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ABSTRACT

A preliminary Eulerian formulation of the in-plane dynamics of
the proposed SCOLE configuration is undertaken when the mast is treated
as a cantilever - type beam and the reflector as a lumped mass at the
end of the beam. Frequencies and mode shapes are obtained for the
open loop model of the beam system. The inherent time delay due to
actuators is taken into éonsideration to analyze the stability of
closed-loop control systems by both frequency and time domain techni-
ques. Environmentaldisturbances due to solar radiation pressure are
incorporated into the previously déveloped models of controlled large
flexible orbiting platforms nominally oriented along the local verti-
cal (with the major surface normal to the orbital plane) or oriented
with thé major surface lying in the local horizontal piane. For ex-
tremely flexible platforms the need to redesign previously synthesized
control laws is indicated. Thérmally induced deformations of simple
beam and platform type structures are modelled and expressions developed
for the disturbance torques’resulting from the interaction of solar
radiation pressure. Such thermal deformations may give rise to larger
disturbance torques than the interaction of solar pressure with the
vibrating structure (ignoring the thermal distortions). Noise effects
in the previously designed deterministic model of the Hoop/Column
antenna system are found to cause a degradation in system performance.
Improved transient and steady state performance can be obtained by
appropriate changes in the ratio of plant noise to the measurement

noise and/or changes in the control weighting matrix elements.
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I. INTRODUCTION

The present grant extends the research effort initiated in pre-
vious grant years (May 1977 - May 1983) and reported in Refs. 1-9*.
Techniques for controlling both the shape and orientation of very
large inherently flexible proposed future spacecraft systems are being
studied. Possible applications of such large structures in orbit in-
clude: 1large scale multi-beam communication systems; earth observa-
tion and resource sensing systems; orbitally based electronic mail
transmission; and as orbital platforms for the collec;ion of solar
energy and transmiséion (via micfowave) to earth bésed receivers.

This report is subdivided into seven chapters. Chapter II pre-
sents a preliminary dgvelopment of.a two dimensional model of the
rotational equations of motion for the proposed Spabecraft Control
Laboratory Experiment - (SCOLE)lO. This development is based on the
expansion of the Eulerian moment equations assuming the Shuttle énd tﬁe
reflector are rigid bodies and modelling the mast as a flexible canti-
lever type:beam. A preliminary calculation is performed to obtain the
frequencies of the fundamental and first few in-plane bending modes as
well as the corresponding modal shape functions.

In the following chapter a preliminary review is given of st;bility
techniques that can be'applied when time delays are present in the im-

plementation of the control inputs.

*References cited in this report are listed separately at the end
of each chapter. :
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Both time domain and frequency domain techniques are described with
emphasis placed on applications to large order systems typical of
large space structures. The major quegtion to be answered is whether
marginally stable or oscillatory systems could be stabilized by using
delayed feedback techniques.

Chapter IV is based on a paper to be presented at the Fourteenth
International Symposium on Space Technology and‘Science and examines
the control of a thin orbiting flexible square platform in the presence
of solar radiation. The disturbance torques resulting from the inter-
action of solar pressure with the vibrating plate analog of the plat-
form are modelled and incorporated in the dynamic model of a square
plate nominally oriented along the local vertical with the major sur-
face normal to the orbital plane and also nominally oriented with the
major surface lying in the local horizontal plane. Transient responses
-and control requirements are éxamined for both nominal orientations.

The effect of environmental disturbances on the dynamics of large
orbiting systems is extended in Chapter V to also include solar heating
effects. A paper to be presented at the 1984 ATAA/AAS Astrodynamics
Conference forms the basis of this chapter. The evaluation of the
effect of solar radiation pressure on flexible beams and plates which
are subject to thermal deflections (in addition to vibrations) is the
objective of this paper. For very flexible system where the previously
developed control laws may not be adequate to-account for environmental
disturbances, the versatility of the linear éuadratic regulator techni-

ques provided by the ORACLS software packagell can be utilized to
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redesign the control strategies in order to reach a compromise between
reducing the excess vibrational and rotational energy while at the
same time maintaining the control effect at an acceptable level.

Partial supportAfrom this grant was provided for one of the graduate
research assistants during the Summer of 1983 only. This research was
continued during the 1983-84 academic year sponsored by the University,
and the results are presented in Chapter VI in the format of a paper
presented at the recent 1984 AIAA Mid-Atlantic Regional Student Con-
ference. In.this paper, the work previously initiated during the last
grant year9 analyzing the dynamics and control of the proposed Hoop/
Column orbiting antenna system is extended to incorporate the effects
of both plant and measﬁrement noise in the system. The results de-
scribed here are based on co-located actuators and sensors assumed to
be located on the column, electronic feed, and also on the hoop. The
general degradation of the previously designed deterministic system is
attributed to the incorporation of the uncorrelated zero-mean white noises
assumed to be present in the plant and measurement sensors. The Kalman
filter algorithm of the ORACLS package is used to develop control laws
and simulate the estimate of the state in an optimal LQG manner. Studies
are included showing the eﬁfect of increasing the elements in the state
weighting matrix as well as varying the noise'cha;acteristics.

Chapter VII describes the main general conclusions together with
future recommendations.. The effort described in Chapters II and III is
being continued during the 1984-85 grant period in accordance with our

proposallz and subsequent discussions.
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II. MODELLING TECHNIQUES AND CONTROL SYNTHESIS FOR THE SPACECRAFT CONTROL
LABORATORY EXPERIENT - PRELIMINARY RESULTS

The transfer of large, massive payloads into Earth orbit is cur-
rently accomplished with considerable propulsive an& control effort.
As a result, spacecraft designers must strive to minimize a large struc-
ture's mass. Consequently, many of the future spacecraft will be very
flexible'and will require that their shape and orientation be controlled.1
The problem of controlling large, flexible space systems has been the
subject of considerable research. Many approaches to control system
synthesis have been evaluated using computer simulations including é pre-
liminary synthesis of control laws_for the proposed Hoop/Column System. ’
Ground experiments have also been uged to validate system performance
under more»realistic conditions but based on simple structures such
as beams and plates.4 In a recent paper, SCOLE (Spacecraft Control LaBora—
tory Experiment), Lawrence W. Taylor Jr. and A.V. Balakrishnan described
a proposed laboratory éxperiment based on a model of the Shuttle connected
to a flexible beam with a reflecting grillage mounted at the end of the
beam5 (Fig. 2.1). The authors stressed the need to directly compare
competing conﬁrol design techniques, and discussed the feasibility of
such direct comparison. Concern would be given to modelling order re-
du;tion, fault management, stability, and dynamic system performance.

With this paper5 as a background, the purpose of the study proposed
here is to model the system in different phases where each successive
phase would represent a mathematical model sﬁccessively closer to that

of the actual laboratory system.
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It is anticipated that this (multi-year) study would consist of
five parts, the first of which would consist of a literature sﬁrvey
during which the investigators would familiarize themselves with dif-
ferent mathematical modelling techniques.

During the second part, the system would be successively modelled
as follows:

a) The Space Shuttle as a rigid body; the reflector mast as a flexible
beam type appendage; and the reflector as a rigid plate. The mast shape
functions are actually solved from the fourth order non-linear flexural
beam equation with different boundary conditions imposed on both the
Shuttle and grillage ends. b) Here the Space Shuttle would be treated
as a rigid body body; the composite appendage consisting of the flexible
reflector mast and also the continuous rigid reflector.(grillage) could
be modelled using finite element techniques. Then thé composite system
dynamics can be modelled using the hybrid coordinate technique6 which
invoives sets df matrix equations describing the motion of the main vehi-
cle as well as that of any attached appendages. It is anticipated that
within the second part of this study these different mathematical models
would be developed in a form suitable for numerical simulation.

During the third part, each of these models-could be directly com-

5, beginning with the

pared Qith the model proposed in the SCOLE paper
simulation of the open-loop system dynamics. The fourth part of the
effort would consist of the control law synthesis when the model can
be described by linear system dynamics - i.e., in response to small per-~

turbations induced on the system about the nominal laboratory configura-

tion and orientation, or after a major slewing maneuver, to remove the

[RS]
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remaining transients which exist in a neighborhood of the new equilibrium
orientafion. Such a construction of control laws will probably be based
on the ORACLS software péckage.7 Strategies would be developed to con-
trol the shape and orientation of the beam/grillage.

First the controllability of the system could be examined based
on the graph theoretic techniques already employed for a similar analysis
of the Hoop/Column system3, for different combinations of numbers and
locations of the actuators. Next, control laws can be constructed based
on the techniques of optimal control theory, and studies can be performed
comparing transient and control effort characteristics for a variety
of s?stem parameters and weighting matrix elements.

Finally, the fifth part would focus on the sléwing maneuvers to
accurately point the reflector at a specific target -in a minimum lapse
of time. For simple maneuvers (single axis) attempts would be made
to analytically determine the slewing control law; for more general maneu-

vers, numerical techniques would be implemented.
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II. A Development of the Two Dlmen31onal Model - (Eulerian Moment
Equations)
The SCOLE system is assumed to be comprised of three main parts
(Fig. 2.1):

i) the Space Shuttle Orbiter with its center of mass located at
point Ol;

ii) the mast, treated as a 130 ft long beam, connected to the
Shuttle at 02 and to the reflector at 03,

iii) the reflector, considered to be a flat plate with its center
of mass at 0.

The preliminary analysis presented here started before it was speci-
‘fieds that the interface point between the mast and the Shuttle is at

->
8 Therefore, in what follows, a position vector Ry appears which de-

01.
-
fines 0102, where O2 is the assumed interface point.
In the following analysis, the angular momentum of the entire system

is evaluated at point Ol and the dynamics include the lateral displacements

of the beam.

II. A.1 Angular Momentum of the Shuttle with Respect to Point 0,




Consider a point, P, of mass, dm, at an arbitrary position in the
> >
Shuttle such that OlP = r. The elemental angular momentum of the mass,

dm, is given by:

d‘\:\’o‘. f ?x ‘%f—.l& dm ‘ f -r:x %(€+?)laodm
= rxgak+3w;u+(we-e)axriém (.1)

The total angular momentum for the Shuttle is obtained by integrating

Eq. (2.1) over the entire mass of Shuttle as:

- . A Pdm - R tx (Fdm + ;:‘x((a)‘-é);x?]dm (2-2)
HSO‘ - —RixS‘M: am w “ SM; jMS | ‘

The first and second integrals appearing in the right side of Eq. (2.2)
vanish because the center of mass of the Shuttle is at point Ol'

Since T ° ? = 0, Eq. (2.2) takes the form:

Hyo = (we-8)§ Smfzd"‘ = Ic @eye, (%Y

where II_ is the Inertia tensor of the Shuttle at point 0, and w =
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Consider here an element of the mast located at point P;, with

mass,dm. The elemental angular momentum 6f such an element is given

——) d )
d¥ - o « doR|, dm  (2.4)
“/01 - dt °

, - > ~Ay - 4

if one notes that 0|P| = R' + <+ q Qnd (z f)
—y -~ [y .
OCR = R+OFP

then, Eq. (2-4) may be expanded according to:

dH = (Ri+Ve+q)x d(R“"*‘“q)fszed"‘(z 6)

M/o,

d (ﬂ-} E.-H'g +q)'jz is expressed using the relationship between
db ° o
the rate of change of a vector, w, in an inertial (Ro) and rotating

(R{) frames, i.e.

L 3 — — —
W = d : :
lﬂo_ d.kw-)RL+ ﬂgt/&x W (2.7)

After substituion of Eq. (2.7) into Eq. (2.6) and integration term by

term, one can develop:

M/o. [ R, x —(Rrﬂ?.)m]"’\m,‘,g\ J (n RTIN
+ (- é-&)g{éﬂ.%}mam} (4, M (r.+q)dm

fcmq)x(m §T) dm + (we-6-0)] [FesF]%dm (2.8)
_ Mm
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II. A.3 Angular Momentum of the Rigid Reflector with Respect to
Point O1

Let 04 be the center of mass of the reflector, and O3 the inter-
face point between the reflector and the mast. The distance, X, between
03 and 04 is constant since the reflector is assumed to be rigid, at least
for this analysis.

Let us now consider an element of mass, dm, of the reflector lo-

cated at an arbitrary point, P The elemental angular momentum of that

9
element of mass can be expressed as:

4R - d (5% |
H'/‘?' = 0,P x E(OP‘)]& dm (2.9)

0.P., and O.P

1P oPy can be expressed as:

—) -’y g

0—;:-'.4 R+ O (2-10)
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Eq. (2.9) may be expanded according to

é"ﬁ:/o. = (ET*E:*(X*?C) 1) x 5?(5: -\-E-»a *(X*%3t;3,& (2.11)

Once more, %(R:{-_Rb\*?‘* Lx*JC)';-;)Jg, is

expressed using Eq. (2.7): _Q_W
' dt R

After substitution of Eq. (2.7) into Eq. (2.11) and integration term by

= %‘-PIR. + Rm,‘o x_“?

term over the entire mass of the reflector, one arrives at

F‘T = Mr{a*ﬁzlxi{‘é‘*a*-ﬁaﬂn‘ +

M\-DCis X i{?“'ﬁ"‘ﬁagm (2.12)

-

where I,,. is the moment of inertia of the reflector about the j axis

taken at point 04.
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II. B.1 Moment Equation

The angular momentum of the entire system about 0, is obtained

by summing the angular momentum of each part about 01, i.e.

— 3 =
- ' (2.13)
HT/O‘ 4= LID‘
The moment equation
—dy —
Cﬂ r\l (2.14)

a‘; HT/D| lg":

>
where N is the sum of all the enternal torques, acting on the entire

system, about an axis through point Ol'

At this stage of the analysis, it is assumed that the center of
mass of the Shuttle moves in a circular orbit, ie.

= <
E‘.R = ng - -5 ' (2.15)

Taking into consideration the coincidence between points 01 and 02,
Eq. (2.14) is expanded using once more Eq. (2.7) and the following

result is obtained:

Q-
K
Z

ax<
|

fé;‘F;} ® " - E:ja'
dk "/o. lﬂ. d ‘

- ][3.6.+ Mr(ﬁw.-_ é;(wem«-ax s B) o4
Wy e RR, (eno w8 + S en®) - w3 3¢ { b (pwh esner

..c.afahk«)-l- o> & (wmp /n‘-q-t-onﬂmw\}-n- R:w, +
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+ Reo, |

" a.)z' IMMS?.(T‘? dm + (r

(2.16)
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IT. B.2 Expression for E

In the moment equation, Eq.

(2.16), one notices integrals involving
>

q, the transverse displacement vector, and its first and and second deriva-

tives with respect to time. It is, therefore, necessary to develop an ex-

>
pression for q.

II.B.2.i Relation between q(x,t) and y(x,t)

un de.For med

beam

- ‘ves™
0y s

Consider the beam in its deflected configuration,y(2,t) is the
deflection of the reflector-end of the mast at an arbitrary time,t;

y(x,t), the deflection of an arbitrary point on the mast at the same
time.

~ A

From Fig. (2.1), kl . kz = Ccos (2.17)

Assuming o small, tan o can be expressed as

fane = g(lt) ~ o = §lx6)+ qtzit) (2.18)
Ml o = |
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From Eq. (2.18) one derives
qlet) = x $bY -y (z6) .19
£

or
q(x,t) = Xx- 'ar(z')t) (2.20)
I1.B.2.ii Evaluation of y(x,t)

Assuming separébility of the variables, the beam equation,

A k 2
SEL Qa0 Fyon)
SA ryA t:

is solved to yield solutions of the form:

~&(z,e) = ;ct) d(z) 229

(2.21)

- where

£(t) E sinwt + F coswt with w = frequency of the vibration

and $ (%) A cosBx + B sinBx + C coshBx + D sinhfx (2.23)

When the following boundary conditions are assumed:
a) y(0,t) =0; b) y'(0,t) =0

¢) EI y''' (2,t) = -Mr y(2,£); d) EI y''(&,t) = O (2.24)
where ._&) - 3% and \'3: Lk g
% ¢ 2t

these can be expressed in the form:

v A+ SB ::Oq-___'> o S A 0 (2.26)
x A+ 0B =0 ¥ T (8] (0

(2.25)
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where Mr
a = sinBf - sinhB2 - EK 8 (cosB82% - coshBf)
My . .
8§ = -cosB? - coshBf - SK-B (sinBf - sinhB%) (2.26)
Y = cosBl + coshB2
g = sinfl + sinhB®

B = A (2.28)
“¥EI

For the SCOLE system, the following parameters have been suppliedsz

pA = 0.09556 slugs/ft
ET = 4.0x107 1b-ft?
M, = (400/32.2) slugs
g = 130 ft.

For non-trivial solutions for A and B, det C must vanish. The
values of P for which det C = 0 are computed and substituted back into
Eq. (2.28) to obtain the frequencies of the different vibrational modes
(Table 2.1).

The same values of B are substituted into ¢(x), (Eq. 2.23%which is
normalized with respect to its maximum value and the normalized mode
shapes plotted (see Table 2.1 and Figs. 2.2 - 2.6). Note that the ranges
of frequencies obtained in Table 2.1 are higher then those prevously pre-
sented in the April 13, 1984 oral presentation due to previous inconsis-

tencies in dimensional analysis of some physical units.
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Fig. 2.1.

o Cenler of the Earth

SCOLE System Geometry in the Deformed State (2-D)
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TABLE 2.1

Values of B and Natural Frequencies (HZ)
for the First 8 In-Plane (Pitch) Bending Modes

8 v (Hz)
1.874599 .677828
4.6929 4,245
7.8519 11.884

10.997 23.3128

14.1309 38.4933

17.276 57.5283

20.4229 ' 80.4045

23.555 106.958
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III. STABILITY OF LARGE SPACE STRUCTURES WITH INPUT DELAYS

The linear equations of motion of any large space structure can

be developed in the standard state space form as:

X(t) = AX(t) + BU(t) ’ (3.1)

where

g
1]

nxl state vector representing attitude angles, modal
coordinates for vibration problems, etc.,

U = mxl control vector
A = nxn system matrix
B = nxm control influence matrix.

Using modern control theory, a state variable feedback control law of

the form
' U(t) = -KX(t) (3.2)

can be developed by proper selection of the feedback gain matrix, K,
such that system (1) with control will exhibit required characteristics
in terms of transient response, pole location or some performénce under
optimization.

One of the main charaecteristics of large space structures is the
large value of n (in the range of 100's). This large value of n will
dictate the use of on-board computers-to evaluate u at every instant
of time. In theory it is assumed the u at time t=.ti can be instan-

taneously evaluated using X's at t = t In reality there will be a

i.
finite time lag between the determination of the X's and the realiza-
tion of the corresponding U's. Taking into account this delay, the

equations of motion with control can be written more realistically as:

X(t) = AX(t) - BKX(t-T) (3.3)
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The delays considered here may as well account for actuator delays,
control system delays, etc. in addition to computational delays.

In this report, a preliminary investigation has been carried

out to study the stability of the control law designed without taking

these delays into consideration.

III.A Stability Analysis - Time Domain

Following the analysis developed in reference 3.1, the system

given by equation (3.3) is asymptotically stable if and only if

- ua) > [ Bl (3.4)
. , 1 *
where 1(A) = largest characteristic root of E-(A+A )
||B |] = square root of the largest characteristic root
of B"B

A*,B* are conjugate transposes of A and B.
This stability criteria can be extended to compositg linear systems
(since mathematical models of large space. structures can be viewed
as composite systems,as will be demonstrated later) as follows:

The system equations can be written as

X (t) = A3X;(t) + B,U, (t) : (3.5)
i=1,2, ... m
m
with Ui(t) = _Z Cijxj(t-"r) | (3.6)
j=1
where

X:; is an n(i)xl state vector

Ui is an 2(i)xl control vector.
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The closed loop equations can be written as:
. m
X;(t) = A X, (D) +j§1 Bicijxju:—r) (3.7)
i=1,2, ... m.

After identifying the following matrices as:

M = Diag [u(Ai)]
N =mn,,
1]
where nij = Il Biciill’ i=j

H B1C13H’ l,# J>
the stability of the composite systems described by equation (3.5) with
" the control given in equation (3.6) can then be defined as followsf
The system (3.5) is asymptotically stabile if and only if any one

of the following conditions is satisfied:

(1) all the leading principal minors of the matrix, - (M#N), are
positive

(2)-—% > P(N) where ﬁ = max u(Ai)
and P(N) denoteslthe Perron root of the matrix, N.
@ - N
The Perron root of a matrix is defined as follows:
Let A = (aij) be an nxn matrix with éll aij;> 0. Then A has a
positive eigenvalue, p, of multiplicity, one, with o > |Kii for all
‘the other eigenvalues of A. This eigenﬁalue, 0, has an eigenvector

all of whose components are positive. Then p is known as the Perron

root of the matrix.
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The stability criteria can be extended to the study of large

space structures by identifying the cooresponding matrices as:

u(Ai)

u(Ai)

JEXI

0 1
—w? 0
1
0 0
Py TRy
1 - m?
1
2
w.z -1
1
2

2 2
\ﬁ’ij Ky

So the M and N matrices are given by:

l1-w
2

3.4

th

i~" modal frequency

where W, =
i
if w? <1
i
if w% > 1
i
-1
‘\
1l - wz
m
2
' 2 2
pin + kin
lpz + k2
an nn

or




With the application of any one of the three stability conditions
it can be concluded that the system can not be stable under a delayed
input as the original system without feedback is an osciilatory
system in the case of large space structures. In the literature
[(Ref.. 3.1 and Ref. 3.3] it is concluded that for systems with delayed
inputs to be stable, the systems without these delays must be stable.
No comments were made on the systems which are originally marginally
stable. This preliminary investigation shows that even the oscillatory
systems whose state variable feedback control laws are designed without
taking delays into considera;ion in the model may not be stable.

This preliminary conclusion has led us to examine other forms of
stability considerations for systems with input delay. In the following
pages; Routh~Hurwitz stability criteria as appiied to delay systems will

be considered for the case of the large space structures.

II1.B Stability Analysis - Frequency Domain:

In the literature [Ref. 3.2 and 3.3] the stability analysis in the
frequency domain is carried out either by approximating e—z-sh by a ratiomnal
function in s or evaluatiné the. unknown parameters such as feedback gain,
etc. such that stability is assured with the delays present.

The stability énalfsis in the frequency domain using Routh-Hurwitz
criteria is performed as follows:

The characteristic equation of the system described by equation
(3.3) is written as.

determinant of [SI-A-Be ~J] = 0 _ (3.8)
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For the system (3.3) to be asymptotically stable equation (3.8) must
have all the roots in the left hand side of the s plane. Equation
(3.8) is a polynomial of infinite degree. One way to approximate

equation (3.8) is to replace e 'S by a rational function of the type

.2
-1s 1l - Ts
€ T 1+ Ts (3.9
where v= Fatur+x7) |
w
K=20,1, 2, (3.10)

with w being the root of equation (3.8) and equation (3.11) given below:
ST -a-B 1-T1s% |
1+ Ts

=0 (3.11)

The maximum delay that can be tolerated by the system can be obtained

from the relation

hmax 4 m% {—é—- tan
i Wy

1
(wiTi)} - (3.12)

where w, are all the roots of equation (3.11) and Ti are the corresponding
values of T.

This technidue.can be appliéd to systems of moderate dimensionality.
For.large space structures the determination of the range of T for which
the roots of equation (3.11) won't cross the imaginary axis into the
right hand side of the s plane may become computationally prohibitive.

In Reference 3.3 stability analysis in the frequency domain with
delay is approached in a slightly different manner. The characteristic

equation of a system with delay is written as

-Ts _ KN(s)

YOS (3.13)
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where K 1is the gain

N(s) -is the numerator polynomial

D(s) is the denominatcr polynomial
A preselected value of s (0+jw) which gives the required damping and
frequency for the closed loop system and the corresponding values, K,
and some other adjustable parameters of the system are evaluated. It
is clearly stated in réfgrence 3.3 that this analysis is valid only for

systems which are stable without the feedback. The marginally stable

systems are not considered.

Conclusions:

The.time domain apprbach‘is easy to implement for analyzing the
stability of systems with delay in feedback. The analysis shows that
marginally s;able or oscillatory systems can not be stabilized using
feedback.

The Routh-Hurwitz criteria and the design approach of reference
(3.3) may become computatiénally unattractive for large space structure
systems-which are characterized by hundreds of modes to describe vibrations
adequately,

At this stage, it is not completely conclusive that oscillatory
systems which characterize the vibrations of large space structural sys-
tems can be made stable or not with de;ayed feedback. A further litera-
tﬁre survey and numerical compﬁtation will be carried out during the
grant period of 1984-1985 to arrive at definitive conclusions about the

stability of large space structures with input delays.
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IV. CONTROL OF AN ORBITING FLEXIBLE SQUARE PLATFORM IN THE PRESENCE OF
SOLAR RADIATION

Abstract

A mathematical model for the solar radiation forces and
moments acting on a square plate (platform) in orbit is
obtained by considering the plate mode shapes as combina-
tions of free-free beam shape functions. The moment ex-
pressions for a plate of arbitrary reflectivity coefficient
are obtained as a function of the solar incidence angle.

It is seen that only the first three flexible modes of the
plate generate a first order net moment about the center
of mass, and that the solar radiation pressure doss not
influence the flexible modes of the plate for small ampli-
tude vibrations. The solar radiation disturbance model is
then included in the dynamic model of a square plate nom-
inally oriented along the local vertical and having the
major surface of the plate normal to the orbital plane.
The roll angle of the plate is seen to increase steadily
due to the solar radiation pressure whereas the pitch and
yaw motions oscillate with an amplitude of approximately
0.2 degrees for a 100m square thin aluminum plate in syn-
chronous orbit. To control the shape and orientation of
the plate two point actuators are assumed - one whose force
axis is normal to the plane of the plate, the s=cond with
a force axis in the plane of the plate. The control law
and the feedback gain values are obtained based on linear
quadratic Gaussian methods. Transient responses and control
i 1
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1. Introduction .

Proposed future applications of large space structures require control of the
shape and orientation of the structure in orbit. It has been shown previously
(Ref. 1), considering a long, thin and uniform beam, that the principal environmen-—
tal disturbance acting on these structures could be due to the solar radiation pres-
sure. In the present work the dynamics of a more important basic structure, namely,
a thin, homogeneous and flexible square plate exposed to solar radiaticn disturbance
will be considered. The force and moment expressions as given by Karymov (Z2f. 2)
will be used to obtain the expressions for solar radiation disturbing forces and
moments acting on the free-free square plate in orbit. The dynamics of such a plate
nominally oriented along the local vertical was considered earlier, disregarcing the
environmental disturbances (Ref. 3). In the present study it is proposed tcreconsi-
der the dynamics of the plate nominally oriented along the local vertical/:harizoatal
with the solar radiation force and moment expressions included in the dynamic model.

The mode shapes and the frequencies of the plate are obtained using thz finite
element program, STRUDL (Ref. 4). To obtain expressions for solar radiatio: forces
and moments, it is convenient to express the mode shapes of the plate as a ccabina-
tion of the mode shapes of a free—-free beam (Ref. 5). The first five modes 5f tha
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plate will be considered for study here. The plate is assumed to have only small
transverse vibrations, so that the shadowing of the plate due to any deflected part
of the plate can be neglected. The small deflection assumption also allows the
superposition of the beam mode shapes in representing the deformations of the plate.

2. Solar Radiation Forces and Moments Acting on a Thin Homogeneous Flexible Square
Plate _
Fig. 1 shows a square plate exposed to solar radiation. Let n denote the out-
ward unit vector normal to the surface, ds, and let T be the unit vector in the
direction of solar radiation denoted as

T=a i + b j+c k 6B

The direction cosines of T namely, a o’ b and ¢ _, can be expressed in terms of the
Q
solar incidence angles, Si and Vi’ (deflned in Fig. 1) as

= si . .3 = si . si .3 = 8, ‘
a = sin 61 cos ¢1 H bo sin 61 s;n_wl 5 ¢, = cos 8. (2»

Then, the solar radiation force, ?;, and the moment, ﬁ;, on a completely absorbing
surface are given by (Ref. 2) ‘ :

Fa = -h T £ Ten ds (3)
and N. = hTx /R (Tn) ds : . ‘ (4)
a o s
-6

where, h = 4.64x10 Nt/m2 is a constant for near earth space structures. The
integration over the area, s, is bounded by the condition.

a0 | o ®

The force,.f s and moment, N » acting on a completely reflecting surface can be
r
developed as (Ref 2)

F_ = -2h f n (t* n) ds : , ‘ ()]
" and V = 2ho f nxr (T n) : {N
' where, R is the p051tlon vector of ds with respect to the center of mass of the

plate. For a surface with an arbitrary reflection coefficient, €. the force and
moment expressions become (Ref. 2):

gr = Fa + e]': (Fr_Fa);' N€l‘ - Na + er. (Nr-Na) (8)

The shape function of a rectangular plate can be represented as a product of
the two beam functions given by (Ref. 5), considering only the transverse vibraticn,

LY=o e S ©)

8 and ¥ are the free-free beam shape functions given by

Gn(x) =0, (sinQ x + sinh@ x).+ éosQ x + coshQ x 3 forn=12,3,4 .... (10)

where, 0, = (cosf -coshQ_)/(sinhQ -sinQ ), 6, (K) U (y)
and Gn(x) 1-2x for n=1

= a constant for n=0
For a square plate, certain special modes which are ccmbinations of the =odes of 2
rectangular plate are of interest (Ref. 53). The frequency expressions Ior such
modes are also given in Ref. 5. The first five modes of a square plate in which the
seccad and third modes represent special combinations of "beaﬂ modes" (Fig. 2) ara
considered in the present study.

1l




A unit normal to the surface, n, is given by,

W+ B3+ ek = [(9(d8/dE) + 8(dY/dn)] -k) ] //(Pdb7dE)* + 6(ap/am)? + 1
(11)

n=a

((€,n,z) are non-dimensional coordinates in the x,y,z directions, respectively.)
The position vector, R, is represented as,

= i, - - = '

R=(-) T+ M- Pi+zk | (12)
Eqs. (1), (11) and (12) are substituted into Eq. (4) and then the resulting inte-
grals are evaluated to obtain the expression for the moment acting on a plate

having a completely absorbing surface as,

N, = -h 22[{b sy-c (s,~s,/2)} 1 + {c_(s,-s,/2)-a s} T

| + {30(52—84/2)— bo (31—34/2)} k ] . | 13)
where, sl' = £ £s dEdn s, = i ns.d&dn - s4 = i Zs d&dn
‘ : dé, dypy,
84—s’fscd§dn s, = (aomf +b° enﬁ—co)

The integrals s, to s, can be evaluated analytically. The moment expressions are
~obtained for the first five plate modes (Fig. 2) by evaluating s, to s, for com-
binations of corresponding (m,n) modes and are given as,

_ hp

I = --_ = 2 _ 27"
N, 3 [aocol boed + (b0 ao)k] zy (fqr mode I)

2 e - -
hol <, [bol + aoj] z, (for mode II)

2 - '
hol <, [bol aoJ] Zq (for mode III) | |
= 0, (for modes IV and V) (14)

where, z., z, and z. are deflections at one corner of the plate associated with
the I, It ané III mgdes, respectively. _

The moment due to solar radiation pressure, N., acting on a completely re-
flecting surface is obtained by substituting Egs. Ell), (12) and (1) into Eq. (7).
The resulting integral is simplified to obtain the expression,

Er = 2h_ é [(azi;—a3n’)_i' + (a3£'—a1§)3_+ (aln'-azi')EJ s d&dn (15)
where, £'= £~ 0.5 and n' = n - 0.5 '

Eq. (15) involves complicated integrals and to find an analytical solution is
very difficult. Instead, a numerical evaluation of the integrals involving dif-

ferent modes are carried out and the results are shown in Fig. 3. The plate
dimension is considered to be 100mx100m and the deflection at the corner of the
plate for each mode is assumed to be z; = 2z, = z; = 1.0m. Similar results are

also obtained for a plate having a completely abSorbing surface using Eq. (14).
The solar incidence angle, 8;, is varied from O to 90°, with P; = 0. Only the
first three modes give rise to appreciable moments for both the completely ab-
sorbing and completely reflecting surfaces. The magnitudes of the moments are
seen to be an order of magnitude higher (2x10'2Nt-m) for a completely abscrbing
surface as compared with the case of a completely reflecting surface (1073 Xt-m).
The moments due to modes II and III, and for both completely reflecting and com-
pletely absorbing surfaces, can be visualized as extensions of the result cobtained
for the case of the beam (Ref. 1).



Based on the numerical results shown in Fig. 3, in which w is varied from 0

- to 90° (not shown) the moment expressions for a completely reflectlng platz can
be written as,

- : T T , I
N, hlco (aol boj) zy '(for mode I)
- T T I
hzcO (bol aOJ) z, (for mode 1I)
= i-a ¥ - ‘ 111
hzco (bol aoJ) Zy (for néde ) | (16)

where, h, = 3.25x10"% and h, = 1.09x1073

Eq. (16) is found to be valid for magnitudes of z, to z,5 up to O. 01%. The moments
about the x,y and z axes are obtained by collecting the coefficients of i, j and
k, respectively, from Eqs. (14) and (16) as, .

N, = hg {(ao/3)zl + bo(22+z3)} : Nay = —h3 {(b0/3)zl + bo(z3—zz)}

- 2_2 .. - 2 . :
N, = (h3/3) (bofao)zl ;" where h, = hol <, | (17)
er = co{hlaozl + hzbo(zz—ZB)} ; Nry = —co{hibozl + hzao(zz—z3)};er =0 (18)

Eqs. (17) and (18) are now substituted into Eq. (8) to obtain the moment actinz on
a plate with a surface of general coefficignt'of reflectivity, €.+

3. Modal Forces Due to Solar Radiation Pressure

The effect of the disturbance on the generic mode is obtained by evaluatlng
the integral (Ref. 6).

= [ z (x,y) k*dF (19

where, dF represents the force due to solar radiation pressure per unit area. Also

. En = Ena + e (Enr-Ena) : o 20)
Eq. (3) is substituted into Eq. (19) and after evaluating the resulting integrals,
E is found to be equal to zero for all modes of the plate. Eq. (6) is used in

. (19) to get ) , .

E .= 20 / [z(a a;+b b1+c )Kal+b +1) 3 dgdn _ (21)
The slopes, den/d£ and dwn/d , are assumed to be very small so that a2+b2+c§ = 1.
Thus, the integral in Eq. (21) can be easily evaluated to show that E r 1Is also
equal to zero for all modes of the plate. Hence, the solar radiation pressure
does not give rise to any generic force. The results obtained can now be used in
the dynamic model of a flexible plate in the orbit.
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4. Effect of Solar Radiation Pressure on a Plate Nominally Oriented Along the
Local Vertical
- The major surface of the plate is assumed to be perpendlcular to the orbital
plane (Fig. 4). From the general formulation of Refs. 3 and 5, the equations of
motion of the structure are obtained, under the assumption that the transverse
deformations are small compared to the characteristic length of the plate. The
linearized equations of motion are given by (Ref. 3),

.. .o e

: 2 . 2 .
= =20 + wY + . = + . = =3Ww 4+ N J 5
v 2 c¢ c$ Nx/Jx ;¢ cw Ny/Jy 3 9 3 ce z/ z

e+ (Qn/wc)z e =0 | (22)

where ¥, ¢, and 6 refer to the yaw, roll, and pitch modes, respectively, w_ is the
orbital angular rate, § is the n® th modal frequency, €, is the non-dimensional modal
amplitude, and J are the principal plate moments of inertia.

" The roll and’ zaw equations of motion are coupled to each other and the charac-
teristic equation shows a double pole at the origin indicating instability in the
roll-yaw motion. However, for an initial condition of Y(0) = ¢$(0) = 0, the roll and
yaw motions will not build up. To study the effect of solar radiation disturbance,
a 100m. square plate whose fundamental frequency is ten times the orbital frequency
is considered. Only the first three flexible modes are included in the dynamic model

with initial conditions of 0.0l in each mode.  The transient response of the plate
-under the influence of solar radiation pressure is shown in Fig. 5. The torgue
about the normal to the plate due to the first modal amplitude acts in one direc-.
tion only (Eq. (14) for p;=0: as the solar incidence angle changes in the orbit,
it is seen that the cyclic contribution due to N,y averages to zero. This torque
induces a steady drift in the roll angle (= 1.5° in 6 orbits). The yaw motion is
seen to be osc¢illating with a very small amplitude (0.3°). The solar radiation
ressure disturbance also induces a small amplitude (0.03°) pitch oscillatioan.
The modal oscillations (not shown) are unaffected in the presence of the solar
radiation disturbance. The magnitude of the pitch, roll, and yaw angular motions
.due to the solar radiation pressure are small because of the stabilizing gravity-
gradient forces acting on the plate.

Active control of the flexible platform nominally oriented along the local
vertical may be accomplished by using two reaction jets, f; and f3, as illustrated
in Fig. 2. Actuator f2 is assumed to thrust normal to the undeflected plate, whereas
Il has its thrust axis.in the major planme and normal to one of the edges. Control
laws are synthesized based on linear quadratic Gaussian techniques (Ref. 7). The
effect of including the solar radiation disturbance on the closed-loop dynamic
response is illustrated in Fig. 6 where the initial conditions are identical to those
in Fig. 5. .For this case the solar disturbance is seen to have little effect on the
closed-loop response. The roll motion is now seen to be characterized by a damped
oscillation. When the flexibility of this plate was increased (reducing the funda-
mental plate frequency to only 3 times the orbitzl rate), it was seen that the main
effect was to increase the control effort by about 10 peércent. '
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5. Effect of Solar Radiation Pressure on a Plate Nominally Orlented in the Local

Horizontal Plane :

For this case the undeflected major surface of the platform is nominally per-
pendicular to the local vertical. Such a structure could be gravitationally sta-
bilized by attaching a rigid light weight dumbbell at the center by a spring loaded
hinge which could also provide viscous damping (Fig. 7). The linearized equations
of motion for a plate connected to a two-degree-of-freedom gimballed dumbbeli were
developed and a related stability analysis provided in Ref. 8.

The closed loop transient response for this system with initial modal dis-
placements in the first five flexible modes is illustrated in Fig. 8. For this case
the fundamental flexible modal frequency was reduced to three times the orbital rate.
The feedback gain values were obtained by the application of the linear quadratic
Gaussian method by taking the state penalty matrix, Q=100I, and the ccntrol penalty
matrix, R=I (I = appropriately dimensioned unit matrix). The pitch and the yaw
motinns are Seen to be characterized by relatively large amplitude oscillatioms
(Fig. 8a) in the presence of the solar radiation disturbance. A second set of
feedback gain values is obtained by increasing the elements of the penalty matrix,
Q, corresponding to the pitch and yaw states. The resulting transient response
-of the system is shown in Fig. 8b, for the same initial conditions as in Fig. 8a.
For this case, the controlied pitch, roll, and yaw motions are seen to be relatively
less sensitive to the solar radiation disturbance than for the case shown in Fig. 8a.
The effect of penalizing the pitch, roll, and yaw states more heavily is reflected in
. the larger control effort required, whichh is about 10% greater than for the case shown
in Fig. 8a.

6. Conclusions A

The effect of solar radiation pressure interacting with a vibrating orbiting
thin plate is modelled. It is seen that only the first three flexible modes of the
plate generate a first order net moment about the center of mass, and that the solar
radiation pressure does not influence the flexible modes of the plate for small am-
plitude vibrations. In the absence of control, for a symmetrical homogeneous square
platform the solar pressure induces a steady angular drift about one of the (rigid)
body principal axis. :

For the case of extremely flexible platforms, nominally oriented in the local
horizontal plane, it is seen that appreciable rigid modal amplitudes can be induced
due to solar radiation, even in the presence of both active and passive control.

For this situation, the versatility of the linear quadratlc Gaussian techrique can
be utilized to redesign control laws which provide a compromlse between transient
performance and control effort required. .
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V. DYNAMICS AND CONTROL OF ORBITING
FLEXIBLE BEAMS AND PLATFORMS UNDER THE
INFLUENCE OF SOLAR RADIATION AND
THERMAL EFFECTS

Abgtract

Expressions for thermal deflections of uniform
thin beams and plates exposed to solar heating are
obtained as a function of the properties of the
material and the solar incidence angle. The major
affect of the solar radiation pressure interacting
with the thermally deformed structure is found to
zive rise to disturbance moments cn the structure.
The thermal deformarions of the structures are
agsumed to be within 0,1%Z of the characteristic
length of the structure. With the agsumed thermal
deformations, the resulting uncontrolled tramsient
responses of rhese geosynchronous orbiting struc-
tures to the solar radiation pressure induced dis-
turbances are simulated. The resulting rigid modal
oscillations are found to be an order of magnitude
larger than for those cases previously considered
in whichonly the solar radiation pressure effect
on vibrating structures was treated. Modifications
of control laws and/or the feedback gain values are
considered {n order to improve the transient re-
sponse characteristics under the thermally induced
discturbances. ’

L. TIntroductionm

The major envircumental disturbances on pro-
posed orbiting large space structural systems are
expectad to be due to the solar radiation pressure
and solar heating effects. The dynamics and con-
crol of a flexible beam and a flexible plate in
che presence of disturbances due o the solar radi-~
ation pressure acting on the vibracing structure
were considered pteviously}' It was seen that the
majot effect of the solar radiaction pressure inter-
acting with an elastically deforumed (vibrating)
orbiting structure was to produce moments om the
struccure resulting primarily in rigid modal oscil-~
lations. For the case of extremely flexible struc-
tures the amplitudes of these modes may be appreci-
able, even ia the presence of both active and pas-
sive controll™3 In some situations the control
. laws previously developed by ignoring environmental
effects may have to be redesigned. For simple lo-
wer order systems feedback gain values may be suir-
ably adjusted; however, for large order systems the
versatility on the linear Gaussian technique can be
used to redegsign control laws which provide a com-
oromise between transient performance and the re~
quired control effort.l-3

Another important aspect of the environmental
effect is the thermal gradients resulting in the
structure due to the solar radiation heating. The
deformations caused by the thermal gradients can be
very large resulting in the dynamic instability of
the structures.3-5 Furthermore, the solar radia-
tion pressure intaracting with the thermally de~
formed structure gives rise to another form of en-
vironmental disturbance. The deformatiouns caused
by the solar hearing depend on the thermal pro-
perties of the material and the geometric shape of
the structure. Selection of materials with desired
thermal properties and careful structural designs
are required to ninimize the thermal deformations
of the structure to an acceptable level. The
thermal deformations of the structure will occur
as long as the structure is in the sunlit orbit
and the cootinuous removal of this deformation using
active control may not become practicable. The
thermal deformations will have to be minimized by
careful consideration of the thermal properties of
the material in the preliminary structural design
process. The objective of the present paper is to
consider the effect of solar radiation pressure on
the beams and the plates which are thermally de-
flected due to solar heating. (To the authors'
knowledge, this is the first attempt to incorporate
such effects into the modelling and simulation of
the dynamics of large flexible orbiting systems).
Motions of the beams and plates about: (i) the
local vertical orientation; and (ii) the local hori~
zontal nominal orientation (the latter carrying a

‘rigid gimballed dumbbell to provide gravity sta-

bilization) will be considered for the scudy (Figs
1 and 2).

Expressions for the thermal deflections of
beams and plates exposed to solar heating will be
developed. Subsequently, a mathematical model Ior
the solar radiation induced torque on the :thermally
deflected structure will be obtained. The uncon-
trolled and controlled dynamics of the orbiting
structures will then be simulated by considering the
combined effect of the solar radiatiom pressure on
the thermally deflected and vibrating structure.
Modification of the control law and the feedback
gain values to contrel the shape and orientation
of the structure will be proposed, where requirad.
In this study, the statically induced thermal
deflections will be assumed small relative
to the characteristic structural dimensicns. In
addition, the other major assumptions made hrere
are: (a) the reflected solar radiation by the
earth (aibedo) can be seglected; (b) the inherent
time lags in the heat transier process are very
small ccmpared with the orbital period and ara
ignored; (c) the radiacion from the adge surfaces
can be aneglected; and, (d) the beams and ziatas
have 'miform thickness and thermal properties ra-
sulcing in a uniform temperature distributiom.
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The effects of the Earth's shadow and local sha-
dowing due to another part of the structure are
not included in the study.

II. Fquililbrium Temperatures of Thin Plates
and Beams

The cross section of a thin plate (or a beam)

exposed to solar radiation is shown in Fig. 3.

The solar incidence angle, 61, is taken to be a
constant during a small interval of time. During
this interval the surface facing the sum, s,
attains a temperature, Tl, and the surface away
from the sun, S1» attains a temperature, Tz. The
equilibrium temperatures, T; and Ty, can be deter-
ained by writing the thermal balance equations.
The total heat leaving the beam from the two
surfaces, s; and 81, should be equal to the heat
_received by the beam.’ Therefore,

4 4 o
E10 T{ + E,0 T; = 2, G cos 8, 1)
where,

, and E, are the emissivities of the sur-
3ces, s, and $qs respectively

ru {0

Stefan-Boltzman comnstant

g =
= 56.7%x10~}2gW/m? K*
@ = absorptivity of the surface, s, :
G = intensity of solar radiation = 0.8KW/m?®

The heat flowing through the plate, at equilibrium,
is also equal to the heat radiated from the sur-
face, sy.’

: 4

B = -

B, TZ K(Tl Tz)/tc (2)

where, . .

k = thermal conductivity (KW/m K) of the
plate material

t. = thickness of the plate

Equations (1) and (2) can be rearranged as

4
T, = 1'2 + (EZG t‘:/k)/'r2 3)

1
4 4
T, = (@G cos 8;)/E,0 - (E/E)) T] %)

Eqs. (3) and (4) can aow be solved to obtain
Tl and T, by assuming an approximate value of Tl
or Tp and them cthrough numerical iteration. As=
suming El = Z, = 0.05 and a_, = 0.2 (characteristic
of proposed supporting mast material for large
space structural systems), the temperature dif--
ference, AT = T, - T2, is obtained as a functiom
of the solar incidence angle, 91, and various
parameter ratios of = k/t,, as showm in Fig. 4.
A nigher value of ky Indicates a larger value of
thermal conductivity and, hence, the temperature
difference between the two surfaces becomes
smaller. A plate of thickness 1 ¢m and made
of polyamide (k = 0.25x10% KW/m K) will have a
maximm temperature difference of 2.39%. The
temperature gradient is found to vary approximate-
ly proporticnal to cos 3y (Fig. 4). Expressions
for deflections of the plate as a functiom of the
camperature gradient are developed in the next
section.

5.2

III. Pure Bending of Thin Plates and Beamsd

Fig. 5 shows a beam of length, 2 and width, 5.

The temperature of the mid-plane of the beam is de=-

noted by T,. The temperature of the surface facing
the sun, s, is then T, + (AT/2), and the tempera-
ture of the surface, sy, is given by T, - (4T/2).
According to the theory of beam bending amalyzed

in Ref. 8, we nhave

a?z/dx’ = @33 Tyda ()

where
z is the transverse deflection of the beam, -

a, = coefficient of linear expansion
J_ = moment of inertia of the beam about
the y axis

Eq. (5) is rewritten by evaluating the integral
dzz/dxZ - - ae(AT/tc) = a constant 6)

The expression for the thermal deflectiom is then
given by :

z = - a, AT/t )x%/2 : €))

The thermal deflection can be minimized by
selecting a material with a low coefficient of
expansion or ty using a material of high thermal
conductivity. An increase in the thickness of
the plate will increase the temperature difference
(Fig. 4) and also increase the weight of the plate.
Hence, the parameter, tes should be as small as
possible. The other important properties of =ma-
terials not reflected in Eq. (7) are the density a
and the cost of the material as shown in Table 1.°
For a beam of length 100m and thickness 0.0lm, and
made of polyamide (a low density and low cost ma-
terial), the maximm thermal deflection is found
to be approximately 7m. If the beam is made of
aluminum, the maximum deflection would be about 2mm.
Once a tolerable thermal deflectfon 1s specified
the material can be selected to meet the conflict-
ing requirements of low density, high thermal con-
ductivity, and low cost. In the next section the
solar radiation pressure moment resulting from a
thermally deflected beam (also applicable to a
plate) is discussed.

IV, Effect of Solar Radiation Pressure on

Thermally Deflected Beams and Plates

The moment expressions obtained by Karymovlo
are used here to develop the solar radiation dis-
turbance model for thermally deflected beams and
plates. The solar radiation moments acting om a
completely absorbing surface, N,, and a completely

a’
reflecting surface, ¥, are given bylo,
N,=h Tx £ R (t°a) ds (8)
¥, =20, /mR (T0) ds 9
°s



where _ _ — —

T=ai+b j+ ck, is the incident solar

r3diatidn vecfor

outward unit aormal to the elemental

surface, ds

position vector of the surface element,

ds, relative to the center of mass

h_ = Solar energy constant = 4.64x10 © Nt/m2,

a ,b ,c. = direction cosines of the incident solar

o o © radiation with respect to the directiomns
X,y,z, respectively

el
u

)
u

The integration over the sunlit area, s, is
bounded by the conditiom, T°3<0. The moment on
a structure whose surface has an arbitrary co-
efficient of reflectivity, €, is given by.lo

(10

P

— Na + Er(Nr'Na)“

The moment on a chermally deflected beam
whose surface completely absorbs all the incident
radiation is obtained (after evaluating the inte-
gral in Eq. (8)) as,

N =a ¢ 3§ (1

a e o o
where, :
the incident radiation is assumed to lie in
the x,y plane (b,=0)

b = width of the surface (b<<2 for a thin
beanm) .
50 = maximum deflection (from Eq. (7))= Zoax

The maximum deflection, §,, can be obtained as a
function of 91 by selecting a fumetiom to repre-—
sent AT in Fig. 4, and then by using the function
for AT in Eq. (7). The moment acting on a com-
pletely reflecting beam surface is obtained
through numerical integratiom, as,

Nr = -0.0S a, <, Go 2b ho 3 12)
The corresponding moment expressions for a plate
are obtained as

N, =c 8, 2bh b1+ a i)

N = - ;- T T 1
NrA 0.05 e, 9 b ho(boi + aoj) (13)
The moment on the structural surfaces whose
coefficient of reflectivity is, €., can then be
obtained by using Zq (10) as,
N =¢ 8, 20 b B L+aNl-c)- 0.05¢.]
(for a plate)

=a,c, 6, % b a3 [Q-e) - 0.05e]
for a beam)

{ (14)

V. Dvnamics and Control of Beams and Plates
under the Influence cf Solar Radiation
Disturbances due "o Thermal Deformations

The dynamic aodels of beams and pl&tes, for

ooth cases of orbital orientations (Figs. L and I

developed in References 1l and 12 are comsidered.
The acminal local norizontal orientation of beams
and plates represents a gravitationaily umstable
notion due to the unfavorable amoment of inertia
distribution. Stabilizing gravity-gradienc

forces on such structures can be obtained by using
a rigid dumbbell such that the resulting inertia
distribution provides the desired gravity forces.
A dumbbell may be attached to the main structure
through a hinge which could provide both torsional
stiffness and damping. The dynamics of the proposed
dumbbell stabilized beam and plate (Figs. la and
2a) was considered in Reference 12. Here, the
study is extended to consider the disturbances
resulting from the interaction of solar radiation
pressure with the thermally deformed structure.
The disturbance resulting from the solar radiation
pressure on the dumbbell will bhe neglectad, since
the dumbbell would have a small surface area com-
pared with the main structure. The modified con-
trol laws and gain values developed in References
2 and 3 will be used to obtain closed-loop tran-
sient responses of these structures by incorporat-
ing the disturbance expressions (Eq. (14)) into
the stryctural models of the beams and
plates.1'3'll’ The maximum thermal deflection
for each case is assumed to be 0.00l1, based on
the calculation of deflections for a 100m long,
0.0lm thick beam made of polyamide and aluminum,
respectively (Table l). The beams and plates are
assumed to have a fundamental frequency equal to
ten times the orbital frequency with the orbital
frequency corresponding to a geosynchronous orbit.
Initial conditions are assumed to be zero for all
the modes in order to highlight the thermally in-
duced disturbance effect. TFor those cases in which
the transient responses appear to be unacceptadle
further modifications in the control law and/or
the gain values are proposed.

V.l The Beam Along the Local Vertical

The effect of the thermally induced distur-
bance on the pitch motion of the beam is shown in
Fig. 6(a). The disturbance (without control) has
no effect on the flexible modal oscillations and
nence these are not depicted in the figure. It is
seen that the pitch response nas a maximum ampli-
tude of 2.4 degrees as a result of the disturbance.
Application of the greviously developed control law
and the gain values< for the case of two actuators,
located at the beam center and at ome of the nodal
points of the first symmetric mode, shows (Fig.
6(b)) pitch amplitude oscillations of less than
0.24° amplitude. The peak control forces required
are only of the order of 10-3 Nt. for each actuator.
By increasing the gain value proportiocnal to the
pitch rate by a facror of 10, a further reduction of
the pitch amplitude to approximately 0.03° {s illus-
trated (Fig. 6(c)). Correspondingly, the peak force
requirement i{n actuator number 1 increases to 0.01
Nt.

V.2 The Dumbbell Stabilized 3eam

The transient rasponse of the dumbbell sta=-
bilized beam due zo the solar radiation prassure
acting on the thermally deformed beam is snown in

.Fig. 7 (cnly zhe pitch —ode is depiczed). The

2icch oscillacions are seen zo have approximately
2.49 amplitudes in the absence of zomcrol. Wich
the application of the control law previocusly de-
7eloped in eference 3 (and indicated in the fig-
ure), the amplitude of che picch vscillatioms is
reduced o 0.249 (Fig. 7). The reak control force
required is about 0.0l Nt.
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The gain values can easily be modified further to
meet any specific requirement on the pitch motion
of the beam.

V.3 The Plate Oriented Along the Local Vertical

The uncontrolled and the controlled transient
responses of the 100m square thin plate nominally
oriented along the local vertical and with the dis-
turbance caused by the thermal deflection of the
plate are shown in Fig. 8. The same order of
magnitude thermal deflections are assumed here as
for the beam in sections V.l and V.2. The
pitch, roll and yaw rotations of the plate exceed
the linear range in less than an- orbit. Applica-
tion of the linear quadratic Gaussian control
technique with the penalty matrices, Q = 100I and
R = I, results in a transient respomses in which
steady state oscillations with amplitudes of about
0.02 radians are seen in all three rotational modes
of the plate (Fig. 8). Modal oscillations (mon-
dimensionalized) in all the three_flexible modes
remain within an amplitude of 10~ (10-3m). an
improvement in the transient response was obtained
by employing a split weighting state penalty ma-
trix (Q = 100 I, except for Q(l,1) = Q(2,2) =
Q(3,3) = 10,000) where the rotational modes were
penalized more heavily. The transient response
of the plate in the rotational modes for this
case is shown in Fig. 9. The steady state oscilla-
tions are reduced by an order of magnitude in com-
parison with Fig. 8. BHowever, the peak control
forces increased from 7 Nt. to 12 Nt. The total
control effort required also increased by approx-
imately 60%. .

Y.4 The Dumbbell Stabilized Plate

The closed=-loop transient response of the
dumbpell stabilized plate is considered. The
magnitude of the pitch, roll and yaw angles are
seen to pe within 0.0Z radians in the absence of
any solar radiation pressure induced disturbance
(Fig. 10(a)). For the same case, the effect of
the solar radiationm pressure disturbance resulting
from the thermally deformed plate (§ ep™ 0.001%,
1= 100m) is shown in Fig. 10(b). The pitch and
the yaw oscillations are seen to exceed the linear
range even with the control. The control effort
required (3x10° ¥t. - secs.) was aearly ten times
more than that for the case without the disturb-
ance (Fig. 10(a)). The ctransient response charac-
teristics for this case are. therefore unacceptable.

A redesign of the control is attempted with
penalty matrices selected as: Q = 10,0001 and
R = 100I. (Both the state as well as the control
are now penalized more heavily by increasing both
sets of elements by two orders of magnitude).. The
transient response of the dumbbell scabilized plate
with this control is shown {n Fig. 11. The pitch,
roll and yaw amplitudes are well within 0.02 radians
even in the presence of the disturbance. The peak
control force required is approximately 14Nec. in
both actuators (or an 3MS value of a little less
than 30Nt.).

4. Prisch, H.P.,

Thus, the thermal deformations of the struc-
tures can be of greater concern than the deforma-
tions of the structure due to structural vibra-
tions (considered in Refs. 2 and 3) in modelling

~the disturbances arising from the solar radiationm

pressure. This study shows the need to further
ainimize thermal deformatioms (<< 0.0012) from
the view point of reducing the radiation pressure
disturbance effects. This can be accomplished
with cost and streangth comstraints primarily by
increasing the thermal conductivity.

Conclusions

The dynamics and control of thermally de-
formed orbiting beams and plates interacting
with the solar radiation pressure are studied.
The major effect of the solar radiation pressure
is found to result in net moments on the structure.
Modifications of control laws and/or feedback gain
values previously obtained by not considering the
thermal disturbances are suggested in order to
improve the transient response characteristics un-
der che thermally induced effects. :

In general, the effect of solar radiation
pressure acting on the thermally deformed struc-
tures is found to be more important than the affect
of solar radiation pressure omn the vibrating struc-
tures. In order to reduce the disturbances re-
sulting from the interaction of solar radiatiom
pressure with the thermally deformed structure,
further oinimization of the thermal deformations
is recommended.
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Astronasutica, Vol. 9, No. 3, 1982, pp. 119-127. Cor

Two-Ax is Gimball

_ L.z
===
— \\
s N~
=~
. Point Actuator at
one end of Bean. l
Fig. 1{a). Dumbbell Stabillzed Fiexibie . - y -
Beam Nominally Oriented Along Y 4 I . Rigid Dumbbell

the Local Horizomtal’ - &
) - i

Fig. 2(a) Dumbbell Stabilized Plate in Orbit.

Table I. Properties of Representarive Materials’®
Material - Density Expansion " Thermal =..Cost 6max
_ (kg/m3) Coefficient, a Cond. K ($/Ks) (m)
| (@/2°0) Ré/n-

3 -5 -3 -4
Graphite 1.5x10 8.3x10 , 8.65x10 500 10
Beryllium 1.8x10° 3.5x1076 12.25x1073 10,000 1074
Aluminum 2.7x10° 2.1x1078 28.8x1073 1.1 107’
Polyanide 1.13x10° 25x10°% 2.45x1073 15 7

om: maximum thermal deflection of a plate with sides aqual to
100m and thickness equal to 0.0lm.
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Fig. 5. Beam Bending Due to Solar Radiacion deating



et

D TP G, P I ML R o SN R g iy Ot e R e YR LT V) ¢
R R i e Lo e A DR R e

)
)
D

-0.04

(a) No Control

0.004 ‘
ANAAN AN
:; T \\\4/ ‘ku// \J \\\// \\‘)/ \\~// \
-0.004 ’
(b) With Previous Control (fj= - .1138 f£= - .3¢;)
] (Fp)gay = 0-001 (F,) . = 0.00T - :
0.6x10
3 \/\\/\ AN
£ VARVERVAV/
0.6x1073 + '
2 4 6
(c) With Modified Contror ~~ I.C".8 8(0) = ¢, (0) = 0
(F; = - 1.138 F, = - 0.3¢,)
£ : £
N2 1
€F) = 0.0INe (F)) .= 000N~~~
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Imt:.a.l conditions in all the modes are zero.
€ t0 =4 have very small amplitudes {less than 10~ )
(Fl)max Nt. (Fz)m = 6Nt.
Fig. 8. Response of the Plate Nominally Oriented Along
the Local Vertical Under the Influence of Solar
Radiation Disturbance Caused by Thermal Deflection
of the Plate (Gth = 0.0012) 2 = 100m. Control Law
Q= IOOI “R=T
0.01
.t K XIS
rad N4 N— TN N T N A
-0.01
F) = 12N¢. (F 2\max = 12Nt
max
Control Basedon IQG Q = 100, R = 1 excepc 8%% %g 10 000 Q(2,2) = 10,000
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Fig. 9. Response of the Plate Nominally Oriented Along the Local Vertical

Under the Influence of Solar Radiaticn Disturbance Caused by Thermal
Deflection of the Plate (§¢p = 0.0011) %= 100m, wy = 10
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VL. ANALYSIS OF A CONTROL SYSTEM FOR A LARGE
SPACE ANTENNA SYSTEM IN THE PRESENCE OF PLANT
: AND MEASUREMENT NOISE

Abstract

This paper considers the problem of controlling a stochastic linear
System by minimization of a quadratic performance index, appropriately
weighted in both the state vériables as Qell aé the control inputs. A
finite element modél of a proposed large s?ace structuré - the Hoop/Column
'structurai'systém, is'takén as the basis.for the'controls analysis. The con-
trol law is designed for a set of proposed aétuator‘arrangements wnich in-
clude torquers and ﬁoint actuators along the maét and a single actﬁator on
the hoop. Linear quadratic Gaussién techniques havg been used for the develop-
ment of the control lévs. The.controis analysis is carried out assuming co-
'located sensors énd actﬁators. Tﬁe sensor gnd'plant noises are assumed to bé
uncorrelated:zero—méan white noises. Results indicate a general degradation
in the deterministic system»performancé due to noise characteristics. In~v
creasing elements in the state weighting métrix does not bring as noticeable
an improvement in the transien£ performance as it did.in the deﬁerministic
'case.A A definitive imérovement in the performance can be obtained by decreas-
"ing the plant noise and either: (l)'increasing the measufement noise suitably
or (2) increasing both the measurement noise and elements in the control
weighting matrix.

NOMENCLATURE

A = System state matrix
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B,B

= N._f‘l

8

q9,q

W(t)
w(t)

X(t)

it

L

il

it

Control influence matrices

Control gain matrix' -
Expectation/value operator

Filter gain matrix

Control vector

flant noise influence matrix

Observation matrix

Identify matrix

Cost function

Stiffness matrix

Solutiqﬁ of steady state control Riccati differential equation’
ith generalized stiffness

Mass (inertia) matrix

ith generalized modal mass

Solution of filter matrix Riccati differential equation
Positive semi-definite state weighting matrix

modal co—or&inates

modal velocities and accelerations

. Positive definite control weighting matrix

Initial time

Ten_ninal time

Vector representation of the control imput
Co-variance of measurement noise
Measurement noise vector

Co~variance of plant noise

Plant noise vectqr‘

State vector



X(t)

State vector estimate

Y(t) = Measurement vector

Z = Matrix consisting of displacements and rotations in the nodal
points :

) = Modal transformation matrix

I. Introduction

Orbiting large flexiblg space systems have been considered for use in
future communications and other fields. As the size of the spacecraft in-
creases and the ratio of weight to area of the spacecraft decreases, flexi-
bility considerations become very important. This is in contrast to small
space structures which are assumed to be rigid. 6ne such large flexible
spade structure which has been proposed for future spacé missions is the
Hoop/Column antenna system;

The Hoop/Column antenna systeml,depicted in Fig. 1 in deployed con-

figuration ,contains the deployable (telescoping) mast system connected to the

hoop by support cables under tension. The hoop contains 48 rigid sections
to be deployed by motor drive units. The desired shape of the RF relective
‘mesh is produced by a secondary drawing surface using surface control cables.

The reflective mesh is connected to the hoop by quartz or graphite stringers.

At one end of the mast the electronic feed assemblies are positioned, whereas

at the other end are the principal solar arrays connected to the main bus-

based'controi.
The finite element model (FEM) representation o? the Hoop/Column antenna
system has been taken as the basis forAthe controls analysis.
The controls amalysis of the Hoop/Column antenna system requires speci-

fication of the type of actuators and their locations and oriemtations in
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. Mast assembly

K‘f-f-'Electronic feeds

" and feed pamels

€ Feed mast

Upper hoop support
cables

Hoop sectiom

Solar panels

e ————————————

Fig. 1. THE HOOP/COLUMN ANTENNA SYSTEM.
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the structure. For this study point thrusters and/or torquers are assumed
to generate the required control forces and torques. The location and
orientation of these thrusters depend on the mode shapes of the structure
and which modes in particular are to be controlled. The first thirteen
modes corresponding to the data provided by NASA-Langley will be included in
the controls analysis and, hence, it is convenient here, to choose thirteen

actuators in this analysis. Each actuator is selected to have a principal

~effect on a particular mode, but the same actuator may help to control a

different mode as well. Controllability comsiderations of the Hoop/Column
system based on the proposed location of the thirteen actuators as shown in
Fig. 2 have been established using graph theoretic cechniquesz. Further,
the earlier analyses of the Hoop/Column system considered either a determini-
stic linear system with noise-free plant and sensorsB, or a stochasticvlinear
system (with plant and measurement noise) but with the restriction that omnly
torque actuators on the feed mast were considered in the controls analysisa,
where extensive transient performance was not simulated. The purpose.of this

paper is to synthesize a control law and simulate transient performance

characteristics, based on stochastic optimal control theory, which can be

realized by combination of the Kalman filter and linear feedback techmiques

and under the assumption of co~located semsors and actuators.

II. Mathematical Formulation of the Problem
The dynamic model of the Hoop/Column structural system in the absence
of damping can be represented a53 '

M’i+xz=Fc (1)




—'—"" H&'

. .r-'-nr.si Bemeg
- o <L1k —

Second Mast &e.‘rﬂ.k'n?' )

o
.- 100

-

| Actuafor no. (;ircied)
l1 2 3 and 4

pzm"mu@m

12

o1

Mode being affected

Feed Mast Torsiom (12)

First Bending (about ¥y axis) (8)
First Bending (about x axis) (9)
Surface Torsion (10)

Yaw (rotation about z axis)

and First Torsion (7)° .
Translation along x } Also seccnd(ll)
Translation along y ° Mast bending(lBD
Translation along 2

Pitch (rotation about y axis)

Roll (rotatiocn about x axis)

Fig. 2 PROPOSED ARRANGEMENT OF ACTUATORS - HOOP/COLUMN ANTENNA SYSTEM
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where
M - 672 x 672 mass/inertia matrix
K - 672 x 672 stiffness matrix
Z-672x1 matrix consisting of the displacements and rotatioms

at the nodal points

Fc - 672 ¥ 1 control vector

Fc = Bc U (2)
where
: Bc - control matrix of order 672 x p
for
P - number of actuatofs
U- px1 maﬁrix associated with the control vector

In general, 2 is ;he state vector containing the generaliied co-ordinates
of each node and will be of the order (nx6) for n number of nodes and all ¢
degrees of freedom; M is the modal mass (inertia) matrix of order (6m x 6n);

K is the stiffness matrix of order (6n x bn); and Bc is the control influence
matrix of order (6n x p) for p number of actuators to be arranged on the
structure. In the present model, represented by equation (1) the number of
nodes is-gqual to 112 (f.e.n = 112), corresponding to the number of nodal
(grid) points in the FEM output.

To decrease the dimeﬁsionality of the model a modal transformation is.

carried out defining e

Z = ¢q -3
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where
¢ is the matrix containing thg eigenvectors of equation (1) and is
of order (6n x m), for m number of modes and q is a modal vector of order (mxl).
In this case, we are considering the first thirteen modes which include' all
six rigid modes and the first seven flexible modes, so that m = 13.
After using the tramsformation between the modal'éo-ordinates given by

equation (3) in equation (1), equation (1) can then be rewrittem as

T B
F, (4)

T, T
¢ Mpq + ¢ Kéq = ¢
The left hand side of equation (4) can be rewritten, using the properties of

the eigenvalues and associated eigenvectors as

13+ Drdesels, C®
where

5 M.

T -
ES

¢ Ko = diag [K,1 = ['K.,.]J

diag [mi] = Pmif]

The control influence matrix, Bc, in equation (2) is formed as follows:
I1f there is an actuator that influences the 1*® node (1gig 112) in the

e

direction (1 <j < 6), them B»c(k,L) = 1 where k = (i-1) x 6+j and L = the
designated number of the actuator. Thus, Bc’ consists of zeros and ones, showing
the influence of.force actuators on the translational degrees of freedom of the

various nodes, and the influence of the torque actuators on the rotational

degrees of freedom.
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Equation (5) can be rewritten in the form

T 1 aAr o 1r .
ﬁl r C I q 0
- 15 T L)
-1 -1 T
{ qz; _—{.’_ m, 1L K, ] o_ | 9] _[ mi]-~¢Bcd

where the state variables, q and q are denoted,
‘ 2

9= q

%= 4

Equation (6) is rewritten in the form:

X = aAX + BU ' (7
where
X = N A= ’
-1
. lqzl l‘L mlJ Ll\i.l Ul

0
B ’

) 1. T

miT 5

Now considering the stochastic problem, the plant noise is included in

equation (7) to yield the stochastic linear dynamic system

X = AX + BU + Gw (8)
The measurement vector, Y, can be related to the state vector and the measure-

ment noise according to,



Y=H+v ' ' (9)

Equations (8) and .(9) together with the following cost function,

lim 1 ¢

£ T T
J = E( - (X X + URU) dt ) (10)
Bgr=2te 7 ‘
o
_ 5 _
completely define the stochastic problem. After minimizing the cost function,
5
the optimal control vector U beccmes,
U= -X . (11)
where ’
-1 T '
C=RBK . (12)
and

K is'the-steadystate solution of the matrix Riccati differential equation,
T T -17T ,
-K=KA+AK-KBR BK+Q (13)
6
A
The estimate, X, is obtained from

; A ~ 7 o
X=AX+BU+F (Y-H) S (18)
with the filter gain,F, expressed as
T -1 ) :
F=PHV 4 : (15)

where P is the solution of the filter matrix Riccati differemntial equationm,

-

T T -1 T
AP + PA - PHV HP +.GWG (16)

g
n

where
T
E (vv) (17)

<3
1]
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Table 1 - Hoop/Column model .eigen values

Mode No. Frequency . Generalized Generalized
Hz mass,mi (lb-secz/i.n) stiffness, Ki(lb/in)

1 0.0 16.44388 0.0

2 0.0 8.925020 - 0.0

3 0.0 7.349353 . 0.0

4 0.0 | 9.704152 0.0

5 0.0 2.940652 A 6.0

6 0.0 8.418909 0.0

7 0.1188347 153.1573 85.38542

8 0.2142455 5.232954 9.482657

9 0.2709558 3.073094 8.907021

10 0.5063228 . 0.3046446 3.083247

11 0.7288725 1.992988 40.88663

12 0.8897594 723.5216 22612.90

13 0.9192313

0.6581203 21.95405
IIC, Possible Arrangement of Aétuators for tl';e Hoop/Column System
Twelve actuators consisting of combinations of point actuators and a tor-
quer are assumed tb be located at positions along the mast and at selected posi-
tu';éns in the feed 2ssembly. The remaining actuator is assumed to be a point actua~--
:. tor mounted on one of the rigid links of the ht;.»op assembly and whose thrust
direction is tangential to the hoop’cil;cle. Fig. 2 describes the proposed actua-

. .tor assembly. Actuators numbers 5 and 6 are assumed to provide control over

translation along the X and Y directions, respectively, and, in. additiom, also



YRy, e e Y el e D, TR el

and

: |
W=E (w) (18)

Substitution of equation (11) into equation (8) will yield

.o A .
X = AX - BCX + Gw (19)
Furthermore after including equations (9) and (ll) in equation (14) the follow-

ing first order differential equation in the estimated state vector results:

~

T = (A-FH-BO X+ PK+F (20)
The simulation of the stochastic optimélly controlled system here will
involve the'simdltaneous numerical solution of the sets-of differential equas
tions in both the state variables and the estimated state variables, represented
by equations (19) and (20). A flow diagram schematic of this configuration is
illustrated in Fig. 3, and'will Be taken as the basis fof studying‘the system
behavior. This approach has been selected as being computationally simpler than
considering, alternmatively, simultaneous: differential eqﬁations in the state
vector together with differential equations in the error vector, e = X - ﬁ.
If the latter approach were taken, then at each time step a subtraction of ap;
Propriate components of i from the corresponding components of X would be
tequire#. | |
IIB. Mass. and Stiffness Properties of the Hoop/Column System
The model considered here consists of six rigid body modes (3 tramslation+
3 rotation ) and the first seven flexigle modes. Table 1 indicates the general~ -

3
-tzed mass, the generalized stiffness, and the frequency at each mode.
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to control the first bending modes (modes 8 and 9). Actuator ll controls

translation along the Z direction, whereas actuators 8,12, and 13 control yaw,
pitch and roll motions respectively. Actuators 1,2,3, and 4 are selected so
that each actuator could provide independent control of the feed mast torsion
(mode 12). Actuators 9 and 10 are selected to control the second mast bending
(modes 11 and 13). Actuator 7 controls surface torsion (mode 10) and is the
only actuator assumed to be mounted on the hoop. Table 2 indicates the
-various modes affected by each actuator.

Table 2 -~ Relationship between actuators and modes directly influenced

Actﬁator No., (circled in Fig. 2) Mode being affected

1,2,3 and 4 : Feed Mast Torsion (12)

5 A First Bending (about Y axis) (8)

6 ’ - First Bending (about X axis) (9)

7 ‘ . , Surface Torsion (10)

8 (Torquér) Yaw (rotatiom about Z axis) aﬁd First
Torsion (7)

9 - Tfanslation along X axis and Second

Mast Bending (11)
10 : Translation along Y axis and Second

Mast Bending (13)

Il . Translation along Z axis.A
12 Pitch (rotation about Y axis )
13 Roll (rotation about X axis)

I1L. Numerical Simulations and Synthesis of Control lLaw

Numerical calculation of the control gains and filter gains and the
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simulation of the dynamic transient responses are obtained with the
aid of ORACLS.7 For the proposed 13 actuétor model a parametric study
was- performed showing the effect of var&ing Q from 100I to 10000I and
R from I to 100I on the least damped mode of the system (Fig. 4). It
has been concluded that Q = 1000I, R=I is a suitable design point from
‘the sfand point of minimizing the ieast damped modal time comnstant and
ﬁaintaining a reasonable control effort.3 As mentioned earlier, con-
trollability.of the proposed system of 13 actuators (Fig. 2) has been
verified.3 Further, it has been established ﬁhatvclOSed loop eigén—.
values of the combined plant énd‘estimator exist for all combinations
of Q,R,W and V considered here. As an example, Table 3 shows the
closed loop.eigenvalues of the combined plant and estimator system
for Q=1000I, R=I‘and Q=10000I, R=I with W=0.00001, V=0.0000025 assumed
in both cases. The values of the plant noise are in general of the
order of l.OxlO-S (dn—cm)z. The values of the sensorvnoise_varies
with the type of sensor measurement device. for example, some of the
angular and linear displacement sensors have noise charécteristics of the
order of l.OxlOm7 (rad-)2 and l.QxlO_7 (m)?, respectively. Since in our
problem more than one type of displacement and/or rate may be required
to be_sensed, some averége values of these plant and measurement noises
have been assumed. |

Figs (5a-5g) show the transient behavior of the modal coordinates
with random noise generated for an initial displacement of 0.0l

4

in all modes. (Figs (6a-6c¢c) indicate- the transient behavior of the esti-

mated modal displacement coordinates which have an initial assumed displace- -

ment of 0.01. Figs (5a-5g) and Fig (6a-6c) along with Table 4 show that

for the same order of control effort,
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Table 3

Table showing the eggenvalues'of the closedloop stochastic system

with observation for different state weighting matrices

(Real)

-0.

4179

L4179
.0058
.0118
.0142
.0248
.0260
.7046
.7046:
.0543
.6137
.6137
.9666

.9666

13 Actuators/ 13 Modes W=0.00001, V=0.0000025

Q=1000I, R=L - -
1/sec ~ jw(Imaginary)
0.4544 -0.
;0.4544 -0
0.0 -1
0.0 -1
0.0 -1
0.0., -1
0.0 -1
0.7785 -1
-0.7785 -1
0.0 -1
0.8688 -1
~-0.86838 -0
0.4922 -0
-0.4922 -0

(Real)l/sec

5012

.5012
.0006
.0011
.0023
.0024
.0082
.0086
.0125
.0142
.0544
.6137
.6137

.9666

Q=100001, R=I

0

-0.

0.

jw(Imaginary)

.5193
5193
0

.0

.8688
.8688

.4922




Q=10001, R=I

(Real) 1/sec

-1.0868
-1.0902
-1.0947
-1.0987
~1.1360
-1.1360
-1.2914
-1.1849
-1.1849
-1.5807
-1.0950
-1.0950
-2.5134
-2.5688

-2.1916

-2.1916

-1.0244
-1.0244
-3.2607
-0.0575
—0.0575
-3.9913
-3.6151

=3.6151

jw(Imaginary)

0.0

0.6481
-0.6481
0.0
1.4745
-1.4745
0.0
0.0

1.6704

-1.6704

2.7961
~2.7961

0.0

3.3319
-3.3319

1.7994

-1.7994

-2.5134

678

Q=10000I, R=I .

(Real) 1l/sec

~0.9666
-1.0902
-1.0947
-1.1976
-1.1360
~1.1360
-1.304;
-1.3257
-1,1849
-1.1849
-1.0950

-1.0950

-2.5688
-2.6843
-1.1000
-1.1000
-3.2607
-0.0575
-0.0575
-0.5617
-0.5617
-0.9201

-0.9201

jw(Imaginary)

-0.4922

3.3319
-3.3319
4.4959
-4 .4959
5.4912

~5.4912



Q=1000I, R=I

(Real) 1l/sec
-0.5617
-0.5617
-5.4764
-0.9201
-0.9201
f0.0078
-0.0078
-0.5935
-0.5935
-6.2697
-9.2251
-10.0084
-12.4055

-30.1863

jw(Imaginary)
4,

-4 .

4959

4959

.0
L4911

L4911

.5905

.5905
.7365

.7365

<. @=10000I, R=I1

(Real) 1l/sec

-0.0091
-0.0091
‘-0.5935
-0.5935
-6.3792
-8.7613
-9.2251
-12.6541
-13.1993
-19.0026
-27.1591
-32.9847
-40.2118

-98.5507

6.19. .

jw(Imaginary)

5.

=5

5905

.5905
.7365
.7365
.0
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Table 4

Comparison of maximum actuator force amplitudes

Q=10001, R=I, q;(0)=0.01,

Maximum actuator force

amplitudes(pounds)

(in-1b)

i=1,2...,

13.

Actual_Spgte_

with Noise

6.34

.3500
L0569
.3030
.0569
13000
. 2830
. 2700
L0124
. 2360
. 1570
.4060
.3520

.0688 -

13 Actuators/ 13 Modes

Stochastic
case
W = 0.00001

V = 0.0000025

0.3330
0.0570
'0.2681
0.0570
*1.3028
0.2865
1.2310
0.0140
0.2859
0.1574
0.4086
0.3521

0.0660
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the estimate of phe state closely follows the actual system dynamics thus
ensuring a satisfactory estimation process. The assumed initial dis~-
placements of 0.0l in the modal coordinates correspond to the expected
maximum perturbations in the linear range from the nominal operating
required RMS displacements, obtained through calculation of equatiom (3).

Figs. (6a-6c) and Figs. (7a-7c¢) together with Table 5 show that in-~
creasing the elements of the state weighting matrix incrgaseé the con-
trol effor; reqﬁired by an order. of magnitude, but does not cause a
siénificant improvement in the tramsient response. [But, it was ﬁound_
in thef&eterministic case that increasing the elements of the state
welghting matrices causesa significant improvement in the tr#nsient
réspdnse (Ref. 3).1 Oﬁﬁer results_(ﬁot shown) in which only some
of the $ta£e weighting elements are\inceased, alsé‘indicate that this
technique of increasing the eléments of the state weighting matrix will
not result in a markea improvement.

A separate study was conducted to determine the effect of vgrying
the plant and'sensorvnqise characteristics for a fixed set of penalty
matrices. In Fig. 8 the measurement noise co—variapce has been increased
to 0.00025, while the plant noise ﬁas been reduced to 0.0000001 (both
changes involve two orders of magnitude), as compared with Figs. (6a;6c).
For comparison purposes énly a few of the modes ‘are dépictedAin Fig. 8.

_ It can be seen that a gréat improvéﬁéﬁt in transiént.performance is
realized, with the same order of contrél_effort (Table 6). Increasing
the elements of the control weigh;ing matrix along with the sensor

noise for the same weighting matrix is also found to bring about a signi-
ficant.improvement in the transient response as could be seen from a

comparison of Figs. (6a-6c¢) with Fig. 9.
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Table 5

Comparison of maximum actuator force amplitudes

q;(0)=0.01, i=1,2...,13. 13 Actuators/ 13 Modes

Maximum actuator force Stochastic case
amplitudes (pounds) wW=0.00001 v=0.0000025

Q=10001 ' Q=100001

R=1 R I

Fig.6 Fig.7

£1 0.3330 - 1.5759
£2 | 0.0570 0.1915
£ 0.2681 1.4151

f4 : 0.0570 0.1915
£s 1.3028 . 3.6022

fg | 0.2865 0.8400

£7 1.2310 3.0046
fg (in-1b) 0.0140 0.1184

fog - 0.2859 0.8483
f10 0.1574 0.6483
£11 | - 0.4086 1.3481
f12 0.3521 0.9442
£13 0.0660 0.2342
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Table 6

Comparison of maximum actuator force amplitudes

Q=1000I, R=I , q3(0)=0.01, i=1,2...,13. 13 Actuators/ 13 Modes

Maximum actuator force Stochastic case

amplitudes (pounds) W=0.00001 W=0.0000001
v=0.0000025 v=0.000 25
Fig.6 Fig.8
£1 0.3330 0.3490
£, 0.0570 ‘ 0.0570
£4 | 0.2681 0.3010
£4 0.0570 0.0569
£5 1.3028 1.3028
£q 0.2865 0.2865
£ 1.2310 1.2310
fg (in-1b) 0.0140 0.0127
£q 0.2859 0.2606
£10 , 0.1574 0.1574
£11 0.4086 0.4086
"£12 0.3521 0.3521

£13 . 0.0660 G.0870
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IV. Concluding Comments

For all cases considered here the estimate of-the state closely
correlates with the actual (RMS) system dynamics. Some improvement
in the transient performance may be achieve by increasing the sensor
noise because the filter gain depends upon the inverse of the sensor
noise covariance. As the sensor noise covariance is increased, the
filter gain decreases and the matrix (A - FHi- BC) increases causing
a faster decay of the transients. However, one cannot increase the
sensor noise covariance indefinitely since large wvalues of sensor
noise may affect the performance 6f the sensor itself, and thus, the
estimation process. Plant noise can be reduced by incorporating appro-
priate filtering devices and .this may also result in improved transient
performance; here a definite trade-off exists between the increased
complexity, cost, weight and reliability of the filter, and the possi-
ble géin in system performance. Further studies in this area are
recommended.

When there is no or only limited flexiblityAin altering the stoc-
hastic properties of the plant and the sensors, then one should consider
the possible relocation of the actuators and /or sensors. It is suggested

that this could form the basis for further research on this problem.
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VII. CONCLUSIONS AND RECOMMENDATIONS

The two dimensional model of the SCOLE configuration déveloped
here will be extended to the three dimensional situation and control
synthesis initiated fo% both linear systems analysis as well as for
slewing maneuvers outside of the linear range. The ultimate goal
of such an analysis will be‘to support the actual design of a scale
model laboratory experiment to be prepared'by the Flight Dynamics
and Control Division at NASA Langley.

At this stage of our preliminary review of the stability of
large ordered space structurg systems with input delays, it is not
completely conclusive that such large ordered systems under general
oscillatory motions could be stabilized by a time delayed feedback.
Further work in this area is anticipated together with a sample
numerical example computation and is proposed for the next grant year.

. It is found that for extremely flexible large orbitiﬁg'plétforms,
especially thoée nominaily oriented in tﬁe local horizontal plane,
that appreciable amplitudes in the rigid modes may be induced by solar
>radiation pressure even in thé presence of (active and/or passive)
control. When this situation is suspected, linear quadratic regulator
techniques offer a versatile means of redesigning control laws pre-—
vously synthesized without compensating for environmental disturbances.

In general, thermal deformations of simple beam and platform type
structures in orbit ma} be of greater concern than the.deformations
due to structural vibrations when modelling the disturbances arising

from solar radiation pressure.
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Within cost and weight constraints materials should be selected and
designed so as to minimize the expected thermal deformations.

Qur analysis of the stochastic optimal control of the proposed
Hoop/Column antenna system indicates that increasing the appropriate
elemeﬁts in the state weighting matrix may not bfing aé noticeable
improvement in theltransient performance as it did for the deter-
ministic case. A definitive improvement in both transient and steady
state (RMS) performance can be realized by decreasing the plant noise
and (1) suitably increasing the measurement noise or by (2) selectively
increasing the measurement noise and also selected elements in the

control weighting matrix.





