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ABSTRACT

This annual report presents results of an ongoing research program

into the reliability of terrestrial solar cells. Laboratory accelerated

testing procedures are used to identify failure/degradation modes which are

then related to basic physical, chemical, and metallurgical phenomena. In

the most recent tests, ten different types of production cells, both with

and without encapsulation, from eight different manufacturers were

subjected to a variety of accelerated tests. Results indicated the presence

of a number of hitherto undetected failure mechanisms, including Schottky

barrier formation at back contacts and loss of adhesion of grid

metallization. The mechanism of Schottky barrier formation can be explained

by hydrogen, formed by the dissociation of water molecules at the contact

surface, diffusing to the metal semiconductor interface. This same

mechanism can account for the surprising increase in sensitivity to

accelerated stress conditions that was observed in some cells when

encapsulated.
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	 EXECUTIVE SUMMARY

This annual report is a summary of reliability research being

conducted at Clemson University relating to failure/degradation mechanisms

which can occur at the basic cell level. The research approach taken is to

7	

first detect the mechanical change and/or electrical degradation, which is

charateristic of a particular cell construction, through the use of

laboratory accelerated testing procedures, and then through detailed
Y
l

analysis to determine the basic physical, chemical, or metallurgical

phenomena involved. In this report recent test results have been tabulated

and the degradation mechanisms identified where possible for ten different

unencapsulated state-of-the-art crystalline cell types from eight different
3

manufacturers. Major program accomplishments are identified in vhis

executive summary.

Schottky Barrier Contact Formation

Accelerated testing of unencapsulated cells uncovered a new degradation

mechanism, not previously identified, affecting one type of cell

construction. In this case degradation was accompanied by the formation of

a distinctly non-linearity IV characteristic, primarily after exposure to

bias-temperature testing, which greatly reduced the cell's maximum power

output. It was concluded that a rectifying Schottky barrier had formed at

the back contact. The particular cell construction where this was observed

had a lightly doped substrate (no back surface field) and relied on a high

concentration of surface states to give a low barrier height and consequent
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*	 r ohmic contact. It is felt that atoms from the test environment, most likely

1
hydrogen from dissociated water vapor, diffuse to the interface reducing

'p the concentration of surface states. This increases the barrier height and d

results in a rectifying Schottky barrier. A series of additional controlled

experiments to clearly define the role played by moisture in the Schottky

barrier formation process is currently being planned.

Loss of Grid Adhesion

Another failure mode also detected from testing unencapsulated cells, which

affected a different cell and whose cause is still under investigation, was

°	 the catastrophic loss of grid adhesion. Some loss of adhesion was noticed

on other cell types, but not to this extent. The phenomenon affected all

cells in a given lot and became so bad after a relatively short that a

number of the tests had to be discontinued prior to their planned end

point. Discussions with the manufacturer indicated the probable cause was

contamination during processing and experiments are currently underway to

determine if this is the case.

Enhanced Degradation of Encapsulated Cells

In addition to testing unencapsulated cells, nine of the cell types were

tested as encapsulated single cell modules, which used different

combinations of substrate, superstrate, and pottant materials. In all,

seven different encapsulation configurations were involved. The

encapsulated cells were subjected only to 85/85 and thermal cycle testing,

however, because of a 100 0C temperature limit on the organic pottant

vi 4
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materials used. A somewhat surprising result, which had been suspected as a

result of earlier preliminary encapsulated cell testing, was confirmed by

this present work -- encapsulated cells show appreciably greater

degradation in many cases than unencapsulated cells. This is believed to be
p..

a result of the widely different penetration rates for water vapor

molecules and their dissociation products, hydrogen and oxygen, in

nonhermetic substrate materials. As a result, hydrogen and oxygen become

trapped at the interface increasing the probability of one of these atomic

species, most ikely hydrogen, diffusing to the silicon surface and changing

the surface state density. As expected, however, encapsulation was found to

offer protection against catastrophic mechanical type failures.

Little Protection Offered by Foil Substrates

Accelerated stress testing of encapsulated cells also showed that foil

substrates behaved essentially the same as the non hermetic materials, i.e.

they tended to increase cell degradation over what it was for

unencapsulated cells. The phenomenon of trapping dissociation products at a

metal — plastic boundary described above can also be used to explain this

ineffectiveness of thin foil substrates. Hydrogen is able to diffuse

through the foil whereas water vapor cannot. The only foil material tested

was 1—mil aluminum and it is possible that other materials and thicknesses

could provide better protection.

New Test and Analytical Facilities

An outdoor real time cell test facility is now in operation. Individual

r•;
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cells, either encapsulated or unencapsulated, can be mounted on carriers,

r	
electrically measured under controlled conditions in the laboratory, and

then attached to an outdoor inclined frame for long term environmental

exposure. It is hoped that periodic remeasurement will detect degradation

effects similar to those observed during accelerated testing and that

correlation between the two mmethods can be established.

A new electron microscope analytical facility which will be devoted to

semiconductor device reliability research is being constructed at Clemson.

The facility will be an addition to Clemson's existing central electron

}	 microscope facility and will contain a high resolution (40 ^) scanning

scope with x-ray wavelength dispersion and voltage contrast capability, and

an Auger microprobe with scanning ion microprobe capability. The new

Instrumentation will be used to acquire quantitative information regarding

cell degradation mechanisms. A workshop is planned for the spring of 1984
i

to acquaint the photovoltaic community with the topological and analytical

capabilities of the facility.
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1.0 INTRODUCTION

This is the Fourth Annual Report on the Investigation of Accelerated

Stress Factors and Failure/Degradation Mechanisms in Terrestrial Solar

Cells, a photovoltaic cell reliability research program which has been

conducted by Clemson University for the Flat-Plate Solar Array (FSA) Project

of the Jet Propulsion Laboratories, The objective of the research is the

determination of fundamental physical, chemical, and metallurgical phenomena

which cause solar cells to degrade with time, The approach followed was to

design laboratory test procedures which would accelerate anticipated field

failure modes, and then to subject quantities of different types of

commercially available cells to them. Testing was performed on both

encapsulated and unencapsulated cells. The electrical and physical results

of this testing could then be analyzed in an effort to identify tho basic

phenomena underlying the degradation. Corrective action would then be

possible during manufacture to avoid the observed problem. Tht program was

initiated in December of 1977 and earlier reports (1,2,3,4) have discussed

many of the experimental and analytical methods employed, the data collected

on several types of cells, and a number of preliminary conclusions. It is

i	 the purpose of this report to present the results obtained on the most
k,

m'	 recent group of cells which have undergone testing, to describe new
.r:
'c

degradation mechanisms and phenomena which were found, and to discuss new

analytical methods currently under development.

110 
tt	

As a result of their inherent simplicity, coupled with the lack of

by constraining specifications, solar cells are very reliable structures.

e	
3

-RECEDING PACTS BLANK NOT FILMED
,^ , ^bfY 0110NA. r, 5LA116



M pi

a
'I

Verification of this degree of reliability is exceedingly difficult,

however. Obviously accelerated testing is required which will result in

measurable degradation in a reasonably short time, i.e. acceleration factors

of 100 or more are required. Furthermore, as one moves progressively further

away from the basic unencapsulated cell towards the finished photovoltaic

array it becomes more difficult to increase the applied accelerating

stresses without introducing extraneous failure modes and invalidating the

test procedures. Section 3.0 of this report covers the first meaningful and

systematic attempt to achieve accelerated degradation in encapsulated cells.

As verified by results obtained on the most recent group of cells,

unencapsulated cell testing remains the most effective technique for

producing significant degradation in sensitive cell types within a short

time. Although absolute acceleration factors have not been determined,

results are significant in their ability to differentiate between cell

types. Although different failure/degradation modes were observed, many of	 ?

the basic mechanisms behind these modes remain a mystery. On one particular

cell construction, however, it was possible to interpret the observed

maximum power degradation as being consistant with Schottky barrier

formation at the back contact, as described in Section 4.2.

A first step towards establishing a relationship between accelerated

test results and effects which occur in real time was begun during this

reporting period. To accomplish this both encapsulated and unencapsulated

single cells were mounted in outside racks and loaded at approximately the

maximum power point. The individual cells were mounted in such a way that

they could be removed for accurate measurement in the laboratory. It is

ti
4
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hoped that data accumulated in this way can be used to determine actual

acceleration factors and to gain assurance that the same failure modes are

being observed in the laboratory as in the field (Schottky barrier

formation, for example).

During this round of testing many of the cell types in the test

program were donated by manufacturers. In order to encourage this type of

activity, Clemson acquainted each manufacturer, who contributed cells, with

the accelerated test results of those cells as they occurred. Computer

printouts of the electrical measurement data on appropriate cell types were

mailed directly to the manufacturer, with as many as eight mailings being

made to some manufacturers during the test period. Although some difficulty

was encountered in establishing a routine for accomplishing this, it is felt

the procedure was a success and should be continued.

5
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2.0 ACCELERATED STRESS TESTING OF UNENCAPSULATED CELLS

2.1 Description of Cells

Since the program was initiated, 23 unencapsulated cell types from 12

different manufacturers have undergone some degree of stress testing. Table

1 summarizes, according to their primary metallizations, the 10 different

unencapsulated types of cells from 8 different manufacturers that were in

the latest group. Although the primary conductive metallization layer is the

same for many of the cells, the barrier/strike layers which seperate it from

the silicon may be quite different, both in composition and thickness. There

are essentially four different layered conductor systems in use today --

copper plate, nickel plate, silver frit, and evaporated silver. The latter

system is considered too expensive for present day terrestrial use and was

not included in the present test group, although Ti-Pd-Ag cells have been

tested in the past and found to be very reliable. The remaining three

metallization categories may include a solder coating to help provide the

necessary conductivity. The thick conductive layers could be easily

identified, but more often than not the thin barrier/strike layers were

unknown. Furthermore, the composition of and deposition methods for these

layers vary from one manufacturer to another malting it difficult to

interpret the test results obtained on specific cell types in terms of

generalized metallization systems. Photographs of the ten different cell

types tested are shown in Figure 1. It can be seen that a wide variety of

cell constructions, including EFG and dendritic ribbon were involved.

Because the grid configurations of cell types are so distinctive, making it

t ,	 9^^IHIEHTIw)NALtX BUUIC

1 ^	 PRECEDING PAGE BLANK NOT FILMED
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TABLE 1.

UNENCAPSULATED CELL TYPES
CLASSIFIED BY PRIMARY METALLIZATION

CELL TYPE	 CONDUCTING LAYER	 SOLDER

N	 nickel plate	 yes
0	 nickel plate	 yes
P	 nickel plate	 yes
Q	 nickel plate	 yes
R	 copper plate	 no
V	 copper plate	 yes
w	 nickel plate	 yes
X	 nickel plate	 yes
Y	 silver paste	 no
Z	 silver paste	 no

i
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Figure 1,	 Cells in Unencapsulated Test Program
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Figure 1 (continued). Cells in Unencapsulated Test Program

(Metallization difference only)
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relatively easy to identify the manufacturer, these photographs have

purposely not been correlated with the identifying letters used in the

report.

Cells were visually inspected initially and at each downtime. Initial

inspection revealed a continued improvement in quality over that for

previous samples. Only one cell type showed any appreciable defects on

incoming inspection. This cell, which was plated, apparently had masking

which broke down and allowed spurious plating on the grid as shown in Figure

2. The nodules were only lightly attached to the cell, but were firmly

attached to the grid lines. No uusual effects were observed during

unencapsulated testing, but one cell with this defect showed increased

degradation during testing when encapsulated.

2.2 Description of Tests

I

The cells were subjected to the standard Clemson accelerated test

schedule for unencapsulated cells shown in Figure 3 (*). As indicated, there

are 7 different tests, each having 4 down times. At the time of writing this

report all cell types have not necessarily completed all down times, but

tests are sufficiently far along that conclusions can be drawn with

* NOTE: The 75 ,C oven containing the N-, 0-, P-, Q-, R-, and V-cells was
allowed to overheat when first turned on because the student in charge of
the test forgot to take into account heating due to biasing. Consequently
the oven reached 150 C and remained there for approximately 24 hours. It is
felt that this unfortunate occurrence accounts for the peculiar results seen
in many of the cells where degradation was greater at 75 C than at higher
temperatures. It is interesting that the reaction to this high temperature
excursion, however, did not show up until a thousand hours later. when
comparing cell types bear in mind that the X-, Y-, and Z-cells did not
experience this excursion.

16
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confidence. Initially, and at each down time, the cells were electrically

measured and visually inspected. Electrical measurement consisted of

acquiring the IV characteristic curve and from it determining the parameters

Pm, Isc, Vm, Im, and Voc. Although the series and shunt resistances were not

specifically measured, the shape of the characteristic curves was

qualitatively inspected for non-linearity. The IV characteristic taken at

each measurement was saved in digital form for later retrieval if desired.

The measurement system, which is capable of measuring parameters to 1%

repeatability, is described in detail elsewhere (3,5). Of the electrical

parameters, the maximum power output of the cell, Pm, is obviously the most

useful in the measurement of degradation.

Visual defects which occurred as a consequence of testing, and which

perhaps were exacerbated by handling, were detected by normal viewing

procedures without the aid of magnification. The defects so detected were

placed in one of the following four catagories:

leads

grid contact

back contact

cell fracture

Of these, the grid and back contact catagories are considered more serious

from a practical standpoint that the other two, because leads and cell

fractures are exacerbated by handling during testing and at the same time

will be protected in the field by encapsulation to a greater extent. Defects

relating to each of these areas were then characterized as:

19
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0= no or very slight defect

1= moderate defect

2= severe defect (inoperative)

2.3 Test Results

2.3.1 General -- A number of things can happen to Pm, the maximum

output power, when cells are subjected to accelerated testing. The following

is a partial list:

1. Essentially no change

Individual cells show only random changes of less than 3%

2. Uniform change

All cells show about the same amount of degradation

3. Random change

Some cells show large degradation while others in the same lot

show slight or no change.

G. Progressive change

Cells show increased degradation with increased test time.

5. Plateau effect

Degradation levels out and does not decrease further with time.

G. Threshold effect

No change to some point in time where a large change occurs.

From an analytical standpoint it would be desireable to have the

test lots characterized as type-2. This would provide confidence that the

20
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test was uncovering a single well defined failure mode. Unfortunately many

test lots are type-3, making interpretation difficult. Often randomness

(type-3), the plateau effect (type-5), and the threshold effect (type-6) can

be explained by simultaneously observing catastrophic behavior, such as

leads missing, fractures, loss of metal adherence, etc. When a lead comes

off, for example, the output power will suddenly decrease, but will not

change further with time, assuming that the remaining leads remain attached.

Because the number of cells of any one type in each test was small (maximum

of 25), such random behavior does not lend itself readily to quantitative

data reduction methods, such as might yield a "one number" reliabili'cy

figure of merit. In order to be able to interpret the data, failure modes

caused by accelerated testing have been divided into two categories:

electrical degradation

catastrophic mechanical change

Electrical degradation is defined as a gradual and progressive change

(usually a decrease) in Pm with no related visual effects (type-2 behavior).

Examples of phenomenon which result in electrical degradation would be

Schottky barrier formation at a contact and lifetime reduction through metal

diffusion. Catastrophic mechanical change is defined as visually detectable

change which would be expected to result in loss of power output, and which

frequently can be characterized as "sudden". Examples would be loss of a

lead, loss of grid adherence, and cell fracturing. Visual changes which were

cosmetic, but which nevertheless might ulitmately lead to, or be related to,

power loss were noted, but were not considered to be a primary part of the

data analysis since the eventual results would show up as either Pm
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degradation or as mechanical effects. Examples of cosmetic changes would be

metal discoloration and solder bump formation.

In this report both accelerated test electrical measurement data and

visual data are presented in a series of tables. Most cell types

simultaneously exhibit both electrical degradation and mechanical changes.

In an effort to seperate the two catagories, an effort has been made to

remove the effect of mechanical change from the degradation tables. This

explains, for example, why the table describing the 150 )C B-T test, which

nominally has 20 cells, may show a lesser total number of cells as the test

progresses. For the most part only the data relating to cells which

experienced catastrophic change was removed from the table summaries -- the

cells themselves continued to undergo testing. An exception to the procedure

of removing the data for mechanically damaged cells involved thermal cycle

and thermal shock testing, which would be expected to introduce only

catastrophic t ype changes because of the short test times involved. In these

cases no attempt was made to remove data since only a single failure mode

catagory was expected.

2.3.2 Bias-Temperature Testing -- The electrical degradation results of

bias-temperature testing are given in Table 2. The reader is urged to

examine this table closely and note the regular progression of degradation

with time and temperature for most cells and to note also the differences

which exist between cell types. One cell type, the Q-cell, showed severe

electrical degradation which was interpreted as being due to Schottky

barrier formation at the back contact. This is discussed in detail in

Section 4.2. Catastrophic mechanical changes are shown in Table 3. Two cell

types, the X- and Z-cells showed severe mechanical problems during B-T

k



P	 75	 600 25 17
1200 24 15
2400 24 19

P	 135	 600 20 15
1200 20 18
2400 20 17

P	 150	 300 20 20
600 20 20

1200 20
2400 19 7

8

	

8
	

1
5
5
2
3

data erratic
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TABLE 2A
4 ^	 UNENCAPSULATED CELL BIAS TEMPERATURE TEST RESULTS

MAXIMUM POWER OUTPUT N-, 0-, AND P-CELLS

a

	

Cell Temp Time Total	 Range of Maximum Power Degradation
C	 (hr)	 Cells	 0-27	 3-97	 10-197	 20-297	 30-497 50-100%

11 75 600 25 23 2
1200 25 3 8 4 10
2400 25 4 7 4 9 1
4800 test in progress

N 135 600 20 19 1
1200 20 19 1
2400 19 14 5
4800 test in progress

N 150 300 19 15 4
600 18 11 7

1200 15 5 8 2
2400 14 3 6 4 2

0 75 600 25 19 6
1200 24 9 10 3 2
2400 24 9 10 2 3
4800 test in progress

0 135 600 20 14 6
1200 20 9 10 1
2400 20 6 12 2
4800 test in progress

0 150 300 20 14 6
600 20 9 11

1200 19 3 10 5 1
2400 17 1 1 12	 3

^i
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TABLE 2B
UNENCAPSULATED CELL BIAS TEMPERATURE TEST RESULTS

MAXIMUM POWER OUTPUT Q-, R-, AND V-CELLS

ai

Cell Temp Time Total Range of Maximum Power Degradation
C (hr) Cells 0-2%

-----------------------------------------------------------------------------

3-9%	 10-19%	 20-29% 30-49% 50-10004'

Q 75 600 25 2 23
1200 25 2 23
2400 24 2 22
4800 test in progress

Q 135 600 20 1	 16 3
1200 20 12 7 1
2400 20 2 18
4800 20 test in progress

Q 150 300 20 2	 12 6
600 20 5 10 4 1

1200 20 20	 I
2400 test in progress

l
R 75 600 20 13 7

1200 15 10 5
2400 10 5 5
4800 test in progress

R 135 600 16 10 6
1200 16 11 5
2400 14 4 8	 2
4800 test in porogress

R 150 test not run because of lack of samples

V 75 600 23 21 2
1200 15 3 11	 1 I
2400 interpretation difficult because of mechanical defects
4800 test in progress

V 135 600 17 17 i
1200 17 14 3
2400 15 9 6
4800 test in progress I

V 150 300 20 18 2
600 16 15 1 I
1200 14 7 7
2400 interpretation difficult because of mechanical defects

6	 ,
24
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TABLE 2C
• UNENCAPSULATED CELL BIAS TEMPERATURE TEST RESULTS

MAXIMUM POWER OUTPUT W-, AND X-CELLS

L	 Cell Temp Time Total	 Range of Maximum Power Degradation
C (hr) Cells	 0-2/	 3-9/	 10-19/	 20-29/	 30-49%	 50-100/

-----------------------------------------------------------------------------

W 75 600 25	 24	 1

1200 25	 6	 19

2400 test in progress
4800 test not yet started

W 135 600 20	 15	 S

1200 20	 17	 3

2400 test in progress
4800 test not yet started

W ISO 300 20	 17	 3

600 20	 17	 3

1200 20	 4	 15i	 1
2400 test in progress

X 75 600 25	 25

1200 25	 24	 1

2400 test in progress
4800 test not yet started

X 135 600 interpretation difficult because of mechanical defects
1200 interpretation difficult because of mechanical defects
2400 test in progress
4800 test not yet started

X 150 300 interpretation difficult because of mechanical defects
600 interpretation difficult because of mechanical defects

1200 test discontinued because of mechanical defects
2400 test discontinued because of mechanical defects

25
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TABLE 2D
UNENCAPSULATED CELL BIAS TEMPERATURE TEST RESULTS

MAXIMUM P014ER OUTPUT Y- AND Z-CELLS

Cell Temp Time Total Range of Maximum Power Degradation
C (hr)

---------------------------------------------
Cells 0-2% 3-9%	 10-19%	 20-29%	 30-49%	 50-100%

--------------------------------

Y 75 600 25 10* 15*
1200 25 12* 13*
2400 test in progress
4800 test not yet started

Y 135 600 20 10*	 9*	 L,
1200 20 10*	 9*	 1+'l
2400 test in progress
4800 test not yet started

Y 150 300 20 1* 9*	 10*

600 20 9*	 10*	 1*
1200 test in progress
2400 test not yet started

Z 75 600 19 8 11
1200 15 10 5
2400 test in process
4800 test not yet strated

Z 135 600 16 16
1200 15 11 4
2400 test in process
4800 test not yet started

Z 150 300 data unavailable
600 15 11 4

1200 test in process
test not yet started

v

:j

r^u

DY'

*NOTE: Y-cell Pm values represent increases rather than decreases!
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TABLE 3
UNENCAPSULATED CELL BIAS TEMPERATURE TEST RESULTS

CATASTROPHIC MECHANICAL CHANGE

Total Defect Category -- M=moderate, S=severe
Cell Temp in test Leads Fracture Grid Back

-------`------------------------`------------------------------°°-----
M	 S M	 S M	 S M	 S

N 75 25 1 1
N 135 19 2 1 4
N 150 20 2 5 3

0 75 25 1 1
0 135 20 2 2
0 150 20 9 2 4

P 75 25 2 3	 1 2
P 135 20 3 2 1
P 150 20 2 2	 1

Q 75 25 3	 1 4	 1
Q 135 20 1 5 1
Q 150 20 5 1

R 75 25 16 11	 2 7 22
R 135 20 12	 1 7	 12 3	 1 7	 3
R 150 test not run because of lack of samples

= v 75 25 1	 12 2
v 135 20 3	 5 1 1
v 150 20 3	 8 1 2

W 75 25
_ W 135 20 1 1

W 150 20 2

' X 75 25 6 7
X 135 20 1 20 20
X 150 20 4	 15 5	 15

Y 75 25 1 1
Y 135 20 3
Y 150 20 3 2

2 75 25 2	 6
Z 135 20 4 5

Ln	 .- Z 150 18 6 1	 3
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testing. The X-cell rapidly lost grid metal adherence at 135 and 150 C, and

the Z-cell fractured disasterously under normal handling. The term "severe",

in regard to catastrophic mechanical change, has previously been defined to

mean change which caused the cell to become inoperable, but an explanation

is perhaps in order concerning the more nebulous term "moderate". Moderate

change ranged from that which was easily discernable to anything less than

inoperable. Consequently, it is possible for a cell to become quite damaged

and still be termed moderate, as shown by the photographs of "moderate"

defects illustrated in Figure 4.

Considering the data of Tables 2 and 3, a somewhat subjective ranking

of the cells with regard to their sensitivity to D-T testing can be made.

Above average sensitivity to the test implies a less reliable cell. Such a

ranking is given below, together with an explanation for above average

sensitivity.

CELL	 RELATIVE SENSITIVTY TO B-T TESTS

N -- behavior considered average
0 -- above average due to excess electrical degradation
P -- well below average sensitivity
Q -- well above average due to back contact Schottky barrier

formation
R -- above average due to cell fracture
V -- behavior considered average
W -- below average sensitivity
X -- well above average due to loss of grid adherence
Y -- above average due to excess electrical change with time

even though change was to higher Pm.
Z -- above average due to cell fracture

28
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Figure 4. Examples of "Moderate" Mechanical Defects
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2.3.3 Dias-Temperature-Humidity (85 C/85% Rfl) Testing -- Electrical

degradation results for 85/85 testing are given in Table 4, and the

catastrophic mechanical change results in Table 5. It is obvious that the

85/85 test in not nearly as severe a test as the B-T test. With the

exception of the Q-cell the cells show little electrical degradation. This

fact will be important to the discussion in Section 3 concerning the

accelerated testing of encapsulated cells. Similarly, few mechanical effects

were observed, but the X-cells which had severe grid adherence problems on

B-T testing also had grid adherence problems in the 85/85 test. An overall

ranking of cells in this test is not given because of the small changes that

were observed.

2.3.4 Pressure Cooker (121 C/15 psig steam) Testing -- Electrical

degradation results for pressure cooker testing are given in Table 6, and 	 I
;I

catastrophic change results in Table 7. It can be seen that the severity of

the pressure cooker test is comparable to that of the B-T test. A regular

progression of degradation with test time can be observed in a number of

cases. The mechanical problems (loss of grid adhesion) associated with the

X-cell were so severe that it was impossible to get any indication of

non-mechanical related degradation. A particularly interesting effect was

shown by the Y-cell which showed an astonishing improvement with testing.

After 100 hours of testing all 10 of the Y-cells showed between 36 and 46:

improvement in Pm, with the average being 42% ! An improvement had been

observed during B-T testing, but not of this magnitude. No explanation is

offered at the present time for the phenomenon, which had the effect of

bringing cells having substandard performance more nearly in line with those

30
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TABLE 4
UNENCAPSULATED CELL 85 C/85% RH TEST RESULTS

MAXIMUM POWER OUTPUT DEGRADATION

Cell Time Total Range of Maximum Power Degradation
(hr) Cells

---------------------------------------------
0-2% 3-9%	 10-19%	 20-29%	 30-49%	 50-100%

---------------------------_-_o.
N 250 11 4 7

500 11 3 7	 1
1000 11 3 6	 2
2000 test in progress

0 250 14 14
500 14 11 3
1000 14 6 8
2000 test in progress

P 250 13 11 2
500 12 6 5	 1
1000 11 4 5	 2
2000 test in progress

Q 250 15 1 11	 2
500 15 10	 5
1000 14 2	 12
2000 test in progress

R test not run because of lack of samples

V 250 14 13 1
500 13 11 2
1000 12 11 1
2000 test in progress

W 250 15 10 5
500 15 11 4

1000 15 1 14
2000 test in progress

X 250 15 10 5
500 14 8 6

1000 13 11 2
2000 14 7 7

Y test not yet started

Z test not yet started
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TABLE 5
UNENCAPSULATED CELL 85 C/85% RH TEST RESULTS

CATASTROPHIC MECHANICAL CHANGE

Total #	 Defect Category -- M=moderate, S=severe
Cell	 in test	 Leads	 Fracture	 Grid	 Back

14	 S	 M	 S	 M	 S	 M	 S
----------------------°------------------------------°---------------

N	 15	 3	 1	 2

0	 15

P	 15	 3	 3

Q	 15

R	 test not run because of lack of samples

V	 14	 4

{J	 15

X	 15	 1	 6

Y	 15	 test in progress -- data not yet available

2	 cells not tested
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V	 50	 10

	

100	 10
200
500

W	 50	 10
100	 10
200
500

ka
A.

V

w

w

TABLE 6
UNENCAPSULATED CELL PRESSURE COOKER TEST RESULTS

w
	

MAXIMUM POWER OUTPUT DEGRADATION

Cell Time Total Range of Maximum Power Degradation
(hr) Cells 0-2% 3-9% 10-19	 20-29% 30-49%	 50-100%

N 50 8 6 2
100 6 4 2
200 test in progress
500 test not yet started

0 50 10 4 3 3
100 10 5 4	 1
200 10 5 1	 3 1
500 test in progress

P 50 10 5	 5
100 8 4	 4
200 test in progress
500 test not yet started

Q 50 10 3 6 1
100 10 1 6 3
200 10 1 3 3	 1 1	 1
500 test in progress

test not run because of lack of samples

8 1 1
6 2 2

test in progress
test not yet started

4 4 2
4 4 2

test in progress
test not yet started
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TABLE 6 (continued)
UNENCAPSULATED CELL PRESSURE COOKER TEST RESULTS

MAXIMUM POWER OUTPUT DEGRADATION

Cell Time Total	 Range of Maximum Power Degradation
(hr)

----°------------------------------------------------------------------

Cells	 0-20	 3-90	 10-190	 20-290	 30-49%	 50-1000

X 50 interpretation difficult because of mechanical defects
100 interpretation difficult because of mechanical defects
200 interpretation difficult because ofinechanical defects
500 test terminated because of mechanical defects

Y 50 10	 2*	 8*
100 10	 10*
200 10	 2*	 8*
500 test in progress

Z 50 8	 8
100 8	 8
200 test in progress
500 test not yet started

*NOTE: Y-cell Pm values represent increases rather than decreases!
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TABLE 7
UNENCAPSULATED CELL PRESSURE COOKER TEST RESULTS

CATASTROPHIC MECHANICAL CHANGE

Defect Category -- M=moderate, S=severe
Leads	 Fracture	 Grid	 Back

H	 S	 M	 S	 M	 S	 M	 S

1
	

2

1

1	 2

test not run because of lack of samples

1

5	 4
	

5	 5

3

Total #
Cell	 in test

"1	 10

0	 10

P	 10

4	 10

R

v	 10

w	 10

x	 10

Y	 10

Z	 8

9
a

t^
i
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of other cell types. The Y-cell metallization was printed silver and it is

felt that some portion of the metallization fabrication cycle had not been

properly optimized by the manufacturer as the effect is not generic to this

type of construction. In keeping with standard reliability practice,

however, any change -- even an improvement -- is viewed with suspicion, and

consequently this cell was rated down because of this behavior.

A subjective ranking of cells regarding their sensitivity to pressure

cooker testing results in:

CELL	 RELATIVE SENSITIVTY TO PRESSURE COOKER TESTS

N -- below average sensitivity
0 -- above average due to excess electrical degradation
P -- above average due to excess electrical degradation
Q -- above average due to excess electrical degradation
R -- no tests planned due to lack of samples
V -- average sensitivity
tJ -- average sensitivity
X -- well above average due to mechanical problemst loss of grid

adherence and loss of leads
Y -- well above average due to excess electrical change with

time even though change was to higher Pm.
2 -- below average sensitivity (preliminary)

2.3.5 Thermal Cycle (-65 C to + 150 C) Testing -- Electrical

degradation results for thermal cycle testing are given in Table 8, and the

catastrophic change results in Table 9. As was mentioned, the degradation

results in this case include the effect of visual changes such as grid and

lead loss. Thus from Table 8 it can be seen that the individual N-cells were

either not affected by thermal cycling or they were drastically affected to

the point where they lost 50% of their power output. From Table 9 it appears

that the problem involved the loss of the back contact, presumably as a

result of differential expansion coupled with weak adhesion. The Q-cells

were plagued by the grid loss, as were the X-cells. This was a new failure

36



w	 " TABLE 8
UNENCAPSULATED CELL THERMAL CYCLE TEST RESULTS

MAXIMUM OUTPUT POWER DEGRADATION
1 ;,

Cell Cycles Total Range of Maxim= Power Degradation
# Cells 0-0/

-----------------------------------------------------------------------------
3-9%	 10-19%	 20-29%	 30-49%	 50-100%

N 1 10 9 1
10 10 8 1	 1
20 10 6 1	 1	 2
40 10 5 1	 1	 2 1

0 1 10 10
10 10 3 7
20 10 1 5	 4
40 10 1 1	 6	 2

P 1 10 10
10 10 9 1
20 10 9 1
40 10 7 3

Q 1 10 9 1
10 10 3 5	 2
20 10 6	 2	 2
40 10 2	 3	 3 2ik

R test not run because of lack of sanples

V 1 10 5 4	 1
10 9 5 1	 2	 1
20 9 4 1	 2	 2
40 9 3 2	 1	 3

N 1 10 5 5
{ 10 10 1 7	 1	 1

20 10 3	 5	 1	 1
40 10 1	 5	 3	 1

X 1 10 10
10 10 10
20 10 2 7	 1
40 9 1	 1 7

Y 1 10 10
10 10 8 1	 1

ie 20 10 6 1	 2	 1
N'

i	 a
40 10 2 4	 1	 1 2

r
Z Test not run because of lack of samples
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Total #
Cell in test

--------

N

------

10

0 10

P 10

4 10

R

v	 10

N	 10

x	 10

Y	 10

Z
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TABLE 9
UNENCAPSULATED CELL THERMAL CYCLE TEST RESULTS

CATASTROPHIC MECHANICAL CHANGE

Defect Category -- M=moderate $ S=severe
Leads	 Fracture	 Grid	 Back

M	 S	 M	 S	 M	 S	 M	 S

-----------------------------------------------------

6

7

1	 1	 1	 1

8	 3	 8	 1

test not run because of lack of samples

3	 1

5

2	 1	 1	 10	 7

7	 2

test not run because of lack of samples



mode for the
nl,

lQ-cells, but not for the X-cells. The V- and W-cells showed a

more gradual and consistant degradation similar to that experienced in B-Tt

testing. The only visible mechanical change was fracturing. The Y-cells

showed considerable loss of power due primarily to lead loss. Soldering to

silver screened metallization tends to be difficult and this type of failure

mode has been observed before on other similar types of cells.

Q

A subjective ranking of cells regarding their sensitivity to thermal

cycle testing results in:

CELL RELATIVE SENSITIVTY TO THERMAL CYCLE TESTS

N -- above average due to loss of back contact
0 -- average sensitivity
P -- below average sensitivity

-	 Q -- above average due to loss of grid adherence
R -- no tests planned due to lack of samples
V -- above average due to fracture
W -- above average due to fracture
X -- well above average due to loss of grid adherence
Y -- above average due to lead loss
Z -- test not yet started.

2.3.6 Thermal Shock (-65 C to 150 C) Testing -- Electrical degradation

results for thermal shock testing are given in Table 10, and the

catastrophic change results in Table 11. The electrical degradation results

of Table 10 are almost an exact duplicate of those obtained during thermal

9	 cycling and reported in Table 8. This is not surprising as the two tests are
1

similar in nature -- the difference being the rapidity with which the

temperature is increased or decreased. It would be expected that thermal

t^	

shock might cause more mechanical changes than thermal cycling since the

F' rate of change of temperature is greater. From a comparison of Tables 9 and

39



TABLE 10

UNENCAPSULATED CELL THERMAL SHOCK TEST RESULTS
MAXIMUM OUTPUT POWER DEGRADATION

Cell Cycles Total Range of Maximum Power Degradation
# Cells 0-2%

-----------------------------------------------------------------------------

3-9%	 10-19%	 20-29% 30-49%	 50-100%

N 1 10 8 1	 1
10 10 3 2	 1	 2 2
20 10 2 1	 3 3 1
40 9 1 1	 1 3 3

0 1 10 6 4
10 10 2 5	 3
20 10 2 5	 3
40 10 3	 5	 1 1

P 1 10 6 4
10 10 6 3 1
20 9 2 7
40 9 3 6

Q 1 9 1 2	 4	 1 1
10 (data accidentally omitted)
20 9 2 3 4
40 7 1	 1 5

R test not run because of lack of samples

V 1 10 6 3	 1
10 8 1 1	 3	 1 2
20 8 2	 3 2 1
40 5 1	 2 2

W 1 10 1 7	 2

	

10
	

10	 4	 5	 1

	

20
	

10	 2	 4	 3
	

1

	

40
	

10	 3	 6
	

1

X
	

1
	

10	 10

	

10
	

7	 1
	

6

	

20
	

6
	

6

	

40
	

test discontinued

Y
	

1
	

10	 7	 3

	

10
	

8	 1	 4	 1	 1
	

1

	

20
	

7	 3	 2
	

2

	

40
	

5	 3	 1	 1

Z
	

test not run because of lack of samples
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TABLE 11

UNENCAPSULATED CELL THERMAL SHOCK TEST RESULTS
CATASTROPHIC MECHANICAL CHANGE

Total # Defect Category -- M=moderate, S=severe
Cell in test Leads Fracture	 Grid Back

M	 S
---------------------------------------------------------------------

M	 S	 M	 S M	 S

N 10 2 2	 1	 1 3

0 10 8 7

P 10 1 4	 1

Q 10 6	 2 8	 1	 6

R test not run because of lack of samples

v 10 3	 5 1

W 10 10

X 10 10 2	 10 3

Y 10 5	 1 4

Z test not run because of lack of samples

41

J



W

a

11 this appears to be the case.

All cell types fracture to some degree during thermal shock testing.

The W-, Y-, and V-cells appear to be particularly susceptible. The X-cell

has a severe problem with grid loss, a phenomenon that was also noticed in

other tests (refer to Section 4.3). In addition, thermal shock resulted in

severe lead loss for the X-cell. This particular cell had an extended lead

contact, i.e. the lead made contact with the cell completely across the

slice rather than only at one point near the edge. When lead loss occurred

the silicon fractured under the metal lead so that it came loose with

silicon still attached. An example of this type of failure is shown in

Figure 5. The combination of these two failure modes was so severe that the

test had to be discontinued after 20 cycles.

The W-cell showed very consistant and progressive electrical

degradation. The routine inspections, while they showed some fracturing, did

not seem to indicate any visual effect capable of producing such a

consistant behavior and further study is warrented. The W-cell had also

shown this same consistant and progressive behavior as a result of thermal

cycle testing.

The liquid transfer thermal shock test is so drastic a test it is a

wonder that all cells do not self destruct. One type, the P-cell was only

relatively minimally affected by the test. Only one cell in the test lot

showed appreciable degradation and it was due to a severe fracture. The

P-cell also behaved the best during thermal cycle testing.
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Figure 5.	 Photograph of Fracturing Under Lead

as a Result of Thermal Shock Testing

i

V?



e

	

4	 A subjective ranking of cells regarding their sensitivity to thermal
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shock testing results in:

CELL	 RELATIVE SENSITIVITY TO THERMAL CYCLE TESTS

N -- above average due to back contact problems
0 -- average sensitivity
P -- well below average
Q -- obove average due to fracturing
R -- no tests planned due to lack of samples
V -- above average due to fracturing
W -- well above average due to electrical degradation
X -- well above average due to lead loss and grid failure
Y -- above average due to lead loss
Z -- no tests planned due to lack of samples

b
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3.0 STRESS TESTING OF ENCAPSULATED CELLS
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3.0 STRESS TESTING OF ENCAPSULATED CELLS

3.1 Introduction

As indicated in Section 2, accelerated stress testing of

unencapsulated cells is able to delineate certain failttre mechanisms which

may affect cell life in field operation, such as Schottky barrier contact

formation (non-linear IV characteristic) and loss of contact adherence.

Cells in use, however, are not bare, but are encapsulated in modules and it

is not evident what effect encapsulation will have on the failure modes

observed during unencapsulated testing. Ideally it would be desireable to

subject encapsulated cells to the same type of accelerated testing as

unencapsulated cells. Previous work has shown, however, that because of the

organic pottant materials involved, extraneous failure modes are introduced

when temperatures higher than 100 C are used. The use of temperature as an

effective acceleration factor is therefor severly limited once the cell has

been encapsulated. However, it was felt that since encapsulation could be
i

expected to primarily influence the rate of corrosion, either reducing it

by limiting moisture penetration or increasing it by trapping moisture and

chemical byproducts on the surface, that the 85 / 85 test would perhaps

provide useful accelerated test information. Thermal cycling would be

another potentially valuable accelerating test, provided the upper

temperature did not exceed 100 C.

In order to see the effect of these two tests on cells which were

encapsulated and to compare them with the unencapsulated test results,

47	 Llf	 t^TeNTraHAIiY 9LAllt
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Clemson contracted with Springborn Laboratories of Enfield, CT to fabricate

a number of single cell modules, hereafter called coupons, using different

cell types and different encapsulation configurations. The reader can gain

an appreciation for the size and shape of the coupons by referring to

Figure 10 which shows a number of different types assembled in an outdoor

array. In addition to the Springborn samples, several manufacturers also

supplied coupons of their cells. The result was the matrix of samples shown

in Table 12. In this table each row refers to a different encapsulation

configuration and each column to a different cell type and whether it was

encapsulated by Springborn or by the cell manufacturer. Note that the

manufacturer of the V-cell supplied coupons which included no substrate

(G/EVA) and two different• types of foil substrates (G/EVA/F1 and G/EVA/F2).

(The designation Fl and F2 is only used to differentiate between these two

types of coupons and does not imply that the F1 configuration is similar to

those fabricated by Springborn Labs for the other cell types.) It can be

seen that with the exception of the glass/silicone rubber/glass

encapsulated Q-cells, which have yet to be started, all cells have

completed the full 2000 hour test.

Testing of the encapsulated cells was more difficult and less

"reliable" than testing unencapsulated cells for a number of reasons. For

one thing, the coupons were physically bigger than the cells so that fewer

were able to fit in a test chamber. Assembly of the coupons utilized

non-standard, laboratory-like processes, involving components having widely
i

differing thermal masses, with the result that curing cycles were not

necessarily optimized. In fact the organic pottant material in several

cells "ran" even though the stress temperature during test did not exceed

48
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85 C. In this case pottant material dripped from the coupons leaving the

1

'V
	

cells directly exposed to the test ambient. These coupons were withdrawn

from testing and samples sent to Springborn Laboratories where examination

revealed incomplete curing of the polymer. Unfortunately there is no way to

visually detect such improperly cured encapsulation prior to stress

testing. It is therefore entirely possible that modules having similarly

improperly cured encapsulation could be unknowingly deployed in the field

unless adequate process controls are used. Loss of pottant does not

automatically mean electrical degradation, however.

The expense of fabrication, coupled with limited test chamber size,

restricted the number of coupons in a test to five or less. Hence it was

difficult to obtain results which were statistically meaningful. Accurate

electrical measurement was also more difficult than with unencapsulated

cells. Temperature measurement and control was complicated and less

accurate since the cell itself was inaccessible. Kelvin probe connections 	
I

could only be made to the external leads, whereas with unencapsulated cells

connections could be made directly to the back metallization. The leads

were also fragile in relation to the large mass of the coupon and, despite

careful handling, a number of cell leads broke due to repeated bending. Of

course lead breakage under these circumstances was not considered a failure

mode, but only an artifact of the measurement technique.

3.2 85/85 Test Results

As was discussed in Section 2.3.3, the 85/85 test is a relatively mild

test and only small changes were observed when it was applied to
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unencapsulated cells. Nevertheless, rather substantial amounts of

degradation were observed when encapsulated coupons of these same cell

types were tested. This rather anomalous result, which had been alluded to

earlier in the 1981 Summary Report (4) as a result of preliminary testing

performed on encapsulated cells, has now been confirmed. Table 13 presents

the test results in the form of the average percent decrease in maximum

power output observed for each of the different encapsulation

configurations after 2000 hours total test time. Even recognizing that only

a few coupons of each type were involved, a number of effects can be

detected. The data of Table 13 will now be discussed on a cell-by-cell

basis with conclusions regarding the different encapsulation systems

specifically pointed out.

n
e

The P- and V-cells showed essentially no degradation for any type of

encapsulation. The V-cells had shown little effect when stressed in

unencapsulated form, whereas the P-cells had shown somewhat more, with 2

out of 11 cells in the 10 to 19 	 degradation range after 1000 hours (See

Table 4.). Nevertheless, these two cell types were judged to be very stable

in unencapsulated form and remained so when encapsulated. While data for

the encapsulated W-cells is not as comprehensive as that for the P- and

i
	

V-cells, it does not appear that this cell type exhibits any significant

r	 amount of degradation when encapsulated either.

Thus it would appear that a cell which shows little change
when stressed in unencapsulated form will be stable when

I

	
encapsulated, no matter what the encapsulation system. 	

i
z

The Q-cells, on the other hand, showed large degradation for all types

of encapsulation except T/EVA/S. This cell when tested in unencapsulated
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form was found to be susceptible to Schottky barrier formation at the back
u

contact (See Section 4.2), and it is believed that the degradation observed

on the encapsulated samples was also related to this phenomenon. For this

reason a complete discussion of the behavior of encapsulated Q-cells will

be delayed until Section 4.2.

!

	

	 !
It would also appear that a cell which exhibits a stability
problem in unencapsulated form can be significantly
improved by use of the "proper" encapsulation system.

The 11-cell coupons fabricated with glass or steel hermetic substrates

showed no degradation, while those with Tedlar or foil substrates showed

appreciable degradation. If the degradation mechanism were activated only

by temperature all types of coupons should have degraded more or less

equally. The implication therefore is that the N-cells are sensitive to a

moisture related degradation mechanism. Furthermore, in those encapsulation

systems where degradation was observed it was appreciably greater than had

been observed on unencapsulated cells.

!
Use of the "wrong" encapsulation system can make an encap-
sulated cell appreciably more sensitive to environmental

! stress than an unencapsulated cell.	 !

The N-cell data shows that while the amount of degradation for the

foil substrate encapsulation system is less than for the Tedlar substrate

system, it is still appreciable. Therefore it must not be water vapor

itself which is degrading the cell, since that would be effectively blocked

by the metal foil. It is hypothesized that water vapor, which is quite

reactive with aluminum, is able to diffuse through the metal film's polymer

coating to the foil where it dissociates into hydrogen and oxygen. The

oxygen tends to oxidize the aluminum while the hydrogen, which is unable to

a
tl
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escape easily through the polymer film, becomes trapped and increases in

concentration at the metal surface. This raises the probability of hydrogen

diffusing through the 1-mil thick foil and eventually reaching the metal

contact-silicon interface. It is further hypothesized that the presence of

hydrogen alters the surface state density at the interface, as will be

described in Section 4.2, and results in degradation of the cell. While

this exact sequence of events has yet to be proven there is good

circumstantial evidence for its occurrence. The point to be made from the

data tabulated in Table 13 is that a 1 mil thickness of aluminum, coated

with a polymer, ac,arently does not present much of a diffusion barrier to

atomic hydrogen. In additie:,, aluminum is quite a reactive material. It

would be interestin to see if uncoated aluminum foil and foils of other

materials, gold for example, might behave differently as would be predicted

by the model.

!	 !
! Metal foil, as presently formulated, does not provide an 	 !
! effective barrier against moisture related degradation. 	 !

The only cell type, other than the Q, to show any significant amount

of degradation when encapsulated in the T/EVA/S configuration was the

0-cell. !,'hile the amount of degradation was only about one-third that of

the other two configurations, the effect was nevertheless felt to be real

since all five coupons in the test showed about the same amount of

degradation. Degradation did not appear until after 1000 hours, however,

and it is surmised that the mechanism in this case was not moisture

activated. As seen from Table 2, the 0-cell was susceptible to

bias-temperature testing and it is felt that the degradation observed

during 85/85 testing was more a result of the 85 C temperature rather than

of the 85% relative humidity. In addition to Pm degradation this
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I
configuration also showed a 7% drop in Ise while the other 0-cell

configurations exhibited only small Ise changes.

The only cell type to show a significant amount of degradation when

encapsulated in the G/LVA/G configuration, other than the Q-cell, was the

X-cell. This cell type was characterized by the loss of grid adhesion (see

Section 4.3) and it is felt that this was the dominant failure mode. Loss

of grid adhesion in an encapsulated cell is not easily observed, but should

result in a reduction in power output as the ohmic metrallurgical contact

becomes a pressure contact. Based on hindsight, it would have been

interesting to have encapsulated the X-cell in the T/GVA/S configuration to

explore the effects of top moisture penetration. As it was, the only

encapsulation configurations which were used for this cell had glass

superstrates.

The Y-cell in every case showed improvement rather than degradation.

From the standpoint of reliability this should not be considered good,

however, only different. Examination of the data does not indicate an

encapsulation approach capable of minimizing the effect. This is consistant

with the unencapsulated results which showed degradation (improvement) to

be affected by both heat and humidity.

Althought coupons were visually examined for catastrophic mechanical

defects which could be attributed to accelerated testing, none were

observed in properly cured samples.

n
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3.3 Thermal Cycle Test Results

Only five samples each of four different types of V -cell coupons,

G/EVA, G/EVA/T, G/EVA/F1, and G/EVA/F2, plus one sample of a G/SR/G Q-cell

coupon were subjected to thermal cycle testing because of a lack of

availability of other types of samples. Very little change was noticed after

testing, either electrically or physically, which reinforces the conviction

that encapsulation is required to provide mechanical protection. Fracturing

had been observed when unencapsulated V-cells where thermal cycled, but not

when the coupons were thermal cycled. The Q-cell was sensitive to several

Forms of mechanical change in unencapsulated form, but no effect was

observed when the coupon was tested. The only electrical degradation

detected after 40 cycles was 10 % on one G / EVA/F coupon and 22'; on one

G/EVA/G coupon, with none of the others showing any measurable change. Both

cells showed progressive degradation after 10 cycles, however. No visual

change was observed which could accout for this degradation. The IV

characteristics of the two degraded cells indicated the presence of a large

shunt resistance. Further work will be required to determine its source.
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4.0 DETERMINATION OF FAILURE MECHANISMS

4.1 Introduction

As discussed in Sections 2 and 3, accelerated stress testing of both

encapsulated and unencapsulated cells resulted in reduced power output. A

major goal of the Clemson program is not only to know the magnitude of this

degradation and the conditions under which it occurs, but to also discover

the underlying physical, chemical, and metallurgical reasons as well.

Learning these reasons can be as complicated and involved as tracking down

a murder suspect. It calls for following hunches as well as the painstaking

use of very sophistocated analytical equipment. In this section we discuss

two failure modes that were observed on specific cell types during this

round of testing -- Schottky barrier contact formation and loss of grid

adhesion. In the case of Schottky barrier contact formation it is felt that

the circumstantial evidence that has been accumulated clearly points to the

mechanism involved. In the case of the loss of grid adhesion the hunt for

the mechanism is still in progress. It is clear from these two examples

that determination of degradation mechanisms calls for the latest in

microanalytical instrumentation. Clemson is in the process of establishing

a reliability research facility containing such equipment and a brief

description of the capabilities that will be available is given in this

section.
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4.2 Schottky Barrier Formation

Most unencapsulated cell types which degraded when subjected to B-T

testing did so as a result of an increase in series resistance. This

increase caused a decrease in the linear slope of the V-I characteristic in

the vicinity of Voc, as shown in Figure 6a. One cell type, the Q-cell,

however, developed a distinct non-linearity as shown in Figure 6b. The

non-linearity was most pronounced in the far-forward region of the

characteristic (V>Voc) and could easily be missed if only the power

quadrant were observed. Construction of this particular cell involved a

chemical displacement gold film to provide a good plating surface, followed

by electroless nickel plating, followed by a solder dip to provide the

thick conductive layer. The silicon material was p+ on n. The non-linear

shape of the characteristic that was observed after stress testing implied

the formation of a rectifying contact, and because the back contact was

lightly doped, this would be the most likely location. To simulate this, a

discrete Schottky barrier diode was connected to the back of an unstressed

cell, with the result shown in Figure 7. Curve A is the unstressed cell

characteristic. Curve B is with the Schottky barrier diode connected

(connections added about 0.1 ohm series resistance), and because it is

unrealistic to expect the back contact to have the right-angle shape of a

commercial diode, Curve C is shown in which the diode was shunted by a

half-ohm resistor rusulting in a less ideal rectification characteristic.

In the power quadrant it can be seen that the effect of the forward diode

drop is to push the IV characteristic to lower voltages with a consequent

reduction in power output. In the far-forward region only diode leakage
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B. NON-LINEAR. SERIES RESISTANCE

w

A. LINEAR SERIES RESISTANCE

Figure 6. Typical Characteristics of Cells Subjected to B-T Testing
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Figure 7. Simulation of Non-Linear Contact Degradation
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current flows, or in the case of the shunted diode, current throught the

......	 .	 ..............

w

w

b^

resistor shunt. It can be seen that , the shape of Curve C is indeed of the

same general non-linear shape as that observed oa a stressed Q-cell.

To explore this further the characteristic of a stressed Q-cell was

fitted using a computer program, SPICE, and the equivalent circuit of

Figure 7 Curve B (without the 0.1 ohm resistor). The result is shown in

Figure 8. As had been anticipated, the contact diode characteristic that

was required to fit this curve was far from ideal, but enabled a good fit

to be obtained.

Most ohmic contacts to solar cells conduct by virtue of quantum

mechanical tunnelling. Such tunnelling occurs when the semiconductor is

heavily doped, as would be the case with a back surface field. Heavy

degenerate doping results in a thin poter..tial barrier that electrons are

able to penetrate quantum mechanically. In the case of the Q-cell, however,

the base material is not heavily doped and ohniticity of the contact is

achieved by obtaining a low, rather than a thin barrier. It is well known

that the rectifying properties of a metal-semiconductor contact are

determined largely by the surface states which exist at the interface. The

Q-cell achieves its low potential barrier via a damaged surface formed by

sandblasting, which serves to provide large quantities of surface states.

These surface states, combined with those which would occur naturally at

the interface, result in a low, easily surmountable barrier.

The difficulty with this type of contact is that stress conditions

occurring in the field (or during laboratory accelerated testing) can

,; r
A'r
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Figure 8. IV Characteristic of a Q-Cell After
600 Hours at 150 1 as Fitted by SPICE
:Model Incorporating a Rectifying Circuit
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result in a change in the number of surface states. Hence a contact which
i

was originally ohmic may become rectifying, as occurred with the Q-cell. To

explain this a theory is proposed based on the fact tha°. ,.Irface states are

a result of dangling silicon bonds, i.e. silicon valence electrons at the

surface that are not shared with electrons from other atoms. At a

crystalline surface silicon normally interfaces to the ever present layer

of oxide. Experimenters have found that non-stoichiometry occurs in surface

d	 oxide films within a few Angstoms of the silicon oxide/silicon interface

(6) giving rise to surface states which control the potential barrier

height. Furthermore it has been demonstrated that it is possible to control

the Schottky barrier height over a wide range by using shallow, highly

doped ion implanted layers to achieve a desired degree of bond saturation

(7). It should be possible, therefore, for elements in atomic form such as

oxygen or hydrogen to diffuse to the interface and to also saturate the

dangling silicon bonds, decreasing the number of interface states., raising

the barrier height and forming a rectifying contact. It is unlikely that

oxygen is the diffusing species, however, since its diffusion coefficient

in metals is so small -- of the order of IUE(-23) cm2/sec at 100 C (8). The

diffusion coefficient of hydrogen, on the other hand, is J or 10 orders of

magnitude greater (9, 1U, 11). Atomic hydrogen and oxygen can be formed by

the dissociation of water vapor molecules at the metal surface. The

penetration of hydrogen through metals under high humidity conditions has

been reported in the literature (12, 13, 14, 15) and has been found to be

strongly dependent on the surface conditions of the metal. Schottky barrier
9

contact formation should take place on lightly doped silicon whenever

moisture is present to supply the hydrogen and when the temperature is

elevated to increase diffusion to the interface. Indeed non-linear
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characteristics were observed on the Q-cell under these conditions. A

method of determining the metal to semiconductor barrier height has been

developed and is described in Appendix A. Measurements made using this

method on typical degraded cells which exhibit non-linearity give a barrier

height of 0.55 ev, whereas unstessed cells having ohmic contacts will have

a barrier height of approximately 0.3 ev. An experiment which needs to be

run and which is currently being planned is to specifically exclude water

vapor from the cell environment during B-T testing in order to confirm the

role of water vapor.

!	 !
11hile further work is expected to shed additional light on 	 !
the exact mechanisms involved in Schottky barrier formation, !
it is nevertheless evident that the use of a lightly doped 	 !

! substrate can lead to back contact rectification, and should !
be avoided. A thin highly doped layer under the back contact !

! has the added advantage of providing a back contact field 	 !
! and thus improving the cell's efficiency. 	 !
!

When either encapsulated or unencapsulated Q-cells were exposed to

85/85 testing, Schottky barrier formation, as evidenced by the formation of

a non-linear characteristic, did not occur within the normal 2000 hour time

span. Degradation involved an increase in series resistance, but

non-linearity in the far forward portion of the characteristic was not

discernable. It is hypothesized that the mechanism described above was

still valid, but that the test time was too short at this low temperature.

The appearance of non-linearity would be expected to occur only after an

appreciable increase in the linear series resistance. Non-linearity was not

observed in B-T testing at 75 C even after 4300 hours, but was observed in

B-T testing at both 150 and 135 C and in pressure cooker testing after 400

hours at 15 psig and 121 C. As the stress temperature is lowered the time

to non-lnearity gets progressively longer. In order to confirm this, 85/85

Qi
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41
testing of the Q-cells is being extended.

Even though non-linearity has not yet been observed during the 85/85

testing of encapsulated Q-cells the degradation which occurred and which is

summarized in Table 13 may still be interpreted in terms of the mechanism

assumed to lead to non-linearity. Based on. the hypothesis that the effect

is due to diffusion of hydrogen to the metal/silicon interface, one would

expect an encapsulation which hermetically protected the back surface to

avoid this degradation mode. Certainly a steel substrate would be expected

to give such protection, and did according to the data of Table 13, but

what about the glass and foil substrates, which should also offer back

contact protection, but apparently didn't? Regarding glass as a substrate

material, a closer examination of the data summarized in Table 13 reveals

that only three C/EVA/G coupons were started into test and that two of

these lost both leads after only 250 hours. The remaining cell showed no

degradation until 1000 hours when 19"/, was observed. Thus the value of 232

degradation shown in Table 13 represents data from only one sample coupon

and is still only half the maximum observed for other types of

encapsulations for this cell type. Consequently it is felt that the glass

substrate probably protected the back surface initially, but that edge

diffusion, particularly along the leads, which were sandwiched between two

nonconforming surfaces, eventually occurred.

The discussion with regard to the Y-cell in Section 3.2 presented a

hypothesis as to why the degradation of encapsulated cells with

non-hermetic substrates was greater than for unencapsulated cells and why

foil substrate material would not protect against hydrogen diffusing to the
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•	 metal/semiconductor interface. The amount of hydrogen reaching the
't

interface will depend on the diffusion coefficient of atonic hydrogen in

the metal and on the equilibrium surface concentration of atomic hydrogen.

If the permeation coefficient of water vapor in the substrate is much

greater than for hydrogen, water vapor will diffuse to the metal surface

and through dissociation produce hydrogen which will be trapped at the

surface. Thus it is possible for the concentration of atomic hydrogen at

the metal surface to be greater when the surface is "protected" by a

polymeric substrate than when unprotected. The measured permeation

coefficient of hydrogen in polyvinyl fluoride is the order of MO

molecules per second per cm per atmosphere (16), whereas for water vapor

the value is 3.SG13 (17). Thus the permeation coefficient of water vapor in

this typical polymer film is 500 times greater than for hydrogen. If atonic

hydrogen is able to diffuse to the silicon-silicon dioxide interface, the

dangling silicon bonds existing there will become saturated, increasing the

surface potential and giving rise to the rectifying Schottky barrier

contact. As can be seen from Table 13, degradation in the Q-cell due to

Schottky barrier formation is greater for non-hernetic substrates than for

unencapsulated cells and is greater for foil substrates than for most of

the non-hermetic encapsulation systems.

4.3 Loss of Grid Adhesion

Another clearly identifiable failure mode, pertaining only to the

X-cell, which was brought out by the unencapsulated tests was loss of grid

adhesion. In an effort to investigate this failure mode further, samples

were examined by electron microscopy. It was found that the surface
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topology of the X-cell was different from that of many other cells, as can

be seen from the 150OX photographs of Figure 9. Figure 9A shows the silicon

surface topology after removal of the overlying solder, while Figure 9B

shows the mirror image topology of the removed solder. It can be seen that

the silicon surface consists of nodules on a gently rolling background. The

usually observed structure of silicon after removal of solder, shown in

Figure 9C, is much more jagged and irregular without any sign of nodules.

When energy dispersive x-ray (EDX) analysis was performed the expected tin

and lead from the solder, and nickel from the interface film were found. In

addition an appreciable amount of phosphorus, presumably from the nickel

plating bath, was present. It is not known at this point, however, if

either the surface topology or the presence of phosporus have any relation

to the observed loss of grid adhesion. Discussions were held with the

manufacturer, who felt the problem involved some unknown contaminant.

Additional tests are now being jointly conducted with the manufacturer.

4.4 New Clemson Reliability Research Facility

Clemson University is in the process of establishing a new research

facility which will be devoted to fundamental semiconductor device

reliability studies. Devices to be studied will range from discrete

structures like solar cells to the latest VLSI circuits. The solar cell

reliability program will be a major beneficiary of the facility, whose

centerpiece is to be the latest in state-of-the-art analytical electron

microscopes. This microscope, which is expected to be in operation by the

first of the year, is to be installed in a newly constructed room adjacent

to Clemson's presently existing Central Electron Microscope Laboratory. In

;I
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a) Silicon Surface with Solder Removed (X-cell)

b) Surface of Removed Solder (X-cell)

Figure 9.	 1500X SEM P hotographs of Cell Surfaces
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C) Silicon Surface with Solder Removed (not X-cell)

Figure 9. (Continued)
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addition to normal high resolution, high depth of focus topological display

capability, it will also have the analytical capabilities of a scanning

Auger microprobe (SAM) with ion etching for generating depth profiles, an

energy dispersive x-ray analyzer (EDX), a secondary ion mass spectrometer

(SIN), an electron back scattering analyzer, and all the computerized

instrumentation associated with these components. The microscope is

expected to be of tremendous help in determining the failure mechanisms

responsible for the degradation observed during accelerated testing. In

order to acquaint the photovoltaic community with its capabilities a

workshop is planned in April 1984, which will include hands-on experience

with the instrumentation.
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5.0 ADDITIONAL TEST DEVELOPMENT

5.1 Introduction

A major goal of the program is the development of accelerated tests

T

which can differentiate between different cell constructions in their

ability to withstand environmental stress. It has been seen that the 85/85

test is a rather weak test which requires long times before effects are

observed. In an effort to develop a similar test with a greater

accelerating factor experiments are underway involving variations which

include 95 C/85% RN and 85 C/950 RN. The 95/85 test has been started, but

it is still too early to draw specific conclusions. After the second

downtime, encapsulated V-cells, a cell type which had shown good stability

under 85/85 testing, also shows good stability on 95/85 testing. Two

additional reliability test techniques are also in the early stages of

development -- outdoor real time testing and sulfur dioxide testing. Both

of these techniques are being developed in an effort to more closely relate

accelerated laboratory testing to real world conditions.

5.2 Outdoor Real-Time Testing

Whereas the testing procedures described in Sections 2 and 3 are

impressive in their ability to delineate different failure nodes, they

offer little information relative to predicing actual operating life. In

order to correlate field behavior with accelerated laboratory testing it is
a

first necessary to establish that the same failure modes are being observed
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and then to ascertain the acceleration factor. As a first step towards

making the accelerated testing to real time connection, Clemson has

fabricated fixtures that allow the mounting of both unencapsulated and

encapsulated single cells in an outdoor array. Photographs of these arrays

are shown in Figure 10. Each unencapsulated cell is mounted on a carrier,

that in turn is mounted to a base inclined at the latitude and facing south.

Thus using the carrier, cells may be removed from the outdoor base and

transported into the lab without demounting and with minimal danger of

breakage. A typical cell holder/carrier combination is shown in Figure 11.

Originally the unencapsulated cells were mounted in place by clamping their

edges, but a freak snowstorm resulted in considerable breakage. As a

consequence, the plexiglass holder system of Figure 11 was developed. In

addition, a wooden snow cover has been constructed which can be used to

cover the array if there appears to be danger of snow. By periodically

measuring the cells in the laboratory, under standard conditions of

illumination and temperature using the accurate short interval tester,

changes in Pm of only a few percent may be determined.

!

	

	 !
The approach to outdoor real-tine testing of using indivi-
dual cells, coupled with accurate periodic laboratory neas- 1
urenents, is new and has never been investigated before.

It is hoped that changes will be seen which can be related to similar

changes observed during accelerated testing. The fear is that extraneous

failure modes may prevent the establishment of a correlation, or that under

non-accelerated conditions, degradation may take an inordinate length of

time. It will be necessary to observe a continuing trend in the degradation

which means making observations over an extended period of time. At the

writing of this report the array has only recently been set in place and
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Figure 10. Photograph of Outdoor Real-Time Test Arrays
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Real-Time Test.
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data is not yet available.

Cells are mounted so there is a flow of air across both faces. Cell

temperature should thus be reasonably close to ambient. The exact value

will be checked with thermocouple readings. A portable instrument has been

designed and fabricated to measure the cells under actual solar

illumination. This instrument measures selected points on the IV

characteristic in much the same way as the short interval tester. It is

digital and calculates Pm from the data points taken. A comparison of

measurements taken in the laboratory and under solar illumination should

provide interesting information regarding the presently used GLII lamp

simulation method. The cells are loaded individually with a Schottky

barrier diode which was determined to more nearly match the cell to its

maximum power point than a resistor -- the object being to dissipate the

maximum amount of power in the cell. Later, other modifications can be

made, such as applying high voltages as nay exist in a module between cells

at the begi.ning and end of a series string.

5.2 Sulfur Dioxide Testing

An environmental pollutant which has become of concern recently is

sulfur dioxide. Produced primarily by fossil fuel fired power plants,

sulfur dioxide combines with the moisture in air in a complex, and as yet

not thoroughly understood manner, to produce sulfurous and sulfuric acids

which fall to earth as the well publicized acid rain. It is of interest to

know whether trace pollutants, such as sulfur dioxide, have an influence on

the life of solar cells. Some experimental work on exposing component
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metallization systems to S0, contaminated atmospheres has been reported in

the literature. Feinstein and Sbar (18) identified electrolytic and

galvanic corrosion failure modes and also observed the deposition of

sulfurous and sulfuric salts. To investigate methods for examining the

influence of S0, on solar cell performance, Clemson explored methods of

establishing and maintaining a humid accelerating test atmosphere

containing added amounts of sulfur dioxide up to 500 ppm. It was decided

that the base atmosphere should be 85'C and 85% Rll to allow easy comparison

with previously acquired data. Initially, unencapsulated cells were to be

exposed to this ambient and, if correlatable changes were observed, testing

would proceed to encapsulated cells. A design study of different methods

for producing a steady state 85/85 ambient with trace amounts of S0 2 was

performed and is described in Appendix B. The problem proved to be more

difficult than anticipated and none of the approaches stud!,:. seems

appropriate to solar cell testing. It is possible that a closed container 	 l

test could be designed which used the presence of a measured amount of 	 '3

contaminant. Such a test could be used to differentiate between cell types

in their ability to withstand degradation, but would not be relatable

directly to field conditions..
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6.0 CONCLUSIONS

a

Conclusions can be drawn in a number of specific areas as a result of

the work reported in the proceeding sections.

Accelerated Testing Procedures -- The Clemson accelerated test schedule

continues to be able to differentiate between cell types in their ability to

withstand stress. It is clear that present state of the art cells vary

widely in this ability. For routine purposes such as quality control, the

testing of unencapsulated cells is more cost effective and time conserving

than testing encapsulated cells because because of the ease with thich they

may be obtained and because they are able to experience higher temperatures

during testing. A research study of encapsulated cell stress sensitivity,

such as reported in this document, can make significant contributions to

understanding degradation mechanisms, however.

Metallization Systems -- Two previously unreported failure mechanisms

relating to metallization systems were uncovered during the course of

testing. One, which caused continuous degradation of the maximum power

output, is the result of the formation of a rectifying Schottky barrier

contact at the back surface of the cell. It is hypothesized that the

normally ohmic contact becomes rectifying as a result of hydrogen from the

dissociation of water vapor diffusing to the metal-semiconductor interface.

Although the non-linearity associated with the formation of a rectifying

contact was only observed with one type of cell construction, it is possible

that the mechanism accounts for the series resistance related degradation
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,I 1
observed in a number of other cell types. Schottky barrier contact formation

could be one manifestation of a more general mechanism which involving

changes in the metal - semiconductor barrier height. Another newly

discovered failure mode involves the catastrophic loss of contact adhesion.

Although the reason for this loss of adhesion is not known, contamination is

suspected. Electron microscope photographs reveal a different surface

topology for this cell.

Encapsulation Systems -- Encapsulation of any kind protects cells

against mechanical problems, such as loss of grid adhesion, which show up

during unencapsulated testing. On the other hand, degradation of the back

contact, which is most susceptible to moisture related barrier height

changes, will be minimized if a hermetic substrate such as steel or glass is

used. If a non-hermetic substrate, such as Tedlar, is used degradation is

actually increased over that experienced by unencapsulated cells due to its

ability to trap hydrogen at the contact - substrtate interface. Furthermore,

thi.a organic coated aluminum film was found to behave essentially as if it

were a non-hermetic material for this same reason.
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7.0 NEW TECHNOLOGY

No items of new technology were uncovered during this reporting period.
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Since the previous Annual Report was issued the project has made a

number of documented contributions to the photovoltaic community. These are

summarized in this section with abstract material reproduced in Appendix C.

Publications and Presentations:

J

1. Davis, C.W. and Lathrop, J.W., "Electrical Degradation of Solar
Cells due to Formation of a Schottky Barrier Contact," Proc. IEEE
Region 3 Conference (SOUTHEASTCON), Destin, FL, April 1982.

2. Lathrop, J.W., Hawkins, D.C., Prince, J.L., and Walker, H.A.,
"Accelerated Stress Testing of Terrestrial Solar Cells," IEEE
Transactions on Reliability, Vol. R-31, No.3, p.258, August 1982.

3. Lathrop, J.W., Davis, C.{J., and Royal, E., "An Accelerated Stress
Testing Program for Determining the Reliability Sensitivity of
Silicon Solar Cells to Encapsulation and Metallization Systems,"
Proc. 16th IEEE Photovoltaic Specialists Conf., San Diego, CA,
October 1982.

4. Lathrop, J.W. and Hawkins, D.C., "Degradation of Silicon Solar
Cells," Flat-Plate Solar Array Project Research Forum on Quantifying
Degradation, Williamsburg, VA, December 1982.

5. Lathrop, J.W., "Accelerated Degradation of Silicon Metallization
Systems," Flat-Plate Solar Array Project Research Forum on
Photovoltaic Metallization Systems, Callaway Gardens, Fine Mountain,
GA, March 1983.

6. White, F.B. and Lathrop, J.W., "Accelerated Reliability Testing
of Encapsulated Solar Cells," Proc. IEEE Region 3 Conference
(SOUTHEASTCON), p.453, Orlando, FL, April 1983.

Theses:

1. Davis, C.W., "Electrical Degradation of Nickel/Gold and Nickel
Metallized Solar Cells Induced by Accelerated Stress," MS
Electrical Engineering Thesis, Clemson University, December 1982.
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2. White, P.B., "Design of an Accelerated Environmental Test for
Solar Cells under Conditions of 85 C, 85% RH, and SO ," MS

Electrical Engineering Thesis, Clemson University, December 1983.

Data Exchange:

Computer printouts of electrical measurement data on cells under

test was senL co each manufacturer who contributed cells to the

program. The manufacturers received information on only their cells,

along with interpretive comments, after each down time. The most

useful of the printouts was the maximum power output summary listing

the performance of each cell in each test. An example of this form

is included in Appendix C.

Other:

1. NASA Tech Brief -- The short interval solar cell tester was

described in the Spring 1983 edition of NASA Tech Briefs. A copy of

the brief is included in Appendix C.

2. Soleras Short Course -- Clara W. Davis, Graduate Student working

on the program, was one of 12 US students selected to participate in

ti., 1983 two week summer short course sponsored by the Soleras

Program. The US students, together with an equal number of Saudi

Arabian students, toured solar installations in the Denver, San

Francisco, and Los Angeles areas.

s
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The saturation current, Is, of a Schottky barrier diode is given by Sze

(Ref. 1):

IS = SAT" exp q( Pn )
1a

where S = metal contact area

A = effective Richardson constant

PBn = barrier height

k = Boltzmann's constant

T = absolute temperature

q = electron charge.

Thus the barrier height may be calculated from the saturation current using

Equation (1). More accurately, it may be determined from the slope of a plot

of ln(Is) vs 1/T.

It of interest to be able to determine the barrier height of a degraded

solar cell having a Schottky barrier back contact. The approximate equivalent

circuit of such a cell is shown in Figure B1. In this case the Schottky

barrier is not directly accessible and it is necessary to deduce the

saturation current from the solar cell characteristic. A typical VI

characteristic of a degraded cell has 5 distinct regions, as shown in Figure

B2. In Region I D2, the contact Schottky barrier diode, is fully forward

biased while D1, the cell junction diode, is forward biased, but conducting

very little (below cutin). The major factor affecting the slope in Region 1 is

the shunt resistance. Since this part of the curve is usually nearly

horizontal this resistance is large and its effect may be neglected. The

(1)
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FIGURE BL.	 EQUIVALENT CIRCUIT OF A DEGRADED SOLAR CELL

FIGURE B2. VI CHARACTERISTICS OF A DEGRADED SOLAR CELL
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concave downward curvature of Region 2 is a result of diode D1 becoming

forward biased.

The straight line segment, Region 3, occurs when both D1 and D2 are fully

forward biased. Under these conditions the slope of the characteristic, a, is

inversely proportional to R1 since R2 is effectively bypassed by D2. The

concave upward curvature of Region 4 occurs when D2 drops below its cutin

voltage and its conduction current is sharply reduced. In the straight line

segment, Region 5, D2 is reverse biased with only saturation current flowing

through it while D1 continues to be fully forward biased. In this region the

cell's equivalent circuit is given by Figure B3a and Figure B3b (Thevenin

equivalent). From Figure 733b it can be seen that the Region 5 slope, b, is

inversely proportional to the sum of R1 and R2 and that the voltage difference

between its intersection with the voltage axis and Voc is equal to:

Vd = Is x R2,

as shown in Figure B2. Thus the saturation current may be determined

approximately from the characteristic curve as

Is = Vd/((l/ b) - (1/a)),

where a = slope of Region 3

b = slope of Region 5.

Ref. 1 Sze, S.M., "Physics of Semiconductor Devices," New York:

Wiley-Interscience (1981) p. 262.
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DESIGN CONSIDERATIONS FOR A CONSTANT FLOW
S02 ACCELERATED TEST SYSTEM
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Appendix B.

Design Considerations for a Constant Flow S02 Accelerated Test System

Five methods were considered as ways of producing an 85/85 atmosphere

contaminated with SO? for stressing cells. These methods, shown in Figures

B1 through B5, were considered in regard to effectiveness, ease of control,

2	 and concentration range. (Refer to Figure B6 for the list of symbols.) The

first design (Figure B1) incorporated a premixed 500 ppm S02 source. Since

this design did not dilute the premixed source with air, environmental

control was simple. However, in order to obtain 85% RH the SO? would have to

bubble through water. This was not practical since the water would absorb

the S02.

The second design (Figure B2) also used a premixed source, but one

which had a concentration of 1000 ppm, the highest concentration readily

commercially available. This allowed the source gas to be diluted with

humidified air at the test temperature, thus avoiding the problem of S0.^

adsorption in the humidifier. Concentration control was obtained through the

use of flow meters making control simple and accurate. Unfortunately the

•	 maximum concentration possible with this system was 150 ppm, but it should

be considered a candidate if lesser concentrations are desired.

The third design (Figure B3) was an attempt to avoid this concentration

limitation by reducing the flow of the diluting air stream and at the same

time raising its humidity. Control now depended on the temperature of

/
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B2

saturation and in maintaing the saturated gas flow at this temperature to

the point of mixing. The advantage of flow meter contol of concentration was

lost, however, and this approach was not considered practical.

The fourth design (Figure B4) used a pure SO, source, which was liquid

at room temperature and 34 psig. If conventional flow meters were used for

control, the amount of SOp was too large resulting in a minimum chamber

concentration on 2000 ppm. This approach should be considered if a

controllable flow meter and valve combination can be found which will

regulate to 1 mlpm.

The fifth design configuration (Figure B5) also used a pure S0 9 source,

but a capillary tube was introduced in the SO 2. line to reduce the flow rate.

Unfortunately flow through a capillary cannot be monitored as through a flow

meter, but when used in connection with a micro metering valve it can be

calibrated. This approach was deemed the most feasible of the five constant

flow methods for conducting initial investigations and experimental

construction was initiated. Results were inconclusive, however, because no

satisfactory method of monitoring the S0 2 concentration could be found to

insure that the cells were actually being subjected to the desired ambient.
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1) water bubbler	 5) Auto transformer

r_ J
2) water bubbler with	 6) hot plate

fritted disk

D

3) hemispherical heater	 7) heating tape

rJ	 C
4) auto-transformer controlled 8) blower

hot plate

Figure B6, Key to Drawing Symbols 1.	 ,

^J i



t

i.

to.
ORIGIN,"_

r'
r

F

2
9) Pressure Regulator

—F
12) Flow Meter
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14) Capillary Tube
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Figure B6. Key to Drawing Symbols (continued)
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:'y	 1	 Proc. IEEE Region 3 Conference, p.411 (1982)
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Electrical Degradation of Solar Cells due to Formation of
w	 a Schottky Barrier Contact

C.W. Davis

a
J.W. Lathrop

Department of Electrical and Computer Engineering
Clemson University, Clemson, SC 29631

ABSTRACT

A decrease in the maximum power output of silicon solar cells subjected
to bias-temperature stress testing has been observed. An explanation for this
degradation is offered which involves the formation of a potential barrier at
the metal-silicon interface of the back contact. The samples used were
four-inch diameter silicon solar cells with Au/Ni/Solder contacts. These
samples were heated in air to temperatures of 165 C for as long as 9000 hours.
Changes in the electrical properties with respect to time and temperature were
recorded. Increases in series resistance and nonlinearity of the far-forward
characteristic of the cells indicated the presence of a potential barrier. A
computer model was developed which included a diode in series with the solar
cell. Decreasing the reverse saturation current of the series diode resulted
in a more nonlinear far-forward response of the system.
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IEEE Trans,	 on Reliability, Vol. R-31,	 p.258 (1982)
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' Accelerated Stress Testing of Terrestrial Solar Cells

J.W.	 Lathrop,	 D.C.	 Hawkins, J.L.	 Prince, and H.A. Walker

Department of Electrical and Computer Engineering
Clemson University, Clemson, SC 29631

ABSTRACT

The development of an accelerated test schedule for terrestrial solar
r
1

cells is described. This schedule, based on anticipated failure modes deduced {{{
from a consideration of IC failure mechanisms, involves bias-temperature

• testing, humidity testing (inclding both 85/85 and pressure cooker stress),
Fand thermal-cycle thermal-shock testing. Results are described for 12

different unencapsulated cell types. 	 Both gradual electrical degradation and
sudden mechanical change were observed. These effects can be used to
discriminate between cell types and technologies relative to their reliability
attributes. Consideration is given to identifying laboratory failure modes
which might lead to severe degradation in the field through second quadrant 7
operation. Test results indicate that the ability of most cell types to {
withstand accelerated stress testing depends more on the manufacturer's

Y design,	 processing, and workmanship than on the particular metallization
system.	 Preliminary tests comparing accelerated test results on encapsulated
and unencapsulated cells are described.
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	 Proc. 16th Photovoltaic Specialists Conference, p. 1262 (1982)

1

An Accelerated Stress Testing Program for Determining
the Reliability Sensitivity of Silicon Solar Cells

to Encapsulation and Metallization Systems

J.W. Lathrop, C. W. Davis
Department of Electrical and Computer Engineering

Clemson University, Clemson, SC 29631

and

E. Royal
Jet Propulsion Laboratory

Pasadena, CA 91109

ABSTRACT

The use of accelerated testing methods in a program to determine the
reliability attributes of terrestrial silicon solar cells is discussed.
Different failure modes are to be expected when cells with and without
encapsulation are subjected to accelerated testing and seperate test schedules
for each are described. Unencapsulated test cells having slight variations in
metallization are use to illustrate how accelerated testing can highlight
different diffusion related failure mechanisms. The usefulness of accelerated
testing when applied to encapsulated cells is illustrated by results showing
that moisture related degradation may be many times worse with some forms of
encapsulation than with no encapsulation at all.
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Flat-Plate Solar Array Project Research Forum on Quantifying Degradation
Williamsburg, VA December 1982

Degradation of Silicon Solar Cells

J. W. Lathrop and D.C. Hawkins

Department of Electrical and Computer Engineering
Clemson University, Clemson, SC 29631

ABSTRACT

Results of the Clesmon accelerated test program are reviewed. Examples of
the way in which accelerated testing can be used to differentiate between
different cell constructions are given for both encapsulated and
unencapsulated cells. A modest real time test program which has been begun in
an attempt to correlate field degradation with accelerated test degradation is
described. In this program individual cells, both encapsulated and
unencapsulated, are stressed outside, but periodically demounted and
accurately measured in the laboratory. Development of non-linear VI
characteristics in some cells during accelerated testing is discussed. Testing
is described in which degradation occurs more rapidly when cells are
encapsulated than when they are unencapsulated.
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Plat-Plate Solar Array Project Research Forum on Metallization Systems
Calaway Gardens, Pine Mountain GA, March 1982

Accelerated Degradation of Silicon Metallization Systems

J. W. Lathrop

Department of Electrical and Computer Engineering
Clemson University, Clemson, SC 29631

ABSTRACT

The different metallization systems that have been investigated in the
Clemson accelerated test program are reviewed. It is shown that all
metallizations fall in one of four classifications: vacuum depositied silver,
electroplated copper, screen printed silver frit, or solder coated nickel. The
number and function the layers in each system is described. A particular cell
construction which exhibited non-linear behavior after accelerated testing is
examined in detail. Metal to semiconductor contact theory is reviewed and it
is concluded that this non-linear behavior is a result of a change in the
number of interface states. These interface states are the result of dangling
silicon bonds -- electrons which are not shared between silicon atoms at the
surface and oxygen atoms in the silicon oxide surface film. A decrease in the
number of states, as might occur through the diffusion of atoms capable of
sharing electrons to the interface, will cause an increase in the potential
barrier at the interface and give rise to a poorly rectifying contact -- a
Schottky barrier contact. The formation of this contact appears to be more a
function of the semiconductor doping than of the particular metallization
system used.
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Proc. IEEE Region 3 Conference (SOUTHEASTCON) p.453 (1983)

Accelerated Reliability Testing of Encapsulated Solar Cells

F.B. White and J.W. Lathrop

Department of Electrical and Computer Engineering
Clemson University, Clemson, SC 29631

ABSTRACT	 •

Various types of encapsulated systems with electrically biased solar
cells were subjected to an environment of 85 C and 85% relative humidity. The
encapsulation systems have been categorized into three groups: bare cells,
hermetic substrates, and non-hermetic substrates. The non-hermetic substrates
degraded the worst while the hermetic substrates degraded the least.
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The Programmable Photovoltalc•Cell Test System consists of a light source, microcom.
puler, programable do power supply, analog/digital Interface, and data storage and
display equipment. The system applies a series of lest loads to the cell via the pro•
gramable do power supply to obtain the I/V characteristic curve and key cell-performance
parameters.

ORIGINAL PAG- t'S
OF POOR QUALITY

Fast Electronic Solar-Cell Tester
Microcomputer-controlled system gathers
current and voltage data.

T
r-

NASA's Jet Propulsion Laboratory Pasadena California

f`

A microcomputer-controlled system
measures solar-cell current/voltage (IN)
characteristics and determines key cell
parameters, including short•circult cur•
renl; voltage, current, and power at the
maximum-power point; and open•circult
voltage, A cell is automatically stepped
through a sequence of electrical loads
that Increase Irom open-circuit to short•
circuit, while the system measures the
cell voltage and computes the power
output. The data are displayed on a
cathode-ray tube (CRT), recorded on an
X•Y plotter, or stored on tape.

The system is illustrated In the figure
A shutter between the lamp and the cell
reduces the exposure time and mini.
mlzes heating. Heating is further re-
duced by a dichroic reflector, which
directs mostly visible light onto the cell
while permitting much of the infrared
light to escape. The cell is also cooled by
forced air circulation.

Each load is applied to the cell by a
programable do power supply, Follow•
ing the voltage measurement at each
current selling, the microcomputer
repeats and verifies the voltage meas•
urement and computes the power out-
put, The microcomputer steps the solar
cell through approximately 200 test
loads each second.

Data are obtained with three lest se.
quences. In an initial sequence, dVldl is
determined at I = 0 followed by the
measurement and verification of volt-
ages at Increasing currents in In-
crements of 32 mA. Power Is computed
at each test point and comparedwilh the
previous value.

Upon detection of a decrease in
power output, the program lumps to a
sequence that decrements current by
1 mA until the maximum-power point
has been passed again. The program
then jumps to a third sequence that
resumes the current stepping but with
increments that are varied to maintain
the voltage increments between 1.2 and
19.5 mV. The measurements continue
until the plateau region of the I/V curve Is
completely mapped to the short-circuit
(V = 0) point

The system tests a wide range of
solar cells. The apparatus and program-
ing technique are also applicable to
other devices, such as tother types of
batteries and sensors.
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