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ABSTRACT

This report presents a treatment of the various factors involved in lidar

data acquisition and analysis. This treatment highlights sources of fundamen-

tal, systematic, modeling, and calibration errors that may affect the accurate

interpretation and calibration of lidar aerosol backscatter data. The discus-

sion primarily pertains to ground-based, pulsed-0O 2 lidas• s that probe the

troposphere and are calibrated using large, hard calibration targets. However,

a large part of the analysis is relevant to othet types of lidar systems such 	 1

1
as lidars operating at other wavelengths; continuous-wave (cw) lidars; lidars

operating in other regions of the atmosphere; lidars measuring nonaerosol

elststic or inelastic baekscatter; airborne or Earth-orbiting lidar platforms;

and lidars employing combinations of the above characteristics.
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SECTION 1

INTRODUCTION

Measurements of the aerosol volume backscatter coefficients at

CO 2 laser wavelengths not only provide an improved understanding of large

aerosol particles in the atmosphere but also are very .important for assessing

the requirements of Earth-orbiting CO 2 lidars for measurements of atmospheric

winds and other parameters. In particular, remote measurements of winds on a

global scale are essential for a better understanding of processes taking

place within the Earth's troposphere. In order for us to understand climatic

and weather-related processes, measurements must be made of the wind vectors

s	 as a function of latitude, longitude, altitude, time, and weather conditions.
1

Studies indicate such tropospheric-wind field data would greatly enhance the

f
accuracy of the National Weather Service's 12 hour-5 day forecasts. There is

general agreement that the infrared coherent Doppler lidar technique, of all.

the candidate passive and active atmospheric measurement techniques that may

be implemented from an orbiting platform, offers the greatest potential for

global tropospheric-wind measurements. Since the return signal from a given

range is directly proportional to the aerosol backscatter coefficient in that

region, uncertaintie., in the knowledge of the backscatter coefficient imply

corresponding uncertainties in the required laser-transmitter pulse energy and

receiver-telescope diameter. Therefore, measurements of the aerosol backscat-

ter coefficient at CO 2 laser wavelengths as a function of latitude, longi-

tude, altitude, time, and weather conditions are critical.

A number of CO 2 lidar systems are in use or are proposed that

will contribute to enlarging the aerosol backscatter coefficient data base.

These include fixed-location, ground-mobile, and airborne systems; and both

j
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pulsed and continuous -wave (cw) focused. At JPL, we have been operating; a

fixed, pulsed-0O2 lidar over the past two years in order to measure the

tropospheric aerosol backscatter coefficient in the 9 to 11 tim region.

Since quantitative values of the backscatter coefficient are

desired, a technique for accurately calibrating the backscatter data has been

developed that uses a large, hard surface as a lidar calibration target. The

use of the total backscatter to Rayleigh backscatter ratio technique, which is

often used in the visible wavelength region to calibrate lidar responsiveness
z

and consequently to obtain aerosol backscatter coefficients (Russell, Swissler,

and McCormick, 1979), does not apply at mid-infrared wavelengths. The

assumption that backscatter and extinction are related through a functional

relationship, such as a power-law relationship (Klett, 1981, 1983), also does

not apply. In the mid-infrared the Rayleigh backscatter is extremely low, and

the atmospheric extinction is usually dominated by molecular species rather

than by the aerosol itself. Thus a hard-target calibration technique is used.

The measurement of a single vertical profile of aerosol backscatter

raquires many individual shot, of the lidar system in close temporal proximity

both in the vertical direction through the atmosphere and at the calibration

target. Each lidar pulse results in a digitized record of transmitted power 	
I

vs. time and received (backscattered) power vs. time. These data records must

x	 be processed appropriately and then combined with the pertinent characteristics

1
of the lidar system and parameters of the atmosphere and calibration target in

4
order to calculate the desired aerosol-backscatter, range profile correctly.

The purpose of this report is to discuss many aspects of this

complicated and multifaceted calibration and data interpretation process. It

is hoped that this discussion will contribute to an accurate and consistent



calibration of lidar data. Although lie authors' primary experience is with a

stationary, pulsed-0O 2 lidar system, much of the discussion will be u&eful

in calibrating backscatter data from ground-mobile and airborne lidar systems,

from lidar systems operating at other wavelengths, and from cw-foc;ased lidar.

systems.
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SECTION 2

LIAAR AACKSCATTER SIGNALS

2.1	 ATMOSPHERIC AEROSOL LACKSCATTER SIGNAf,

Consider a pulsed infrared lidar system directed into the

atmosphere. Assume collinear or near-collinear (side-by-side) geometry for

the transmitter and receiver telescopes and assume that both telescopes

subtend very small solid angles at the ranges of interest. Let the

transmitted pulse start at time t = 0 and and at time t - T p with a power

profile of P tb(t) [W] , as shown in Figure la. The received power [W] due t,)

aerosol backscatter is then given by

ct/2	 R

P b (t) _ 	 Ptb(t	
R	 0

- P) S(R) 2̂ n O (R ) exp{-2 fab(R')dR'IdR

c(t • r p ), 2

where A is the effective receiver area, R is the line-of-sight range from the

telescopes, AR-2 = w r(R) [sr] is the solid angle subtended by the receiver,

n is the system's optical efficiency, 0(R) is the range-dependent telescope

overlap function defined as the fraction of the transmitted pulse energy that

is within the receiver's field-of-view (POV), ab (R) [m-1 ] is the total

extinction coefficient of the atmosphere along the optical path,

s(R) [m2 m 3 sr-i
	

m_1 sr-1 ] is the aerosol volume backscatter coefficient

defined as the fraction of incident energy scattered in the backward direction

per unit solid angle per unit atmospheric length, and where the integration
d

over R indicates that the received power at time t is due to contributions from

a slab of atmosphere of thickness CT /2 centered at Rb = c(t/2-Tp/4). (A list

a
p

of symbols used in this and following equations, along with their definitions,

y
can be found in Appendix A.) Other sources of received power at time t, such

4
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Figure 1. Pulsed lidar temporal profile examples for
(a) the transmitted laser pulse power, (b) the
backscattered power from the atmospheric aerosol,
and (c) the backscattered power from a hard
target.
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as multiple scattering, Rayleigh scattering, resonant fluoresconee, fluoros-

vonce, and Raman scattering, are neglected. Monochromatic transmitted radiation

is asuumed, and thus the wavelength dependence of p(R), n, 0(R), and nb(R)

is understood. if the receiver employs heterodyne detection, then (3(R) in

Equation (1) refers only to the backscattered radiation with polarization

parallel to the polarization of the local oscillator. Figure lb depicts the

aerosol backscatter signal,,

The desired quantity is the backscatter coefficient range profile,

P(R). From Equation (1) we see that the maximum spatial frequency of ?,(R)

along the optical path that can be determined is on the order of 2 /(cTp).

This causes a bias against the measurement of low values of (3(R) that might

occur over spatial distances smaller than cT p / 2. The smoothing function

that operates on P(R) is not rectangular but is shaped by the range-dependent,

terms in Equation (1). If we now assume that both P(R) and 0(R) are slowly

virying compared to the spatial distance cT p / 2, then Equation (1) becomes

ct/2	 R'

P
b
 (t)= R(Rb ) A n 0(Rb )	 Ptb(t- c2R) R 2 exp1-2 fc4 (R')dR'}dR	 (2)

c(t--rp)/2
	 0

At this point we are able to solve for (3(R) if all of the terms in Equation

(2) are known accurately. Equation (2) is still exact under the stated assump-

tions. A further simplification of Equation (2) 0 which is commonly used, is

to assume that the entire integrand except P tb (t) is constant over the

integration range, yielding

6
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R1)
	 ct/^

P b(t) - E?(tt,b }	 n 0(Rb ) exp{ -2 J ab (R')dlt']	 Ptb(t- ^—W
Rb	 0	 c(t

 f
-Tp)/2

6(R ) -A n ON ) exp(-2fa (R)dR') ^ 	 P (t) dtb R2 	 b 	 b	 2f tb
I)	 t)	 0

This simplification can lead to errors in the calculated value of R(R) and

will be discussed later. The remaining integral in Equation (3) is simply Lila

pulse energy [a] s

T

r,'tb 
i 
f Pth(t) dt	 (4)

0

Often the pulse power profile of Figure la is assumed to be rectangular with

power P,,.	 o-:r 'w'a is cas e Rl.b 
0 P©Tpr

2.2	 HARD-TARGET BACKSCATT gR SIGNAL

Consider the same pulsed lidar system directed at a calibration

target that is at a range R 8 from the telescopes. Let the target be larger

Lhan both the laser spot size at Rs and the receiver field-of-view at Rs,

and let the polar angle between the optical axis and Lhe average surface

normal of the target be A . If the pulse in Figure la 
(Pts(t) 

in this hard-
'

target case) is transmitted, the received power (W] is given by

` 2R	
^c A	

RS

P s (t)	 Pts^t	
cs> 

p	 2 n C(R s ) exp{-2 f as(R')dR'}	
(5)1	 R	 0s

where a s (R) [m-1 ] is again total extinction and is most likely different

from a b(R) due to the different atmospheric paths employed, p Q [sr-1]

7
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is the target parameter defined as the reflected power per steradian toward

the receiver divided by the incident power (Kavaya et al., 1983), 2R .9 	 is

the round-trip tranuit time of light, and aerosol backscatter is added to tho

oarlier list of neglected sources of received power at time t. Note that the

received-power profile is identical to the transmitted-power profile, but is

delayed by 2R ./c seconds. This is depicted in Figure lc. We will neglect

the spread in the distance to the target caused by ti4e target angle A and

the finite beam diamecer.

2.3	 SINGLE-PULSE HARD-TARGET CALIBRATION OF R(R)

Let us assume a very simple case in which one lidar palse is fired

at the atmosphere and one pulse is fired at the calibration target. Although

Equation (2) is more exact than Equation (3), seldom are all the terms in

Equation (2) known accurately. Furthermore, often a signal proportional to

transmitted pulse energy E tb is recorded for normalization and, therefore,

an expression for received power that is proportional to rtb, such as

Equation (3), is desired. Comparing Equations (3) and (5), we see that the

integral of the target return profile given by Equation (5) must be

calculated. This integral I s [J] is given by

2R
J	

{	
n

y	 1

C	 p	 s

I =	 P (t)dt = p 	 A t1 G(R^) a,-P[-2f a (R')dR') E	 (6)
s	

f	
s	 R2	 S	 O	 s	 is

s

2R
S

c

=a	(We are assuming at this point that a suff,c iently fast transient digitizer is

r+	 used to record Ps (t) so that an accurate integral is possible. Alternatively,

8
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an integrating analog-to-digital (A/U) converter with a gate width that

captures the return pulse may be used if the signal voltage. is proportional to

p s (t).) Combining Equations (3) and (6) we see that

	

i' (t) E	 R2	
O(R ) exp{-2 f cY (R')dR'}

b	 is

	

* 2	 b	 s	 0	 s

^ (Rb )	 F	 I	 P c	
R	 b

2	 Q(R )	 R
tb	 s	

s	 exp{-2 f b n (R')dR'i
0	 b

where we let the atmospheric and target pulses have energies E tb 
and Ets,

respectively. Even in this simple example in which fluctuations of the

returned signal intensity due to speckle and atmospheric turbulence are

ignored, and in which an adec.;uate signal-to-noise ratio is assumed from ono,

lidar pulse, it is clear that the lidar pulse energies; the target parameter,

P*; the telescope overlap function, 0(R); and the extinction profiles,

w s (R) and ab (R), must be well-%nown. In addition, the assumptions and

simplifications leading to Equations (3) and (6) cannot be ignored.

x

(7)
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SECTION 3

DATA ACQUISITION ERRORS

The discussion leading to Equation (7) assumed that the transmitted-

pulse profiles, P tb (t) and P ts (t); the aerosol backscatter signal, Pb(t);

and the target backscatter signal, P s (t), were all known in their fundamental

units of watts. In reality, detectors are used to convert the optical fields

into a voltage (or current), followed by preamplifiers, amplifiers, filters,

etc. Finally, this voltage is recorded for later processing.. We may lump all

of the characteristics of this chain of components (or receiver) into a single

function that operates on the optical signal power:

V(t) = F i M01	 (8)

where V(t) [V] is the recorded signal available for processing and is not

necessarily a linear function of P(t). We may factor the function F  into

various typical subfunctions, such as the gain G of the receiver and 1-he

largest Lime constant T of the receiver, which represents the slowest element

in the chain. Thus Equation (8) can be written

I
V(t) = G x F

2 { P (01
Cr exp(-t /T) x H(t)	 (9)

where the symbol * stands for the convolution operation and H(t) is the

Heaviside unit step function. (Convolution in the time domain corresponds to

multiplication in the frequency domain. In Equation (9) the spectrum of

G x F 2 {P(t)? is to ltiplied by [1 + (2TrfT) 2 ]
-1/2 .) 

In general, the recorded

voltages from the transmitted pulse, the aerosol br-kscatter, and the target

backscatter are given by

1.0
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1

n r

Vt(t>	 Gt x F t { P t (t)} * PTt exp (-t/T t

	

) x H(t) 	 (10a)
^J

	V b(t) - Gb x Fb { Pb (t)} * CT ex p(-t /T b ) x H(t)1	 (10b)

	

b	 J

V s (t) = Gs x Fs{Ps(t)}	 rT exp( —t/T S ) x H(t)1	 (10C)

	

L s	 -1

We are assuming that the slowest element of the receiver is much slower than

the next slowest element and that this element can be approximated by a simple

RC low-pass filter (T = RC), and we also assume that any DC offsets that are

added to V(t) can be determined and removed. The impulse responses of the

low-pass filters, the exponential terms in brackets, are normalized to have an

area of 1. Thus the area under V(t) is equal to the area under G x F{P(t)}

(Bracewell, 1978). The centroid of V(t) occurs 'i s after the centroid of

G x F{P(t)}. The spread of V(t) about its centroid (similar to variance) is

T 2 s 2 greater than the spread of G x F{P(t)}• Frequency components of

G x F{P(t)} much less than 1/T are not attenuated, while frequencies much

greater than 1/T fall as 1/f. If T approaches 0 (as with very fast

receiver components), then the RC-filter impulse response approaches 6(t)

and the convolutions in Equation (10) can be neglected.

Strictly, the first four terms in the right side of Equation (7)

must be replaced by appropriate expressions using Equation (10). Equation

(10a) must be applied twice to solve for P tb (t) and P ts (t), which are then

substituted into Equation (4) to obtain E tb and E ts . Equation (10b) must

be solved for P b (t) and Equation (10c) must be solved for P s (t), which is

then substituted into Equation (6) to obtain I S . Fortunately, several sim-

plifications of this procedure are possible. It was stated earlier that the

11
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convolution operator in Equation (10) does not affect the area under V(t), but

does spread V(t) in time with respect to F{P(t)). Since Equation (4) is used

twice with Equation (10a) to take time integrals, the convolution in Equation

(10a) may be neglected, provided that the upper integration limit in Equation

(4) is extended to include all of V t (t) and provided that the function Ft

is linear. We will make these assumptions and thus Equation (10a) reduces to

V tb (t)	 GtPtb(t)	
(lla)

V
is 

(t) = G 
t 
P 
is 

(t)	 (llb)

a

i

	 The assumption that the function F t is linear is reasonable since linear

detectors are usually used to monitor pulse power. Note in Equation (11) that

1	
it is also assumed that the gain, G t , is constant. Actually, G t is a

function of the wavelength, X, and may also depend on P t and time. If only

a small portion of the pulse cross section is imaged onto the pulse-power

detector, then pulse-to-pulse variations in the pulse spatial profile may

cause variations in the fraction of pulse power incident on the detector. In

effect, a pulse-to-pulse (or time) variation in Gt results.

It is not quite as reasonable to eliminate the convolutions in

Equations (10b) and (10c), since often a lidar receiver is not linear in	 i

received power. Two common nonlinear examples of the functions F  and Fs

are 3P or RnP. The fact that P b (t) probably does not have frequency

i,	 components of interest greater than 1 /T ,
u
 allows the convolution in Equation

(10b) to be eliminated. Even though Equation (6) is used to integrate Ps(t),

the convolution in Equation (10c) may not be ignored unless Fs is linear or
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Tb is very small. Nevertheless, we will neglect the convolution in Equation

(10c), thus introducing a source of error in calculating R(R). It is usually

the case that F  = F s = Fr , where the subscript r refers to the lidar

receiver. Often the gain of the receiver is adjusted between firing at the

atmosphere and firing at the calibration target due to the much larger signal

from the target. In addition, the gains G  and G s may depend on the

received powers P b and P s and on the bandwidth of the received power.

Obviously, the bandwidth of P 9 (t) will be much greater than the bandwidth of

P
b
 (t). These effects on the receiver gain can introduce errors if not

accounted for. We will ignore these effects in what follows and simplify

Equations (10b) and (10c) to

Vb (t) = Gb x Fr{Pb(t)}
	

(i7a)

V s
	 s	 r s
(t) = G x F {P (t)}
	

(12b)

A

s

W

Combining Equations (4), (6), (11), and (12), we find that the first four

terms in the right side of Equation (7) become

T
P

Vts(t)dt

P(t)	
Et	

Fr1
{Vb (t)/Gb	 s	 b}	 0x	 =	 x 0

x	
Etb	

Is	 Tp	
2RsfV tb	

C +

(t)dt 	 Tp

0

Frl{VS(t)/Gs}dt

2Rs

c

13
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where the factors G t in Equation (11) have canceled and F r l {x} repro-

sents the inverse operation of F r {x}. For example, the inverse of 3x and

Rnx would be x and e x , respectively. At this point we observe a major

difference between the linear, square-root, and logarithmic lidar receiver

functions F r . As stated earlier, the gains G  and Gs are often purposely

made different due to the larger return from calibration targets than from the

atmospheric aerosol. In practice, it is much easier to know the ratio of

these gains G s /G b than it is to know both their values independently. From

Equation (13) it is clear that the ratio u s /Gb is sufficient to calculate

S(R) for linear and square-root lidar receivers, where F_ 1 {x} = x and

x2 , respectively. However, for a logarithmic receiver, F_ I W 	ex,

and the actual values of G  and G s are required to solve for P(R). This

suggests that logarithmic receivers are not appropriate if lidar aerosol

baekscatter data are to be calibrated using hard targets.

It has been assumed in this section that a sufficiently fast

transient digitizer is used to record V tb (t), Vts (t), Vb (t), and Vs(t).

Another type of A/D converter that is often used is an integrating A/D con-

verter. These devices usually have a variable gate width and integrate the

voltage waveform during the gate period. It is clear from Equations (4) and 	 I

(11) that an integrating A/D converter is acceptable to record the pulse

energy signals, provided that the detector is linear in power. From Equations

(12) and (13), however, it is apparent that the use of an integrating A/D
f

converter would be appropriate for Vb (t) and Vs (t) only if the function	 I

F r is linear in power. For nonlinear lidar receivers, errors would be

caused when an integrating A/D was used, especially with the higher-frequency

calibration-target return signal Vs(t).

14
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SECTION 4

DATA PROCESSING ERRORS

4.1	 SIGNAL-AVERAGING;

We have derived an expression for P(R), given by Equations (7)

and 03), for the case of a single lidar pulse directed into the atmosphere

and a single lidar pulse directed at a calibration target. The energy of cacti

pulse was used to normalize the return signals. It was assumed that the

signal-to-noise ratios were adequate and that both speckle and atmospheric,

turbulence effects were not present. In reality, the received-power profiles

from both the calibration target and the atmospheric aerosol will fluctuatr;

from pulse to pulse due to speckle and atmospheric turbulence. These sources

of signal fluctuation and the desire to improve low signal-to-noise ratio«

usually make it mandatory to signal-average the results of many lidar pulses.

We now consider a measurement consisting of N  pulses fired into

the atmosphere and N 4 pulses fired at the calibration target. We assume all

the terms in Equation (7) remain constant during the measurement except the

four terms given in Equation (13). (Of course, the extinction profiles

a t) (R) and a s (R), as well as R(R) itself, may change during the measurement

time, due to temporal changes of the atmosphere or due to spatial movement of

the lidar system, thus introducing a source of error. This again causes a bias

against low S values that may exist for narrow spatial or temporal ranges.)

Since normalization by the pulse energy will be discussed in a 'later section,

it is assumed here that all pulses are identical, allowing cancellation of the

two pulse-energy integrals in Equation (13). Under these assumptions, Equation

(13) becomes

15



''.VJlls u^'^r`76r	 1

s	 Po0p QW01111Y
Nb

<Pb(t)>	
N
b 

!^ Fr1{Vb(t ) /Gb}

<I >
	 >a	

2R	
(14)

s	
s +T	

d:

N	 c	 Ps 

N 1:	 F,r' {V$(t)/G$} dt
s	

j=1 2R

S
c

where < ? indicates an ensemble-average and the superscripts i and j on Vb(t)

and V 8 (t) represent the pulse-to-pulse variation in the recorded waveforms.

Often, however, Equation (14) is not used to process signal-averaged lidar

data. instead, the recorded voltage waveforms V i (t) and VS (t) arcs.

averaged and only afterward is the inverse operator F r_ l applied. This

often used but incorrect expression Ls

Nb
F	

j

-•1 1	 Vi(t)

<pb(t)>	
r NbGb i=1	

b
	 (15)

<I >	 2R
s	 s + Tc	 p	

Ns
Fr1 N1G vi (t) dt

2B	 s s J=1
s	 ^

c	 f
I
i

►__	 If Fr is a linear function, then Equation (15) is identical to Equation (14).

E	 Zt is interesting to calculate the error caused by using Equation (15) under }

typical lidar aerosol and target backscatter conditions, when Fr is a

nonlinear function such as 3P or 9nP.

Let Xi be an independent random variable with a probability

density function p(x) and mean value W. Let Y = ( 1 /N) (X 1 + X2 + ... + XNJ

have probability density p(y). By the central limit theorem, for large N,

i

1.6

t
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p(y) will be a Gaussian density function with the mean value <y> _ W. This

mean value is given by

ev

<y> = <x>	

f 

x p(x) dx	 (16)
—oo

and represents the correct signal-averaged result given by Equation (14). We

now consider a function of x, F r (x). If we signal-average F r (x), we agairi

obtain a Gaussian density function with a mean value equal to <Fr(x)>.
d

Following the incorrect technique of Equation (15), we now perform the i.nversn

operation:

f0)

F_I{<Fr(x)>) = F r
Fr 

(x) p(x) dx	 (17)

The ratio of Equation (17) to Equation (16) yields the error caused by the

signal-averaging technique of Equation (15), and this error obviously depends

on p(x) and F r
 
W.

lie may approximate the probability density function of the returned

power in a typical lidar system due to speckle and atmospheric turbulence by

the Gamma density function of order M. This function is shown inset in Figure
I
1

2 and ranges from an exponential for M = 1 to a Gaussian-like function (but

with x > 0 only) for large M. The exponential (M = 1) form is predicted for

fully developed speckle with no aperture-averaging. The ratio of Equation
i

(17) to Equation (16) has been calculated for the Gamma density function and

for F r {x} = 3 x and Anx. For F r {x} = 3 x the ratio is

2

<3 x >2	r	 1 x 3 x 5 x ..• x (2M - 1)	
(18)

<x>	 - M	 (M _ 1)r x 2M

17
1
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Figure 2. Calculated error 
in 

the estimated mean value of a

random variable x due to averaging tho functions
Vx and knx vs. M where the probability density
function of x is the Gamma density function of
order M.
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which approaches 1 for large M. The percentage orror is plotted in Figure 2.

and reaches a maximum of -221 when M = 1. Referring to Equation (7) we see

that 6 will be underestlrilated by 22%. When Fr {x} w knx, the ratio Is

given by

exp «nx> l	 -1	 ''^-^
W 	

(0.561) M	 exp	
n

n=1

which also approaches 1 for large M. As seen in Figure 2, the error fit this

Case is greater than for F 
r 
W _ 3x and reaches a maximum of -444 for M = 1.

Zrnic (1975) addressed the closely related problem of comparing 3X ("linear")

and PnX (logarithmic) radar receivers with X ("quadratic") receivers. Ho

treated only the M = 1 axponential power distribution (Rayleigh amplitude

distribution) case and solved for both the error and standard deviation of the

power estimate as a function of the number of samples, N. For large N his

results are identical to our M = 1 results. He found that foi. large N, a

"linear" receiver requires 1.09 times more samples than a "quadratic" receiver

to achieve the same standard deviation, and the logarithmic receiver requires

1.64 times more samples.

t

It is clear that the signal-averaging technique of Equation (15) is

unacceptable when the receiver function P is nonlinear, and :.he correct	 '•r

technique of Equation (14) should be used. Only if p(x) and F r {x} are well-

known could the expressions of Equations (16) and (17) be used r.o calculate a
a

	

r	 F

"correction" factor for the derived values of S(R).

	

a	
4.2	 PULSE-ENERGY NORMALIZATION

In the last section it was assumed that all the laser pulses had

identical energies and, therefore, the terms E tb and Ets were equal and

canceled in Equation (7). In actual practice, the transmitted pulse energy

19
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will vary from pulse to pulse and proper normalization by pulse energy it;

required to avoid errors. Expanding EqULMOTI (13) to include correct signal-

averagingo we obtain

	

N 
b	 V _1 (V i (t) IGr b	 b

Rb 	 Tif p
P b(t)	

V 
tb 

(t) dt

— X M —	 ( 20)

E tb	 <! —It ss >
	 z8 + 

T

f c
-1 (V

J (t)/G
s
 dt

r	 8 

N	
2R

	

s	 I 

a	 -

	

$

N E	 T i

	

jMl	 p
vi 

s
(t) titf t

0

where the pulse indices i and J are now also necessary on the pulse duration

•r p for each shotp and the factors G t 
in Equation (11) again cancel. If

Equation (20) is inserted into Equation (7), we obtain the proper pulse-energy

normalized ) signal-averaged expression for <B(R)>.

Often, however, normalization by the pulse energy is not done on a

pulse-by-pulse basis, but rattler the signal voltages and pulse energies are

summed separately and the sums are 'vided at the end of the measurement. It

is interesting to calculate the resultant errors due to this technique. We

may generalize either the numerator or denominator of Equation (20) for this

analysis and use a more convenient notation. Let the desired ensemble-average,

including the pulse-by-pulse normalization, be given by

Q+.0

20	
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where Ki is the return "signal" and Ei is the pulse energy of the ith pulse.

Let S' pe the incorrectly calculated ensemble-average as described above:

N

N 

S' 	 (22)

1

Jul

It all the pulse energies E  equal E0 , a constant, then S' - S, and either

technique is satisfactory. We now assume that E  .. E  + e i , where EO is the

average pulse energy and C  represents the deviation of the ith pulse energy

from E.0 Since it is obvious that S' * S for large pulse-energy fluctuations,

we will assume the deviations are small, i.e., e  << E 0 . If we insert the

expression for E  into Equation (21) we obtain

N	 K	

1	

N	 e	
e	

l

S	 E CEO + e ) NEO EKi 
1 - \1'i/ + CEi1	 _ ...	 ( 23)

i	 i	 i	 ` 0	 ` O!

ana inserting it into Equation (22) gives

N
1	 K

S =	 N i=1 i	 = N 1 E	 Kr-1	 1 - N1E	 L, ei + ...	 (24)
iC - /1	 0 i-1	 0	 1

N	 (E0 + ei)
C 

i=1

k	 ,

21
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Combining Equations (23) and (24) and using the fact that e
1
/E0 « 1 and

that <e > K 0, the fractional error is given approximately by

N
L K,e

S'-S	 1=1	
► i

i;0 L K1
1.=1

Obviously, the error goes to 0 as e i /E O approaches 0. The size of the error

will increase to the extent that K  and 
c  

are correlated. However, speckle

an' atmospheric tuzbrtlence will tend to reduce this correlation. Nevertheless,

this source of error should be avoided: by normalizing to pulse energy on a

pulse-by-pulse basis.

4.3	 RECTANGULAR PULSE ASSUMPTION

In Section 2.1 it was shown that Equation (2) was an exact expression

for the aerosol backscatter power profile, P b (t), provided that the aerosol,

backscatter coefficient, ((R), and the telescope overlap function, 0(R), wera

slowly varying with respect to the spatial distance eT h /2. In going from

Equation (2) to Equation (3), both the R 
2 
and exponential terms were removed

from the integr.and in order that the remaining integral would reduce to the

"	
transmitted pulse energy, an easily measur!zd quantity. All terms removed from the

f

integral in Equation (1) were assigned their values at the midpoint of the

integration range, Rb . The rationale for this simplification often starts with
i

the assumption that the transmitted pulse, P tb (t), is rectangular with power PO

[W], duration T p , and therefore energy P OT p . Thus Ptb is removed
a

immediately from the integral in Equation (2) and replaced with the constant PO.

At this point the range of integration is assumed to be narrow enough that the

values at the midpoint, Rb , are used for the remainder of the integrand.

22
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	 A careful look at Equation (2), however, reveals that the R_ 2 and

exponential terms in the integrand combine to form a weighting function for the

laser pulse profile P tb (t). This function favors the tail of the laser pulse

(smaller R) in a complex way that depends on It, a b (R), and T p . We have

evaluated the percentage error in Equation (2) that results from assuming that the

pulse shape is rectangular with power P O when the actual pulse shape consists of

two rectangular sections of unequal power and duration, as shown in figure 3.

Keeping the total pulse duration constant at T p , we let the initial pulse power

be P1 [W) for T p /a seconds and then provide for a "tail" with power P1/b

for the remainder of the pulse. This bi-level pulse profile is a good

approximation to the output- profile of many pulsed lasers that exhibit an initial

gain-switched spike followed by a lower-power, longer-lasting tail. The pulse

energy is fixed at P OT p by letting

P1 -C aba+b - 1	 PO
	

(26)

If a = b = 1, Equation (26) reduces to the rectangular pulse. Figure 3 shows

the resultant percentage error vs. range for several values of the parameters

(a,b), for the total pulse duration T p , and for a constant attenuation

coefficient a b (R) = 0.125 km-1 . It is clear that the percentage error can

be very large, especially for large values of (a;b), that the error increases

with increasing pulse duration, and that the error generally decreases with

increasing range. Calculations using other values for a  show the ,- the

	

I
	 percentage error is not str(-ugly dependent on a b . For example, with t = 5 j1s,

T p = 4 Us, and (a,b) 	 (8,8), where the error is large, letting ca b = 0.4,

0.125, and 0 km 1 yielded percentage errors of 72%, 68%, and 66%, respectively.

k

23

V



6.01.2	 2.4	 3.6	 4.8

RANGE, km

Figure 3. Calculated error vs. range due to the assumption
of a rectangular transmitted-pulse profile when the
actual profile is bi-level with duration T  and

parameters a and b.
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These results show that M) will be overestimated by a range-dependent
factor if Equation (3) is used. Only by using Equation (2), or correcting by

the range-dependent factor, can this source of error be eliminated. Even if

Equation (2) is used to solve for ((R) by determining the pulse profile

Ptb (t) and the atmospheric extinction profile a b (R), the return power

profile P 1) (t) is not linearly proportional to pulse energy, making

ZLormalization to pulse energy very difficult. Only if the transmitted-pulse

profile of each pulse were constant, so that P tb (t) could be written a„ tha

product of a pulse-energy term and a pulse-profile term, could Equation (2) be

used to eliminate this "pulse-profile" source of error. Of course, both R(R)

and O(R) may be varying significantly over distances of CT p / 2 and thus

Equation (1) should be used, making the determination of R(R) very difficult,

since the profiles P(R) and nb (R) are both unknowns in the measurement.

I
f
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SECTION 5

TELESCOPE OVERLAP FUNCTION

The range-dependent telescope overlap function, O(R), was

introduced in Equations (1) and (5) as an important term that affects the

received-power profile from both the atmospheric aerosol and hard targets.

Essentially, O(R) is defined as the fraction of the transmitted pulse energy

that is within the receiver's field-of-view. Obviously, factors that must be

considered are the physical separation of the transmitting and receiving

telescopes, their co-alignment or misalignment, the range-dependent spatial

power profile of the transmitted beam, and the effective range-dependent

spatial profile of the receiving telescope. Pulse-to-pulse variations in the

transmitted spatial power profile would therefore produce pulse-to-pulse

fluctuations in the telescope overlap function. The effective spatial profile

of the receiver is due to many factors, including a central obstruction in thri

telescope, the finite size and shape of the detector element, sensitivity

variations over the detector area, the variation in the position of the focal

plane with range, and diffraction. For systems employing heterodyne

detection, the local oscillator's spatial profile, polarization, and alignment

at the detector plane must be considered.

Often the telescope overlap function is neglected in the lidar

equation, especially when coaxial lidar systems are being analyzed. However,

all of the factors contributing to 0(R) for side-by-side lidar systems apply
i

to coaxial systems except that the physical separation of transmitter and

receiver is very sinall. Sassen and Dodd (1982) have analyzed the behavior of

0(R) for both Gaussian and uniform transmitted-pulse profiles, and for various

values of transmitter and receiver divergence, and transmitter-receiver

misalignment. They have shown that 0(R) is strongly dependent on alignment,

26
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es pecia lly for typical lidar systems, which employ narrow transmitter and

receiver beamwidths. Referring to Equation (1), we see that experimentally

determ:Lning O(R) at it given wavelength requires that a very short rectangular

laser pulse be .tired into an atmosphere with well-known and slowly varyin;

prokiles S(R) and ab (R). Since this experiment would be difficult, a

model for O(R) is usually used instead.

We have modeled the overlap function for the side-by-side telescope

lidar system that is being used at JPL to measure the atmospheric aerosol

backscatter coefficient in the troposphere in the 9 to 11 Om region (Kavaya

ct al., 1983). Figure 4 shows the modeled overlap function vs. range at the

iop ^40) CO laser wavelength (10.59 um). The indicated parameters (X,Y)

represent- the position (misalignment) of the detector element in thousandths

of an inch (mils) with respect to the optical axis, which is parallel to the

transmitted pulse, and lying in the focal plane (R = -) of the receiver.

Therefore, (X,Y) = (0,0) represents exact centering of the detector on the
i

optical axis and (X,Y) = (-5,0) represents a 5-mil (127-Um) movement of the

detector from the centered position. A 5-mil displacement is equivalent to a

0.074-mrad angular misalignment. The centers of the 15.5-cm diameter trans-

mitter and receiver telescopes in our lidar system are displaced by 25.5 cm in

the "X" direction and 7.3 cm in the "Y" direction. For, our sign convention,

negative values of X result in the crossing of the transmitter and receiver
6

optical axes at some positive range from the telescopes. This range is

i

indicated in Figure 4 for the appropriate curves. Note that the peak of these

"negative X" curves does not occur at the crossover range but that the largest

overlap function value at any range is given by the curve corresponding to

that crossover range. The finite size (300 Um square) of the detector is

k
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accounted for by averaging the center and four corner positions of the

detector. In addition to assuming uniform detector responsiveness and using

the five-point average, we make other assumptions in the model, including that

there is a uniform local-oscillator, negligible receiver focal plane variation

with the range beyond RIIN " 1.1 km, and a uniform, circular, transmitted

pulse spatial profile that diffracts at 150% of the diffraction limit. Al-

though these assumptions limit the accuracy of the model, experimental results

obtained by firing the lidar system with various values of (X,Y) agree quite

well with the curves in Figure 4 and also allow determination of the optimum 	 f

(0,0) detector position.

It is clear from Figure 4 that the overlap function varies signi--

ficantly with very small detector misalignments. Not only is it important to

know 0(R) when reducing the aerosol backscatter power profile, but it is

especially important when using a hard target for calibration. A common range

used with our calibration target is 2 km, which is indicated in Figure 4. The

calculation of S at any range R will involve the ratio of the telescope over-

lap function at the target's range, R s , to its value at R as is shown in

Equation (7). It is clear from the curves in Figure 4 that assuming an in-

correct telescope overlap function (or neglecting it) can cause significant

errors in calculating R(R). For example, when the system is perfectly

aligned, i.e., when (X,Y) = (0,0), then the ratio of the overlap function's

value at 16 km to its value at 2 km is approximately 1. However, if the

system were misaligned by only 220 Arad, e.g., (X,Y) = (-15,0), then the

same ratio is approximately 6. If correct alignment was mistakenly assumed,

or if the telescope overlap function was neglected, then a ratio of 1 would be

used and the value of R(16 km) would be overestimated by a factor of 6.

29
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An additional problem in determining 0(R) occurs with airborne lidar

systems. This is due to the fact that once the laser pulse is transmitted,

the receiver telescope will move with respect to its t = 0 position. Since,

calibration of the system with a hard target is most convenient on the ground

before takeoff, the overlap function for the stationary lidar system will not

apply to the moving (airborne) lidar system. Fortunately, the sensitivity of

0(R) to the displacement of the receiver will be greatest at short ranges,

where the displacement will be the least. Whether the system is airborne or
t

not, the telescope overlap function of every lidar system should be modeled as

accurately as possible at each wavelength of interest and checleed

experimentally.

30
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SECTION 6

HARD-TARGET CALIBRATION

The hard-target parameter p * was introduced in Equation (5) as

the power reflected from the hard target per steradian towards the receiver,

divided by the incident power. As is clear from Equation (7), a gtiantitativn

evaluation of this parameter is required to calculate R(R) when hard-target

measurements are being used for calibration. It has been shown (Kavaya

et al., 1983) that the evaluation of p* for a given calibration target,

lidar wavelength, and lidar geometry is not trivial. Although hard targets

j	 are frequently used to calibrate lidar systems, there is a surprising lack of

published information about their reflectance properties. The derivation of

t
P* and a technique for its evaluation will be outlined in this section.

The geometric reflectance properties of a flat, uniform, isotropic

surface can be described by the bidirectional reflectance-distribution

function (BRDF) [sr-1] defined by Nicodemus et al. (1977) as

dLr ( O i) 6 1 ; Or , ^br;E i )

f r(Oi"i'nr'`^r) =	 dEi(Oil^i)

In Equation (27) L r is the reflected radiance [W m_2 sr ] in the direction

(0 rl r r ) due to the incident irradiance dE i = Li cosOi dwi [W M
-2 

]  confined

to the solid-angle element dw i in the direction (0 i ,(h i ); O is the polar angle

between the ray and the average surface normal; ^ is the azimuthal angle

between the ray's projection in the surface and a reference direction in the

surface; and the subscripts i and r on L, E, 0, and c refer to the incident

and reflected radiation, respectively. The radiance in the direction (n,^)

is defined by

L(0,1)--	 r12edA cosO dw

31
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'	 where d 2fi is the element of radiant flux CWl through the element of area

dA in the direction (0,6) and within the solid-angle element do). The

element of the projected area perpendicular to the ray direction (0 0 0 is

dA cosO. Equation (27) does not treat interference, diffraction, transmis-

sion, absorption, fluorescence, or polarization effects, and it is assumed

a
that the illumination is monochromatic ) uniform, and isotropic. The BRDR is

an unmeasurable derivative capable of values from 0 to infinity. Real

measurements always involve an average of f  over finite intervals, e.g.,

Aw and A -

Nicodemus et al. (1977) define nine reflectances, allowing for

directional, conical, or hemispherical geometry of the illuminating and

reflected radiation. The most basic quantity, the biconical reflectance, is

defined as

I	 I	 r- ((.)' ^ > O > fi ) coscl cosh do) dogrw w	 r i i r r	 i	 r	 i
p (w i ; w r ) _	

r	 i	
(29)

Iw
i
 cos0 i dwi

where P(o) I ;W r )  is the ratio of the radiant flux in the direction (Ar'r)

within w r to the incident flux in the direction (0 1 ,¢
1
) within oii . (we

will avoid the use of the projected solid angle dQ = cosh N as it is

nonphysical and can lead to confusion.) A Lambertian (diffuse) surface is one

for which the reflected radiance is isotropic (L r is constant, independent of

O r and fi r ) regardless of how it is irradiated, and thus its BRDF, 
fr d'

a	
is necessarily a constant. From Equation (29) we see that

f r,d (0i " i ;nr' 6 r ) = p(oJi ;27r)/w	 (30)

32
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If the solid angle w  confining the illuminating, radiation iN

.small enough that we can consider f r to be constant over the Limits of
a

integration, Equation (29) reduces to

P(Oi"i;air) - f Wr f r (()V 1 ; 0 r 1 ^ r) 
COO  

dwr	 (31)

which is the directional-conteal reflectance, i.e., the illuminating radiation

is from a specific direction, and the reflected radiation is measured in it

done of solid angle w r . The reflectance measured by an ideal, integrating

sphere, P IS , is given by Equation (31) with w  = 271,

2ir n / 2
PIS - P(O i ,r) l ;21t) = 0 0fr(n i ,^p 1 ; 0 r"r ) cosn r sinOr 

dOr 
drh r 	(32)

which is the directional-hemispherical reflectance. If the small w  assump-

tion is not valid, Equation (29) should be used for P is with wr = 21r. If

the monochromatic illumination assumption is not true, an average over AX will

be measured. The common term albedo is the hemispherical-hemispherical

reflectance, i.e., P(27r;2n).

In lidar applications both the illuminating and receiving solid

angles are very small. Foi example, a 15-cm diameter telescope subtends only

7.1 x 10
-8
 sr at a range of 500 m. Thus we may further simplify Equation 	 1

A	 f

(31) by letting w  + 0, yielding

P(OVYO r' ^ r ) = W  <f r (M i' Yo r" r )> coso r 	(33)

where <f r> is the average value of f  over the finite solid-angle intervals

W  and wr.

Ir	 ;
r
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From Equation (33) it may be concluded that the received powc=r from

a Lambertian target (f r - constant) will vary as costa r . However, this

conclusion is not always correct. It is important to consider the relativI?

sizes of the target, the illuminated area on the target, and the area of the

target viewed by the detector, as shown in Figure 5.

Recall that in Equation (33), p is the ratio of the reflected

flux to the incident flux. The incident flux is not necessarily constant but

is given by the product of the power per illuminated target area and the

viewed illuminated target area. Figure 5a depicts the similar cases A i <

A  < As or Ai < As < Ar , where Ai = Aio /coso i is the area illuminated

by a laser with constant power P, A  
r.
	 is the area viewed by the

detector, and As is the target area. Note that the illuminated spot is

smallest in this case, and, therefore, M i may not approach 90". The power

per illuminated target area is given by Pcosni/Aio, and 
the viewed illuminated

target area is given by A io /Coso i . Thus the cosM i terms will cancel, leaving

only the cos(-) ., dependence of p in the expression for received power. In

Figure 5b we have the cases A  < A i < As or A  < As < Ai ; the receiver field-

of —view at the target is smallest. Here the power per illuminated target area

is again given by PcosO i /Aio , but the viewed illuminated target area is now

given by A
ro	 r

/cosh . When these angular dependences are combined with Equation 	 j
^

(33), we see that the overall dependence of the received power is given by 	 i

e

coso i . As seen in Figure 5, when a collinear backscatter (e.g., lidar) geometry

is considered with 0i = nr = 0, all the above cases exhibit a coso dependence. t

Finally, Figure 5c depicts the cases A s < Ai < A  or A s < A  < Ai ; the target

area is smallest. Once again the power per illuminated target area is

Pcoso i /Aio , but the viewed illuminated target area is just A s . When these

34
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Figure 5. Pictorial representation of three possible reflectance
geometries: (a) the illumination area at the target is
smaller than both the target and the detector field-of-
view at the target, (b) the field-of-view of the detector

is smallest, and (c) the target area is smallest.
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factors are combined with Equation (35), we obtain a cos gicosOr depend-

ence. In this case the collinear geometry yields a (cosO) 2 dependence.

Of course, amore complicated geometry than those cases in Figure 5 is

possible', e.g., if A i , Ar , and As have boundaries that cross each other.

It is clear that the geometry of any reflectance experiment is very important,

especially when laboratory target reflectance data are used to characterize

targets, which are in turn placed in a lidar geometry for calibrating lidar

systems. Seldom in the literature is the geometry of a reflectance experiment

defined in terms of the case? of Figure 5. The Lambertian reflectance behavior

is predominantly given as cosO r (small Ai ), although examples of cos0icosOr

(small As ) can be found as well as examples of cosO i (small Ar ), especially in

astronomy.

Later in this section we will discuss target measurements using a

cw CO 2 laser in a collinear backscatter geometry (0 i = Or = 0), where

Ai - A  < A s . These measurements provide collinear 0 dependence of each

target's reflectance, showing various deviations from Lambertian (cose)

dependence. It is tempting to assume that each target's 0 dependence curve

could be scaled absolutely by using integrating-sphere data and the area under

the O dependence curve. However, this is not possible for surfaces with a	 B,
s

i
general BRDF. The integrating-sphere data depend on the BRDF, as shown in	 i

i

Equation (32), while the backscatter data will depend on O , as shown inr

Equation (33):

	

,(0') - W ' <f (0',4';0',q')> cos0'	 (34)r	 r

where primes are used to differentiate from the angles in the integrating-

Sphere case. we may let 0' = 0' = 0 and ^' = V' = y,, where we use the
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collinear geometry

independent of +hi).

0, we obtain

Tr /2
F	 I	 1	

S(0)

it	 0

and the assumed isotropic property of the target (fr

If we now multiply V!'I) by sinO and integrate over

n/2
sinr) dO	 w f	 <f r (0,0) ;0, (,h P cosh sine do	 (35)

In comparing Equations (32) and (35) we see that we may not use p IS to

.l.e S(0) unless certain conditions hold. First, the backscatter experi-

ment's solid angles must 'ae small enough to allow the assumption that <fr>

f r . Second, f  mu.tr be independent of fi r to allow the parameter 6r

of f  in Equation (32) to be set equal. to ob i . Finally, f  must be

independent of 0 i to allow the parameter 0 i ifj Equation (32) to be set

equal to 0 r . Under thew: conditions the integr_Js of Equations (32) and (35)

are proportional to each other. However, the requirement that fr(0il^i;nr16d

be independent of 0 i , (b i , and 6 r is nearly as restrictive as the Lambertian

assumption of constant f  (i.e., independent of all four parameters).

It is common to find expressions in the literature that give the

parameter p* as either p, p/7t, or (p coso)/Tr, where p is called the

"reflectivity" of the target. If the BRDF of a calibration target is

sufficiently known, we may more exactly define p*. Under the assumptions

9	
leading to Equation (29), e.g., uniform and isotropic illumination and target

L
surface, we see that the general expression for p* in Equations (5) and (7)

is

J0ir f b)i fr(0i, i =Q r sfi r ) cose i cosnr dwi dwr

W	 J	 coso i 
dw,

r	 wi	Z
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`4 	 If small solid angles can be assumed, Equation (36) becomes

a	 p*(ni'Yr' -"r) = <fr(01"i;'^'r"r)> cosrnr 	(37)

and if collinear geometry is used, Equation (37) becomes

P*(6),fi;n,fi) = <fr(0,fi;O,^)> cos y
	

(38)

If the geometry of Figure 5c applies, cosO is replaced by (cosn) 2 in Equation

(38). If the target is Lambertian (diffuse), then Equation (38) becomes

P*( C)	0	
Tr	

coso = Tr cost?

p(wi;2Tr)	
Pis
	

(39)

It is apparent that considerable calibration error may result from replacing
;

P* in Equation (5) or (7) with either p, p/'r, or even (p coso)/Tr when the

experimental geometry resulting in the reported value of p is unknown; when

the center wavelength, bandwidth, and polarization of the illumination may

Have differed from that in use; and when the target surface is most likely not

Lambertian or reproducible. 	 6
i

The ideal calibration target would have a well-known BRDF and would

i

be inexpensive, easy to fabricate, durable, and reproducible. It has been 	 k

shown that quantitative characterization of a target using integrating-sphere

data and laboratory backscatter n dependence data is only possible if

fr(Dil`i;0rl`r) is independent of S i , r,, and 0r , a very restrictive condition

that is satisfied by Lambertian surfaces. Thus, a Lambertian target possessing

the qualities listed above would greatly facilitate the calibration process.

t
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If the reflected radiation of a Lambertian target were measured using a

collinear backscatter geometry (0 i= 0 r = 0) with Ai - A  < As , then

Equation (39) predicts a cosO signal dependence as 0 is varied. The lack

of a cosO signal, dependence would indicate that a hard target was not

Lambertian, while the presence of a cosO dependence would strongly indicate

that the target was Lambertian. We have fabricated a collinear backscatter

apparatus at JPL, which uses a cw CO 2 laser for illumination wavelengths in

the 9 to 11 um region, to investigate candidate calibration target surfaces

(Kavaya et al., 1983). The laboratory collinear backscatter apparatus is

shown in Figure 6. The passively stabilized, linearly polarized, cw CO2

laser is grating-tunable in the 9 to 11 tim region. The laser radiation was

chopped at 100 Hz and was directed onto both the target surface and a power

miter with a ZnSe beam-splitter. The vertical polarization of the laser was

perpendicular to the plane of incidence at the target. A 30-cm focal length,

5-cm diameter BaF 2 lens was used to image the target surface onto an

LN 2-cooled, HgCdTe infrared detector. A preamplifier and lock-in amplifier

(not shown) were then used to obtain the signal magnitude. A ZnSe polarizer

that had a greater than 500:1 extinction ratio and 10-mm diameter aperture was

positioned next to the detector and was used to select backscattered radiation

with polarization either parallel or perpendicular to that of the illuminating

beam. (The different reflection coefficients of the beam-splitter for the two

directions of polarization were measured, and the data were appropriately

scaled.) The target was carefully positioned to align the center of illumi-

nation with the axis of rotation. The beam size at the target was —5 mm in

diameter and was smaller than the target even at 0 = 80 0 . Since backscatter

from the power meter contributed a large background signal, the power meter was
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HgCdTe DETECTOR

ZnSe POLAR IZER

BaF2 LENS, f = 30 cm

ZnSe

	

BEAMSPLITTER	 .

TARGET I + -,M POWER
METER

He-Ne LASER
M

CO2 LASER	 'NaCl	 I
BEAM-	 CHOPPER
S PL I TTER

Figure 6. Laboratory collinear backscatter apparatus.
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removed during measurements, and the unblocked beam was allowed to travel.

1	 several meters before striking anything. Background readings were then taken

with a mirror that was placed between the beam-splitter and the target, and

that also directed that beam across the laboratory. The background readings

were found to be negligible. The data were normalized by the laser power.
r

I he finite size of the lens limited the resolution in 0 to 3.2°. However, it

did help reduce the signal, fluctuations due to speckle, with an estimated 100

speckle lobes being averaged. Speckle effects were further reduced by averag-

ing several measurements within ±0.5" of the desired value of 0. Later, a

spinning target was incorporated to essentially eliminate the speckle effects.

We chose four target surfaces for this work: sublimed flowers of

sulfur (S), flame-sprayed aluminum (FSA), 20-grit sandblasted aluminum (SBA),

and 400-grit silicon carbide sandpaper (SC). The sulfur target was fabricated

by mixing sublimed sulfur kJ.T. Baker 4088) with acetone to form a slurry

1.4 g sulfur to 1 ml acetone). The slurry was packed into a rectangular

well that was machined in aluminum to a 4.4-mm depth. A microscope slide

lubricated with acetone was used to trowel a uniform surface finish that

appeared smooth to the naked eye. The target was then. allowed to dry over-

night. The flame-sprayed aluminum target was made by sandblasting 6061

aluminum plate with 60-grit- sand, priming with Ni alumina bonding agent, and
t

finally flame-spraying with pure aluminum to a thickness of 0.25 to 0.38 mm. 	
i

I
The measurements (Kavaya et al., 1983) showed that the FSA, SBA, and SC tar-

1
gets all deviated significantly from the Lambertian cos0 dependence, whereas

the flowers-of-sulfur target obeyed the cos0 dependence within our experi-

mental uncertainty. The worst deviations occurred with the SC target, whose

signal was fairly independent of 0, indicating that retroreflection was re-

sponsible.
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t4 If we let the symbol s represent the backscattered radiation with

polarization perpendicular to the illumination polarization direction, and p

represent the backscattered component parallel to the illumination, then thQ

depolarization ratio, defined as s/(p + s), varied from approximately 10% to
F

e	 30% for the four targets. The largest depolarization ratio corresponded to

the flowers of sulfur, which is consistent with the idea that Lambertian

behavior is caused by multiple subsurface scattering. The preservation of

polarization direction with specular reflection was supported by the fact that

the FSA and SBA targets exhibited specular reflection components near 0 =

00 only in their parallel backscatter profiles and not in their perpendicular

backscatter profiles, and by the fact that the depolarization ratio of the

"retroreflecting" SC target was the lowest (-10%).

Although our measurements indicated that the flowers-of-sulfur

target was Lambertian at a = 9.6 and 10.6 tim, and presumably also at other

CO 2 laser wavelengths, it is not an ideal calibration target. Our lidar

beamwidths and calibration target range (2 km) require a large target surface

(N 1.$ m square) that is durable enough for field use. The sulfur targets,

however, are very fragile and inconvenient to make in large sizes. We have

found that the smooth surface appearance is required for the Lambertian

behavior. Also, little is known about the effects of aging or exposure on the

1
BRDF of the sulfur.

To take advantage of the Lambertian behavior of the sulfur, we have

adopted a primary and secondary standard-calibration technique. A flowers-of-

sulfur target, which exhibits Lambertian behavior, is made the primary 	 g

standard. An integrating sphere is then used to measure the directional-

hemispherical reflectance, p lS , of the target as a function of wavelength
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'	 with an incident illumination angle of 450 (Kavaya et al., 1983). Since

Equation (39) applies to the sulfur target, p* may be calculated for any
a	 ;

angle 0. A large, durable FSA target is then fabricated and made the

secondary standard. This target is used in the field with 0 = 45 0 as tho

lidar calibration target. Assuming homogeneity, a small piece of the FSA

target, suitable for use in the apparatus of Figure 6, is cut off.

Using the apparatus shown in Figure 6, a ratio of backscatter

reflectance is determined between the primary sulfur target and the secondary

FSA target. This ratio is measured at 0 = 45 0 , with the incident and

detected directions of polarization matched to that of the lidar geometry, and

at each wavelength of interest. Finally, the value of p* for sulfur,

calculated from Equation (39), is multiplied by the measured reflectance ratio

of FSA to sulfur, to obtain the p * for FSA that is inserted into Equation

(7). For example, we have used this technique to determine a value of 0.097

for p* of our FSA lidar calibration target at the lOP(20) CO
2
 laser wave-

length. If FSA is assumed to be Lambertian, however, with a "reflectivity" of

80%, which has been done in the literature, then the calculated value of p*

would be 0.8 cos 45 0 /^r = 0.18. This value is 86% larger than our value.

Ideally, the reflectance transfer from the primary to the secondary

standard should be done under conditions that match both the integrating-

	

	 i

I
sphere measurement and the lidar measurement as closely as possible. In

practice, however, there are many departures from this ideal. The transfer

angle, 0, should match the incident angle in the integrating-sphere

measurements and the lidar-target polar angle. The solid angles ui i and
a

a	 w r in all three measurements should be as close as possible. (This may be
d 

impractical since lidar solid angles are so small. Thus the BRDF of the
ry

s

M
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primary and secondary targets should not vary strongly with 0. This

consideration makes retrore.tlecti,ng targets a poor choice.) The sensitivity

of the reflectance transfer ratio to w  and w  could be studied by varying

the solid angles in the backscatter apparatus. A tunable ew CO  laser should

serve as the illumination source for the integrating-sphere data with polariza-

tion geometry identical to the other two measurements. (If the integrating-

sphere measurements of sulfur are made with unpolarized light, then four

measurements of tie sulfur at 0 = 45 0 should be made with the collinear

backscatter apparatus. A measurement should be taken with all four permuta-

tions of parallel and perpendicular, incident and reflected radiation: ss,

sp, pp, and ps. One-half of the sum of these four readings should then be

ratioed with the single (e.g., ss) reading of the FSA target.) The same

Lambertian sulfur target should be used for both the integrating-sphere and

transfer measurements. The secondary target should be as homogeneous as

possible so that the small piece used in the transfer measurement accurately

represents the larger lidar target. (We have seen variations in the BRDF of

different FSA targets that probably are due to the operator, the fabrication

technique, the size of the target, etc.) In addition, the small piece cut

from the secondary target should be kept with the larger target, and thus be 	 E

subjected to the same environment, so that later transfer measurements can be

used to update .the calibration and to study aging and exposure effects.
 M1	 t

It has been shown that the calibration-target parameter p*, which i
t

must be well-«nown for accurate calibration of aerosol backscatter data, de-

pends intimately on the BRDF of the target surface, a function that can only

be partially measured with a costly, time-consuming, and complex goniometric

experimental measurement and that likely varies with the wavelength, polariza--

tion, and bandwidth of the illuminating radiation, and with the subtended solid

e
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angles of the illumination and detector. Little is known about the variations

of the BRDF of hard targets with these parameters, or the variations with timc;

and exposure for a single target, or the variations among different samples of

the same type of target surface. It appears at present that the best method

for determining the value of p* for the l.idar equation is to use the primary

and secondary standard technique outlined above, including consistent and coor-

dinated integrating-sphere, collinear backscatter reflectance ratio, and lidar

measurements.
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SECTION 7

ATMOSPHERIC MODELING

The remaining two parameters of Equation (7) that must be known in

order to calculate R(R) are a
s
(R) and a b (R), the atmospheric extinction

profiles for the optical paths from the lidar to the hard target and aerosol

particles, respectively. Ideally, both profiles would be accurately measured

at the time of each lidar measurement and at the transmitted wavelength.

Unfortunately, this is very difficult to do. It is clear from Equation (2)

that the lidar signal does not readily yield the atmospheric extinction

profile when R(R) and a b (R) are both unknowns. An analytic relationship

between S and a  is not possible at iO um since the extinction is

mainly molecular while the backscatter is due to the aerosol particles.

However, if the pulse duration T  is sufficiently short, if the overlap

function 0(R) is well-known, and if both S(R) and ab (R) can be assumed

to be independent of R, then the lidar signal in Equation (2) can be used to

determine the extinction coefficient. These conditions are reasonable for

horizontal paths if both 0 and a depend only on altitude. Thus the

extinction profile as (R) may be considered to be constant if a horizontal
r	 F

path between the lidar and the calibration target is employed. Furthermore,

by aiming the lidar so that it just misses the target, and therefore obtaining
a

backscatter from a much longer yet similar horizontal path, the value of
i
x

a s (R) = a s may be determined. For a ground-based lidar, such as the

coherent CO2 lidar at JPL, the horizontal path lies in the boundary-layer

and a s is called the boundary-layer total attenuation aBL.

These steps are shown in Figure 7 in relation to the overall

calibration process used at JPL to reduce the lidar backscatter data and
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0	
calculate vertical and horizontal, S profiles from vertical and horizontal

aerosol backscatter data and from horizontal hard-target backscatter data.

Note that the steps of data acquisition and data processing, as discussed in

Sections 3 and 4, are not portrayed in Figure 7. However, both the telescope

overlap function and hard-target calibration, discussed in Sections 5 and G,

are shown in the calibration :Flow diagram.

Obtaining the extinction profile a b (R) for the vertical aerosol

backscatter data is much more difficult than obtaining a s (R). Equation

(2) may not be used, since both a b(R) and P(R) will depend on R. Direct

measurement of extinction vs. height at the transmitted wavelength and at the

time of each measurement would be very difficult and expensive. At 002

laser wavelengths the total extinction consists of .no'lecular extinction and

aerosol extinction. If the CO2 line is chosen to avoid resonances of trace

species such as ozone, than the molecular extinction will be due primarily to

CO 2 and water vapor. The extinction due to these two molecules may be

calculated from altitude profiles of atmospheric temperature, pressure, and

relative humidity. These profiles may be measured directly using rawinsonde

or radiosonde ascent probes. An alternative to the inconvenience and cost of

ascent probes is to use a model for the atmospheric temperature, pressure, and
a

relative humidity that is appropriate to the measurement location and season. 	 I

As shown in Figure 7, this latter technique is used at JFL. The molecular
R

attenuation vs. altitude above the boundary layer is calculated using the

Midlatitude-Summer model profiles for temperature and water vapor (McClatchey
6

at a1., 1972), the CO 2 and H2O absorption-line parameters from the 1982

AFGL atmospheric absorption-line parameter compilation (Rothman at al., 1983),

and the water-vapor continuum absorption parameters given in LOWMAN 5

(Kneizys at a1., 1980).
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	 i
Figure 8 shows the calculated molecular attenuation for various,

Co, laser ,lines.	 Within the boundary layer the total attenuation calculated

from the liorizontal aerosol backscatter is used.. (A slant-path aerosol

backscatter measurement through the boundary layer may also be employed to

determine the height of the boundary Layer.) The molecular (CC 2 + it20)

contribution to the boundary-layer attenuation is calculated from direct

measurements of temperature, relative humidity, and pressure. This is

subtracted from the total boundary-layer attenuation to obtain the aerosol

contribution in the boundary layer. The aerosol attenuation normally

decreases rapidly with increasing altitude above the boundary layer. A model

for the aerosol altitude scaling factors (McClatchey and D'Agati, 1978) is

used to derive the aerosol, contribution to attenuation vs. altitude. These

altitude scaling factors are also shown in figure 8. Finally, the total

attenuation vs. altitude a y^(R) (see Figure 7) is found by add tnZ the

aerosol and molecular contributions.

Any errors in the two profiles, as (R) and ab (R), that are

used in Equation (7) will obviously produce errors in the calculated profile

RM . If we let a s (R) and cx b (R) represent the true atmospheric
f

profiles, and aS(R) and ab(R) represent incorrect profile;;; that are

used in Equation (7) to calculate f'(R), then the ratio of incorrect to
I

correct ( is given by

f

Rs	 /Rb

	

(Rb )	 exp { _2 Of 
as(R')d[t`}	 exp-2 J ab(R')dR/

(40)f 0

f	 P(R	
Rs	 2 R  a'

	

b)	 - exp -'	 a (R')dV	 X exp -(R')dR'{	 f 	 }	 { fb	 }

0	 0
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	 Molecular attenuation and aerosol extinction scaling factor

profiles that are used above the boundary layer for com-
putation of the total attenuation. A Midlatitude-Summer

model of atmospheric pressure, temperature, and relative
humid?ty.was used. The attenuation at 9.11 um, which is
not significantly affected by atmospheric i,:arbon dioxide,
is shown for comparison.
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`	 1he ratio given by Equation (40) may be applied to the typical atmospheric

modeling geometry shown in Figure `J. We let the lidar system fire into the

atmosphere at zenith angle: Q from altitude Z L. The atmosphere is modeled

by layers i that have total attenuation a i and an upper altitude of Zi.

R
When appropriate, the first layer is the boundary layer with attenuation al

aBL and altitude Z  = Z BL. The horizontal path to the calibration

target is In the first layer, and the altitude Z at which s is being calcu-

lated is assumed to lie in layer j. With this geometry, Equation (40) becomes

exp

	

-2 It (a' - a )	 Z	 Z'+Z(-a
B(RR b), =exp
	

s BL BL 	 cos0 [OBL  BL - %LBL	 L aBL BL , }
b

a2(Z2- 
7-BL )

- a 2 (G 2 - ZBL ) J 	
X ...

cos0

x exp- cos0 rj-I (Zj-1 - Zj-2) - aj-1 ^ Z1 1 Z,j-2 )^ )
i,

X exp { - Z	 Ca' 2' - a L	 + G(a
j
 - a; )1 t	 (ttl)

tt	 cos0 L i, j-1	 j j' ?	 ^_JJ f

The effects of making specitic errors in the atmospheric attenuation model may

be easily de ved from Equation (41). For example, if the only error in the

atmospheric model is in the boundary-layer total attenuation a BL , then the

ratio of Equation (41) for Z > ZLL reduces to

	

R' (ttb) = expj -2( '
	 BL)[ R - ( BL -Z 	 )/cosG1	 (42)

	

S(1Lb )	 `	 1

which is independent of Z (i.e., Rb ). Note that a prudent choice of Rs and

0 in Lquation (42) could eliminate errors in S due to any inaccuracy in
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aBL. As a second example, consider the only model error to be the height of

the boundary layer ZBL . Then Equation (41) becomes

8 ` 
(Rb )	 _ 2

R(Rb )	
- exp	

cosh (ZBL- ZBL )(a `L - aBL) )

which is again independent of Z. If the bracketed exponents in Equations (42)
r

and (43) are much smaller than 1, then the percentage error in P will be

proportional to the exponents.

We have investigated the altitude dependence of the error in R

that results from using various incorrect atmospheric attenuation models.

Data from an actual backscatter profile taken on July 21, 1983, at 10.6 pm

with 0 = 0  were used in the investigation, and the results are shown in

Figure 10. Our lidar altitude was approximately 0.4 km and the assumed correct

atmospheric model was a Midlatitude-Summer model with a 1.5-km boundary-layer
!'	 1

altitude and a 0.39 km l boundary-layer attenuation. Figure 10 gives the
i

percentage error in R(Z) resulting from using four "incorrect" atmospheric

models; 1) a Midlatitude-Winter model above the boundary layer, 2) a Tropical

model above the boundary layer, 3) a Midlatitude-Summer model but with a

boundary layer altitude of 1 km, and 4) a Midlatitude-Summer model with a 2-km

boundary layer altitude. As predicted by Equation (43), the effects of using

r	 an incorrect value of ZBL are independent of altitude. The error due to

gassuming ZPL = 2 km is ten times the error due to assuming Z BL = 1 km.

This is expected from Equation (43), since (a 2 - aBL ) is much larger
x

for the former case. The use of incorrect atmospheric models above the

boundary layer results in an altitude-dependent error in S, as expected from

Equation (41). In our example, the error increases with increasing altitude,

reaching as much as 30% at 8 km.

(43)
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boundary-layer altitude of 1.5 km.

54

4

a

V
i



_\Y /j

It is clear from these results that an incorrect atmospheric attenu-

ation model can easily lead to t30% errors in the calculated values of S.

r
Correct modeling of the boundary layer is important for upward-pointing lidars

that pass through a significant boundary layer. Of course, the boundary-layer

effect on downward-pointing lidar data is much less significant.

Other factors that may have to be considered in modeling the

atmosphere, depending on the lidar geometry and operating wavelength, include

multiple scattering (Tam, 1983), Rayleigh scattering (Sroga et al., 1983) and

the effect of the laser pulse on the atmospheric parameters (Fowler, 1983). f,

Multiple scattering and Rayleigh scattering become relatively more important
i

at shorter wavelengths and should be considered when using lidar at, e.g.,

1 }im. Fowler (1983) indicates that transmitted pulse fluences of 1 J/em2

or greater at CO2 laser wavelengths may alter the characteristics of fog or

aerosols composed largely of water. The pulse fluences of typical coherent

lidars used in atmospheric studies are below 0.1 J/cm2.

I
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SECTION 8

CONCLUSIONS

Several possible sources of systematic error in interpreting and

calibrating lidar aerosol backscatter data have been reviewed in this report.

In addition to the difficulties posed by the physics of the measurement, other

areas of concern that were discussed include data acquisition, data processing,

hard-target calibration of the data, and modeling of the telescope overlap

function and the atmospheric attenuation. In each case, examples of the re-

sulting error due to incorrect data reduction, data interpretation, calibra-

tion, or modeling were given. The largest potential source of error was due

to incorrectly modeling (or neglecting) the telescope overlap function. Al-

though the other potential error sources were smaller, they each must be con-

sidered in relation to the desired measurement accuracy of the backscatter

coefficient.

It is hoped that this discussion will contribute to more accurate

and consistent calibration of lidar data through increased understanding of

the necessary steps in data interpretation and calibration. Although the

viewpoint pertained primarily to stationary, pulsed-0O 2 lidar measurements,

t	
much of the analysis should be useful for ground-mobile and airborne lidars,	 t

I
for lidars operating at other wavelengths, and for cw-focused lidars.

j

It is believed that careful consideration of the calibration-

process steps described here will allow significant improvement in the

accuracy, calibration, consistency, and inter-calibration between different

systems of lidar aerosol backscatter data.
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APPENDIX A

SYMBOLS AND DEFINITIONS

Yi

Symbol Definition Units

A Area m2

Ai Illuminated area m2

A 
Area viewed by receiver m2

As Hard-target surface area m2

c Speed of light	 (2.998 x 108 ) m s-1

C Capacitance F

E Irradiance W M-2

N, Energy J

E 0 Average pulse energy J

E 
Energy of pulse i = E 	 + e J

E tb Energy transmitted into atmosphere J

Ets Energy transmitted toward hard target J

f Frequency Hz,	 s-1

f 
Bidirectional reflectance-distribution function sr-1

V Operator -

F Aerosol backscatter operator -

Fr Lidar receiver operator -

Fs Target backscatter operator -

Ft Transmitted-pulse operator -

G Gain parameter -

G 
Aerosol backscatter gain parameter -

59

d

'moo/



:!Y,! ok:^

Gs Target backscatter gain parameter -

G 
Transmitted pulse gain parameter -

H(t) Heaviside unit step function (O:t<O; 1:00) -

i Counting index

Is Time integral of target return power J

i Counting index -

K Arbitrary signal -

L Radiance W m-2 sr-1

M Gamma density function parameter -

N Number of events -

N 
Number of aerosol backscatter pulses -

Ns Number of hard-target backscatter pulses -

O(R) Telescope overlap function -

p Polarization parallel to plane of incidence -

p(x) Probability density function x-1

P(Y) Probability density function
y-1

P Power W

PO Power of rectangular pulse W

Pb Aerosol backscatter received power W

Ps Target backscatter received power W

P t Transmitted-pulse power W

Ptb Transmitted-pulse power into atmosphere W

Pts Transmitted-pulse power toward hard target W

R Resistance P,

R Range m

R 
c[t/2 - T	 /41 m

P
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Rs Range to hard target m

e Polarization perpendicular to plane of incidence -

S Arbitrary signal -

t Time s

V Voltage V

V 
Aerosol backscatter recorded voltage V

Vs Target backscatter recorded voltage V

V 
Transmitted pulse recorded voltage V

Vtb Recorded voltage for transmitted pulse into V
atmosphere

Vts Recorded voltage for transmitted pulse toward V
hard target

X Random variable x

Y N-I EX x

Z Altitude m

ZBL Altitude of top of boundary layer m

Z Altitude of lidar apparatus m

U Extinction coefficient m-

• Extinction coefficient along atmospheric path m-1

uEL Extinction coefficient of boundary layer m-1

u s (R) Extinction coefficient along target path
m_1

Aerosol volume backscatter coefficient m-1 sr_1

6(x) Impulse symbol x-1

E 
Deviation of ith laser pulse energy from E O J

n Optical efficiency -

0 Polar angle rad



s

a Optical wavelength m

,r 3.14159

p(wi ;wr ) B.1conical reflectance

P i s Directional-hemispherical reflectance, p(ni,d)i; 27r )

P* Target reflectance parameter r^r^1

T Time constant s

T b Aerosol backsca tter time constant h

T Transmitted pulse duration s
P

T 
s

Target backscatter time constant s

T t Transmitted pulse time constant s

Azimuthal angle rad

Radiant flux W

w Solid angle sr

incident irradiance solid angle sr

U) r Receiver solid angle sr

W Average value
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