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AN INVESTIGATION OF THE EXISTENCE
OF A SURFACE WATER LAYER ON AIRCRAFT RADOMES

DURING SIMULATED FLIGHT IN HEAVY PRECIPITATION

J. R. Branstetter (Editor) and H. A. Verstynen
NASA/Langley Development &Logistics Field Office

M. C. Bailey, C. P. Hearn, R. E. Dunham, Jr., R. H. Couch,
G. L. Gentry, Jr., and J. B. Williams

NASA Langley Research Center

I. SUMMARY

An experiment to investigate the electromagnetic attenuation effects of

an impacting water spray on an aircraft weather radome was conducted in

Langley's 4 x 7 m. wind tunnel equipped with a water spray system. Results

indicate no significant liquid water film formed at the stagnation point of

the radome under the test conditions. However, a water "sheath" was observed

standing away from the radome surface, which could possibly have significant

attenuation properties of its own. Due to the lack of fidelity in modeling

both the natural environment with the tunnel apparatus and the water sheath,

it is recommended that further studies be undertaken to better define the

water distribution in the vicinity of the radome and measure its effect on

weather radar performance.
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II. INTRODUCTION

This report describes the results of joint research conducted by NASA and

the FAA to examine whether aircraft weather radomes, having various surface

qualities and subjected to conditions simulating flight in heavy precipitation,

would support a water layer on the surface. Based on the experimental

findings, an estimation of the water surface thickness is made for use in

calculating the potential attenuation of such a layer.

The project stems from an National Transportation Safety Board recom

mendation (A781) which said in part that the FAA should, ..... initiate

research to determine the attenuating effects of various levels of precipi

tation and icing on airborne radomes of both X- and C-band radars, and

disseminate to the aviation community any data derived concerning the limita

tions of airborne radar in precipitation." The NTSB recommendation was

predicated on events surrounding the crash of a Southern Airways DC-9-31

jetliner (Flight 242 at New Hope, Georgia, on April 4, 1977) which suggested

the possibility of performance degradation of the contour function of the

on-board weather radar. NTSB's investigation disclosed, ..... the flight

had entered an intense precipitation area which resulted in the failure of

both of the aircraft's engines. Considering the level of experience and

qualifications of the crew, the Safety Board believes that they most likely

were receiving a radar signal which was attenuated by the precipitation in

which the flight was conducted."

Since that report, the crash of an Air Wisconsin Swearingen Metro

(Flight 965 near Valley, Nebraska on June 12, 1980) during flight in heavy

...
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rain points again to the little known effects of water accretion on a radome

and its subsequent effect on the reliability of indications of airborne weather

radar installations.

In an effort to acquire documented evidence of research that may have

been accomplished, the FAA Office of Airworthiness (AWS-130) initiated informal

coordination with the Radio Technical Commission for Aeronautics (RTCA),

indust~y, u. S. Air Force, and NASA. Industry representatives on RTCA SC-133

(Weather Radar) generally agreed that attenuation effects of rain and ice were

basically known, and that icing was of limited concern. The major unknown was

whether a water layer could exist on a radome under actual flight conditions,

and if it could exist, it's approximate thickness. If these parameters were

known, attenuation could be mOre reliably computed.

NASA technical personnel (at the request of FAA) initiated a limited

literature survey and related experience search to determine what research

had been accomplished. This investigation concluded that evidence of a standing

water layer on large radomes under static conditions could exist and that

further research to determine the actual presence and effect of a water layer

on aircraft radomes in flight appeared to be needed. The major questions to

be addressed were whether a radome in flight will allow a water layer to exist

and, if it does exist, what is the approximate water layer thickness. NASA

further concluded that if a water layer of some measurable thickness (0.015 inch

or more) does exist, then the degradation of the performance of airborne weather

radar can be reliably calculated.
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III. DESCRIPTION OF EXPERIMENT

The experiment devised for measuring the surface water layer phenomena

entailed placing an aircraft radome instrumented with a pair of microwave

reflectometers in a wind tunnel equipped with a water spray system. Figure 1

shows the "old" radome installed in the tunnel with the spray bar in the

foreground.

A. Test Radomes

The two radomes, designated herein as "new" and "old", were chosen to

provide a comparison of the water retention capabilities between a radome with

a newly-painted surface and one having a weather-eroded surface. (See Fig. 2)

The "new" radome was obtained through USAF supply channels which

resulted in the purchase of a literally new T-39 radome. When received, the

radome was found to be uncut and oversized for mating with the afterbody

section that was to be used for mounting it in the wind tunnel. To adapt it

to fit the afterbody, the model shop cut and reformed the radome. This

"surgery" required that the radome be reglassed in certain areas and repainted

first with a primer coat and then with the smooth polyurethane surface

finish coat. Neither process should have significantly altered the electrical

characteristics required for these tests since, with the experimental instru

mentation used, it was not necessary to scan any large cross-sectional areas

(of the radome) as an operating radar would have had to do.
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The "old" radome was obtained from the USAF, having been removed

from actual service and scheduled for refurbishing. Prior to testing, this

radome was used as the model for mounting the reflectometers and designing

the afterbody. Hence, the surface suffered more deterioration than airborne

weathering alone had accomplished.

B. Measurement Technique

Water-layer thickness was determined by a two-step process whereby

measured values of a parametric variable, the feed-point impedance of a test

antenna, were related to water thickness through an analytical model.

The technique used in this experiment was derived from previous

research done by NASA scientists to determine the properties of dielectric

layers over horn and waveguide antennas and subsequently determining the

thickness of plasma sheaths overlying the antennas of space reentry vehicles.

In theory, placing a layer of a lossy dielectric, such as water, over an

otherwise well-matched antenna aperture will result in a change of the ampli

tude and phase of the wave reflected back toward the antenna signal source.

By measuring and analyzing these parameters, the characteristics of the

reflected wave can be determined, and once known, calculations can be made

which will indicate the effect caused by an accretion layer on the surface.

(Mathematical derivations for the technique can be found in Appendix A(l),

"Analytical Modeling. lI
)

5
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For this experiment two microwave reflectometer sensor units were

constructed and installed in the radomes. One sensor was located at the stag

nation point and the other approximately 30 degrees off-axis in the horizontal

plane. Each reflectometer consisted of a microwave horn-type antenna designed

for Ku-band operation (the design frequency of the radome), a Gunn oscillator

signal source, a specially designed stripline with integral voltage probes, and

a dual-directional coupler. (A schematic diagram of the system is shown in

figure 3 and the hardware mounted in one of the radomes is shown in figure 4.)

The horns were fitted to the inner surface of the radome while attempting to

electrically match the horn to the radome so that when the surface is dry there

are no signal reflections.

Analog voltages from the four probes in each stripline along with

foreward and reverse voltages from each dual-directional coupler were digitized

and recorded for analysis. During the tests, the reflectometer package was

wrapped in an insulating blanket to maintain the components at a constant

temperature (120+/-0.2 degrees F.).

C. Data Acguisition System

The design for the data acquisition system used in this test is shown

in figure 5 and the actual hardware is shown in the background of figure 2.

This system represents a simple and straightforward approach to the problem of

acquiring and recording the data of interest for subsequent data reduction and

also providing the system operator with an indication of system performance in

real time.
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An eight-bit microcomputer was employed having EPROM program memory

and static RAM. Voltage data measurements from the sensors were converted

for digital processing by analog-to-digital modules each consisting of an eight

channel multiplexer, a sample-and-holdamplifier, and the analog-to-digital

converter. The converter has twelve-bit resolution and was configured for

unipolar operation. An internal time code generator provided timing infor

mation to identify data as to date and time-of-day and was recorded along with

the voltage data. The keyboard and display unit allowed the operator to

initialize the time code generator and to start and stop the tape recorder,

in addition to displaying voltage data in real time. Finally, all data was

tape recorded on a one-half inch IBM compatible seven-track tape for use in

the data reduction process.

D. Wind Tunnel

The Langley 4- by 7-m wind tunnel was used for this test. The general

characteristics and operating ranges for this facility are discussed in

reference 1. For the purpose of these tests, a water-spray manifold was

installed in the tunnel and positioned with respect to the test radome as illu

strated in figures 1 and 6.

E. Water Spray System

The spray manifold was made from streamline pipe having a fineness

ratio of 2.2 and a streamwise dimension of 3.5 inches. The manifold had pro

visions for installing water injection nozzles in the aft portion every 6 inches

along the span. The nozzles chosen for this test were Spraying Systems Inc.,
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model #1570. These were installed every foot along the trailing edge and

were oriented so as to inject water aft in the streamwise direction. Water

was provided to the manifold through a solenoid control supply system as seen

in figure 6. In order to get the desired flow rate, only half of the ports

on the spray bar were needed. This caused an asymetrical positioning of

the nozzles with respect to the radome stagnation point. To alleviate the

possibility of inadequate spray formation, two different nozzle configurations

were tried. Designated Configuration No. 1 and No.2, respectively, the

nozzles were shifted laterally by one port between runs for testing both the

old and new radomes (see figure 7).

F. Test Conditions

To check for water accretion over a wide range of airspeeds and water

flow conditions a test matrix was established around the tunnel and spray

system limitations. Figure 8 shows the test points used for data collection.

The wind tunnel airspeeds ranged from 97 to 192 knots with test points taken at

speeds of approximately 97, 122, 145, 165, 183, and 192 kts. The water spray

system was capable of delivering liquid water content ranging from 6 to

16 gm/m3.

The "calibration" of the spray rig was performed using high-speed

photography to document the spray characteristics. Spark-gap photo tubes of

finite pulse duration were used to produce a photograph of spray drop streaks.

Based on the measured length of the streaks and the known pulse duration, the

spray drop velocities were determined. For the spray range over which calibrations

were obtained (Fig. 8), the spray drops were found to be moving at nearly free

stream velocity. Drop size distribution was determined from photographs obtained
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with very short light pulse durations, which effectively stopped drop motion.

For all configurations evaluated, the drop size distribution was found to be 10g

normally distributed with a median drop diameter of about .4 mm. The rain spray

concentration for the calibrated conditions was obtained from the photographic

area of spray coverage at the radome test position, the velocity of the spray,

and the mass flow through the spray manifold.

Table 1 lists the wind tunnel parameter sets for the data runs using

both radomes and both nozzle configurations. Certain test points were omitted

in successive runs which seemed redundant or added no new insight to the experiment.

Looking at figure 8, it will be noted that the tunnel and spray system

were calibrated for only a portion of the overall matrix. This was due to

adding test points during the actual test runs to look at the effects of lower

spray rates and higher tunnel speeds in an attempt to examine the full spectrum

of available test conditions, after it was discovered that drop sizes were much

smaller and liquid water content was higher than what would typically be

considered IIheavy rain. 1I

In the calibrated region (circular symbols, figure 8), the spray con

centration was computed to vary from 9 gm/m3 to 16 gm/m3. In the uncalibrated

region (square symbols, figure 8), the liquid water content was estimated to

range from 6 gm/m3 to 24 gm/m3 on the assumption that the spray area coverage

only slightly decreased and that the droplets were moving at free-stream

velocity.



10

IV. RESULTS AND DISCUSSION

Tests were run in the wind tunnel on August 4 and 5, 1982, using both

radomes and covering the test conditions previously described.

A. Water Spray Definition

The calibration of the water spray indicated that the median drop

diameter was .4 mm. This drop diameter turned out to be considerably smaller

than would be found in natural rainfall of an equivalent liquid water content.

Additionally, the spray does not have the exact velocity orientation with

respect to the test radome as would occur in a rain encounter. Because the

spray system was near the radome, little vertical motion was imparted to the

spray due to gravitational effects. This error was considered to be small

since the downward terminal velocity of rain drops is low compared to the

free-stream velocity of an encountering aircraft. Also because of tunnel tur

bulence and nozzle placement, there was some fluctuation of the spray about the

radome causing some nonuniformity of wetting. The liquid water content for

these tests was very high (6 gm/m3 to 24 gm/m3).

The National Weather Service designates storm severity in terms of

radar VIP levels (Video Integrated Precipitation). A VIP level 6 represents

the highest level reportable in this standardized scheme and corresponds to

a liquid water content of as low as 4 gm/m3. However, liquid water contents

on the order of 25 gm/m3 are believed to occur occasionally. The spray

characteristics of small drop diameter, high liquid water content, and non

uniformity contributed to test conditions which lack similarity to the natural

environment.
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B. Visual Observations

Photographic evidence and observations made during the tests indicate

the apparent existence of a water layer on the radome surface for all of the test

conditions examined. The form of the water layer was different for the two radomes

showing a dependency on surface condition. Water on the "o1d ll radome formed

in sheets that contained very small ripples. ~Iater on the "new" radome formed

globules and rivulets that traveled aft at substantially less than free-stream

velocity. There were no discernable differences in water layer patterns or

formation for a particular radome that could be attributed to velocity or liquid

water content, based on visual observation.

What was unexpected was the occurrence of a phenomenon depicted in

figure 9. Water droplets seemed to form a sheath or concentration of spray

that stood some distance off of the radome surface, similar to a shock wave

boundary layer. The sheath appeared to thicken with increasing distance from

the stagnation point. The droplet size in the sheath appeared to be small,

like a fine mist. It could not be determined whether the sheath was composed

of small free-stream droplets that were following streamlines around the radome~

fractionated droplets that had rebounded from impact with the surface~ or a

combination of both.

C. Reflectometer Measurements and Interpretation

The reflectometer measured the reflection coefficient amplitude and

phase angle of the reflected microwave signal caused by the impedance mismatch

produced by the wet radome and external spray. Data obtained during the test

are presented in tabular form in Table 1 and qraphically in figs. 10 and 12.
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The time history data for the reflection coefficient for the front sensor are

shown in Appendix B. Data recording was begun approximately 5 seconds prior to

the release of water into the flow stream, providing a reference point to show

the "no water" condition. As can be seen, the amplitude and phase angle change

significantly when the spray is activated. The fluctuations portrayed in the

data seem to be attributed to the unsteady nature of the spray impinging upon the

radome as observed on motion picture film taken during the tests. This effect

could also be due to water droplets striking the radome and producing a nonuniform

water film thickness or rivulets of water flowing over the surface as visually

noted in the previous section.

The reflection coefficient data for the front sensor are summarized

in figure 10 for both old and new radomes. These data points were averaged

over a ten-second time interval, beginning after initial radome wetting and

ceasing prior to shutting off the spray, to obtain the statistical means for the

amplitude and phase components of the reflection coefficient. From the data in

Appendix B, it can be seen that a slight impedance mismatch (i.e., non-zero

reflection coefficient amplitudes in dry conditions) existed at the radomejhorn

interface with no water present, hence, the parameters constituting the radome

layer in the analytical model were adjusted to simulate the mismatch observed

during dry radome measurements. It can be observed from examination of the "new"

radome data in fig. 10 that an impedance-matching effect occurs which reduces

the amplitude of the reflection coefficient as compared to the dry radome value.

An interpretation of the test results for the side sensor was not

attempted since an appreciable impedance mismatch existed for the horn mounted

in the side of the radome. This was caused by a significant misalignment

between the horn axis and the normal to the radome surface; a discrepancy
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that was noted only after the testing had been completed and the apparatus

removed from the tunnel.

D. Water Thickness Determination

The measurements were interpreted using a planar model of the radome

and water film as illustrated in figure 11. In figure 12, a comparison is made

between the old radome measurements and the plane wave calculations. (See

Appendix A for the derivation of the plane wave model used.) The range of water

film thickness inferred by this comparison is inconsistent between the amplitude

and phase data. This inconsistency implies that the water film is thin enough

such that the reflectometer measurements are influenced strongly by reflections

outside the water film. Apparently, this is due to the sheath of water droplets

standing off of the surface noted previously by photographic observation - figure 9.

Examination of one of the time-history records (run-point No. 1-6 for the front

sensor, see Appendix B) verified that the spray contributed appreciably to the

reflectometer measurements. This is manifested by an immediate change in the

reflectometer response when the spray was shut-off leaving a residual reflection

due to a surface water film that gradually returned to the dry radome values as

the film evaporated.

A refinement of the calculations was attempted by modelinq the spray

as multiple layers outside the liquid water film as shown in figure 13. The

transition region between the water spray and the air was modeled as a stepped-
•

approximation to a cosine function.

The calculated reflection coefficient was plotted as a function of

the spray thickness with the water film thickness as a parameter (see Appendix C).

The calculations were performed for different values of the water volume density
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of the spray and the thicknesses of the spray transition region based upon best

reasonable estimates of these parameters. The measurements for both the old

and new radomes were plotted on the same figures at a value of spray thickness

which was consistent with the amplitude and phase used for inferring the water

film thickness. From the figures in Appendix C it can be seen that a small

change in the thickness of the water film can produce a substantial change in

the reflection coefficient.

The water film thickness inferred by the measurements was less than

0.0015 cm for all test runs. The observed thickness of the water film was con

sistently less for the new radome than for the old radome; as would be anticipated

since the rougher surface of the old radome should have had a greater affinity

for water accretion in a wind-blown spray environment.

Figure 14 shows the calculated one-way transmission loss through a

planar water film. Note that less than IdB transmission loss can be anticipated

for the water film thicknesses observed during the experiment. Figures 15-16

show the additional transmission loss through a planar uniform spray boundary

layer outside the radome and water layer. The additional transmission loss due

to the spray boundary layer is of the order of 0.5dB or less.
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V. CONCLUSIONS

A. ~oncluding Remarks

A wind tunnel test was conducted to determine the possible existance

of a water film on a radome in a water spray environment spanning a range of

liquid water contents from 6 gm/m3 to 24 gm/m3. Data from microwave reflecto

meters and a plane wave propagation model were used to estimate the water film

thickness and resultant radar transmission loss.

The results of the experiment indicate no significant liquid water

film formed at the stagnation point of the radome under the test conditions.

Predicted transmission loss at X-band and Ku-band is less than 1 dB for even

the maximum water film thicknesses observed during the tests.

Due to the lack of similitude between the tunnel test conditions and

the natural environment in conjunction with the simplified plane wave modeling

of the complex curved radome, one must be cautioned about attempting to extra

polate the present results to real-world conditions.

There may be other mechanisms involved which could have a significant

effect on radar performance, notably the sheath phenomenon observed. The effects

of curvature of the radome and the sheath surrounding the radome have not been

analyzed and could cause an appreciable change in the interpretation of the data.

Additional effort appears to be needed to define the sheath phenomenon believed

to be associated with small particle discrimination and to model the effects of

this curved sheath upon radar performance.
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B. Recommendations

NASA and the FAA should undertake further studies to better define the

water distribution in the vicinity of the radome and measure its effect on

weather radar performance. At present, it appears that direct measurement of

radar transmissivity may be more useful than interpretation of reflectivity data

for answering the basic question of whether the film/sheath environment severely

degrades weather radar performance. Both wind tunnel experiments, where test

conditions can be carefully controlled and measured, as well as flight tests,

where higher dynamic pressure and real-world environmental conditions can be

obtained, will likely be required to give a more conclusive answer.
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WIND TUNNEL TEST DATA REFLECTOMETER MEASUREMENTS

Run No. 1 - 01 d Radome Nozzle Conffquration No. 1

TEST CONDITIONS TH1E SENSOR DATA

TEST Liquid Tunnel FRONT SIDE
POINT Tunnel Water Dynamic Start Stop Ampl. Phase Ampl. Phase

Velocity Content Pressure HH-MM-SS HH-r+1-SS
(kts.) (!lm/m3\ (KPa\*

p Anqle p Angle

1-4 0 0 0 13-0-28 13-0-37.9 '.107 3.111 .264 .8178
1-5 145 0 3.21 13-04-09 13-04-27.9 .108 3.098 .259 .8307
1-6 146 9.4 3.21 13-06-59 13-07-25.9 .142 3.790 .279 .9410
1-8 122 11. 2 2.26 13-42-45 13-43-10.9 .140 3.767 .273 .9748
1-9 97 14.0 1.44 13-45-13 13-45-37.9 .162 3.946 .281 1.0005
1-10 145 12.8 3.20 13-47-59 13-48-24.9 .140 3.764 .270 .9710
1-11 122 14.2 2.25 13-50-44 13-51-08.9 .142 3.766 .278 .9828
1-12 146 16.3 3.21 13-53-19 13-53-43.9 .135 3.697 .273 .9641
1-13 169 8.0 4.32 13-57-03 13-57-29.9 .133 3.674 .265 .9349
1-14 183 7.5 5.04 13-58-55 13-59-19.9 .127 3.555 .266 .9198
1-15 191 7.3 5.51 14-00-54 14-01-18.9 .128 3.600 .268 .9110
1-16 146 7.9 3.20 14-04-24 14-04-48.9 .127 3.563 .280 .9152
1-17 169 6.8 4.31 14-07-06 14-07-29.9 .126 3.538 .276 .9005
1-18 183 6.3 5.01 14-08-59 14-09-23.9 .123 3.502 .274 .8951
1-19 191 6.1 5.49 14-11-29 14-11-54.9 .123 3.498 .273 .9030
1-20 98 24.5 1.44 14-13-59 14-14-23.9 .165 3.953 .295 .9823
1-21 0 0 0 14-16-36 14-16-45.9 .109 3.106 .269 .8009
I-X up of water poured over front sens 15-02-10 15-02-45.9 .586 5.174 .232 .8495
1-Y up of water poured over side sensa 15-03-25 15-03-35.9 .136 3.759 .364 .5780
1-Z tin foil aVE front senspr 15-05-52 15-06.10.9 .536 .5980 .7l1 1.6161

. _----. ._ .. _.. - - ..-.- .•. ....._.

ffld d

(* 1 Pascal • 1 nt/m2 l

R N 2un o. - 0 Ra ome NOIZ e Con louration No. 2

TEST CONDITIONS TH1E SENSOR DATA

TEST Liquid Tunnel FRONT SIDEPOINT Tunnel Water Dynamic Start Stop Ampl. Phase Ampl. PhaseVelocity Content Pressure HH-MM-SS HH-MM-SS
(kts.) (!lm/m3l . (KPa)* p Anqle p Angle

2-2 0 0 0 15-50-21 15-50-21 .106 3.145 .261 .8469
2-A 146 0 3.21 15-55-18 15-55-31. 9 .11)7 3.139 .250 .8736
2-3 146 9.4 3.21 15-56-50 15-57-7.9 .128 3.621 .273 .9563
2-4 98 14.0 1.44 16-08-56 16-09-21.9 .153 3.860 .301 .9810
2-5 122 14.2 2.24 16-13-28 16-13-52.9 .147 3.802 .301 .9630
2-6 146 16.3 3.20 16-16-02 16-16-25.9 .139 3.732 .294 .9452
2-7 170 8.0 4.31 16-21-12 16-21-34.9 .126 3.562 .285 .9150
2-8 192 7.5 5.53 16-23-07 16-23-31.9 .122 3.468 .278 .9175
2-9 170 6.7 4.30 16-25-08 16-25-32.9 .123 3.523 .288 .8979
2-10 192 6.1 5.51 16-26-47 16-27-11. 9 .121 3.443 .287 .8913
2-11 98 24.5 1.44 16-28-43 16-29-06.9 .166 3.964 .309 .9818
2-12 0 0 0 16-44-36 16-44-45.9 .111 3.105 .291 .7989
2-X Shorts 17-04-27 17-04-35.9 .9023 3.111 1.099 2.8381

...-._.... _... - ....... ~ - --.'-'-.-. - ...

, ,. ~..
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TABLE 1

WIND TUNNEL TEST DATA REFLECTOMETER MEASUREMENTS

Run No. 3 - New Radome. Nozzle Confiouration No. 1

TEST CONDITIONS TUlE SENSOR DATA

TEST liquid Tunnel FRONT SIDE
POINT Tunnel Water Dynam'ic Start Stop Ampl. Phase Ampl. Phase

Velocity
~~:;~~ P~~s~~~e

HH-MM-SS HH-MM-SS Anqle p Angle
(kts. ) KPa *

p

3-A cup of wate poured ove side senso 17-41-24 17-41-38.9 .100 1.6793 .230 .6391
3-B cup of wate poured ove front sens r 17-42-59 17-43-07.9 .745 5.4021 .182 .9266
3-3 0 0 0 17-56-16 17-56-55.9 .107 1.6999 .179 .9361
3-4 146 0 3.20 18-02-26 IB-02-40.9 .112 1.6998 .176 .9623
3-5 145 9.4 3.21 18-03-22 18-03-45.9 .097 1.8466 .182 .9433
3-6 165 14.0 1.45 18-06-03 18-06-23.9 .085 1.9482 .197 .9082
3-7 122 14.2 2.25 18-07-47 18-08-10.9 .085 1. 9612 .194 .9148
3-8 146 16.3 3.21 18-10-46 18-11-10.9 .053 2.4323 .211 .9348
3-9 169 8.0 4.31 18-13-52 18-14-13.9 .087 1. 9107 .200 .9338
3-10 191 7.3 5.49 18-15-32 18-15-52.9 .099 1.8196 .196 .9334
3-11 169' 6.8 4.31 18-17-48 18-18-10.9 .088 1. 9019 .200 .9122
3-12 191 6.1 5.50 18-19-14 18-19-33.9 .098 1.8413 .191 .9304
3-13 98 24.5 1.44 18-21-44 18-22-07.9 .047 3.0302 .237 .9204
3-14 0 0 0 18-33-41 18-33-50.9 .105 1.8231 .200 .9103
3-X cup of wate poured ove front sens r 18-47-31 18-47-39.9 .707 5.2869 .188 .9177
3-Y cup of wate poured ove side senso 18-48-12 18-48-25.9 .099 1. 7170 .195 .2375

'-----.- ._- _....- .__ ...---..-..... - .. -_._ ... ......--

(* 1 Pascal a 1 nt/m2 )

Run No. 4 - New Radome Nozzle Confinuration No. 2

TEST CONDITIONS TH1E SENSOR DATA

TEST Liquid Tunnel FRONT SIDE
POINT Tunnel Water Dynamic Start Stop

Velocity ~~nte~~ Pressure HH"MM-SS HH-MM-SS Ampl. Phase Ampl. Phase
(kts.) rOnl/m3 (KPa)* p Anqle p Anqle

4-1 0 0 0 19-07-26 19-07-35.9 .109 1.6879 .179 .9416
4-2 146 0 3.22 19-11-06 19-11-20.9' .110 1. 6857 .174 .9745
4-3 145 9.4 3.19 19-12-21 19-12-42.9 .063 2.1657 .190 .9512
4-5 97 14.0 1.43 19-17-50 19-18-11.9 .046 2.8317 .226 .9369
4-7 122 14.2 2.25 19-22-30 19-22-52.9 .056 2.3400 .219 .9297
4-8 145 16.3 3.21 19-25-37 19-25-55.9 .064 2.1732 .212 .9346
4-9 169 8.0 4.31 19-28-16 19-28-39.9 .072 2.0573 .196 .9445
4-11 191 7.3 5.50 19-31-37 19-31-58.9 .075 2.0300 .197 .9383
4-13 169 6.7 4.30 19-35-46 19-36-05.9 .0800 1.9782 .201 .9222
4-15 191 6.1 5.49 19-38-45 19-39-06.9 .087 1. 9261 .189 .9362
4-16 98 24.5 1. 44 19-41-15 19-41-39.9 .048 2.9811 .237 .9177
4-17 0 0 0 19-53-16 19-53-25.9 .1145 1.7114 .187 .9164

--------- ------,_..,.. ""
-- .--_.__ ._.._.. ._---._--_._.. - ------ ------



Figure 1. Test setup in wind tunnel showing
with spray bar in foreground.



Complete measurement system.
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Figure 9. Radome on mounting fixture during wind tunnel test.
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APPENDIX A

ANALYTICAL MODELING

1. ANALYTICAL MODEL - by M. C. Bailey

The analytical modeling of the electromagnetic impedance properties for

a horn near a dielectric radome which also has a water film and spray outside

is a difficult task and one which has not been formulated at present. In a

related problem Knop, et. al. (Ref. 2) solved the boundary value problem in

electromagnetics for the impedance of a slot on a dielectric coated cylinder.

In order to obtain results from this related problem, one must resort to the

numerical evaluation of a quite complicated integral. Extension of the pro

blem to a doubly curved surface with multiple layers becomes more difficult

and may not be necessary for the present consideration. Computations using

the related cylindrical formulation (Ref. 3') show that an approximation by

infinite planar geometry can yield good results for impedance when the cylinder

radius is greater than a half-wavelength. Since the impedance of a small slot

or horn is predominantly a local field effect, it may be anticipated that a

similar conclusion could be drawn concerning the local radius-of-curvature

for the doubly curved geometry problem; although this has not yet been shown.

In order to expedite the analysis of measured data from the microwave

reflectometer tests, the plane wave reflection from a multilayered dielectric

is used as the analytical model to infer water film thickness on the radome.

One layer of the dielectric represents the radome and the remaining layers

represent the liquid water film plus the water spray outside the radome. The

use of the plane wave model instead of the horn is a further simplification
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of the analytical problem since the horn problem with a planar dielectric also

involves the numerical evaluation of a double integral in order to obtain results.

The justification for making this last simplification is demonstrated in

figure A-I in which a comparison is given between the calculated plane wave

reflection coefficient and measurements for an X-band waveguide-fed horn

radiating into a single plexiglass layer of different thicknesses.

The analytical expressions for plane wave reflection and transmission

for a plane dielectric layer can be found in most text books on electro

magnetic theory. The analytical model used in this report follows the pro

cedure given by Richmond (Ref. 4) in which the reflection and transmission

coefficients are evaluated through recursive equations for the complex

amplitudes of the standing wave within each layer of a multilayer lossy

dielectric.

Figure A-2 illustrates a plane wave of amplitude Ao incident on a

dielectric with I number of layers and with a reflected amplitude Bo' In

order to facilitate the analysis, incident and reflected plane waves of

amplitudes BI+1 and AI+1 are assumed at the outer surface of t~e multi-

layered dielectric. In the analysis, the electric field vector is assumed to

be x-directed. The incident, reflected, and transmitted electric field com-

ponents for the multilayer dielectric are expressed in the traveling wave

form as

(1.1 )

(1. 2)

(1. 3)



where Rand T are the plane wave reflection and transmission coefficients

for the multilayer dielectric and ko is the free space propagation constant.

The electric and magnetic fields within each layer can be represented as the

superposition of waves traveling in opposite directions. In layer (i) these

are written as

where £i is the complex dielectric constant of the i-th layer. Applying

boundary conditions for the electromagnetic fields at the interface (z = zi)

37

(1. 4)

(1. 5)

between layers i and i + 1 and solving for A. and B.
1 1

in terms of

Ai+1 and Bi+1, gives the recursive equations

(
-jk z. (v'£i+1 - v'£.j)

2Ai = 1 + v'E i +1 / VEi) Ai +1e 0 1

(1.6 )

(1. 7)
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Now if we set

then the reflection and transmission coefficients become

where the values of Ao and Bo are found through the recursive equations.

This calculation is generally carried out with the aid of a digital computer.

The water film is modeled as a dielectric layer by using the Debye

expression for the dielectric constant (ew) of distilled water after being

empirically adjusted by Klein and Swift (Ref. 5) as

e = £1 _ jell
W

where the static value (eo) is given by

-4 2 _ 5 3
£0 =88.045 - 0.414C + 6.295 x 10 C + 1.075 x 10 C

(1.8)

(1. 9)

(1. 10)

(1.11)

(1.12)

(1. 13)
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and the relaxation time (T) is

T = 1.768 X 10-11
- 6.086 X 10-13C + 1.104 X 10-14C2

- 8.111

where C is the temperature of the water in degrees centigrade and w is

the frequency of the electromagnetic wave in radians per second.

The spray outside the radome and water film is represented as a multi

layer dielectric in which the complex dielectric constant of each layer is

expressed as a function of the relative volume density of water in the spray.

This expression assumes small particle scattering theory (Ref. 6, p. 38) applies

to the droplets in the spray and further assumes homogeneous spheres (Ref. 6,

p. 70) for the droplets. Under these assumptions, the equivalent dielectric

constant (es ) for the water spray can be written in the form

(1.15 )

where NV is the relative volume density of liquid water in the spray, and

eI = (e I -1)( e' +2) + (e") 2

{e: ' +2)2 + (e: ") 2
(1.16 )

(1.17)
3g"

e" = {e ' +2)2 + {gll)2



By estimating the volume density of the spray and the water temperature,

these expressions can be used with the recursive equations to calculate the

reflection and transmission coefficients. The thickness of the water film

on the radome is inferred through a comparison between the measured and cal

culated reflection coefficient amplitude and phase.
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APPENDIX A

ANALYTICAL MODELING

2. MEASUREMENT TECHNIQUE AND INTERPRETATION - by C. P. Hearn

Determination of the water layer thickness requires a knowledge of the

feedpoint impedance variations under test conditions. This was accomplished by

making standing wave measurements at multiple points along the feedline,

preceeding the antenna, and then calculating the feeding point impedance (or

complex reflection coefficient).

Historically, the determination of impedance, or alternately the complex

reflection coefficient, has been based on the use of the Smith chart (Ref. 7

and 8); however, in this experiment the volume of data to be evaluated made

computer-aided data reduction mandatory. The complex reflection coefficient,

r, was determined by a curve-fitting routine in which the magnitude and

phase of Gamma (p and ~) were picked to minimize the sum of the mean square

deviations between the measured data points and theoretical values based on

the mathematical model shown in figure A-3. Note that in this model, the

direction of propagation is in the negative X direction.

The actual Ku-band impedance measurement system, described more fully in

Section II-B, used a four-probe stripline with built-in diode envelope

detectors to provide the primary data, with a dual directional detector pro

viding a II qu ick-look ll
, scalar indication of the complex reflection coefficient.

Referring to figure A-3, the forward voltage wave VF(X} referenced to its

value at Xl may be expressed as

a(X-X1) jS(X-X1}
vF(X) = VFl e e , Xl~X~X4

where y =a - je is the complex wave propagation constant.

(2.l)
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The reverse voltage wave vR(X) is expressible as

(2.2)

The voltage v(x) at any point along the line is the vector sum of VF(X) and

vR(X), or

-2aX
where the two-way cable loss term, e 1 in Equation 2.2, is replaced by

T2. The voltage produced by a square-law (diode) detector located at X is

v(X ) = K(X) Iv(X) 12 (2.4)

where K(X) is the detector gain constant. Combining Equations (2.3) and (2.4)

leads to

[
-2a(X-X) j213(X-X) j2sX jtjJ] 2

V(X) = K(X)lvF(X)12. 1 + pT2 e . 1 e 1. e 1 e

(2.5)

combining Equations 2.1 and 2.5 gives

(2.6)
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To obtain the desired relationship for the individual probe voltages, Vi'

the 4 distinct values of Xi (Xl through X4) are combined with the mu1ti-

p1icative constants of the squared magnitude into one constant to give

i = I to 4 (2.7)

The unknowns in Equation 2.7 are p and ~; the remaining parameters are

determined through the following calibration procedure which provides a

measurement of the unknown parameters. The unknown impedance (i.e. the micro

wave horn/radome interface) was replaced with a micrometer-controlled sliding

short to generate the set of curves illustrated in figure A-4 in which the 4

probe voltages are plotted with respect to the displacement of the sliding

short from the reference plane (X = 0). Channel gains (Ki ) were set so that

all channels produced approximately equal maximum values. The sliding short was

replaced with a fixed short at X = O. The measured values of the output

voltages of the detectors, under this condition, were located on the curves of

figure A-4, thereby establishing the location of the reference plane (to an

ambiguity of X/2). The sample points, Xi' were obtained by measuring their

displacement in wavelengths from the reference plane.

The line loss between the reference plane and the i th sensor was deter

mined indirectly using the standing wave ratio definition. Referring to

Equation 2.7, the ratio of maximum and minimum values of Vi was determined

and the loss term computed yielding
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-o,!J.X.
Te 1 =

(
Vi m~x.) -1

Vi mln.

(
Vi m~x.)+l
Vi mln.

1/2

(2.8)

-o,!J.X.
Experimental results indicated that the incremental loss, e " was small

enough to justify neglecting it, and assuming 0, = o.
Finally, the Ki were selected so that Equation 2.7 had the same maximum

values as were measured in figure A-4. These data are tabulated in Table A-I.
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APPENDIX A

ANALYTICAL MODELING

3. PARAMETER ESTIMATION - by C. P. Hearn

The data reduction task was to determine the values of p and ~ that
A A

minimized the error between the four data points, V1 through V4, and the

theoretical relationship of Equation 2.7. The function to be minimized was

defined as:

(3.1)

Equation 3.1 was minimized with the finite-difference, Levenberg-Marquardt

Algorithm (called Marguardt1s Compromise in Ref. 9). This algorithm demonstrates

excellent convergence properties. Additionally, it is available from the

International Mathematical and Statistical Libraries (IMSL) version 9.0 software

package (Ref. 10) and hence required a minimal amount of programming effort.

A full description of the method may be found in reference 11.

Implementation of this algorithm produced surprisingly small values for

the sum of the squared errors. On the average, this value was .017 over 122

data sets. The average amount of computer time required to implement the

algorithm was .0679 cpu seconds per data set, with each execution requiring

approximately 8 iterations to converge.
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PARAMETER

Table A-I. Experimentally measured constants.

SIDE SENSOR
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FRONT SENSOR

Xl .3763A .21875>.

~x. .0930>. .11405>.
1

~X2 .2122>- .2084 >.

~X3 .3280>. .3229 >.

T2 .851 .852

K1 1.100 1.067

K2 1.086 1.067

K3 1.103 1. 079

K4 1.074 1.085
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APPENDIX B

MEASURED REFLECTION COEFFICIENT DATA

The reflection coefficient determined from the reflectometer four-probe

data is presented in this appendix as plots of amplitude and phase versus

time during each test run. The data for the "old" radome is presented in

figures B-1 through B-14 for the front sensor and in figures B-15 through B-28

for the side sensor. The data for the side sensor was not analyzed because

of reasons given in the Results and Discussion section, but the data is

included here so that it would be available for analysis at a later date,

if needed .. Two representative sets of data for the "new" radome are given in

figures B-29 through B-32 for the front and side sensors. Due to the fluctua

tions in the data versus time~ a value of amplitude and phase was obtained

by averaging each set of data over a time interval nf about 10 seconds during

the "steady" portion of the fluctuations (i.e. between the initial and final

transient regions). These averaged data are presented in the Results and

Discussion section and used in the determination of the water layer thickness.
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APPENDIX C

WATER FILM THICKNESS CALCULATIONS

Plots of reflection coefficient vs water spray thickness with water film

thickness as a parameter.

NV = relative water volume density

dt = thickness of spray transition region

ds =water spray thickness

dw =water film thickness
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