracking / c ,- 9, xK data at time t = k-6t (DO-zi;

5.6 KALMAN-FILTER MODULE

5.6.1 Introduction

This section describes the mathematical details of

the Kalman-filter module. The purpose of the filter is to

process residual radar tracking data as inputs. The outputs

are a time series of filtered estimates of the payload state

(position and velocity) relative to the nominal trajectory

defined in Section 5.4. Additional outputs are estimates of

other state variables representing radar calibration errors,

the error covariance matrices for the state estimates, and a

time series of innovations data (the one-step-ahead prediction

errors of the Kalman filter and their variances).

The Kalman-filter algorithm presented in this section

has several important properties (Ref. 5):

• The Kalman filter is a recursive algorithm
for computing unbiased minimum-variance
estimates of the payload state at time t.
These estimates are based on (1) stochastic
error models for the radar data, (2) the
error covariance of the estimated initial
state, and (3) the residual radar measure-
ments up to, but not beyond, time t.
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• The filter is linear and time-varying
because it estimates small corrections
to the nominal dynamical state of the
payload as a function of time along the
nominal trajectory.

• Missing radar data and isolated outliers
are handled optimally. The filter proc-
esses missing data by optimally extrapo-
lating over the gaps (this is called
mode 2 processing). In mode 3 processing,
data outliers are detected automatically
by comparing the innovations with their
theoretical rms values. When the innova-
tions exceed approximately three standard
deviations, the noise variance of the
measurement-noise model is continuously
and automatically increased, and the new
measurement is processed optimally with
respect to this higher noise level.

• The filter computes the theoretical rms
accuracy of the estimated trajectory
based on the radar error model, the uncer-
tainty of the initial position and veloc-
ity, and all radar measurements up to
the current instant.

• The outputs of the filter are sufficient
statistics for computing the final
smoothed estimate of the trajectory based
on all available radar measurements.

A block diagram of the data processing performed by

the Kalman filter is shown in Fig. 5.6-1. The algorithm is

recursive, which means that it processes an estimated state

vector at time t, to produce as output an estimated state vector

for the next sampling time t~ based on the radar measurements

at time t^. As indicated in the upper left corner of Fig. 5.6-1,

the filter uses the estimated state vector at time t, to predict

the states at time t^- • This prediction is optimal and takes

into account the physics of the payload dynamics.
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Figure 5.6-1 Block Diagram of Data Processing in a
Kalman Filter

Next, the filter uses the predicted state to predict

what the radar measurements will be at time t~. This prediction

takes into account the radar error model, which represents

both noise and systematic measurement errors.

The differences between the actual residual radar

measurements at time t~ and the predicted measurements are

computed. These differences are the one-step-ahead prediction

errors of the filter and are known as the innovations. Based

on these innovations, the filter computes an optimal update

that is added to the predicted state vector for time t2. This

update is optimal; it takes into account the modeled radar

error sources and the expected accuracy of the state-vector
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prediction. For simplicity, Fig. 5.6-1 does not portray the

error covariance calculations that are also performed by the
filter at each time step. .

5.6.2 Kalman Filter Equations

The Kalman filter processes the sequence of residual

radar measurements zk> k = 0, 1, 2, ..., which are computed by

the radar-measurements module described in Section 5.5. The

filter parameters change with time; at time step k they are

contained in the following matrices (with n = number of state

variables and m = number of scalar radar measurements at each

sampling time, e.g., m = 3 for azimuth, elevation, and range
data from one radar):

<j>k = state transition matrix [nxn]

Qk = state process noise covariance [nxn]

H^ = measurement matrix [m*n]

R, - measurement noise covariance [mxm]

The filter uses these four matrices, together with an initial

estimate of the state vector, x , and its error covariance

matrix, PQ, to compute the following seven matrices for k = 0,
1, 2, ...:

x = one-step-ahead estimate of the (nxl]
state vector

P = error covariance of x [nxn]

K = Kalman gain matrix [nxm]

= innovations vector at [mxl]
time k

= innovations covariance matrix [mxm]
at time k •
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xk(+) = updated (filtered) estimate of [nxl]
the state vector at time k

P( + ) = error covariance of x, ( + )
at time k

,
K

[nxn]

The filter computes these matrices using the follow-

ing recursive formulas (in which M [mxn], MM [nxm], N [nxn]

are work arrays):

Initial Conditions

p . p,
x =

For k = 0 to kmax

M

C!

K

'•"k •

j A f* * -

N = P - K-M

MM =

Pk(+) = [N - MM-K1]

= x

[nxn]

[nxl]

[mxn]

[mxm]

[nxm]

[nxn]

[nxm]

Rk-K
T [nxn]

[mxl]

[nxl]

[nxl]

[nxn]

[End of For-Next Loop]

(5.6-1)

(5.6-2)

(5.6-3)

(5.6-4)

(5.6-5)

(5.6-6)

(5.6-7)

(5.6-8)

(5.6-9)

(5.6-10)

(5.6-11)

(5.6-12)P

Next k

In Eqs . 5.6-1 to 5.6-12, the following calculations are

performed:
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The initial state estimate and its error
covariance are used to initialize x and
P in Eqs. 5.6-1 and 5.6-2

The innovations covariance Ck and Kalman

gain matrix K are computed in Eq. 5.6-A
and Eq. 5. 6 - 5

The error covariance matrix Pk(+) of the

filtered state estimate &,( + ) is computed

(using the Josephson-Bierman update)
(Refs. 5 and 10) in Eqs. 5.6-6 to 5.6-8

The innovations vector IA is computed in
Eq. 5.6-9 ~k

The filtered state estimate &k( + ) is
computed in Eq. 5.6-10

The one-step-ahead prediction of the
state vector x and its error covariance
P are computed in Eqs. 5.6-11 to 5,2-12.

5.6.3 State-Space Model

The algorithm represented by Eqs. 5.6-1 to 5.6-12 is

the optimal filter for estimating the state x, of the following

stochastic model for (1) the payload perturbations away from

the nominal trajectory and (2) the noisy radar tracking data:

-k+1 = V^k * -k [nx11 (5.6-13)

zk = Hk-xk + vk [mxl] (5.6-14)

E[wk] = 0 [nxl] (5.6-15)

E[vk] = 0 [mxl] (5.6-16)

E[wk-wT] = Qk-6k_... [nxn] (5.6-17)

(5.6-18)
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;T) =0

for all k and j

ijl = 0

for all j >_ k

= 0

[nxm]

[nxn]

[nxl]

I nxn]

(5.6-19)

(5.6-20)

(5.6-21)

(5.6-22).

Equations 5.6-13 to 5.6-22 have the following inter

pretation:

The state vector x, is the solution of

the difference Eq. 5.6-13. The initial
state vector x is a random variable with—o
zero mean (Eq. 5.6-21) and covariance

Equation 5.6-13

is driven by a white noise vector w, .

matrix PQ (Eq. 5.6-22).

The dimension n of the state vector is
nine for the filters implemented in this
study. Six of the states represent the
dynamical state of the payload relative
to the nominal trajectory. The remaining
three states represent radar measurement
biases or ramps caused by radar calibra-
tion error. If a bias and a ramp are
modeled in each of the three measurement
channels then n=12.

5,6.4 State Variables

The state variables (states) are the elements of the

state vector x, [nxl]. The first six states are the position

r, and velocity v, of the payload relative to the.nominal tra-

jectory (expressed in earth-centered Cartesian inertial coordi-

nates). These states form the following 6x1 vector of payload

states:
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.(payload) _ 16x1] (5.6-23)

The remaining states are used to model radar measure-

ment biases or ramps caused by radar calibration errors. In

this study three radar error states were used to filter and

smooth the tracking data provided by WFF from Peruvian radars

Nos. 8 and 41. All states used to model radar errors are

elements of the following vector of radar error states (in

this example there are three error states):

.(radar)
ek(l)

ek<2)

ek(3)

[3x1] (5.6-24)

The complete state vector x, is organized with the

payload states listed first:

-k

(payload)

(radar)
[9x1] (5.6-25)

The partitioning of the state vector in Eq. 5.6-25

induces a partitioning of the parameter matrices 0^, Q^, and

H, as indicated in the following equations:

(payload)

k [6x6]

[3x6]

[6x3]

(radar)
k [3x3]

[9x9] (5.6-26)
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H,

(payload)
Qk (6x6]

0 [3x6]

(payload)
Hk [3x6]

0 [6x3]

n( radar)
gk [3x3]

(radar)
Hk [3x3]

[9x9] (5.6-27)

[3x9] (5.6-28)

The definitions of these partitions and the measurement noise

covariance matrix R, are presented in the following sections.

5.6.5 Transition Matrix 4>

As indicated in Eq. 5.6-26, the transition matrix is

block diagonal. This structure occurs because the payload

states are independent of radar errors. The payload transition

matrix is partitioned into 3x3 submatrices:

(payload)

4-
21

[6x6] (5.6-29)

The 3x3 submatrices in Eq. 5.6-29 are computed using the algo-

rithm specified in Section 5.4.3, Eqs. 5.4-50 to 5.4-52 (the

payload state vector x^Payioad) in £q> 5.6-25 plays the role

of the state correction 6x, in Section 5.4.3).

The transition matrix for the radar error states is a

3x3 identity matrix when there are three error states:

0,< radar>
1 0 0
0 1 0
0 0 1

[3x3] (5.6-30)

Equation 5.6-30 is an appropriate transition matrix for modeling

systematic (bias and ramp) errors in the radar measurements.

In general, if there are n (bias and ramp) error states, then
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4>£ra a is the n xn identity matrix. (For example, if both
K. 66

bias and ramp errors are modeled for azimuth, elevation, and

range channels, then n = 6.)

5.6.6 State Noise Covariance Q

According to the stochastic model used in this study,

uncertainty in the payload state at time step k is the result

of uncertainty in the payload state at the initial time k=0.

Therefore, the state-space model for the payload states is a

deterministic difference equation with random initial conditions

Because there is no white noise driving the payload states,

the payload Q-matrix in Eq. 5.6-27 is zero:

(payload) = zero matrix [6x6] (5.6-31)

The radar error states also satisfy a deterministic

difference equation with random initial conditions. The uncer-

tainty at the initial time corresponds to uncertainty about

the radar calibration errors. The radar errors are modeled as

systematic. Therefore, there is no white noise driving the

radar error states, and the radar Q-matrix in Eq. 5.6-27 is

also zero:

Q£radar) _ zerQ matrix (3x3] (5.6-32)

5.6.7 Measurement Matrix H

The payload measurement matrix H<P
ayload) in Eq> 5.6-28

models linearly the residual tracking measurements that would

be acquired by an ideal radar. According to the analysis in

Appendix E, the payload measurement matrix is computed using

the following equation:
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H(payload) _
H H 0. [3x6] (5.6-33)

In Eq. 5.6-33, 0^ is the 3*3 zero matrix, and the 3x3 matrix

H? is computed using the nominal radar measurements Z, . (The

algorithm for computing Z, is presented in Section 5.5.) The

matrix H, is computed as follows:

H [3x3] (5.6-34)

In Eq. 5.6-34, the matrices A, and C. depend on the

nominal radar measurements (AZk = azimuth, EL, = elevation,

and RA, = range) as follows:

= [AZk ELk RAk] [3x1] (5.6-35)

Matrix Ak is computed using the following definitions:

CL

SL

CZ

SZ

RC

RS

= cos(ELk)

sin(ELk)

= cos(AZk)

= sin(AZk)

RAk-CL

RA,-SL

"-RC-SZ

RC-CZ

0

-RS'CZ

-RS'SZ
-RC

CZ-CL"
SZ-CL

-SL

(5.6-36)

(5.6-37)

(5.6-38)

(5.6-39)

(5.6-40)

(5.6-41)

(5.6-42)

In Eq. 5.6-34, matrix B depends on the geodetic latitude LA

and longitude LO of the tracking radar as follows:
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B =

-sin(LA)'cos(LO)

-sin(LO)

-cos(LA)-cos(LO)

-sin(LA)-sin(LO)

cos(LO)

-cos(LA)'sin(LO)

cos(LA)

0

-sin(LA)

(5.6-43)

Matrix C, in Eq. 5.6-34 depends on the sampling interval 6t

[s] of the radar measurements and the earth's angular velocity

Q [rad-s ] as follows:

cos(ak) sin(ak)

-sin(ak) cos(ak)

0 0

• 61•k [rad]

0

0

1

(5.6-44)

(5.6-45)

The radar error states x5ra represent biases or
• K .

ramps in the residual radar measurements. Whether a particular

error state represents a bias offset or a linear ramp depends

on the radar measurement matrix H^3 a in Eq. 5.6-28. For

example, in this study three error states were used to process

test data from WFF. Therefore, x5radar^ is a 3x1 vector and
(radar)

Hk is a 3x3 matrix in this case. The radar calibration

errors are modeled as being statistically uncorrelated between

the azimuth, elevation, and range channels. Therefore, each

column of .(radar)nk xrf filled with zeros except for one entry,

which is either a 1 or k. The entry is 1 if the error state

models a bias; it is k if the error state models a ramp.

As an example, consider the case where all three

measurement channels have bias errors, and ramps are not being

modeled. Suppose furthermore, that the first radar error state
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corresponds to the bias in the first measurement channel (azi-
muth), the second error state corresponds to the second meas-

urement channel (elevation), the third error state corresponds

to the third measurement channel (range), then

H(radar) _
1 0 0
0 1 0

0 0 1
(5.6-46)

If on the other hand, each measurement channel error is modeled
as a ramp, and pure bias offsets are not modeled, then

H(radar) _
k 0 0
0 k 0

0 0 k
(5.6-47)

As a third example, suppose that the first measurement
channel has both bias and ramp errors, the second measurement

channel has only a bias error, the third measurement channel

has neither bias nor ramp error, then

H(radar) _Hk

1 k 0

0 0 1
0 0 0

(5.6-48)

According to Eq. 5.6-48, the first error state repre-

sents a bias in the first measurement channel, the second error

state represents a ramp in the first measurement channel, and

the third error state represents a bias in the second measure-

ment channel. An alternative to Eq. 5.6-48, which assigns the
three error states differently, is the following:

H(radar) _
1 0 k

0 1 0
0 0 0

(5.6-49)

5-38



Equations 5.6-48 and 5.6-49 are different ways of representing

the same radar error model. The two equations simply assign

different physical meanings to the three error states.

If the radar data are to be processed with both bias

and ramp errors being modeled for all three measurement channels,

then six radar error states are required. In this case jjr ar'

would be a 6x1 vector and H^radar' would be a 3x6 matrix, which

could have .the following form:

Hk

1 k 0 0 0 0
(radar) _ 0 0 1 k 0 0

0 0 0 0 1 k

(5.6-50)

In Eq. 5.6-50, the first two error states represent the bias

and ramp errors in the azimuth data, the third and fourth error

states represent the bias and ramp errors in the elevation

data, and the fifth and sixth error states represent the bias

and ramp errors in the range data.

5.6.8 Measurement Noise Covariance R

The measurement noise covariance R, is a 3*3 diagonal

matrix. This models the noise signals in the measurement

channels as being uncorrelated with each other, which is con-

sistent with the spectral coherence plots for radar data studied

under Task 1 of this investigation. The covariance R, repre-

sents the level of white noise in each channel of the residual

radar measurement vector z^. By appropriately defining R, as

a function time (k), the Kalman filter will optimally process

radar data having time-varying noise and gaps caused by missing

observations.
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There are three modes in which the Kalman filter is
used to process residual radar measurements:

Mode 1 The noise covariance R, is constant (i.e.,

Mode 3

Rk = Rbaseline for k = 0, 1, 2, kmax>

Mode 2 The noise variances in R. are intentionally

set to very large values, R, = Rv forvk - "big'
pre-specified values of k that correspond
to known intervals of missing data or very
noisy data.

Individual noise variances in R, are
automatically increased (R, > RKaseiine)
by the filtering algorithm when an
individual azimuth, elevation, or range
measurement is an outlier (i.e., the
measurement is statistically inconsistent
with the noise and error models for
which the filter is optimized).The
outliers are detected automatically using
the innovations data generated by the
filter. The amount of increase in R, is
a continuous function of the magnitude
of discrepancy between the observed inno-
vation values and their theoretical rms
values.

The algorithm can be switched between these three
modes at any values of k during the processing of the radar
data. The equations for computing the R, matrix are presented
in the following.

Mode 1 for Fixed Noise Model - The baseline value for
the measurement noise covariance is used for all k:

Rbaseline

az 0

0 o2el

0

0

0 0 ra

(5.6-51)
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Rk ~ Rbaseline for all k (5.6-52)

In Eq. 5.6-51, the sigmas are the nominal rms values of the

white noise in the azimuth, elevation, and range data. The

baseline covariance matrix is diagonal because the noise is

modeled as uncorrelated between the measurement channels.

Mode 2 for Data Gaps - Very large noise variances

(R̂ . ) are used for pre-specified values of k and pre-specified

measurement channels:

Rbig

big az 0

0

0

Fbig el

0

0

0 big ra

(5.6-53)

In Eq. 5.6-53, the sigmas are large (e.g., 1000 times larger

than the baseline sigmas in Eq. 5.6-51) for each measurement

channel that has missing or very noisy data. For example, if

the range data are missing or very noisy, but the angle meas-

urements are normal, then a reasonable choice is a,

1000. ara while = a and = ael.

PresPecified k

,.

(5.6-54)

Mode 3 for Automatic Outlier Processing - Each diagonal

element of R, is computed, on the basis of the innovations v,

and their variances. The Kalman filter algorithm computes the

3x1 vector V^ and its covariance matrix C, as specified in Sec-

tion 5.6.2. The elements of £, are arranged in the same order as

the elements of the residual radar measurement vector z,

(1st = azimuth, 2nd = elevation, 3rd = range). In this dis-

cussion, the following notation is used:
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2k = |Zj

A - "l

ck =

Rk>

•GI
0
0

-rl
o
0
.

"r^bl) 0

22

"2

0
C2
0

0
r2
0

0 r7(bl)t.
0 0

z3r (5.6-55)

3̂]
T (5.6-56)

0
0

C03_

0 "
0

TO3

(5.6-57)

(.5.6-58)

0

0 (5.6-59)
r3(bl)

baseline

When Mode 3 is in effect, the diagonal elements of R,
1C

are computed based on the squares of the innovations and their
theoretical expected values. For these computations, the vari-
ance function V is defined for i = 1, 2, and 3:

+-4*x-[x/A]'

lx/A]
(5.6-60)

where. A = 12-ci (5.6-61)

x = vj . "' (5.6-62)

Given: (1) the baseline noise covariance R, i • ;baseline'
(2) the innovations vector j^i and (3) the innovations covari-
ance matrix C^; the covariance matrix R, is computed using the
following algorithm:
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For i = 1 to 3

If x/A > 10 then r. = 4-x (avoids possible
overflow in
function V) (5.6-63)

Else r± = V[i'i,cifri(bl)]: ' (5.6-64)

Next i

This algorithm for computing matrix R, yields a model

noise variance r. that equals the baseline value when the squared
2innovation v. is small compared to 12-c.. When the innovations

start exceeding approximately three standard deviations, then
2 • '•

the noise variance r. starts to approach 4-f.. The result of

this is that large innovations (which are improbable under the

baseline noise model) cause the filter noise model to be changed

automatically so that noise spikes in the data are.filtered

optimally with respect to the increased noise variance.

5.6.9 Kalman Filter Outputs

Figure 5.6-2 depicts the inputs and outputs of the

Kalman filter module for the case in which there are nine state

variables: three paylbad position states, three payload veloc-

ity states; and three radar error states. Sixty scalars are

stored per time step: nine filtered state estimates; 45 distinct

elements of the state error covariance matrix (symmetric 9x9);

and six scalars representing the innovations and their variances.

The outputs of the filter module^are stored in a random

access data store for subsequent-processing by the smoothing

module. The data store is random access, rather than sequential

access, because the smoother processes the data backwards in

time. More specifically, the data store -should support last-in

first-out data accesses.
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INITIAL-STATE
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MODE
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RESIDUAL RADAR
MEASUREMENTS.

SAMPLING INTERVAL

KALMAN
FILTER

ESTIMATED
STATE VECTOR

9 SCALARS

ERROR COVARIANCE
MATRIX 45 SCALARS

INNOVATIONS/VARIANCES
6 SCALARS

DATA STORE
(LAST-IN

FIRST-OUT)

FOR LATER
USE WITH

SMOOTHING
ALGORITHM

Figure 5.6-2 Kalman Filter Module

5.7 SMOOTHER MODULE

5.7.1 Introduction

The smoother is the last stage of the trajectory
estimation algorithm. As indicated in Fig. 5.7-1, the inputs
to the smoother module are taken from the data store in which
the outputs from the filter module were saved. This data
store is used in a last-in first-out mode because the~ smoothing
algorithm processes the data backwards in time. The inputs to
the smoother at time step k are the processing mode and the
following time series (in this example there are three radar
error states):

= filtered state-vector estimate [9x1] (5.7-1)
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DATA
STORE

(LAST IN
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A-3769

SMOOTHED ESTIMATE
OF STATE VECTOR

ERROR COVARIANCE
MATRIX

Figure 5.7-1 Smoother Module '

PI.(+) - filtered state error covariance [9x9] (5.7-2)

= innovations vector [3x1] (5.7-3)

= innovations covariance matrix
(only 3 diagonal elements are
used during mode 3 outlier
processing)

[3x3] (5.7-4)

These inputs are defined in Section .5.6.2, and the processing-

modes for missing data and outlier processing are discussed in

Section 5.6.8.

The outputs of the smoothing algorithm at each time

step k are the smoothed estimate of.the state vector and its

error .covariance:
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x, = smoothed state-vector estimate [9x1] (5.7-5)

P, .= smoothed state error covariance [9x9] (5.7-6)
matrix

In Eq. 5.7-5, the first six elements of the state vector are

the smoothed position and velocity coordinates of the payload

relative to the nominal trajectory X, defined in Section 5.4.

(All coordinates are expressed in earth-centered Cartesian

inertial coordinates.) Therefore, the smoothed estimate of

the payload position and velocity relative to the center of

the earth is computed by adding the first six elements of the

smoothed state in Eq. 5.7-5 to the nominal trajectory X, de-

fined by Eq. 5.4-56. The mean-square accuracy of this estimate

is represented by the error covariance matrix in Eq. 5.7-6.

The remaining states (there would typically be three

to six of them) in the state vector of Eq. 5.7-5 are radar

error states. Their covariances are also contained in the

covariance matrix P, .

5.7.2 Smoothing Equations

The algorithm presented in this section is the Frazer-

Bryson smoother (Ref. 11). It computes trajectory estimates

that are fully optimal (unbiased and minimum-Variance) with

respect to the stochastic model for radar errors and payload

initial state uncertainty. The smoothing algorithm is mathe-

matically equivalent to batch processing optimally all of the

available data.

The algorithm operates on the input data backwards in

time, working from the final time step k = k back to the

initial step k = 0. The equations describing the algorithm
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are presented in the following (A [nxn], A [nxn], b [nxl], b

[nxl], B [nxn], C [nxm], and S -lnxn] are work arrays):

Initial Conditions

b = zero vector

A = zero matrix

[nxl] (5.7-7)

[nxn] (5.7-8)

For k = k to 0 stepping by -1

[nxl] (5.7-9)

Pk =

C

S

B

T -1
Hk'Rk

= OH,

= BT-[b

[nxn] (5.7-10)

[nxm] (5.7-11)

[nxn] (5.7-12)

[nxn] (5.7-13)

[nxl] (5.7-14)

BT-A-B + (()T-S-B

[nxl] (5.7-15)

[nxn] (5.7-16)

A = A. [nxn] (5.7-17)

Next k

In Eqs. 5.7-7 to 5.7-17, the parameter matrices 4>, ,

H^, and R, are computed by using the algorithms specified in

Sections 5.6.5, 5.6.7, and 5.6.8. When computing the meas-

urement noise covariance R, , the smoother should use the same
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processing mode (mode 1, 2, or 3 as defined in Section 5.6.8)

that is used in the Kalman filter module. For example, if the

filter changes from mode 1 to mode 2 at k = 55, then the smoother

module should compute R, using mode 1 for k < 55 and switch to

mode 2 processing at k = 55. Using inconsistent modes in the

filter and smoother modules can produce covariance matrices

having negative elements along their diagonals.

The innovation variances are used only for mode 3

processing. Therefore, when mode 1 or mode 2 processing is

used at time k, the innovation covariance matrix C^ is not

used by the smoother and is not a required input quantity.

5.7.3 Outputs

The outputs of the smoother module S\. each time step k

are the estimated state vector and its error covariance. The

state vector may be written in the following partitioned form,

in which the payload states are distinguished from the radar

error states:

~(payload)
-k

-(radar)
(nxl] (5.7-18)

In Eq. 5.7-18, the payload state vector is [6x1], and the radar

error state vector is [n xl], where n is number of radar error

states in the model. (For processing the WFF radar data from

Peru, n = 3.) The partition in Eq. 5.7-18 induces the follow-

ing partitions in the error covariance matrix:

(payload) p(p/r)

p(r/p) ,(radar)

[nxn] (5.7-19)
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(payload) =

(radar)

covariance of

=- error covariance of — K [n Xn 1 (5.7-21)e e

Pk = Pk = error cross-covariances (5.7-22)

The estimated payload state in Eq. 5.7-18 contains

the estimated position and velocity of the payload relative to

the nominal trajectory X, defined in Section 5.4.3. The posi-

tion coordinates and velocity coordinates are expressed in

earth-centered Cartesian inertial coordinates, with the posi-

tion coordinates listed first:

..(payload) _
-k [6x1]

16x1]

(5. 7"-23)'

(5.7-24)

To compute the estimated payload position and velocity
A £

coordinates relative to the center of the earth, r, and v, ,

the estimated state in Eq. 5.7-23 is added to the nominal state

in Eq. 5.7-24:

[3x1] (5.7-25)

vf = v, + V-k -k .[3x1] (5.7-26)

J"fc N̂

The error covariances of r, and v, are given by matrix

in Eq. 5.7-1.9.

The estimated systematic radar measurement errors

(which . are modeled by the radar error.states) are computed
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using the radar measurement matrix H5r . This 3*n matrix
K ' C

is defined by Eq. 5.6-28 and the discussion in Section 5.6.7.
The estimated bias and ramp errors in the radar measurements
at time step k are computed as follows:

^(bias/ramp) = HUadar).^radar) (3xl] (5.7-27)

The error covariance matrix of the estimated bias and ramp
errors is computed using the following formula:

[ "} T(bias/ramp) _ H(radar) D(radar) H(radar)
^k J - Hk *Pk Hk

[3x3] (5.7-28)

These equations are applied to the analysis of WFF radar data

from Peru in Section 5.8.

5.8 VERIFICATION OF THE TRAJECTORY ESTIMATION ALGORITHM

To verify the performance of the trajectory estimation

algorithm, WFF provided tracking data from Radars No. 8 and

No. 41 in Peru. The results of processing these data to esti-

mate a Nike-Orion trajectory and a Terrier-Malemute trajectory

are discussed in Sections 5.8.1 and 5.8.2.

5.8.1 Nike-Orion Trajectory

The data used in this verification of the trajectory

estimation algorithm were obtained from Radars No. 8 and No. 41,

which were simultaneously tracking a Nike-Orion (31.027) trajec-

tory. The results of processing data from Radar No. 8 are

discussed first. Then the results obtained using data from

Radar No. 41 are presented. Section 5.8.1 concludes with a

comparison of the two independent estimates of the trajectory.
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Radar No. 8 Data - Figure 5.8-1 depicts the residual

tracking data from Radar No. 8 used for this test. These plots

show the departures of the actual measurements from the nominal

measurements. (The nominal measurements would have been obtained

if an ideal radar had tracked the nominal trajectory.) The time

is measured starting with the nominal apogee, and the initial

conditions for the nominal trajectory are consistent with the

position and velocity data provided in the WFF documentation.

The parameters for the atmospheric drag force model are as

follows: drag coefficient = 1.5; payload mass = 286 kg; and
2

payload cross-sectional area = 0.15 m .

-0.25
RESIDUAL AZIMUTH

20 40 60
TIME (sec)

80 100

20 40 60
TIME (sec)

80 100

40 60
TIME (sec)

100

Figure 5.8-1 Residual Tracking Data, Nike-Orion (31.027)
Trajectory, Radar No. 8
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For these validation tests, the radar data (originally

sampled at 1-s intervals) were intentionally undersampled with

a sampling time of 5 s between consecutive measurements. This

provided.a realistic test of the trajectory estimation algorithm

while using a reduced number of measurements.

The error model for Radar No. 8 had three state vari-

ables: one of the states modeled a bias in the azimuth channel;

while the other two states modeled a bias and a ramp in the

range channel. The rms a priori uncertainties of these errors

were 0.5 deg for the azimuth bias, 1000 m for the range bias,

and 6 m/s for the range ramp. In addition to these calibration

error uncertainties, each measurement channel was modeled as

having random white noise with the following rms values:

0.04 deg in azimuth, 0.09 deg in elevation, and 3.7 m in range.

These noise values are the rms of residual tracking data com-

puted from raw measurements by subtracting a least-squares

linear trend from each channel of data. For estimating the

noise levels, typically 50 to 100 samples of radar data sampled

at 1-s intervals were used.

The a priori rms uncertainties of the initial payload

position and velocity were 1000 m for each of the three position

coordinates and 10 m/s for each of the velocity coordinates.

These values were selected to be large but plausible so that

the filter/smoother would rely primarily on the tracking data,

rather than on the initial conditions, for estimating the

trajectory.

The behavior of the Kalman filter can be monitored by

observing the innovations data, which are the .filter's one-step-

ahead predictions of the residual radar data. Figure 5.8-2

depicts the innovations for the Nike-Orion data. In these

plots the innovations have been normalized (divided by their

theoretical standard deviations) so that outliers can be more
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Figure 5.8-2 Kalman Filter Innovations, Nike-Orion (31.027)
Trajectory, Radar No. 8

easily identified. For example, in the plot of the range

innovations, there is a 4-sigma outlier (a measurement that

lies 4 standard deviations away from its expected value of

zero). The theoretical standard deviations of the innovations

are the square roots of the diagonal elements of the innovations

covariance matrix C, . The covariance C. is computed automat-

ically by the Kalman filter using Eq. 5.6-4. When the stochastic

error model of the Kalman filter is consistent with the tracking

data, the innovations are samples of unit-variance zero-mean

white noise. Statistically significant departures from this

behavior indicate that the data may contain errors that are not

modeled by the filter.
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Figure 5.8-3 shows the outputs of the smoother module,

In the first column of Fig. 5.8-3, the position of the payload

relative to the nominal trajectory is plotted as a function of

time. The solid lines are the smoothed estimates, and the

dotted lines are the 1-sigma uncertainties (one-standard-devia-

tion error bounds) of these estimates. The estimated payload

velocity relative to the nominal trajectory is plotted on the

right side of Fig. 5.8-3. Both position and velocity are

expressed in earth-centered Cartesian inertial coordinates.
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The following comments apply to Fig. 5.8-3:

• The rms position accuracy ranges from
110 m to 540 m, depending on the position
coordinate and the time

• The rms velocity accuracy ranges from
1.2 m/s to 3.4 m/s with very little
dependence on the time

• The rms accuracy estimates are computed
by the algorithm, based on the error
covariances generated by the Kalman
filter/smoother

• The algorithm was processing the data in
mode 3 for automatic outlier detection
and handling. Therefore, the outlier in
the range innovations was automatically
detected and appropriately processed.

The algorithm also estimated the systematic bias and

ramp errors in the radar measurements. The smoothed estimates

(o = theoretical standard deviation of the estimation error)

are as follows:

Azimuth Bias = 0.05 deg (o = 0.46 deg)

Range Ramp = 1.8 m/s (a = 3.5 m/s)

Range Bias = 200 m (a = 470 m)

These results indicate that the bias and ramp estimates are

imprecise (because the standard deviations are larger than the

estimates of the biases and the ramp). The reason for this is

that data from a single radar provides insufficient information

for the precise estimation of radar errors. Better precision

can be obtained by simultaneously processing the tracking data

from two or more radars tracking a single payload. The Kalman

filter/smoother can be extended to handle data from multiple

radars, but such an extension was not part of this investigation,
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Radar No. 41 Data - The residual data from Radar

No. 41, tracking the Nike-Orion 31.027 trajectory are depicted

in Fig. 5.8-4. An extremely large outlier occurs at 15 s in

the range data. This outlier is caused by a data processing

error and would normally be edited manually. However, as a

demonstration of the algorithm's automatic outlier processing

(mode 3 processing), the outlier is intentionally left in the

data. As with Radar No. 8, the data in Fig. 5.8-4 are sampled

at 5-s intervals.
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Three error states were used to model systematic bias

errors in the three radar channels. The a priori rms uncer-

tainties of these errors were 0.5 deg for azimuth and elevation

and 1000 m for range. In addition the random errors .in each

channel were modeled as white noise with the following rms

values: 0.04 deg in azimuth; 0.03 deg in elevation; and 45 m

in range.

The innovations from the Kalman filter are depicted

in Fig. 5.8-5. The data are normalized by their theoretical

standard deviations. Except for the isolated outlier in the

range data, the innovation values lie in the expected range.
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The smoothed position and velocity estimates, and

their 1-sigma error bounds, are presented in Fig. 5.8-6. The

following comments apply to these results:

The nns position accuracy is in the range
from 370 m to 580 m

The rms velocity accuracy is in the range
from 1.6 m/s to 2.2 m/s

The algorithm was operating in mode 3
and therefore automatically ignored the
extreme outlier in the range data.

RESIDUAL POSITION
ESTIMATES

ouu

400

— 200

P •

g-200
o.

-400

-finn

1 ?* POSITION COORDINATE

•

: _ _ _

ẑ
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The smoother also provided the following estimates of

the radar biases (a = theoretical standard deviation of the

estimation error):

Azimuth Bias = 0.05 deg (a = 0.46 deg)

Elevation Bias = 0.04 deg (a = 0.18 deg)

Range Bias = 220 m (a = 420 m)

The conclusion to be drawn from these results is that the data

provided by Radar No. 41 alone are not sufficient for precise

estimates of the radar biases.

Comparison of Trajectory Estimates - The data from

Radars No. 8 and No. 41 were processed separately to provide

two independent estimates of the Nike-Orion trajectory. In

this section, the two trajectory estimates are compared with

each other. The comparison shows that the two trajectory esti-

mates are statistically consistent with each other.

Table 5.8-1 lists the mean differences between the

two trajectory estimates (expressed as individual position and

velocity coordinates averaged over the span of the data proc-

essed). If the trajectory estimates from the two radars are

consistent, then the mean differences between them should be

less than, say, two standard deviations of the difference.

The theoretical standard deviation (a) of each mean difference

is also listed in Table 5.8-1. In the last column of the table,

the normalized mean differences are listed. These normalized

quantities express each difference as a multiple of its theo-

retical standard deviation. For consistency at a 2-a level,

the numbers in the last column of Table 5.8-1 should be less

than 2. An examination of the table shows that this criterion
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TABLE 5.8-1

STATISTICS OF DIFFERENCES BETWEEN
TWO NIKE-ORION (31.027) TRAJECTORY ESTIMATES

ESTIMATED
QUANTITY

1st Position
Coordinate

2nd Position
Coordinate

3rd Position
Coordinate

1st Velocity
Coordinate

2nd Velocity
Coordinate

3rd Velocity
Coordinate

MEAN
DIFFERENCE

300 m

730 m

620 m

1 . 6 m/s •

3.7 m/s

1 . 1 m/s

THEORETICAL
STD. DEV. (a)

410 m

550 m

620 m

2.1 m/s

3.6 m/s

3.1 m/s

NORMALIZED
MEAN DIFFERENCE

0.7 a

1.3 a

1.0 a

0.8 a

1.0 a

0.4 a

for consistency is easily met; the largest normalized differ-

ence between the two trajectory estimates is only 1.3 a. The

conclusion to be drawn from this comparison is that the trajec-

tories estimated from the two radar data sets are statistically

consistent.

5.8.2 Terrier-Malemute Trajectory

The final set of test data used for validating the

trajectory estimation algorithm was obtained from Radar No. 8

tracking a Terrier-Malemute (29.019) trajectory. An initial anal-

ysis of the raw tracking data disclosed a significant growing

oscillation in the range rate having a frequency of 0.5 Hz and

a peak magnitude of 300 m/s. The cause of this oscillation is

unknown.
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Therefore, the range data were smoothed by computing the 2-s

running mean of the data to suppress the 0.5-Hz error signal.

The radar data were then resampled at 10-s intervals for proc-

essing with the trajectory estimation algorithm. In an oper-

ational setting this resampling would not necessarily be

recommended. But for validating the trajectory estimation

algorithm, the resampling is advantageous because it permits a

realistic test of the algorithm with a smaller data processing

effort.

WFF data on the nominal velocity at time k = 0 (nominal

apogee) were not available for this analysis. Therefore, the

inital conditions for the nominal trajectory were determined
•

by iteration as explained in the following paragraphs.

The raw radar data (sampled at 1-s intervals) were

first transformed to earth-centered Cartesian inertial coordi-

nates. Second, linear trends were fitted to the first 20 s of

the data. Finally, the linear trends were used to estimate

the payload velocity coordinates at time step k = 0. The nominal

trajectory was computed using this estimate of the initial

payload velocity together with the nominal payload position

determined from WFF documentation. The nominal measurements

and residual measurements were computed using the nominal tra-

jectory, and the residual measurements were filtered and

smoothed. The a priori state error covariance was the same

one used for processing data from Radar No. 41 on the Nike-

Orion trajectory, and the radar error model had three bias

states (one for each measurement channel) and additive white

noise. The initial rms uncertainties of the bias states were

0.5 deg in angle and 1000 m in range. The rms of the white

noise for each channel was determined using the method recom-

mended in Section A.3.2 (based on the level at high frequencies

of the estimated power spectrum for each data channel). The
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filter and smoother were operated in mode 1 (no outlier detec-

tion) so that the measurement noise model had a fixed covariance

matrix. It is important to use mode 1 processing (and mode 2

processing if there are gaps caused by missing data) because

large innovations may be produced during the first iterations,

when the nominal trajectory is inaccurate. In mode 3 processing,

these large innovations would be interpreted as outliers and

the speed of convergence of the iterative process would be

reduced.

The smoothed estimate of the initial payload vector

was then used to update the original initial conditions for

computing the nominal trajectory. Using the updated initial
•

position and velocity, a new nominal trajectory was computed,

and the whole process was repeated using the same a priori -

state error covariance and measurement noise covariance. The

smoothed estimates of the state vector were significantly

smaller than in the previous iteration, which indicated that

the second nominal trajectory was closer to the true trajectory

than the first one.

The resulting smoothed estimate of the payload's ini-

tial state was again used to update the initial position and

velocity to compute a third nominal trajectory, and the data

analysis was repeated a third time. However, this time the

covariance matrix of the measurement noise model was adjusted

so that the innovations would have the expected 1-2 sigma range

of values. The resulting rms measurement noise model was 0.3 deg

in azimuth, 0.02 deg in elevation, and 15 m in range. The

results of this last iteration are discussed in the following.

The residual tracking data from Radar No. 8 are de-

picted in Fig. 5.8-7, with a sampling interval of 10 s between

measurements. To model the offsets in the data, three radar
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error states were used to model possible biases in each of the

three channels. The innovations produced by the Kalman filter

operating in mode 1 are shown in Fig. 5.8-8. Three-sigma out-

liers occur in the elevation and range data near the end of

the data set. Since the filter was operating in mode 1, it

used a measurement noise model with a fixed covariance matrix.

Therefore, the outliers were processed suboptimally in this

example. Nevertheless, the smoothed trajectory estimates de-

picted in Fig. 5.8-9 are free of jumps and are qualitatively
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similar to the results of mode-3 processing for the Nike-Orion

trajectory discussed in Section 5.8.1. Smooth trajectory

estimates are produced in this case because the filter/smoother

produces a trajectory estimate that is consistent with the

physics of a massive payload in free fall.

An examination of Fig. 5.8-9 leads to the following
conclusions:
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The rms position accuracy ranges from
280 m to 570 m, depending on the posi-
tion coordinate and the time

The rms velocity accuracy ranges from
0.6 m/s to 1.7 m/s with very little
dependence on the time.

The smoothed estimates of the radar biases are listed

in the following (a = theoretical standard deviation of the

estimation error):

5-65



Azimuth Bias = 0.24 deg (o = 0.40 deg)

Elevation Bias = -0.24 deg (a =0.03 deg)

Range Bias = 1040 m (o = 200 m)

These results indicate that the elevation and range biases

have been estimated with reasonable precision because the

one-sigma error bounds are much smaller than the magnitudes of

the estimated biases.

5.8.3 Conclusions

The validation tests described in Section 5.8 verify

that the trajectory estimation algorithm yields consistent

results when it is used to estimate the trajectory of a single

payload that was tracked simultaneously by two radars. The

validation tests also verify that the algorithm automatically

handles isolated data outliers and provides estimates of the

rms accuracies of the estimated position and velocity coordi-

nates of the payload. The test results include a demonstration

of using the algorithm iteratively to estimate the initial

velocity of a payload when only nominal position data were

available.

5.9 SUMMARY

An algorithm has been developed for processing radar

tracking data to estimate payload trajectories above the atmos-

phere (altitude > 50 km). The algorithm is based on Kalman

filtering and smoothing techniques and is optimal with respect

to models' for gravitation, atmospheric drag, radar measurement

errors, and errors in the assumed initial position and velocity

of the payload.
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The algorithm has three operating modes:

• The first mode employs a radar noise
model having a fixed noise covariance
matrix. This mode is used for itera-
tively refining an initial poor estimate
of the payload initial position or
velocity.

• The second mode employs a variable radar
noise model having a very large noise
covariance for specified measurements in
the tracking data. This mode is used
for optimally processing data having
gaps caused by missing data,or very noisy
data.

« The third mode employs a variable radar
noise model which employs a noise covari-
ance that is automatically increased in
a continuous fashion when the filter
innovations indicate data outliers. This
mode is used for optimally processing
data having isolated data errors, as
opposed to intervals of many missing or
noisy data, which are better processed
using mode 2.

The algorithm is optimal in the sense that it computes

unbiased minimum-variance estimates based on the following

error models:

The initial payload position and velocity
coordinates of the payload are random
variables with a specified error covari-
ance matrix

The radar noise is modeled as additive
white noise with a specified baseline
covariance matrix. In mode 2 or mode 3
processing, the noise model covariance
is increased from the baseline values as
appropriate
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• The systematic radar errors are modeled
as biases and ramps. The initial uncer-
tainty about the magnitudes of these
systematic errors is represented by an
error covariance matrix.

In addition to the error models, the algorithm also

uses an accurate model of the dynamics of the payload as it

falls in the earth's gravitational field subject to nominal

atmospheric drag forces. The Kalman filter and smoother algo-

rithms are linear time-varying data processors that process

residual radar measurements (residual data = raw data - nominal

data, where the nominal data correspond to an ideal radar

tracking the nominal payload trajectory based on nominal initial

conditions, the normal gravitational field of an ellipsoidal

earth model, and nominal atmospheric drag forces).

Because the algorithm is optimized with respect to

the physics of the falling payload and the statistics of the

important error sources, the estimated trajectories are smooth

even when the tracking data are noisy. Moreover, the algorithm

automatically computes the error covariance of the estimated

payload state and radar error states at each time step.

Using radar data provided by WFF from Radars No. 8 and

No. 41 in Peru, the performance of the algorithm has been suc-

cessfully demonstrated. In particular, the algorithm provided

two mutually consistent estimates of a Nike-Orion trajectory

that had been simultaneously tracked by the two radars.
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6. SUMMARY. CONCLUSIONS. AND RECOMMENDATIONS
FOR FUTURE STUDY

6.1 SUMMARY

The principal accomplishments of this study are sum-

marized in the following:

• The accuracy of the current WFF data
smoothing technique was analyzed for a
variety of radars and payloads, using
tracking data provided by WFF for this
study

• Alternative data noise reduction techniques
were assessed and recommendations were
made for improving radar data processing
at WFF

• A data-adaptive algorithm, based on Kalman
filtering and smoothing techniques, was
developed for estimating payload trajec-
tories above the atmosphere from noisy
time-varying radar data

• The new trajectory estimation algorithm
was tested and verified using radar
tracking data provided by WFF.

6.2 CONCLUSIONS

The principal conclusions of this.study are summarized

in the following. More detailed discussions are provided in

Sections 2.4, 3.7, 4.4, and 5.9.
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Rms noise levels in smoothed radar data vary with payload,

• The estimated rms noise levels of posi-
tional data products (for Zuni, Super
Loki Optical, and Super Loki Sphere
trajectories tracked by radars Nos. 3
and 5) produced by the current WFF
smoothing filters have the following
range of values for the data sets
analyzed in this study:

Latitude and Longitude: 3 pdeg to 73 pdeg
Height: 1.3 ft to 6.9 ft

Current VFF smoothing techniques can be improved by using
the following recommended techniques;

Subtracting orthogonal polynomials from
the radar data before smoothing, to reduce
possible distortion of the nominal tra-
jectory by the smoothing filter

Estimating the high-frequency rms noise
levels in smoothed tracking data using
an autoregressive modeling algorithm, to
monitor data quality and provide quanti-
tative error estimates with the existing
smoothing filters

Replacing the current midpoint smoothing
filters with an alternative Kalman filter/
smoother, to process radar data optimally
when the data contain significant time-
varying noise, measurement gaps caused
by missing data, or large uncertainties
on radar calibration errors.

The Kalman filter/smoother algorithm yielded reasonable
trajectory estimates and error analyses when it was tested
using radar tracking data provided by WFF.

The algorithm is data-adaptive, automati-
cally handles data outliers, and can
optimally smooth data sets having measure-
ment gaps caused by missing data.
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6.3 RECOMMENDATIONS FOR FUTURE STUDY

Based on the results of this study, the following

recommendations are made for future study:

The Kalman filter/smoother algorithm can be extended to
increase its flexibility;

• To process data from two or more radars
simultaneously

• To model data errors that are more complex
than data gaps, additive white noise,
linear trends, and isolated outliers

• To estimate automatically the initial
payload position or velocity from the
radar tracking data alone

• To calibrate radars based on future
Geosat satellite tracking techniques.

A smart preprocessor for radar tracking data can be
developed:

To select and setup appropriate error
models automatically for the Kalman
filter/smoother algorithm

The preprocessor could employ artificial
intelligence techniques together with
automated stochastic state-space modeling
algorithms.
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APPENDIX A

ORTHOGONAL POLYNOMIALS

The purpose of this appendix is to describe the rec-

ommended way of using least squares to fit orthogonal poly-

nomials to time-series data. In this study, the orthogonal

polynomials are used to model nominal payload trajectory sig-

nals in radar tracking data.

The polynomials used in this study are optimal in the

following sense (Ref. 12):

Given the N data:

yk = k
th datum, k = 0, 1, ..., N-l (A-l)

and given the polynomial pm(x) of degree m in the variable x:

n
m/v) = c xm + r xm~^ -I- + r (A-9)p v A / \- A T v~ _ -I .A ~ . . . T t, v« ^ /

Find the coefficients c , c,, ..., c that minimize the sum-

squared error e :

N-l

e2 = ]T [yk - p
m(k)]2 (A-3)

k=o

This is a conventional least-squares problem using ordinary

polynomials. The equations for computing the optimal coef-

ficients become ill conditioned as N and m increase. This

leads to serious numerical difficulties in practice. To reduce

these numerical problems, the problem is reformulated using

A-l



polynomials fn(x) of degree n that are orthogonal on the disr

crete interval k = 0, 1, ..., N-l and normalized so that their

values are in the range from -1 to +1 . A linear combination

of these polynomials is used in place of the formula for pn(x)

given in Eq. A-2. They are called Chebyshev polynomials on a

discrete domain (Ref. 12) and are computed recursively as

follows.

f°(x) = 1 (A-4)

f1(x) = 1 - (2x)/N (A-5)

and for n = 1, 2, . . . , N-l

fn+1(x) = [(2n+l)(N-2x)fn(x) - n(N+n+l )fn"1(x) ] (n+1 ̂(N-n)'1

(A-6)

The optimal polynomial p (x) of degree m is expressed in terms

of the orthogonal polynomials as follows:

m

Pm(x) = ̂ anf
n(x) (A-7)

n=o

In Eq. A-7, the coefficients a are computed as follows:

an = <ynf n ' n = 0 , 1 ,-... , m (A-8)n n n

where the numerator is the inner product

N-l

( y , f n ) = y f < k ) (A-9)
k=o
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and the denominator of Eq. A-8 is given by the following ex-

pression involving factorials

<fn,fn) =
(2n+l)(Ni

A-3



APPENDIX B

AUTOGRESSIVE MODELING

This appendix describes an effective method for using

autoregressive (AR) modeling to estimate the power spectra of

time series. The AR models are used in this study to estimate

the power spectra of noise-like errors in radar tracking data.

An autoregressive model of order p for time series

y, , k = 0, 1, ..., N-l, is the difference equation

P

yk = ̂
 cj'yk-j + wk' k = p, p+l, ..., N-l (B-l)

Equation B-l is driven by the residual noise w, . AR models

are developed from time series by choosing the coefficients

c., j = 1 to p, so that the sample mean square (VAR) of the

residuals is minimized:

N-l

VAR = iR; Z Wk (B'2)

k=p

In Eq. B-2, the limits of the summation are chosen to avoid

running off the ends of the time series. Choosing the AR coef-

ficients to minimize VAR is known as the covariance method of

AR modeling.

If the AR model is appropriate for the process gener-

ating the data y, , then the residuals w, are a sample of approx-

imately white noise. It follows that the power spectral density

(power spectrum) of the discrete-time process generating the

data y, can be estimated as follows:
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™ 7 (B-3)

k=l

where F [cycles/sampling interval] is the normalized frequency

variable. F = 0.5 is the folding frequency. The variance of

the random process having the power spectrum S (F) is given by

the area under the spectrum (including negative frequencies):

/

1/2

variance = / SQ(F)-dF (B-4)

A natural estimate for the power spectrum of the under-

lying continuous-time process (of which the data y, are

uniformly-spaced sample values, i.e., y, = y(k-6t) with

6t = sampling interval) is

So(f/fs> fs
S(f) = f for |f| < ̂  (B-5)

S

where

f = l/(6t) = sampling frequency [Hz]
S

f = spectrum frequency [Hz]

S(f) = power spectrum [variance/Hz]

For each time series y,, k = 0, 1, ..., N-l, the best

choise of the order p is estimated by computing the Akaike

information criterion (Refs. 2-4) for each model in a family

of AR models.
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Each model in the family corresponds to a dif-

ferent model order p = 0, 1, ..., N/20. For each of these

models the A1C is computed:

AIC = N-loge<VAR) + 2-p (B-6)

That model for which the AIC is smallest is chosen as the best

AR model in the family for the purpose of modeling the under-

lying process that generated the observed data y,. An algorithm

(ACOVAR) for efficiently computing the family of AR models and

selecting the model order using the AIC is specified in Ref. 13.
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APPENDIX C

STOCHASTIC STATE-SPACE MODELING

C.I INTRODUCTION

This appendix describes a canonical-variates (CV)

technique for the stochastic modeling of vector time series.

(This is a modification and extension of ideas originally pre-

sented in Ref. 14). The CV method differs significantly from

the one-step linear prediction techniques that are now commonly

used to develop autoregressive (AR all-pole) and autoregressive-

moving-average (ARMA pole-zero) models from empirical data.

The technique has been used successfully with a variety of

geophysical data sets for spectrum estimation, reduced-order

modeling, and optimal filtering. The CV algorithm is recursive

in the data. Therefore the data may consist of several short

time series instead of one contiguous sequence.

The modeling technique was motivated by Akaike's orig-

inal work (summarized and extended in Ref. 3), which describes

an ARMA modeling technique based on a canonical-variates analy-

sis (Ref. 15) in the time domain. W.E. Larimore modified and

extended Akaike's approach to state-space modeling (Ref. 16).

In this appendix the CV technique is interpreted as a form of

multi-step linear prediction. This leads to a simplified deri-

vation of the algorithm and shows that the technique does not

reduce to conventional one-step rediction-error modeling.

An important advantage of the CV approach is that a

family of optimal state-space models is generated by solving a

finite number of linear equations for the state-space model

parameters. This fact distinguishes the CV technique from
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other approaches, such as Gaussian maximum likelihood and con-

ventional one-step prediction, which all require that nonlinear

equations be solved for state-space modeling. These nonlinear

equations lead to iterative calculations that may or may not

converge, depending on the particular data being analyzed. In

contrast, the only iteration in the CV approach occurs while

computing Singular Value Decompositions (SVDs). The SVD is

well understood and can be implemented with dependable algo-

rithms (Ref. 17).

C.2 SUMMARY OF RESULTS

The CV approach to state-space modeling consists of

three steps. The first step is to solve a family of least-

squares multi-step linear prediction problems with different

rank constraints on the predictors. This is a canonical-

variates analysis of the joint behavior of the local past and

local future of the time series, in which several future vec-

tors of the time series are being simultaneously predicted

using several past vectors. The entire family of predictors

is computed at one time by using the SVD. The output of this

analysis is the definition of the canonical states in terms of

the observed data. The state vector is expressed as a linear

combination of the local past, and the individual states are

canonical variates.

The second step is to solve a family of linear least-

squares problems that use the state vectors from Step One as

given quantitites. This yields the parameter matrices of a

family of state-space models for the time series. These models

differ from each other in their complexities, ranging from the

simplest white-noise model containing no states, to a model of

maximum complexity containing the largest number of states
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permitted by the CV analysis. For the number of states it

contains, each of these models is optimal in a least-squares

sense.

The third step is to select one of the state-space

models from the family generated during Step Two. For the

purpose of modeling the underlying process that generated the

empirical data, the Akaike information criterion (Refs. 2-4)

is used to select that model which is best supported by the

data. Alternatively, a model with a reduced number of states

is selected for reduced-order modeling. A formula is given in

Section C.3 for computing the amount of mutual information be-

tween the future and past that is lost by reducing the number

of states when modeling Gaussian processes.

C.3 ANALYSIS

C.3.1 Step One; Canonical Variates

A time series of empirical data is denoted by the

sequence of m-vectors y, for k = 1 to n'. An ergodic state

space model (in innovations form) for the data process is

represented by the following equations:

= Hxk + ,k (C-2)

R = El-^k1 (c"3)

The nxl state vector is x,, and y, is the observed mxl output

vector at time step k. The nxn state-transition matrix is 4> ,

while G is the nxm noise-gain matrix, and H is the mxn output
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matrix. The mxm covariance matrix of the zero-mean white noise

(steady-state) innovations process v* is R. The noise vector >.
K J

is uncorrelated with v-. for all j

with x, for all j ̂  k.

k; is also uncorrelated

The primary objective of state-space modeling is to

use observations of y, for k= 1, 2, ..., n1 to estimate val-

ues for the model order, n, and the parameter matrices <t>, G,

H, and R. The CV technique for doing this is based on a local

past and local future for y, . The local past zjl(p)» of length

p, is the pmxl vector containing the p most recent predecessors

of vk:

k = p+1, n'+l (C-A)

The local future z,(f), of length f, is the fmxl vec-

tor containing y, and the next f-1 data vectors:

zk(f) = k = 1, ..., n'-f+l (C-5)

In many applications the lengths of the local future and past

are equal (f=p).

The state vector x, contains n numbers: the states

at time k. These states contain all the information available

from the entire past zĵ 08) about the entire future z, (»). In
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other words, x, is a sufficient statistic of z, (») for opti-

mally predicting z,(«).

The empirical data are the finite sequence £k for

k = 1 to n1. To estimate the corresponding sequence of state

vectors, x, is expressed as a linear transformation L(n) of

the local past z, (p):

xk = L(n) z~(p), k = p+1, ..., n1 (C-6)

In Eq. C-6, the nxpm matrix L(n) is to be defined so that three

conditions are satisified:

• Given n, the vector x, is optimal for
+

predicting the local future z,(f). That

is, for some fmxn matrix M(n) , the fol-
lowing estimates of the local future are
optimal in a weighted least-squares sense:

z£(f) = M(n) xk, k = p+1, ..., n'-f+l

(C-7)

• The state vector x, is standardized (for

convenience) so that the n states are
uncorrelated with each other, and each
state has zero mean and unit sample vari-
ance. This means that the sample covari-
ance matrix of x, (defined in Eq. C-8

and denoted (x,x)) is the n*n identity

matrix as indicated in Eq. C-9:

- ^ -k *k * [n'-f-p+l]'1 (C-8)

n'-f+l

k=p+l

(x.x) = In (C-9)
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• The states in x, are arranged in the

order of their importance for predicting
the future (as measured by a weighted
least-squares error criterion). The
first state is most important, the second
state is second most important, etc.

The optimal L(n) and M(n) matrices are determined by

solving the following linear prediction problem. Fix the posi-

tive integers n, f, and p, with n £ min[fm,pm]. Find the nxpm

matrix L(n) and the fmxn matrix M(n), such that the following

estimate of the local future

z£(p) = M(n) L(n) z~(p), k = p+1 to n'-f+l

(C-10)

has the error vector

ek(n) = z£(f) - zk(f) (C-ll)

with the smallest weighted sum-square error J(n):

n'-f+l

J(n) ^ ]T ej(n) W(f)'1 e_k<n) (C-12)

k=p+l

The fmxfm weighting matrix W(f) is the sample covariance matrix

of the local future:

n'-f+l

W(f) ̂  ̂  zk(f).[zk<
f)lT-[n'-P-f+ir1 (C-13)

k=p+l

This choice of the weighting matrix leads to a definition of

the state vector that maximizes the mutual information between

the local future and the local past. Moreover, W(f) makes the
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canonical analysis independent of the units in which the ob-

served data y, are expressed. (In Eq. C-13), if W(f) is sin-

gular, then f is larger than it needs to be, and its value

should be reduced.)

Fragmented data sets, consisting of several time ser-

ies, are handled in Eqs. C-12 and C-13 by summing over all

contiguous data segments, taking care to avoid running off the

ends of the segments, and then dividing by the total number of

terms in each sum.

The optimal choices for L(n) and -M(n) are found by

defining the standardized future vectors (with their depend-

encies on p and f suppressed):

*k - (z+,zVT/2 • z+, k = p+1, ..., n'-f+l

(C-1A)

+ + -T/2In Eq. C-14, the notation (z ,z ) ' represents the trans-

posed inverse of any matrix square root of the sample covari-

ance of the local future. The covariance matrix and its

square-root matrix are defined by the following equations:

n'-f+l
, + +v A ^"^ + r + iT ,
(Z , Z ) - > Z, [ Z, ] • [

k=p+l

(z4" z+) = (z+ ẑ )T/2 • (z+ z+v-c. .»^ / — v<& ,^ y vz^ >z^

The standardized past vectors are defined the same
way:

- A , .-., n'-f-H

(C-17)
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(If the inverse matrix in Eq. C-17 does not exist, then p is

larger than it needs to be, and its value should be reduced.)

This standardization forces the sample covariance matrices of

s, and s, to be identity matrices.

Consider the predictor P of s, given si":

-k = P-k' k = P"1"1' "•' n'-f+1 (C-18)

Choosing the matrix P in Eq. C-18 to minimize the sum-square

error J' (n)

n'-f+l

J'(n) =

k=p+l

is equivalent to minimizing the sum-square weighted error J(n)

in Eq. C-12, provided that the matrix P is constrained to have

a rank of n. From least-squares theory, it is known that the

optimal P (with no rank constraint) is

P = (s+,s~) = (z+,z+)~T/2 (z+,z~) (z~,z")~ (C-20)

To find the optimal P for the present problem (for which the

rank of P is n) , factor the P in Eq. C-20 by using the- singular:

value decomposition:

P = U S VT (C-21)

In Eq. C-21, U is an fmxfm orthogonal matrix, V is a pmxpm

orthogonal matrix, and S is an fmxpm matrix. The diagonal

elements S(k,k), for k = 1 to min[fm,pm], contain the singular

values arranged in order, from largest to smallest. The opti-

mal rank-n predictor is denoted P(n) and is given by the

formula

P(n) = U(n) S(n) VT(n) (C-22)
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In Eq. C-22, S(n) is the upper-left nxn submatrix of S. The

pmxn submatrix V(n) contains the first n columns of V, and the

fmxn submatrix U(n) contains the first n columns of U.

By replacing the P in Eq. C-18 with the P(n) defined

in Eq. C-22 and then solving Eq. C-18 for the predicted local

future, the optimal rank-n predictor of z, is found to satisfy

the following equation:

ik = Ĉ z*)172 U(n) S(n) VT(n) (z',zTT/2 z" (C-23)

By comparing Eq. C-23 with Eq. C-10, the optimal prediction -

matrices M(n) and L(n) are identified:

L(n) = VT(n) (z~,z~rT/2 (C-24)

M(n) = (2 ,z )1/A U(n) S(n) (C-25)

This is the only grouping of terms which guarantees that the

state vector, defined as

xk ^ L(n) z~ (C-26)
K. l\

has the following two properties: (1) its sample covariance

matrix (x,x) (as defined by Eq. C-8) is the nxn identity

matrix; and (2) it contains the states arranged with the most

important state first, the second most important state second,

etc.

In the parlance of canonical-variates theory, the

states defined by Eq. C-26 are canonical variates, and the

singular values S(k,k), for k = 1 to n, are the first n canoni'

cal correlations between the past and the future. For
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Gaussian processes, the mutual information rate I(n) between

the future and past conveyed by x, is given by the formula
(Ref. 18)

n

Kn) = - ̂ log2[l-S
2(k,k)]/2 [bit/sample] (C-27)

k=l

C.3.2 Step Two: State-Space Parameters

The output of Step One is the definition of the canon-

ical state vector xk, for times k = p+1 to n'-f+l, and for

state orders n = 1 to min[fm,pm]. The object of Step Two is

to use Jthese state vectors and the observed data (y. ' for k = 1

to n') to estimate the parameters of a family of ergodic state-

space models for the underlying stochastic process that gener-

ated the yk vectors. Each model corresponds to a different

choice for n. The state-space parameter matrices <t>, G, H, and

R are estimated by using least squares, as outlined in the

following.

For each state order, n = 1 to min(fm,pm), the

measurement matrix H in Eq. C-2 is selected to minimize J"(n),

the sum of squares of the innovations _, (which are defined by

their occurrence in Eqs. C-l to C-3):

n'-f+l

J"(n) = ̂  »l v^ (C-28)

k=p+l

The H that minimizes J"(n) is given by least-squares
theory as follows:

H = (x.xXx.x)"1 = (£,x) (C-29)
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n'-f+l

(Y..X) - 2 ^k ̂ k ' In'-f-p-nr1 (C-30)
k=p-H

n'-f+l

<x,x) - ̂
k=p+l

xk x

In Eq. C-29, the simplified right side is valid because the

sample covariance matrix (x,x) of the canonical state vector

is an nxn identity matrix. The sample covariance matrix (v.,v)

of the innovation is then given by the following equation:

(v*JL> = <Y->Z) - HHT (C-32)

It is known from the theory of least squares that

Eq. C-29, together with Eq. C-2, imply that j,, is uncorrelated

with x, for k = p+1 to n'-f+l. Therefore, the optimal linear

estimate of x,+, , given x, and j/, , is given by Eq. C-l if, and

only if, the 4> and G matrices are selected as follows:

4> = (x^xMx^x)"1 = (x̂ x) (C-33)

G = (x-pĵ U.j,)"1 = [(Xj.x) - (xj.xm1] • (ĵ jf)"1

(C-3A)

In Eqs. C-33 and C-34, the covariance matrix (ĵ .ĵ ) is defined

by Eq. C-32 and the sample lagged covariance matrices are de-

fined as follows:

n'-f+l

x - [n'-f-p+l]-1 . (C-35)

k=p+l

n'-f+l

- X ^ ^ ' In'-f-p+l)'1 (C-36)
k=P+l.



The parameter matrices 4> , G, and H of the model repre-

sented by Eqs. C-l and C-2 are defined in Eqs. C-29, C-33, and

C-34. The innovation covariance matrix R for the model is

estimated as follows. First Eq. C-2 is solved for v,, and

this expression is substituted into Eq. C-l; this yields the

following pair of equations in which y, is the input and

j;, is the output:

k + Gy_k (C-37)

(C-38)

Equations C-37 and C-38 are used to process the observed data

y, for k = p+1 to n1 to compute the innovations time series v,

for the same range of k. In this calculation, the initial

state x +, is computed from y, , y~ > • • • » Y_ using Eq. C-26.

The £, , computed from Eq. C-38, are then used to compute the

sample covariance matrix R for the (steady- state) innovations:

nf

R =
k=p+l

Equation C-39 is a more accurate way of selecting the

model noise covariance matrix R than Eq. C-32. The reason for

this is that Eq. C-32 is based on the fact that the state co-

variance matrix (x,x) is the nxn identity matrix when the x,

vectors are computed using Eq. C-26 from the CV analysis of

Step One . However, the matrix R should be selected to model

the behavior of the state process defined by Eqs. C-l to C-3

when the matrices 4> , G, and H are defined by Eqs. C-29, C-33,

and C-34. This state process would normally not have an iden-

tity covariance matrix, although it may be close to being an

identify matrix. Equation C-39, being a direct calculation

based on the model equations, is the preferred estimate of the

steady-state innovations covariance matrix.
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In Eq. C-39, as in all other summations over the data,

fragmented data sets are handled by summing over all available

contiguous segments of data, with care taken to avoid running

off the boundaries of the data. Each sum is then divided by

the number of terms in the sum.

C.3.3 Step Three: Model Selection

The output of Step Two is a family of state-space

models. Each model is optimal in a least-squares sense, given

the state order n, the state vectors from Step One, and the

empirical data. But which of these models is best for modeling

the underlying stochastic process that generated the empirical

data? A logical criterion for model selection is to select

that model which has the largest expected value for its Gaussian

log likelihood evaluated on future data sets. The Akaike in-

formation criterion (AIC) is an asymptotically (as the number

of data increases) unbiased estimator of this measure of fit.

(The AIC is not, and was never intended to be, an estimate of

"true" model order. It is, however, a rational criterion for

selecting that model which is most likely to be the best model

in the family for modeling the underlying data process, as

opposed to a model for the detailed kinks and wrinkles of the

available data y, for k = 1 to n1.)

The AIC(n) is evaluated for each model (i.e., each

state order n). The model having the smallest AIC(n) is se-

lected as the best model in the family:

n '
AIC(n) = ̂  loge d e t [ C k ( n ) ] U 4mn (C-40)

k=l *- ^
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In Eq. C-40, det(C, (n)] is the determinant of the time-varying

innovations covariance matrix at time k for the model with

n states. The innovations covariance matrix C,(n) is rigorously

computed by using a time-varying Kalman filter (Ref. 5) that

optimally predicts y. for k = 1 to n', given the available

past data £. for j = 1 to k - 1. A less accurate, but much
J

easier to compute approximation is to use R, the steady-state

innovations covariance matrix of the model, in place of C, (n)

in Eq. C-40.

Equation C-40 is derived from the fact that the state-

space model defined by Eqs. C-l to C-3, with n states and m out-

puts, has 2mn + m(m+l)/2 independent parameters (which is not

the number of literal scalars in the matrices <t>, G, H, and R).

The 4mn term in Eq. C-40 is twice the number of independent

parameters to within the constant term m(m+l). (This neglected

term is constant, i.e., independent of how many states are

being considered for a model.)

Choosing n to minimize AIC(n) may yield a larger value

of n than is necessary or desirable for reduced-order modeling.

In this case a smaller value of n is selected to reduce the

complexity of the model. An estimate of the mutual information

between the local past and local future that is lost by omitting

a specified number of states can be computed using Eq. C-27.

C.4 CONCLUDING COMMENTS

This appendix has described a practical method of

developing state-space models for the underlying random proc-

esses that generate observed vector time-series data. When

only n' data vectors are availble for analysis, there is a

limit to how large the local future and local past can be.
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The larger the length f of the future and the length p of the

past, the more complicated the state-space models can be. But

at the same time, increasing f and p also decreases the number

of predictions that can be performed on the available data.

For a fixed number of data vectors, there is a limit to the

number of states n that can be usefully estimated from the data.

As a practical guideline, the total number of data n1 should

satisfy the following inequality:

n' >_ 22n + f + p
(C-41)

n = number of states £ min(fm,pm)

It can be shown that if the lengths f and "p of the

local future and past and the number of states n are restricted

in accordance with inequality C-41, then there will be at least

10 statistical degrees of freedom for each free parameter in

the canonical variates analysis. When f, p, and n are too

large for the amount of time-series data available, the result-

ing stochastic model is not a reliable model for the underlying

random process. Instead, it is a representation (in the sense

of curve fitting) for the particular kinks and wrinkles in the

observed time-series. Another reason for requiring sufficient

degrees of freedom is that the minimum-AIC rule for selecting

the number of states is rigorous for large data samples, which

provide many degrees of freedom in the model parameter estimates
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APPENDIX D

COORDINATES, TRANSFORMATIONS. AND COVARIANCES

The purpose of this appendix is three fold: (1) to

define the coordinate systems used in this study; (2) to present

the equations for transforming between these coordinates; and

(3) to present the formulas for computing covariance matrices

of transformed position vectors.

D.I COORDINATES AND TRANSFORMATIONS

D.I.I Earth-Centered Cartesian Inertial Coordinates

Earth-centered Cartesian inertial coordinates are

defined with the aid of Fig. D.l-1, which depicts the three

coordinate axes and their relation to the earth at time t = 0.

Axes No. 1 and No. 2 span the equatorial plane, while axis

No. 3 is directed north. The orientation of these coordinate

axes is fixed and is defined by the orientation of the earth

at time t = 0 as follows: axis No. 1 passes through the prime

meridian and axis No. 2 passes through the equator at 90 deg

east longitude. The origin of the coordinate axes is fixed to

the center of the earth. Although this coordinate frame trans-

lates with the earth, it is an accurate approximation to an

inertial frame for the purpose of analyzing the motion of a

payload near the earth.

D. 1.2 Geocentric Coordinates

Geocentric (earth-centered and earth-fixed Cartesian

coordinates are defined with the aid of Fig. D.l-2, which
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Figure D.l-1 Orientation with Respect to the Earth of the
Earth-Centered Inertial Coordinate Axes at
Time t = 0.

EQUATORIAL
PLANE

A 7970

PRIME
MERIDIAN

Figure D.l-2 Orientation with Respect to the Earth of the
Geocentric Coordinate Axes at Time t.

D-2



depicts the coordinate axes and their fixed relation with

respect to the earth. At time t = 0, the geocentric coordinate

axes Nos. 1, 2, and 3 correspond to the earth-centered Cartesian

inertial coordinate axes defined in Section D.I.I. At any

other time t, the geocentric axes Nos. 1 and 2 rotate with the

earth about the axis No. 3 through an angle Qt with respect to

the inertial axes, where ft is the rotational velocity of the

earth about axis No. 3.

The relation between the inertial and geocentric Car-

tesian coordinates at time t is given by the following

equations:

--t

.(in) _

..(geo)
rl,t

_(geo)
r2,t

-(geo)
r3,t

"rUn)
rl,t

r(in)r2,t

r(in)r3,t

geocentric position
coordinates (D-l)

_ inertial position
coordinates (D-2)

(geo) _ T(geo) . ̂ (
t " rt,(in) -t (D-3)

(in) _ T(in) . -(geo)
^t * ̂ .(geo) ^t

(D-A)
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(geo) _~

" cos(fit)

-sin(fit)

0

sin(fit) 0

cos(fit) 0

0 1

(D-5)

t,(geo)
_ T(geo)
" t,Un)

(D-6)

Geocentric spherical coordinates (north latitude,

east longitude, and radial distance) are defined with the aid

of Fig. D.l-3. The relation between the Cartesian (r̂ , r^*

r~) and spherical (<t>, A, R) geocentric coordinates are given

by the following transformation equations:

A 7969

PRIME
MERIDIAN

EQUATORIAL
PLANE

Figure D.l-3 Spherical Geocentric Coordinates of
Point P. \ = East Longitude, 4> = North
Latitude,' R = Radial Distance
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2 2 ^
R = [rl + r2 + r3] = radial distance (D-7)

2 2 1/2
= [r, + r2* = equatorial distance (D-8)

4> = tan -1 r3
R12

A = tan

r, =

r2 =

-1

cosA

= R • sin*

= geocentric north latitude (D-9)

= geocentric east longitude (D-10)

(D-ll)

(D-12)

(D-13)

D.I.3 Geodetic Coordinates

Geodetic coordinates (north latitude, east longitude,

and height) are defined with respect to a reference ellipsoid.

The geodetic north latitude <t> and the height h above the ellip-

soid are defined for a point P with the aid of Fig. D.l-A. In

this figure, the semi-major and semi-minor axes of the ellipsoid

are denoted by a and b. Line AP is normal to the ellipsoid at

point B and has the length N+h. The geodetic coordinates 4>

and h are related to the geocentric Cartesian coordinates (r,,

r2, r-) of point P by the following equations (Ref. 9, p. 182)

in which A is the east longitude of point P (geodetic and geo-

centric longitudes are the same):

r, = (N + h) • cos4> • cosX

= (N + h) • cos<t> • sinX

(D-14)

(D-15)
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L?
N + h • sin<t> (D-16)

N =
/~~2 2 ~~2

Va -cos 4> + b - sin 4>

(D-17)

D.I.A Topocentric Cartesian Coordinates

Topocentric Cartesian coordinates (north, east, down)

are defined for any point P (not on the polar axis of the ref-

erence ellipsoid). They are natural Cartesian coordinates for
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the local tangent space at P associated with the reference

ellipsoid. The origin of the coordinates is at point P, which

has height h above the reference ellipsoid, and has the geodetic

east longitude \ and the north latitude 4>. The north coordinate

axis points toward the polar axis of the ellipsoid, the east

coordinate axis is parallel to the equatorial plane and points

east, and the down axis points into the ellipsoid along the

normal. The equations for transforming between topocentric

Cartesian coordinates and geocentric Cartesian coordinates

(for the position of any point P' relative to P) are given in

the following:

r(geo) _

.(ned) _

-(geo)
rl

_(geo)
r2

_(geo)
r3

.(ned)
north

.(ned)
east

.(ned)
"down

_ position of P' relative to
P in geocentric coordinates

position of P' relative to
= P in topocentric NED
coordinates

(D-19)

-(geo) _ T(geo) (ned)
£ " T(ned) ^

(D-20)

(ned) _ (ned)_ T
* T

(geo)
(geo)

[ IT
T(geo)
'(ned)]

(D-21)

(D-22)
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T(geo) _
^ned) -

-sin*-cosX

-sin*' sinX

_ cos*

D.I. 5 Radar Coordinates

sinX

cosX

0

-cos** cosX

-cos*-sinX

-sin*

(D-23)

Radar coordinates (azimuth, elevation, and range) for

a point P1 are the topocentric spherical coordinates of P1

realtive to the radar. Azimuth (AZ) is measured positive east-

ward, with AZ = 0 for due north. Elevation (EL) is measured

positive toward the zenith, with EL = 0 for the horizontal.

Range (RA) is measured positive away from the radar, with

RA = 0 at the radar. For this discussion, the radar is lo-

cated at point P, which is the origin of the radar coordinate

system. The relationship between r/ e , the topocentric

Cartesian coordinates of P1 relative to P, and the radar co-

ordinates of P1 are given by the following equations:

rno?th = RA • cos(AZ) • cos(EL) (D-24)

sin<AZ> ' 'cos'(EL) (D-25)

• sin<EL> <D

D.2 COVARIANCES

D.2.1 Introduction

In this section, equations are derived for computing

the covariance of a position vector in geodetic coordinates

when the covariance of the position vector is given in radar

coordinates. These equations are used in this investigation
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to study the propagation of radar measurement noise into posi-

tional data products expressed in geodetic latitude, longitude,

and height above the reference ellipsoid.

The technical approach is to linearize the coordinate

transformation equations for radar measurements and then compute

the covariance relations governing small perturbations about a

nominal position vector. This approach is accurate for the

statistical analysis of radar measurement noise because the

rms of the noise signal is a small percent of the rms of the

trajectory signal in the radar tracking data. The following

coordinate transformations are used in this analysis: (1) radar

coordinates to topocentric Cartesian coordinates; (2) topo-

centric Cartesian coordinates to geocentric Cartesian coor-

dinates; and (3) geodetic coordinates to geocentric Cartesian

coordinates.

In the following discussion, p_ denotes a 3*1 matrix

of radar measurements:

AZ

EL

RA

(D-27)

The radar coordinates p_ specify a point P' , which has the topo-

centric Cartesian coordinates given by the nonlinear trans-

formation defined in Eqs. D-24 to D-26. This transformation

of coordinates is represented by the function .f(p_) as follows:

r(ned) = f(p_) (D-28)

The topocentric Cartesian coordinates (north, east,

down) in Eq. D-28 can be transformed to geocentric Cartesian

coordinates as follows:
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..(geo) _ T(geo) (ned) p(geo)
- ~ ̂ ned) ^ ^radar (D-29)

p(geo) _ geocentric Cartesian coordinates
-radar of the radar position

The geocentric coordinates of point P1 in Eq. D-29

can also be represented in closed form as a nonlinear function

of the geodetic coordinates ^:

1 =

*

X

h

north latitude

east longitude

height

r<«eo) = £<!>

(D-30)

(D-31)

The function g(̂ ) in Eq. D-31 is defined by Eqs. D-14 to D-17.

D.2.2 Perturbation Analysis

Equations D-28, D-29, and D-31 are used to solve the

following problem. Given the radar coordinates {> and the cor-

responding geodetic coordinates ^ of a point P1, determine the

linear transformation that maps small perturbations of £ into

corresponding perturbations of ^. With 6p_ and 6^ denoting the

small perturbations, the problem is to find the 3x3 matrix T

such that the following equation is satisfied in the limit as

the norms of the perturbations go to zero:

= T (D-32)

As shown in the sequel, the solution to this problem

is given as follows:
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T = B • C(p_) (D-33)

In Eq. D-33, the 3x3 matrix A(̂ ) is defined as the derivative

of vector g(Y_) with respect to vector ^:

(D-34)

The vector differentiation in Eq. D-34 is defined as follows

9g,
Ai,j = 8^~ • for i»J' = 1» 2' 3 <D'35>

j

(D-36)

Y2 Y31

A =

All
A21

**O 1

1 O

A22

A32

A13

A23

A33_

(D-37)

(D-38)

In Eq. D-33, the 3><3 matrix B is the transformation

matrix defined by Eq. D-23 in terms of the geodetic north lati'

tude <t> and east longitude A of the radar's position:

R A T(geo)
B * T(ned) (D-39)

The 3x3 matrix C(pJ in Eq. D-33 is defined as the

derivative of vector f^£> with respect to vector p_:

C(£) *

3f(p_)
(D-AO)
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D.2.3 Covariance Analysis

In the following, cov(6£) denotes the 3x3 covariance

matrix of the perturbed radar coordinates of point P1, and

cov(6^) denotes the 3x3 covariance matrix of the perturbed

geodetic coordinates.

From Eq. D-32, it follows that the geodetic covariance

can be computed from the radar covariance as follows:

cov(6^> = T • cov(6pj • T

T =

(D-41)

(ned)

D.2.4 Transformation Matrices

The following expressions for computing matrices

and C<£) are obtained by computing the derivatives indicated

in Eqs. D-34 and D-40:

A ( y ) =

- (N+h)cos<l>sinA -(N+h)sin«t>cosA

(N+h)cos*cosA

0

- (N+h)sin<t>sinA

[(b2 /a2)-N+h]cos*

cos4>cosA

cos<J>sinA

(D-43)

In Eq. D-43, the quantity N is defined in terms of the semi-

major and semi-minor axes (a and b) of the reference ellipsoid:

N =

7 9 o o o
a -cos (4>) + b -sin (*)

(D-44)
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C(p_) =

-RA-CL-SZ -RA-SL-CZ CL-CZ

RA-CL-CZ -RA-SL-SZ CL-SZ (D-45)

0 -RA-CL -SL

CL = cos(EL) (D-46)

SL = sin(EL) (D-47)

CZ = cos(AZ) (D-48)

SZ = sin(AZ) (D-49)

D.2.5 Derivation of Linear Transformation

The key linear transformation in Eq. D-32, which re-

lates a small perturbation 6p_ in the radar coordinates £ of

point P1 to the corresponding perturbation 6^ in its geodetic

coordinates %, is derived as follows. The linearized form of

Eq. D-28 is computed by expanding fXp_+6£) in a Taylor series

about £, and then equating the terms that are linear in the

perturbation 6£. The result is the following linear transforma-

tion between the perturbation of the topocentric.Cartesian

coordinates and the radar coordinates (matrix C(p̂ ) is defined

by Eq. D-40):

6r(ned) = C(p_) - 6£ (D-50)

Equations D-29 and D-31 are also linearized to yield

the two additional linear transformations (matrices B and

are defined by Eqs. D-39 and D-34):

6r(geo) = B • 6r(ned) (D-51)

6l<geo) _ A(l).6l (D-52)
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Substituting Eq. D-50 in D-51 and solving Eqs. D-51 and D-52

for 6^ yields the desired linear transformation:

61 = A"1(x) • B • C(£) • 6£ (D-53)
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APPENDIX E

RADAR MEASUREMENT EQUATIONS

The purpose of this appendix is to derive Eqs. 5.6-33

to 5.6-45, which specify the linearized measurement equations

for an ideal (error-free) tracking radar. The 3*1 vector Z,

of ideal radar measurements at time k is a nonlinear function

h,(R,) of the earth-centered Cartesian inertial coordinates R,

of the payload position:

,(azimuth)

.(elevation)

, (range)

AZ,

EL,

RA,

RR

R

k
(2)
k
(3)

(E-l)

(E-2)

(E-3)

The position and measurement vectors are analyzed

using nominal (nom) and small residual (6) components:

(E-4)

6Z, (E-5)

The goal of this analysis is to determine the linear

transformation that relates the residual measurement 6Z, to
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the residual payload position 6Ri.» in the limit as the norm of

the residual position goes to zero. This linear transformation

is represented by the 3x3 matrix H? in Eq. 5.6-33; it satisfies

the following equation for arbitrary small residual position

vectors:

6Zk = H. - 6Rk (E-6)

The linear transformation is derived as the product of three

simpler transformations:

Hk = \l ' B * Ck (E'7)

In Eq. E-7, the 3x3 matrices A,, B, and C, have the following

meanings:

C, is the linear transformation that maps the

residual payload position (in earth-centered

Cartesian inertial coordinates) 6R, into geo-

centric Cartesian coordinates 6R^ eo . This

matrix is a function of the time step k.

B is the linear transformation that maps geo-

centric Cartesian coordinates 6R^ e into

the topocentric Cartesian coordinates (north,

east, down) 6R5ne ' of the radar. The matrix

is a fixed function of the geodetic coordi-

nates of the radar's location.

A, is the linear transformation that maps the
/ J \

topocentric Cartesian coordinates 6 R^

into radar measurement coordinates 6 Z, .

This matrix is a function of the nominal

payload position expressed in radar coor-

dinates zk
nom) .
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The derivation of Eq. E-7 consists in two steps:

(1) expanding the coordinate transformations (between the iner-

tial, geocentric, and radar coordinates) in Taylor series about
the nominal payload position and measurement vectors R£nom'

and z5nom' ; and (2) retaining only those terms which are linear

in the residual (6) quantities. The calculations are summarized

in the following.

From Eq. D-3 (in Appendix D), the geocentric Cartesian

coordinates are related to the Cartesian inertial coordinates

by a linear transformation which is defined in Eq. D-5:

g(geo, = ̂ geô  . Sk, t = k - 6t (E.8)

The linearization of Eq. E-8 in terms of residual vectors is

= ck * 6^k (E"9)

Ck = Ttfun)> t = k - 6t' (E-10)

The geocentric Cartesian coodinates of the payload

position relative to the radar are denoted r^ e :

r(geo) _ R(geo) _ ' (geo) ^F-m
^k " -k 5radar (E-ll)

R(geo) _ radar location in geocentric Cartesian
—radar coordinates

Since the radar location vector is fixed, the linearized form

of Eq. E-ll is
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According to Eq. D-21, the topocentric Cartesian

coordinates of the payload position relative to the radar are

related to the geocentric Cartesian coordinates by the follow-

ing linear transformation, which is defined by Eqs. D-22 and

D-23:

ned>

The linearization of Eq. E-13 is written as follows:

6rk*
eo)

_ (ned)
_ T

- T (geo)

(E-1A)

,_ , Sv
(E 15)

The relation between the topocentric Cartesian coor-

dinates of the payload position (relative to the radar) and

the radar measurement coordinates Z, is represented by the

nonlinear transformation defined in Eqs. D-24 to D-26. This

transformation is represented as the function f_(Z) '•

(ned)E

The linearized form of Eq. E-16 is written as follows:

Ak =

3f(Z)

8Z Z = Z,(nom>
(E-18)

The vector derivative in Eq. E-18 is defined by Eqs. D-34 to

D-38.

E-4



The desired expressions given by Eqs. E-6 and E-7 are

derived by solving Eq. E-17 for the residual radar measurements

6Z, . Equations E-14, E-12, and E-9 are then used to express

6Z, as a function of
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