
NASA-TM-8608919840020466

A Reproduced Copy
OF

Reproduced for NASA

by the

NASA Scientific and Technical Information Facility

FFNo 672 Aug 65

J.ANGLC,(RES~ARCH CENTER
L1BRP,RY. I\II\S·\

H.;'::::rON, VIRGlfllA

•

•
'" I

~

(HASA-1n-86089) CONSIDEBATIOUS au 008nAUD 8SQ-28535
AND llESPCHSE LAHGUA~B fEATURES fOB A UETUOBK
UF U~T~ROGE~~OUS AU~OHOUOUS C08PUTEBS (UASA)
6d P He AO"/"f 101 CSCL 098 IJDclAS

G3/62 19631

NteA
Technical Memorandum 86089

CONSIDERATIONS ON
COMMAND AND RESPONSE
LANGUAGE FEATURES FOR
A NETVVORI< OF
HETEROGENEOUS
AUTONOMOUS COMPUTERS

Norman Engelberg
Charles Shaw III

JANUARY 31, 1984

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt Maryland 20771

CO!lSIDERATIOIIS ell COMMA!ID AIID RESPC!lSE
LANGUAGE FEATURES FOR A lIET'.JORK OF
HETEROGENEOUS AUTOIIOHOUS CCI1PUTERS

January 31, 1984

Uorcan Engelberg
Charles Shaw II!

Century Cocput1r.g, Incorporated
8101 Sandy Spring Road
Laurel, Maryland 20707

for

NASA Goddard Space Flight Center
Contract NAS5-27197

AC!!:tIQWLEDG EMENIS

The authors wish to thank the members of the TAE design and
development teac--Carcen Ana E::anuelli, David Howell, and
Dorothy Perkins of NASA Goddard Code 933: Elfrieda Harris
of Science Applications Research: and Paul Butterfield,
John McBeth, Philip Miller, Dharitri Misra, and Lora Mong of
Century Computing, Incorporated-- for their help in
producing ~~18 document.

The worle for th1~ paper wa:s done under flASA contract
NAS5-27191.

ASSHACT

The authors consider the design of a un1foro
co~cand language to be used 1n a local area
net~ork of heterogeneous, autono~ous nodes.-

After exa~1ning the cajor characteristics of such
a net~ork, and after considering the profile of a
scientist using the co~?uters on the net as an
investigative ald, the authors derive a set of
reasonable requirei.ents Cor the co~=and language.

Taking into account the possible inefficiencies
in icpleQent1ng a ~Jest-layered net.ork operating
systeo and coooand la~suage on a heterog~neous

net, the authors eva~ine CO~:4nd language naoing,
~rocess/procedure invocation, para=eter
acquisition, help and r~sponse faCilities, and
other features found in single-node co~=and

languages, and conclude that soce features cay
extend sioply to the net~ork case, others eytend
after soce restrlctlons are i~?osed, and still
others require ~odifications. In addition, the
authors note that soce requlre~ents considered
"reasonable"--user accounting reports, for
exacple--decand further study before they can be
efficiently i=ple=ented on a net.ork of the sort
described.

1.0 INTRODUCTION · • · · · · · · .. · · · · 1

" 2.0 DEFINITIONS 2 , • · · · · · · · · ·
3.0 NETWORK CHARACTERISTICS · · • · • • · · • · · • · • 3

4.0 DESCRIPTION OF USERS · · · · · · • · · • 5

5.0 USER MODEL/USER VIEW • · · · · · • · · 7

6.0 REQUIREMENTS · · · • · · · · · · · · · · · 11

7.0 NETWORK COMMAND LANGUAGE ISSUES • · · · · · · 15

7.1 Description of Tet • · · · · · · · • · 16

7.2 Network Operating System Model • · · · · • · 18

7.3 Command Language Features · · · · · · · 21

8.0 SUMMARY . . • · • · • • · • · • • • · • · • · · · 51

9.0 REFERENCES . · · · · · · · · · · · · · · · · · 52

APPENDIX A CHECKLIST FOR NE'I'..lORK COMMAND LA.'iGUAGES

1.0 INTRODUCTION

With the increased popularity of local area net~orks (~~s),
we have seen the development of net~orks of independently
administered nodes, based on computer syste~ froe different
vendors. Along with the development of these net~orks, a
need has arisen for a uni!o~ command language through ~hich
applications users may manipulate a set of dispersed and
independentlY managed resources.

Ideally, the command language is siQply some universally
known command language available on all the nodes on the
net. Work on such standardized languages--languages that
are the same no matter the underlying cocouter architecture
or operating systeM--is ongoing ([ANSI/09SD 841, [eOSCL
82]). but these languages are designed to pro~de a required
set of functions; the committee charters do not pe~t
significant considerations of possible i~pl~entation
problecs. (See [ANSI/05SD 79J, [COSCL 82J.)

In this paper, we investigate one common net~or~ case, a
local area net~ork ~ith heterogeneous, autonomous nodes, in
which the operating system the user sees--the "netoJork
operating systeQ"--is layered on top of existing host
operating syste::lS, that is, "guest-layered". (See [ROBI~ISO!i
77J, [~~ 83J, [PEEBLES 80J, and [~~Z 82J for existing
examples of such a case.) !bis paper exacines classic
command language features to dete~ne hew the co~nd
language cight be extended to help the net~or~ user, and to
dete~ne how the nature of a ne~Jork of heterogeneous,
autonomous nodes might cake the i~pleQentation of a given
feature impractical.

To perforo this investigation we first e~am1ne the
significant characteristics of a ~~ ~ith heterogeneous,
autonomous nodes. 3ecause ~e are investigat:ng a user
interface, ~e then describe the characteristics of the type
of user for whoe ~e are designing the interface and, based
on the net and user characteristics, ~e propose a "user vie'.7
eodel" (that is, the view of the syste:t IJhich IJe intend the
users to have). Using this user View and ~eepin8 in =i~d
the ne~~or~ characteristics, we describe a set of
requirements on the command language. Finally, ~e present
the features of a straV:tan command language, discussing the
viability of the features in te~ of the d1fficulcies each
feature may present co the iQple~encat10n of the layered
support. As a basis for our d1scussion we use an existing,
host-independent, single-node cor::u:::and language, "TeL", IJhich
the auchors helped des ian.

[-

Z.O DEFINITIONS

In order to avoid some confusion in the discussion of the
issues, we first present a short list of our definitions for
some common te~ and acronyms.

o node - a computer with me~ory and external devices

o home node - the node on the network onto which the
user has formally logged on.

o remote node - any node except the home node

o local user - a user is local wi1:h respect to a node
if the node is his home node

o remote user - a user is remote With respect to a
node if his home node is any other node

o NOS Network Operating System. The software
provided to allow a user to access the resources of
autonomous machines on a network. (See [FORSDIC~
78] for an alternate definition.)

o NOSCL - Network Operating System Command Language,
the object of this paper

o proc - a command procedure or an operating system
process

o TAE - The Transportable Applications Executive, a
user interface and applications support executive
in use at NASA's Goddard Space Flight Center.

o TCL - The
language
for TAE

L\E Comcand Language, the reference
used in tnis paper; the cocmand language

2

-- -"-~"'- ~.- . - - - ~ ~- - ~ ----!.

3.0 NETWORK CHARACTERISTICS

The type of net~ork that concerns us has the following
significant characteristics:

o The reason for the existence of the network is to
share resources among the users associated with the
different administrative centers; that is, the net
is not primarily a testbed for distributed
processing.

o The network is composed of heterogeneous nodes.
Unlike some interesting existing nets used for
distributed computing ([POPEK 81], [JONES 79],
[LAZOWSKA 81]), we can make no assumptions about
uniformity of the underlying computer architectures
or the host operating systems. The node may be a
mainframe running OS/MVS, a sixteen bit
minicomputer with a memory-resident operating
system, or a microcomputer-based workstation. (We
do not necessarily include micros with arbitrarily
small memories.)

o It is a local area network. We aSSUme that the
data rate bet~een t~o nodes is on the order of
between one and 10 megabits per second. (~ote:
there may be low-sp~ed interfaces to other,
possibly g~ographically distributed nodes; we do
not want to exclude such an interface, but we will
not drive the design of the command language by
them.)

o The nodes on the net~ork are under autonomous
administrative control and the network operating
system is guest-layered, that is, it is layered on
top of the existing host OS's.

o The development of the capabilities of the net and
the NOS are evolutionary; we want to be able to
start With a set of basic capabilities and add to
them as budgets permit and technology progresses.

o The network is loosely coupled; we cannot assume
that any two nodes share memory.

The important implications we derive from these network
characteristics are:

o Because of the data rates, we aSSume that it may be
reasonable to process records from a small file by
copying the entire file from one node to another,

3

I'

-"

,I

, r
I,

but it is not reasonable to copy large files (not,
for example, a sixty.megabyte spacecraft image
file).

o A node owner may take down a node withrut
consulting the network users or other node owners.

o A node owner
peripherals on
tape drive, or
example.

may change the configuration of
a node, changing the address of a

removing a line printer, for

o We can make no assumption about the existence or
correctness of a user-readable clock.

o Not all users on a node will be users of the
network operating system; a given node will
support NOS users and users not concerned with the
NOS or the network. Files may be generated outside
the NOS, and accessed by both NOS and non-NOS
users.

o Most common devices
example) cannot be
NOS.

(most line printers, for
exclusi',ely allocated to the

o We cannot change the host OS to accommodate more
comfortably the NOS or the NOSCL.

o Because of differences in computer architectures,
and because we want to be able ro run programs that
may use host operating system services, ~e cannot
assume that the NOS can redistribute the
application ~orkload by moving an arbitrary process
from one node to another.

o Although we can aSSume that the software providing
the various levels of support for the NOS may be
centrally developed, the only assumpt~on we make
aboct the release level of the software at a given
node is thac ic is "compatible".

See [ROBINSON 77], [FLETCHER 82], [PEEBLES 80]. and [~~Z
80] for descriptions of nets that share most of these
characteristics.

4

-..... _ ..

I.

I

~

ORIGINAL PAGE IS
OF POOR QUALITY

4.0 DESCRIPTION OF USERS

Currenc wisdom (e.g., [SCHNEIDER 82], [SMITH 82]) dictates
that when one designs a user incerface, one should be aware
of the sort of task thac the user is reqUired to perform.

The following is a fair description of one common type of
compucer user; it is also a rough profile of the intended
user of the TAE, the system for which the TCL command
language was developed.

0

0

0

Someone with frequent need to use a computer as an
aid in performing some analytical task.

Not a computer neophyte.

Has the following basic requirement, based on a
"function" model:

input data

---------------)
control

parameters ----------)

output data

---------------)
Transform

responses
---------------)

The user has a task to do; the task transforms the
inputs into some outputs. We add to this basic
requirement a recognition that the user has to
supply some parameters, and that there will be
responses generated in the process of exerc~s~ng

the transform. Thus the primary user requ~rement
is to specify the location of the input data, the
transform to apply to the input data, where to put
the output data, and the parameters used to control
the behavior of the transform.

o Professional and cooperative, will not attempt
malicious destruction of other users' resources.

o Generally has a home base, that is, a computer most
often used as the home node, but also has a need to
log into any other arbitrary node.

o Usually acquires and maintains files at the home
node, often by using a process outside of the ~os
(a realtime data acqu~sition process, for example).

5

.-

6

o Finally, although the user's interface to standard
software is through the MOSCL, the user may be
satisfied with local resources, that is, the user
may not want to use or be exposed to the net~ork.

Two implications of the last characteristic are that a user
on a node in the net should not suffer a degradation in
apparent task perforoance as a result of the imposition of
network sof~Jare, and that the addressing of local resources
should be the same as in the single-node case.

6

-~-..
.c,eo . ' 0· ...

5.0 USER MODEL/USER VIEW

A user-view model 1s the model the user inevitably develops
while using the system. Based on the apparent system
characteristics and a level of abstraction that is
comfortable to the user, it allows a user to predict what
the system will do in a given situation.

By fOrming a user model before the user interface is
designed we present ourselves With a target against Which we
may judge our design.

In this section we propose a user-view model of the network,
based on ~he net and user characteristics described above.
We assume thl~ user corresponds to the "inter:nediate" level
of sophistication, described by Schneider in [SCHNEIDER 821.
(See [HARDY 821 for why orienting a design toward the
intermediate-level user is reasonable.)

The user logs into a particular node using a host-dependent
login sequence. From this node, the user sees a collection
of resources (processes, comcand procedures, files, devices)
attached to autonomous computer facilities, each fac1lity
having a central computer and peripherals. The user
aanipulates these resources as necessary to perform a given
task. The user can, for example, execute a proc on node 11
using a file on node d2 as input, and depositing the cut?ut
in a file on node 43.

The user executes commands through a single unifor:n command
language, implemented in the ~OS command interpreter. In
addition, a user may invoke user-written processes or
command procedures living on any machine on the net. The
user specifies wh1ch node to use in executing a process or
procedure (GODDARD/COPY, for example).

A user may access files on any node in the net (given
appropriate per:niss10n) by specifying the node name and the
r ~. of the file on that node. Devices on the net may be
a~_.~ssed by specifying the node name and the device, or
generically, by specifying a suitable device type.

The user view is node-centered, that is, the user is
registered as a user on a given node; if the user wants to
establish a session by logging into another node, the user
must be registered on that node (or use a guest account).

Most command error messages are cachine-independent; some
error messages have a machine-independent description with
machine-dependent details.

7

or. ..ac e' ., .err

b

This view contrasts With the view implemented on other
systems in which the user need never be aware of the
location of resources (e.g., [ROBWSON 77], [LA.'iTZ 82],
[FLETCHER 82]). In the proposed view, the user must know on
which node files are located, is occasionally exposed to
possLbly confusing error message details, and receives a
different view of the available resources depending on the
node which is used as the home node.

We justify this view as follows:

h.

o If the user knows that a node is about to go down
(for example, for scheduled maintenance) the user
may transfer files to another node.

o If the user knows that a node has gone down, the
user may conclude something about additional files,
devices, command procedures, and processes.

o As noted -by - Clark and Svobodova [CLARK 80] an
implication of autonomy is that a user tends to use
one machine and wants the access to that user's
data to be most efficient from that machine.

o The user may configure his files
important files are backed up on
independent nodes.

such that
physically

o The user may want to control and display the costs
of working on a network. For example, the use or a
data file on the user's local node is apt to be
cheaper than the use of a file with the sace
contents on a remote node; the cost of using
functionally identical application processes on
different nodes will differ accordlng to whether or
not the required data files are on the same node as
the process, and on the speed and billing
algorithms for that node.

o The user may Wilh to communicate with the remote
operator; for tape mounts, for example, or for
complaints, and information about computer
downtime.

o If a user's files are not replicated, file access
times will vary according to the hosting node; the
user may want to plan file usage based on ease of
access to some files.

o Some operations will not be available between two
arbitrary nodes. For example, it may not be
pOSSible, in initial implementations of the

8

__ CCSMe
Me " .,"0 = ..

,
I

~

~l!
- ,
i
i •
~ · ! · 1

f
Cj

f

1
--.

J

I
1
f
J
ii

1
l

I
>~

-I

1
j

--I

•

network, for a user on a PDP-ll to access a filc on
an 13M c.achine.

o A user =ay need to per!o~ ~ore cocplicated
recovery and detection if an error is due to a
remote problem. If the user ~now9 that the
reference is local, then these procedures are not
necessary. (This was cited by Cl.ulc. and Svobodova
(CLARK 80} for application programs, in ~~ich the
program would have to provide logic for the more
complex case if it didn't ~now that the reference
was local.)

o Errors cay occur as a result of the inability of
the ~OS desi3ners to perfectly map the net~orlc. as
onto the host as, exceedi~g a quota or violating a
privilege, for example. Although the ~Os can cap
these errors into ~Os~ errors, the user :ay ~eed
to ~now the host error code in order to correct the
s1tU<lt10n.

o The user cay want to be sure that
inforcation is placed on a specific node.

secure

o Although it is possible to des13n a user interface
that has apparent network transparency, the user
inevitably becooes aware of and :ust deal ~ith the
network. Assuoing a user interface desi6ned to
make the ne~Jorlc. transparent, factors that support
this assertion are:

The user ~ll notice
vary conSiderably
accessed.

that file access tioes
accordi~g to the file be1~g

Because of node autono=y and the var/i=g
reliability of node hardware, resources
attached to some nodes ~ill be generally less
available than resources attached to others.

The user ~ll note operaticg systeo-dependent
teroinal characteristics, for e~=ple the
ability to type ahead when addressing some
processes bue noe others (from V~~/VXs to
VAX/VXS bue not from PDP-ll/RSX to PDP-ll/RSX,
for exacple).

Error messages from application sof:~are will
display host-dependent error codes.

9

•

..
" .. . /

- Users on one node vill com:unicate vlth users
on another node.

~ote that soee of the itecs cited above reflect vhat ve
believe are the i~adeqU3cie5 of current sof~.are technology
to provide these functions efficiently in a netvoLk
operating systee. In particular, copying arbitrary files
from one node to another, user cost minimization in a
heterogeneous node environment, optimizations for relative
location of files and processes, and automatic recovery, are
not nov available in syste:s v1th heterogeneous nodes and
guest layering.

Other nets that preserve a vlev of node visibility are
COCA.'iET [ROWE 82] and trnL'(-U:nn:O [BROw"NBRIDGt: 82) •

10

6.0 REQUI~~~S

-In this section, We present a list of reasonable
requirements for a cocmand language designed to support tne
network and user view we have described. We list only those
requirements of interest in the network case; for a =ore
extensive set of cocmand language requirements, see
[ANSI/OSSD 79J and [.~~SI/06SD 79J. ~ote also that some of
hese requirements are more proper1v requirements on a

network operating system; they do, however, affect the
command language de!ign. Finally, although we conside·
these requirements reasonab~e from a user's view, we note in
Section 7 that some of these requirements present
difficulties in efficie.l~ implementation.

1. Related to files and other resources.

support for unifo~ file specifications and
device specifications independent of the
underlying host operating system, with at least
one level of directory

file management commands: make a copy of a
file (i.e., COPY), rename a ~ile, list a text
file, list a directory, delete a file

manipulation of a file using wild cards for a
name component

location of a file by attributes other than the
name (a file "type", for exacp1e)

logical names: the ability to map a
user-defined name into an existing object nace
or another logical nace

on protection: consistent user view of
protection for all files accessible through ~OS
file specifications; baSic read/write/delete
protections at least by "owner" and non-owner;
ability to protect files from ~on-NOS users,
and to share read access to files With non-~OS
users; ability to set and deter.n1ne protection
of a specified file

ability to specify a host file
specification format

11

in host

~ .,
I"

•
2. Related to handling of ~rocesses and

procedures
comcand

named packages of commands
parameters and language
conditionals, variables)

(procedures), With
support (loops,

process/procedure status query

specifying a host node to use in executing a
transform

ability to initiate concurrent processes and
procedures

procedure/process abort, suspend

autooatic action upon a specified type of error
(that 1s, soce baSic exception handling)

abi11ty to run programs that have not been
designed to interface With the ~os

3. Crash/recovery

notification of crash of any node With which
the user is cocmunicating

restoracion of files to a known state (e.g.,
prev10us version or "locked" or "recovered")

survival of the user/~OS interface folloving a
crash of any node except the user's home node

4. For dealing with ~chine costs:

a way to deter.nine the costs (storage and ti:c)
of having invoked a process or procedure

query for cumulative cachine costs since login

5. For sharing other users' resources and
coacunication with other users:

the ability to locate and access other u~ers'

files

12

~
! ,

•

....

..

file/device proeeceion

- query for file ownership

determine id's of other users currently logged
onto the ne~_ork (under the ~OS)

send/receive messages and mail

6. Requirements related to visibility of the nodes and
the network

the ability to log on to a remote host from ehe
home node

query for the network status

query for status of one or more nodes in ehe
network

abiliey to communicaee with a remote host
operator (for exaQple, mount a tape, or receive
a message on hose dowuti~e)

downloading a remote hose

7. Help and error handling/status reporting

notification of errors using a
host-independent message structure

deeermination of error details and
recovery actions including ability co
on an underlying hose-dependent
originating at a remote node

help displays on processes and
procedures, built-in commands,
how-to-work the system

unifot'::1,

possible
get help

error

coccand
general

help on characteristics of ehe network (to the
depth required to support the user view) and on
network problezs

help on host-host incompatibilities (in general
help inquiries and error messages, e.g., "I::.age
file copy from PDP-11/RSX-11M to ~~~G VS2000 is
not currently supported")

13

,

..

8. General user-oriented requireoents

If a user specifies an operation requiring only
local resources it should not be more difficult
to perform or take a perceptibly longer time
than the same operation in a non-network
environment

Some consistent time base and consistent
user-view of time, that 1s, the user's
perception of the passage of time based on time
displays from the system should be consistent
no matter the node, and the use of time in
time-related attributes for resources ("time of
creation" for example) should be consistent.

Host command escape (the ability to execute a
command in the command language of the
underlying host operating system), local host
and specified remote host

''Reasonable'' and cor.sis tent response times
where by "reasonable" 'Ole mean a response ti::1e
cocfortable for the user; see pages 228
through 232 in [SHNEIDE&~~ 80} for a
discussion on user psychology and response
times.

14

,

./

7.0 NEnlORK COMMAND LANGUAGE ISSUES

In this section we briefly describe our reference command
language, TCL, and present our basic model for the net~ork
operating system. Then, using TeL as a reference language,
we discuss the classic characteristics of command languages
and how they m1g~t be affected by the requirements we've
developed •

15

f'
I
r.
:
I
I
I·~

I
• I

I

I
I i

!

I
I

~
l
I
I
1--• ~
I

I

7.1 Description of TCL

As a basis for the following discussions on net~ork-oriented
extensions to co~nd languages, this section describes TCL,
a modern command language designed for a single-computer
system.

The following overvie~ is a description of the facilities of
TCL pertinent to the NOSCL is~~es discussed below; a
complete description of TCL can be found in [CE~TURY 83a}
and [C~~TURY 83b].

The major purpose of TCL is to provide a language through
which users of the Transportable Applications Executive
("TAE") may invoke and provide parameters to scientific
analysiS software.

In TCL, an application program linked to run under the host
operating system is called a "process"; a file consisting
of a sequence of TCL commands is a "procedure".

A command in TCL is a TCL intrinsic command, or the
invocation of a TCL "proc". A proc is a procedure or a
process; all proes are located in TAE libraries
(corresponding, under VAX/VMS [DIGITAL aZa] , to a file
directory) •

Intrinsic commands are commands built into the TCL
interpreter (the T.U: Monitor). These commands consist of
commands that perfot"'C general utility functions ("DISPLAY"
to display the value of a variable, for example), and
language-support commands such as the IF and LOOP commands.

In TCL, a proc is invoked using only the proc name; there
is no "RUN" or "::'''G.:CUTE'' command. The proe definition
file--the file containing the procedure or executable linked
image and the proc parameter declarations--is located by the
command line interpreter using an ordered search of TCL
libraries (similar to the path search in UNIX). The list of
libraries to search is established by the TCL user during
the session. Libraries are mapped directly into the host
file facilities; under VMS, for example, a library
ecrresponds to a directory. Intrinsic commands pre-empt
procs; that is, if a command name is found to be the name
of an intrinsic command, chen no proc sear~h is done.

l6

i
I

~ I
I

·1

A command is said to have "proc invocation syntax" if the
fOrM of the command invocation is,

<command name> <parameter value list>

A process receives command line parameters by calling
standardized TAE support subroutines; a procedure receives
the parameters by declaring them as parameters in the
procedure.

TCL also supports the follOWing traditional features:

0 typed variables, arithmetic and logical
expressions, built-in functions, and a LET command
for assignment;

0 IF, LOOP, BREAK, and GOTO commands;

o exception handling support;

o on-line help and message facilities

17

7.2 Network Operating System Model

In order to provide a basis for discussing the po~sible
problems in implementing the various command language
features, in this section we describe the basic model we use
for the network operating system. The model we have chosen
is appropriate for our user-view model; it is based partly
on the single-node TAE model [CENTURY 83a] and partly on the
service model in [FLETCHER 80] and the implementation of
DIGITAL's DECnet [DIGITAL 82b]. The discussion is limited
to those aspects of the NOS that clearly affect the command
language interface.

We suppose a network of nodes, where every node contains the
necessary hardware and software communication sup?ort for
layers through the session layer of the OSI reference model
[ISO/OSI82]. Each node hosts, in addition, an executive, a
directory server, a file server, and a "ll.stener". The
executive interfaces with the user; it interprets the
user's commands, determines the command parameter values,
and passes the parameter values to the responsible execution
module. It also determines the status of the command
execution and forms appropriate status responses for the
user.

A user is "registered" on each node through a user node
registry. If local access is desired, the user's name alone
is registered (e.g., "JOHN"); if remote access is des1.red
then the node from which the access is attempted and the
nallle are registered (e.g., "NASA/JOliN"). (This approach is
similar to the UNIX-UNITED approach [BROWNBRlDGE 82).)

A command module may be built into the executive command, or
it may be a command procedure contained in a procedure file,
or it may be a process (a program in host-d~pendent
"executable" fOr::Lat on disk). If it is a procedure or a
process (a "proc"), there 1s an associated proc definition
file that the executive accesses to determine the type,
default value, and other attributes of the parameters. If a
parameter has no default and no value 1s specified by the
user, the executive Will prompt the user for a value. The
proc definition file may, depending on the implementation,
be inco~orated into the procedure or e~ecutable program.

The executive uses the directory server to determine the
location of files. Because nodes in our user model are
exposed to the user, there is one directory server per node,
and it knows only about the files and devices located on the
hosting node. The executive or subroutines in an
application program direct the file request to the correct
node by finding the node narue in the file specificatlo~ (or
using a default node name).

18

I

I
1 . I

I

L

In general, files are not copied from one
unless the user explicitly requests so;
write local and remote file records •

.

node to another •
processes read and

When a request is made to open a file, the request is sent
to the directory server on the appropriate node; the server
returns to the requester a file identification string or a
"not found" status, or an "access violation" status. The
possessor of the file identification string, the executive
for example, then uses the file server to access the file.
If the request is for a tile on the same node as the
requester then the file server may be embodied in a
combination of host as file services and the subroutines
required to abstract them. If the request is for a file on
a node remote to the requester, then the requester
communicates with the remote directory server (through the
listener, see below), and a remote file server uses the host
as facilities to perforon the necessary file access services.
(In practice, the directory server and the file server ~y
be combined in one process.)

The file identification string provides sufficient
informa~ion for the file server to check access rights
against the requested operation (similar to capabilities
[DAVIES 81]).

The listener on each node is responsible for the initial
interface With other nodes. When a file open is requested
by a user reQote to the listener's node, the listener either
spawns a directory server or comcunicates with an exist~ng
directory server, which thereupon establishes communication
With the requesting process.

If the request is for the execution of a remote procedure or
process, the listener spawns a local copy of the executive.
The spawned executive communicates with the originating
executive, obtaining the necessary context for the requested
operation, and executing the process or procedure.
Further.nore, if the proc is a procedure, the executive is
responsible for executing the commands j~ the procedure.
For a discussion of other functions and problems With this
remote execution model, see ''Proc Invocat~on" below.

A remote proc communicates with the user through subroutines
in the process, which communicate with the proc's executive,
which, in turn, communicate~ with the user's aome executive.
The user's home execut~ve talks to the user (similar to
virtual terminals; See [LANTZ 79] for a discussion on
virtual terminals.)

19

1

- !
i
I ,

\
I ,

•
~ote that, for 9i~plicity, our model does not at this stage
provide for replication of any user files; we leave file
replication to the user. In addition, the model does not
address protection of objects; we leave the investigation
of a protection model appropriate for our user model, and
the associated impact on the comcand language, for future
study. (See [DAVIES 8l] for a gene cal discussion.)

20

L

7.3 Co~nd Language Features

This section discusses the important features of a strawman
command language We call NOSCL; most of the features
discussed relate to a requirement listed in the
"Requirements" section, above; some of the features are
based on existing features in TCL. Note that, where
necessary, we assume the command line syntax of TCL [CENTURY
83al.

The descriptive technique we use below is to first describe
a hypothetical NOSCL feature, then discuss the feature.

1. Session context

When a user logs onto the NOS, a "session" is started
and a session context is established.

In NOSCL, the context consists of:

o user name

o session id - a unique identifier for the duration of
the current session

o a string that constitutes the command line prompt

o a set of logical names that map into file names (see
"Names" below)

o "current" directory - the default directory string
to be used if an object name is not fully-qualif~ed

o ''home'' directory - the initial "current" directory
upon login

o current setting of session global variables

o proc search list - the list of directories to search
for a proc invoked with an unqualified proc name

o a set of user and installation-defined commands
command string equivalences and abbreviations
defined using the "define equivalent command string"
command

o devices reserved

21

r : .
~
l
t
)

,
'.
I~
I

I
",
I
. I :

.......

o the use~'s NOS identification

o identification of all procs currently executing

o name of log file and state of session logging

The context is available to the NOSCL user through a set
of global variables; to display a context component, a
user may use the standard NOSCL command for displaying
variables, or for some frequently requested components,
the SHOW command (e.g., for showing the library search
order).

There exist commands to save context to a named file,
and to restore context from a named file.

Cocments

We try to keep the context as small as possible for two
~easons. First, the context Will require ~mory in the
executive (or from snme memory pool), and, second, in
our model of the NOS, when a proc on a remote node is
executed, the home executive sends the entire context to
the remote executive.

Note that the second consideration may turn out to be
unimportant, depending on where the bottleneck for
remote proc initiation is, on the effective rate of data
transmission between ~~o application-level processes in
the network, and on the efficiency of the data encoding.
(Binary data, for example, may have to be encoded as
ASCII characters.) We estimate, based on experience With
TCL (which does not have logical names), that the
session context as defined above may be as large as 10
kilobytes. Note also that some optim1%at~ons are
possible; for example, once the home executive has sent
the context to the remote executive, it may, on
subsequent proc invocations on that node, send only
changed portions of the context.

Session quotas, accounting information, and session
privileges are important components of the session
context on an operational system, but hard to define and
implement in a distributed environment. We have omitted
them pending more study on the necessary NOS structures.

In addition, the context may include the current
position of a cagnet!c tape, but it is not clear that
this would be meaningful for the user to observe, nor
can it be easily restored in a new session.

22

.1

•

The current time and date may also be considered part of
the session context, because it qualifies the rest of
the context. See '''rime'' belOll for further discussion on
thb cOClponent.

2. Login

NOSCL users are required to login to a host, using the
appropriate host-dependent login sequence; host
facilities are then used to automatically log the user
into the NOS (usi~g '~S's LOGIN.CCM, for example). In
addition, a user may establish another session on the
same node or a re~ote node using the NOSCL LOGIN
command, a standard host independent login. In that
case, the user ~st be registered as an NOS user on the
remote node.

Upon initiating a NOSCL seSSion, a speci31 login ~OSCL

command file (called the "node login" file) in a
reser7ed NOS directory on the hoca node i. executed,
Which, ln turn, executes 3 login co~nd fl1e in the
user's default directory. There is one node login file
per node.

A user ls registered With the NOS in an NOS user
registry (using a utility not specified here). :he
registt"'/ specifies the user's :ms identification, and
initial defaults (the initial default director-/ for
example). The login process accesses rhe registt"'! for a
particular user by that user's login naoe and, for a
remote login, by the user's node naoe.

Comments

Further investigation ls required for a cocplete
specification of the data structures in the registry.

The login process establishes the initial user context
using the NOS registrl and the login coacand files. ~e
technique wherein the syste~ and user login coccand
files are invo~ed is currently used in TCL. The user
login cocmand file together with the registr/ records
for a user constitute the user's profile.

~ote that a user that establishes a session on node A
appears to the ~OS as a different user than the sa~e
user establishing a session on node 3; the user login
file that is e~ecuted is dependent on tne node. User
logi~ names are not unique for tne entire net~or~, but a

23

•

•
login nace 1s required to be unique for a given node.
This approach has the disadvantage chat, depending on
how procections are implemented, a user may not be able
to access files he created While logged onto another
node. (If the registry is logically unique, the ~OS C3Y
be able to cap the user node and name into a unique
protection token, thereby avoiding the problem.)

Although the location of the r,egistry is not specified,
we establish the requirement that the info~t10n

necessary for establishing a seSSion on a given node is
resident on that node. !his requirement is derived from
the requiremenc that the performance for a user using
the NOS executive but not the network =ust not be
significantly affected by the existence of the network.
See [BIRRELL 82) for more on user registries.

Note that the facility to login on one node and start a
session on another host is extremely useful; it means
that if the user knows the host-dependent login sequence
of che local node, chat user can scart a session on
another node without ~,owing the host-dependent login
sequence for that node.

Finally, wa note that, in a cature operating system, the
registry 'Jould certainly include the user's pri'rileges
and session quotas; it is not clear however, what the
list of privileges should be on an ~OS, nor do we yet
understand how to handle quotas in a distributed system.

3. N3ces

In SOSCL, an object with a standard name is ~aced by i:s
node and by a path-name withi~ a node. A
fully-qualified name is of the fore,

(node-name>J(directory>I ••• I<directory>l<simple-nace>

If a name starts with "rI", or "I", then the object is to
be found on the local node, and the first directory
after the "t)" or "I" is the user's hOllle directory. If
the nace does not start with a node naCle or a "'I" or
"''', then the current default directory string is
assumed to precede the specified name. The first
directo~/ nace in the stri~g is the nace of a user if
the node has more than one user.

24

•
.~

,
t

\

If the name is preceded by 4 to-be-designated special
character, the name is taken as a name in host OS fo~t
on the home node; if the special character appears
after the node marker, the name is taken to be a node
name and the string following the special character is
to be interpreted as a host file specification on the
designated node. Host names oust be enclosed in
quotation marks if they contain any of the ~OSCL special
characters.·

The max1~m length of a node-nace, directory name, or
simple-name is the same for all nodes, as is the maxi~m
depth of the hierarchy.

The objects that have standard
devices, files, users,
procedures.

names are
processes,

directories,
and. command

The fully-qualified name of a device on a given node is,

<node-nace>~DEVIC!/<device-name>

For example,

NUDEVICE/LPIO

The <device-nace> for a gi'/en device is established by
the system administrator for that node; conventions
will be established for unifo~ naming by device type.

For all objects with standard naces, except processes
and procedures, if an object's name is not fully
qualified, the name is fo~ed ~y placing the current
default directory string i~ front of the name speci:ied.

For processes and procedures, there exists a search
list; search lists are described belew, under "Proc
Invocation".

In addition to the names described above, a user ~y

define a logical name. A logical name 1s a name that 1s
defined to oap into an object name or into another
logical name. For example, a user ~y define TESTFILE

* A special character is any character having Significance
to the coccand line intarpret~r.

25

,I

•

to map into lNUE/TESTDIR/TESTFILE, or LP to map into
N1JDEVICE/LP10. There is one logical naae directory per
user, with initial entries typically set by the node and
user login command files.

COCI:ll!nts

The fully-qua1ified name specification described above
was chosen because it conforcs with the proposed
user-view model and because it is compatible with the
latest specification issued by the ISO SC16 committee.
[ISO/SC16/N1454 SJI Note that, by having both the two
distinct separators ("rI" and "I" in our case), we allow
a foro of fully qualified name whereby the node name
defaults to the local node. See [FLETCHER S21,
(ROBINSON 771, and [LANTZ SOl for nets with
heterogeneous computers and no node name in the file
spec.

A possible extension to the name specification used by
the A..'iSI cocmittee is to provide for hierarcl.y of net
names, ~1/~2/NJJJOHN/AFILE, for example. (See
[A..'iSI/09SD 841.)

Names for variables, exception handlers. and labels are
not considered standard names as defined above. !he
naces for these objects Will depend on the procedure
language; in TCL, they are simple names only.

Currently under investigation by the A..'iSI ~Rl co~ttee
is whether or not any obJect attributes--the ~~S file
"type" and version nU!:lber, for example--should be part
of the name. ~e Will wait for further results from the
committee.

A related question is whether or not to support access
by object attribute when the attribute is not part of
the name. (It =ay be another parameter in the command,
for example.) This technique is particularly useful if
device type 1s an attribute; a service can be defined
to return the names of all objects with the device type
attribute set to a specified string, "line printer", ror
example. Further progress on these issues will follow
investigation into what attributes should be supported.
~e note, however, that search-by-attribute 1s an
expensiVe mechanism even on one-node systems <3enerally
requiring a separate set of pointers).

The technique for naming devices is taken from U~IXt~

26

[BELL 79], and has the disadvantage that it reserves a
directory name. It is expected that installations will
define logical names for all devices.

An alternate technique to be studied is allowing the
device to take on any name in any directory and defining
an attribute, as noted above, that indicates an object
that is a device of a specified type [AGRAWALA 83].
This would allow a systea manager to name the "device"
directory by any name; a user would reference a device
through a logical name or by requesting an object with
the specified attribute.

The restriction that the maxicum depth for directories
is the same for all nodes is made for user-friendli~ess,
but may use too much processor memory for nodes with
little memory to spare. (The maxicum depth of
directories is an important number in dete~ning memory
use by the executive, since it dece~nes the space
allocated for file type parameters and va~iables, and
for logical names.) For ease of imple~entation and
portability, consideration should be given to li~ting

the depth of the directories to some fixed known value,
as in GRAPEVINE (BIRRELL 82], and Clearinghouse [OPPE~
83].

Logical names provide for node name transparency,
partic~larly useful for device names, aliases, and
"standard" devices (standard output deVice, standard
error device, etc.)

There are no logical names automatically known across
the net york , that is, no network-central directory of
logical names; system adc1nistrators coordinate the
node login command files to define common logical names
for devices and files used by many users. (The
assumption here is that the logical names used across
the network, names that map into devices for example,
change infrequently.) We have avoided centralized
directories for logical names because they imply either
a remote access to the central directory every tiC1e a
name is referenced, or replicated directories. We have
provided instead a primitive fo~ of replication, that
is, system administrators updating the node login files
through an editor.

For flexibility, logical names are bound to the physical
name when the name is used, and not before. Some of the
tradeoffs on logical name binding, on network~ide
logical names, and on directory replication are
discussed in the GRAPEVI~E and Clearinghouse papers

27

cited above;
811.

Watson alsa discusses binding in [WATSON

Open questions related to logical names are:

- Can a logical name map into a node name?

Can it map into a node name plus the left part of a
file name? (Consider LNOA.B where LN is defined to
map into NUX.)

Should logical names be restricted to the left side
of a name specification (as in VAX/VMS) or can any
component of a name specification be a logical name?

Should logical names have attributes? If the design
is such that the user cannot tell a logical name
from an object name, then logical names should have
attributes. (This capability is useful when
searching by attribute: the search would yield a
list of object names and logical names.)

An issue not discussed above is in what contexts wild
cards should be permitted. Clearly, on a network, a
wild card in the wrong place can produce disastrous
consequences.

Finally, we note that our syntax for host file names Qay
result in awkward file specifications such as:

NllJ%lt[l,llx.ylt

assuming the percent character marks a host file
specification.

4. Proc invocation

Process and command procedures are invoked by naming the
proc and providing the values of itd parameters. For
example:

PROCP 1 1, 2, 3

If the name of the proc is the fully-qualificd name of
the proc definition file then the proc definition file
in the specified airectory is used; othe~Jise the
following proc search algorithm is used.

28

If the executiv~ determines that a comcand is not an
executive built-in command, the executive aSSumes that
the command is implemented as a process or procedure.
It then searches in the following directories, in order:

1. the user's current default directory

2. the directories in the search list established by
the SE'l'SEARCH command

3. a directory designated as the "system" directory on
the local node

A search list cannot include a directory on a remote
node; to invoke a proc on a remote node a user must
fully qualify the proc specification, including the node
name. Further.nore, if the currently executing proc is a
procedure on a node remote to the user's home node, then
the search list is automatically restricted to the
user's current default directory, the directory of the
remote procedure, and the system directory; that is,
the variable part of the search list is reduced to the
directory of the remote proc only.

If the user does not specify all the required parameters
for a given proc, the user is prompted for the miss~ng
parameters. A parameter that has a default defined is
not consiaered a required parameter.

Comments

The basic proc invocation syntax is, from the user's
view-point, a coccon one. It is currently in use in
TCL, and is similar to that being used in CaSCL (CaSCL
82] and in ANSI X3Hl discussions (A.~SI/09SD 34). !he
notion of prompting for user parameters is available in
TCL, but the "tutor" mechanism is preferred. (See the
TAE User's Manual (CE~!URY 83a) and Prograczer's Xanual
[CENTURY 83b) for details on this and on the
~pecification of parameters on a proc invocation line.)

There are some problems with implementation of this
simple model on a net~ork of the type that concerns us.

In TCL, there exists for everl process and procedure a
definition file. (For a process it is in a text file
distinct from the process; for procedures, it is
located at the start of the text-fo~tted procedure.)
The proc definition contains parameter descriptions,

29

I
"
Ii

" (.
I
"

•
~r
t
i ,..

-- -

necessary for parameter value checking and for parameter
prompting; a description includes the type of
parameter, the parameter default value, and, possibly a
list of valid values.

Given these parameter descriptions, ~e have the problem
of how to efficiently prompt the user for parameters
~hen the proc is located on a remote node. Using our
NOS model, if a proc is on a remote node, an executive
on the remote node handles the command line processing.
If the remote executive does the prompting, ~e have a
relatively slo~ interactive dialogue; if the local
executive does the prompting then it ~st access a
remote file (and probably copy at least the parameter
description portion), thereby forcing a lengthy proc
initiation time. Another approach is for the parameter
descriptions to be located on all nodes that access the
proc; thi~ approach ~ou1d probably be faster (it still
requires both executives to open a f~\e, but no remote
access), but it presents a proc maintenance problem:
the person responsible for the proc ~st remember to
check for all duplicates of the file ~hen updating it.

Listed below are some ad~itional ?roble~ in regard to
proc invocation:

In the current TCL, the author of a proc can specify
that a parameter is an "input file", that is, the
executive is to check that the file exists. This
implies the file must be opened ~Jice: once by the
executive, once by the proc. Should this capabil~ty
be retained given that the open ~y require several
remote file accesses through the NOS file system
(~hich is layered on type of the host system)?

An argument in favor of early checking for file
existence is that it ~y be expensive to run the
proc on a remote node, and then to discover during
proc execution t~at the file doesn't exist.

Note that it possible to generali:e the early-check
capability to all devices, that is, ~e can spec~fy
that a proc ~i11 not run unless all devices
specified in the parameter description set are
available. We prefer to let device availability be
tested ~hen the deVice is required.

Because there ~ill be configuration differences
bet~een copies of the executive on different nodes,
a user might find that some proc invocations are
acceptable on some nodes but not others. Thu3, for
example, a user may specify a long string value for

30

/

a parameter and th~ string may be rejected (because
the maximum string length on one node may be
different than on his home node). This proble~ can
be solved by declaring that there are no differences
between executives, but such a solution is
ungatisfactory when the range of processor memory
size and disk space on the net is great.

(The entities that are parameterized in the current
TCL executive include number of parameters allowed
on a line; number of command line continuations;
host filespec length; maximum length of message
key; maximum allowed IF nestin~ in a procedure;
maximum depth of proc nesting: maximum number of
characters in a string parameter; and maximum
number of values for a vector parameter.)

If a user has defined a number of new command
strings (defined "COPYI:1G" to mean "COpy I:1AGEFILE",
for example), we have the following problem: a
procedure is developed on node N using the command
strings defined by both the system manager (in the
node login file) and the proc developer; the
eontext of the execution, however, contains only the
command strings defined by the user and user's
system manager. (For example, the procedure may
assume COPYI:1G is defined, but no such definition
exists on the home node.) Using NICOLA/KIWINET's
"abstraet machine" eoncept ([EFE 83], [KUGLER 80])
we can say that a procedure is developed to run on a
eertain abstract machine, and that our model does
not provide that machine.

If NOSCL supports floating point paramete:s (as tCL
does), then a problem seen on nets ~ith
heterogeneous nodes is that it is i~possible for a
parameter to maintain tne same precision among
different hosts. the preci~ion in a user-supplied
floating point number may be lost when convert 4 to
the node that hosts the proc; a proc that does
nothing at all except return the input value, may,
in effect. change the value. See [KL~LETON 81] for
more discussion on data transfer between different
hosts.

In regard to proc search lists. we do not permit search
lists to reference remote nodes because we believe that
the increase in the maximum search time (incurred on
mis-typed ~roc names) would be unacceptable to the user.
and because the cost associated with the execution of a
remote proc may be significantly greater :han that for a

31

, ,-

\

\

local proc. Thus we force the user to specify the node
name (or map to it using a logical name).

For procedures executing on a remote node, we set the
variable part of the search list to the remote
procedure's directory only. because the cocplete search
list as seen by the user on his home node refers
exclusively to directories on the home node, a node by
definition remote to the node executing the procedure.
Thus, if this restriction is not imposed, a proc search
from a remote node would use only remote accesses. The
remote procedure's directo~J is placed in the search
list because access of this directory is local. and
because proc packages often consist of several procs in
one dl rectory.

Note also that search lists on single-computer systems
have been ~riticized [BEECH 80) as being unkind to the
user in that a user may find that a command defined in
one way one day is defined differently (that is. with
another proc) another day or on another system. If
these lists are made to span autonomous systems. which
may use different naming conventions. the definition of
a given command is still more unpredictable.

Two significant problems relate to the invocation of
programs that were not designed with the NOS in cind.
The first problem is that the program's parameter
interface Will not match the MOSCL interface; that is,
the programs do not use the standard NOS "get parameter"
routines. Assuming the program gets its inputs from a
command line, approaches to this problem are:

create a host-privileged program that
parameters in NOS-standard fashion
operating system services to foro
host-dependent inputs;

captures the
and uses host

the proper

translate the NOSCL command line into a cocmand line
acceptable to the host;

provide, on each host, a procedure that performs the
mapping

See (BRADEN 80). (LANTZ 80). and (KL~LETON 78) for more
discussion on this problem.

The second problem is that there will e~st on several
nodes on the net some utilities--a FORT~~ compiler. for
example--that ?erforo ide~tical functions but which

32

I

/

I
I

I
I

I

/
I
I

!

L

•

provide different options depending on the host
operating sy~tem. The FORT~~ compiler on some--but not
all--machines may provide a "debug" option, for example.
Possible approaches are to define the NOSCL interface
such that it provides all possible options; define the
NOSCL such that it provides a useful subset; let the
host machine provide a NOSCL procedure for each such
utility to present the options relevant to that host;
or to call it a host-dependent issue, and just let the
users use a host escaping mechanism. Because 00 changes
to the command language are required, we favor the
procedure approach. See (SCHICKER 751 nod (K~LETON

78) for more discussion on this issue; see also the
standardized command language efforts «(COSCL 821,
(A.~SI/09SD 84) which must confront this problem as
well.

5. Protection

To perform an operation on a file (make a copy of it,
for example), a user Imlst have "appropriate." access
rights.

The "create file" command provides the user with the
capability to set the file protection, explicitly, or by
default.

There are commands to change the protection of a file
and display the protection of a file.

COllll:lents

While noting that protection is more in the domain of
NOS study than NOS command language study, and also
noting that the bus~ness of mapping protections for a
guest layered file system into a host system is an
enormously complex topic, we nevertheless outline the
characteristics that we believe appr~priate for the
proposed user-view model and requirements:

o The protections we refer to here are assoc~ated
files named using the NOS file system, not the
file system (although we assume that the NOS
system is layered on the host file system).

with
host
file

o We consider f~les and directories only; the system
mayor may not e~tend to other obJects; at the user
level it is not now clear what other objects need to
be protected. (Devices here are considered files.)

33

/

r
'I

I
,I ;;

o The basic requirement is for a simple system; a
highly secure system (one that implies data
encryption, for example) is not required.

The basic protections required are:

Some users will have read, write, and delete
access to a given ftle, according to the class
of user, as described below.

Some users will have no access whatever to a
gi veri filCi.

The "owner" is defined to always have all access
rights (read, write, delete).

The owner of a file must be able to protect
files from the class of users consisting of all
users remote to the node on which the file
exists.

A user must be able to protect files from the
class of users consisting of non-NOS users, and
must have the ability to share read access with
non-NOS users.

- A user must have the usual necessary access
rights to directories to traverse a path ending
in a file. (To delete a file, for example, one
must have 'I,..l'rite" access to the directory.)

o A final requirement: the protection system must not
make file accesses unreasonably slow.

See [IFIP/WG2.7 1983] for a protection model relating to
command languages.

6. Device management

The RESERVE command grants the user exclusive access to
a !I'ecified device; the RELEASE command re~eases it.

The RESERVE request is not queued; if the device is
reserved by another user, the request is denied.

There is also a command to show the status of a
specified device. Because all devices are seen as files
attached to the DEVICES directory on each node, the

34

(

t
t
t
~

f

f
t

status of all devices on a given node can be displayed
using a wild card with the same "show status" command
used for a single device.

A possible status for a device, added for the network
case, is "device not available to non-local users."

Comments

Note that we use exclusive reservation for simplicity.
More refined levels are of course pos~ible; for
example, reservation such that the user is only
guaranteed that no other user will write to the device.

The following questions remain to be investigated in
regard to device reservation:

o Is it possible for a user to reserve a device that
is accessible to non-NOS users? Assume we have an
NOS process on each node called the ALLOCATOR, which
controls allocation ~f the device among NOS
processes. If the device is shared with non-NOS
users on a node, ALLOCATOR for that node must
somehow reserve the device under the host as, then
pass to the requesting user's executive the
exclusive reservation such that it is recognized by
the host as.

o Do we provide generic allocation, that is,
allocation of any device of a spec~fied type? If
so, what is the best mechanism? One mechanism, used
by VAX/VMS, is to allow the user to specify the
device name without the device number ("LP", for
example, rather than "LPAO"). Another :nethod is to
make device type a parameter in the RESERVE command.

A third approach would be a two-step method.
Assuming device names are in a directo~! along with
an associated "device type" attribute, we can
suppose a "resource locator" service, which returns
to the caller a list of names that satisfy a
specified attribute. The user may then obt~in the
list and reserve one of the devices named therein
(assuming it is still available). This me:hod is
appropriate if de'lices can have arbitra~1 names (see
"Names" above) [.\GRAWALA 83].

A problem With the two-step method is that it
requires ~JO steps; a device may become unavailable
between step one and step ~o. A variation on this
method is to define a command language function that

35

f:
I ...

r
f
t
! ,
I.

l-.

'.

o

-
returns an identifier of the first available device
of the specified type; the user may then, for
example, "RESERVE fn{ 'line printer')"

~e have provided no mechanism for avoiding deadlocks
betYeen tyO or more procedures contending for the
same set of resources. For example, procedure Pl
may reserve device 01, then Yait on 02, while P2 has
reserved O~ and is waiting on 01. Note, however,
that the procedures would have to contain explicit
retry loops (since there is no automatic wait).

If explicit retry loops are used, ye note that a
remote user is less likely to be able to rese~e a
device than a local user. A requester local to the
node on which the device is located is more apt to
be successful simply because the request can be
tried more often. In an extreme case, the remote
user may have to Yait on several users that
requested the device long after the remote user.
This is largely a consequence of our decision to not
queue the request.

o Should there be a facility whereby a user or a proc
is signalled when a device becomes available?

o If the device is reserved l.y a user on
the node crashes is the device
released?

a node and
automatically

In regard to the "device not available to the net· .. ork"
status, there are se'leral reasons a device might be
available on the local node, but not from a remote node:
The device might require the attendance of the user;
the device might be a "demand" device, that is, it may
supply or require data faster than can be supplied
across a network link; or the owner of the device may
simply decide to not make it available.

A question to be investigated is whether or not the
availability of such a device can be accommodated using
the available protection mechanisms of the NOS.

7. Time

All times seen by the NOSCL user are local to the clock
(if any) on the specified node.

36

_ .4"'" .. __ _

I ,
I

I
I
I

1

i
I •
I

j

1

1

1 •
1

1
j
;
1

t • • ,t •
" ;

i
'1
•
3
1
-(

-~
-j
!
1
~
!
f
?
t
!

"
~

!

t
~

t
!

..
'}

'1
!.

-i
:;.
l
1
)
.~
r

! ,
'.
1

" d

'" ,
-~
J

-ji

'.

There is a command to sh~ the current time on the local
node or on any specified re~ote node.

Files Mve a "time of creation" attribute; the time is
local to the node on which the file resides.

Comments

We have said that to have a single time base from the
user's point of view is a requirement. By this we mean
that if the user requests the time from any node--if,
for example. the user 1s logged onto a remote node--the
time the user sees will be independent of the node; in
addition, if a user U1 creates a file F1 on node ~. and
user U2, on a different home node, creates F2 at the
sace time that F1 was created, then both 01 and 02
should be able to display the file creation times and
find that the file creation time for F1 15 the same as
the file c:eation time for F2 (plus or minus a few
seconds) •

There are difficulties in ~lntainina a uniform time
ba~e across the net~ork:

Examples of the possible problems are:

o the clock on one node was never set at boot tl:e (a
problem for single-node syste~ as ~ell);

o the clock on one node is
significantly different
in the net;

defective, running at a
rate than the other clocks

o a node is in a different time :one than another
node;

o if we try to set up a single time across the system
using messages, then there will be a special '~OS"
time, distinct froe the respective host elmes, a
phenomenon li~ely to cause confusion for u~ers and
system administrators (but one evidently handled by
cocputer users who schedule by Greenwich ~ean !ime).

Note that a useful capability that depends on a solution
to the ti~e base proble~ is the ability to ~~n a ?roc at
a specified tioe; the com:on time base is c~itical if a
the initiation of procs in a series :ust be
synchrcnized.

37

Possible approaches to resolving these problems are to
be st\died; see [LAMPORI 781. [REED 791 for helpful
p dmi ti ves.

8. Asynchronous procs

A user may invoke a proc. explicitly indicating that the
proc is to run "asynchronously". that is. the proc is
initiated. and the user is prompted for :he next cocmand
While the proc 1s running.

When an asynchronous proc 1s invoked. the executive
prints a message on the user's terminal indicating the
name of the proc and a NOS-assigned p:oc identifier; 1n
addition. if the user provides the name of a variable.
the variable Will receive the proc identifier.

There is a cocmand to wait on a proc With a spec1fied
identifier. a comcand to display the status of a proc
with a specified identifier, and a command to display
the status of all active procs. In addition, the ABORT
command aborts a proc with a specified ident1fier.

The WAIT and ABORT cocmands constitute
comcands; an exception handler ~y

following execution of a WAlT or ABORT.

synchron1:ation
be entered on17

The following additional rules apply to an asynchronous
proc:

o An asynchronous ?roc survi'/es the ter:unation of the
invoking proc. but not the termination of the
invoking session.

o An asynchronous ?roc can modify a global variable
only if the global variable was defined to be
SHAREABLE: (see ''Vadables'', below).

o An asynchronous proc cannot declare out?ut
parameters.

o Any changes or definitions to logical names, the
"current" directory. the proc search list, or
defined command strings have an effect only on the
asynchronously e~ecuting proc and its children; the
changes do not affect the parent hierarchy.

o An asynchronous proc cannot reser"/e a device.

38

-

Commencs

The abilicy to execute computations concurrently is
important for efficient execution of a ~iscributed
algorichm. ~ork has been done for several yaars on the
most efficient mechods for controlling and synchronizing
concurrent operations. (See, for eX3mples. [LISKOV 79l.
[ICHBLAH 79l, [HOARE 78l, [REED 79l.)

the philosophy we have chosen--to provide the comcand
language user Wich the ability to run a proc
asynchronously and co dete~ne when it is done--is the
current TCL philosophy. We do not provide any
significant resource synchron~zation cechanisms, nor any
inter-proc communication mechanis~. leaving those
capabilities to established prograccing languages.

Furtheroore, we have restricted the operacion of
asynchronous procs such that we do not have co provide
mechanisms for serializing access to session context
data. By our proc invocation model. when a remote proc
is initiated, a spawned executive receives a copy of the
context data; chus we have our session context data
replicated, possibly on more than one node. The
restrictions we impose seek to seriali:e access to the
context data by ensuring that only procs run
synchronously can change the parent context.

We do not permit an asynchronous proc to have output
parameters because output parameters ~st refer to a
proc variable, whereas we do not require a parent proc
to outlive a child asynchronous proc.

~e have declared that an asynchronous proc does ~ot

survive the deach of the parent user session. we
therefore cannot conveniencly support applications such
as a monitoring syscem in which a user dispacches
several asynchronous procs on different nodes and then
logs out, nor can we provide the user w1:h tne
capability to iniciate a proc on another node, knowing
that the home node is soon to be taken offline.

We have taken this approach because it is simple, giv~ng
a user adequate and safe control. The follOWing topics
must be addressed if 'ole a11o\1 these "detached" procs:

~oting thac a decached proc can run "forever", using
resources on oany nodes, should some sort of
privilege be required to initiace a decached ?roc?

39

- .'

/
I

•

Should a proc be alloved to initi~te a detached proc
without explicit user pe~ssion?

How must our proc invocation model change to
accommodate detached procs? (If. for example. a
detached proc wishes to conduct an interactive
dialogue. how is it handled?)

Assuming remote batch is supported. how many of the
capabilities provided by detached procs are also
covered by remote batch?

Should an exception handler in a detached proc be
executed when the proc that initiated it te~nates?

9. Varia;'les

"Local" variables are local in scope to the NOSCL
procedure in which they are declared. Local variables
=ay be defined by an interactive user; they are then
accessible only by that interactive user.

"Global" variables are accessible from any procedure or
procass (remote or local) invoked within a session of a
given user. that is. they are defined for the single
uSer. The user at the interactive level or any
synchronous proc (with an appropriate declaration). oay
read or write any global var1able; an asynchronous proc
may read any global variable. and may read or write any
global variable declared SHAREABLE.

A synchronous proc may also define "output" parameters.
hovever. ve do not state vhether the variables inco
which the output values are placed are set during proc
execution (call-by-reference) or upon proc te~nation
(call-by-value-result).

Cocment

This is the current TCL approach. extended by the
SHAREABLE case.

We do not provide in the language variables that are
global to more than one user. Such a facility eight be
helpful for inter-procedure se~phores. hovever, ve
leave inter-proc communication to processes. Which have
available vell-known inter-process com=unication
facilities.

40

,

The restriction that asynchronous procs may have
read-only access to a global unless it is declared
SHAREABLE is set to avoid unexpected asynchronous
effects; this is similar to the Qingle-node case in
classic progracm1ng languages where a user =ust~place a
variable in a special place in ~mory (a designated
FORTRAN COMMON area, for example) if it is to be shared.
Note, however, that if shareable variables are provided.
we may need to provide a transaction mechanism. because
we then have the possibility that there is a dependency
among two or more shareable variables--variable X is
twice Y. for example. A crash of a remote proc after
updating one of the variables. but not the other. would
leave the variables in an inconsistent state. See
[LAMPSON 81} for more discussion.

10. User attention sequence and proc aborts

An attention sequence is defined for each host OS
(control-C. for example on VAX/VMS). The attention
sequence solicits the attention of the local executive.

When the attention sequence is signalled to the
executive. the executive suspends execution of the
synchronous proc; the user ~y then abort a proc.
suspend a proc. continue, or execute a built-in coocand
that displays status or help info~tion.

If the attention sequence is used 1n order to get the
executive's attention while no synchronous proc 1s
running (to break through a te~nal read by an
asynchronous proc), then all executive commands are
available, including ?roc initiation.

If a procedure is aborted. any nest of procs below that
procedure is aborted as well.

Responses from a proc may appear at the user's te~nal

after the proc has been apparently aborted.

Comments

The synchronous proc is automatically suspended to allow
the user to 1c=ediately stop an operation out of
control. Generally, users will run remote procs
asynchronously; remote procs cannot be automatically
suspended because the executive doesn't ~now Which proc
to suspend. Sote that, when the user enters the
attention sequence, the user roust suffer the

41

,

i
1

cocmunication delay required to send a "suspend" message
from the local executive to the remote executive of the
synchronous proc.

Messages may be written to the user terminal after
apparent proc abort because of communication del~ys in
lending the abort message to the remote executive.

The user is restricted in the domain of operations
during the interrupt period because of the distributed
session context problem; it is not clear how the
context for a synchronous remote proc would be affected
if the user is able to execute commands that change the
context.

Some open questions to be studied:

o If an aborted procedure has initiated asynchronous
procs, are any procs it has initiated asynchronously
aborted as well?

o If we peronit remote synchronous procs
additional synchronous remote procs,
attention sequence result in a cascade of
messages from parent to child?

ii. Crashes

to run
does an

"suspend"

If a user has invoked a remote proc (synchronous or
asynchronous) and the node on which the proc executes
crashes, the user is informed that the proc has failed
because the node has crashed. The node name is provided
as well.

If a node crashes and it has initiated other procs,
those procs will be aborted.

Cocm.ents

We assume that the communication sof~~are in the machine
that invoked the proc has the capability to detect the
crash of a node hosting a proc it has invoked. The
crash would be signalled to the invcker through the
no~l proc termination mechanism, and the detailed
status would indicate "crash of remote node •••• "

42

- I
I
I ,

I

/

-
More analysis is required in regard to crashes. Some of
the questions are:

o Are there any "atomic actions" of concern to the
command language. that is. are there any command
level user actions that must be r~lled back to a
synchronization point? (See [LAMPSON 811 and
(LISKOV 81] for a discussion on atomic actions.)

o ~e have said that procs do not survive a crash of
the invoking proc's node. The reasons for this
decision are:

Procs are intended to be agents of an
interactive user; batch should be used
otherwise (see also discussion on "detached"
proes. under "Asynchronous Procs." above)

If procs are allowed to survive. then a
logging in would have to deal with
possibility that there are outstanding
that belong to his session.

user
the

procs

- We could provide a session recovery mechanism.
so that the parent session and proe is restored
to some synchronization point. but the recovery
and re-establishment of the communication to the
proper point is too complex to be worth~hile in
a command language. requiring transaction
processing ~chanisms and delicate timers in the
surviving procs. (See [LAMPSON 811 for a
discussion.)

Assuming that the proc is not aborted. ~ere do
responses go? Are they saved in a file and sent
when the crashed node recovers?

o If the parent node crashes and the child Froc is
aborted should an exception handler in the child
proc be triggered? This would be a useful, cleanup
mechanism, however, because the exception handler
could continue as if nothing happened, it implies
that the NOS must have a timeout mechanism on the
exception handler.

o Is there an efficient way to determine how much a
crashed remote proc has accomplished? The problem
is that some sort of logging is required: if the
log 1s on the same node as the remote proc, the user
cannot make the determination untkl that node comes
up; if the log is on a node remote to tbe logging

43

,
,

,J ,
" I ,

.....

r
f.
s

: ...
t
t ,

'I
i
I

I

[,
'. ; ,

..

t
!-

• \I

I
I
I

o

node, every command to be logged would require a
remote access. A possibility is to make this sort
of logging opt~onal, thereby making it available for
long-running procs, or for procs that run on
unreliable nodes.

From [SALIZER 78): How does the system manager know
when a node can be brought down without interrupting
an active remote operation?

12. Procedures

The full command language available for procedures on
single node systems is available on multi-node systems;
furthermore, all commands are available to the procedure
regardless of whether the procedure was invoked by a
user on the same node as the procedure or by a user
remote to the procedure.

Comments

We make this assertion for want of any
exceptions.

apparent

In addition, we offer the following notes on factors
affecting procedure portability~

Generally, we cannot assume that integer overflow
occurs at the same value on all nodes on the system.
Integer overflow at the same value is user-friendly,
but it 1s difficult to pick a suitable integer size
and inefficient to implement the same size integer
on machines With word sizes from sixteen bits to
sixty bits.

If the procedure language provides a floating point
type, the definition of a floating point number will
vary from node to node.

As noted under "Proc Invocation" above, a proc may
have been developed assuming a given set of
user-defined commands.

IneVitably, some procedures and processes will use
host facilities, generally for efficiency, often
because the facilit~es are not made available by the
NO~ •

44

/
/

/

13. Logging/History lists

NOSCL supports a session history consisting of
interactive commands to a single log file. Commands
from procedures are not logged.

COl!!l:lent

TCL currently supports this level of logging; procedure
commands are not logged because the TCL designers felt
that the log would become too large too quickly.

If logging of commands in remote procedures is to be
considered, the problem of merging the logging of
commands froo the home node with commands from remote
nodes must be studied. ~ote that commands from any
procedure may be logged to the standard output file, if
output is redirected appropria:ely.

14. Exception handling

Exception handling follows the model used in TCL: A
procedure may designate that, upon some "bad" status
from a proc or command, a procedure-defined "onfail"
command is executed (typically a GOTO). There is no
retry capability and no distinct exception signalling.
See [CENTURY 83a} for a description of the TCL model.

In addition, we
asynchronous
synchronization
above.

specify
proc is

command.

that an exception
signalled only
See "Asynchronous

from an
after a

Procs,"

Finally, we also define for the NOS a set of standard
NOS status codes for all known errors. (Thus, a
procedure exception handler can check for "node down"
status and perform appropriate recovery.)

Comment

We see no problem With this model in regard to working
in our network environment.

A problem to be studied is whether or not an exception
should be triggered upon the crash of a remote node that
hosts a currently executing proc, or upon the crash of
any user-specifled re~ote node. Our current position is
that first case will be handled by norcal proc

45

/
I

/

I
I

/

J

i
I

,I , ,

I
1/

I I
I •

te~nation handling; the second case is not handled.
Note that, for a c~~~d language that supports
exception handlers at the interactive level (TCt. does
not), a "node crash" excep.:ion can be the vehicle for
printing an appropriate ~~ssage to the user, or possibly
doing an automatic reconfiguration.

See [LANTZ 80] for more discussion on exception handlers
in distributed systems.

15. Help facilities

Help is available on built-in commands, on procs (remote
and local), on proc parameters, on error response
details, on the network configuration, and on
node-dependent capabilities and parameters.

The help co~nd also has a variation whereby the user
can obtain help on a built-in command as impl~ented on
a specified node.

Comments

The help information on built-in commands is made
available when a new version of the executive is
released. The user is provided with the ability to
direct a help request on a built-in coccand to a
specific nodp. because tnere ~y be different versions of
the executive on aifferent nodes. (Recall that the
remote e~ecutive executes procs submittp.d to that node.)

The help information on node-dependent capabilities is
made available when the executive is ported to a given
node. Included in this category are:

o the computer and operating system installed at this
node;

o the version number of the NOS executive installed at
this node;

o the values for
(the nueber
example);

executive configuration parameters
of parameters allo~ed on one line, for

o the values for host-dependent paraeeters (e.g., the
highest integer allowed);

46

I

/

/ .
.~

-'-

,

o host-dependent
floating-point)

restrictions (e.g. , no

o inter-node capabilities (e.g., "able to transfer
files between this node and nodes With the following
computer/OS pairs: ••• It)

16. Responses

A standard syntax is defined for responses at the user
terminal. It consists of:

(rsp-id) (rsp-text) [ON (node-id) (hst-text) <herr-code»)

The (rsp-id) is a unique identifying string for the
response. There exists a command through ~hich a user
may determine details on a specified <rsp-id>.

The (node-id) is given on all errors that originate on a
remote node; the (hst-text) is the host-dependent error
text and is given only if it is necessary in isolati~g

the source of the error; the <herr-~ode> is the
host-dependent error code, also given only if necessary.
There exists a cvmmand through which a user may
detercine details on a specified <herr-code>.

On all queries for details on a response, the
information provided is static; no information is given
relating to the response in the current context. In
addition, if a node is given in the error response, then
the node identification may be required in the user's
query for details; the default node is :he node that
last generated an error message.

Comments

The design for response mechanisms is based on existing
TCL mechanisms.

The model we have in mind for responses from remote
nodes is that remote execut~ves and procs send responses
through messages to a virtual terminal process on the
home node.

In regard to error information We distinguish these
classes of errors:

47

•

•

....

I
t ,
r

\
I·
t
I

I

1. Errors sol-:.1y in the NOS domain, "incorrectly
formatted expression" or "proc cannot be found" are
examples.

2. Errors solely in the NOS domain that are caused when
a user exceeds some executive configuration
parameter, the number of command line continuations,
for example.

3. Errors for which the description can be abstracted
by the NOSCL, but for which additional host data is
useful, for example, when a proc cannot be run
because a host quota is exceeded.

For the second and third cases, the details on an error
are node-dependent, thus node-dependent error
information is included in the error response.

An alternative to giving the node and host information
in the initial error response is to hide the information
until the user requests it. This approach, consistent
with the abstract machine approach used by Efe et al
[EFE 83], is left for further study. Another
alternative is to allow the user to specify whether or
not host error codes are to be displayed.

Another feature of the response philosophy used by Efe
is that only the highest level abstract machine
generates responses to the user. All lower level
machines field exceptions and abstract those exceptions
according to their machine specifications. In the
approach we use above, the executive or proc issues
responses to the user te~nal when the error is
detected. Thus, while the abstract machine approach
maintains an internal stack of error information, the
approach we use puts the same information on the
terminal.

We require that the node be specified when the user asks
for details on errors originating on remote nodes. This
was done for the follOWing reasons:

o A mapping for the host-dependent error codes of all
nodes should not be required at each node.

o If the error is of the second type described above,
it is reasonable to assume that only the node in
question has the configuration parameters for that
node.

48

,

. ,
\. •

•
'\0

'.

f. ,:

,
{;
'-

--11 .
•
iI
f.
J
~ ,

17.

o The details on NOSCL responses--responses common to
all nodes--are retained on each node along ~ith the
executive that generates the responses. This
assumption is consistent ~ith autonomy: a system
administrator installs a ne~ release of the
executive and associated response files when he or
she sees fit. Note that there is a natural link
bet~een a release of the executive and a release of
the files containing err~r message details.

Additional issues

The follo~ing important areas have not been studied:

o Ho~ are network and machine costs modeled for the
user and how does the co~nd language accommodate
the model? (See [ISO/SC16/N1217 82) for initial
efforts in this area.)

o What is the context ~hen a user designates host file
specifications and host commands? What is the
syntax for host commands to be executed on remote
nodes? Should a dialogue ~th the coomand language
interpreter on a remote host be supported?

0

Particularly important is the ability for a user to
bypass the NOS file system, because the ~OS file
system imposes at least one extra process between
the file requester and the file and may therefore be
too slo~ for the user's needs.

Given the host file escape mechanism, the user
should have the capability to dete~ne the host
name for an NOS file, and to dete~ne t~e host
context under which files are accessed (the default
name string, privileges, and access rights).

Note that the ability to escape into the host
command language is often critical in debugging NOS
futtctions.

Are all NOSCL commands executed synchronously or are
some asynchronous? For example, 1s the command that
~rites a record to the standard output synchronous?
Note that if a procedure on node N2 is initiated
from node Nl, the standard output is likely to be on
~H •

49

o How are files shared bet~een NOS users and non-NOS
users? Does the NOS have to lock other users out
when it is accessing a file?

o What should be the level of support for remote
batch, and how does it map into the capabilities of
host systems? See the SUB~T commands in eOSCL and
A . .fSI/X3Ul for guidance.

50

,

,~

• i' , ,
;!
!

I·
,l

:'
\
1
, .
'.~
:~

. ~
- ~
, ..
! .
~

" !
l"

~
~
I.
t
t
t
~. • ~

1
I
~

-1

1
i
)
J

I
~
'i
1

1
J

~ I
j
j
• ~

8.0 SUMMARy

In this paper our major concern has been how a
language changes when used in a local area
heterogeneous computers under autonomous control.

cOll1C!and
net of

We have concluded that the USQr of such a network should be
exposed to the location of ne:~ork resources; we identify
the follcwing key issues that muSt be resolved before a
com=and language can be imple~ented:

o What must be done so that the network operating
system efficiently supports procedures and
processe~ executin~ on a node remote to the node at
which they are invoked? What are the major factors
in proc initiation time? • Is the number of
parameters Significant? ~ust the size of the
session context be li~ted?

o If remote procs can be supported. are the sace
invocation and prompting mechanisms available as
f or local procs?

o Are there any rest~ictions on
available in remote procedures?

the cOm::!3nds

o Although costing for a distributed enviro~ent is a
complex topic. the user =ust have some way to
asses~ the costs resulting from a seSSion, hew are
net~ork and cachine costs ~odeled for the user and
how does the cOm::!3nd language accommodate the
model?

o Should the net~ork operating system executives,
which perform cocmand irre~retation on each nOde,
be paramecerized according to the ~oory and disk
space available on the hosting node?

o How much of the protection mechanism =ust be
specified in an ~OS command language? How do
protections map into host protection Qechanisms?

o Finally, noting Thurber's advice [THURSER 81] can a
useful distributed system be built on top of
existing hardware and soft~are?

S1

- ------ .. _--- ...

-

•

, '

ABBREV!.-\1'!O~S:

ANSI: Aaer1can ~ational Standards Institute

CA~: Coccunications of the A~

IEEE Trans S/W Engr: IEtE Transactions on Soft~are
Engineering

IFIP: International Federation for Information Processing

ISO: International Organization for Standardization

Op Sys Rev: ACf SIGOPS Operating Systecs Review

SOSP: A~ Symposium on Operating Syste~ Principles

S/W P & E: Software Practice and Experience

R.EFERE~C::S:

AC1WJAL\ 83
A. Agrawala, University of Xaryland, personal
coccunication with the authors

ANSI/ossn 79
A!tSI, "OSCRL User Requirecents," Rev 7, A.~SI
X3HI/OS-SD, Dece~ber 1979

ANSI/06sn 79
A.'iSI, "QSCRL Functional Requirements," Roav 5, A.~SI
XJa1/06-SD, December 1979

A.'iSI/09SD 84

BEECH 80

A..'iSI, "Operating System C"c:.m.and and Response
La.nguage (OSeRt) Language Specification (DRAFT),"
Rev 18, ANSI ~3H1/09-SD. January 1984

D. Beech. ' "hat is a Co:cand Language?" in Comc.and
Language Directions [D. Beech, ed.],
Sorth-holland. r;su

52

-

./
/

BELL 79
Bell Laboratories, UNIX Time-sharing System: U~IX
Programmer's X3nual, Seventh Edition, Bell
Laboratories, incorporated, ~rr3y Hill, ~ew
Jersey, January 1979

BIRRELL 82
A. Birrell, R. Levin, R. Needham,~. Schroeder,
"Grapevine: An Exercise in Distributed Computing''.
Communications of the A~, 25/4, April 1982, pp
260-274

BRADEN 80
R. Braden,~. Ludlam, "NSW Final Technical
Report", UCLA 'l'R-Z7, ARPANET Computing Services in
Support of the ~ational Software Works, June
I-February 1980.

BROWNBIUDGE; 82
o. Brownbridge, L. ~rshall, and B. Randell,
"The Newcastle Connection or U~IXes of the World
Unite!" S/W P & E, Vol 12, 1982, pp 1147-1162

CENTURY 83a
Century Computing, Aoolications Pro~r3mcer's
Reference ~nual for the !ransoortabl~ ~oolications
Executive, Century Computing, Inc, Document ~o.

82-!AE-P~V1E, November 1983

CE!m1RY 83b

COSCL 82

CLARK 80

Century Computing, User's Reference ~nu31 for ~he
Transportable Aoplic3tions E~ecutive, C~nturl

Computing, Inc, Document ~o. 82-TAE-USRV1E.
November 1983

CODASYL, "CODASYL Coemon Operating Systems CoCltland
Language (COS~ ..) Journal of Development," Version
2.2, CODASYL Cocmon Operating Systems Coemand
Language CoaQittee. November 1982

D.O. Clark and L. Svobodova '~esign of
Distributed Syste:ns Supporting Local Autonomy,"
Spring 1980 CO~CON. pp 438-444

53

r
•

\...

DAVIES 81
D.W. Davies, "Protection," Ch. 10 in Distributed
Systems - Architecture and I~ole~entat1on (Lampson,
Paul and Sie8er~ ed.}, Springer-Verlag, 1981

DIGITAL 82.1
Digital Equipment Corporation, I~~~/VMS Cocmand
Language User's Guide," Digital Equipment
Corporation order no. AA-D023C-!E, May 1982

DIGITAL 82b

EFE 83

Digital Equipmenc Corporation, "DECnet-VAX User's
Guide," Digical EquitlClent Corporation order no.
AA-H802B-!E, May 1982

K. Efe, C. Hiller, K.
KiwineC-Nicola Approach:
User-Friendly Interface",
Sepcember 1983, pp 66-78

Hopper, ''The
Response Generation in a
IEEE COMPUTER, 16/9,

FLETCHER 80
J. Fletcher and R. Wacson, "Service Supporc in a
Netvork Operating SysteM," COMPUTER !iE1",.;ORKS, Vol
4, February 1980, pp 415-424

FLETCHER 82
J. Fleccher and R. Watson, "An Overview of LI~CS
Architecture," UCID-19294 , Lawrence Li'le~ore
National Laboratory, ~ovember 1982

FORSDICK 78

HARDY 82

HOARE 78

H. Forsdick, R. Schanc:, R. ThOCl.'lS, "Operating
Systecs for Computer ~ecvorks", COMPUTER, January
1978, pp 48-57.

I.H. Hardy, "The Syntax of Inceract1ve Coc:ca.nd
Languages: A Framework for DeSign," Sof:·.lare
Practice and Experience, Volume 12, 1982, pp 67-75

C.A.R. Hoare, "Cotm:lUnicat1ng Sequential
Processes," CACi 21/8, August 1973, pp 666-677

54

---~---

/

/

/

/

,

f

/

ICKBIAH 79
J.D. Ichbiah, J.C. Heliard, O. Roubine, J.G.P.
Barnes, B. Krieg-Br'leckner, B.A. Wichmann, "Ada
Rationale," AQi SIGPLAN Notices, 14/6, June 1979

IFIP/WG2.7 1983
IFIP, "The IFtP ~G 2.7 Reference :iodel for Command
and Response Languages," [Beech and Kugler ed.],
IFIP, August 1983

150/051 82
ISO, "Information Processing Systems - Open
Systems Interconnection -- Basic Reference Model,"
ISO/DIS 7498, April 1982

ISO/SC16/N1217 82
ISO, "051 Management Framework (Third Working
Draft)," ISO/TC97/SC16/N1217, August 1982

ISO/SC16/N1454 83

JONES 79

ISO, '~orking Draft of File Transfer, Access and
Management - The Virtual File Store,"
ISO/TC97/SC16/N1454, February 1983

A. Jones, R. Chansler Jr., I. Durham, K.
Schwans, S. Vegdahl, "StarOS, a ~ulti?rocessor
System for the Support of Task Forces," Proceeding~
Seventh SOSP, December 1979, pp 117-127

KL'1BLEION 78
S. Kimbleton, H. Wood, and:i. Fitzgerald,
"Network Operating Systems--An I:nple<::1entation
Approach", in 1978 Natioral Computer Conference, pp
773-782

KIMBLETON 31
S. Kimbleton, P. Wang, and B. Lampson,
"Applications and Protocols," Ch. 14 in
Distributed Svstems - Architecture and
Imole:entation (Lampson, Paul and Siegert ed.].
Springer-Verlag, 1981

55

--.-

r
I
I

• I

:~ ,

l ' Y---­
~

-- I I I

KUGLER 80
H.J. Kugler, N. Lehmann, P. Putfarken, C.
Unger, "The Construction of User Interfaces - A
Guide for Defining Abstract ~chines," Project
NICOLA, University of Dortmund, November 1980

LAMPORT 78
L. Lamport, "Time, Clocks, and the Ordering of
Events in a Distributed System," CAO! 21/7, July
1978, pp 558-565

LAMPSON 81

LANTZ 79

LANTZ 80

LANTZ 82

B. Lampson, "Atomic Transactions," Ch. 11 in
Distributed Systems - Architecture and
Implementation [Lampson. Paul and Siegert ed.).
Springer-Verlag. 1981

K. Lantz, R. Rashid. ''Virtual Terminal ~nagement
1n a Multiple Process Environment", Proceedings
Seventh SOSP. December 1979, pp 86-97.

K. Lantz, "Unifor:n Interfaces for Distributed
Systems". Cocputer Science Dept •• University of
Rochester, 'I'R 63, ~y 1980.

K. Lantz, K. Gradischnig, J. Feldman. R.
Rashid. "Rochester's Intelligent Gateway", IEEE
COMPUTER. October 1982, llP 54··68

LAZOWSKA 81

LISKOV 79

E.Lazowska. H.Levy, G. Almes,~. Fischer, R.
Fovlet', S. Vestal. "The Architecture of the Eden
Syste!!o" , Proceedings 8th SOSP. Dececber 1981, pp
148-159

B. Liskov, "Primitives for Distributed Computing,"
Proceedings Seventh SOSP, December 1979, pp 33-42

56

'i

....
r
\

I ~

• • ,

LISKOV 81

OPPEN 83

B. Liskov, "Report on the Workshop on Fundamental
Issues in Distributed Computing," ACi Op Sys Rev
15/3, July 1981, pp 9-38

S.A. Mamrak and D. Leinbaugh, "A Progress Report
on the DESPERAN'IO Research Project," in ACi Op Sys
Rev, 17/1, January 1983, pp 17-29

D.C. Oppen and Y.K. Dalal, "The Clearinghouse: A
Decentralized Agent for Locating Named Objects in a
Distributed Environment," in ACi Transactions on
Office Information Systems, 1/3, July 1983, pp
230-253

PEEBLES 80

POPEK 81

REED 79

R. Peebles and T. Dopirak, "ADAPT: A Guest
System," in IEEE Spring 1980 COMPCON, ?p 445-452

G. Popek, B. Walker, J. ChoY, D. Edyards, C.
Kline, G. Rudisin, G. Thiel, ''tOCUS: A Net ... ork
Transparent, High Reliability Distnbuted System,"
Proceedings Eighth SOSP, December, 1981, pp 169-177

D. Reed and R. lCanodia, "Synchronization with
Eventcounts and Sequencers" <:ACt 22/2, February
1979, pp 115-123

ROBINSON 77

ROWE 82

R. Robinson, "National Soft ... are works: OVervie'.J
and Status," IEEE COMPCON, Fall 1977

L. Rowe and K. Bir'::13.n, "A Local Net·Jork Based on
the U!HX Operating System", IEEE Trans SIt,; Engr, pp
137-146, Volume 5E-8, March 1982.

5AL!ZER 78
J. Saltzer, "Research Proble:ns of Decentralized
Syste:ns W'l.th Largely Autonomous ~odes," ACi Op 5ys

57

,

~
~ , .
I
t

i

Ii
1

/ I ,

i
I I

I

, ,

/
i I

/ /
I

/

Rev, Volume 12, January 1978, pp 43-52

SCHICKER 75
P. Schicker, W. Baechi, and A. Duenki, "Job
Control in a Heterogeneous Computer Net·Jork",
ONLINE-75 Conference, Online Conference Limited
1975, Uxbridge, England, pp 537-545

SCHNEIDER 82
H.L. Schneider, '~odels for the Design of Static
Sof~"'are Assistance" in Directions in Human
Computer Interaction red Shneiderman and Badre),
Ablex, 1982

SHNEIDER.."iA.~ 80

SHUH 82

B. Shneiderman, Sof~Jare Ps~chology, Winthrop
Publishers, Cambridge, 1980

D.C. Smith, C. Irby. R. Ki~ball, B. Verplank,
"Design of the STAR User Interface," BYTE, April
1982, pp 242-282

THURBER 81

WATSON 81

K. Thurber, page 491 in Distributed Svste~ -
Architecture and I~ole~entation [Lampson, ?aul and
Siegert ed.], Springer-ierlag. 1981

R. Watson "Identifiers (naminc) i:1 Distributed
Systems, It Ch. 9 in Dist::'ibuted Syste:ns -
Architecture and !~ole~entat~on [Lampson, Paul and
Siegert cd.}, Springer-ierlag, 1981

58

,

I ,
/

I

I

..

/
I

f.
f
~ .
• \ ,

It
I~
,~

'j

Ii
~ ,
• t
tt

!

l
;.'
I
//
I

! '
'- __ Li __

APPENDL'< A

CHECKLIST FOR NE'I"..lORK COMMAND LANGUAGES

The following is a list of questions to use in examining a
given network command language.

o Architecture of the net:

Local net or long haul?

Heterogeneous or homogeneous?

If homogeneous, what machine/OS constitutes the
nodes?

If heterogeneous, -'hat machines/OS's supported?

Gateways supported?

Autonomous nodes?

o Purpose of the net:
production environcent?

Is the net used in
A research environment?

o General description of the command language

a

Did the command languag~ antedate the network?
If so, was it changed to accomodate the
network?

Any commands that would not exist 1f the ~/W

did not eds t?

Does the command language look the exactly same
from any terminal on any node'

A-1

i

•

/

/

I --

/

CHECKLIST FOR NETWORK CO~~D ~~GUAGES

- Are procedures supported? Are remote
procedures supported? Any limitations on what
goes in them? (e.g., can a remote procedure
read from the user's terminal?)

- Are remote 10gins supported?

Is there a uniform method for logging in to any
terminal on any node?

o File system

- Are names hierarchical or flat?

Central or distributed directory?

- Filespec?

Protections?
lists?)

{e.g.,

- Replicated directory?

capability? access

Can all the resources (i.e., files and devices)
required by a proc can be secured before the
proc is run? If so, how? (E.g., user-explicit
lock)

Is remote record access supported? If not, are
files copied upon proc initiation?

o Perfor:nance:

- Time to locate and initiate a proc?

- Time to copy a null file between two nodes?

- Time to copy an n-byte text file between two
nodes assuming no translation?

- Time to copy an n-byte text
nodes assuming translation
ASCII)?

file between two
(e.g., EBCDIC to

- Time to copy an n-byte data file assuming data
type translation?

A-Z

. ''\

j

"

~

(

•
CHEC~LIST FOR NETWORK COMMAND LANGUAGES

o Illterrupts:

Is the attention sequence terminal and
node-independent?

How is a remote proc aborted?

Can a user run more than one proc at a time?
If not, can a remote proc be interrupted while
some built-in CCtmIl3nds (e.g., "show status" or
"help") are executed?

o How does a user get charged for:

0

0

0

Execution of a remote proc

Use of a file, directory, or device on a remote
system (including execution of a remote file
server)

- Maintenance of remote files

Remote mounting of tapes

Is there Some model of a user getting charged to
the one user id under which the user logs on (i a.,
the user's 1d under the network OS)? If so, hCJ is
this accumulated?

Privileges:

- Any notion of privileges in the user view?

What kind of pri vileges does the user have
under the host?

Quotas/limits:

Any notion of quotas in the user view?

What kind of quotas does the user have under
the host?

Crash/recovery:

Is the user in.formed of the crash of a remote
node?

A-3

o

CHECKLIST FOR NETWORK COMMAND LANGUAGES

Does the NOS attemp~ any recovery?

Miscellaneous:

Special security mechanisms
passwords/privileges)?

(e.g., extra

Any special resource management considerations?
(TaD)

Can a user send a message to anyone on the net
using the same command and addressing as a
local message? Can the user send a message to
a system operator?

A-4

,

, , ! - ~

~ ; -<" _ ..

~ .. ., .. ¥ 1'-"

- '" \-

--
" ~ ,

, -

, "

" ,

~

, ,

-
, "

- , ,

End of Document

