WA T =508 T

- NASA-TM-86089 19840020466

A Reproduced Copy

OF

M5 77 Fo08 3

Reproduced for NASA
by the
NASA scientific and Technical Information Facility

RRARY GOF
LIRDAR ¥
co TR
LANGLCY RESEARCH CENTER

LIBRARY, NASA
HAM2TON, VIRGINIA

FFNo 672 Aug 65

\\\

[
4

‘——-——‘\

(NASA-TH-66089) CONSIDERATIOES OY COHNAMD

AHD BESPCHSE LANGUAGE PEATURES POR A METHOBK
UF HETZROGENLOUS AUTOMONOUS COMPUTERS (HASA)
68 p HC AO4/NF 201 CSCL 09B

NASA

Technical Memorandum 86089

CONSIDERATIONS ON
COMMAND AND RESPONSE
LANGUAGE FEATURES FOR
A NETWORK OF
HETEROGENEOUS
AUTONOMOUS COMPUTERS

Norman Engelberg
Charles Shaw il

JANUARY 31, 1984

National Aeronautics and
Space Admunistration

Gceddard Space Flight Center
Greenbelt Maryland 20771

H84-28535

Unclas
19631

’

NG =2 95:35‘;75

CONSIDERATIONS CN CCMMAND AND RESPCNSE
LANGUAGE FEATURES FOR A NETWORK CF
HETEROGENEOUS AUTONCMCUS CCMPUTERS

January 31, 1984

Norman Engelterg
Charles Shaw III

Century Computing, Incorporated
8101 Sandy Spring Road
Laurel, Maryland 20707

for

NASA Goddard Space Flight Center
Contract NAS5-27197

A Y

ACKHOWLERGRMENTS

The authors wish to thank the members of the TAE design and
development team-~Carmen ana Ezzanuelll, David Howell, and
Dorothy Perkins of NASA Goddard Code 933; Elfrieda Harris
of Science Applications Research; and Paul Butterfield,
John McBeth, Philip Miller, Dharitri Misra, and Lora Mong of
Century Computing, Incorporated== for their help in
producing this docurment.

The work for this paper was done under NASA contract
NAS5-27197.

'r

ABSTRACT

The authors consider the design of a uniform
connand language to be used 1in a local area
network of heterogeneous, autonomous nodes.- - -

After exanining the ©ajor characteri{stics of such
a network, and after considering the profile of a
scientist using the cozputers on the net as an
investigative aid, the authors derive a set of
reasonable requirezents for the cozzand language.

Taking into account the possible inefficiencies
in icplexmenting a guest~layered net.ork operating
system and command larguage on a heterogenecus
net, the authors evanine cozzand language naaing,
process/procedure fnvocation, paraceter
acquisition, help and response facilities, and
other features found 1in single-rode corzand
languages, and conclude that soce features aay
extend simply to the network case, others ertend
afrer some restrictions are i=posed, and still
others require nmodifications. In addition, the
authors note that soce requiresents considered
"reasonable'~--user accounting reports, for
example--decand further study before they can be
efficlently {zplezented on a network of the sort
described.

2.0
3.0
4,0
5.0
6.0
7.0
7.1
7.2
7.3
8.0
9.0

APPENDIX A

INTRODUCTION « « ¢ o o s ¢ ¢ ¢ o o o @
DEFINITIONS & & ¢ ¢ ¢ ¢ s ¢ ¢ s o o »
NETWORK CHARACTERISTICS ¢ « 4 o o ¢ &
DESCRIPTION OF USERS 4 4 ¢ ¢ o o o o o
USER MODEL/USER VIEW o « ¢ o o ¢ o o &
REQUIREMENTS ¢ o o ¢ ¢ o o o o ¢ o o o
NETWORK COMMAND LANGUAGE ISSUES . . .

Description of TCL « ¢ o ¢ o s ¢ o &

Network Operating System Model . . .

Command Language Features o+ ¢ o o« o
SUMMARY ¢ o o o ¢ o o o o o ¢ ¢ o o o

R.EFERE“CES.COOQ......OQ.

CHECKLIST FOR NETWORK COMMAND LANGUAGES

11
15
16
18

21

51
52

Fa\

1.0 INTRODUCTION

With the increased popularity of local area networks (LaNs),
we have seen the development of networks of independently
administered nodes, based on computer systems from different
vendors. Along with the development of these networks, a
need has arisen for a uniform command language through which
applications wusers wmay wmanipulate a set of dispersed and
independently managed resources.

Ideally, the command language 1s siaply some universally
known command language available on all the nodes on the
net. Work on such standardized languages-—languages that
are the same no matter the underlying computer architecture
or operating system-—is ongoing ([ANSI/09SD 84], ([COSCL
82]), but these languages are designed to provide a required
set of functions; the coummittee charters do not perait
significant considerations of possible implezmentation
problems. (See [ANSL/0S5SD 79], (CosCL 82].)

Ia this paper, we ilnvestigate one c¢ommon network case, a
local area network with heterogenecus, autonomous nodes, in
which the operacting system the user sees--the 'network
operating systea'--is layered on top of existiag host
operating systems, that is, "guast-layered". (See (ROBINSON
77}, [MAMRAR 83], [(PEE3LES 80], and [LANTZ 82] for existing
examples of such a case.) Thls paper examines classic
command language £features to determine hew the command
language might be extended to help the network user, and <to
detaraine how the nature of a network of heterogeneous,
autonomous nodes might make the izplementation of a given
feature impractical.

To performa this 1investigation we first examine the
significant characteriscics of a LAN with heterogeneous,
autonomous nodes. Secause we are investigating a |user
{nterface, we then describe the characteristcics of the type
of user for whom we are designing the interface and, based
on the net and user characteristics, we propose a "user view
model” (that i3, the view of the system which we L{atend the
users to have). Using this user view and keeping in =ind
the network characteristics, we describe a set of
requirements on the command language. Finally, we present
the features of a strawman command language, discussing the
viability of the features {n teras of the difficulcties each
feature may present to the {aplementation of the layered
supporte. Az a basis for our discussion we use an existing,
host-independent, single-node ccmmand language, "TICL", which
the authors helped design.

~ e m mmmmm— e e

[~

2.0 DEFINITIONS

In order to avoid some confusion in the discussion of the
issues, we first present a short list of our definitions for
some common terms and acronyms.

]

Q

nede = 2 computer with memory and external devices

home node = the node on the network onto which the
user has formally logged on.

remote ncde = any node except the home node

local user = a user i{s local with respect o a node
if the node 1{s his home node

remote user = a user is remote with respect to a
node if his home node is any other node

NOS =~ Network Operating Systems The software
provided to allow a user to access the resources of
autonomous machines on a network. (See ([FORSDICX
78] for an alternate definition.)

NOSCL - Network Operating System Command Language,
the object of this paper

proc = a command procedure or an operating systea
process

TAE - The Transportable Applications Executive, a
user interface and applications support executive
in use at NASA’s Goddard Space Flight Center.

TCL - The TAE Command Language, the reference
language used in this paper; the command language
for TAE

e o s et e —— P N e — S st R P RN

13 Al

TP Y

3.0 NETWORK CHARACTERISTICS

The type of network that concerns us has the following
significant characteristics:

o

The reason for the existence of the network i{s to
share resources among the users associated with the
different administrative centers; that {3, the net
is not primarily a testbed for distributed
processing.

The network is composed of heterogeneous nodas.
Unlike some {nteresting existing nets used for
distribuced computing ([POPEX 8l1], [JONES 79],
{LAZOWSKA 8l]), we can make no assumptions about
uniformity of the underlying computer architectures
or the host operating systems. The node may be a
mainframe running OS/MVS, a sixteen bic
minicomputer with a memory-resident operating
system, or a microcomputer-based workstation. (We
do not necessarily include micros with arbitrarily
small memories.)

It is a local area network. We assume that the
data rate between two nodes is on the order of
between one and 10 megabits per second. (Note:
there may be low-speed interfaces to other,
possibly geographically discributed nodes; we do
not want to exclude such an interface, but we will
not drive the design of the command language by
them.)

The nodes on the network are under autonomous
administrative control and che network operating
system 13 guest-layered, that is, it is layered on
top of the existing host 0S’s.

The development of the capabilities of the net and
the NOS are evolutionary; we want to be able to
gtart with a set of basic capabilities and add to
them as budgets permit and technology progresses.

The network is loosely coupled; we cannot assume
that any two nodes share memory.

The important implications we derive f£from these network

characteristics are:

Q

Because of the data rates, we assume that it may be
reasonable to process records from a small file by
copying the entire file from one node to another,

. e Ao AT BT A

- .

T -

Tt ey |

plle v

but 1t i3 not reasonable to copy large files (not,
for example, a sixty _megabyte spacecraft image
file).

o0 A node owner may take down a node withrut
consulting the network users or other node cwners.

o A node owner may change the configuration of
peripherals on a node, changing the address of a
tape drive, or removing a line printer, for
example.

o0 We can make no assumption about the existence or
correctness of a user~readable clock.

o Not all users on a node will be wusers of the
network operating system; a given node will
support NOS users and users not concerned with the
NOS or the network. Files may be generated outside
the NOS, and accessed by both NOS and non-NOS
users.

o Most common devices (most line printers, for
example) cannot be exclusively allocated to the
NOS.

o We cannaot change the host 0S5 to accommodate more
confortably the NOS or the NOSCL.

o Because of differences in computer architectures,
and because we want to be able ro run programs that
may use host operating system services, we cannot
assume that the NOS can redistributea the
application workload by moving an arbitrary process
from one node to another.

o Although we can assume that the software providing
the various levels of support for the NOS may be
centrally developed, the only assumpcion we make
about the release level of the software at a given
node is that it is "cowmpatible".

See [ROBINSON 77], (FLETCHER 82], [PEEBLES 80}, and [LANTZ
80] for descriptions of nets that share most of these
characteriscics.

e e My aF epm~ F o T oo

et s

ik Zall

1%

i AT

Y

I

ORIGINAL PAGE 19
OF POOR QuALITY

4.0 DESCRIPTION OF USERS

Current wisdom (e.g., (SCHNEIDER 82], [SMITH 82]) dictates
that when one designs a user interface, one should be aware
of the sort of task that the user 1s required to perform.

The following 13 a fair description of one common type of
computer user; it is also a rough profile of the intended
user of the TAE, the system for whlich the TCL command
language was developed.

o Someone with frequent need to use a computer as an
aid in performing some analytical task.

o Not a computer neophyte.

o Has the following basic requirement, based on a
"function” model:

input data output data
> >
Traansform
control
parameters responses
> >

The user has a task to do; the task transforms the
inputs into some outputs. We add to this basic
requirement a recognition that the user has to
supply some parameters, and that there will be
responses generated in the process of exercising
the transform. Thus the primary user requirement
i3 to specify the location of the input data, the
transform to apply to the input data, where to put
the output data, and the parameters used to control
the behavior of the transform.

o Professional and cooperative, will not attempt
malicious destruction of other users’ resources.

o Generally has a home base, that {s, a computer most
often used as the home node, but also has a need to
log into any other arbitrary node.

o Usually acquires and maintains files at the home

node, often by using a process outside of the NOS
(a realtime data acquisition process, for example).

e SH T T T -

{

o Finally, although the user’s interface to standard
software 1is cthrough the NOSCL, the user may be
satisfied with local resources, that i{s, the user
may not want to use or be exposed to the network.

Two implications of the last characteristic are that a wuser
on a node in the net should not suffer a degradation in
apparent task performance as a result of the {imposition of
network software, and that the addressing of local resources

should be the same as in the single-node case.

e aE e L '

[

5.0 USER MODEL/USER VIEW

A user—view model 1s the model the user inevitably develops
while using the system. Based on the apparent system
characteristics amd a level of abstraction that 1is
‘camfortable to the user, it allows a user to predict what
the systea will do in a given situation.

By forming a user model before the wuser interface I{s
designed we present ourselves with a target against which we
may judge our design.

In this section we propose a user—view model of the network,
based on the net and user characteristics described above.
We assume the user corresponds to the '"intermediate" level
of sophistication, described by Schneider in [SCHNEIDER 82].
(See [HARDY 82] for why orienting a design toward the
intermediate-level user is reasonable.)

The user logs into a particular node using a host-dependent
login sequence. From this node, the user sees a collection
of resources (processes, command prccedures, files, devices)
attached to autonomous computer facilities, each facilicy
having a central computer and peripherals. The user
manipulates these resources as necessary to perform a given
task. The user can, for example, execute a proc on node #1
using a file on node #2 as input, and depositing the cutput
in a file on node #3.

The user executes commands through a single uniform command
language, implemented in the NOS command interpreter. In
addition, a user may invcke user-written processes or
command procedures living on any machine on che net. The
user gpecifies which node to use in executing a process or
procedure (GODDARD/COPY, for example).

A user may access files on any node in the net (given
appropriate permission) by specifying the node name and the
r a of the file on that mode. Devices on the net may be
a_-..essed by specifying the node name and the device, or
generically, by specifying a suitable device type.

The user view 1s node-centered, that is, the user {s
registered as a user on a given node; 1f the user wants to
establish a session by logging into another node, the user
nwust be registered on that node (or use a guest account).

Most command error messages are wmachine-independent; some
error messages have a rachine~independent description with
machine-dependent details.

This view contrasts with the wview implemented on other
systems 1in which the user need unever be aware of the
location of resources (e.g., [ROBINSON 77], [LANTZ 82},
[FLETCHER 82}). Ia the proposed view, the user must kanow on
which node files are located, 1is occasionally exposed to
possibly confusing error message details, and receives a
different view of the available resources depending on the
node which is used as the home node.

We justify this view as follows:

o If the user knows that a node is about to go down
(for example, for scheduled maintenance) the user
may transfer files to another node.

o If the user knows that a node has gone down, the
user may conclude something about additional files,
devices, command procedures, and processes.

o As noted by Clark and Svobodova [CLARR 80] an
implication of autonomy is that a user tends to use
one machine and wants the access to that user’s
data to be most efficient from that machine.

o The wuser may configure his files such that
important files are backed up on physically
independent nodes.

o The user may want to control and display the costs
of working on a network. For example, the use of a
data file on the user’s local node 1is apt to be
cheaper than the use of a file with the same
contents on a remote uode; the cost of wusing
functionally identical application processes on
different nodes will differ according to whether or
not the required data files are on the same node as
the process, and on the speed and billing
algorithms for that node.

o The user may wiih to communicate with the recote
operator; for tape wmounts, for example, or for
complaints, and {information about computer
downtinme.

o If a user’s files are not replicated, file access
times will vary according to the hosting node; the
user may want to plan file usage based on ease of
access to some files.

0 Some operations will not be available between two

arbitrary nodes. For example, it may naot be
possible, 1in 1inicial dimplementacions of the

I N I -

1

\
TR Gty L kb s A BT a8 R L s

o

TV

o gt

netvork, for a user on a PUP-ll to access a file on
an IBM machine.

A user =ay need to perfora zore complicated
recovery and detection 1f an error {s due %o a
remote problen. If the wuser xnows that the
reference is local, then these procedures are not
necessary. (This was cited by Clark aud Svobodova
{CLARR 80] for application programs, in which the
program would have to provide logic for the wmore
complex case {f it didn’t %now that the reference
was local.)

Errors may occur as a result of the {nabilicy of
the NOS desigzners to perfectly map the network OS
onto the host 0S, exceedirg a quota or violating a
privilege, for exaople. Although the NOS can map
these errors into NOSCL errors, the user =ay aeed
to know the host error code in order to correct the
situation.

The user =ay want to be sure that secure
iaformation {3 placed on a specific node,

Although {t {3 possible to design a user {interface
that has apparent network transparency, the user
inevitably becomes aware of and m=ust deal wizh the
network. Assuming a user 4{nterface desizned 2o
nake the network transpareat, factors that support
this assertion are:

= The user will notice cthat file access tiaes
vary considerably according to the file bei:z
accessed.

- Because of node autonoxzy and the varyicg
reliabilicy of node hardwvare, resources

actached to scme nodes will be generally less
available than resources attached to others.

= The user will note operating system-dependent
terminal characteristics, for exacmple the
abilicy to type ahead when addressing some
processes but not others (from VAX/VMS to
VAX/VMS but not from PDP-11/RSX to PDP-11/RSX,
for example).

- Zrror messages from application sofzware w{ll
display host-dependent error codes.

¥.

AR AT Y

B ¥©oelrx

= Users on one node will comrunicate with users
on another node.

Note that some of the items cited above reflect what we
believe are the inadequacies of current software technology
to provide these functions efficiently in a network
operating systenm. In particular, copying arbitracy files
from one node to another, user cost =inimization {n a
heterogenecus node environment, optimizations for relative
location of £i{les and processes, and automatic recovery, are
not now avallable {n systems with heterogeneous nodes and
guest layering.

Other nets that preserve a view of node wvisibility are
COCANET [ROWE 82] and UNIX-UNITED {BROWNBRIDGE 82].

10

6.0 REQUIREMENTS

In this section, we present a 1list of reasonable
requirements £for a command language designed to support tne
network and user view we have described. We 1list only those
requirements of interest 4in the network case; for a =zore
extensive set of command language requirezents, see
(ANSI/05SD 79] and [ANSI/06SD 79). Note also that some of
hese requirements are more proper'v requirements on a
network operating system; they do, hcwever, affect the
command language design. Finally, although we conside-
these requirements reasonable from a user’s view, we note {n
Section 7 that some of these requirements present
difficulties in efficieua. implementation.

l. Related to files and other resources .

= support for uniform file specifications and
device specifications {ndependent of the
underlying host operatiang system, with at least
one level of directory

= file management commands: =ake a copy of a
file ({.e., COPY), rename a file, list a text
file, list a directory, delete a file

= manipulation of a file using wild cards for a
name component

= location of a file by attritutes other than the
name (a file "type", for exacple)

= logical nanmes: the abilicey to map a
user-defined name into an existing object aacme
or another logical nace

- on protection: consistent user view of
protection for all files accessible through NCS
file specificacions; basic read/write/delete
protections at least by "owner" and non-owmer;
ability to protect files £from aon-NOS users,
and to share read access to f£iles with non=-NQS
users; ability to set and determine protection
of a specified file

= ability to specify a host file {n host
specification format

11

. 2. Related to handling of processes and command
procedures

) -~ named packages of commands (procedures), wich
paramecers and language support (loops,
conditionals, variables)

- process/procedure status query

= gpecifying a host node to use in executing a
transform

= ability to initiate concurrent processes and
procedures

= procedure/process abort, suspeand

= automatic action upon a specified type of error
(that s, some basic exception handling)

= abllity to run programs that have not been
designed to interface with the NOS

PR,

3. Crash/recovery

- notification of crash of any node with which
the user is communicacing

- restoracion of files to a known state (e.g.,
previous version or "locked" or “recovered")

= survival of the user/NOS interface following a
crash of any node except the user’s home node
4. For dealing witch machine costs:

- a way to determine the costs (storage and tize)
of having invoked a process or procedure

- 3

f = query for cumulative machine costs since login

1

S. For sharing other users”’ resources and
communication with other users:

.
.

- the ability to locate and access other users’
files

v

(eong soiin s A0 D10 o
.

wd

file/device protection
query for file owmership

determine id’s of other users currently logged
onto the network (under the NOS)

send/recelve messages and mail

6. Requirements related to visibility of the nodes and
the necwork

the ability to log on to a remote host frecm the
hone node

query for the network status

query for status of one or more nodes 4in the
network

abilicy to commnicate with a remote host
operator (for example, mount a tape, or receive
a message on host downtime)

downloading a remote host

7. Help and errvor handling/status reporting

notification of errors using a uniform,
host-independent message structure

determinacion of error details and possible
recovery actions including ability to get help
on an underlying host~dependent error
originating at a remote node

help displays on processes and cocmand
procedures, built=in commands, general
how=-to-work the system

help on characteristics of the network (to the
depth required to support the user view) and on
network probleas

help on host-host incompatibilities (in general
help inquiries and error messages, e.g., '"Ilnage
file copy from PDP-11/RSX~-11M to WANG VS20C0 is
not currently supported'")

13

8.

General user-oriented requirements

If a user gpecifies an operation requiring oaly
local resources it should not be more difficult
to perform or take a perceptibly loager time
than the sape operation 4in a non-netwotk
environment

Some consistent time base and consistent
user~view of time, that 1s, the user’s
perception of the passage of time based on time
displays from the system should be consistent
no matter the node, and the wuse of time in
time-related actributes for resources ("time of
creation" for example) should be consistent.

Host coamand escape (the abilicy to execute a
command in the command language of tha
underlying host operating system), local host
and specified remote host

"Reasonable" and cousistent response times
where by ‘'reasonable" we mean a response tiaze
confortable for the user; see pages 228
through 232 in [SHENEIDERMAN 80] for a
discussion on wuser psychology and respoase
times.

14

ARG e a0 Sk g)

™

7.0 NETWORK COMMAND LANGUAGE ISSUES

In this section we briefly describe our reference command
language, 7TCL, and present our basic model for the network
operating system. Then, using TCL as a reference language,
we discuss the classic characteristics of command languages
and how they might be affected by the requirements we’ve
developed.

15

T

. e v ———

¢

v e 4=+~ = AT

~
- e — S S o -

-t

. ——y

cermaratia w Ll i AN SR SRS S

K4

-

ik e

EX

7.1 Description of TCL

As a basis for the following discussions on network-oriented
extensions to command languages, this section describes TCL,

a modern command language designed for a single-computer
systen.

The following overview is a description of the facilities of
TCL pertinent to the NOSCL 4ssues discussed belcw; a

complete description of TCL can be found in [CENTURY 83a]
and [CENTURY 83b].

The major purpose of TCL is to provide a language through
which wusers of the Transportable Applications Executive

("TAE") may invoke and provide parameters to scientific
analysis software.

In TCL, an application program linked to run under the host
operating system i{s called a '"process'; a £file consisting
of a sequence of TCL commands is a "procedure".

A command in TICL {s a TCL intrinsic command, or the
invocation of a TCL '"proc'. A proc {s a procedure or a
process; all proecs are located in TAE libraries
(corresponding, under VAX/VMS |[DIGITAL 82a]), to a file
directory).

Intrinsic commands are commands built into the TCL
{nterpreter (the TAE Monitor). These commands consist of
commands that perforn general ucility functions ("DISPLAY"
to display the value of a variable, for example), and
language-support commands such as the IF and LOOP commands.

In TCL, a proc {s invoked using only the proc name; there
{s no "RUN" or "EXECUTE" command. The proc definition
file~~the file containing the procedure or executable linked
image and the proc parameter declarations—--is located by the
command line interpreter using an ordered search of TCL
libraries (similar to the path search in UNIX). The list of
libraries to search is established by the TCL wuser during
the session. Libraries are mapped directly into the host
file facilities; wunder WS, for example, a library
ccrresponds to a directory. Intrinsic commands pre-empt
procs; that is, 1f a command name is found to be the name
of an intrinsic command, then no proc searzh is done.

16

A command {s said to have "proc invocation syntax" if the
form of the command invocation {s,

{cormand name> <parameter value lisc>

A process receives command line parameters by calling
standardized TAE support subroutines; a procedure receives

the parameters by declaring them as parameters in the
procedure.

TCL also supports the following traditional features:

o typed variables, arithmetic and logical
expressions, built-in functions, and a LET command
for assignment;

o IF, LOOP, BREAK, and GOTO commands;

o exception handling support;

0 on=line help and message facilities

17

7.2 Network Operating System Model

In order to provide a basis for discussing the possible
problems in implementing the various command language
features, in this section we describe the basic model we use
for the network operating system. The model we have chosen
i{s appropriate for our user-view model; it is based partly
on the single-node TAE model [CENTURY 83a] and partly on the
gservice model in [FLETCHER 80] and the implementation of
DIGITAL’s DECnet [DIGITAL 82b]. The discussion is limited
to those aspects of the NOS that clearly affect the command
language interface.

We suppose a network of nodes, where every node coantains the
necessary hardware and software communication support for
layers through the session layer of the OSL reference model
{1S0/0SI 82). Each node hosts, in addition, an executive, a
directory server, a file server, and a "listener". The
executive interfaces with the user; it interprets the
user’s commands, determines the command parameter values,
and passes the parameter values to the responsible execution
module. It also determines the status of the command
execution and forms appropriate status responses for the
user.

A user {s "registered" on each node cthrough a user node
registry. If local access is desired, the user’s name alone
is registered (e.g., "JOHN"); 1if remote access 1s desired
then the node from which the access is attempted and the
nave are registered (e.g., "NASA/JOHN"). (This approach 13
similar to the UNIX-UNITED approach [BROWNBRIDGE 82].)

A command module may be built into the executive command, or
it may be a command procedure contained in a procedure file,
or it may be a process (a program in host-dapendent
"executable" format on disk). If it is a procedure or a
process (a '"proc"), there 1is an associated proc definition
file cthat the executive accesses to determine the type,
default value, and other attribuces of the parameters. If a
parameter has no default and no value is specified by che
user, the execuctive will proupt the user for a value. The
proc definition file may, depending oo the implementation,
be incorporated into the procedure or executable program.

The executive uses the directory server to deteraine the
location of files. Because nodes 4in our user model are
exposed to the user, there 1Is one directory server per node,
and it knows only about the files and devices located on the
hosting node. The executive or subroutines in an
application program direct the f£ile request to the correct
node by finding the node name in the file specificatior (or
using a default node name).

18

In general, files are not copied from one node to another
unless the user explicitly requests so; processes read and
write local and remote file records.

When a request is made to open a file, the request is seat
to the directory server on the appropriate node; the server
returns to the requester a file identification string or a
"not found" status, or an "access violation" status. The
possessor of the file identification string, the executive
for example, then uses the file server to access the file.
If the request i{s for a £ile on the same node as che
requester then the file server may be embodied in a
combination of host 0S file services and the subroutines
required to abstract them. If the request is for a file on
a node remote to the requester, then the requester
communicates with the remote directory server (through the
listener, see below), and a remote file server uses the host
0S facilities to perform the necessary f£ile access services.
(In practice, the directory server and the file server may
be combined in one process.)

The file 1identification string provides sufficient
information for the file server to check access rights
against the requested operation (similar to capabilicies
(DAVIES 81]).

The listener on each node i3 responsible for the {nitial
interface with other nodes. When a file open is requested
by a user remote to the listener’s node, the listener either
spawns a directory server or comrunicates with an existing
directory server, which thereupon establishes communication
with the requesting process.

If the request is for the execution of a remote procedure or
process, the listener spawns a local copy of the executive.
The spawned executive communicates with the originating
executive, obtaining the necessary context for the requested
operation, and executing the process or procedure.
Furthermore, 1if the proc is a procedure, the executive is
responsible for executing the commands Jn the procedure.
For a discussion of other functions and problems with this
remote execution model, see "Proc Invocation" below.

A remote proc communicates with the user through subroutines
in the process, which communicate with the proc’s executive,
which, in turn, communicatec with the user’s nome executive.
The user’s home executive talks to the user (similar to
virtual terminals; See ([LANTZ 79] for a discussion on
virtual terminals.)

19

T

- —® o ey maen

TR XTI

Note that, for simplicity, our model does not at this stage
provide for replication of any user files; we leave file
replication to the user. In addition, the model does not
address protection of objects; we leave the investigation
of a protection model appropriate for our user model, and
the associated impact on the coammand language, for future
study. (See {DAVIES 8l] for a general discussion.)

20

7.3 Command Language Features

This section discusses the important features of a strawman
command language we call NOSCL; most of the features
discussed relate to a requirement listed in the
"Requirements" section, above; some of the features are
based on existing features in TICL. Note chat, where
nec?ssary, we assume the command line syntax of TCL [CENTURY
833 .

The descriptive technique we use belcw is to first describe
a hypothetical NOSCL feature, then discuss the feature.

1. Session context

When a user logs onto the NOS, a '"session" is started
and a session context is established.

In NOSCL, the context consists of:
0 user name

o session id - a unique idencifier for the duration of
the current session

o a string that constitutes the command line prompt

o a set of logical names that map into file names (see
"Names" below)

o "current'" directory - the default directory string
to be used if an object name is not fully-qualified

o ‘home" directory = the initial "curreat" direcctory
upon login

o current setting of session global variables

o proc search list = the list of directories to search
for a proc invoked with an unqualified proc name

o a set of user and installation-defined commands -
command string equivalences and abbreviations
defined using the "define equivalent command string'
coumand

o devices reserved

21

i - - wonn Ew AV Aladh bt 2o N SRR § A

v

o the user’s NOS identification
o 1identification of all procs currently executing

o name of log file and state of session logging

The context is available to the NOSCL user through a set
of global variables; to display a context component, a
user may use the standard NOSCL command for displaying
variables, or for some frequently requested components,
the SHOW conmand (e.g., for showing the library search
order).

There exist commands to save context to a named file,
and to restore context from a named file.

Comments

We try to keep the context as small as possible for two
reasons. First, the context will require memory in the
executive (or from some memory pool), and, second, in
our model of the NOS, when a proc on a remote node is
executed, the home executive sends the entire context to
the remote executive.

Note that the second consideration may turn out to be
unimportant, depending on where the ©DYottleneck for
remote proc initiation is, on the effective rate of data
transmission between two application-level processes in
the network, and on the efficiency of the data encoding.
(Binary data, for example, =ay have to be encoded as
ASCII characters.) We estimate, based on experience with
TCL (which does not have logical names), that the
session context as defined above may be as large as 10
kilobytes. Note also that some optimizations are
possible; for example, once the home executive has sent
the context to the remote executive, it may, on
subsequent proc invocations on that node, send only
changed portions of the context.

Session quotas, accounting information, and session
privileges are {mportant compounents of cthe session
context on an operational system, but hard to define and
implement in a distributed environment. We have omitted
them pending wmore study on the necessary NOS structures.

In addition, the context way include the current

position of a mwmagnetic tape, but it is not clear that
this would be meaningful for the user to observe, nor
can it be easily restored in a new session.

22

4

Pl

ot

@ TN el g LAY e D G

e,

T
B hbed &l aiare 4 PR NI 2 S VS 3]

L TINE e

et

b
N M'Wy,w\;;,.‘.wr\ﬂn LAty st grlans g g

)
E S
bt s s e b e Lo LIV

1

The current time and date may also be considered part of
the session context, because {t qualifies the rest of
the context. See '"Time" below for further discussion on
this component.

Login

NOSCL users are required to login to a host, using the
appropriate host-dependent login sequence; host
facilities are then used to automacically log the user
futo the NOS (usiang Y5°s LOGIN.CCM, for example). 1In
addition, a user may establish another session on the
same node or a remote node using the NOSCL LOGIN
command, a standard host {ndependent login. In chat
case, the user aust be registered as an NOS user on the
remote node.

Upon iniclacing a NOSCL session, a special logia NOSCL
command f£ile (called the 'node 1logia" file) {n a
reserved NOS directory on the home node {8 executed,
which, in turn, executes a login command file in the
user’s default d{rectory. There is one node logia file
per node.

A user {3 regiscered with the NOS {n an NOS user
registry (using a utility not specified here). The
registry specifies the user’s NOS {dentification, and
initial defaulcs (the 4inicial defaulz directory for
example). The login process accesses the registry for a
particular user by chat user’s login naze and, for a
remote login, by the user’s node naaoe.

Comments

Further 1{investigation {s required for a cocplete
specification of the data structures in the reglstry.

The login process establishes the inftial user context
using the NOS regiscry and the login ccmomand files. The
technique wherein the system and uger login cocmand
files are {avoked 43 currently used {n TCL. The user
logia command file together with the registry records
for a user constitute the user’s profile.

Note that a user that establishes a session on node A
appears to the NOS as a different user than the saze
user establishing a session on node 3; the user login
file that {s executed (s dependent on the node. User
login names are not unique for the entire network, but a

23

login name s required to be unique for a given node.
This approach has the disadvantage that, depending on
how protections are implemented, a user may not be able
to access files he created while logged oanto another
node. (If the registry {s logically unique, the NOS may
be able to map the user node and name 1into a wunique
protectica token, thereby avoiding the problea.)

Although the location of the registry i3 not specified,
we establish the requirement that the informacion
necessary for establishing a session on a given node (s
resident on that node. This requirtement is derived from
the requirement that the performance for a wuser using
the NOS executive btut not the network =—ust not be
significantly affected by the existence of the network.
See [BIRRELL 82] for more on user registries.

Note that the facility to login on one node and start a
session on another host is extremely useful; it =means
that if the user kncws the host-dependent logia sequence
of the local node, that user can start a session on
another node without knowing the host-dependent login
sequence for that node.

Finally, wa note that, in a macture operating systea, the
registry would certainly include the user’s privileges
and session quotas; {t i{s not clear however, what the
list of oprivileges should be on an NOS, nor do we yat
understand how o handle quotas in a distridbuted systenm.

Names

In NOSCL, an object with a standard name is ramed by {ts
node and by a path-mame within a node. A
fully—qualified name i{s of the fomm,

<node-name>#<{directory>/.../<directory>/{sinmple=-nace>

If a name starts with "4", or "/", then the object i3 to
be found on the local nede, and the firsc direccory
after the "4" or "/" is the user’s home directory. If
the name does not start with a node name or a "¥" or
"/*, then the current default directory string {s
assumed to precede cthe spacified naze. The first
directory nace in the striag is the name of a wuser L
the node has more than one user.

24

.r ...?‘

a———

[i S e

If the name i{s preceded by a to~be-designated special
character, the name {s taken as a name in host 0S format
on the home node; if che special character appears
after the node marker, the name i{s taken to be a node
nane and the string following the special character (s
to be {nterpreced as a host file specification on the
designated node. Host names must be enclosed {n

quotaction marks {f they contaln any of the NOSCL special
characters.*

The maximum length of a node-name, directory name, or
simple-name is the same for all nodes, as is the maxizum
depth of the hierarchy.

The objects that have standard names are directories,

devices, files, users, processes, and command
procedures.

The fully-qualified name of a device on a given node is,

{node=-nace)#DEVICE/<{device~name>

For example,

N14DEVICE/LPLO

The <device-name> for a given device is established bty
the system administrator for that node; conventions
will be established for uniform naming by device type.

For all objects with standard names, except processes
and procedures, 1f an object’s name is not fully
qualified, the name is formed by placing the current
defaulr directory string {a front of the name specified.

For processes and procedures, there exists a search
1iac; search 1lists are described delcw, under "Proc
Invocacion”.

In addition to the names described above, a user may
define a logical name. A logical name i{s a name that is
defined to map into an oblect name or into another
logical nanme. For example, a user may define TESTFILE

* A special character i{s any character having significance
to the command line intarpreter.

25

to map into /NHE/TESTDIR/TESTFILE, or LP to map into
N1JDEVICE/LPL1O. There i3 one logical name directory per
user, with inicial entries typically set by the node and
user login command files.

Conmants

The fully—qualified nawe specification described above
was chosen because it conforms with the proposed
user-view model and because it {s compatible with che
latest specification 1issued by the ISO SCl6 commitctee,
[ISO/SCL6/N1454 83] Note that, by having both the two
distinct separators ("#" and "/" in our case), we allow
a form of fully qualified name whereby cthe node name
defaults to the local node. See |[FLETCHER 82],
[ROBINSON 77], and ([LANTZ 80] for nets with
hetercogenecus computers and no node name in the file
spec.

A possible extension to the name specification used by
the ANSI coomittee 1is to provide for hierarchly of net
names, N1/N2/N3JJOEN/AFILE, for exanple. (See
[ANSI/Q9SD 84].)

Names for variables, exception handlers, and labels are
not considered standard aames as defined above. The
names for these objects will depend on the procedure
language; {a ICL, they are simple names only.

Currently under investigation by the ANSI Y3Hl committee
i3 whether or not any object attributes=-the VMS file
"type" and version number, for example--shculd be part
of the name. We will walit for further results from the
coxmittee.

A related question is whether or nmot to support access
by object attribute when the attribute is not part of
the name. (It =ay be another parameter {n the command,
for example.) This technique is particularly useful {f
device type is an attribute; a service can be defined
to return the names of all objects with the device type
attribute set to a specified string, "line princer', for
example. Further progress on these issues will follow
investigation into what attributes should be supported.
We aote, however, that search-by-attribute {s an
expensive mechanism even on one~node systems (generally
requiring a separate set of pointers).

The technique for naming devices is taken £rom UNIXta

26

e

[BELL 79], and has the disadvantage that it reserves a
directory name. It is expected that installacions will
define logical names for all devices.

An alternate technique to be studied 1s allowing the
device to take on any name in any directory and defining
an attribute, as noted above, that indicates an object
that s a device of a specified type [AGRAWALA 83].
This would allow a system manager to name the 'device"
directory by any name; a user would reference a device
through a logical name or by requesting an object with
the specified attribute.

The restriction that the maximum depth for directories
i3 the same for all nodes is made for user-friendliness,
but may use too much processor memory for nodes with
little memory to spare. (The maximum depth of
directories 1s an {mportant number i{n deteraining memory
use by the executive, since {t determines the space
allocated for file type parameters and variables, and
for logical names.) For ease of Iimplementation and
portability, consideration should be given to limiting
the depth of the directories to some fixed known value,
as in GRAPEVINE [(BIRRELL 82], and Clearinghouse [OPPEN
83].

Logical names provide for node nanme transparency,
particularly useful for device names, allases, and
“gtandard" devices (standard output device, standard
error device, etc.)

There are no logical names automatically known across
the network, that is, no network-central directory of
logical names; system administrators coordinate the
node login command files to define coummon logical names
for devices and files wused by many users. (The
assumption here 1is that the logical names used across
the network, names that map into devices £or example,
change infrequently.) We have avoided centralized
directories for logical names because they imply either
a remote access to the central directory every time a
name is referenced, or replicated directories. We have
provided instead a primitive form of replicationm, that
{3, system administrators updating the node login £iles
through an editor.

For flexibility, logical names are bound to the physical
name when the name is used, and not before. Some of the
tradeoffs on logical name binding, on network-wide
logical nanes, and on directory replication are
discussed in the GRAPEVINE and Clearinghouse papers

27

ciced above; Watson also discusses binding in [WATSON
81].

Open questions related to logical names are:
= Can a logical name map into a node name? . -

= Can it map into a node name plus the left part of a
file name? (Consider LN#A.B where LN is defined to
map into N14X,)

- Should logical names be restricted to the left side
of a name specification (as in VAX/VMS) or can any
component of a name specification be a logical name?

= Should logical names have attributes? If the design
is such that the user cannot tell a logical name
from an object name, then logical names should have
attributes. (This capability is useful when
searching by attribute: the search would yield a
list of object names and logical names.)

An issue not discussed above is in what contexts wild
cards should be permitted. Clearly, on a network, a
wild card in the wrong place can produce disastrous
consequences.

Finally, we note that our syntax for host file names may
result in awkward file specifications such as:

N1#Z"(1,1)x.y"

assuming the percent character wmarks a host file
specification.

Proc invocation

Process and command procedures are invoked by naming the
proc and providing the values of its parameters. For
example:

PROCPL 1, 2, 3

If the name of the proc is the fully-qualified name of
the proc definition file then the proc definition file
in the specified airectory 1is used; otherwise the
following proc search algorithm is used.

28

If the executive determines that a command i3 not an
executive btuilt-in command, the executive assumes that
the command is implemented as a process or procedure.
It then searches in the following directories, in order:

1. the user’s current default directory

2. the directories in the search 1list established by
the SETSEARCH command

3. a directory designated as the “"system" directory on
the local node)

A search list cannot include a directory on a remote
node; to 1invoke a proc on a remote node a user must
fully qualify the proc specification, including the node
nane. Furthermore, if the currently executing proc is a
procedure on a node remote to the user’s home node, then
the search 1list 4s automatically restricted to the
user’s current default directory, the directory of the
remote procedure, and the system directory; that is,
the variable part of the search list is reduced ¢to the
directory of the remote proc only.

LIf the user does not specify all the required parameters
for a given progc, the user is prompted for the missing
parameters. A parameter that has a default defined is
not consiaered a required paraceter.

Comments

The basic proc invocation syatax 1s, from the user’s
view=-point, a common one. It is currently in use in
TCL, and 1is similar to that being used {n COSCL (COSCL
82] and in ANSI X3Hl discussions [ANSI/09SD 84]. The
notion of prompting for user parameters is available in
TCL, buc the "tutor” mechanism {s preferred. (See the
TAE User’s Manual [CENTURY 83a] and Programmer’s Manual
(CENTURY 83b] for details on cthis and on the
specificacion of parameters on a proc invocation line.)

There are some problems with implementation of this
gsimple model on a network of the type that concerns us.

In TCL, there exists for every process and procedure a
definition file. (For a process it {s in a text file
distinct from the process; for procedures, it {is
located at the start of the text-formatted procedure.)
The proc definition contains parameter descriptions,

29

.

\

M Bl et S T IR TR R TSNP

\
\
\

Rl rnd® T O W T3 TS T WSk W TS

necessary for parameter value checking and for parameter
prompting; a description includes the type of
parameter, the parameter default value, and, possibly a
list of valid values.

Given these parameter descriptions, we have the problem
of how to efficiently prompt the user for parameters
when the proc i3 located on a remote node. Using our
NOS model, 1f a proc is on a remote node, an executive
on the remote node handles the command line processing.
If the remote executive does the prompting, we have a
relatively slow interactive dialogue; if ctche 1loecal
executive does the prompting then it =must access a
remote file (and probably copy at least the parameter
description portion), thereby foreing a lengthy proc
initiacion time. Another approach i{s for the parameter
descriptions to be located on all nodes that access the
proc; cthis approach would probably be faster (it scill
requires both executives to open a file, but no remote
access), but it presents a proc maintenance problem:
the person vresponsible for the proc mist remember to
check for all duplicates of the file when updating it.

Listed below are some additional problems in regard to
proc invocation:

= In the current TCL, the author of a proc can specify
that a parameter 4is an "input file", that is, the
executive is to check that the file exists. This
inplies the file must be opened twice: once by the
executive, once by the proc. Should this capability
be retained given that the open zay require several
remote file accesses through the NOS file systen
(which is layered on type of the host system)?

An argument in favor of early checking £for file
existence 1is that {1t wmay be expensive to run the
proc on a remote node, and then to discover during
proc execution that the file doesn’t exist.

Note that it possible to generalize the early-check
capability to all devices, that is, we can specify
that a proc will not rumn unless all devices
specified 1in the parameter description set are
available. We prefer to let device availability be
tested when the device is required.

= Because there will be configuration differences
between coples of the executive on different nodes,
a user might find that some proc invocations are
acceptable on some nodes but not others. Thus, for
example, a user may specify a long string value E£or

30

a parageter and the stcring may be rejected (because
the maximum string length on one node may be
different cthan on his home node). This problem can
be solved by declaring that there are no differences
between executives, but such a solution 1is
unsatisfactory when the range of processor memory
size and disk space oun the net 1is greact.

(The entities that are parameterized in the current
TCL executive 1include number of parameters allowed
on a line; number of command line continuations;
host fillespec 1length; rwaximum length of message
key; wmaximum allowed IF nesting in a procedure;
maximum depth of proc nesting; maximum number of
characters in a string parameter; and maximum
number of values for a vector parameter.)

If a user has defined a naumber of new command
strings (defined "COPYIMG" to mean "COPY IMAGEFILE",
for example), we have the following problem: a
procedure 1s developed oan node N using the command
strings defined by both the system manager (in the
node login f£ile) and the proc developer; the
context of the execution, however, contains only the
command strings defined by the user and user’s
system wmanager. (For example, the procedure may
assume COPYIMG is defined, but no such definition
exists on the home node.) Using NICOLA/KIWINET’s
"abgtract machine" concept ([{EFE 83}, [KUGLER 80}])
we can say that a procedure is developed to run on a
certain abstract machine, and that our model does
not provide that machine.

If NOSCL supports floating point parametess (as TCL
does), then a problem seen on nets with
heterogeneous nodes is that it is impossible for a
parazeter ¢to wmaintain tne same precilision among
different hosts. The precision in a user-supplied
floating point number may be lost when coavert 4 to
the node that hosts the proc; a proc¢ that does
nothing at all except return the input value, may,
in effect, change the value. See (KIMBLETON 81] for
more discussion on data transier between different
hosts.

In regard to proc search lists, we do not permit search
lists to reference remote nodes because we believe that
the increase in the maximum search tize (Lncurred on
nis-typed proc names) would be unacceptable to the user,
and because the cost associated with the execution of a
remote proc may be significantly greater than that for a

31

e |

PO s % S A% LB A IO YE P S

o

! Rl AL A RAA AR atan: i oy

L B

LI g 00t ALY L2 D g

local proc. Thus we force the user to specify the node
name (or map to it using a logical name).

For procedures executing on a remote node, we set the
variable part of the search 1list to the remote
procedure’s directory only, because the complete search
l1ist as seen by the user on his home node refers
exclusively to directories on the home node, a node by
definition remote to the node executing the procedure.
Thus, 1f this restriction is not imposed, a proc search
from a remote node would use only remote accesses. The
remote procedure’s directory is placed {n the search
list because access of this directory i{s local, and
because proc packages often consist of several procs in
one directory.

Note also that search lists on single-computer systems
have been =riticized [BEECH 80] as being unkind to the
user in that a uger may find that a command defined {a
one way one day is defined differently (that (s, with
another proc) another day or on another gsystem. ILf
these 1lists are made to span autonomous systems, which
may use different naming conventions, the definition of
a given command 1s still more unpredictable.

Two significant problems relate to the {inveocation of
programs that were not designed with the NOS in mind.
The first problem {s that cthe prograa’s parameter
interface will not match the NOSCL interface; that is,
the programs do not use the standard NOS "get parameter”
routines. Assuming the program gets its inputs from a
coumand line, approaches to this problem are:

- create a host-privileged program that captures the
parameters in NOS-standard fashion and uses host
operating system services to fomm the proper
host~dependent inputs;

= translate the NOSCL command line into a command line
acceptable to the host;

= provide, on each host, a procedure that performs the
mapping

See [BRADEN 80], [LANTZ 80], and (KIMBLETON 78] for more
discussion on this problesm.

The second problem is that there will exist on several

nodes on the net some utilities—-—a FORTRAN compiler, for
example-~that perform identical functions but which

32

provide different options depeanding on the host
operating system. The FORTRAN compiler on some=-but not
all--machines may provide a 'debug" option, for example.
Possible approaches are to define the NOSCL {nterface
such that it provides all possible options; define the
NOSCL such that it provides a useful subset; let cthe
host machine provide a NOSCL procedure for each such
utilicy to present the options relevant to that host;
or to call it a host-dependent issue, and just let the
users use a host escaping mechanism. Because no changes
to the command language are rtequired, we favor the
procedure approach. See [SCHICRER 75] and [KIMBLETON
78] for wmore discussion on this i{ssue; see also the
standardized command language efforts ({COSCL 82},
(ANSI/09SD 84)) which wmust confront this problem as
well.

Protection

To perform an operation on a file (make a copy of {t,
for example), a wuser must have "appropriate" access
rights.

The "create file" command provides the user with the
capability to set the file protection, explicitly, or by
default.

There are commands to change the protection of a file
and display the protection of a file.

Comments

While noting that protection is more ian the domain of
NOS study than NOS command language study, and also
noting that the business of mapping protections <£or a
guest layered file system into a host system is an
enormously complex topic, we nevertheless outline the
characteristics that we believe apprgpriate for the
proposad user-view model and requirements:

o The protections we refer to here are associated with
files named using the NOS file system, not the host
file systemn (although we assume that the NOS file
system is layered on the host file system).

o We consider files and directories only; the systea
may or may not extend to other objects; at the user
level it is not now clear what other objects need to
be protected. (Devices here are considered files.)

33

T

T PR

o The basic requirement is for a simple systenm; a
highly secure system (one that implies data
encryption, for example) is not required.

o The basic procections required are:

= Some users will have read, write, and delete
access to a given fille, according to the c¢lass
of user, as described bdelow.

- Some'users will have no access whatever to a
given filc.

= The "owner" is defined to always have all access
rights (read, write, delete).

= The owner of a file must be able to protect
files from the class of users consisting of all
users remote to the node on which the file
exists.

= A user must be able to protect files £rom the
class of users consisting of non-NOS users, and
oust have the ability to share read access with
non-NOS users.

= A user must have the wusual necessary access
rights to directories to traverse a path ending
in a file. (To delete a file, for example, one
must have "write'" access to the directory.)

o A final requirement: the protection system must ot
make file accesses unreasonably slow.

See [IFIP/WG2.7 1983] for a protection model relating to
command languages.

Device management

The RESERVE command grants the user exclusive access to
a gpecified device; the RELEASE command reieases it.

The RESERVE request i{s not queued; if the device s
reserved by another user, the request is denied.

There {s also a coammand to show the status of a

specified device. Because all devices are seen as files
attached to the DEVICES directory on each node, the

34

PRI T VLI LAY (S SaCEL. SITOZ> i b iy G a2 e sty o) M it cowi Petin ZRnOY 4 S SR L P TR S SR S Sy imme e

i

stacus of all devices on a given node c¢an be displayed
using a wild card with the same "show status" command
used for a single device.

A possible status for a device, added for the network
case, is '"device not available to non-local users."

Comments

Note that we use exclusive reservation for simplicity.
More refined levels are of course possible; for
example, reservation such that the user is only
guaranteed that no other user will write to the device.

The following questions remain to be {investigated in
regard to device reservation:

o Is it possible for a user to reserve a device that
is accessible to nan-NOS users? Assume we have an
NOS process on each node called the ALLOCATOR, which
controls allocation of the device among NOS
processes. If the device is shared with non-NOS
users on a node, ALLOCATOR for that node must
somehow reserve the device undar the host 0S, then
pass to the requesting user’s executive the
exclusive reservation such that it is recognized by
the host 0S.

o Do we provide generic allocationm, that is,
allocation of any device of a specified type? If
so, what i3 the best =mechanism? One zechanism, used
by VAX/VMS, is to allow the user to specify the
device name without the device number ("L2", for
example, rather than "LPAO"). Another zmethod is to
nake device type a parameter in the RESERVE command.

A third approach would be a two-step =method.
Assuning device names are in a directory along with
an assoclated '"device ctype" attribute, we can
suppose a "resource locator” service, which returns
to the caller a 1list of names cthat sactisfy a
specified attribute. The user may then obtain the
list and reserve ome of the devices named therein
(assuming 1t 1is still available). This method is
appropriate if devices can have arbitrary names (see
"Nazes" above) [AGRAWALA 83].

A problem with the two-step method 1is that it
requires two steps; a device may becomre unavailable
between step one and step two. A variation on chis
method 1s to define a command language function that

35

o

T

- -

B e e i SRt

T
3

AN

cpurrvevermens xS 110 J Y MR

| P reatdiuiatialiy’

e
%

returns an identifier of the first available device
of the specified ctype; the user may then, for
example, "RESERVE fa(’line printer’)"

o We have provided no mechanism for avoiding deadlocks
between two or wmore procedures contending for the
same set of resources. For example, procedure Pl
may reserve device D1, then wait on D2, while P2 has
reserved Dz and is waiting on Dl. Note, however,
that the procedures would have to contain explicit
retry loops (since there is no automatic wait).

If explicit retry loops are used, we note that a
remote user 1s less likely to be able to resezve a
device than a local user. A requester local to the
node on which the device is located is more apt to
be successful simply because the request can be
tried more often. In an extreme case, the remote
user may have to wait on several users that
requested the device long after the remote usar.
This is largely a consequence of our decision to not
queue the request.

o Should there be a facility whereby a user or a proc
is signalled when a device becomes available?

o If the device is reserved Ly a user on a node and
the node <c¢rashes {s the device automatically
released?

In regard to the "device not available to the network"
status, there are several reasons a device might be
available on the local node, but not from a remote node:
The device might vequire the attendance of the user;
the device might be a 'demand" device, that is, it may
supply or require data faster than can be supplied
across a network link; or the owner of the device may
simply decide to not make it available.

A question to be investigated 1s whether or not the

availability of such a device can be accommodated using
the available protection mechanisms of the NOS.

Time

All times seen by the NOSCL user are local to the clock
(1f any) on the specified node.

36

nd

g

7
TP SIES TOOR R JPUPTILIP RN ees SOPL N

7 - g -) |
D R e L N P o AL L Taa e TR T SR 2ot R

v

e LR A,

&

7
D L

3,
beste

T

-

¥

There {s a command to show the current time on the local
node or on any specified rewote node.

Flles have a "time of creation™ attribute; the time is
local to the node on which the file resides.

Comments

We have said that to have a single time base from the
user’s point of view is a requirement. 3y this we mean
thac if the user requests the tize from any node-~if,
for exacmple, the user i3 logged onto a rexote node--the
time the user sees will be independent of the node; in
addicion, {f a user Ul creates a file Fl on node N, and
user Y2, on a different home node, creates F2 at the
same time that Fl was created, then both Ul and U2
should be able to display the file creation times and
find that the file creation time for Fl is the sace as
the file creation time for F2 (plus or aminus a few
seconds).

There are difficulties in maintaining a wunifora ctize
base across the network:

Examples of the possible problexs are:

o the clock on one node was never set at boot tize (a
problen for single-node systeams as well);

o the clock on one node i{s defective, running at a

gsignificantly different rate than the other clocks
{n the net;

o0 a node i{s in a different <time =zone chan another
node;

0 1if we try to set up a single time across the syscen
using messages, then there will be a special 'NOS"
time, distinct from the respective host <tizes, a
phenczmenon likely to cause confusion for users and
system administrators (but one evidently handled by
computer users who schedule by Greemwich Mean Time).

Note that a useful capability that depends on a solutica
to the time base problem is the ability to run a proc at
a specified time; the common time base {s critical if a
the iniciacion of procs in a series must be
syachrenized.

37

8.

Possible approaches to resolving these problems are to
be studied; see [LAMPORT 78}, [REED 79] for helpful
primitives.

Asynchronous procs

A user wmay invcke a proc, explicitly indicating that the
proc {3 <to run "asynchronously", that is, the proc {s
initiated, and the user is prompted for the next command
while the proc is running.

When an asynchronous proc is {invoked, the executive
prints a wcessage on the user’s terminal indicatiag the
name of the proc and a NOS-assigned proc identifier; in
addition, {f the user provides the name of a variable,
the variable will receive the proc identifier.

There 13 a command to wait om a proc with a specified
{dentifier, a command to display the status of a proec
with a specified idencifier, and a command to display
the status of all active procs. In addition, the A3ORT
command aborts a proc with a specified identifier.

The WAIT and ABORT commands constitute synchronizaction
commands} an exception handler =may be entered only
following execution of a WAIT or ABORT.

The following additional rules apply to an asyanchronous
proc:

o An asynchronous proc survives the termination of the
invoking proc, but not the terzmination of the
favoking session.

o An asynchronous proc can aodify a global wvariable
oanly {f the global variable was defined to be
SHAREABLE (see "Variables", below).

o An asyachronous proc cannot declare cutput
parameters.

0 Any changes or definitions to 1logical names, the
"eurrent" directory, the proc search 1list, or
defined command strings have an effect only on the
asynchronously executing proc and its children; the
changes do not affect the parent hierarchy.

0 An asynchronous proc cannot reserve a device.

38

Cozments

The ability to execute computations concurrently {is
important for efficient execution of a discributed
algorithm. Work has been done for several yazars on the
most efficient methods for controlling and synchronizing
concurrent operations. (See, for exazples, [LISKOV 79],
(ICHBIAH 79], (HOARE 78], [REED 79}.)

The philosophy we have chosen=-to provide the command
language user with the ability to run a proc
asynchroncusly and to deterx:ine when it i{s done-—is the
current TCL philosophy. We do not provide any
significant resource synchronizatioan wmechanisms, nor any
inter-proc communication mechanisxzs, leaving those
capabilities to established programming languages.

Furthermore, we have restrizted the operation of
asynchronous procs such that we do not have to provide
mechanisns for serializing access to session context
daca. By ocur proc invocation mocdel, when a remote proc
is iniciated, a spawned executive receives a copy of the
context data; thus we have our session context data
replicated, possibly on nore than one node. The
restrictions we 1impose seek to serlialize access to the
context data by easuring that only procs run
synchronously can change the parent context.

We do not permit an asynchroncus proc to have output
parameters because output parageters mst refer to a
proc variable, whereas we do not require a parent proc
to outlive a child asynchroncus proc.

We have declared that an asynchronous proc dces 2ot
survive the death of the parent user session. We
therefore cannot conveniently support applications such
as a wonitoring system in which a wuser dispatches
saveral asyauchronous procs on different nodes and then
logs out, nor can we provide the user with tnhe
capability to initiate a proc on another node, knowing
that the home node i{s soon to be taken offline.

We have taken this approach because {t {s sizple, giving
a user adequate and safe control. The following topics
must be addressed 1f we allow these "detached" procs:

= Noting that a detached proc can run "forever, using

resources on many nodes, should some sort of
privilege be required to initiate a detached proc?

39

9.

= Should a proc be allowed to initiate a detached proc
without explicit user peraission?

- How must our proc invocation model change to
accommodate detached procs? (If, for example, a
detached proc wishes to conduct an interactive
dialogue, how is Lt handled?)

= Assuming remote batch i{s supported, how many of the
capabilities provided by detached procs are also
covered by remote batch?

= Should an exception handler in a detached proc be
executed when the proc that initiated it terminates?

Variavles

"Local" variables are local in scope to the NOSCL
procedure 1in which they are declared. Local varlables
may be defined by an interactive user; they are cthen
accessible only by that interactive user.

"Global™ variables are accessible from any procedure or
procass (remote or local) invoked within a session of a
given user, that is, they are defined for the single
user. The user at the interactive 1level or any
synchronous proc (with an appropriate declaration), may
read or write any global variable; an asynchronous proc
may read any global variable, and may read or write any
global variable declared SHAREABLE.

A synchronous proc may also define "output" parameters,
however, we do not state whether the variables i{ato
which the output values are placed are set during proc
execution (call-by-reference) or upon pro¢ termination
(call=by=-value-result).

Comment

This is the current TCL approach, extended by the
SHAREABLE case.

We do not provide in the language variables that are
global to more than one user. Such a facility =might be
helpful for {ater-procedure semaphores, however, we
leave {inter-proc communication to processes, which have
available well-known inter-process communication
facilities.

40

10.

The restriction that asynchronous procs may have
read-only access to a glebal unless 1t is declared
SHAREABLE {s set to avoid wunexpected asynchronous
effects; this 13 similar to the aingle-uodg case in
classic programming languages where a user tust place a
variable in a sgpecial place 4in menmory (a designated
FORTRAN COMMON area, for example) if {t i{s to be shared.
Note, however, that 1f shareable variables are provided,
we may need to provide a transaction mechanism, because
we then have the possibility that there is a dependency
among two or more shareable variables--variable X 1{s
twice Y, for example. A crash of a remote proc after
updating one of the variables, but not the other, would
leave the variables in an 1inconsistent state. See
[LAMPSON 81) for more discussion.

User attention sequence and proc aborts

An attention sequence 13 defined for each host O0S
(control-C, for example on VAX/VMS). The attention
sequence solicits the attention of the local executive.

When the attention sequence 1is signalled to the
executive, the executive suspends execution of the
synchronous proc; the user may then abort a proc,
suspend a proec, continue, or execute a built-in command
that displays status or help information.

If the attention sequence is used in order to get the
executive’s attention while no synchronous proc is
running (%o break through a terminal read by an
asynchronous proc), then all executive cocmmands are
available, including proc iniciacion.

If a procedure is aborted, any nest of procs below that
procedure 1s aborted as well.

Responses from a proc may appear at the user’s terminal
after the proc has been apparently aborzed.

Comments

The synchronous proc {s automatically suspended to allow
the user to immediately stop an operation out of
control. Generally, wusers will run remote procs
asynchronously; remota procs cannot be automatically
suspended because the executive doesn’t know which proc
to suspend. Note rthat, when the user enters the
attention sequence, the user wmust suffer che

41

o o

- i

e e v aw A

11,

communicacion delay required to send a "suspend" massage
from the local executive to the remote executive of the
synchronous proc.

Messages may be written to the user terminal after
apparent proc abort because of cocmmunicazion delays in
sending the abort message to the remote executive.

The user is restricted in the domain of operations
during the {interrupt period because of the distributed
session context problen; it {s not celear how the
context for a synchronous remote proc would be affected
1f the user {s able to execute commands that change the
contexs.

Some open questions to be studied:

o If an aborted procedure has initiated asynchronous
procs, are any procs it has initiated asynchrcnously
aborted as well?

o If we permit remote 3syanchronous procs to run
additional synchronous rezote procs, does an
attention sequence result in a cascade of '“suspend"
messages from parent to child?

Crashes

If a user has invoked a remote proc (synchronous or
asynchronous) and the node on which the proc executes
crashes, the user {s informed that the proc has failed
because the node has crashed. The node name is provided
as well.

If a node crashes and it has initiaced other procs,
those procs will be aborted.

Couments

We assume that the communication software i{n the machine
that invoked the proc has the capability to detect the
crash of a node hosting a proc it has invoked. The
crash would be signalled to the invcker through the
normal proc termination wmechanism, and the detailed
status would indicate "crash of remote node...."

42

More analysis is required in regard to crashes. Some of
the questions are:

o Are there any "atomic actions" of concern ¢to the
command language, that i3, are there any command
level user actions that must be rolled back to a
synchronization point? (See {LAMPSON 811 and
{LISKOV 8l] for a discussion on atomic actioms.)

o We have said that procs do not survive a crash of
the invoking proc’s node. The reasons for this
decision are:

= Procs are intended to be agents of an
interactive user; batch should be wused
otherwise (see also discussion on "detached"
procs, under "Asynchroncus Procs," above)

- 1If procs are allowed to survive, then a user
logging in would have ¢to deal with the
possibility that there are outstanding procs
that belong to his session.

= We could provide a session recovery machanism,
so that the parent session and proc is restored
to some synchroanization point, but the recovery

* and re-establishment of the communicaticz to the
proper point is too complex to be worthwhile in
a command language, requiring tramsaction
processing mechanisms and delicate timers in the
surviving procs. (See [LAMPSON 81] for a
discussion.)

Assuming that the proc {3 not aborted, where do
responses go? Are they saved in a file and sent
when the crashed node recovers?

o If the parent node crashes and the <c¢hild proc {s
aborted should an exception handler {n che child
proc be triggered? This would be a useful, cleanup
mechanism, however, because the exception handler
could continue as 1if nothing happened, it implies
that the NOS must have a timeout mechanism on the
exception handler.

o 1Is there an efficient way to determine how wmuch a
crashed remote proc has accomplished? The problem
is thac some sort of logging is required: if cthe
log is on the same node as the remote proc, the user
cannot omake the determination until chat node comes
up; if the log is on a node remote to the logging

43

.

-~

T

A RS WRETITYRT B W T e

12.

node, every command to be logged would require a
remote access. A possibility is to make this sort
of logging optional, thereby making it available for
long-ruanning proes, or for procs that rwun on
unreliable nodes.

o From [SALTIZER 78]: How does the system manager know

when a node can be brought dowm without interrupting
an active remote operation?

Procedures

The full command language available for procedures on
single node systems is available on multi-node systems;
furthermore, all commands are available to the procedure
regardless of whether the procedure was invcked by a
user on the same node as the procedure or by a user
remote to the procedure.

Commants

We make this assertion €£for want of any apparent
exceptions.

In addition, we offer the £following notes on factors
affecting procedure portability:

= Generally, we cannot assume that integer overflow
occurs at the same value on all nodes on the system.
Integer overflow at the same value is user-friendly,
but it is difficulec to pick a suitable integer size
and inefficient to implement the same size iateger
on wachines with word sizes from sixteen bits to
sixty bics.

= 1If the procedure language provides a floating point
type, the definicion of a flocating point number will
vary from node to node.

- As noted under "Proc Invocation" above, a proc may

have been developed assuming a given sec of
user-defined commands.

- Ipnevitably, some procedures and processes will use
host facilities, generally for efficiency, often

because the facilities are not made available by the
NOs.

44

LTS i el M-S =

Eadad o

o

Ls

TTT

13.

14,

Logging/History lists

NOSCL supports a session history consisting of
interactive commands to a single log file. Commands
from procedures are not logged.

-

Comment

TCL currently supports this level of logging; procedure
commands are not logged because the TCL designers felt
that the log would become too large too quickly.

If logging of commands {n remote procedures is to be
considered, the problem of merging the logging of
commands from the home node with commands from remote
nodes mst be studied. Note that commands from any
procedure may be logged to the standard output file, if
output is redirected appropriately.

Exception handling

Exception handling follows the model wused in TCL: A
procedure may designate cthat, upon some 'bad" status
from a proc or command, a procedure-defined "onfail"
command 1is executed (typically a GOTO). There i{s no
retry capability and no distinct exception signalling.
See [CENTURY 83a] for a description of the TCL model.

In addition, we specify that an exception from an
asynchronous proc 1is signalled 9only after a
synchronization command. See "Asynchronous Procs,”
above.

Finally, we also define for the NOS a set of standard
NOS sgtatus codes for all known errors. (Thus, a
procedure exception handler can check for '"node down"
status and perform appropriate recovery.)

Conment

We see no problem with this model in regard to working
in our network environment.

A problem to be studied is whether or not an exception
should be triggered upon the crash of a remote node that
hosts a currently executing proc, or upon the crash of
any user—-specified remote node. Our current position {s
that first case will be handled by normal proc

45

15.

termination handling; the second case {3 not handled.
Note that, for a ccmz=nd language that supports
exception handlers at the interactive level (TCL does
not), a "node crash" excepcion can be the vehicle for
printing an appropriate message to the user, or possibly
doing an automatic reconfiguration.

See [LANTZ 80] for more discussion on exception handlers
{in distributed systems.

Help facilicties

Help {s available on built-in commands, on procs (remote
and local), on proc parameters, on error cresponse
details, om the network configuration, and on
node~dependent capabilities and parameters.

The help command also has a variation whereby the user
can obtain help on a built-in command as izmplemented on
a specified node.

Comments

The help information on built-in commands {s made
available when a new version of the executive 1is
released. The user {s provided with the ability ¢to
direct a help request on a built-in command to a
specific node because tnere m.y be different versions of
the executive on aifferent nodes. (Recall cthat the
remote executive executes procs submitted to that node.)

The help information on node-dependent capabilities {is
made available when the executive is ported to a given
node. Included in this category are:

o the computer and operating system installed at this
node;

o the version number of the NOS executive installed at
this node;

o the values for executive configuracion parameters
(the number of parameters allowed on one line, for
example);

o the values for host-dependent parameters (e.g., the
highest integer allowed);

46

Ve

Y At TRV T TR R

e 2
~

T

I T TR LN T N

16.

o host-dependent restrictions (e.g., no
floating-point)

o inter-node capabilities (e.g., "able to transfer
files between this node and nodes with the following
computer/0S pairs:...")

Responses

A standard syntax is defined for responses at the user
terminal. It consists of:

{rsp=~id> <rsp;cext> [ON <node~id> <hst-text> <herr=-coded]

The <{rsp-1d> is a unique identifying string £for the
response. There exists a command through which a user
may determine details on a specified <rsp-id>.

The <{node-id> is given on all errors that originate on a
remote node; the <hst-text> is the host-dependent error
text and is given only if it is necessary ian isolating
the source of the error; the <herr—-code> 1s the
host-dependent error code, also given only 1f necessary.
There exdsts a command through which a user may
deternine details on a specified <herr-coded.

On all queries for details on a respouse, the
information provided {s static; no information i{s given
relating to the response in the current context. In
addicion, if a3 node is given in the error respomse, then
the node identification may be required {in the user’s
query for details; the default node is the node that
last generated an error message.

Comments

The design for response mechanisms {s based on existing
TCL mechanisms.

The model we have in mind for responses from remote
nodes is that remote executives and procs send responses
through messages to a virtual terminal process on the
home node.

In regard to error information we distinguish these
classes of errors:

47

vy r—

1. Errors soluly {n the NOS domain, "{ncorrectly
formatted expression" or "proc cannot be found" are
examples.

2. Errors sclely in the NOS domain that are caused when
a user exceeds some executive configuration
parameter, the number of command line coatinuations,
for example.

3. Errors for which the description can be abstracted
by the NOSCL, but for which additional host data is
useful, for example, when a proc cannot be run
because a host quota is exceeded.

For the second and third cases, the details on an error
are node~dependent, thus node-~dependent error
informatica is included in the error response.

An alternative to giving the node and host information
in the initial error response is to hide the information
until the user requests it. This approach, consistent
with the abgtract machine approach used by Efe et al
(EFE 83], 1s left for further study. Another
alternative 1{s to allow the user to specify whether or
not host error codes are to be displayed.

Ancther feature of the response philosophy used by Efe
is that only the highest level abstract aachine
generates responses to the user. All lower level
machines field exceptions and abstract those exceptions
according cto their machine specifications. In the
approach we use above, the executive or proc issues
respouses to the user terminal when the error is
detected. Thus, while the abstract machine approach
maintains an internal stack of error {information, the
approach we use puts the sawme information on the
terminal.

We require that the node be specified when the user asks
for details on errors originating on remote nodes. This
was done for the following reasons:

o A mapping for the host-dependent error codes of all
nodes should not be required at each node.

o 1If the error is of the second type described above,
it 1{s reasonable to assume that only the node in
question has the configuration parameters for that
node.

48

PP

T

S o]

e e T AN

P

“-

B

N

LAY

0 The details on NOSCL responses—-—responses common o
all nodes—-are retained on each node along with the
executive that generates the responses. This
assumption 1is consistent with autonomy: a system
adoinistrator installs a new release of the
executive and associated response files when he or
she sees fit. Note that there 1s a natural 1link
between a release of the executive and a release of
the files containing erznr message details.

17. Additional issues
The following important areas have not been studied:

o How are network and machine costs modeled £for the
user and how does the command language accommodate
the model? (See [ISO/SCl16/N1217 82] <for dinitial
efforts in this area.)

o What is the context when a user designates host file
specificactions and host commands? What 1s cthe
syntax for host commands to be executed on remote
nodes? Should a dialogue with the command language
interpreter on a remote host be supported?

Particularly important is the ability for a user to
bypass the NOS file system, because the NOS file
system imposes at least one extra process between
the file requester and the file and may thereifore bde
too slow for the user’s needs.

Given the host file escape uwmechanism, the user
should have the capability to determine the host
name for an NOS file, and to determine the host
context under which files are accessed (the defaul:
name string, privileges, and access rights).

Note that the ability to escape 1into the host
command language is often critical in debugging NOS
fudctions.

o Are all NOSCL commands executed synchronously or are
some asynchronous? For example, {s the command that
writes a record to the standard output synchronous?
Note that {f a procedure on node N2 {s initiated
from node N1, the standard ocutput is likely to be on
N1,

49

. W o .

How are files shared between NOS users and non-NOS
users? Does the NOS have to lock other users out
when it 1s accessing a file?

What should be the 1level of support fer remote
batch, and how does it map into the capabilities of
host systems? See the SUBMIT commands in COSCL and
AJSI/X3H1 for guidance.

50

AR |

easiidillabtends

ket

el

- [T
R it

T

’

*

1

£
L

B

#

)

oy B et “0- - atagiuies

i

»

rriv g

‘-

[

.
Mk PTRop W RS AL AT 38 o el L g A g

VY
T

L N

iy

8.0 SUMMARY

In this Paper our major concern has been how a conmand
language changes when used in a local area net of
heterogencous computers under autonomous control.

He have concluded that the user of such a network should be
exposed to the location of network resources; we identify
the follcwing key {ssues thac must be resolved before a
comnmand language can be implemented:

0 What must be done so that the network operating
system efficiently supports procedures aand
processes executing on a node remote to the node at
which they are invoked? What are the zajor factors
in proc initiation cime? .Is the nuaber of
parameters significant? Must the size of the
session context be li=mited?

o If remote procs can be supported, are the sape

i{nvocation and prompting wmechanisms available as
for local procs?

0 Are there any restrictions on the commands
available in remote procedures?

o Alcthough costing for a distributed environment i{s a
complex topie, the user must have some way to
assess the costs resulting from a session, hew are
necwork and machine costs modeled for the user and

how does the command language accommodate the
model?

o Should the network operating systea executives,
which perform command irterpretacion on each nocde,
be paramecerized according to the zmemory and disk
space avallable on the hosting node?

o How wmuch of the protection dechanism w=ust Ye
specified in an NOS command language? How do
protections map into host protection 2echanisns?

o Finally, noting Thurber’s advice {THURSER 81} can a

useful distributed system be built on top of
existing hardware and software?

51

/70

9.0 REFERENCES .
ABBREVIATIONS:

ANSI: Acerican National Standards Institute
CACM: Communications of the ACM

IEEE Trans S/W Eagr: IEEE Transactions on Software
Engineering

IFIP: International Federation for Information Processing
ISO: Iaternational Organization for Standardization

Op Sys Rev: ACM SIGOPS Operating Systems Review

SOSP: ACY Symposium on Operating Systea Principles

S/W P & E: Software Practice and Experience

BEFERENCES:

AGRAWALA 83
A. Agrawala, University of Maryland, personal
comxmunication with the authors

ANS1/Q55D 79
ANSI, "OSCRL User Requirements,' Rev 7, ANSI
X381/05-SD, December 1979

ANSI/06SD 79
ANSI, "OSCRL Functional Requirements,” Rev 5, ANSI
X3H1/06-SD, December 1979

ANSI/09SD 84
ANSI, "Operating System Command and Response
Language (OSCRL) Language Specification (DRAFT),"
Rev 18, ANSI X3Hl1/09-5D, January 1984

BEECH 80
D. Beech, 'What is a Cozzand Language?" in Command

Language Directions [D. Beech, ed.],
Yorth=holland, 1330

52

BELL 79
Bell Laboratories, UNIX Time-sharing Svstem: UNIX
Programmer’s Manual, Seventh Edition, Bell
Laboratories, Incorporated, Murray Hill, New
Jersey, January 1979

BIRRELL 82
A. Birrell, R. Levin, R. Needham, M. Schroeder,
"Grapevine: An Exercise in Distributed Computing",
Communications of the ACM, 25/4, April 1982, pp
260=274

BRADEN 80
R. Braden, N. Ludlam, "NSW Final Technical
Report", UCLA TR-27, ARPANET Computing Services in
Support of the National Software Works, June
l=-February 1980.

BROWNBRIDGE 82
D. Brownbridge, L. Marshall, and B. Randell,
"The Newcastle Connection or UNIXes of the World
Unite!"™ S/W P & E, Vol 12, 1982, pp 1l47-1162

CENTURY 83a
Century Computing, Aoplications Programmer’s
Reference Manual for the Transportable Apolications
Executive, Century Computing, Lac, Document No.
82-TAE~PGMVIE, November 1983

CENTURY 83b
Century Computing, User’s Reference Manual for the
Transportable Applications Executive, Century
Computing, Inc, Document No. 82-TAE-USRVIZ,
Noveaber 1983

COsCL 82
CODASYL, "CODASYL Common Operating Systems Command

Language (COSCL) Journal of Development," Version
2.2, CODASYL Common Operating Systems Command
Language Committee, November 1982

CLARK 80
D.D. Clark and L. Svobodova '"Design of

Distributed Systems Supporting Local Autonomy,”
Spring 1980 COMPCON, pp 438-444

53

yo— -

L M R SAA N

DAVIES 81

D.W. Davies, "Protecticn," Ch. 10 in Distributed
Systems = Architecture and Inplementation [Lampson,
Paul and Siegert ed.j, Springer-Verlag, 1981

DIGITAL 82a

Digital Equipment Corporation, "VAX/VMS Command
Language User’s Guide,"” Digital Equipment
Corporation order no. AA-DO23C-TE, May 1982

DIGITAL 82b

Digital Equipment Corporation, "DECnet-VAX User’s

Guide," Digital Equipmenc Corporation order no.
AA-HB802B-TE, May 1982

EFE 83

K. Efe, C. Miller, X. Hopper, "The

Kiwinet-Nicola Approach: Response Generation in a
User~Friendly Ianterface", IEEE COMPUTER, 16/9,
September 1983, pp 66-78

FLETCHER 80

Je Fletcher and R. Watson, "Service Support in a
Network Operating System,' COMPUTER NETWORKS, Vol
4, February 1980, pp 415~424

FLETCHER 82

J. Tletcher and R. Watson, "An Overview of LINCS
Architecture,' UCID~19294, Lawrence Livermore
National Laboratory, November 1982

FORSDICK 78

H. Forsdick, R. Schantz, R. Thomas, "Operating

Systems for Computer Networks', COMPUTER, January
1978, pp 48-57.

HARDY 82

I.H. Hardy, "The Syntax of Interactive Cormand
Languages: A Frawework for Design," Software

Practice and Experience, Volume 12, 1982, pp 67-75

HOARE 78

C.A.R. Hoare, "Comminicating Sequential
Processes," CACM 21/8, August 1978, pp 666-677

54

\E ia 1t aauad aag

ICHBIAH 79
J.D. Ichbiah, J.C. Heliard, O. Roubine, J.G.P.

Barnes, B. Krieg-Brueckner, B.d. Wichmann, "Ada
Rationale," ACM SIGPLAN Notices, 14/6, June 1979

IFIP/WG2.7 1983
IFIP, "The IFIP WG 2.7 Reference Model for Command

and Response Languages," [Beech and Kugler ed.],
IFIP, August 1983

1S0/0S1 82
150, "Information Processing Systems =- Open

Systems Interconnection == Basic Reference Model,"
1S0/DIS 7498, April 1982

1S0/SC16/N1217 82
1S0, "OSI Management Framework (Third Working
Draft)," ISO/TC97/SCl6/N1217, August 1982

IS0/SC16/N1454 83
IS0, "Working Draft of File Transfer, Access and

Management - The Virtual File Store,"
1S0/TC97/SCL6/N1454, February 1983

JONES 79
A. Jones, R. Chansler Jr., I. Durham, K.
Schwans, S. Vegdahl, "Scar0S, a Multiprocessor
Systen for the Support of Task Forces," Proceedings
Seventh SOSP, December 1979, pp 117-127

KIMBLETON 78
S. Kimbleton, H, Wood, and M. Fitzgerald,
"Network Operating Systems-—An Implementation
Approach", in 1978 Natioral Computer Conference, pp
773-782

KIMBLETON 81
S, Kimbleton, P. Wang, and B. Lampson,
"Applications and Protocols," Ch. 14 in
Distributed Systems = Architecture and
Implementation [Lampson, Paul and Siegert ed.l},
Springer-Verlag, 1981

53

owm

- -———

KUGLER 80

H.J. Kugler, N. Lehmann, P. Putfarken, C.
Unger, "The Construction of User Interfaces = A
Guide for Defining Abstract Machines," Project
NICOLA, University of Dortmund, November 1980

LAMPORT 78

L. Lamport, "Time, Clocks, and the Ordering of

Events {n a Distributed System," CACM 21/7, July
1978, pp 558-565

LAMPSON 81
B. Lampson, "Atomic Transactions,” Ch. 1l in
Distributed Systems = Architecture and

Implementation {Lampson, Paul and Siegert ed.],
Springer-Verlag, 1981

LANTZ 79

K. Lantz, R. Rashid, "Virtual Teraminal Managewment
in a Multiple Process Environment', Proceedings
Seventh SOSP, December 1979, pp 86-97.

LANTZ 80
R. Lantz, "Uniform Interfaces for Distributed

Systems', Computer Science Dept., University of
Rochester, TR 63, May 1980.

LANTZ 82

K. Lantz, K. Gradischnig, J. Feldman, R.
Rashid, '"Rochester’s Intelligent Gaceway", LEEE
COMPUTER, October 1982, pp 54--68

LAZOWSKA 8l

E.Lazowska, H.Levy, G. Almes, M. Fischer, R.
Fowler, S. Vescal, "The Architecture of the Eden

Systen", Proceedings 8th SOSP, December 1981, pp
148-159

LISKOV 79

B. Liskov, "Primitives for Distributed Computing,”
Proceedings Seventh SOSP, December 1979, pp 33-42

56

4]
o e e e —
e wrp

¢

ey

LISKOV 81
B. Liskov, "Report on the Workshop on Fundamental
Issues in Distributed Computing," ACM Op Sys Rev
15/3, July 1981, pp 9-38

MAMRAKR 83
S.A. Mamrak and D. Leinbaugh, "A Progress Report
on the DESPERANIO Research Project," in ACQM Op Sys
Rev, 17/1, January 1983, pp 17-29

OPPEN 83

D.C. Oppen and Y.K. Dalal, "The Clearinghouse: A
Decentralized Agent for Locating Named Objects in a
Distributed Environment," in ACM Transactions on
Office Information Systems, 1/3, July 1983, pp
230-253

PEEBLES 80
R. Peebles and T. Dopirak, "ADAPT: & Guest
System," in IEEE Spring 1980 COMPCON, pp 445-452

POPEK 81
G. Popek, B. Walker, J. Chow, D. Edwards, C.
Kline, G. Rudisin, G. Thiel, "LOCUS: A Network
Transparent, High Reliability Discributed System,"
Proceedings Eighth SOSP, December, 1981, pp 169-177

REED 79

D. Reed and R. Kanodia, "Synchronization with
Eventcounts and Sequencers" CACM 22/2, February
1979, pp 115-123

ROBINSON 77
R. Robinson, "National Software Works: Overview
and Scacus," IEEE COMPCON, Fall 1977

ROWE 82
L. Rowe and K. Birman, "A Local Network Based on

the UNIX Operacing Systea", IEEE Trans S/W EZngr, pp
137-146, Volume SE-8, March 1982,

SALTZER 78
J. Saltzer, "Research Problems of Decentralized
Systems with Largely Autonomous Nodes," ACM Op Sys

57

L s T

e rrn

Rev, Volume 12, January 1978, pp 43-52

SCHICKER 75
P. Schicker, W. Baechi, and A. Duenki, "Job
Control in a Heterogeneous Computer Network",
ONLINE-75 Conference, Online Conference Limited
1975, Uxbridge, Eagland, pp 537-545

SCHNEIDER 82
M.L. Schnetder, '"Models for the Design of Stacie
Software Assistance" in Directions in Human
Computer Interaction [ed Shneiderman and Badre],
Ablex, 1982

SHNEIDERMAN 80
B. Shneiderman, Software Psvchology, Winthrop
Publishers, Cambridge, 1980

SMITH 82
D.C. Smith, €. Irby, R. Kimball, B. Verplank,
"Design of the STAR User Iacerface," BYTE, April
1982, pp 242-282

THURBER 81
K. Thurber, page 491 {n Distribyted Svstems -
Architecture and Iaplementation (Lampson, Paul and
Siegert ed.}, Springer-verlag, 198l

WATSON 81
R. Watson "Identifiers (nmaming) in Distributed
Systems,"” Ch. 9 in Distribured Systems =
Architecture and Implezmentation [Lampson, Paul and
Siegert ed.|, Springer-verlag, 1981

58

s

. . ey,

& " a

o

e v ———
AN Al e ¥y TN RERne

03

e 400

il Mt s

APPENDIX A

CHECKLIST FOR NETWORK COMMAND LANGUAGES

The following is a list of questions to use in examining a

given network command language.

o Architecture of the net:
= Local net or long haul?
Heterogeneous or homogeneous?

= If homogeneous, what machine/OS constitutes the
nodes?

= 1If heterogeneous, what machines/0S’s supported?
= (ateways supported?

= Autonomous nodes?

o Purpose of the net: Is che net used in a
production environment? A research environment?

0 General description of the command language

= Did the command language antedace the network?

If so, was it changed to accomodate the
network?

- Any commands that would not exist if cthe XN/W
did not exist?

Does the command language look the exactly sazme
from any terminal on any node?

e o et ———

CHECKLIST FOR NETWORK COMMAND LANGUAGES

Are procedures supported? Are remote
procedures supported? Any limitations on what
goes in them? (e.g., can a remote procedure
read from the user’s terminal?)

Are remote logins supported?

Is there a uniform method for logging in to any
terminal on any node?

o0 File systen

Are names hierarchical or flat?
Central or distributed directory?
Filespec?

Protections? (e.g., capability? access
lises?)

Replicated directory?

Can all the rescurces (i.e., files and devices)
required by a proc can be secured beiore the
proc i{s run? If so, how? (E.g., user-explicit
lock)

Is remote record access supported? If not, are
files copied upon proc initiation?

o Performance:

Time to locate and initiate a proc?
Time to copy a null file between two nodes?

Time to copy an n~byte text file between two
nodes assuming no translation?

Time to copy an n-byte text file between two
nodes assuming translation (e.g., EBCDIC to
ASCII)?

Time to copy an n-byte data file assuming data
type translation?

&

CHECKXLIST FOR NETWORK COMMAND LANGUAGES

o Interrupts:

- I3 the attention sequence terminal
node-independent?

= How is a remote proc aborted?

= Can a user run more than one proec at a

"help") are executed?

o How does a user get charged for:

= Execution of a remote proc

server)
= Maintenance of remote files

= Remote mounting of tapes

this accumulaced?
. o Privileges:

= Any notion of privileges in the user view?

! under the host?

o Quotas/limics:

= Any notion of quotas in the user view?

= What kind of quotas does the user have
the host?

i o Crash/recovery:

- 1Is the user informed of the crash of a
: node?

A-3

If not, can a remote proc be interrupted while
some built=-in ccmmands (e.g., "show status”

- Use of a file, directory, or device on a remote
system (including execution of a remoce file

Is there some model of a user getting charged
the one user id under which the user logs on ({ a.,
the user’s id under the network 0S)? If so, hos is

= What kind of privileges does the user have

h;"if

CHECKLIST FOR NETWORK COMMAND LANGUAGES

Does the NOS attempt any recovery?

. 0 Miscellaneous:

Special security wmechanisms (esge, ex:fé
passvwords/privileges)?

Any special resource management considerations?
(T3D)

Can a user send a message to anyone on the net
using the same command and addressing as a
local message? Can the user send a message to
a system operator?

~——

T T AT
« P N
4 ? 1 ¢ -
.) .
v + - ey
. .- -
.
B
3 A -
‘} \ i ' -)
T e .W
V-
.
. >

~ s
'
~a
- N
' - hd
- - -
'
1 - -
-
n

e

3 peta g ibe gt

o

s

S

o

End of Document

