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INTRODUCTION

Methods for calculating transonic flow over oscillating airfoils have

come into routine use in the recent past. These methods typically employ

finite-difference methods to solve the nonlinear, mixed flow equations and

requi re extens i ve computer resources. In order to conserve the resources

needed to evaluate and compare competing methods, the AGARD Structures and

Materials Panel established a Working Group on "Standard Configurations for

Aeroelastic Applications of Transonic Unsteady Aerodynamics" at its Fall 1977

meeting. The Working Group published test cases for seven two-dimensional

airfoils (ref. 1) in 1979 and for five three-dimensional wings (ref. 2) in

1982. This paper presents calculations for four of these airfoils and for one

of the wings. A limited discussion of these results is included.

The analytic results reported herein employ the time-marching solution of

the finite-difference equations for transonic small disturbance potential

flow. The two-dimensional code used is called XTRAN2L (ref. 3) and the

three-dimensional code is XTRAN3S (ref. 4). The alternating-direction

implicit solution algorithms used in these codes are derivatives of the

algorithm introduced ;n the LTRAN2 code (ref. 5). All of the AGARD cases for

the NACA 64A006, NACA 64AOIO, and NLR 7301 airfoils are included. Comparisons

with experimental data from reference 6 are made for all cases for which data

were available. In addition, calculations for six of the MBB-A3 airfoil cases

and for three of the three-dimensional rectangular wing cases are reported.

All calculations were made with the inv;sc;d versions of the codes.
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SYMBOLS

abbreviation for case, as in C3

pressure coefficient

critical pressure coefficient

normalized unsteady pressure coefficient; first harmonic of
Cp divided by oscillation amplitude

normalized unsteady lifting pressure coefficient

airfoil chord, m

steady lift coefficient

first harmonic 1ift coefficient due to pitch, per radi an

first harmonic 1ift coefficient due to pl unge

first harmonic lift coefficient due to f1 ap rot at ion, per
radian

first harmonic pitching moment coefficient due to pitch, per
radian

first harmonic pitching moment coefficient due to p·l unge

first harmonic pitching moment coefficient due to flap
rotat i on, per radi an

first harmonic hinge moment coefficient due to pitch, per
radian

first harmonic hinge moment coefficient due to flap
rotation, per radian

oscillation frequency, Hz

plunge displacement in z-direction, m

plunge amplitude, m

reduced frequency, wc/2V

free stream Mach number

Reynolds number, Vc/v

time, s
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v

x

xo
y

z

a

free stream velocity, m/s

streamwise coordinate relative to leading edge, m

pitch axis location relative to leading edge, m

flap axis location relative to leading edge, m

coordinate normal to x and z, positive to right, m

coordinate normal to free stream, positive up, m

angle of attack, deg

mean a, deg

dynamic pitch angle, deg

flap angle, deg

Om mean 0, deg

00 dynamic flap angle, deg

n fraction of semi-span

v kinematic viscosity, m2/s

w angular frequency, 2~f, rad/s

All angles are positive for trailing edge down. Moments are positive nose up.

Pitching moments are taken about the quarter chord in all cases except for the

NLR 7301 airfoil, for which they are about the pitch axis which is located at

40 percent chord. Hinge moments are taken about the hinge axis which is

located at three-quarters chord in all cases.

ANALYTICAL METHODS

The analytical methods used herein involve solution of the transonic

small disturbance (TSD) potential equation. The equation is solved on a

rectangular spatial grid by marching the solution in time. The complete small

disturbance equation, including all time derivative terms, is employed.

The two-dimensional solutions reported employ the XTRAN2L code as

described in reference 3. This code is a modification of the LTRAN2-NLR code

(ref. 7). The XTRAN2L code uses the alternating-direction-implicit (ADI)
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method of Rizzetta and Chin (ref. 8) to advance the solution in time.

Engquist-Osher monotone spatial differencing (ref. 9) is used to provide a

robust solution that avoids expansion shocks. The nonreflecting boundary

conditions of Kwak (ref. 10) have been extended to the full frequency equation

by Whitlow (ref. 3) and are used in the code. The code may be used to obtain

solutions for transient or harmonic motions. For the cases shown herein, the

harmonic option was used with the solution being marched in time for several

cycles of harmonic motion until the unwanted transients had decayed.

Typically, between 1000 and 2000 time steps were employed. An 80 x 61 grid in

the x-z space was used. The grid used was carefully chosen as described in

reference II.

The calculations for the rectangular wing were made with the XTRAN3S code

of reference 4. This code employs a time-accurate ADI algorithm to solve the

three-dimensional TSD equation. Nonlinear cross derivative terms are retained

to capture swept shocks. Five cycles of oscillation with a total of 2500 time

steps were used for each of the two cases reported. A 60 x 20 x 40 grid in

x-y-z was used (see ref. 11) •

.. For all ca1cu 1at ions the NLR scali ng as descri bed in reference 12 was

used. Although both codes employed in the present study have some capability

for including quasi-steady boundary layer effects, this capability was not

used, and only inviscid results are given.

RESULTS AND OISCUSSION

Results are given for 42 of the 81 two-dimensional AGARD standard cases

described in reference 1. Note that the NACA 64AOI0 airfoil has the

coordinates of the section as tested at NASA Ames Research Center (given in
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ref. 1) and has a small amount of camber and is thicker than the symmetric

design section. In addition, six of the cases for the MBB-A3 airfoil are

reported. Tables 1-4 give the analytical test conditions for each of these

cases with the priority cases indicated by an asterisk. The reduced frequency

k is based on semichord. Finally, two results are shown for the rectangular

wing of reference 2. These two results actually cover three of the standard

cases, since cases 3 and 4 (table 5) differ only in Reynolds number, which

could not be varied in the present inviscid analysis. The AGARD conditions

for this wing specify oscillation about two pitch axes; only pitching about

the quarter-chord axis is analyzed herein.

The modes of motion are described as follows. For pitch about a mean

angle of attack am, the total angle of attack is expressed as

a(t) = am + ao sin wt

where w = 2kV/c. For plunge,

h(t) = ho sin wt

For control rotation,

o(t) = om + 00 sin wt

For each of the configurations analyzed, the steady flow pressure

distribution is plotted. In addition, for each two-dimensional unsteady case,

four figures are grouped together on one page. These figures show: (a) the

mean pressure distribution over the airfoil chord during the last cycle of

harmonic motion, (b) the lifting pressure (lower minus upper), (c) the upper

surface pressure, and (d) lower surface pressure. The unsteaqy pressures

(b-d) are given as the real (in-phase) and imaginary (in-quadrature) parts of

the first harmonic component of the pressure computed from the last cycle of

the imposed simple harmonic motion using a fast Fourier transform analysis.
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These first harmonic components are normalized by the nondimensional amplitude

of motion, i.e., angle of attack and flap rotation in radians or plunge

displacement in chords, as appropriate. Although the harmonic pressures

plotted on each page are shown to the same scale, there is some variation in

the scales between figures. In addition to the plotted pressure

distributions, the first harmonic force coefficients for the two-dimensional

cases are given in tables 6-9.

The AGARD rectangular wing has a full-span aspect ratio of four. The

analysis treats only the half span and imposes symmetry. The airfoil

section is a symmetric version of the NACA 64A010 two-dimensional AGARD

section and is defined in reference 2.

For the rectangular wing the steady, mean, and first harmonic pressure

distributions are shown for each of the computational chords used in the

analysis. Since this is a symmetric case, only upper surface pressures are

shown. The first harmonic force coefficients are given in table 10.

NACA 64A006 Airfoil

The analytic test cases for the NACA 64A006 airfoil all involve

oscillation of a flap with hinge axis located at three-quarter-chord about

zero mean angle and were chosen to match the experimental conditions of

reference 13. The variations include five Mach n~mbers, two frequencies, and

two oscillation amplitudes (table 1). The steady flow pressure distributions

for each Mach number are shown in figure 1. The unsteady results are shown in

figures 2-13. In general, the agreement between experiment and theory

improves with decreasing Mach number and increasing frequency. The calculated

lift, moment, and hinge moment coefficients are given in table 6. There are
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no experimental data for the two-degree flap oscillation amplitude; the

"experi menta1" data shown for these cases isactually the data for one-degree

amplitude.

The steady flow comparisons (fig. 1) are excellent at subcritical Mach

numbers, but deteriorate as the shock wave develops. This discrepancy is at

least partially attributable to wind tunnel interference (ref. 6, p. 1-1).

The mean pressure distributions for one cycle of flap oscillation are given in

part (a) of figures 2-13. In general the mean pressures are very similar to

the steady pressures. The effect of variations in frequency and amplitude of

oscillation may be illustrated by comparing figures 9(a), 10(a), and II(a),

all at M= 0.875. These are the priority cases (C8-10) for this airfoil.

Figures 9(a) and 10(a) show the effect of increasing the flap oscillation

amplitude from one to two degrees at the lower frequency (k = 0.059). As

expected the shock osci 11 ates over a 1arger di stance at the 1arger amplitude.

(The experimental data are both for ao = 10 ). The effect of frequency is

illustrated by comparing figure 9(a) (k = 0.059) to figure II(a) (k = 0.235).

At the higher frequency the calculated shock motion is less, as indicated by

the steeper pressure rise; however, the experimental pressure rises for these

two cases are similar.

Results for the first harmonics of the unsteady pressure distributions

are shown in parts (b)-(d) of figures 2-13. Figures 2 and 3 illustrate the

better agreement between theory and experiment that occurs at higher

frequency. For this subcritical case (M = 0.8), a single pressure peak occurs

at the flap axis location (xjc = 0.75). At M= 0.825, a bulge develops in the

calculated pressure distribution (figs. 4-6) near the airfoil midchord due to
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the development of a very weak shock wave during the unsteady motion. As

expected, this effect is more pronounced at lower frequency (see figs. 4 and

6) and at larger oscillation amplitude (see figs. 4 and 5). As the Mach

number increases, the shock pulse moves aft and interacts with the pressure

pulse at the hinge location. The agreement with experiment deteriorates

because of the discrepancy in shock location mentioned earlier. A comparison

of figures 9 and 11 (M = 0.875) illustrates the effect. In the experiment,

the shock peak (near x/c = 0.55) and hinge peak (x/c = 0.75) are easily

distinguished. In the calculation the two peaks have merged into one at the

lower frequency (fig. 9) but can be identified at the higher frequency (fig.

11). Th.is result is not surprising since the shock excursion is expected to

decrease as frequency increases.

The calculated results at M= 0.96 (figures 12-13) are qualitatively

different from the experimental data. The potential flow code has placed the

shock wave at the trailing edge in contrast to the experimental value of about

x/c = 0.88 (see fig. l(e)). The shock and hinge peaks can be distinguished in

the experimental results in figure 12. Both theory and experiment show very

small unsteaqy pressur~s ahead of the flap.

NACA 64A010 Airfoil

The AGARD cases for the NACA 64A010 airfoil are listed in table 2. The

cases are for the model tested at the NASA Ames Research Center for which

experimental data are reported in reference 14. The test cases are at

essentially two Mach numbers, M= 0.5 and 0.8, two Reynolds numbers, and

several frequencies and amplitudes of pitch oscillation about the
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quarter-chord. This airfoil possesses a very small amount of camber and

surface waviness, as is evident in the steady pressure distributions shown in

figure 14. Figures 14(a)-(b) are for the low Mach number cases (Cl-2) at two

Reynolds numbers and agreement is excellent. Figures 14(c)-(e) are for the

higher Mach number with part (d) giving a low Reynolds number result (for the

experiment). The agreement in shock location and strength for these cases is

quite good with the experiment for the lower Reynolds number case, figure

14(e), showing a slightly weaker and more forward located shock.

The unsteady results are shown in figures 15-24 and table 7. At M= 0.5

(figs. 15-16) the agreement is excellent with perhaps better agreement

obtained at the higher Reynolds number (fig. 16). The remaining results are

at M= 0.8. The priority cases 6 and 10 (figs. 20 and 24) were chosen to

illustrate Reynolds number effects. However, the slight differences in Mach

number, amplitude, and frequency may mask this comparison.

The oscillation amplitude effect is illustrated by comparing figures 19,

22, 23 for approximately 0.0 = 1.0, 0.5, and 2.0 degrees, respectively, and

at k = 0.101. In each case, the agreement with experiment is good. The

amplitude effect is well illustrated by the theory. Away from the shock, the

plotted normalized pressures (i.e., divided by oscillation amplitude) are

essentially the same. (Note the different scale in figure 22). However, for

small amplitude, the shock pulse is narrower (less shock motion) and higher'

(because of the amplitude normalization).

Cases 3-7 (figs. 17-21) illustrate the frequency effect, with k varying

from about 0.025 to 0.3. The systematic decrease in calculated shock pulse

width with increasing frequency is evident, with agreement of the theory and

experiment perhaps being somewhat better at the intermediate frequencies.
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MBB-A3 Ai rfoil

Analytical results only are presented for six of the cases for the MBB-A3

airfoil in figures 25-31. These six cases (see table 3) are all at M= 0.765

and am = 1.5 degrees. There are cases for airfoil pitch oscillation about

the quarter chord and for plunge oscillation, each at three frequencies,

k = 0.1, 0.3, and 0.9. The unsteady lift and moment coefficients are

tabulated in table 8.

The steady pressure distribution is shown in figure 25. In choosing the

cases for this airfoil, the conditions were specified to be the supercritical

design point (M = 0.765, am = 1.50 , Ct = 0.519) given in reference 1.

This choice was based on the experimental data shown for this design condition

(taken from fig. 8.2 of ref. 15) which show a typical supercritical flow

without a discernible shock wave. In the experiment the region of

supercritica1 flow terminates at about x/c = 0.53. In contrast, the present

calculation for this point shows a strong shock located at about x/c = 0.66

with Ct = 0.700. Transonic small disturbance theory typically predicts a

shock that is too strong and located too far aft on the airfoil and is

sensitive to the transonic scaling (ref. 12) used.

It may be noted that potential theory is now known to predict nonunique

results in certain cases with moderately strong shocks (ref. 16). For

conditions near the region of nonuniqueness, the potential theory can also be

seriously in error. Calculations for this airfoil with the TSD code used

herein were sensitive to time step and initial conditions.

The unsteady pressure distributions for the MBB-A3 airfoil are given in

figures 26-31. The effect of varying frequency from k = 0.1 to 0.9 may be

seen by comparing figures 26-28 for pitch and figures 29-31 for plunge. For
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pitch increasing frequency leads to a decreasing magnitude of the shock

pulse. For plunge, the most obvious effect is the increasing overall pressure

level with frequency. This increase is consistent with piston theory which

predicts forces proportional to frequency.

NLR 7301 Ai rfoil

The test cases for the thick supercritical NLR 7301 airfoil are listed in

table 4. Three mean flow conditions were analyzed: a subcritical condition

at M= 0.5 (cases 1-2 and 10); a supercritical case with shock at M= 0.7,

am = 2.00 (cases 3-5 and 11); and the design point at M= 0.721,

am = -0.190 (cases 6-9 and 12-14). Cases 1-9 are for pitch oscillation

about an axis located at 40 percent chord and include variations in frequency

and amplitude of motion. Cases 10-14 are for oscillation of a flap located at

three-quarter chord with variation in frequency included at the design point.

The experimental data are taken from chapter 4 of reference 6. These data are

from tests at NLR (ref. 17) and were chosen for comparison instead of those

from the NASA Ames Research Center (chapter 5 of reference 6) because the

model matched the design airfoil more closely, and data were available for

, both upper and lower surfaces. The calculated harmonic forces are given in

table 9.

The experimental data for the pitch cases and the flap cases were

obtained on two different models (ref. 6). The steady flow pressure

distributions for the three mean flow conditions are shown in figure 32. At

the subcritical condition (fig. 32(a)-(b)) the upper surface pressures are in

good agreement, but the pressures on the lower surface show a discrepancy in

level. It would not be surprising if small disturbance theory were inadequate

for this 16.5 percent thick, blunt-nosed airfoil. The comparison for the case
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with a strong shock (fig. 32(c)-(d)) is poor, with the calculation giving too

strong a shock, located too far aft. This discrepancy may be attributed, at

least in part, to a breakdown of potential theory (as discussed in the

preceding section of this report). In a~ case, it is certain that this

comparison could be lIimproved ll by performing the calculation at a lower steady

angle of attack. The comparison of the steady pressure distributions at the

design point (fig. 32(e)-(f)) 1.s also poor. There are two weak shocks at

about x/c = 0.25 and 0.60. In addition, there is a sharp pressure rise near

the leading edge. One may anticipate that these features will lead to several

shock pressure pulses in the unsteady results described below.

The unsteady results for all of the AGARD cases for thi s ai rfoil are

shown in figures 33-46. Because of the differences between the calculated and

measured steady flow fields, the unsteady comparison is poor. Several obser

vations on the calculated results may be made, however.

The unsteady results at M= 0.5 are shown for pitch at two frequencies in

figures 33-34 and for flap oscillation at the lower frequency in figure 42.

The mean pressure comparison for the pitch cases (figs. 33(a) and 34(a)) is

very similar to that for the steady flow (fig. 32(a)). The calculated mean

pressure for the flap case (fig. 42(a)) is very similar to the calculated mean

pressure for the pitch cases (figs. 33(a) and 34(a)). In contrast, the

experimental mean pressure for the flap case is significantly different from

the corresponding pressure for the pitch cases. In each of these three cases,

however, the calculated first harmonic pressure distributions agree well with

the experimental data.

Figures 38, 40, and 41 illustrate the effect of pitch frequency at the

design point. Several shock peaks occur. At the lowest frequency (fig. 38)
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three peaks are present at x/c = 0.20, 0.45, and 0.60, whereas at the highest

frequency (fig. 41) only two peaks are discernable at x/c = 0.25 and 0.65. As

usual, the peaks are narrowest at the highest frequency. The same comparison

for flap oscillation frequency is given in figures 44-46 with the additional

complication of the hinge peak at x/c = 0.75. The effect of oscillation mode

can be examined by comparing these six figures (figs. 38, 40-41, and 44-46) in

pairs. In each case, the calculated mean pressures (figure part (a)) appear

the same for both modes at the same frequency whereas the experi menta1 values

can be significantly different for the two modes of oscillation (see figs. 38

and 44, for example). This difference in the experimental mean values is a

reflection of the difference in the steady flow pressures (fig. 32(e)-(f)) for

the two models.

Rectangular Wing

The conditions for which the AGARD rectangular wing was analyzed are

given in table 5. The symmetric airfoil section (given in ref. 2) is constant

over the span and was defined to be an average of the upper and lower surface

coordinates for the 64AOI0 airfoil (given in ref. 1). The two distinct cases

are for wi ng pitch about the quarter chord at M= 0.8 with two frequenci es of

oscillation, k = 0.20 and 0.45. The steady flow pressure distributions at the

span locations used in the analysis are shown in figure 47 for this flow at

am = o. There is a shock near midchord at the root whi ch weakens outboard.

The pressures at the root may be compared with those for similar conditions on

the NACA 64AOI0 airfoil shown in figure 14(c).

The unsteady pressure distributions are shown in figures 48-49 for the

two frequencies. Since this is a symmetric case, only the upper surface

values are given. The results for k = 0.2 may be compared with the

two-dimensional airfoil results for similar conditions. The mean pressure
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distribution (fig. 48(a)) at the root chord is quite similar to that for the

airfoil (fig. 20(a)). The real parts of the harmonic upper surface pressures

(figs. 20(c) and 48(b)) are also similar. The imaginary parts, however, are

somewhat different. For the airfoil, the real and imaginary parts have

similar shape, but differ in sign. For the wing,the imaginary part of the

pressure (fig. 48(c)) shows only a single, very broad peak and not the

double-peak "doublet" shape of the two-dimensional result (fig. 20(c)). The

frequency effect for the rectangular wing is illustrated by comparing figures

48 and 49. In contrast with the two-dimensional airfoil results, the

calculated shock pulse appears wider at the higher frequency. The overall

lift and rooment coefficients for the wing are given in table 10.

CONCLUSIONS

Calculations using the XTRAN2L all-frequency, transonic small disturbance

potential flow code have been made for about half of the AGARD two-dimensional

standard configurations. All of the cases for the NACA 64A006, NACA 64A010,

and NLR 7301 airfoils are included with comparison with experiment in most

cases. Six of the cases for the MBB-A3 airfoil are included. Calculations

using the XTRAN3S code were made for the AGARD rectangular wing at two

frequencies. The following general conclusions may be drawn from the

two-dimensional airfoil results:

1. For the conventional NACA 64A006 and 64A010 airfoils, agreement

between calculated and experimental pressure distributions is reasonable

except at the highest Mach number (0.96) analyzed. Agreement between the

unsteady pressures is excellent at subcritical conditions and deteriorates

with increasing Mach number as the shock develops and moves aft.
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2. For the thick, blunt supercritical NLR 7301 airfoil the agreement is

poor for flows with shocks. For subcritical flow, however, even though the

agreement between calculated and measured steady pressure distributions is

poor, the unsteady pressures agree quite well.

3. For cases in which the steady flow agreement is good, the unsteady

flow results are also good, with better agreement at higher frequency.

4. The effect of increasing oscillation amplitude is to increase the

unsteady shock motion and to broaden the shock pulse in the harmonic pressure

di stri but ions.

5. The effect of increasing oscillation frequency is to narrow the shock

pulse.

Results for the rectangul ar wi ng show a somewhat broader shock pul se at

the higher frequency, is contrast with the two-dimensional airfoil

predictions•
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Table 1. - NACA 64A006 Airfoil, test eases

Case M 6
0

f k

1 0.800 1 30 0.064
2 0.800 1 120 0.254
3 0.825 '1 30 0.062
4 0.825 2 30 0.062
5 0.825 1 120 0.248
6 0.850 1 . 30 0.060
7 0.850 1 120 0.242
8* 0.875 1 30 0.059
9* 0.875 2 30 0.059

10* 0.875 1 120 0.235
11 0.960 1 30 0.054
12 0.960 1 120 0.217

Note: . a = a = 6 = 0 x6/e = 0.75mom '

Table 2. - NACA 64A010 Airfoil, test eases

Case M ReX10-6 ao f k

1 0.490 2.5 0.96 10.4 0.100
2 0.502 10.0 1.02 10.8 0.100
3 0.796 12.5 1.03 4.2 0.025
4 0.796 12.5 1.02 8.6 0~051

5 0.796 12.5 1.02 17.2 0.101
6* 0.796 12.5 1.01 34.4 0.202
7 0.796 12.5 0.99 51.5 0~303

8 0.796 12.5 0.51 17.1 0.101
9 0.797 12.5 2.00 17.2 0.101

10* 0.802 3.4 0.94 33.2 0.200

Note: a = 0 x Ie = 0.25m ' a
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Table 3. - M8B~A3 Airfoil, test cases

Case M a ao hole km

3* 0.765 1.5 0.5 0 0.1
4 0.765 1.5 0.5 0 0.3
5 0.765 1.5 0.5 0 0.9

11 0.765 1.5 0 0.01 0.1
12 0.765 1.5 0 0.01 0.3
13 0.765 1.5 0 0.01 0.9

Note: x Ie = 0.25a

Table 4. - NLR 7301 Airfoil, test cases

Case M a ao ~ f km 0

1 0.500 0.40 0.5 0 30 0.098
2 0.500 0.40 0.5 0 80 0.263
3 0.700 2.00 0.5 0 30 0.072
4 0.700 2.00 1.0 0 30 0.072
5 0.700 2.00 0.5 0 80 0.192
6 0.721 -0.19 0.5 0 30 0.068
7 0.721 -0.19 1.0 0 30 0.068
8* 0.721 -0.19 0.5 0 80 0.181
9 0.721 -0.19 0.5 0 200 0.453

10 0.500 0.40 0 1 30 0.098
11 0.700 2.00 0 1 30 0.072

. 12 0.721 -0.19 0 1 30 0.068
13* 0.721 -0.19 0 1 80 0.181
14 0.721 -0.19 0 1 200 0.453

Note: x Ie = 0.4, x~/e = 0.75, 15 = 0a m

Table 5. - Rectangular Wing, test cases

Case M ReX10-6
ao k

3* 0.8 3.4 1 0.20
4* 0.8 12.5 1 0.20
6* 0.8 3.4 1 0.45

Note: a = 0 X Ie = 0.25m ' a
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Table 6. - NACA64A006 Ai rfoil , harmonic forces

cR. cm ch
15 15 15

Case Real Imag Real Imag Real Imag

1 4.793 -2.053 -1.248 -0.052 -0.082 -0.003
2 2.546 -1.744 -1.368 0.024 -0.082 -0.024
3 4.986 -2.459 -1.383 -0.043 -0.083 -0.005
4 5.006 -2.520 -1.405 -0.036 -0.082 -0.005
5 2.336 -1.968 -1.526 0.172 -0.087 -0.026
6 5.148 -3.434 -1.703 0.103 -0.080 -0.013
7 1.672 -1.891 -1.460 0.685 -0.100 -0.030
8* 3.568 -5.687 -2.079 1.655 -0.072 -0.071
9* 3.493 -5.726 -2.062 1.835 -0.111 0.010

10* 1.699 -1.372 -0.902 0.644 -0.111 -0.024
11 1.555 0.025 -0.963 -0.013 -0.190 -0.002
12 1.537 -0.004 -0.956 0.004 :"0.188 0.001

Table 7. - NACA 64AOlO Ai rfoi 1, harmonic forces

cR. cm
<X <X

Case Real lmag Real Imag

1 5.767 -0.561 -0.052 -0.186
2 5.802 -0.581 -0.054 -0.189
3 12.552 -4.202 -0.903 0.169
4 9.836 -4.092 -0.709 0.039
5 7.342 -3.446 -0.600 ..0.160
6* 5.635 -2.157 -0.648 -0.472
7 4.942 -1.341 -0.793 -0.631
8 7.370 -3.384 -0.583 -0.195
'9 7.247 -3.713 -0.674 -0.014

10* 5.496 -2.421 -0.744 -0.310
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Table 8. .. MBB ..A3 Airfoil, harmonic forces

cR, cma a

Case Real Imag Real Imag

3* 6.460 -5.352 -0.835 0.909
4 4.362 . -0.954 -0.346 -0.233
5 4.791 2.136 -0.847 -1.686

cR, cmh h

Case Real Imag Real Imag

11 -1.173 -1.147 0.228 0.144
12 -1.135 -2.203 0.092 0.108
13 0.131 -6.690 -1.011 1.156

Table 9. - NLR 7301. Ai rfoi 1, harmonic forces

cR, cm cha a a

Case Real Imag Real Imag Real Imag

1 5.860 -0.792 0.842 -0.311 -0.030 -0.009
2 4.771 0.045 0.684 -0.504 -0.024 -0.032
3 8.280 -8.584 -0.320 0.751 0.028 -0.121
4 8.067 -8.867 -0.343 0.935 0.025 -0.124
5 . 4.697 -3.547 0.152 0.232 -0.025 -0.087
6 8.535 -2.839 1.364 -0.860 -0.022 -0.011
7 8.604 -3.048 1.272 -0.842 -0.020 -0.013
8* 6.104 -1.948 0.758 -1.122 -0.021 -0.030
9 4.808 -0.555 -0.112 -1.078 -0.021 -0.079

cR, cm ch
<5 <5 <5

Case Real Imag Real Imag Real Imag

10 3.537 -0.787 -0.238 -0.190 -0.061 -0.005
11 4.022 -4.348 -0.873 0.399 -0.046 -0.059
12 4.989 -2.164 -0.412 -0.478 -0.057 -0.009
13* 3.139 -2.038 -0.867 -0.382 -0.059 -0.022
14 1.830 -1.056 -0.747 0.068 -0.072 -0.043
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Table 10. ~ Rectangular Wing, harmonic forces

cR. em
a a

Case Real Imag Real Imag

3/4* 4.578 0.119 -0.105 -0.648
6* 4.224 0.266 -0.709 -0.967
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Figure 8.- Unsteady pressure distribution for NACA 64A006 Airfoil.
Case 7. M = 0.850. 60 = 1. k = 0.242.
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Case 8, M = 0.875, 15 0 , 1, k = 0.059.
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Case 9, M = 0.875, 60 = 2, k = 0.059.
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Figure 11.- Unsteady pressure distribution for NACA 64A006 Airfoil.
Case 10. M =0.875. 15 0 = 1. k == 0.235.
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Figure 12.- Unsteady pressure distribution for NACA 64A006 Airfoil.
Case 11,' M == 0.960, 15 0 == 1, k == 0.054.
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Figure 13.- Unsteady pressure distribution for NACA 64A006 Airfoil.
Case 12. M = 0.960. <5 0 = 1. k = 0.217.
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Figure 14.- Steady pressure distribution for NACA 64A010 Airfoil.

37



-----Calculated upper
- - - - Calculated lower

o Experimental upper
o Experimental lower

1.6

1.2

.8

---------C·. p

-.8~-~:__-_':'--_':_--""'=---:-'o .4

x/c

(e) M = 0.802. am = O. C10.

Figure 14.- Concluded.

38



-10

Calculated real
- - - - Calculated 1m 09

Calculated upper 0 Experimental real
----Calculated lower 0 Experimental Imag

1.8 40

1.2 30

.8
N

-Cp ~Cp

.4

0

-.4 -10

-.8 -20
0 .4 1.0 0 .4

x/c x/c

(0) Mean. (b) Lifting.

Calculated real Calculated real
----Calculated imog ----Calculated imag

0 Experimental real 0 Experimental real
0 Experimental imag 0 Experimental imog

40 40

30 30

20 20
N AI

Cp Cp

10

-20~-~:---....l:_--..L.---.L----J
o .4

x/c
(d) Lower surface.

1.0
-20 L..-_---L__--L__-.L-__.J--_--J

o .2 .4 .6 .8

x/c
(c) Upper surface.

Figure 15.- Unsteady pressure distribution for NACA 64A010 Airfoil.
Case 1, M == 0.490, 010 = 0.96. k == 0.100.
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Figure 16- Unsteady pressure distribution for NACA 64A010 Airfoil.
Case 2, M = 0.502, a o = 1.02, k = 0.100.
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Case 3. M = 0.796. tX o = 1.03. k = 0.025.
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Figure 18.- Unsteady pressure distribution for NACA 64A010 Airfoil.
Case 4. M = 0.796. (Xo = 1.02. k = 0.051.
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Figure 19.- Unsteady pressure distribution for NACA 64A010 Airfoil.
Case 5. M = 0.796. oeo = 1.02. k = 0.101.
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Figure 20.- Unsteady pressure distrfbu tion for NACA 64AD10 Akfon.
Case 6, M = 0.796. Gto == 1.01. k == 0.202.
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Figure 21.- Unsteady pressure distribution for NACA 64A010 Airfoil.
Case 7. M = 0.796. Q o = 0.99. k = 0.303.
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Figure 22.- Unsteady pressure distribution for NACA 64A010 Airfoil.
Case 8. M = 0.796. (I/o = 0.51. k = 0.101.
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Figure 23.- Unsteady pressure distribution for NACA 64A010 Airfoil.
Case 9. M = 0.797. 0(0 = 2.00. k = 0.101.
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Figure 24.- Unsteady pressure distribution for NACA 64A010 Airfoil.
Case 10, M = 0.802, ClIo = 0.94. k = 0.200.
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Figure 25.- Steady pressure distribution for MBB-A3 Airfoil.
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Figure 26.- Unsteady pressure distribution for MBB-A3 Airfoil.
Case 3, M = 0.765, (Xm = 1.5, (Xo = 0.5, k = 0.1.
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Figure 27.- Unsteady pressure distribution for M88-AJ Airfoil.
Case 4. M == 0.765. CXm = 1.5. CX o == 0.5. k == 0.3.
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Figure 28._ Unsteady pressure distribution for MBB-A3 Airfoil.
Case 5. M = 0.765. tX m = 1.5. tX o = 0.5. k = 0.9.
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Figure 29.- Unsteady pressure distribution for MBB-A3 Airfoil.
Case 11. M = 0.765. am = 1.5. ho/c = 0.01. k = 0.1.
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Figure 3Q- Unsteady pressure distribution for M88-A3 Airfoil.
Case 12. M = 0.765. otm = 1.5. ho/c = 0.01. k = 0.3.
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Figure 31.- Unsteady pressure distribution for MBB-A3 Airfoil.
Case 13, M = 0.765, cxm = 1.5, ho/c = 0.01, k = 0.9.
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Figure 32.- Steady pressure distribution for NLR 7301 Airfoil.
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Figure 33.- Unsteady pressure distribution for NLR 7301 Airfoil.
Case 1. M = 0.500. am = 0.4. 01 0 = 0.5. k = 0.098.
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Figure 34.- Unsteady pressure distribution for NLR 7301 Airfoil.
Case 2. M = 0.500. am = 0.4. 010 = 0.5. k = 0.263.
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F'igure 35.- Unsteady pressure distribution for NLR 7301 Airfoil.
Case 3. M = 0.700. Of m :: 2.0. Ofo = 0.5. k = 0.072.
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Figure 36.- Unsteady pressure distribution for NLR 7301 Airfoil.
Case 4. M = 0.700. tXm = 2.0. tX o = 1.0. k = 0.072.
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Figure 37.- Unsteady pressure distribution for NLR 7301 Airfoil.
Case 5, M = 0.700, C:X m = 2.0, 01 0 = 0.5, k = 0.192.
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Figure 38.- Unsteady pressure distribution for NLR 7301 Airfoil.
Case 6, M = 0.721. cxm = -0.19, CX o = 0.5, k = 0.068.

63



-----Calculated upper
- - - - Calculated lower

2.0

1.0

-------C·p
.5 __ ,

r-

I ""OH'---------.,,....----'~-

-.5

-1.0~-_..,.--~--.A,_-~--....Io .4

x/c
(a) Mean.

-------Calculated real
----Calculated imag

30

20

10
tV

Cp .

-30!--_-'-__....4-__.L.-_~__....J

o .4 1.0

x/c
(c) Upper surface.

tV

ACp

tV

Cp

-----Calculated real
- -.---. -Calculated imag

30

\

-10

-20

-301--_-'-__....4-__.L.-_~__....I

o .4.6 1.0

x/c
(b) Lifting.

-----Calculated real
----Calculated imag

30

20

-20

-30~_-.1::__...A:-__"':-_-..1::--_-:-'
o .4.6

x/c
(d) Lower surface.

..

Figure 39.- Unsteady pressure distribution for NLR 7301 Airfoil.
Case 7. M = 0.721. Ot m = -0.19. 01 0 = 1.0. k = 0.068.
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Figure 40.- Unsteady pressure distribution for NLR 7301 Airfoil.
Case 8. M = 0.721. Ol m = -0.19. Ol o = 0.5. k - 0.181.
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Figure 41.- Unsteady pressure distribution for NLR 7301 Airfoil.
Case 9. M = 0.721. OCm = -0.19. OC o = 0.5. k = 0.453.
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Figure 42.- Unsteady pressure distribution for NLR 7301 Airfoil.
Case 10. M = 0.500. OCm = 0.4. 60 = 1.0. k = 0.098.
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