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1. SUMMARY

‘The 03E—4323A Project concerns itself with the production de—
velopment, construction and testing of the rotor blades for the
GROWIAN wind power plant.

As part of this project, based on the "construction—ready" data
from GROWIAN, the aerodynamic design was reworked and ‘a modified
structural concept was drafted. The result of these studies was the
construction of a hybrid type rotor blade~which has a&s the load bear-
ing structure an untwisted, six—sided steel box spar which is clad
in a glass fiber reinforced plastic shell which follows the aero-
dynamic prdfiling.

In the building of the test rotor blade there were cheéked out
the manufacturing feasibility of the welded coﬁstruétion of the spar
in connection with the adherence to fabrication tolerances and the
guality of the weld seam and also the fabrication process for the
plastic sheathing; the latter presented to some extent considerable
problems due to the huge dimensions of the shell sections. Beyond
this the test rotor blade was subjected to static load tests in
a comprehensive test program,_in order todemonstrate qualification
of £he.component for later use. Since dynamic load tests were only
to be carried out with a great expenditure,qf_time ahd test ehgineering
resources, duration strength tests were carried out experimentaily
with 107 stress cycles on test articles for the critical weld
connections on the spar and for the shell/spar interfaces. All the
duration étrength values attained agreed with those basitally |
established by computation. _ _ .

The elasticities and deformations measured in the static tests
showed good agreement with the computed values. The fracture test
was broken off at 170% of the blade loadings arising in the load
case 2.5 x maximum since at some points on the spar the elasticities
did not any longer proceed linearly. Before starting the static
structural tests a dynamic oscillation test was carried out in which
were measured the relevant characteristic frequencies and characteristic
shapes. Here too good agreement was achieved with the calculated

values.

T
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All the findings in the construction of the test rotor
blade and in the structural tests will be taken into account in
the manufacture of rotor blades 2 and 3 for GROWIAN. During the
test phase of GROWIAN, both rotor blades were fitted out with
measurement sensors for purposes of making measurements. An evaluation
of the mass distribution of the two blades based on the measured
values showed that on rotor blale §2 compensation masses of about
60 kg had to be installed within the blade. This is to some extent
attributable to differences in the metering équipment on the two
rotor blades.

All computer documentation and the construction of the rotor
blades was checked and/or monitored by the firm German Lloyd.



2. INTRODUCTION _ /87

During the derivation of construction-ready data for the large
wind power plant GROWIAN, two different rotor blad construction
approaches were investigated. A

Design I called for a blade structure of carbon fiber reinforced
material from station R15 to R50. In design II, the outer length of
blade was covered with carbon fiber reinforcing maferial from
R30 to R50, while on the inner length of blade from station R30 to R10
a hybrid construction method was planned with a steel box spar as
the load bearing structure and a glass fiber reinforced plastic
sandwich configuration for attaining the aerodynamic form.

Accompanying static and dynamic load tests on components at
fu11f5651§j§ﬁaﬁed that, with respect to ﬁhe projecﬁed construction of
GROWIAN roto;_Llades of carbon fiber plastic, this was not feasible .
in the short term in this large a size. Herebthe problems are
principally in the force initiation zone of the steel structure of
the hub and in the fabrication process selected which has to assure -
a uniform gquality of the material.

On the grounds mentioned above, it was decided to execute the
rotor blades for the first GROWIAN plant in a hybrid construction
mode. In June 1979, MAN—New Technology was pléced under contract by
the Nuclear Research Center, Jilich, on behalf of the Federal Ministry
for Research and Technelogy, to execute Prbject 03E—~-4323A "Production
Development, Construction and Test of the ‘GROWIAN Rotor Blade".

The progect 1nc1uded the follow1ng ‘important objectlves-
re—working of the aerodynamic load assumptions for GROWIAN
selection -of a suitable fabrication process
construction of a test rotor blade
execution of structural tests with the test rotor blade

manufacture of two rotor blades for GROWIAN 79/
Project management, designing, construction and computations were
carried out by MAN-NEW TECHNOLOGY; the spar was manufactured in the
MAN plant at Gustavsburg and the shells by the firm Schemﬁp—ﬂirth,
Kirchheim. The structural testing was undertaken in collaboration
with the IABG at Ottobrunn near Munich. The Jiilich Nuclear Research
Center employed the firm German Lloyd in Hamburg as monitor of the
design and fabrication documentation and of manufacture of the

rotor blades.
-.7-—
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3. ROTOR BLADE DEVELOPMENT ' /10/
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In the aerodynamic design of the rotor blade some compromises
had to be decided for the aerodynamically optimal blade geometry,
these with respect to the construction method chosen and in the
interest of a cost—effective manufacturing method.

Here also, as in the preliminary design of GROWIAN, the laminar

profile design of Prof. Wortmann, Series FX—77-W and FX-79-W were used.

Three different profiles were used which are located at the following
blade stations

R = 50 " FX~-79~151A
R=29.5 FX~77-W 258

R=15.7 FX-77-W 343

In between these profile sections it was smoothed linearly. In

the blade root zone, below station R 15.7, the depth of profile
was contracted down in the area of the last box section, such that
there thereby was created a FX-77-W profile with a 50% relative
thickness.

The twist curve and the blade chord distribution over the spar
length were calculated using conventional theoretical procedures
based on the profile characteristics and layout data furnished by
GROWIAN /1/. The hyperbolic shaped optimumblade chord distribution
which resulted from these computations was replaced in favor of a
double trapezoié shaped blade contour due to manufacturing consider—
ations. The difference in performance behaviour between the optimum
'blade geometry and the double trapezoid blade turned out to be
relatively small for the average roughness in the blade surface.

The optimization of the rotor blade geometry began with the
following specified layout data:

Nominal performance 3 MW Axis tilt 10°

Rotor radius 50.2m Number of blades 2

Hub radius 8m Design fast number 10
Cone angle 90° Rotor RPM 18.5 min "1

—8—

R R T



. /11/
Table 1 shows the geometric basic data for the blade geometry.
In figures 3.1 through 3.7 the rotor blade smoothed outline is
shown in simplified form together»with the variation in- the
geometric ‘parameters over the blade lehgth.
Determinative for the fixing of the blade contour (blade
chord distribution) was the endeavor to if possible accomodate -
the steel box spar untwisted in a dihedral rotor blade geometry (GFP. outer
shell). This yielded the gently bent double trapezoid plan (fig.B.Of.
The large relative thickness in the inside area was specified on
structural grounds in order to guarantee the attachment to the
circular blade root structure (rotor blade support).

Table l: Geometric rotor blade parameters

Length (NOMinal)...ceeeeeecececsceaceeaesa50.2m
blade support with hub connection......10.85m
Chord
at blade tip..........,................l.3m

At YOOb.ceeeeoecacocscsncnccncsnssnsesad.93m
Twist (non-linear).._......................18o
Surface...ceeeeceecceccicencccccnccinnnaascaalls m?
TAPEr ceececencccscssssassassasnssasncsssscsasl.26
Aspect ratio........;...........;.........15.4
Material..c.ceceeecececesassacssscccasccanssesSteel/GFP
Profile R 1.0.cccecscccccccccscncscccosss s FX-79-W-151

R 0.6.cceeencncccnscccsccncnccnesesFX-77-W-258

R 0.3.....0...-0.-....o..oA..o.oo..Fx-77-w-243

it Y 4
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FX=-78-¥-151A
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Figure 3.1 Rotor blade span

Figure 3.2 Rotor blade projection
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3.2 Engipeering_layout /16/
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Sizing of the blade took place in accordance with the five
defined bésic load cases forAGROWIAN. Additionally, a maximum
allowable flexure of the blade at the blade tip of 2.9m was specified
and a first characteristic bending frequency of higher than 0.8 Hz.

As an engineering concept there was selected a load-bearing
steel box spar with a light plastic shell generating the aerodynamic
loads. This concept was required in order to meet the specifications
for the laminar profile in surface roughness and ripple.

Discovered as the optimum weight solution for the load bearing
structure was an untwisted box spar with a.six—sided cross section
which reaches from the blade root out to the tip. Its positioning
within the blade geometry was defined so that in the compression and
tension chords the greatest uniformity is achieved in stress distri-—
bution during nominal operation.The shell/spar connection is produced
by means of metal fittings.

The laminate setup of the glass fiber plastic shell was fixed
for high rigidity (stiffness) in the profile circumferential direction
and minimum stiffness in the vibration and oscillation direction, such
that deformations of the spar can be endured by the shell without
- failing. Further boundary conditions for the shell design were
sufficiént pulling stability and resistance to hailstorm.

At blade station R 10.85m, the spar of the blade is welded to
the blade rbot which contains the blade support. A two—point support
installed on a trunnion on the cradle frame was selected in -order
to keep the bearing dimensions within tolerable size. The fixed
bearing is located at station R 10m and the moveable bearing at
station R 4.3m. Since up until now no reliable data could be gene-—
rated on evidences of wear on the bearings resulting from the very
restricted adjustﬁent clearance per turn of the rotor, it was de-—
cided to design the structure.such that both bearings can be changed
out without-disassembling the masthead.

—-]4—
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Figure 3.8 GROWIAN Rotor Blade
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The untwisted steel box spar is carried out as a welded structure.
(Figure 3.10) In the area of the blade root, its six—sided cross
section merges smoothly into a circular form. In order to mini-
mize the number of weld seams, the spar is composed of cold-formed
half segments to station R 35m and quarter segments thereafter.

In the inner area it is reinforced by half-ribs which are replaced
by a central flange after station R 35m. Up to station R 35.3m

the wall thickness amounts to 20mm; from there on it is reduced in
steps from 15mm and 10mm down to 6mm at the blade tip. In the area
station R24 to R32 the upper and lower chords of the box spar were
reinforced by welded—on stringers.

To anchor the plastic shell of the blade skin three metal
fittings,manufactured with a welded design, were screwed or riveted
to the spar every 312.5mm. For each spar section, three fittings
are installed, of which one is located in the nose area of the
profile on the spar leading edge and two on the spar trailing edge.
(Figure 3.9). In the center lies the spar from 10% to 38% of the
profile chord.

The shells of the blade outer skin are executed in a glass
fiber sandwich construction. The laminate consists of glass fiber fabric
0/90o and 45°/45°-strata of different thickness. As a matrix was
employed@ a cold-hardening epoxy resin system and as supporting
material PVC .-hard foam.

In the area of the attachment points of the shell and the fit-
tings roves of E—glass are inlaid in the shells in place of the hard
foam. The sandwich thickness amounts to 16mm in the nose area and
in the area of the box end 18mm. At all junction points the sandwich
is joined and overlapped, cemented and fastened with bolts . For
stabilizing the shape at the end box ribs are used which are cemented
to the upper and lower shell and bolted to the spar fittings. They
are arranged at intervals of 2.5m between blade stations R50 and
R27.5 and of 1.5m between R 27.5 and the blade :root.

The separation plane‘between upper and lower shell of the blade /20/
outer skin is the profile chord. For manufacturing engineering

/
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reasons the overall blade skin is divided into five structural sec—
tions; the attachment points for these are located at stations.
R 37.5, R 27.5, R 15.6 and R 11.5. In the area of large blade chord
between R 27.5 and R 10 m the upper and lower shells are once again
subdivided in the longitudinal direction at the level of the attach—
ment points on the spar trailing edge. (Figures 3.11 to 3.13).

The blade bearing support with the conical blade root structure is by
definition part of the cradle frame of the hub. However, ih the
structural testing the blade bearing friction torque had to also be
measured so that as part of this project a blade support was fabricated

just for the test rotor blade. :
The attachment point on the spar of the blade is located at

R 10.85m. The bearing support is housed between stations R10.85 and
R 4.3m. At R 10m there is a radial roller bearing unit as a fixed
bearing having an outside diameter of about 500mm. Here both shear
forces and centrifugal forces are absorbed. The moveable bearing

at R 4.3m is in the form of a roller bearing and has an outside
diameter of 1980mm. Both bearings are filled with o0il as a lubricant.
The lower structures of the bearing such as trunnion and blade root
are so formed such that both structural components experience
approximately the same deformation under load so as to avoid tilting
of the bearing parts.

~18-
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3.4 Load_assumptions

The design and sizing of the rotor blades took place in accord-
ance with the load assumptions described in the following. These
load assumptions, to the extent that they involve environmentally
conditioned influences..are based for the most part on the data
published in this area up until now.

For GROWIAN the'load-asshmptions have been subdivided into five
basic load cases: ’

Load case 1l: normal operation

Load case 2: wind gusts o

Load case 3: start-up and'btaking procedure

Load case 4: rotor at rest

Load case 5: breakdowns } .

In these basic load . cases , the wind has been assumed as
steady and the air flow over the installation as undisturbed, i.e.
ideal conditions. The consideration of more complex asymmetrical
air flows, as well as the dynamic behaviour of rotor blades and the
overall installation have been treated in the "Extensions" of these
basic load cases. The definition of the load cases is exhaustively
described in /12/. ‘

Each basic load case is subdivided into a series of individual
load cases which are shown ianable 2.

. The aerodynamic stresses in the load cases normal operation and
wind gusts have been calculated with a digital computer program which
were principally based on the extended blade element theory of
Liésaman~and Wilson /1/. Hére velocity inductions both in wind and
in circumferential direction:along the‘blade were taken into account
and superimposed on the inductions of the free tip vortices at the
blade tip and blade foot. The aerodynamic load distributions is
computed along the rotor blade as a function of rotor RPM's, wind
velocity and blade angle of incidence with the rotor geometry of
lift and drag polar curves and of the torsion moment behaviour. Here
there were taken into account the axis tilt angle of the rotor, blade

cone angle, pendular movement‘ahd blade pitch angle feed-back control.

—23—
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These aerodynamic loads were superimposed on the antimetric
components from the dead weight of the rotor blade over a rotation
and on the mass forces from rotation speed and rotation speed
changes,and on. dynamic disturbances from tower wind shadowing
and the ground boundary layer /3/, altogether into the total
loadings on the rotor blades. .
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Table 2 _Definition_of the Load Case S _per /12/

Loaa e el -4|Load_
. omenclature Wind __ |RPM ?%v" c§g§e.
case : , |
Aty loads fmin-1]
'  |normal operat.: 145 - 108
1t r w1nd
gpg 8"9 Jwesaas ] 865 |-2.5 [a0 -0
12 v, Twesoas ] 2665 J-2,0 [3.60-10
1.3 jnominal wind = | ‘ : .
peed VN : Vu » "2.2 n's 18,5 - 1,0 4,2 - W
1.4 V_2 il v = 18 w/s 18,5 |-11.05 J2.3 - 107
1.5 nutdown wind
Epeeg Vv = 28 m/s 18,5 |-18,0 |31 - 106
- co-
2 Caos —
wind gusts N
.« . v p -196
2.1 | positive qust w SrE e 1o 108
2.2 negative gust _ WOG 21,28 -16,9 104
PP 0 71
2.3 extreme ~pgs st 2 Y 21,28 |16 50
247 . .
2.4 2 AT 15,73 | -21.0 50
5 : 3 2 °c| 2,28 }-22,3 50
s | extreme pggé,_ i "; I:’;,,.cs 8
3 stargug’& i)raie S Adj. |
dure : ratews
3.1 J|startup :‘ Veqg o 5.4 o/5] 15,65 1
“eom o Tt Ty = 128 vl 18,5 2 1,8 - 0!
' Vo r 28 a/s] 18,5 3
22 |emergency hydr-|1zs 2 :,/sg;g%e o .
laulic shutdown |} § o9 % '
33 |el ast i 12,4 20 eysifeleass
g'h-rOi" s 27 ws] 28] 3]
e e, 24 3! a/s
3.4 (normal shutdown Vg » 5.4 m/sl 16,68
— - . v 12,20/ 18.5 0] 0.5 /s
Yoo = 20" oss| 18.5
« | rotor at rest
4 0 ind._ | we35.6mns 1. :
vefoc éS wind. %o 28 el 0 s0/%
12 |i00 year ‘wind | i Vo o e o |- sys
‘. repair ( 1] Vue > 85,6 2/s .
} P ?6§5) 1« ¢0¢ 0 50/0
5. breakdowns = ‘
sy lice buildup T e |-9n
s.2 {lightning hit
5.3 Ibird strike v ..
B Vh e 15 8/8 1R.6

-2 65—
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3.5 Structural Analysis ' /28/
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. The derivation of profile loads, deformations and stresses in the
blade structure was accomplished with a computer program developed for
rotor blades of wind power plants.

The blade deformations and the profile loads were calculated in
an iterative procedure for the quasi—stationary flow conditions using
a linearized second order theory and the characterlst1c frequenc1es

and characteristic shapes. ./2/

In idealizing the rotor blade, it was subd1v1ded into three
structural groups, the steel spar, the aerodynamic profiling (GFP
shell) and the shell/spar attachment elements (tie~down fittings).

For the steel spar as a load-bearing structural component, the
following assumptions were struck: |

~The aerodynamic shell is moveable -around 1ts principal axis

and thus adjusts itself to deformations of the steel spar.In the
circumferential direction it is bend-resistant in order to

maintain its profile shape /2/.

—All external loads and inertial forces are borne by the spar

alone.

—In deriving the inertial forces and their points of attack,
shell and flttlngs were all taken 1nto account with respect to

thezr masses ‘and thelr dlstrlbutwn in the longitudinal -and chord dlrectlons.
The GFP shell is stressed as a wing truss structure by the

attrition of the aerodynamic loads into the spar and the deformation
induced by the spar. In Sizing the fittings, the profile loads on the
three attachment points were derived from the aerodynamic loads, the
volume forces (inertial and centrifugal force of the shell) as well as
the compulsive forces from the elastic deformation of the blade (Figure
3.14). ,

In Figure 3.15 are shown the location of the principal axes, the
center of rotation, center of shear , center of stiffness, aerodynamic
pressure point and the center of gravity are given for the cross—section
at blade station R=35m. The mass distribution.shown in Figure 3.16
and the curve for the weight axes over the blade length in Figure 3.17
form the basis for fﬁe calculations. A comparison of the measured mass

distribution with the theoretical values in included in Part 5.
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For the spar, structural steel Ost 52-3 Z3 was employed /33/
having the following material characteristic values:
E = 2.06 x 10° N/mn® (E~modulus)
G = 7.92 x 10° N/mm2 (shear modulus)
G,= 520 N/mn?
£ =17.85 g/cm’ (density)

The following material characteristic values are taken as a basis
for the E—glass fabric of the outer skin for a unidirectional rove:

E, = 31 6000 N/mm’ (E modulus // to the filament

Es = 8030 N/mm2 (E modulus l to the filament

Gr - 4110 N/'xnm2 (shear modulus)

:::: = 0.332 o (Poisson's ratio)

G = 0.0844 , (Poisson's ratio)

G = 780 N/mm (fracture stress,tension // to the fiber)
(R 480N/mm2 (fracture stress,pressure // to the fiber)
Gt = 40 N/mm2 (fracture stress,tension | to the fiber)
?"3; ' 90 N'/mm2 (fracture stress, shear)

§ = 1.8591:/cm3 (specific mass)

The sandwich core consists of Conticell foam C60 with the

following properties:

: E = 60 N/mmz (elasticity modulus)

G = 18 N/mm (shear modulus)

Gy = - 1 N/mm2 (fi:acture stress, tension)
- G3p = -1 N/mm2 . (fracture stress, pressure)
R 0.8 N/mm2 (fracture stress, shear)
'gh= 0.06 gr/cm3 - (specific mass)

The stability certification for the steel spar was made on the /34/
basis of DIN 15 018 Part 1 "Cranes, Basic Data for Steel Supporting
Structure, Computations”. . _

For the general stress certification, for St 52-3, the following

permissible stresses are produced:
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a) Structural parts and all weld seams with longitudinal

stressing:

Tension permissible Gz « 270 N/m?

Pressure = Gp =240 N/mm*
Shear . T = 156 N/om?

b) Weld seams {(only butt weld and K—seam special grade)

with lateral stressing

Tension permissible G = 270 N/am?
Pressure .- G =-270 N/mm?
Shear W I = 191 N/mme S

c) Structural parts: Reference stress Oy = 270 N/mm?

N —— :

d) All weld seams: Reference value G',: 270 N/mm?. i

For the operational stability certification 6f the spar in
normal dperational ‘modes 1.1;1.5, ‘DIN 15 018 was again Afollowed. VThe
permissible stresses were, however, in this' case reduced,in consider—
ation of the special operating conditions of a wind power plant, by
a factor of i =1.2. In this way, for example, reductions in endurance
are eclipsed by the load case superimpositions.

The weld seams of the spar were so manufactured that only rough-
ness <cases of K2 or better can arise..This means the execution of
butt and K 'seams in special grade materials in the case of
lateral stressing. - '

With roughness K 2 and stress group B 6, for St 52-3 there is /35/
produced a basic value for the permissible stresses of 65 (-1) =
52.5 N/mm2 for the operational stability certification. |

On the basis of the above mentioned permissible basic value,
the permissible 6verstrésse§6'§ {x ), which are dependent on the
boundary stress ratio X =¥%%Zg rare computed according to DIN 15 018
with the formulae given there. .

The findings of the stability analysis showed that in load
case 1.3 (nominal operation) the highest normal stress occurs with
G = 147 N/mmz, and the smallest safety margin is achieved in
load case 1.5 (shutdown, wind speed). ‘

In the general stress certification, in load case 2.5 the high-
est normal stress was attained with § = 266 N/mmz.'

In Figures 3.18, 3.19 and 3.20 are shown the stress amplitudes

over the rotor rotation in load cases 1.3 and 1.5 for a node point
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of the spar cross section at station R 41.0m, and also the transition
from load case 1.3 to 1.5.

In addition to the stress analysis, the characteristic frequencies
and shapes of the rotor blade taking into account the bladé adjust-
ing linkage. /5/

The stiffness distribution shown in Fig. 3.18 was the basis for
the computations. Figﬁre 3.2i*show$ the computed characteristic fre-

quencies over the rotor RPM with an elastically restrained blade at

station R = 4.3.

* Transl. note: in error?. should be 3.22.
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/3%/
3.6 Twisting_and_flutter stability

N8 9 5.3l P00 i) P F P > s Y T T T 2
343+ 2 4 2 3 3 23 J 9 4 2

On account of the torsion-yielding restraint of the rotor blade

and an associated enhanced coupling of the bending shock and torsion

frguencies, an investigation into flutter behaviour of the rotor blade

became mandatory /6/.

Investigation of the flutter behaviour was carried out with thé
nine lowest elastic éharacteristic shapes of the rotating rotor blade
at various RPM's. As boundary condition, the rotor blade, in the
symmetricai case, was elastically restrained at blade station R 4.3..
In this way the influence of the cradle frame,'adjustmeﬁt linkage ang
blade adjustment pin elasticities was simulated. In the antimetric
case, the rotor blade was arranged to oscillate at station R = 0,
taking into aécount the blade angle return control. The elastic area
between R = Om and R = 4.3m was modeled with supplemental épring
rigidities.

In Figure 3.24 is portrayed the curve for thevdamping magnitudes
and frequencies for the antimetric case and in Figure 3.23 for the
‘symmetrical case. The terms SL 0-4 reproduce the chafac;eristic shape
in the shock direétion and T is for the twisting. All damping values
up to roior RPM n= l.4n nominal remain in the positive range so that

- here no instabilities arise.
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741/
4. FABRICATION OF THE ROTOR BLADE

Since in this project the construction of three rotor blades was
planned, fabrication techniques were selected which required the
smallest possible commitment of expensive special equipment such as
special fixtures, molds, press dies etc. This measure required, how-
ever, special capabilities for manual fabrication by the plants in
order to meet the small structural tolerances. 4

Given these preregquisites, the following fabrication scheme
was realized:

Spar () welded construction

° low commitment of fixtures

o reduction of weld seams to a minimum
Blade skin e GFP sandwich construction

@ manual application into shaping pans

® fabrication of the largest possible

shell sections
® simplicity of installation
Fittings : e simple welded construction
) process variable in order to equalize
- tolerances between spar and skin
With the subdivision into three structural groups, parallel
fabrication of thé individual components was possible according to

the following manuafacturing plan:

Spar Fittings IBlade skin]
T .:::::;::J

Complete
spar

|

1

Rotor blade

-~39-



4.1 spar /42/

fhe strict requirements for size accuracy in the spar geometry,
particularly on the junction points of the spar sections required
a slipway(Figure 1) in which the geometry of the spar could be
checked using ﬁemplates. In order to keep the weld seams to a
minimum, the steel plate was chamfered into % and % shells with a
" length up to 7.5m. (Figure 2)

This work procedure was not carried out with press dies, but
rather step-by-step free-form using a pressurexsheath, cold-formed
until the final contour is achieved. This procedure is frequently
used in ship and steel frame construction.

Following this work procedure, half-ribs are welded into the
spar shell (figure 3). Then comes the mechanical work on the junction
points in the longitudinal direction and the welding together of the
half-shells into a spar section (Figure 4). After matching up the
butt joints, the spar sections for R 10.85-R 35 are welded together
(Figure 5).

Next, in the spar area R 35 to R 50m the %-shells are joined
together into %-shells, and then the %-shells of the individual
‘'sections are bound into a complete spar half by’butt«weids. After
matching up -the lbng-cross,'the longitudinal welds were applied in
both top and bottom of the spar contour (Figure 6).

The transition from the six-sided cross-section of the spar
into a circular shape at station 10.85 takes place sméothly in
accordance with the ﬁrocedure-described for the manufacture of the
shells.‘

Special care waé taken in the executién of the welding jobs
since here, with respect to the operational stability of the spar,

-40-
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roughness condition K2 in DIN 15 018, or better, must be adhered to.
So ail butt welds which lie at an angle to the load direction were
worked down to the level of the plate on both sides and all other
weld seams were ground down free of roughness.

During the fabrication, the individual structural components./43/
of the spar were covered on the.outside and inside with a corrosive
proteétive.base coat of zinc silicate base which is suppleménted with
a éovering coat of epoxy-resin base on the spar ouﬁside after
installation of the attachment fittings. The interior of the spar
was partitioned by bulkheads below R.23 m.

The a;tachment fittings are mangfactured in parallel with the
spar fabrication and then fitted in using.the slipway and attached

to the spar (Figure 7)
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jile stiffened with ribs

Spar prof

gure 3:

Fi

@% ;

Eimomy
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_Figure 4: Spar section R 15.5-R 21.5

/
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Figure 6: Spar sections R 35- R 50 (stitched together).
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4.2 Blade outer_skin /748/

3 - Pl A 2 > T 23
-3 3 ¢+ 3 3 T 1=+

The shell sections'of the GFP sandwich structure of the blade
outer skin are fabricated in negative shape molds, a procedure which
is conventional and proven in plastics manufacture.

First, a master model of the rotor blade geometry, following
the rotor biade span, had to be constructed. (Figure 8). Then, the
negative shaée mold for the upper and lower shells were shaped from
this master model (Figure 9). The separation plane between upper and
lower shell is also the wing chord. Since on fabrication engineering
and handling grounds one could not manufacture the complete Blade
skin, it was divided into 5 structural sections, each of which
represents a surface of egual size.

The actual manufacture of the shells takes place by manual
procedure with vacuum suction. After emplacement of a separator,
next a UPpre-gel is sprayed into forms as an external coating,
and then the individual glass fabric layers are inlaid according
to the coverage plan and impregnated with the matrix. After pre-
paration of the cover laminate of the shell, the reinforcing material
is installed in the form of hard foam plates and the entire mold
is sealed airtight with a suction foil. A vacuum is created in the
mold with a vacuum pump, which induces a contact pressure among the
individual layers of glass fiber, together with the reinforcing
materials.Any'overflowing:of resin goes through the holes in the
perforated hard foam. (Figure 11)

After a hardening time of 24 hours, the inner laminate is
installed and hardened. Following this, the prefabricated ribs of the
end box are cemented into the lower shells, and the finished shell is

now unmolded (Figure 12).
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_Figure 10: Laminating the shells
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-Pigure 1ll: Vacuum generation during the hardening
process
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4.3 Mounting

—_—— s
sSs=Ess==

'For the mounting of the outer skin, the spar is mounted on
stands at various blade stations such that the blade axis runs
in a .level plane and to avoid, to the greatest extent possible,
bending as a result of the spar's own weight.

The starting point was structural Section I (R 50- R 37.5) of
the blade skin where the lower shell is properly located and
adjusted and then solted and cemented t6 the spar fittings. After
this, the upper shell is mounted and cemented. The procedure is
repeated for structural sections II-IV. When all structural sections
have been finally mounted, the junction points are smoothed,
ground and painted. (Figure 13)

After completion'of the blade (Figure 14), the overall geo-
metry is adjusted with help of the templates. Recesses for transport
framework and covering on the blade root are installed and en-

closed after this assembly is completed.
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5. QUALITY ASSURANCE

The quality assurance measures are set forth in the Quality
Plan /7/, and these were monitored by MAN-NT and the firm German
Lloyd Hamburg; the latter also checked the design documentation.

Basically it was required that all materials used be certi-
fied with a plant acceptance certificate per DIN 50 049-3.1B
which documents structural changes arising during fabrication and
reconciles the preparation of the blades with the definition docu-
mentation. ' *

More in detail, on the spars all transverse junctions were
checked 100% with X-rays and for cracks, and in the case of
longitudinal welds, 10% were X-rayed from both seam ends. All
process parameters in the welding were continuously checked.
In addition, endurance stability tests were carried out on welded
surface test articles which had been executed under the fabrication
conditions applying to the spar. The findings showed that with an
applied load of 2 x 107 a>permissible stress amplitude of (illegible
symbols) = z 62'N/mm2 was achieved. For the roughness case KO, the
DIN 15 018 yields (illegible symbols) = 2 57 N/mmz. Thus higher
stability values were achieved as are laid down as a basis for the
stability certification. During manufacture of the shells particular
monitoring was doné of the maintenance of process parameters such
as temperature, air humidity, hardening times and vacuum pressure.
Additionally, laminate test articles were produced in parallel to the
manufacture of the shells and under the same fabrication conditions

in order to confirm the stability values attained.
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In order to derive the mass distribution and the location of
the center of gravity of the finished blades, during the fabrication
all spar sections and shell sections were weighed and also their
centers of gravity determined from these measurements. The results
of these measurements are shown in Figures 5.1 and 5.2. On account
of the differing measurement equipment for rotor blades 2 and 3,
blade 2 was balaﬁced by the installation of additional mass in the

inner blade area.
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6. TRANSPORT

Despite its immense dimensions, transport of the rotor blade
does not present all that great a problem. The prototype was trans-
ported from Mainz to Munich/Ottobrunn by truck on the autobahn.

The tractor-trailer combination consisted of the tractor aﬁd
two steerable tréil vehicles with counterpoise éivoted bogie. At
blade stations K5m and R 43m the blade was moved - by two cranes,
in the hoisting and transport slings .affixed there,onto the trail
vehicles. Between these support points, the blade hung free in the
shock direction. The vehicle speed was limited to 40 kph in order
to avoid undesirable oscillations. (Figure 15)

Highway transport is also planned to Kaiser Wilhelm Koop.

-55-

PR TR TN



/51/

T ElneERTRsTmm————a

Spelq 20301 3583 ay3z Jo jxodsuvay 3GT @anbyg

. "
eear pere

-56_




/58/

7. TESTING

The prototype of the rotor blade was subjected to static
load tests. Dynamic load tests with 108 load cycles could not be
carried out due to the large amplitudes and on scheduling grounds.
The test concept aimed at simulating as nearly as possible the
load stresses arising at defined, cfitical areas of the blade.
The objective of these structural tests was to produce the ex-
perimental qualification certification for the blade structure and
the mode of construction chosen. Additionally, using the measure-
ment results it should be established to what extent‘agreement with
the —computed values could be supported here.

The following tests were carried out:

- bench'oscillation test‘to derive characteristic oscillation

values
- static load test in load case 1.3 (nominal operation)
- rotation test in load case 1.3 to derive the bearing friction
moment |

-~ derivation of the inherent weight component in load case 2.5

- static load test in load case 2.5 (negative extreme gust)

- dynamic load test, load case 2.5 (50 load cyclés)

- fracture test in load case 2.5 |

The large dimensions of the test article made necessary a
test setup outdoors, which, after installation had taken place,
was covered over with a tent.

As test setup, a concept was chosen in which the test equipment,

in this case a reinforced concrete foundation, test article and

~-57~




stress load facility, consisting of hydraulic cylinders, all form
a closed system, in which aside from the inherent weight no external
reaction forces occur.

Rotor blade including blade bearing was constrained on the foun-
dation frame as cantilever such that(the most realistic mountihg
conditions were realized (Figure 17).

During the tests, elasticities were measured at 450 points /59/
on the spar structure of the blade skin and blade root. The
deformation measurements were restricted to 7 blade stations and
moveable :and fixed bearings of the blade support. ARll measured data
were recorded and stored by an EDP setup. |

Analysis of the measured data at the conclusion of the tests
showed a fairly gdod agreement with pre-computed data. Using
measurements from blade station R 27.5, the stress readings
for load cases 1.3,2.5 and the fracture load case are reproduced
here (Figures 7.1 to 7.6) /9,10/.

In figufes 7.7 to 7.9 can be seen the rotor blade deformations
for the respective maximum test loads, without, however, the in-
herent weight component. Figures 18-21 show the Setup for the
individual structural tests. In the final fracture test, at 170% of -
the safe load (load case 2.5), the stresses in some areas of the
spar did not show a linear character, whereupon thg test was ended.
The dynamic test in load case 2.5 with 50 load cycles showed no
evidences of fatigue in the structure.

In addition to the structural tests with the test rotor blade,

a series of investigations have been carried out on the spar/skin
airfoil points as well as endurance stability tests on welded flat

test articles. The welded flat specimens achieved altogether better

~-58-
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values with respect to KO per DIN 15 018 with 107 load cycles (see

Section 5).

In the case of investigations of the skin/spar airfoil points,
endurance stability tests éhecked a skin segment fastened to the
spar trailing edge in two planes consecutively with 50% overload
and in each case 2 x 107 load cycles; . no expansion of
the bolt holes in the laminate nor cracks could be determined /8/.

In addition; the blade skin has beén bombarded with 20mm
ice pellets in ordef to be able to determine the damage from hail-
storms. The impact veélocity was between 30 and 148 m/sec (Figures
22,23). |

With ice pellets of 20mm @, minor delaminations occurred at
velocities between 40 and 100 m/sec; below 40 m/sec no damages
were determined.

Ice pellets of 10mm @ showed minor delaminatibn only above

120 m/sec /8/.
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Figure 17 Blade mounted on the test stand foundation
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Figure 18 Bench oscillation test

Figure 19 Test setup for load case 1.3
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igure 20 Test setup for load case 2
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Figure 21- Fracture load case
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impact

Figure 23 Blade skin damage from hail impact tests
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Figure 7.4: Longitudinal stretching in the blade skin as a
result of spar deformations in load case 2.5
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Figure 7.7 : Blade deformation in load case 1.3
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Figure 7.8 : Blade deformation in load case 2.5
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\.table_}ijgmparison_pf the_blade characteristic
frequencies measured in test and the computed values

\L B

Characteristi, £ [nzi LU
form ‘ measured Tomputation]

1. Schlag 0.923 0,956
2. Schlag 2,38 2,64
3. Schlag 4,66 5,22
4. Schlag 8,03 9,08
5. Schlag 12,11 12,95
6. Schlag ‘ 17,38 19.53
7. Schlag 23,86 27,10

1. Schwenk 1,27 : 1,27
2. Schwenk : 3,55 3,64
3. Schwenk 7.40 | 7.54
‘1 4. Schwenk 13,02 © 13,47
=.| 5. Schwenk - 19,91 21,20

L%

RN

rotation.

)

|
{

1. Torsion T 21,67 26,16

twisting '
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8. PROJECT EXECUTION

In addition to MAN-NEW TECHNOLOGY, which carried out the project
management, design, éonstrucﬁion,and computations on the rotor blade,
the MAN plants at Gustavsburg and Niirnberg were concerned with the
fabrication of ‘the steel struétural components. The firm of Schempp-
Hirth, Kirchheim/Teck was responsible for the design and production
of the GF? shell of the blade skin. Structural tests with the tést
rotor blade we;e~carriéd'out by Industrial Plant Operating Co. (IABG),
Ottobrunn. The firm German Lloyd was entrusted by the KFA-Juelich with
checking on the design and computational documentation and on the
fabrication of the rotor blades. Figure 8.1 clarifies the project

organization.

Preparations for this project began in January 1979. From the
letting of the contract in Jﬁly_l979 until September the final blade
geometry was decidea so that construction of equipment and forms
for the steel spar and the blade skin could take place. In March
1980 the slipﬁay for the spar and the negative>form molds for the
GFP shells were complefed and construction of the test rotor blade
began which was completed at the énd of January 1981.

Inlparallel witﬁ the fabrication of ﬁhe test rotor blade, the test
stand .equipment for the structural tests and the blade root structure
with blade bearing and test stand attachments were completed.In Feb-
ruary 1981 the test rotor blade was installed in the test rig and in

March 1981 the tie-down oscillation test was carried out.
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Static load stress testing could be started in mid-May after
installation of the stress load facility and the extensive measuring
instrumentation; this ended in mid-July 1981 with the fracture
testing.

The fabrication of both rotor blades for the first GROWIAN
installation took place in the time period March’iQBl to July 1982.
In Figure 8.2 is portrayed the time course of the individual work

packages of the project.
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Figure 8.2 Milestone Plan
1. MANAGEMENT . : 4. (CONTD) TESTING
Project management : ? '
. Test stand
Planning
o Test
2. ? TASKS Evaluation
Load assumptions 5. FABRICATION
Design - ' Steel spar
Computation Sheathing
3. PROTOTYPE 6. Contract let
FABRICATION Begin prototype fabrication
, . _
Steel spar ? completed
Begin testing
Sheathing B
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8.2 Resource Expenditule
cfhe development of the rotor plade, construction of three
plades and the structural testing with the test rotor plade re-

guired outlays of DM 10.3 million which were divided as follows

among the jpdividual items:

1. Rotor blade development 30%
(engineering)

2. Equipment-construction 11%

3. Fabrication of 3 rotor blades 42%

4. Testing _17%

| TOTAL 1008
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9. CONCLUSIONS

It was demonstrated with the construction of three rotor
blades that rotor blades for wind power plants with a rotor
diameter of 100m can be built using the chosen concept with
reasonable expenditures.

Despite the use of simple fabrication tools, the very
narrow fabrication tolerances--considerably less than those usual
in steel work--could be met on both spar and blade root. In the
course of the fabrication of the steel box sparkit.appea:eQ;that-thé
weld seams which lie cfossways to the load direction should be
carried out with particular care in order to experiénce no
diminution of the endurance stability. This seems to be an im-
portant criterion for the construction of rotor blades of this great
size with welded steel structures since in normal production of
weld seams, the blade mass would be considerably increased and
would rapidly reach the practical limit. For the moét part this
also applies for rotor blades with a profile contour trued steel
spar, although here the ¢ross-sectional geometry available can be
better utilized.

In manufacturing the GFP shells for the blade outer skin it_
could be determined that with an appropriate subdivision of the
shells into fabrication sections of equal size, the manual lami-
nating process can be carried out and the desired surface quality
can be achieved. However, in the future a more temperature re-
sistant resin system should be employed, although to be sure such

a one is not yet available on the market.
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With respect to future repetitive production with larger -
numbers of items, stamping machine tools should be manufactured
for fabrication of the spar shells in order to reduce the tedious
measuring and adjustment work and to enhance the gquality. For the

shells, insofar as possible, mechanization of the fabrication

should be striven for, e.g. automatic wetting of the E-glass
fabric with the resin preparation .and mechanical cementing of the
fabric strips..By these and similar measures’shortening of the
work times and improvement in the quality would be made possible.
Further ihprovement looking to the optimization of the blade
structure can first be undertaken éfte; operational experience
with GROWIAN and in particular after availability of the blade

stresses measured during operation.
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