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SUMMARY

The closed-loop stability of linear time-invariant multivariable systems con-
trolled by linear quadratic (LQ) full state feedback regulators is investigated when
certain types of nonlinear gains are present in the feedback loop. The nonlineari-
ties N(O) considered are assumed to violate the LQ regulator stability condition,
N(_) _ 0.502, either (1) for values of _ away from the origin (_ = 0) or (2) for

values of _ in a bounded region containing the origin. It is proved that there
exists a region of attraction for case (I) and a region of ultimate boundedness for
case (2), and expressions are derived for these regions. The analytical results
obtained provide methods of selecting the performance function parameters in order to
design LQ regulators with better tolerance to nonlinearities. The results are
demonstrated by application to control of the pitch-axis attitude and elastic motion
of a large, flexible space antenna in the presence of saturation and hysteresis non-
linearities in the actuators.

INTRODUCTION

Synthesis of control systems for state or output regulation of linear multivari-
able systems is one of the most important problems of system theory. In particular,
for linear time-invariant (LTI) systems, the infinite duration linear quadratic (LQ)
regulator consists of constant linear feedback of the system state vector. Under
certain stabilizability and detectability conditions, the closed-loop system is
asymptotically stable (ref. I). The infinite duration optimal LQ regulator has been
shown in references I and 2 to also have highly desirable robustness properties,
namely, an infinite gain margin, a phase margin of ±60°, and tolerance to single-
valued, memoryless nonlinearities in the feedback loop which belong to the (0.5,_)
sector. (A function N(_) is said to belong to the (K1,K2) sector if N(0) = 0 and
KI_2 < _ N(O) < K2_2 for _ _ 0.) In practice, however, many nonlinearities do not
satisfy this sector condition. Figure 1 shows some commonly encountered nonlineari-
ties which violate the (0.5,_) sector condition. For example, a saturating amplifier

has effective gain of less than 0.5 for _ < _I and _ > _2 (i.e., "away from the
origin"). For the dead zone shown in figure l(b), the sector condition is violated
in a neighborhood of the origin. A hysteresis nonlinearity (with a gain greater than
0.5 in the linear region) also violates the sector condition in the neighborhood of
the origin (fig. I(c)). (Also, since hysteresis has memory, the LQ robustness
property mentioned previously does not apply.) Therefore, this paper extends LQ
regulator robustness to a broader class of nonlinearities, namely, (I) to those which
satisfy the sector condition at least in a neighborhood of the origin and (2) to
those which satisfy it in regions away from the origin, but perhaps violate it in a
neighborhood of the origin.

The closed-loop stability of linear systems with nonlinearities in the feedback
loop (that is, the so-called Lur'e problem) has received considerable attention in
the literature. (See ref. 3 for a brief history of the problem.) The nonlinearities
considered in much of the literature were confined to a particular sector, called the
stability sector. The stability of systems with nonlinearities that escape the sta-
bility sector were investigated in references 4 and 5 for single-input, single-output
(SISO) systems. For SISO Lur'e-type systems, it was proved in reference 4 that when



the nonlinearity violates the stability sector (i.e., Popov sector (ref. 3)) away
from the origin, there exists a region of attraction. That is, all the trajectories
originating in that region asymptotically approach the origin. A method for obtain-
ing an estimate of the regions of attraction was also given in reference 4. The
analysis was extended to multi-input, multi-output (MIMO) systems in reference 5.

A region of ultimate boundedness is defined as a compact region containing the
origin in the state space such that trajectories starting from any initial state
enter that region within a finite time and remain inside that region thereafter
(ref. 6). When the nonlinearity in an SISO Lur'e-type system satisfies the sector
condition in regions away from the origin, but violates it in a bounded region con-
taining the origin, it was proved in reference 7 that there exists a region of ulti-
mate boundedness, and an estimate of the region was obtained.

The problem considered in this paper is somewhat similar to the Lur'e problem
for MIMO systems. It differs from the Lur'e problem because the optimal feedback
gain is included in the loop and because optimal LQ regulators have certain special
properties. In particular, since the Riccati matrix is positive definite (under
certain stabilizability and detectability assumptions (ref. I)), its quadratic form
represents a natural candidate for the Lyapunov function. By capitalizing on the
special properties of optimal LQ regulators, estimates are obtained for the regions
of attraction and ultimate boundedness for systems having nonlinearities belonging
to the classes that were described previously, referred to as cases (I) and (2)
hereafter.

The organization of the paper is as follows. The formulation of the problem is
given in the next section. Then, for case (I), a theorem is proved which gives the
region of attraction followed by a useful corollary that is applicable when the con-
trol weighting matrix is diagonal. The subsequent section includes theorems which
give the regions of ultimate boundedness for case (2). The analytical results are
demonstrated by application to attitude control of a large space antenna. On the
basis of the analytical and numerical results, it is concluded that LQ regulators
with better tolerance to nonlinearities can be designed by adjusting the performance
function parameters.

SYMBOLS

A system matrix

a point of intersection of hysteresis nonlinearity with _-axis

B input matrix

d scalar defined in equation (18)

G regulator gain matrix

h scalar defined in equation (29)

h' scalar defined in equation (37)

J quadratic performance function

Kh slope of hysteresis nonlinearity in linear region



LQ linear quadratic

_ji scalars representing violation of sector conditions

m order of control vector

N m-vector valued function

n system order

P Riccati matrix

Q state weighting matrix

matrix defined in equation (32)

qi modal amplitude for ith mode

R control weighting matrix

m
R space of real m-tuples

ri entry in ith column of diagonal matrix R

Sl,S2 inverse images of Za and Zb

S3 set defined in equation (36)

Sa'Sb'S'b sets defined in equations (17), (28), and (38)

u actual control vector

uc command control vector

V Lyapunov function

V' scalar proportional to volume of a hyperellipsoid

X,Y,Z axis system for hoop-column antenna (fig. 4)

x state vector

xi ith component of state vector x

Ymax maximum angular displacement about Y-axis of hoop-column antenna

degree of stability

F matrix satisfying equation (6)

6 positive scalar

8 rigid-body pitch angle

ki(P) ith eigenvalue of P
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km,kM smallest and largest eigenvalues

scalar defined in equation (35)

Lagrange multiplier

Pi damping ratio for the ith mode

_a,Zb sets in Euclidean space of real m-tuples

m-vector argument of N

Oi ith component of vector

nonlinear function defined in equation (11)

#i ith component of vector

_ij mode slope for the jth mode at location of ith actuator

QI,Q2 sets defined in equations (32) and (33)

_i natural frequency of ith structural mode

Notation:

U union of sets

n intersection of sets

C is a subset of

is an element of

[1,m] the set of integers from I to m including I and m; e.g., i _ [1,m]
means I < i < m

det( ) determinant of a matrix

IIII Euclidean norm

Superscripts T, -1, and c respectively denote matrix transpose, inverse, and
complement. A bar over a symbol denotes the boundary of a set. A dot over a symbol
denotes the derivative with respect to time.

PROBLEM FORMULATION

The system is given by

_ =Ax +Bu (1)

where x and u are n- and m-dimensional state and control vectors, and A and
B are n × n and n x m constant matrices. Unlike the Lur'e problem (ref. 3), A
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need not be Hurwitz; that is, A may have eigenvalues with nonnegative real parts.
Consider the infinite duration regulator problem where the following performance
function is minimized:

2_t(xTQx TJ = I e + u Ru) dt (2)
o

where _ is a nonnegative scalar representing the required degree of stability,
Q is an n × n symmetric, positive semidefinite matrix, and R is an m x m positive
matrix. The control vector u(t) which minimizes J in equation (2) is given by
(ref. 1)

u = Gx (3)

where

-I T
G = -R B P (4)

and

T -I T
A P + PA + 2_P + Q - PBR B P = 0 (5)

Since Q is positive semidefinite, it can be expressed as

Q = FTF (6)

where F is an n × n matrix. Riccati equation (5) has a unique positive definite
solution P if (A,B) is controllable and (F,A) is observable. These controllability
and observability conditions are assumed to be satisified for systems considered in
this paper. Under these conditions, the eigenvalues of (A + BG) have real parts less
than -_. Let

T
V(x) = x Px (7)

It can be shown that (ref. 1)

V[x(t)] < e-2_t V[X(0)] (8)

That is, the closed-loop system has the degree of stability _.



In practical situations, nonlinearities exist in control actuators. In that
case, equation (3) is replaced by

u = Gx (9)c

u = N(u ) (10)c

where uc and u represent the commanded and actual control inputs, and N(_)
denotes an m-vector valued, possibly time-varying nonlinear gain function of the

m-vector argument _. From references I and 2, the closed-loop system is asymp-
totically stable in the large (ASIL) if oTR[N(_) - 0.50] > 0; that is, if
_TR _(_) > 0, where

_(_) = N(_) - 0.50 (11)

The closed-loop system is given by

= AlX + B _5(uc) (12)

where uc is given by equation (9) and

A 1 = A + (1/2)BG (13)

It has been established in reference I that A1 is a strictly Hurwitz matrix.

REGIONS OF ATTRACTION

Consider nonlinearities that belong to the (0.5,_) sector in at least a neigh-
borhood of the origin (case I described previously); that is, suppose the nonlinear-
ity _(_) is such that the condition

T
R @(_) > 0 (14)

is satisfied for G € Za C Rm, where Za denotes a nonempty region containing the
origin in the space Rm of real m-tuples. For this case, an estimate of the region
of attraction is obtained in this section.

Suppose the region Za contains a neighborhood of the origin (that is, the set
{zlz C Rm, llzU_ 6} for some 6 > 0, where llzH denotes the Euclidean norm). The
inverse image SI C Rn of Za is defined as

sI {xlGxc Ya} (15)
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Let _ denote the boundary of Za' and let $1 be its inverse image; that is $I
is theaboundary of St:

={xlGxc } (16)

The following theorem gives an estimate of the region of attraction.

Theorem I: If condition (14) is satisfied for _ € Za, the closed-loop system
of equations (I), (4), (9), and (10) is asymptotically stable (AS), and Sa is a
region of attraction where

s :{xlxTpx<d} €17)a

d = min (xTpx) (18)

xCsI

Furthermore, the system has the degree of stability _ inside Sa.

Proof: Differentiating V(x) in equation (7) and using equations (12), (13),
(4), (5), and (9) results in

T
= -x (Q + 2_P)x - 2uTR _(u ) (19)c c

Condition (14) is satisfied for Uc _ Za, that is, for x _ SI where SI is given
by equation (15). Since Za contains a neighborhood of the origin of Rm, S1
contains a neighborhood of the origin of Rn. The situation under consideration is
depicted in figure 2 for a two-dimensional system. Consider the region

R6 = {xlV(x) _ 6}. If R6 C $1, R6 is a region of attraction because V > 0
and V < 0 along all trajectories in R6. Since SI contains a neighborhood of
the origin, there exists a 5 > 0 such that R6 C S1. If 6 is successively
increased, the largest 6 for which R6 C SI occurs when a boundary point of S1
is reached. This boundary point is also the value of x that minimizes V(x) for

x C $I' as stated in equation (18). Thus Sa is a region of attraction. Also, from
equation (19), _ < -2_V inside Sa, which implies that (ref. 1)

V[x(t)] < e-2_t V[X(0)]

Thus the closed-loop system has the degree of stability _ inside Sa.

In practice, the case when each component Ni of N (and therefore, each _i )
is a function only of Oi is more meaningful. Instead of condition (14), suppose
the nonlinearities satisfy the condition

°i #i (O')l> 0 For _Ii < O.l< _2i' i C [1,m] (20)



For example, the input-output graph of the saturating amplifier of figure l(a) satis-
fies condition (20). When condition (20) is satisfied, 7.a is a region bounded by
hyperplanes in Rm given by

7.a = {01%1i < o.:]_< %2i' i € [1,m]} (21)

where %Ii < 0 and %2i > 0. Condition (14) is satisfied for o C Za" Let
denote the set a

a = {O10 _ 7.a' O.1 = %1i or %2i' i € [1,m]} (22)

Corollary 1.1: Suppose that R is a diagonal matrix with entries ri > 0
(i _ [1,m]) and the nonlinearities are such that condition (20) is satisfied. Then
an estimate of the region of attraction for the closed-loop system given by equa-
tions (1), (4), (9), and (10) is given by Sa where

S = {x]xTpx < d}a

Td = min [(% .r ) biPbi
i_[1,m] jl i ] (23)
j_[1,2]

where bi denotes the ith column of B. The system has the degree of stability
inside Sa.

Proof: In this case, differentiating V(x) in equation (7) results in

m

= -xT(Q + 2_P)x - 2 I r.u . _i(u .) (24)i Cl Cli=I

where

T

Uci = gix (25)

T is the ith row of G, given byand gi

T -I T

gi = -r. b.P (26)l 1



The set $I in this case consists of portions of hyperplanes Tgix = _ji

(j € [1,2], i C It,m]), and SI is the region which is partially bounded by
these hyperplanes. Using theorem AI given in the appendix,

_2 / T -I

min (xTpx) = _ji/gip gi (27)T
gix=_ji

Substituting equation (26) and performing minimization over the region Sl yields

equation (23) in the statement of the corollary. As was seen in the proof of
theorem I, V > 0 and V < 0 along all trajectories in Sa (because of assumed
observability of (F,A)), which is defined by equations (17) and (23); thus, Sa is
a region of attraction. It is straightforward to see from equation (24) that since

Uci _i(Uci) > 0 in Sa, the system has the degree of stability _ inside Sa.

Corollary 1.1 enables one to readily determine an estimate of the region of

attraction for an LQ design, given _ji" Furthermore, equation (23) provides a
method of adjusting weights in order to make regions of attraction larger. For

example, if _Ik is small compared with the other _ji (i.e., if the kth nonlinear-
ity violates the sector condition much closer to the origin than the other nonlinear-
ities do), one may increase the weight rk to make the region of attraction larger.

REGIONS OF ULTIMATE BOUNDEDNESS

This section considers nonlinearities N(O) that lie outside the (0.5,_) sector

only in a neighborhood of the origin (case 2 described previously).

Let Zb C Rm denote a compact region containing the origin. Suppose the func-
tion N(O) is such that condition (14) is satisfied in Z_, where the superscript c
denotes the complement. Suppose that #(_) is bounded for o C Zb. Let S2 C Rm
denote the inverse image of Zb, that is,

s2:{xlGx€

and let $2 denote the boundary of S2. It is assumed in this section that Q is
chosen to be positive definite if _ = 0. The following theorem gives an estimate of
the region of ulitmate boundedness.

Theorem 2: If condition (14) is satisfied for _ CZ_, and if _(_) is bounded
in Zb, then the region Sb is a region of ultimate boundedness for the closed-loop
system given by equations (1), (4), (9), and (10), where

sb = {xlxTpx h} (28)



where

h = max (xTpx) (29)

QIUQ2

_i {xlxT__ xCs2} (30)

_2 {xlxT_<_ xC_2} (31)

= Q + 2_P (32)

= -2 min [oTR _(O)] (33)

b

Proof: As in the proof of theorem1, differentiating V(x) in equation (7)
resultsin

= -xT_x- 2u_R_(uc) (34)

where Q is defined in equation (32). Since (by assumption) Q is chosen to be
positive definite if _ = 0, Q is positive definite. Then, condition (14) is

_atisfied for _cCZ_, that is, for x C S_. Therefore, from equation (34),
V < 0 for x _ S2. Using equation (33) in equation (34), we have

_ -xT_ + _ (35)

Therefore, V < 0 for x _ S3, where

s3 {xlxT_>_} (36)

Therefore, _ < 0 along all trajectories for x _ S3 U S_. According to refer-
ence 6, the system is ultimately bounded in a compact region containing the origin
of the form

sb {xlvcx)_h}

if V > 0 and _ < 0 along all trajectories in S_, and if V(x) . _ as llxll. _.
The least conservative estimate of the region of ultimate boundedness is obtained by
finding the smallest h that satisfies these conditions. Thus the smallest hyper-

ellipsoid containing the region (S3 U S_)c = $2 _ S_ must be found. The smallest
hyperellipsoid containing a region is the one containing its boundary, which in this
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case is QI U Q2 where QI and Q2 are defined in equations (30) and (31). The

situation is shown in figure 3 for a two-dimensional system.

The maximization of equation (29) is difficult to perform analytically because

of the nature of the region QI U Q2" A more easily obtainable, but possibly more

conservative (i.e., larger), estimate of the region of ultimate boundedness is

obtained by performing the maximization over a larger region, that is, by using h'
instead of h where

h' = max (xTpx) (37)

xT_=_

Theorem 3: For the closed-loop system of equations (I), (4), (9), and (10), an

estimate of the region of ultimate boundedness is given by

{xlxTpxh} (38)
where

h' = _/[2_ + km(p-lQ)] (39)

where _ is defined in equation (33) and km denotes the smallest eigenvalue.

Proof: The proof is obtainedby minimizing V(x) over the region

{xlxT_ = _}, which contains the region Q1 [J Q2 used in theorem 2. Using
theorem A2 in the appendix,

max (xTpx) = _ kM(Q-IP) = _/km(P-IQ) (40)

xT_=_

where kM and km denote the maximum and the minimum eigenvalues. (Since Q > 0
and P > 0, the eigenvalues of _-Ip are all real and positive (ref. 8).) Equa-
tion (39) is obtained by using equation (32) in equation (40).

When R is diagonal, we have from equation (33)

m

= -2 min _ r.o. @i(O) (41)i i i
O_ b i=1

' small, _ (a positive scalar) should be made as small asFor making Sb or Sb
possible. From equation (41), _ can be made smaller by reducing the weights ri
corresponding to those input channels having nonlinearities that most severely
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violate the (0.5,_) sector condition (i.e., for oi _i(_i) most negative in
the violation region). Also, from equation (39), h' can be made smaller by

(I) increasing _ or (2) increasing Q. Although the reduction of S_ is not
guaranteed because of the dependence of P on Q and 5, these procedures provide
methods of performing parametric studies to obtain an LQ design with an acceptably
small region of ultimate boundedness.

NUMERICAL RESULTS

In order to demonstrate the analytical results obtained, the problem of control-
ling the rigid-body pitch angle and elastic motion of a large, flexible space antenna
was considered. Figure 4 shows the hoop-column antenna concept, which basically con-
sists of a deployable central mast attached to a deployable hoop by cables held in
tension. A secondary drawing surface is formed by quartz or graphite stringers
attached between the hoop and the mast, and the radio-frequency (RF) reflective mesh
is attached to the secondary drawing surface by mesh shaping ties. To achieve the
required RF performance, the rigid-body attitude of the antenna must be precisely
controlled, and the elastic motion must be kept very small. The mathematical model
considered in this paper includes the rigid-body pitch angle about the Y-axis and the
first two bending modes in the XZ-plane. The nominal pitch-axis model is given by

I@ = TI + T2 (42)

where I is the Y-axis moment of inertia, @ is the rigid-body pitch angle, and
T1 and T2 are the Y-axis control torques applied by control moment gyros (CMG's)
at points I and 2 shown in figure 5. The elastic motion for the ith structural mode
is given by

°o

qi + 2Pi_iqi + 0_2qi = _liT1 + _2iT2 (43)

where qi' Pi, and _i denote the modal amplitude, inherent damping ratio, and the
natural frequency for the ith mode, and _i denotes the ith mode slope at actuator
location j. The parameters of the 122-m-liameter hoop-column antenna are taken from
reference 9 and are given in table I. The elastic deformations due to the two bend-
ing modes are shown in figure 6. An optimal LQ regulator can be designed for this
model to minimize the performance function in equation (2). It is assumed in this
example that the entire state vector x, defined as

x coql&1q2&2)T €44)

is available for feedback. The following two types of nonlinearities are considered:
(I) saturating actuators and (2) actuators with hysteresis.
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Saturating Actuators

Assume that the actuator characteristics of both actuators are as shown in fig-
ure 1(a) and are given by

_sc For ITcl _ Tmax
T = (45)

gn(T )T For ITcl > Tc max max

where Tc, T, and Tmax denote the command torque, the actual torque, and the
maximum torque, and sgn( ) denotes the signum function. The value of Tmax
is assumed to be 1.627 x 105 N-m. (This value is rather large from a practical
viewpoint, but is only used as an example.) Since the slope of the nonlinearity is
unity in the linear region, the (0.5,_) sector is violated for ITcl > 2Tmax. A
nominal LQ regulator was first designed to obtain a rigid-body closed-loop frequency
and damping ratio of 0.138 rad/sec and 0.707, respectively, and closed-loop struc-
tural mode damping ratios of at least 0.5. The weighting matrices and the closed-
loop eigenvalues for the nominal design are shown in table II. The degree of
stability parameter _ was assumed to be zero for the nominal design. In the pres-
ence of control saturation, there exists a bounded region of attraction Sa. The
larger the Sa, the better the tolerance of the design to the nonlinearities. Since
the estimate of Sa is a hyperellipsoid, it is difficult to visualize Sa. One
measure of the size of Sa would be the maximum value of the angular displacement
(rigid-body plus elastic) at one of the sensor locations. Suppose an attitude sensor
is placed at the location of actuator I. The angular displacement about the Y-axis
is then given by

T
y = c x (46)

where the constant vector is

T
c = (1,0,_11,0,_12,0) (47)

Therefore, according to theorem A3 of the appendix, the maximum angular displacement

Ymax within Sa is

Ymax = qcTp-Icd (48)

Another measure of the size of Sa is its volume. The volume of a hyperellip-
soid is proportional to the product of its semimajor axes. For the hyperellipsoid
given by

T
x Px = d (49)
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it is shown in theorem A4 of the appendix that the ith semimajor axis is given by
_d/ki(P), where ki(p ) denotes the ith eigenvalue of P. Thus the volume is pro-
portional to V' where

V' = _d_ i ki(P) = _dn/det(P) (50)

where det ( ) denotes the determinant of a matrix. These two measures, Ymax and
V', are used herein to evaluate the LQ designs.

To investigate the effect of variation of R on the size of Sa, a series of
LQ regulators were designed, with R increased by a factor of _ at each step. The
initial value of R was 0.01 times its nominal value (identity matrix). Figure 7

shows a plot of Ymax and V' as R increases. For the nominal design, Ymax
is 68.5°, which is satisfactorily large. As R increases, both Ymax and V'
increase, because increasing R decreases the magnitude of control effort, which is
thus less likely to reach the saturation limits. Of course the performance generally
deteriorates as R increases.

Now assume that the two saturating actuators have different saturation limits.
The saturation limit for actuator 1 is Tmax as before, but that for actuator 2 is
0.125Tmax. For this case, the nominal LQ design yielded Ymax of only 8.6°. As
discussed previously, equation (23) suggests that increasing the control weight r2
for actuator 2 should increase the size of Sa. Therefore, r2 was increased by a
factor of 2 at each step and a series of LQ regulators were designed. As shown in
figure 8, both Ymax and V' increase as r2 increases up to the sixth step.

To investigate the effect of the degree of stability parameter 5 on Sa, 5
was increased by 0.02 at each step for 20 steps, and Ymax and V' were computed
for the resulting LQ designs. As shown in figure 9, both Ymax and V' decrease
with increasing 5. Because increasing 5 increases feedback gains, the control
effort reaches the saturation limits earlier.

Actuators With Hysteresis

Now assume that the actuator characteristics for each torque actuator are as
shown in figure I(c), with Kh = I and a = 0.25 N-m. For this case, _ was deter-
mined from equation (41) as _ = a2(rl + r2). The region of ultimate boundedness

S_ is given by equations (38) and (39). The smaller the size of S_, the better the
tolerance of the design to these nonlinearities.

The nominal LQ design described in the previous section yielded Ymax = 2"32°
for the region of ultimate boundedness. As in the previous section a series of LQ
regulators were designed by increasing R by a factor of _ at each step, and
Ymax and V' were computed for the region of ultimate boundedness for each LQ
design. As shown in figure 10, both Ymax and V' increase as R increases.

To investigate the effect of 5 on S_, 5 was increased at each step by 0.02
(starting with 5 = 0), and Ymax and V' were computed for each resulting LQ
design. Figure 11 shows the variation of Ymax and V' with 5. There is a large
decrease in both Ymax and V' from the first to the second step, because
[25 + km(p-IQ)] appears in the demoninator in equation (39) and 5 is large com-
pared with km(P-1Q). As 5 increases further, Ymax and V' both continue to
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decrease,but at a slower rate. From this example, e appearsto be an important
design parameter,which can significantlyaffect the size of the estimateof the
region of ultimateboundedness.

CONCLUDING REMARKS

Closed-loop stability was investigated for multivariable linear time-invariant

systems controlled by optimal LQ regulators when nonlinear gains are present in the

control channels. Two types of nonlinearities were considered: (1) nonlinearities

that lie in the (0.5,_) sector at least in a neighborhood of the origin and (2) non-
linearities that lie in the (0.5,_) sector in regions away from the origin, but per-
haps escape that sector in a neighborhood of the origin. Making use of the special

properties of LQ regulators, estimates were obtained for the region of attraction for

case (1) and for the region of ultimate boundedness for case (2). The sizes of these
regions represent measures of robustness of a given LQ regulator when particular
types of nonlinearities are present in the feedback loop. The expressions obtained
also provide methods for selecting the performance function parameters (i.e., the
state and control weighting matrices and the degree of stability) in order to design
LQ regulators with better tolerance to nonlinearities, that is, to obtain a larger
region of attraction or a smaller region of ultimate boundedness. The analytical
results obtained were demonstrated by application to the problem of controlling the
pitch-axis attitude and elastic motion of a large, flexible space antenna. Based on
the analytical and numerical results, it was concluded that

(I) Decreasing the state weighting matrix Q (or, equivalently, increasing the
control weighting matrix R) results in larger region of attraction and
larger region of ultimate boundedness.

(2) Increasing the degree of stability parameter _ decreases the size of both
the region of attraction and the region of ultimate boundedness. In
particular, by choosing _ to be a small positive scalar instead of zero,
the region of ultimate boundedness can be made significantly smaller.

(3) For case (1), if a nonlinearity escapes the (0.5,_) sector closer to the
origin than the other nonlinearities, the region of attraction can be made
larger by increasing the weight corresponding to that control channel.

This paper assumed that the complete state vector is available for feedback. In
practice, however, only a few sensor outputs (fewer than the dimension of the state
vector) are usually available, and an observer or a state estimator must be used.
Future research efforts should be directed toward the synthesis of robust overall
controllers, which include an LQ regulator and a state estimator. It is expected
that the analytical results obtained in this paper would be useful toward achieving
that goal.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
May 3, 1984
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APPENDIX

DERIVATION OF ALGEBRAIC OPTIMIZATION RESULTS

This appendixcontains the derivationof some algebraicoptimizationresults
used in this paper, as well as the expressionfor the semimajoraxes of a hyperellip-
soid. Throughoutthe appendix, x and c denote real n-vectors, P and Q denote
real symmetricn x n positivedefinitematrices,and _, _, and d denote real
positivescalars.

Theorem AI:

min (xTpx) = _2/cTp-Ic (AI)

cTx=_

Proof: With the Lagrange multiplier denoted by v, the Hamiltonion is given by

T cTx)H = x Px + V(_ -

Therefore, the necessary condition for minimum is

5H/Sx = 2Px - cv = 0 (A2)

Premultiplying the above equation by xT, using the constraint (cTx = _), and solving
equation (A2) for v results in

v = 2J 1/_ (A3)

where J1 = xTpx" Substituting equation (A3) in equation (A2) and solving for x
yields

-I

x = P cJ1/_ (A4)

Therefore,

T 2 T -I

J1 = x Px = J1c P c/_ 2 (A5)

from which equation (At) is obtained.
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Theorem A2 :

max (xTpx) = kM(Q-IP) _ (A6)

xTQx=_

where kM( ) denotes the largest eigenvalue.

Proof: The Hamiltonion is given by

T T
H = x Px + v(_ - x Qx) (A7)

Therefore,the necessaryconditionis

5H/_x = 2Px - 2vQx = 0 (A8)

Equation (A8) can be rewritten as

-I
Q Px = vx (A9)

Therefore, v is an eigenvalue of Q-Ip. Premultiplying equation (A8) by xT, and
using the constraint (xTQx = _) yields

( -IJ1 = k Q p) _ (A10)

Therefore the maximum value of J1 is given by equation (A6).

Theorem A3:

max (cTx) = ,l_cTp-Icd (A11)
T
x Px=d

Proof: The Hamiltonion is given by

T T
H = c x + v(d - x Px) (A12)

The necessary condition is

_H/Sx = c - 2vPx = 0 (A13)

17
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Premultiplying equation (A13) by xT and using the constraint (xTpx = d) yields

v = J2/2d (A14)

where J2 = cTx" Substituting equation (A14) in equation (A13) and solving for x
results in

-I (A15)
x = P c(d/J2J"-"_

From equation (A15),

T T -I

J2 = c x = c P c(d/J2)_ (A16)

Equation (Ali) is obtained from equation (A16).

Theorem A4: For the hyperellipsoid given by

T (A17)x Px = d

the semimajor axes are given by qd/ki(p) , where ki(P) is the ith eigenvalue of
P (i C [1,n]).

Proof: Since P is symmetric, it is orthogonally similar to a diagonal matrix
(ref. 8). That is, there exists a real orthogonal n x n matrix E such that

T (A18)
E PE =Ap

where Ap is the diagonal matrix with the eigenvalues of P as its entries. Let
x = Ey, where y is an n-vector. Then equation (A17) becomes

yTApy = d (A19)

The ith semimajor axis is obtained by making yj = 0 for j _ i and is given by

2
Yi = d/ki (P) (A20)

which proves the theorem.
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TABLE I.- HOOP-COLUMN ANTENNA PARAMETERS

Inertia about Y-axis, kg-m2 ............................................. 5.748 × 106

First bending mode parameters:

Pl ........................................................................ 0.01
_I' rad/sec ................................................................ I.35
_11 ................................................................. -3.385 x 10-3
_21 .................................................................. 2.938 x 10-4

Second bending mode parameters:

P2 ........................................................................ 0.01
('02'rad/sec ................................................................ 5.78
_12 ................................................................. -I .754 x 10-5
_22 .................................................................. 2.270 x 10-4

TABLE II.- WEIGHTING MATRICES AND EIGENVALUES (NOMINAL DESIGN)
FOR LQ REGULATOR FOR HOOP-COLUMN ANTENNA

Weighting matrices:

Q diag(1 .2 x 109, 1.2 × 109 1.0 x 103, 3.0 x 105= , , 1.0 x 103, 1.0 x 109)
R = diag(1 ,1)

Closed-loop eigenvalues (j = _):

-0.0761 ± j0.0759
-0.800 _ ji.09
-3.09 ± j4.88

Feedback gain matrix:

F22xoxoxo xo2xoox0
L2• 64 x 105 -3.53 x 105 5.89 x 101 -2.65 x 101 -2.87 x 103 -3.1 x 104--I/
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(a) Saturating amplifier.

Figure I.- Sample nonlinearities that violate the (0.5,B) sector condition.
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Figure I.- Concluded.
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Figure 2.- Estimationof region of attraction.
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Figure 3.- Estimation of region of ultimate boundedness.
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Figure 4.- Hoop-column antenna concept.
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Figure 5.- Assumed actuator locations on hoop-column antenna.
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Figure 6.- Bending mode shapes of hoop-column antenna.
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Figure I0.- Effect of increasing R on region of ultimate boundedness.
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