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SUMMARY

Improving the aerodynamic characteristics of an
airplane with respect to maximizing 1ift and minimizing
induced and parasite drag are of primary importance in
designing lighter, faster, and more efficient aircraft.
Previous research done by Olson (Ref. 18) has shown that a
properly designed biplane wing system can perform superiorly
to an equivalent monopiane system with regard to maximizing
the lift to drag ratio and efficiency factor. Biplanes
offer several advantages over equivalent monoplanes, such as
a 60% reduction in weight, greater structural irntegrity, and
increased roll response. The purpose of this research is to
examine, bofh theoretically and experimentally, the
possibility of further improving . the aerodynamic
characteristics of the biplane configuration by adding
winglets. Theoretical predi?tions were carried out
utilizing vortex-lattice theory, which is a numerica} method
based on potential flow theory. Experimental data were
obtained by testing a wmodel in the Pennsylvania State

University’s subsonic wind-tunnel at a Reynolds number of

510,000. Results indicate that the theoretical predictions
agree fairly well with the experimental results. More
importantly, the results showed that the addition of

winglets improved the performance of the biplane with
respect to 1increasing the lift-curve slope, increasing the
maximum lift coefficient, increasing the efficiency factor,

and decreasing the induced drag.
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CHAPTER 1

INTRODUCTION

In modern times, with the advent of wide-body jets and
supersonic transports, the aircraft has proven to be a very
fast and efficient means of transportation from a
passenger—-seat-miles-per-gallon standpoint. Howévér,
private, corporate, and business travel in light aircraft,
commonly referred to as general aviation, also plays a vital
role in America’s transportation system. For transportation
needs Dbetween cities located approximaﬁely 100 to 500 miles
apart, the light aircraft is a very attractive means of
transportation. For example, a small four-place
single~engine aircraft, such as a Mooney 201, will transport
four - people at 187 miles per hoﬁr while burning'9.9 gallons
of fuel per hour.r This translates to 18.9 statute; miles
travgled per | gallon of fuel burned, - or 75.6
passéhger—seat—miles-per-gallon. This is not as efficient
as a small automobile. However, when considering the high
'speed and straight line travel which the airplane affords,
it éppears to be quite advantageous. Compare this to a
McDonéll—Douglas DC~10 wide-body jet, which can transport
255 éassengers at a specific range of 0.22 miles traveled
per gallon of fuel burned. This yields 56.1
passenger—-seat-miles-per-gallon. From this standpoint, it

can be seen that the general aviation airplane is the more
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efficient means of transportation. However, for the general
aviation airplane to remain an efficient means of

transportation, continous . improvements must be made on

improving aerodynamic efficiency and reducing drag. The
high cost of aviation fuel, coupled with increasing
operating and maintenance costs, 1is forcing aircraft

manufacturers to design and build more efficient and better
performing aircraft. The ‘National Aeronautics and Space
_Administratioﬁ (X¥ASA) has . been performing a great deal of
research in the area of improving aerodynamic efficiencies.
Such research prbjects include experimehfation with winglets
and Qing—tip extensions on general aviation aircraft, as
well as first and second generation jet transports. It has
been determined that ©properly designed‘ winglets can
significantly reduce = induced drag at cruise lift
coefficients witﬂout imposing severe additional structural

loads (Ref. 4).

It is the pﬁrpose: of this research to study, both
experimentally and theoretically, the aerodynamic
chafacteristics and aerodynamic efficiencies of a biplane
configuration wutilizing winglets. In present literature,
there is very little material available on the aerodynamic
theory of biplanes. Iﬁ the early days of aviation, when the
monoplane was first introduced, research on biplane theory
was virtually discontinued. The analytical determination of

biplane characteristics was very <complicated due to the
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complex interactions between the two wings operating in
close proxinmity to each other. Until recently, very few
attempts have been made to optimize the aerodynamic

efficiency of the biplane.

If a biplane wing system could be designed to operate
as efficiently as an equivalent monoplane system (with the
same equivalent wing loading and aspect ratio), the biplane
would offer several advantages. Because of the decreased
structural constraints of the biplane, - the biplane wing
system can be ‘as mwmuch as 60% lighter in weight than the
equivalent monoplane system. Also, becauée of the increased
roll response 6f the biplane, much less ailerén area is
required. This means that most of the wing's trailing edge
can be utilized for high 1lift devices, such as fowler flaps.
Biplanes offer the potential for excellant low-speed
maneéuverability, good short-field performance, good load

carrying capability and rugged. construction.

Previous Investigations

There are three terms commonly used to define. the
geo%etrf of a hgiven biplane configuration. They are‘gap,
stagéer, and decalage. The gap(Ga) is the distance one wing
is i;cated above :the other measured in percent chord length.
Stagger(St) is the distance the upper wing is ahead éf,
positive, or behind, negative, the lower wing measured in

percent chord lenzth, Decalage(Dec) is the angle between
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the <chord lines of the upper and lower wings. The decalage
angle is negative when the lower wing is at a greater angle

of attack than the upper wing.

In 1918 F.H. YNorton (Ref. 17) conducted expériments
utilizing threé-dimensional ' non-syﬁmetrical :biplane
airfoils. His -results showed that maximum aerddynamic
effiency 1is achieved at the highest degree of‘étagger
physically possible. He wvaried only the stagger while
holding the decalage <constant at 0 degrees and the gap
constant at one chord length. Also, Norton discovered that
positive stagger greatly reduces the center of pressure

travel, which simplifies the problem of stability.

In 1929 Knight and Noyes (Refs. 11-13) conducted
several three-dimensional non-symmetrical biplane airfoil
tests and concluded that increasing stagger in the positive
direction, or increasing the gap, tends to equalize the
loads on the tworwings (this does not entirely agree with
the results predicted theoretically by the vortex-lattice
computer program). They also discovered that changes 1in
decalage from O degrees for the orthogonal biplane (staggér
equal to zero and gap equal to one chord length) tendea to
reduce the maximum lift coefficient.' This is because (for
the orthogonal ca;e) the greatest maximum 1lift coefficient
is reached when both wings stall nearly together. This
occurs when they are at the same effective angle of attack.

If positive stagger 1is présent, the 1lower wing must be
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operating at a higher angle of attack (negative decalage
.angle) than the upper wing in order to héve sufficient stall
match. This effect is due to the lower wing being emersed
in the downwash of the  upper wing, thereby reducing the

effective angle of attack of the lower wing.

In 1936 M. Nenadovitch (Ref. 16) conducted several
experiments to determine the aerodynamic characteristics of
two-dimensional symmetrical biplane airfoils. He discovered
that at a gap-of one chord length, a stagger of one chord
length, and a decalage angle of -6 degrees there was a

substantial reduction in drag.

These results aré significant. However, in none of the
previous experimentation has any comparison been made to an
equivalent monoplane configuration until 1974, vIn 1974 E.C.
Olson (Ref. 18) conducted extensive experimentation on
three-dimensional non—éyﬁmetrical airfoil biplane
configurations in which the geometry was varied abéut
Nenadovitch’s optimum test configurations. However, in
conjunction with the wvarious biplane configuration tests,

Olson also tested an equivalent monoplane system. This is a

monoplane system which has the same wing area as the biplane

System as well as a similarily related aspect ratio. He
discovered that at certain optimized geometric
configurations, the biplane outperformed the monoplane

configuration with respect to minimum drag and maximum 1ift

to drag ratio. The biplane configurations were tested with
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and without the fuselage. Specifically, Olson’s experiments

resulted in the following conclusions:

1. At a gap of one chord length, a stagger of .0.875,
and a -decalage angle of -6 degrees,the biplane
configuration showed a 25% reduction in drag over
the monoplane at a typical cruise lift
coefficient.

2. At a gap of one chord length, a stagger of 0.875,
and a decalage angle of -5 degrees, the biplane
configuration showed a 31.2%Z increase 1in the
maximum 1lift to drag ratio while producing a 21.47%
reduction in drag over the monoplane.

\

3. The most effective overall ©biplane configuration
was found at a gap of 0.875, a stagger of one
chord length, and a decalage angle of -t degrees.
This biplane configuration showed a 16.3% increase
in the in the maximum 1ift to drag ratio, and a
14,3% reduction in drag at a 1ift coefficient of
0.175.

4. All biplane configurations showed a reduction 1in

the maximum 1ift coefficient when compared to an

equivalent monoplane configuration.

.

“Past research has shown that the addition of winglets
to a given wing configuration can significantly reduce the
induced drag. The presence of the winglets causes a
physical constraint to the flow field near the location of
the winglet, which is usually at of near the wing-tip. This
constraint weakens the strength of the trailing vortices
shed near the vicinity of the wing-tip. This reduction in
the strength of the trailing vortices causes a reduction in
"the induced downw;sh, particularily in the vicinity of.'the

outboard section of the wing. By reducing the induced
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downwash, the effective angle of attack of the wing 1is
increased. This results in a more even spanwise load
distribution across the wing; the net result being a wmore

efficient wing.

The geomet;ic configuration of the winglet is primarily
described by two parameters: the winglet cant angle and the
winglet toe angle. The cant angle is defined as the angular
deflection of the winglet planform relative to a vertical
plane which is perpendicular to the aircraft’s lateral axis.
At a cant angle of 90 degrees, the winglet acts as a
wing-tip extension, which is wunfavorable ©because of the»
increased bending stresses imposed on the wing structure.
Aiso, a cant angle of 0O degrees is unfavorable due to the
increase in interference drag caused by thiékening boundéry
layer intéractions at the wing-winglet joint. The toe angle
is the incidént angle of attack at which the winglet is

mounted relative to the airplane’s longitudal axis.

In addition to altering the spanwise load distribution,
the winglet <can also induce a negative drag coptribution.
This is caused by the forward tilting of the winglet normal
force vector. This forward tilting effect is caused by the
winglet operating at an induced angle of attack, which lis
brought about by the vectorial addition of the sidewash

velocity and freestream velocity vectors.
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Description of Research

The purpose of this research 1§ to investigate the
possibility of further increasing the aerodynamic
performance of the biplane configuration by adding winglets
to the already optimized ©biplane configurations fdund in
0Olson’s experiments. Pertinent aerodynamic <characteristics
of the Dbiplane-winglet configuration will be predicted
theoretically as well as determined experimentally. If the
biplane-winglet configuration could be optimized to the
extent that it could perform as well "as an equivalent
monoélane (with respect to minimizing drag and maximizing
the lift to drag ratio), the biplane could offer several

advantages, which have been previously mentioned.

>The first step in this research was to theoretically
analfze and predict the aerodynamic performance of a given
bipl;ﬁe configuration with and without winglets. The method
used. was a finite-element, three-dimensional potential flow
code , commonly refered to as the vortex-lattice method.
Vortéx-lattice utilization is commonly wused throughout
industry and government research to predict subsonic
aerodynamic characteristics of complex planforms as well as
predicting spanwise and chordwise 1load distributions on
aerodynamic structures, Research has shown vortex-lattice
theory to predict aerodynamic characteristics of complex

planforms with considerable accuracy.
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The second step was to experimentally test an already
optimized design configuration. Based on previous research
done by Nenadovitch and Olson, it was determined that the
optimum test <case would be a biplane-winglet configuration
with a gap of one chord length, and a stagger of one chord
length. The configuration was tested with and without
winglets at a Reynolds number of approximately 510,000. The
decalage angle .was varied from O to -5 degrees. The
experimental daté was then reduced and several wind tunnel
corréction factors applied to yield experimentally correct

lift and drag data.
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CHAPTER I1

PRESERTATION OF THEORY

Before the‘ advert of modern high-speed <computers,
simple problems in aerodynamics had ﬁo be solved using
classical theory. As the problems becamé more complex, the
application of classical theory became quite cumbersome due
to the complex conformal.transforﬁations which had "to be
utiiized. It was very difficult to optimize a given design
except through trial and error. The analytical approach to
predicting the aerodynamic_characteristics of a relatively
simple biplane configuration proved to be quite cumbersome,
even for a simple mathmatical model such as the classical
bound-vortex lifting-line method. The addition of winglets
to the biplane configuration makes the problem much more
complex.‘ The inﬁerference effects of all components must be
considered, since they have a significant effect on the

induced drag and spanwise load distribution.

Basically, °© the vortex~lattice method is a
finite-element method which wutilizes a vortex-lattice
representation of the aircraft’s 1lifting surfaces coupled
with classic equations and theorems for computing
aerodynamic characteristics such as 1lift, induced drag,
spanwise load distributions, and wing efficiency factors.
This method aséumes steady, irrotational, inviscid,

incompressible, attached flow. Therefore, numerical results
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can only be assumed valid at subsonic speeds when the wing
system is operating at a less than critical angle of attack.
The vortex-lattice method is coﬁmonly used for predicting
the aerodynamic characteristics of complex three-dimensional
planforms such as the Lockheed boxplane and Whitcomb winglet
configuration (Ref. 4). In 1 this research, the
vortex—lattice method will be wutilized in predicting the
aerodynamic performance of the biplane-winglet

configuration.

Basic Theoretical Concepts

Fundamental to the development of the vortex-lattice
model 1is the representation of the aircraft’s non-planer
lifting surfaces by a system of rectangular horseshoe
vortices. Basically, each planform surface is divided into
several finite elemental panels which extend chordwise and
spanwise across the entire planform surface. At the_ﬁuarter
chord point 6f each elemental panel a bound horseshoe vortex
is located, and at the three-quarter chord .point. a
corresponding control point is located. Figure 2-1 shows a
typical section of wing which has been broken down iﬁto
sevefal elementai panels. At each control point the no-flow
through conditioﬂ must be satisfied; that is, the flow must
be tangential ﬁo‘the planform surface at this point. This
concept first appeared 1in a paper by E. Pistolesi

1937 (Ref. 5). He found that by using the 1/4-3/4 <chord
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rule, "Section 1lift and moment predictions for a cambered
airfoil at a constant angle of attack were exactly that of
thin—airfoil_ theqry. In 1942 J. Weissinger applied this
methoa to wing configuratigns of finite aspect ratio and
also achieved acqurate,resulfs. This method has been widely
accepted and 1is used throughout presént research which

utilizes vortex-lattice methods.

" The first 'step 1in .utilizing vortex-lattice theory,
assﬁming the pianform geometry has been defined, is to
determine the numﬁer of chordwise and spanwise horseshoe
vortices that are to be located on the planform surfaces.
The three-dimensional coordinates which 1lécate the bound
horseshoe vortices are next computed, as well as computing
the coordinates of the cooresponding control points. Once
this 1is accomplished, the induced velocities from the total
vortex system can be equated -to the freestream velocity
component normal to the 1lifting surface ;t each con£rol
point. Application of the tangent flow boundary condition,
(assuming a symmetrical 1loading) will yield a set of N
simultanious equations, each equation consisting of N
unknown horseshoe vortex strengths. The fundamental laws of
induced velocity from a vortex filament are wutilized in
calculating. the horseshoe vortex induced flow-field at each
coﬁtrbl point. Once the get of N simultanious equations 1is
solved, and the strength of each individual. horseshoe vortex

is determined, the Kutta=-Joukowski theorem for lift from a
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vortex filament 1is wutilized to determine the section 1lift
coefficient. Finally, the finite wing 1lift coefficient can
be obtained by numerically integrating the spanwise load

distribution across the entire planform surface.

The induced drag created by the bound vortices located
on the planform surfaces, which is of primary importance,
can be determined for any given loading and operating
condition by utilizing the following basic laws and
theorems: Biot-Savart Law, Kutta-Joukowski Theorem, and

Munk’s Theorems 1 and II.
Munk’s first theorem (Ref. 4) can be stated as follows:

The total induced drag of any multi-plane lifting
system is unaltered 1f any of the lifting elements
are moved in the direction of the motion provided
that the attitude of the elements is adjusted to
maintain the same distribution of lift among them.
This theorem is commonly referred to as "Munk’s stagger
theorem.”" An illustration of this theorem is shown in
figure 2-2. Several practical applications can be reasoned
from this theorem. First, the chordwise distribution of
pressure does not affect the theoretical induced drag of the
aircraft {if constant section 1lift is mainta;ned. Second,
wing . sweep or biplane stagger does not affect the
theoretical induced drag as long as the Spanwise
distribution of 1lift is constant. A third application 1is

that: the 1load from a system of nmulti-surfaces, such as the

wing and horizonal tail, with the same projection in the Y-Z
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plane can be made equivalent to a single surface for the

purpose of calculating induced drag.

- In the following theoretical development, use will be
made of Munk‘s first theorem to combine the chordwise
distribution of vorticity into a single chordwise ldad_ and

to translate all:loads into the 0,Y,Z plane.

Munk’s second theorem is illustrated in figure 2-3 and
can be stated as follows:

"In calculating the total induced drag of a lifting
system, once all the forces have been concentrated
into the 0,Y,Z plane, one may, instead of  using
the actual values of the velocity normal to the
lifting elements [ V (x,y,z)] at the original
points of application of the forces, use one-half
of the 1limiting value of the mnormal velocity

| V{(WwY»Z)] for the corresponding values at
points P(O,y,z).

This theorem allows the computations to be done in the
Trefftz plane, a plane which ~1s located infinitely far
downstream, rather than 1in the real plane. In the
subsequent theoretical derivation, this fact will Dbe

utilized in order to make all the induced drag compdtations

in the Trefftz plane, thereby greatly simplifying the

calculations.

The third theorem given by Munk is presented as

follows:

When all the elements of a 1lifting system have
been translated longitudinally to a single plane,
the induced drag will be a wminimum when the
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component of the induced velocity normal to the
lifting element at each point is proportional to
the <cosine of the angle of inclination of the
lifting element at that point.

This theorem 1is illustrated in figure 2-4 and can Dbe

summarized in equation form as:

V =w cos 6 2.1
n (o]

For a horizonal lifting element it can be seen from equation
(2.1) that thelnormal velocity (downwash) across the span is
equél to a constant. For a vertical plane (8 =90 degrees),
the normal velocity (sidewash) must be equal to zero for
minimum induced drag. The physical interpretation of this

theorem will be further illustrated in a subsequent section.

The basic equation for calculating the induced drag can
be derived by applying the Kutta-Joukowsaki theorem in the
drag direction. By utilizing Munk’s theorems, the
calculations c¢can be accomplished in the Trefftz plase.
Thus, the basic equation for calculating the indﬁced drag
for an arbitrary non-planer 1lifting system, expressea in

terms of the Trefftz plane and using vector notation is:

1 - - B
D, 2Vm]’v n N do 2.2

This 1integral is a line integral taken around the

perimeter of the ©projection of the lifting surface in the
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Trefitz plane. The vector v is the resultant induced
velocity- vector 1in the Trefftz plane from all horseshoe
vortices located on the load perimeter. N represents the
load perimeter normal force per unit span. For a horizonal
lifting surface, N would represent the section .lift force.
The vector n is a wunit vector, normal to . the load

perimeter.

Physical Interpretation of Theoretical Concepts

To provide a better wunderstanding of induced drag
calculations, the theoretical concepts discussed 1in the
preiious section will be 1illustrated wusing a monoplane
wing-winglet configuration. In figure 2-6 the sources of
induced drag for a wing-winglet configuration are shown.
They are:

Induced drag due to the induced flow by the wings
on the wing

Induced drag due to the induced flow by the wings
on the winglet -

Induced drag due to the induced flow by the
winglets on the wing

Induced drag - due to the induced £flow by the
winglets on the winglet

For simplicity, the effects of symmetry are included in
the sources of 1induced drag shown and are not delineated

separately.
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In figure Z—Sa the effect of the wing induced  flow 1is
shown. The wing under positive load produces a downwash on
itself which results in the wing force vector, F , tilting
rearward by an angle Oy . The wing force vector is
perpendiculér to the resultant velocity wvector, v R by
definition of the Kutta-Joukowski theorem. A sidewash is
also produced by the wing at the winglet. As can be seen'in.
figure 2-5b, the sidewash at the winglet combined with the
freestream velocity produces a tilt forward of the resultant

winglet force vector. This produces a negative drag

component as well as a side force component on the winglet.

In figure 2-5c, the induced drag resulting ffom the
éidewash induced by the winglet on itself is presented.
This results in a rearward tilting of the resultanf force
vector, which creates an attendant induced drag component as
well as an additional side force componenf. It should be
noted that the direction of the winglet force vector is
consistant with a positive (upload) on the wing{ The
winglet also induces an upwash on the wing. In figure 2-5d
it can be seen that this upwash rotates the resultant wing

force vector forward. This produces an additional 1ift

force on the wing as well as a negative drag component.

- The results of figures 2-5a, 2-5b, 2-5¢c, and 2-5d are
summarized in figure 2-6, where all the indﬁced velocities
are combined. For minimum induced drag, equation (2.1)

indicates that the velocity normal to the winglet must be
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equal:td zero. This can be seen to occur when the sideﬁgéh
producgé on the winglet by the wing exactly cancels Eﬁ;
sidewash produced by the winglet on iE§élf. In other words,
the induced angle of attack of the winglet is zero. Thé
induced drag of the wing is also minimized by the presence
of a winglet since the winglet causes a reduction in the net
doﬁﬁwash at the wing; hence, the induced angle of attack is
reduced. Also, the winglets allow the wing to be loaded
more heavily out towards the tips, which of <¢ourse Tresults

“in a more efficient wing.

Theoretical Application

The Vortex-Lattice Computer Program

The purpose of this section is to present and discuss
the methods wused in developing the vortex-lattice cqmphtet
program. Relevant equations and formulas will be discussed
in order that the reader may understand, and if necessary,
modify the existing program. Figure 2-7 shows the computer
program flowchart which represents the internal structuring

of the vortex-lattice computer programe.

The first function performed by the program 1is the
input of the biplane~winglet planform geometry, as well as
the input of data representing a given flight <condition.
Upon execution of the program, the computer will ﬁrOmpt the
user for the following: biplane aspect ratio, biplane

staggér, decalage angle, wing twist, maximum winglet toe
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angle, and angle of attack. . The wings and winglets afe
assumed to have no camber or taper, and the biplane gap is
held constant at one chord length. Since the flow 1is
inviscid and incompressible, the velocity may be arbitrarily

chosen.

The next function performed, after the total number of
spanwise and chordwise horseshoe Yortices have beeﬁ
determined, is theléomputation of the coo:dinates of éll ﬁhe
horseéhoe vortices and tﬁeir cooresponding control points.
In this program, the number of <chordwise and  spanwise
horseshoe vortices 1is pre-set. The upper and lowgr wings
each contain a total of 80 horseshoe vortices (40‘ loﬁated
Qpanwise and 2 located chordwise for each wing), while the
winglets each contain a total of 16  horseshoe vortices (8
located spanwise éhd 2 located chordwise:for each winglet).
These numbefs were arrived at by analyzing output data from
several program executions,.and choosiqg numbers which would
vyield converging results without cbnsuming enormous

computational time.

: In constructing the vortex-lattice planform modél, only
a haif-span model is constructed since a symmetrical loading
is assuﬁed. The program computes the position 6f each
horseshoe vortex, represented by . pnn;qnn,rnn5 where the
sdbscript n répresents the nth. horseshoe vortéx.

Similariiy, the - program also computes the position of each

corresponding control point, represented by pvv,qvv,rvv.
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where the subscript v Trepresents the position of the v

control point. This is accomplished by applying the 1/4'3/4'

rule to cach elemental panel. Figure 2-8 shows the
half-span planform nmodel of thé biplane-winglet
configuration represented by a system of recténgular
horseshoe vortices. 1In this model, Tl through r40. are
located on the upper wing, r41 through r80 are located on

the lower wing, and 7[r_. through T are located on .the

81 96

starboard winglet. The P,Q,R axis system is also shown

with the origin located at the mid-span point of the leading

edge of the upper wing.

Since a symmetrical loading is assumed, the tangential
flow 'boundary condition will be applied only to the control
points located on the starboard pianform. However, the
total induced velocity at each control is contributed to by
each and‘every bound horseshoe vortex locaied ~on both the
starboard and port planforms. Because of the symmetrical
loading assumption, Pn on the étarboard wing is equal to'

Fn _>on the port wing. Therefore, only the half-span

horseshoe vortex strength distribution must be solved for.

Next, the coordinates, P , of the vth control point

v

th
n

relative to the horseshoe vortex can be computed in

the X,Y,Z axis system. For the starboard wing:

X = PvV.. = pn
vn p\) pn

s =qv_ - qn
Pon = (xvn, Y8\n? zvn) oo T Ty T T

z
vn \Y n
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and for -the port wing:

= pv._ = pn
vn P v P n
= z yp =qv_+aqn
p= (x,0 YR 240) va -~ Ty T I,
z =TV =-TInh
vn n

The influence coefficients, which relate the induced
’ A - th . ) -th
velocity at the Vv control point to the strength of the g
-horseshoe vortex (which is inducing the flow at that control
point) must be computed next. They are computed in order to

determine the vortex induced velocity at each of the control

points located on the starboard planforme.

The downwash: influence coefficients; which represent
the induced velocities caused by the bound horseshoe vortices
located on the starboard planform, can be computed from the
following expression. The angle ¢ represents the angle of
the bound horseshbe vortex filament in the P-R plané; .‘For
the horizonal surface (wing), ¢ =0 degrees,"and for the
vertical surface (winglet), ¢ =90 degrees.

-X,, cos ¢n

Fws = v

2 - 2
xvﬂ+(zvn cos dan--ye.\)n sin ¢n)

1(ysvn+s cos ¢n)co§ ¢ +(Z,*s sin ¢n)§1n@n

2]%

2 2 '
[xvn+(ysvn4-§ cos ¢n) +(Zvn4-s sin ¢n)
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_ (ysvn - 6 coOS8 ¢n)cos ¢n + (Z\m - 8 sin ¢n)sin ¢n
2 ) = 237
[XVn + (ysvn 5 CcOs ¢n) + (Z\,n - s sin ¢n) ) .
) (ys\)n - 8 cos ¢n)
' 2 2
(ys\,n § cOSs ¢n) + (Zvn - s sin ¢n)
*un

[x\’n + (ys\,n - s cos ¢n)2 + (Zvn - s sin ¢n)2]

. (ysvn + 8 cos ¢n)

: . 2 2
(ysvn + s cos ¢n) + (Zvn + s sin ¢n)

X
n

« {1 - - 4
2 , 2 - 2
[xvn + (}’3\)n + s cos ¢n) + (Z + s sin ¢n) ]

Similarily, the downwash influence coefficients which
represenf the poft wing can be expressed identically to the
above equation except YPyn is substituted 1in place of
Y8 n" The downwésh at the vth control point, induced by the

nth horseshoe vortex 1located on the port and starboard

planform, represented by Wo,p® can be expressed as:

r
(Fws.,_ + Fup_ ) 2,3

n
w = e—
vn 4w vn



®
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.. . . h
In a similar manner, the sidewash velocity at the vt

. . th
control point induced by the n horseshoe vortex can be
computed. The sidewash influence coefficients representing

the bound vortices on the starboard wing can be computed

from the followving expression(Ref; 15).

-X n sin d)n

Fv&mx= 2 : 2
+ _ .
X0 (Z\)n cos ¢n ys,, sin ¢n)
. (ysvn4-s cos ¢n)cos ¢n4-(Zvn*-s sin ¢n)sin ¢n
[x2 +(ys _+s cos ¢‘)2+(Z +s sin ¢ )2]%
vn vn : n van n
_ 3\
) (ysvn-s cos ¢n)cos ¢n+(zvn-s sin ¢n)81n.¢n
2 2 2.%
[xvn+(ysvn-s cos ¢n) +(zvn s sin ¢n) ]
. (Z\)n- s sin ¢n)
2, . 2
(ysvn—g cos ¢n) +(Zvn'_ s sin ¢n)
x
1o vn .
2 2 2.%
[x\)n+(ysw1 s cos ¢n) +(Zvn s sin ¢n) ]‘
Z +s sin ¢
_ vn n
2 2
(ys\m+s cos ¢n) +(Z\m+s sin tbn)
. X
C 1 - vn

%

2 2 2
[an+(ySVn4-s cos ¢n) +(Zvn4-s sin ¢n) ]
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The sidewash influence coefficients representing the port
planform can be expressed as above except YPvn is agaih
substituted in place of YSon Similarily, the sidewash

» th . . " th
velocity at the v control point induced by the n
horseshoe vortex located on both the port and starboard
planform, represented by vvﬂ, can be expressed as:

1Tn
— (Fvs. '+ Fv 2.4
vvn = 4 ( vn ,pvn)

. The total downwash at a given control point is equal to
the sum of the induced downwash contributions from each
horseshoe vortex located on the entire planform surface.

th

The total downwash at the v control point can be computed

from the followiﬁg:
N : N Fn ‘
w\) = z Von = z l:"—'"- (Fws\)n + Mvn)] . 2.5
n=1 n=1

Similarily, the total sidewash at a given control point can

be expressed as

N N l—l"n _ .

V\) = z an = z L‘l—" [Fvsvn + FVP\)H)] 2.6
n=l n=1

Next, the tangential flow boundary condition at each of

the control points located on the starboard planform must be

satisfied. First the horizonal (wing) planform surface will

be considered. By equating the freestream velocity and
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local angle of attack to the local downwash velocity, the

following boundary <condition for the vﬂ’control point can

be formulated.

M
7 e,

N
z w 2.7
v=]1 =

1
voo

This can also be expressed as:

M 1 M N
vzl ey = 4mv_ vzl nzl [%ni(Fwsvn + Fvani] _ 2.8

where a§ represents the local angle of attack of theb

cohtrol point. M ‘represents the number of horseshoe.
vor;ides and»coorespoﬁding control points 1o¢ated vﬁn‘ the
horizonal planform surface, and N represents the number of
vortices and control points located on both the horizonal
and vertical planform surfaces. Expanding equation.( 2.8.)
yields' M 1linear equations; each equation containing N
unknoﬁn circulation strengthé. They can be expéﬁdedvto the

folléwing:

Fl(Fwsl:ii-qul’l)+ rz(Fwsl’zi-pr1’2)+... + FN(Fwsl’Ni-FWpl’N)==4ana1

rl(FWSZ,1+ M2,1)+ l"z(Fwsz’2+ pr2,2)+ . I‘N(Fwsz’N+ FWPZ,N) = lmeaz

I‘l'(FwsM’l+ prM,l)+ I‘Z(I"x.rs},l’2 + prM,2>+ ces ¥ FN(FWSM’N'F F_pr,N) = 41rV°°on
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i o
The remaining linear equations <can be derived by

applying the same tangential flow boundary condition-to the
vertical surfaces. This boundary condition can be written

as.

v 2.9
yn .

fl 2

e
i ==
M+ VooV y=MH n=1

where-i\)represents the incident angle of attack (toe angle)

. of the winglet. This can also be written as:

) L F Y j
y - 1= , [% Fvs  + Fvp ] 2.10
VsMHL v 4nv_ v=Mtl n=1 O vn vn
Expanding this yields the remaining linear equations

necessary to determine the unknown circulation strengths.

Fl(Fvs )+T2(Fvs )+...-+TN(FVS

, + S :
m1,1 1 PP 1 mi1,2 TEVPypy 2 w1, N PPy N

= 4V

I‘l (1~"st_'_2,1 + FVPM+2,1)+ I‘2 (Fst+2,2 + FVPM+2,2)+ et rN(Fv'sM-I-Z,N+ F-va-l-Z,N)
= ATV e

Fl(Fsz’

i ' . . + =
l+vaN’l)-i-I‘Z(Fsz’z-i-vaN,ZH . +-PN(?sz’N FVPN,N) 4“Vmiu

Finally, th; unknown circulation strengths can be
computed by simultaniously solving the complete set of
linear algebraic equations. This can easily be done by

first expressing the equations in matrix form as:

(al{r_} = {8}
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where [A] is the coefficient matrix, and {B} is the boundary
condition matrix. The solution can be obtained by inverting
the coefficient matrix and muitiplying it by the ©boundary

condition matrix.

{r_} = 1a17{8}

The wing and winglét section loading coefficients can
now be computed from the known circulation strengths using

the following well-known relationship.

2.11

The total 1ift produced by the upper and lower wings can be

expressed as:

: b/2 ' :
L=2] p V_ T(y) dy 2.12

Expressing this in 1ift coefficient form yields}

b/2

C =vl‘s [ Ty ay 2.13
A © w O ’

Converting this into a numerical integration form results

in:.

T 2s 2.14
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Similarily, the side force coefficient for the winglét can

be expressed as:

c. =2 § r_ 2 2,15

The induced drag coefficients are computed néxt' by
firsﬁ"balculatihg the <total -vortex induced velocities,
norﬁal to the control points on the load perimeter in .- the
Trefftz " plane. - This is done by first calculating the
position coordinates. of the vth control .point (in the
Trefftz pléne) relative to the nth horseShpe vortex as
follows:

vn

ys._ = qv_ - qn

yp = Q\)v + qnn

vn
b4 = Irv -1
vn v n

The “influence coefficients are then recalculated. By
knowing the circulation strengths of each horseshoe vorte#,
the downwash velocity normal to each control point on the
horizonal ©planform in the Trefftz plane éan be compﬁtgd as
well as_computing the sidewash velocity normal to eaéh
control point on the vertical planform surface. Thus, by
virtue of Munk’s theoremsAand the Kutta-Joukowsi theorem,

the induced drag coefficients can be computed.
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The induced drag coefficient, CD » Which is caused by
. ) “-.w~ ’w
the wing inducing a downwash on itself, can be computed from

the following expression:

4 M
=3 I w, T s 2.16
w,2w V.S n=v=l ‘w O

© Ty

where v, represents the downwash induced at the Vv
w
control point by the wing. The induced drag
coefficient, CD » which is caused by the winglet inducing
wi,w

an upwash on the wing, can be computed from the following:

<, = 2" ! w T s 2.17
STwWRL,w oV Sw n=v=]

where w represents the upwash induced at the VB control

v
Swl
point by the winglet.

Similarily, the induced drag coefficients, C and
: _ wWy,wi
CD » -which are caused by the wing and winglet inducing a
wl ,w ' '
sidewash on the winglet, can be expressed as follows:

4 N .
CD = v T' s 2,18
we,wi V) S mevemil V¥ T
. A N
c, = )) u T s 2.19

wywl Vi Sw n=vsMl w

The total induced drag is then equal to the sum of the four
induced drag coefficients. It is of interest to note that

the wing induces a negative drag component on the winglet,
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’and .similarily, the winglet induces a negative drag
component on the wing. The wing effdciedc§ factor ‘'can be

calculated from the following expression:

, . .
aC m™ AR
Di

" The theoretical drag polar can be now be computed.
However, first the minimum profile drag and the incremental
change in profile drag due to 1ift must be added to the

induced drag term to yield the total drag coefficient.

C.=C. +48C_ +¢C 2.21

Finally, the three-dimensional 1lift-curve slope <can be
determined once ﬁhe lift coefficient has been determined for

different angles of attack.

As was expressed previously; it is common in Dbiplane
theory to compute the wing efficiency factor utilizing the
bipléne's equivalent monoplane aspect ratio. The equivalent
monoplane aspect ratio can be calculated from the following

expression:

2
2
bl u2£1 + Y)

EMAR =

s 2 2
S W + 200 + ¥5)
' lower wing area
bl upper wing span m opper wing area
' 1
o from Figure 186 (Ref. 20) Y lower wing span

- upper wing span
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Bound Horseshoe Vortex f'

Control Point'
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4

X o -

Figure 2-1 Typical Vortex-Lattice Representation
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INDUCED DRAG |, ~ ~coery = INDUCED DRAG | )0y o oo

SPAN LOAD UNSTAGGERED STAGGERED
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l3
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—_— X

Figure 2~2 1Illustration of Munk's First Theorem

REAL PLANE , TREFFTZ PLANE
_ (X==)
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Figure 2-3 Illustration of Munk's Second Theorem
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LIFTING SURFACES 5

8
v. ER
A Y "L N 5
5 l — . IN EQUATION FORM;
, %o 4 l ' V. =w coss
\/ o WHERE
2> .

Vn = NORMA!. VELOCITY

Figure 2-4 1Illustration of Munk's Third Theorem
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(a) Drag due to wing on (b) Drag due to wing on

wing Diw o winglet Diw wi®
b ’

(c) Drag due to winglet on (d) Drag due to winglet on

winglet DJ‘WQ. vl wing Dlwg. '

Figure 2-5 Sources of Induced Drag for a Wing-Winglet
Configuration
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OPTIMUM VERTICAL LOAD FOR
HORIZONTAL SURFACE

w +w
wl, w w, w

“TOTAL
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" Figure 2-6 Combined Sources of Induced Drag for a

Wing-Winglet Configuration



Input geometry of the biplane-winglet
configuration
Select the total number of chorfdwise and
spanwise horseshoe vortices located on
each planform surface '
o—

Compute influence coefficients

3

Apply tangential flow boundary condition
at ‘'each control point to formulate a

‘'set of N simultaneous equations

'

Solve simultaneous  equations

the strength of each individual

to yield
vortex

i

Compute spanwise loading, section life
coefficient, and total 1ift coefficient

Modify planform geometry
to represent the absence
of winglets

b

Tréfftz

'Compute velocities induced in the
plane by the lifting surfaces
Compute induced drag coefficients, finite

wing lift-curve slope, and overall wing

efficiency factors

—

Print output.

Figure 2-7 Vortex-Lattice Computer Program Flowchart
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CHAPTER 'IIL

EXPERIMENTAL APPARATUS AND PROCEDURE

;Before conclusions can be " drawn on the aerodynamic
charécteristics- and performance of the biplang—wihglgt
configuration as predicted by the vortex-lattice. computer
prograrm, experimental data must be collected, correlated,
and analfzgd to determine the validity of the theoretical

predictions.

Description of Apparatus

For the purpose of obtaining experimental data, a
half-span wind-tunnel model of the biplane-winglet
configuration wéé constructedlby the author and tested in
The Pennsylvani; State University’s atmospheric
clo;éd-return-sdbsonic wind tunnel. A half-span model was
testéd,v which was mounted verticaliy in the wind tunnel,
extending upward through the floor of the test section. The
model was designed and constructed to have a stagger of one
chord'length,_a gap of one chord 1length, and a decalage
angle that could be varied from 0O to -6 degrees. The design
of the model’s geometric configuration was based on the
already optimized design configurations found by Nenadovitch
and Olson in previous wind tunnel experimentation wutilizing

biplane configurations.
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The  two finite wings wutilized in the model were
constructed from solid mohogany using a router-assembly tool
designed specifically for this purpose. The airfoil  used
was a NACA 0012, and the wing’s cross-section pfofile was
sanded to within 0.015 inches of the exact NACA 0012 airfoil
specifications. The two wings, which are identical, ha&e a
chord length of 7.875 inches, a half-span of 19.75 inches,
and a maximum <cross-sectional thickness of 0.96 inches.
This yields an aspect ratio of five, since the configuration

tested represents a half-span model.

Spaﬁning the tips of the two wings is a constant-chord
wingiet. The winglet was constructed from pine and‘was
sanded to form a. thin 37 thick symmetrical airfoil. fhé
winglet was held in placeAby four screws; and could easily
be rémoved for conducting tests with and without the winglet
att#ched. Also, by shimming, the winglet toe angle could be
varied by as much as plus or minus 2 degrees, although zero

incidence was used 1in the experimental tests. Zero

"incidence was chosen ©because the vortex—lattice c¢omputer

prograh predicted that no aerodynamic_advantagesvcould be
gained by having any winglet incidence present. The
presence of a high-degree of toe angle incidence caused a
slight increase in the inducéd drag. This was due to the
increase in the spanwise 1load distribution along the
winglet. The theoretical cases that were examined assumed

the toe angle to be maximum negative where the winglet
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joined  the wupper wing, and wmwaximum positive where the
winglet joined the lowver wing. The winglet was also -assumed
to have a linear twist between theg points of maximum

incidence.

The chord length of the winglet was a constant 7.875
inches, and no cant angle was present. Figure 3-1 shows the
‘model mounted in the four by five foot test section of the

subsonic wind tunnel.

The bases of the wings were mounted, wusing 1/4 inch
bolts and angle‘brackets, to a 20 inch diameter disk plate,
which was fabricated from 3/4 inch laminated plywood. To
vary the angle of attack of the model, fhe base.disk was
rotated about jts geometric center. The aft wing was
mounted on a 10 1dinch diameter disk plate which could be
rotated about the aft wing’s quarter chord point. This
allowed the decalage angle to be varied from O to -6
degrees. The winglet was desighed to be used for decalage
angles ranging from O to -6 degrees. To reducé interference
drag, the wing-winglet joint was filleted with putty during
experimental tests. Figure 5-2 shows the biplane-winglet

model before being mounted in the wind tunnel. ;

Located just below the wind tunnel test section 1is a
six channel pyramid type strain guage balance which is used
!

for recdrding lift and - drag forces during wind ‘tunnel

testing. The 20 inch diameter base disk, which supports the
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model, was mounted on the pyramid balance prior to

calibration c¢f the balance for wind tunnel testing.

Experimental Procedure

Before the actual wind tunnel testing could begin, the
wind tunnel balance had to be carefully calibrated. This
was done by applying known forces on the balance in ;he lift
and side force directions. The side force channel actually
indicates the 1ift force on the biplane configuration. This
is due to the non-standard method used in mounting the model
vertically wupright in the test section instead of
horizonally across. Frictionless pulleys, nylon string, a
level, and known weights were wused to apply exact known
loads to the wind tunnel balance. Several calibration tests
were conducted and the following errors in the 1lift and drag
measurments were determined; approximately 5-67% errror in
the drag force measurments, and approximate;y 1-2% error in
the 1lift (side) force measurments. The exact amount of
error depends on the magnitude and range of the . applied
forces. The wind tunnel calibration correction factors were

later applied in reducing experimental data.

The biplane-winglet configuration was tested in the
wind tunnel at a veloclity of approximately 149 feet per
second. The ambient air temperture in the test Section
varied from 115 to 120 degrees Farenheit wﬁile the

barometric pressure was constant at 29.01 inches of mercury.
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This resulted in a Reynolds number of approximately 510,000,

In the first set of experimental tests, the giplane
configuration was tested with and without wingleﬁs at-a
decalage angle of 0O degrees, and a stagger and gaﬁ both
equal to one chord length. The angle of attack was varied
from -2 to 21 degrees in 2 degree increments. The angle of
attack of the biplane configuration is actually the angle of
attack of the upper wing, and' the decalage angle 1is the
incident angle éf attack of the lower wing relative to the

upper wing.

In the second set of experimental tests, the same
biplane <configuration was tested using the same procedure
except the decalage angle was changed to =5 degrees. The

angle of attack was varied from -4 to 14 degrees, also in 2

degree increments.

Reduction of Experimental Data

The first step in reducing the experimental data was to
apply the wind tunnel balancé correction factors (previously
determined from calibration tests) to the measured 1ift and
drag forces in order to yield the actual lift and drag
forces. HNext, standard wind tunnel correction factors were
applied to yield experimental results that yould' be

equivalent to the results obtained if the model were tested

in free air.
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The first correction, known as ‘horizonal buoyancy’,
was found to be negligible for the configuration tested.
Buoyancy, which results from a thickening boundary layer on
the test section walls, causes a decreasing static pressure

gradient in the test section.

The next correction, known as ‘solid blocking’, s

caused by the physical constraint of the flow field normal
to the flowldirection. This results im a local dynamnic
pressure increase over the model which tends increase the
measured 1ift and drag forces. Also, due to physical
constraints, the flow field surroundihg the model’s wake is
also constrained. This effect, which 1is known ~és ‘wake
blocking>, results in an vincrease in the measured drag
force. Solid blocking and wake blocking have the same
effect as horizonal buoyancy, which is an increase in the

dynamic pressure over the model.

Finally, a correction must be made to the angle of
attack. This is also due to the physical constrainﬁ of'ﬁhe
test section walls, which alter the trailing vorte#'_systém
behind the wing. This causes a reduction in the effective
angle of attack, which is caused by a reduction 1in the

induced downwash.,

Tables 3.1 and 3.2 represent the data collected during
wind tunnel testing after the wind tunnel correction factors

have been applied to the experimental 1ift and drag data.
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The wind-tunnel correction for angle of attack (induced

downwash constraint) was found to be negligible.
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Table 3.1
Reduced Experimental Data

Stagger= 1.0, Gap= 1.0, Decalage= 0.0

With winglet No winglet

a Y c, Cy S
-2 -6.093 0.018 -0.096 0.016
0 0.000 0.017 0.008 0.015
2 . 0.073 0.018 0.061 0.016
4 1 0.220 0.024 - 0.201 0.021
6 0.354 0.036 0.330 0.033
8 0.519 ©0.061 0.487 0.057
10 0.654 0.089 0.628 0.086
12.5  0.775 0.115 0.726 0.114
14.5 0.791 0.156 0.758 0.148
16.5 0.827 0.230 0.784 0.228
18.5 © 0.850 0.267 0.519 0.265

21 0.772 0.356 0.753 0.368
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Table 3.2
Reduced Experimental Data

Stagger= 1.0, Gap= 1.0, Decalage= -5

With winglet ' No winglet

o CL CD .cL ?D
_ -4 -0.0851 0.023 -0.091 0.021
-2 0.037 0.022 0.021 0.020
0 0.186 0.027 0.220 .0;024
2 0.334 0.038 0.301 0.035
4 0.468 0.057 0.425 0.053
6 0.577 0.075 - 0.539 0.072
8 0.698 0.104 0.653 0.100"
10 0.791 - 0.131 . 0.744 0.128
12 | 0.867 0.163 0.833 0.165

14 0.775 0.260 0.752 0.256



Figure 3-1. Biplane-Winglet Model Mounted in Wind-Tunnel Test Section

Ly 238eg
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Faguaaion  SICEVEN

Biplane-Winglet Model and Base Support

Figure 3-2




Page 49

CHAPTER IV

AIALYSIS GF RESULTS AHND DISCUSSIOK

Overall, the experimental results agreed fairly well
with the theoretical vortex-lattice computer program,

however, the experimentally determined drag coefficients

wvere found to be quite large. This was discovered to be an
effect caused by testing the ©biplane-winglet configuration

in a wind tunnel at a fairly low Reynolds number 510,000,

The following figures and plots, which represent both
the theoretical and experimental results, are each shown
with two sets of curves; one set Trepresents the results

with the winglets attached, while the other represents the

results with no winglets. All configurations were tested at

a gap and stagger both equal to one chord length.

Figure 4-1 is a plot of the biplane 1lift coefficient
YerSus angle of attack at a decalage angle of O dégrees.
The experimental results agree quite well with the
theoretical results up to an angle of éttack of
approximately 13 degrees. At this point the upper wing of
the biplane begins to stall, while the lower wing remains
unstalled until an angle of attack of approximately 18
degrees is reached. Past 18 degrees, both wings are stalled
and the 1ift coefficient drops off rapidly with inc?easing

angle of attack. One of the primary reasons that biplanes
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chéracteristically_have a low maximum 1ift coefficient is
because of thé asymmetrical stall.between the two wings. At
a decalage angle of 0O degrees and a stagger of one chord
"length, the upper wing will operate at a higher lift
coefficiént than the lower wing. Theory predicts that at an
;nglg of attack of approximately 12 degrees, the upper wing
is oberating at a CL of 0.924, while the lower wing is at
a 'CL of only 0.556. »This occurs because the lower wing
is emersed in the induced downwash of the wupper wing, and
hencé, théllqwer wing operates at a less effective anglé'of

attack. This effect does, however, bring on a smooth

gradual stall rather than an abrupt stall.

At the test Reynolds number of 510,000, the maximum
life coefficient for the no-winglet configuration was
experimentally found to be 0.850. The same configuration
tested with winglets showed a 3.6Z increase in the maximum
l1ift coefficient. It is expected that a much higher maximum
lift <coefficient would be reached in full scale flight
tests. For exanple, an KACA 0012 two-dimensional
symmetrical airfoil tested at a Reynolds number of 510,000
has a maximum 1lift coefficient éf aproximately 0.900
(Ref. 1Y) where as the same airfoil tested at a Reynolds
ﬁumber of 6,000,000 yields 2a maximum 1lift coefficient of

1.600.
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The biplane configuration tested with winglets did show
a slight increase in the 1lift-curve slope as would be
expected. The theoretical lift-curve slope without winglets
was computed to be 0.059 per degree, while the same
configuration with winglets yielded a lift-curve slope of
(0.062 per degree; an increase of 5.1%. Experimentally, the
lift-curve slope with winglets was 0.064 per degree, while
the lift-curve slope without winglets was 0.061 per degree.
Thése values were determined using = algebraic linear
regression. Also, as would be expected, the theoretical
curves continue as a straight line since no flow separation

is realized in potential flow theory.

Figure 4-2 is a plot of the biplane 1lift coefficiént
versus angle of attack at a decalage angle of -5 degrees.
At approximately 12 degrees angle of attack the experimental
curve begins to diverge from the theoretical curve due to
viscous flow separation. However, in this case the stall
occurs much more abruptly due to both wings stalling at
approximately the same time. Theory predicts that at an
angle of attack of 12 degrees the upper wing is opérating at
a lift coefficient of 0.912 while the lower wing is at a
lift coefficient of 0.953. Therefore, at this decalage
angle a nearly symmetrical stall will occur between the two
wings. For, the no~winglet configuration, CL was

max
experimentally found to be 0.867 (which is slightly higher

than CL for the no-winglet, zero decalage case). The
max
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biplane configuration (with a decalage angle of -5 degrees)
tested with winglets showed a 4.17% increase in the maximum

1ift coefficient over the no-winglet case.

The theoretical lift-curve slopes for the -5 degree
decalage case, with and without winglets, were computed to
be 0.057 and 0.054 per degree respectively; a difference of
5.3%. Experimentally, the lift-curve slopes were found to

be 0.066 and 0.063 respectively.

It can be reasoned that the change 1in decalage angle
from O to =5 degrees has only a slight effect on the
lift-curve slopes and the maximum 1lift coefficient. From
figures 4-1 and 4-2 it 1is obvious that the <effect of
winglets is a slight 1increase in the maximum 1ift¢
cdeffiéient, as well as a slight increase in the lift-curve

slopes.

It-is well known from previous wind tunnel testing that

at low Reynolds numbers, profile drag coefficients can vary
3

quite considerably with only relatively small variations in
Reynolds numbers. Therefore, before the éxpe:imental datd
can be properly analyzed, it is desirable to knqw exactly
what effects the low Reynolds numbers will have on profile
drag coefficients. The profile drag coefficient, which
consists of ©pressure (form) drag, skin friction drag,
interference drag, and parasite drag, is common1y> expressed

as: .
c_= C +6C 4.
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where 3 cD is the increméntal change in profile drag due to
lifr. Fgr the biplane-winglet configuration tested in this
research, it was necessary to determine the relationship
between the {incremental profile drag coefficient and the
lift coefficient at the test condition Reynolds number of
510,000. This was done by studying the experimental results
of lienadovitch (Ref. 16), who in 1936 performed several
experiménts to determine the aerodynamic characteristics of
two-dimensional biplane configurations utilizing symmetrical
airfoils. Figure 4~3 represents a plot of the incremental
change 1in profile drag due to 1lift for a 'biéiane
configuration tested at a Reynolés number of 500,000. For
‘this configuraion, the gap and stagger wére both equal to

one chord length.

Figures 4-4 and 4-5 represent the expe;imental and
theoretical drag polars for the biplane-winglet
configuration tested at 0 and =5 degree decalage angles.
The experimental points represent the. data takenbduriﬁg;
wind-tunnel testing after the various wind-tunnel correction
factors 'have been applied. The theoretical curve was

plotted utilizing the following equation:

= +
CD CD ' A‘CD + CD 4.2
min P i
where CD is the miniﬁum profile drag coefficient, which
. “min

for- a symmetrical airfoil is also the profile drag
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coefficient at zero lift.. The values of the ninimum profi;e
drag” coefficients vere determined from wind-tunnel tests.
At a decalage angle of O degreeé, the biplane configuration
tested with winglets had a minimum profile drag coefficient
of G.017, while the same cénfiguration without winglets
vielded a wminimum drag coefficient of 0.015. For the -5
degree decalage case, the test results yielded minimum dfag
coefficients of 0.022 and 0.020, with and without winglets
respéctively. Thus, the presence of winglets .adds an
'additional' 0.002 té the minimum profile drag coefficient at
zero lift. The A CDF term in eduation (4.2) was determined

P
using figure 4-3, and the induced drag term, CD , was

4 i
predicted theoretically using the vortex-lattice computer

programe.

By referring to the drag polars in figures &4-4 and 4-5,
the relative advantages of the winglets can be realized. At
zero lift, the configuration with winglets produces slightly
more drag (parasite drag causéd by the presence of the
winglets). llowever, és the liff coefficient begins to

increase, the reduction in 1induced drag caused by the

presence of the winglets begins to take affect. At lift
coefficients greater than approximately 0.4, the
configuration with winglets produces less total drag. This

reduction in total drag becomes more significant as the 1lift
coefficient increases further. For the -5 degree decalage

case, the total drag is reduced by 6.5%7 at a 1lift
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coefficient of 0.7, while at a lift coefficient of 0.5 the
drag is reduced by 3.3Z%Z. For the 0 decalage case, the
advantages of adding winglets are not as significant as the
-5 degree decalage case, however, above a lift coefficient
of 0.4 there is still a reduction in the overall drag caused

by the winglets.

The experimental points plotted on the drag polars
agree quite well with the theoretical curves, although the
experimental points do show a .consistantly higher drag
contribution; More 1importantly, the experimenﬁal points
indicate approximately the same magnitude‘of drag ‘reduction

as do the theoretical curves for both configurations tested.

It is important to realize that if these configurations
were iested at a much higher Reynolds number, the induced
drag redﬁctions caused by the winglets would be greater.
This is due to the significant effegt of & CD ‘5£ 1ow
Reynolds numbers. For example, at an angle of attaci of 8
degrees, the biplane configuration with winglets produceg a
lift coefficient Of 0.519, which is a 6.6% increase over the
1ift coefficient produced by the same configuratibn with no
winglets. This increase 1in 1lift coefficient <causes the
incremental profile drag coefficient to increase from 0.0144
to 0.0166; an increase of 15.3%Z. At a Reynolds number of
6,006,000 the profile drag-coefficient will 1ﬁcrease from

0.0069 to 0.0072; an increase of only 4.3%. Therefore,

full-scale advantages of winglets cannot be fully realized
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at low Reynolds numbers.

The biplane-Qinglet efficiency factors were 6omputed by
firsti determininé the various slopes of the Ci vetsué Cb‘
curves. The efficiency factors were calculated based on the
actual biplane aspect ;atio, which is five. It is common in
biplaﬂe theory to calculate the efficiency factors based on
the,ibipiane's equivalent monoplane aspect ratio, which for
this configﬁration is 3.38. Using Fhe equivalent monoplane

aspect ‘ratio would result in a 477% increase in the computed

efficiency factors.

Figures 4-6 and 4-7 represent the theoretical and
experimental ©plots of 'Ci versus CD'for th? two decalage
cases. The theoretical values were calculated by adding the
minimum profile drag coefficient fgr a specific
configuration to the theoretically predicted 1induced drag
coefficients.u_ The experimental points were determined by
subtractingrthe incremental profile drag coefficients from
the experimentally determined drag coefficients. 4The
experimental drag coefficients then represent the minimum
préfile drag plus the induced drag. This was dﬁne in order
to make logical comparisons between the tﬂeoretically

predicted and experimentally determined biplane eficiency

factors for the various configurations.
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For the 0 decalage case, the theoretically p;edicted
efficiency factors were found to be 0.737 and 0.683, with
and without winglets respectively. Thus, the addition of
winglets <causes a theoretical increase in the efficiency
factors of 7.97%. The efficiency factors were experimentally
detérmined using algeﬁraic linear regression techniques.
The experimental values were determined to be 0.670 and
0,588, with and without winglets respectively, for thé 0
decalage case. Thus, a 13.9% increase 1in efficiency‘ was
obtained experimentally by the addition of winglets. Also,
it can be noted that the theoretical predictions are

approximately 127 higher than the experimental values.

For the -5 degree decalage case, the theoretical
vefficiency factors were found to to be 0.731 and 0.687, with
and without Qinglets respectively. This is an increaée of
6.4%. Experimen;ally, the efficiency factors with And
without winglets were calculated to.be 0.663 and 0{562,' a
difference of 12.67%. Therefore, ‘based on »expéfimental

results, the addition of winglets increases the efficiency

factors by approximately 13%Z, which is a significént
increase. The O degree decalage configuration  was
expérimentally found to yvield efficiency factors

approximately 5% greater than the -5 degree decalage case,

independent of whether winglets were attached or not.
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Plots of the theoretically predicted induceA drag
coefficient as a function of the 1ift coefficient for the
two decalaze cases are shown in figures 4-8 and 4-9. It can
-be observed that as the 1ift coefficient increases, the
reduc&ion in induced drag affprded.by the winglets Dbecomes
quite significant. At a 1ift coefficient of 0.6, the
addition of winglets thebretic;liy reduces the induced dr;g
by 6.4%, wvhile at a 1lift coefficient of 0.8, the induced
drag is reduced by 8.3%Z. At a cruise 1lift coefficient of'
0.4 the induced drag is reduced by 6.2%. It is also
significant to note that there appears fo be little
variétion in the magnitude of induced drag ;educfion between

the O and -5 degree decalage configuration.
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Figure 4-5 Biplane Drag Polar for the -5 Degree
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‘CHAPTER V

CONCLUSIONS

Bas;d on results determined from the theoretical
vortex-lattice computer program ana the reduced experimental -’
data collected from wind-tunnel tests conducted at a
- Reynolds number of 510,000, the following conclusions can
can be determined concerning the aerodynamic characteristics

“of the biplane-winglet configuration.

1. For the O degrée.decalage case, the addition of
winglets increaséd the maximum lift coefficient by
3.6%, incre;sed the lift-curve slope by 5.1%Z, and
(based on experimental data) increased the overall

efficiency factor by 13.47%.

2. For the -5 degree decalage case, the addition of
winglets increased the maximum 1lift coefficient by
4,1%, increased the lift-curve slope by 5)3%, and

increased the overall efficiency factor by 12.6%

3. The most significant aifference between the 0 and
-5 degree decalage "cases was that ;he 0 degree
decalage -case showed a 5% increase in the
efficiency factor over the =5 degree decalaée

case. Also, the =5 degree decalage case showed a



Page g9

slightly higher maximum 1ift coefficient.

For both configurations, the addition of winglets
resulted in approximately a 3.3%Z reduction in
total drag at a 1lift coefficient of 0.5, and a
6.5% reduction in total drag at a lift coefficient
of 0.7. Below a 1ift coefficient of 0.4, the
configurations tested ‘with winglets produced
slightly more total drag due to the additional
parasite drag created by the winglets (the
winglets produced an additional minimum »profile

drag increment of 0.002).

The vortex-lattice computer program results showed
a 6.,2% reduction in induced drag at a 1lift
coefficient of 0.4, and a 8.3% reduction at a 1lift

coefficient of 0.8. Theoretical results.did not

"indicate any significant differences in ' induced

drag reductions (due to winglets) between the 0

and -5 degree decalage cases.

Overall, it «can be 'determinéd that thé
addition of winglets to an already optimized
biplane - configuration can bé beneficial yith
resﬁgct to increasing the maximum lift
coefficient, increasing the lift-curve slope, and

increasing the overall efficiency of the lifting
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system by decreasing the induced drag.

Additional research is siiggested to further’
optimize the biplane-winglet configuration.
Possible extensions to the work already done are:
varying the winglet airfoil and planform shape,
and in;roducing large winglet cant and toe angles.
Thesé new configurations may further optimize the

efficiency of the biplane-winglet configuration.
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Appendix
LISTING

PROGRAM



T T T

g

1

IR I B N

wRvEvEeRe A Ew

Iy

ST 00

-
4

sReEvEsRe RN wiwiiw

THIS PROGRAM WILL UTIL.IZE THE VORTEX LATTICE ME1THUL
T FREDICT THE AERODOYNAMIC CHARACTERISTICS OF A
BIFLANE-WINGLET CONFIGURATION.

THE FRIMARY VARIABLES IN THIS FPROGRAM WILL BE THE
RIPLANE GAF, STAGGER, DECALAGE, SPAN, CHORD,. ASPECT
RATID, WINGLET TOE ANGLE (INCIDENCE), WINGLET ASFELCT
RATID, AND ANGLE OF ATTACK.

FOR THIS PARTICLLAR CONFIGURATIONS

VEL= FREESTREAM VELOCITY

AR=ASPELCT RATID

CH=CHORD

GAP=GAP (ONE CHORD LENGTH)

STAG=STAGGER (IN PERCENT CHORD)

DEC=DECALAGE (DEGREES)

ALPHU= ANGLE OF ATTACK OF UFFER WING

ALPHL= ANGLE OF ATTACK OF LOWER WIHS

TOE=TOE ANGLE OF WINGLET (POSITIVE- TOE INWARLD)
SW=WING PLANFCORM AREA

Ni= NO. OF HORSESHOE VORTICES LOCATED ON LFFER WING (HALF-SFAN)
N2= NO. OF HORSESHOE VORTICES LOCATED ON BOTH UPFER
AND' LOWER WING (HALF-SFAN)
N3= ND. OF HORSESHOE VORTICES LOCATED ON BOTH UFFER AND LOWER
WING PLUS THE WINGLET (HALF-SFAN)

PN(N) , AN(N) L, RN(N)= COORDINATES OF THE Nth HORSESHOE VORTEX
PV(V),QV(V),RV(V)= COORDINATES OF THE Vth HORSESHOE VORTEX

S= SEMI-WIDTH OF HORSESHUOE VORTEX

DIMENSION PN(100),AN(100),RN(100),PV(100),V(100) ,RV100)
DIMENSION FWS(100,100),FWP(100,100),FVS(100,100),FVF(100,100)
DIMENSION GAM(100), WKAREA(100),AC100,100),ALPH(100),EB(100)
DIMENSION PH(100),WW(100),WWL(100),VW(100),VHLI100), TOE(100)

» .
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DIMENSION SEC(100)

INTEGER V»V1,V2,V3,V4,VS,V6, [A, IDGT

FI=3.141592

VEL=100.0

#a#sst INPUT BIPLANE-WINGLET GEOMETRY #itd#

WRITE (4, #) "ENTER
READ(S, #)EW
WRITE (&, #) "ENTER
READ(S, #)AR
WRITE (&, #) “ENTER
READ(S, #)STAG
WRITE(6,#) “"ENTER
READ (S, #)ALPHU
WRITE (&, #) "ENTER
READ(S, #)DEC

WRITE (&, #) “ENTER
REALDI(S, #)ALPHI

BR=20.0
CH=BRB/AR

GAP=CH
ALPHL=ALPHU-DEC

§=0.23

‘N1=20

N2=40
N3=4&0
N4=80
NS=28
N6=%6

WING TWIST~
ASPECT RATIO-

BIPLANE STAGGER”

ALPHA (UPFER WING)”

BIPLANE DECALAGE”

WINGLET MAXIMUM TOE ANGLE-

G/ {beg
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Vi=20
V2=40
V3=60
V4=30
VS=2&

Vé&=96

N=2

I
K=8

WRITE (S, 200)Né4, BR, AR, ALPHU, DEC, STAG, CH, ALPHI
200 FORMAT(//,2X,“TOTAL NUMER OF HORSESHOE VORTICES =7,14,//,2X, "5FA
eN =7,F4.1,25X, “ASPECT RATIO =/,F&.2,15X,//,2X, “ALFHA UFFER =",
@F4.1,15X,”° DECALAGE =“,F4.1,//+2X, “STAGGER =",F4.1,
@22X» “CHORD =“,F4.1,//,2X, “MAXIMUM WINGLET TQE ANGLE =“,F4.1)

s COMPUTE ARRAY OF COORDINATES FOR THE Nth HORSESHOE VORTEX 3t

D0 S5 V=1,Né
DO 10 N=1,N&
IF(N.LE.N1) THEN
PN(N)==(CH/K)
AN(N)=(2. #FLOAT(N)~-1,.)#S
RN{(N)=0.0
PH(N)=0.0
ELSE IF(N.LE.N2) THEN
PN{(N)==(35, #CH/K)
AN(N)=( 2,#(FLOAT(N)-N1)-1.)#S
RN(N)=0.0
PH(N)=0.0
ELSE IF(N.LE.N3) THEN
PN(N)==(STAG#CH) - (CH/K)
AN(N)=(2.#(N-N2)~1,)#S
RN (N)=GAP
PH(N)=0.0

9/ 3beg
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ELSE IF(N.LE.N4)THEN
FN(N)==(STAGH#CH) ~(S#CH/K)
AN(N)=(2.#(N-N3I)-1,)#3
RN (N)=GAP :
PH(N)=0.0

ELSE IF(N.LE.NS)THEN .
PN(N)=—(STAG#CH/ (2. #K) ) # (2. #(N-N4)-1.)-(CH/K)
QAN(N)=BBEB/2.

RN(N)=(2. #(N-N4)-1.)#(CH/16.)
PH(N)=PI/2. '

ELSE IF(N.LE.Né&)THEN
PN(N)=—(STAG#CH/ (2. #K) ) # (2. #(N-N5)—-1.)-{(5. #CH/K)
EN(N)=BB/2. - :
RN(N)%(2.*(N—N5)~1.)*(CH/fé.)

PH(N)=FI/2.

END IF - '

#### COMPUTE ARRAY OF COORDINATES FﬁR THE Vth CONTROL POINT ##d#%

IF(V.LE.V1) THEN
PV(V)==(3. #CH/K)
QAV(V)=(2. #FLOAT(V)~1.)#S
RV(V)=0.0.
ALPH(V)=ALPHU

ELSE IF(V.LE.V2) THEN
PV{V)==(7.#CH/K)
QAVIV)=(2, #(FLOAT(V)-V1)-1.)#8
RV(V)=0.0
ALPH (V) =ALPFPHU

ELSE IF(V.LE.V3) THEN
PV(V)=~(STAG#CH) ~ (3. #CH/K)
GV(V)=(2.#(V-V2)~-1.)#S
RV(V)=CGAP '
ALPH(V)=ALPHL

ELSE IF(V.LE.V4)THEN

1L 96w
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FV(V)==(STAG#CH) ~ (7. #CH/K)
AVIV)I=(2, #(V-V3)—-1.)#S

RV (V) =GAP ' '
ALFPH (V) =ALFHL

ELSE IF(V.LE.V5)THEN _ :
PV(V)==(STAG#CH/ (2. #K) ) # (2, #(V-V4) -1, )~ (3. #CH/K)
QV(V)=RB/2.

RV(V)=(2, #(V-V4)—-1,.)#(CH/164.)
TOE(V)=(GAP/2.-RV(V) Y% (2. #(ALPHI/GAP))

ELSE IF(V.LE.V&)THEN
PV(V)==(STAGHCH/ (2. #K) ) # (2. #(V=-VS)~1, )= (7. #H/K)
QV(V)=BB/2. _

RV(V)=(2,.#(V-VS)—1, ) #(CH/16.)
TOE(V)=(GAP/2.-RV(V) ) # (2. #(ALPHI /13AP) )
END IF '

X=PV(V)-PN(N)
YS=QV(V)-AN(N)
YP=RV (V) +QN(N)
Z=RV(V)-RN(N)
PHS=PH(N)
PHP=-PH(N)

### COMPUTE DOWNWASH INFLUENCE COEFFICIENTS AT CONTROL POINTS ON WINGS###

#uu#t DOWNWASH COEFFICIENT~ STARBOARD WING #3#
CALL FWSS(FWS,N:iVs X, YSsZ> S, PHS, WS1, WS2, WS3, WS4, WSS, W37, WSP)
#uns DOWNWASH COEFFICIENT- PORT WING 3ttt

CALL FWPP(FWP.N,V, X3 YP2Z:,S,PHP, WP1, WP2, WP3, WF4, WFS, WF7, WFY) *

g/ abed
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##% COMFUTE SIDEWASH COEFICIENTS AT CONTROL FOINTS 0RO WIRGLE b5 e

#uu# SIDEWASH COEFFICIENT- STARBOARD WINGLE ####
CALL FVSS(FVE,N,V, X» YE, 2,5, FHS, WL, WSZ, WE3, W4, WS, W37, WsH)

##ait SIDEWASH COEFFICIENT- FORT WINGLET #i##
CALL FVFF(FVF,N,V, X, YP>»Z, 5, FHP, WP1, WFZ, WF2, WF4, WFS, WF7, WF)

#u# CALCULATE COEFFICIENT MATRIX FOR CONTROL FOINTS LOCATED s
#3 ON UPFER AND LOWER WINGS 33t

IF(V.GT.V4)GO Tt 100

AVINI=FWP (V,N)+FWS(V,N)

R(V)=4,  #PI#VEL#ALFH(V)#(FP1/120.)
GO0 TO 10 ‘

#r# CALCULATE COEFFICIENT MATRIX FOR CONTROL FOINTS ON WINGLETZ ###%

100 AV, N)=FVF(V,N)+FV3 (V. N)

B(81)=4. #FI#VEL*TOE(S31)#(PI1/120,)
B(&2)=4, #PI#VEL#TOE(82)#(P1/120.)
B(8)=4, #PI#VEL#TOE(E2)#(PI/1320.)
B(24)=4,  #PI#VEL#TOE(Q4)#(FI1/120.)
B(85)=4, #PI#VEL#TOE(8S)#(P1/180.)
B(8&6)=4.  #PI#VEL#TOE(86)#(PI1/180.)
B(27)=4  #PI#VEL#TOE(S7)#(PI1/120.)
B(8R)=4, #PI#VEI.#TOE(S2)#(FI/180.)
B(&2)=B(&1)
R(S0)=RB(22)
R(91)=B(83%)
R(P2)=R(24)
B(23)=R(85)
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RBP4 =R(S4)
B(¥S)=R(&7)
B(9&)=R(SS)

CONT INUE
CONTINLIE

#a# FROGRAM IS NOW READY TO ZOLVE FOR THZ GAMMA ARRAY FRUM THE ###
#3##% COEFFICIENT MATRIX AND THE BOUNDRY CONDITION ARRAY 3t

### CALL IMSL SUBROUTINE TO SOLVE N STIMULTANIOUES EQUATIONS #3ts
cAaLl. LERTIF(A,M,N, IA,HE, IDGT, WKAREA, IER)
Do 1S V=1,Né&

GAM(V)=R(V)
CONTINUE

### CALCULATE LIFT COEFFICIENTS FOR UFFER AND LOVER WINGS st##

CLUFP=0.0
CLLOW=0.0

ST=2. # (BE#CH)
SW=BE#CH

Do 20 V=1,20

08 abed
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CLUPF=CLUFF+ (4. / (VEL#3W) ) # ((GAM (V) +GAM(V4+Z0) ) 32, O#E)
SEC(V)=(2. # (GAM (V) +GAM(V+20) ) ) / (CH#*VEL)

CLLOW=CLLOW+ (4. /(VEL#SW) ) # ( (GAM(V+40) +GAM(V+L0) ) #2, O0#E)
SEC(V+20)=(2. # (GAM(V+40) +GAM(V+40) ) ) /7 (CH#VEL)
CONT INUE

DO 21 v=£1,V5
SEC(V)=(Z. # (GAM(V) +GAM(V+£) ) ) / (CH#VEL)
CONT INUE '

CL=(CLUFP+CLLOW) /2.

WRITE(&,187)
FORMAT (/,SX, “CONTROL POINT ,S5X, “SECTION LIFT COEFF -, 323X, "SECTIUON
@CLIFT COEFF“,/,27X, "UPPER WING“,9X, "LOWER WING", /)

Do 16 V=1,20

WRITE (S, 190)V, SEC(V), SEC(V+20)
FORMAT (10X, I3, 12X,F9.5,10X,F9.3)
CONT INUE

WRITE (2, 133)
FORMAT(//,5X, “CONTROL FOINT?, 10X, “WINGLET SECTION LIFT COEFF<,/)

DO 17 Vv=81,VS
WRITE(Z2,137)V,SEC(V)
FORMAT(10X, I2,22X,F9.5)
CONTINUE ‘

WRITE(S, 202)CLUFP, CLLOW, CL

FORMAT(//,SX, "LIFT COEFF (LPPER WING) =",F10.6,
@/.5X, “LIFT COEFF (LOWER WING) =",F10.64,

@/,5X, “TaTAL LIFT COEFF = “2F10.46)

#aat CALCULATION OF INDUCED DRAG BY MUNK S THEOREM OF INDUCED s#s#
3843 DRAG DETERMINATION UTILIZING THE TREFFTZ PLANE #4338
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TREF=-1400,0

Lo S0 V=1,V4

O 55 N=1,N4
X=TREF
YS=GV(V) —IN(N)
YP=0V(V)+GaN(N)
Z=RV(V)-RN(N)
FHZ=PH{N)
FHF=-FH(N)

CALL FWSS(FWZ,N,V, X5 Y5, Z, S, PHE, WS, WUS2, USE, WS4, W5, WEY, WEY)

CALL FWFP(FWF,N:V,: X, YP>Z,S,PHP,WF1,WFPZ, WP2, WFP4, WFS, WFP7, WF?)
CALL FVSS(FVS, N, V, X» ¥YS, 2,5, PHS, WS, WSZ, WSS, WS4, WSS, W7, WSY)
CALL FVPP(FVF,N,V. X, YP,Z,5,PHP, WF1,WFZ, WP3, WF4, WFS, WF7, UFY)
CONTINUE
CONTINUE

#### CALCULATICON OF INDUCED VELOCITYS IN THE TREFFTZ FLANE #3t##

ROW=0, 002378

[ 60 V=1,%2¢6
WW(V)=0.0
WWL(V)=0.0
VH(V)=0.0
VWL (V)=0,0
nQ0 &5 N=1,80

IF(V.LE.30) THEN
WW(V)=(GAM(N) /7 (4. #F 1)) # (FWP (V, N) +FWZ(V, N) ) +WW (V)

’ L)

28 obeq
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ELZE IF(V.LE.94)YTHEN
VWV)=(GAMIN) /7 (4. #FI) )8 (FVF(V,N)+FVS(V,N) ) +VIW (V)
END IF .

CONT INUE
00 70 N=81,96

IF(V.LE.20)THEN ,
WWL (V)= (GAMIN) /(4. #F 1)) # (FWF(V, N) +FWS (V, N) ) +UWL (V)
ELSE IF(V.LE.94)THEN '
VWL (V)=(GAM(N) /(4. #FP 1) ) # (FVF (V, N)+FVS(V, N) ) +VWL (V)
END IF

CONT INUE

CONTINUE

3t CALCULATIﬁN OF INDUCED DRAG CREATED BY UPFER AND LOWER WINGS ###

LWLH=0,0
DUWWL=0.0
OVW=0.0
DVWL=0.0

oo 75 Vv=1,80
N=V _
DWW=ROW#2. #S#WW (V) #GAM(N) +DIWW
DWWL=ROW#2Z, #S#WWL (V) #5AM (N ) +DWWL
CONTINLUE :

£g abey

## CALCULATION OF INDUCED DRAG CREATED BY WINGLETS ##3#



oo =20

NVW=—-ROW# 2. #53#VW (V) #GAM(N)Y +0VW
OVWL =—ROW# 2, #S#VWL (V) #GAM(N) +TVWL

20 CIONTINUE

#a# CALCULATION OF DRAG COEFFICIENTS FOR WINGS AND WINGLETS

R=0.S#ROWE (VEL#3#2. )
COWW=DWW/ (I#=T)
CDWKL=DWWL 7 (Q3#=T)
COVW=OVW/ (Q#ST)
COVWL=DVUWL / (Q3#=T)

ChW=

COWW+CDWWL

COWL=COVW+CDVLIL

CR=COW+CDWL

E=(CL»#2,0) /(FPI#ARRCD)

CLALPH=CL/ (ALFHLU~-(DEC/1.,467))
RLDO=CL/CD

WRITE(S

1, 2032) COWW, COWWL , COVW, COVWL , COW. COWL, C0H E, TLALFH, RLD

203  FORMAT(//,SX, "DRAG COEFF(WING-WING)=",F14. 4,
@/,5X, "IIRAG COEFF (WING-WINGLET)=",F13. 4,
@/,5X, “DRAG COEFF (WINGLET-WING)=“,F13.4¢
@/,5X, “DRAG COEFF (WINGLET-WINGLET)=",F10.,¢,

@//,5X%, "7

TOTAL WING DRAG COEFF=",F13.4,

@/,8X, “TOTAL WINGLET DRAG COEFF=",F10.4,

R@/,SX, "
@//+5X, "

@/, 5X, “3-
‘LIFT/DRAG RATIO(W/ COmin)= *,F9.4)

@/,5%,

TOTAL BIFLANE DRAG COEFF=",F10.4,
"OSWALDS EFFICIENCY FACTOR=",F10. 4,
O LIFT SLOPE CURVE(/DEG)=",F%.,.4,

33 3
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Do T e B o M B o B

&y T

EAA N

o~ e -
HEE )

#udun THE FOLLOWING SECTION OF THIS PROGRAM WILL COMEFUTE THE st####

# *
#tstie AERODYNAMIC CHACTERISTICS OF THE BIPLANE CONF IGURATIVIN st
#* #*

ittt nn it WITH NO WINGLETS 3463303 363038 3 3030 3 3 3030 50 538 3 33030 3 30 3 38 3¢

Da & V=1,N4
DO 11 N=1,N4

X=FV{(V)-FPN(N)
YS=AV(V)-QN(N)
YP=AQV (V) +LN(N)
Z=RV(V)-RN(N)
FHS=FPH(N)
FHP=-PH(N)

###% COMFUTE DOWNWASH INFLLUENCE COEFFICIENTS AT CONTROL FOINTES ON WINGS###

#33e3t DOWNWASH COEFFICIENT- STARBOARD WING i3

CALL FUSS(FWS. NV, X2 YS, 2,6, FHS, WS1, WSZ, WSS, WS4, WSS, WS7, WST)
##us DOWNWASH COEFFICIENT- FORT WING ##x

CALL FWPP(FWP N>V X2 YP» 225 FHP WP 1, WEZ, WP3, W4, WFS, WF7, WFS)

Gg 9bey

### CALCULATE COEFFICIENT MATRIX FOR CONTROL POINTS LOCATED ##dt3
### ON UPFER AND LOWER WINGS il
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W)

L]

)

AV NI =FWP (V, N)+FWE(V, N)
B(V)=4, #FI#VEL#ALPH(V) #(FPI1/1320.,)

11 CONTINUE
& CONTINLUE

### PROGRAM I35 NOW READY TO SOLVE FOR THE GAMMA ARRAY FROM THE %3
##3# COEFFICIENT MATRIX AND THE BOUNDRY CONDITION ARRAY L

M=1
N=N4
IA=100
IDGT=4
##3 CALL IMSL SUBROUTINE TO SOLVE N SIMULTANICQUS ECHUATIONS st
CALL LEQTIF(A,M,N,IA,B, IDGT, WKAREA, IER)
[ 24 V=1,N4
GAM((V) =B(V)
2 CONT INUE
#3## CALCULATE LIFT COEFFICIENTS FOR LUFFER AND LOWER WINGS #3#3

CLUFP=0.0
CLLOW=0.,0

Do 22 V=1, 20

CLLUFPP=CLUPF+ (4., / (VEL#SW) ) #( (GAM(V) +GAM(V+20) ) #2, 0#3)
SEC(V)=(2, # (GAM(V)+GAM(V+20) ) ) / (CH#VEL)

CLLOW=CLLOW+ (4, /7 (VEL#SH) ) # ( (GAM(V+40) +GAM(VHLO) ) #7Z, O#3)

98 aﬁed
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SEC(V+20)=(2. # (GAM(V+40) +GAM(V+40) ) ) / (CHEVEL )
CONTINUE | ) ’

CL=CCLLUPR+CLLLOW) 72,

WRITE(Z,149) .

FORMAT(///, "TOaTAL NUMBER OF HORSESHOE VORTICES =7, I4,%5X,

@'NDQ WINGLETS! ", //)

WRITE(E&, 150)

FORMAT (/, 35X, "CONTROL POINT ,SX, “SECTION LIFT COEFF7, 33X, "SECTION
@LIFT COEFF“»/,27X, "UFFPER WING”, X, "LOWER WING', /)

na 27 v=t,z0
WRITE(8, 151)V, SEC(V), SEC(V+20)

FORMAT (10X, 12, 12X-,F?.5,10X,F?.5)
CONTINUE

WRITE (&, 152)CLUPP, CLLOW, CL

FORMAT(//,9X, “LIFT COEFF (UPPER WING) =7,F10.4,
@/,5%, “LIFT COEFF (LOWER WING) =7,F10.4,

@/,35X, “TOTAL LIFT COEFF = “2F10.4)

s#### CALCULATION OF INDUCED DRAG BY MUNES THEOREM OF INDUCELD ##3%
333 DRAG DETERMINATION UTILIZING THE TREFFTZ PLANE EERER

TREF=-1400.0

o S1 v=1,V4
0O S6 N=1,N4

X=TREF
YS=GV (V) -IN(N)
YP=QV (V) +GN(N)

/8 9bey
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Z=RV(V) -RN(N)
" PHS=PH(N)
PHP=-FH(N)

CALL FWSS(FWS, N>V, X5 YS, Z, S, FHS, WS, WE2, WE2, WS4, WSS, WET7 , WEw)
CALL FWPP(FWFP,N,V: X YP:»Z2 5, PHP WP L1, WFZ, WPZ, WP4, WFS, UF7,WFPY)
CALL FVSS(FVS, NaVL X YS, Z, S5 PHS, WS, WS2, WS, WS4, WES, WE7, WED)
CALL FVPP(FVP,N:V: X, YP,Z,S,PHP,WF 1, WFZ, WPZ: WP, WP, WF7, WPD)

pulc) CONTINUE
o1 CONTINUE

#r#ee CALCLLATION OF INDLWCED VELOGCITYS IN THE TREFFTZ FILANE ##3#3#

ROW=0. 002373
oD &1 V=1,30

WWVY=0.0
WWL(V)=0.0
VH(V)=0.0
VUL (V)=0.0

DO &6 N=1,80
IF(V.LE.&0)THEN

WW(VI=(GAM(N) /7 (4. 2P 1)) #(FWP (V, N) +FWS(V, N ) +WW(V)
ELSE IF(V.LE.?6)THEN

VW(V)I=(GAM(N) /7 (4. #P1) ) #(FVF(V,N)+FVS(V, N))+VN(V)
END IF
L&A CONTINLUE

é1 CONTINUE
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##x CALCULATION OF INDUCED DRAG CREATED HY UFFER AND LOWER WIMNGS ###

154

DWW=0, 0O
DWWL=0.0
DVW=0.0

CDVHL=0.0

D 726 V=1,20
N=V
DWW=ROW#2. #S#WW (V) #GAM(N) +0WW
DWWL=ROW#* 2, #S#WWL (V) #GAM(N) +DWWL
CONT INUE

### CALCULATION OF DRAG COEFFICIENTS FOR WING ##3#

Q=0, S#ROW* (VEL_#32, )
COWW=TWW/ (% 5T)
COWWL=DWWL /7 (G3ST).
COVW=DVW/ (Q#ST)
COVWL=DVUHL /7 (Q@#5T)
COW=CDWW+CDOWWL
COWL =CDOVW+CDVWL
CO=COW+CDWL
E=(CL##2,0)/(PI#AR#CD)
CLALPH=CL/ (ALPHU—(DEC/1.667))
RLD=CL/CD

WRITE(&, 154)COWW, COWWL » COVW, COVWL , COW, CDOWL > C0, E» CLALFH, RLD
FORMAT(//,5X, "DRAG COEFF (WING-WING)=",F14&. 4,
@/,5X, "DRAG COEFF(WING-WINGLET)=",F13.4,

68 abey
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N e

@/,>SX, "DRAG COEFF(WINGLET-WINGY=",F13. &,
@/,SX, "DRAG COEFF (WINGLET-WINGLET)=",F10.4,
@//,S%X, "TOTAL WING DRAG COEFF=",F13.4,
@/,5X, “TOTAL WINGLET DRAG COEFF=",F10. &,
@/,5X, "TOTAL BIFPLANE DRAG COEFF=7,F10. 4,
@//,5X, "OSWALDE EFFICIENCY FACTOR=",F10.4,
@/:3%,"3-0 LIFT SUIOPE CURVE(/DEG)=",F%. 64,
@/,5X, "LIFT/DRAG RATIO(W/ Chmin)= “,F9.4)

STOP
END

ettt SURRQLUITINE FWS 3383638 3 36 36 38 38 9 36 38 3¢ 34 3¢
3 #*
#3#3% DOWNWASH COEFFICIENT- STARBOARD WING s##3#

SUBROUITINE FWSS(FWS, NV, X5 YS, 2,5, PHS, WS, W2, WS3, WS4, WSS, WS7, WS?)
DIMENSION FWS(100, 100)
INTEGER V
WSTI=(=X#CAS(FHS) ) /7 ((X##2. )+ ((ZHCOS(FHS) -YS#SIN(PHS) Y ##2_ ))
WS2= ((YS+SHCOS(PHS) ) #CAS(PHS) )+ ((Z4+S#5IN(PHS) ) #SIN(PHE))
WSR=((X3##2, )+ (YS+SHOUS(PHS) ) ##2, + (Z+S#SIN(PHS) ) ##2, ) ##0, 5
WS4=((Y5-S#COS(PHS) ) #COUS(PHS ) 1+ ( (Z-S#SIN(PHS) ) #SIN(PHS))
WSS=((X##2. )+ (YS-S#COS(PHS) ) ##2, + (Z-S#IIN(FHS) ) ##2, ) #3#0. 5
WS6=(YS-S#COS(PHS) )/ ((YS-S#COAS(PHS) ) 3##2 +(Z-S#SIN(PHS) ) ##2.)
WS7=1.~-(X/HSS)

WSE=(YS4S#HINS(FHS) )/ ((YS4SHCOS(PHS) ) ##2 , + (Z+S#SINIFHS) ) #3#2, )
WSI=1.~(X/WS3)

FUS(V,N)=HS1# (WS2/HWS3-WS4/WSS) = (WSL#HWST ) + (USS#WSY)
RETLIRN
END

06 abed



it at g SLIRIRCUIT INE FWF 3t 3383 303t 3 3t 3 3¢
i 3
s DIOWNWASH CDEFFICIENT- FORT WING s#an

SLBROUTINE FWEF(FUWF. N,V Xo YP 20 S5 FHP WP L, WFZ, WFZ, WR4, WRS, LF 7, W)
DIMENSION FWF (100, 100)
INTEGER V
WPI=(-X#COS(FHF) ) /7 ((X##2, )+ ( (ZRCOS(FHFP) ~YF#SIN(FHF) ) ##2. ) )
wP2=((YP+S*CDS(PHP))*CGC(PHP))+((Z+;*uIN(PHP))*OIN(FHP))
WPa=((X##2. )+ (YP+S#COS(PHP) ) ##2. +(Z4=a S IN(FHP) Y ##2, ) ##0, 5
WRA=( {YP-S#COS(FHP) Y RCOS(PHP ) ) + ( ( Z-S#SIN(PHP) ) #SIN(PHF) )
WPS=( (X##Z, )+ (YP-SHCOQS(PHP) ) ##2, +(Z-S#SIN(FHF) Y##2, ) ##0. 5
WPH=(YP-SHOOS(FPHP) ) / ((YP-S#ZOS(PHP) ) ##2, + (Z-S#SIN(PHF) ) ##2. )
WP7=1.~-(X/WF3)
WPR= (YFP+S#COS(PHP) ) / ((YP+S3#COS(PHP) ) #82  + (Z+S#SIN(FHFP) ) #%2, )
WPI=1.-(X/UWP3)

FWF(V, N)=WP1# (WF2Z/WF3-WP4/WFS )—(NF/*NF7)+(NF4*NFJ)
RETURN
END

33t dedtatdtde sty SURBROUTINE FVS 36383038 36 330 3¢ 46 38 3 3¢ 38 3¢ 3 34 3¢ 3¢
* 3

### SIDEWASH COEFFICIENT- STARBOARD WINGLET ##3#

» WS4, WSS, W7, WEw)

f,_l

SUBROUTINE FVSS(FVS,N,V, X, Y5,2,8, PHS, WSL, W32, WE
DIMENSION FVS(100, 100)
INTEGER V
VSI=(X#SIN(FPHS) ) / (X382, )+ (Z#COS(PHS) —YSH#SIN(PHS) ) ##2, )
vs2=Wws2
VER=WSZ
VS4=W=4
VSS=WSS
VSa=(Z-S#SIN(FHS) ) / ((YS-S#COS(FHS) Y ##2, + (Z-S#SIN(FHS) ) ##2. )
VS7=WS7
VSE=(Z+S#SIN(FHS) )/ ((YS+S#COS(PHS) Y ##2, +(Z+SHTIN(FHI) ) # %2, )
VE7=W3?

FUS(V, N)=VS1# (VSZ/VER-VE/VES) +(VELRVIT ) — (VEERVEY)
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Do I o B B B

RETURN
END

ettt SURBROUTINE FUP 333303038 30 34 30 30 3 38 3 3 3¢
# K
#33 SIDEWASH COEFFICIENT-= PORT WINGLET ###

SUBRRCOUTINE FVPFP(FVP, N,V X5 YP,Z, S, FHP, WP 1, WFZ, WFR, WF4, WFS, WF7, WFY)
DIMENSION FVP(100, 100)
INTEGER V
VP1=(X#SIN(FHP) )/ ((X##2, )+ (Z#COS(FHF) -YF#SIN(FHF) ) ##2.)
VP2=WP2
VF3I=WP3
VP4=WP4
VPS=WFS
VP&=(Z—S#SIN(FHP) )/ ((YP-S#CQS(PHP) ) ##2, + (Z=-S#SIN(FHF) ) ##2,)
VP7=WP7

VPS=(Z+S#SIN(PHP) ) / ((YP+S#COS(PHP) ) ##2, + (Z+S#SIN(FHP) ) ##Z2, )
VPO=WP?

FVUP(V,N)=VP1#(VP2/VP3-VP4/VPS)+(VP&#VP7) - (VPE#VPY)
RETURN ' .
END
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