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This report describes a portion of the work performed from

.July 1980 to March 1982 under Contract NAS8-33448 for the George C.

Marshall Space Flight Center, National Aeronautics and Space

Administration, M:ir-shall Space Flight Center, Alabama. The

technical managers for MSFC were Mr. B. R. Hollis, Jr.,

Mr. R. F. Dehaye and Mr. J. M. Gould. This report was prepared

by the Microelectronics Research Laboratory of the Department of

Electrical Engineering, Mississippi State University, under the

direction of the prl,%icipal investigator Dr. Thomas E. Wade. The

principal participants in the program were Mrs. Rebecca A. Hamilton,

a	 Mr. Phu Hiep Luong and Mrs. Mildred N. Sellars. Typist was Mrs.

Jerrie McIngvale.

Phis final report has been divided into four areas of emphasis,

with a, separate comprehensive report for each area. These four

areas represent the following subject groupings:

PART I. Emphasis is on the ::ealization of very dense

metal interconnection for VLSI systems

utilizing the lift-off process. Both a survey

of lift-off techniques is presented as well as

experimental and novel lift-off methods which

have been investigated by the author.

PART II. Emphasis here is on multilevel metal interconnection

system for VLSI systems utilizing polyizaide as the

interlayer dielectric material. A complete
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characterization of polyimide materials is

presented as well as experimental methods

+	 accomplished using a double level metal

teat pattern. A novel double exposure

polyimide patterning process is also

presented.

PART III. Emphasis is on dry plasma processing including

a characterization of and an equipment survey

for plasma etching, reactive ion etching,

(reactive) ion milling and piasma deposition

processes. Also included is an indication of

future microelectronic trends, including

patterning technology, lithography, materials

deposition, packaging, etc.

PART IV. Emphasis here is on an evaluation of dielectric

material for use in VLSI metal interconnection

systems. A number of dielectric material types

(or combination of materials) are experimen-

tally evaluated using a second test pattern.

Recommendations are presented based on these

findings.
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1 . '	 INTEGRATED CIRCUIT INTERCONNECTION LIFT-OFF TECHNIQUES

I. INTRODUCTION

The increasing packing density of integrated circuits requires

small conductor linewidths and small spaces between conductors.

Aluminum and aluminum-based metals (Al alloys) are the most popular

material for interconnection of large scale integrated circuits (LSI).

These metals will continue to be used in very large scale integrated

systems (VLSI) even though additional conducting materials like

polysilicon, refractory metals and metal silicides will experience

a growing usage in these systems.

The normal procedure for patterning the interconnection material

consist of first depositing the interconnect material to be used on

the surface of the wafer. A light sensitive material (photoresist) is

then deposited and patterned, which in turn acts as a mask in etching

the interconnection material. The lift-off process consist of depositing

the light-sensitive material (or a substitute) onto the wafer and

patterning first in such a manner as to form a stencil for the inter-

connection material. Then the infi=rconnection layer is deposited and

unwanted areas are "lifted-off" by removing the underlying stencil.

The lift-off technique of patterning the interconnection offers

a number of advantages over the etching procedure, especially when

dealing with small geometries as are encountered in the VLSI technology.

The more predominant advantages may be indicated as follows:

d
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i)	 Photoresist defects: 	 When using the more conventional

etching procedure, one relies heavily on the quality of the

photoresist (or substiLuLe layer? pattern to act as a mask in

etching the underlying interconnection material, either using

a wet chemical or dry plasma technique.	 Very often this photo-

resist masking layer will have defects in the form of pinholes

in it (even for thick photoresist layers). 	 These unintended

'openings' in the photoresist layer result from several causes,

the most likely being dust particles or other foreign matter

on the wafer surface. 	 When etching the interconnection material,

these pinholes allow etching of the interconnect material (and

possibly other materials) in undesirable locations.	 This

problem is -?ssen2:ially eliminated with the lift-off technique.

ii)	 Silicon residue:	 After delineation of alloy films

such as Al/Si or Al/Si/Cu, silicon residues may remain in the

ti

field where these metals are etched away [1]. 	 Removal of this
r

silicon residue requires extra processing steps and could have

detrimental effects on the remaining wafer surface.	 Employing

e the lift-off technique negates this residue and the need to

remove it.

iii) Wet chemical etch: This etching procedure results in

an isotropic etch. Thus, in etching interconnection material,

a lateral etch attack is experienced resulting in the width of

the conductors being reduced and the spacing between adjacent

conductors being increased as per Figure 1. The undercutting

-2-	 t
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Figure 1. Schematic_ illustration of a typical cross section of

met31 conductors after chemical etching. The under-
cutting at the bottom of the conductor is AX.

A X per edge (see Figure 1) might be in the order of the

conductor thickness. As long as the desired spacing between

adjacent conductors is large enough, i.e., larger than about

3 um for 1 um conductor thickness and 1 um minimum photoresist

dimension, the undercutting effect can be compensated by proper

dimensioning the corresponding geometries on the photomask.

However, if spaces of about 1 um are required between 1 u thick

metal conductors, the compensation procedure fails.

The edge contours of conductors delineated by wet chemical

etching are conics! [2), the upper portion of the edges being

steep or even overhanging. Edge contours of this kind may lead

to poor coverage of such edges by subsequently deposited layers
d

Stich as passivation and metal layers. For VLST circuitry, as

r
the linewidths decrease to increase packing density, the metal

-3-
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thickness will have to increase in order to maintain low resistivity

per unit length. Especially under these conuitions, the conical

edge contours of the metal conductors becomes important.

In addition, it should be noted that chemicals used in the wet

chemical etching process are very dangerous and costly. If as

alternate process can be made safer to execute (alleviating law

suits, etc.), less expensive , and render a similar or improved

result, it should be seriously considered.

iv) Dry plasma etch: This etching procedure typically

results in anisotropic etching. These procedures include

plasma etching, reactive ion-etching, reactive ion milling

and straight ion beam milling. While the dry etching processes

Possess tho potential for ratterning interconnection materials

with eery fine geometrics, they at present render several

undersirable side effects. Generally, the steep, sharp edges

of the metallization profile obtained by dry etching results

in poor step coverage for subsequently deposited layers 1.3].

Dry etching processes can induce radiation damage into the VLSI

circuitry (very sensitive in MOS gate regions) which must be

annealed out when possible [4]. Also at present, the selectivity

associated with dry etching processes for metallization layers

is quite poor giving rise to severe etching of materials on

the wafers which were not intended to be etched. And for some

materials (i.e., Ni and Pt [5]) which are candidates for

metallization interconnect, there are at present no good dry

etching process which can adequately pattern these.

-4-
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"06	 v) Nonconventional materials: Patterning of non-conventional

interconri.ct materials is being pursued today in an attempt to

a
locate a replacement for conductors like polysilicon and Al

or Al/Si for VLSI applications. For many of the refractory

matals and metal silicides being investigated, lift-off processes

are the only reliable technique for delineation, especially in

the micron and sub-micron range. Also, composite metal. layers

often used in bipolar and other VLSI applications like Al/Ti/W

can be patterned with a single lift-off.

This technique is also not limited to metals, but can be

used for many thin films which are deposited in a vaporous state

as long as a compatible masking layer can be found. There are

many considerations in developing a lift-off process for a specific

application. A lift-off process must be tailored according to

the material to be patterned, the required resolution, and other

process and device restrictions. Thus, a great number of

processes can be developed using lift-off technology.

Because of the above mentioned problem areas associated with

delineating interconnection materials using wet chemical and dry plasma

etching processes, the lift-off technique discussed in this section

offers a very viable alternative for patterning small geometries with

minimal undesirable side effects. In the following two sections, a

survey of those lift-off techniques as reported in the literature will

be presented as well as some experimental results and novel techniques

developed at the Mississippi State University Microelectronics

0	 Research Laboratory.

-5-
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II. SURVEY OF LIFT-OFF TECHNIQUES

A large number of different, though related, lift-off techniques

have been reported in the literature within the past 10 to 12 years.

These have been subdivided into the use of photoresi.st as a lift-off

stenci -., the use of an auxiliary layer for improved stencil formation,

the formation of a metal. stencil, and interspaced throughout,the use

of plasma deposition and etching techniques for forming a lift-off

stencil.

A. Photoresist as a lift-off stencil:

1. Thick Photoresist Applications

a. The Conventional Lift-Off Method:

The lift-off technique for metal pattern formation is

shown schematically in Figure 2. This process was firs used by Stelten

in 1966 in the fabrication of chromium masks [6]. The key element in

this process is to produce a distinct break in the metal film at the

point where it leaves the substrate and begins to form a bridge over

the photoresist relief pattern. To insure this, it is essential to

produce a sharp vertical or slightly overhanging profile in the photo-

resist and to carry out the metal deposition so that atoms impinge at

near normal incidence. In this way, the metal on the sides of the photo-

resist relief patterns is considerably thinner than the metal film on

-6-
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(b)
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4	 the substrate and the top of the photoresist, and the t-r^!red

removal of u..anied metal is readily effected by swelling the photo-

resist in an organic solvent.

PMOTORESIST PATTERN

SUBSTRATE

EVAPORATED META,

METAI PATTERN

r!rr

Figure 2. Schematic illustration of metal pattern definition using
the original lift-off technique. (a) Photoresist pattern

definition. (b) Metal evaporation. (c) Photoresist
stripping, thereby lifting off the overlying metal. The

spaces between the metal features are equal to the corre-

s ponding photoresist linewidths, as measured at the bottom

of the photoresist bars.
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The character of a photoresist profile depends critically on the

exposure conditions, primarily on the avoidance of diffraction

effects and to a lesser extent on the exposure time. It is generally

believed that contact printing rather than projection exposure renders

less diffraction effects [7]. For optimal results, intimate contact

must be cbtained between the mask and the photoresist at the time

of exposure. Also, deposited metal film thickness should not exceed

about 1/3 to 1/2 of the photoresist height. It should be no;:ed that

in the event defects or areas of residue form in the photoresist layer

prior to metal deposition, it can easily be removed and reapplied

and patterned without exposing the wafer surface to any type of

harsh chemicals. Thus, the lift-off technique allows for mistakes

in the process to be rectified whereas the etching technique does not.

Photoresist edges might also be realized with overhanding portions,

for instance, due to interference effects during exposure of the

photoresist [9] or due to poor adherence of the photoresist to the

substrate. However, it is not very attractive to utilize these effects

for lift-off metallization because they are difficult to reproduce.

The photoresist is not baked after pattez.a development because it

is not required by the process, and runs the risk of rounding the

photoresist profile through plastic flow. For the same reason, the

substrates are not heated during deposition of the metal film. The

softening point of Shipley AZ1350, for example, is about 130°C so that

some preheating or glow discharge cleaning to enhaa e metal adhesion is
;,I

permissible. Generally speaking, negative photoresist acts as a poor

te a,	 stencil for lift-off phenomena primarily because of the rounding of

the Fhotoresist profile [7].

-8-
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	 Although thick photoresist films have many reports of being used

successfully in patterning interconnect in LSI and VLSI circuitry, one
.	 n

of the most unique applications reported involved the use of thick

narrow photoresist "walls" to shadow off rad'ation damaging ions during

reactive plasma ion etching of MOS gate regions, and then used to

lift-off undesired metals in realizing the basic MOS transistor structure

[11]. This process involves some special faLrication techniques, but

may prove to be very useful as device dimensions continue to decrease.

If a line-of-sight deposition process is used and some photoresist

sidewall coverage is realized, lift-off can still be used successfully.

If the resist side-walls are near vertical, the metal deposited on'these

sidewalls will be r.1uch thinner than that deposited on top of the sub-

strate or the photoresist, as shown in Figure 3.

To facilitate resist stencil removal, the sample is first placed in

a metal etch just long enough to remove the thin sidewall deposition

(negligible effect on top metal thickness), and then placed in a

suitable resist stripper for lift-off [12]. To optimize this sidewall

metal etch-back process, rotation of the substrate during deposition will

insure that the sidewall metal thickness will be essentially the same

acs-oss the face of a wafer, allowing a uniform etch-back [13].

b. Lift-off Involving Sputtered Metals

For successful lift-off of metallic thin films using

thick photoresist stencils, deposition techniques are normally limited

to electron-beam or thermal filament methods. It has been shown [8] that

metal deposited by means of a sputter gun can also be lifted off if the

-9-
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DEPOSITED MATERIAL

SCATTERED MATERIAL

SUBSTRATE

c-rru_n n ry

Figure 3. Lift-off using the etch-back process. (a) Metal is deposited
on photoresist stencil having thin side-wall coverage due
to scattering effects. (b) The deposited metal is partially
etched (etch-back) to expose resist sidewalls. (c) After
lift-off, the desired metal pattern is rendered.
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substrate is far enough from the gun so that a 'line-of-sight'

deposition occurs (i.e., metal particles arrive at the substrate in a

a
direction perpendicular to its surface), as shown in Figure 4. In a

normal sputter deposition process, the sputtered metal coats the

"sidewalls" of the photoresist stencil so well that they cannot be

penetrated by the solvent needed to dissolve the under-lying photo-

resist, thus inhibiting lift-off.

COWOPIrei oOME

R
P z 2-7/4

S-GUN

Vigure 4. Simulating a 'line-of-sight' deposition
process using a sputter gun. Typically,
R is much greater than D.

-11-
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The disadvantage in using this process is that typically, the
E
^t

distance of the substrate from the sputter gun, R, is much greater
s,
x	 a

than the size of the sputter gun target, D, and most vacuum systems

are unable to handle this. 	 Also, the deposition rate is very slow.
3

It has recently been reported that even sputtered aluminum or

aluminum alloy may be patterned using the lift-off technique if the

photoresist stencil sidewalls are ver.ticle or have a slight overhang

`	 [10] even when the substrate is close to the sputter-gun. In fact,

0

it is claimed that narrow aluminum alloy lines having a greater thickness

than the photoresist can be lifted off. The key to the success of this

process involves maintaining the substrate at a low temperature (less

than 100°C) during deposition to prevent (1) deformation of the photo-

resist pattern and (2) closing of the microcrack required for solvent

penetration in order to accomodate lift-off. The microcrack formation

results from the film growing perpendicular to the vertical sidewall of

the photoresist pattern and the horizontal substrate surface, respect-

ively. These films contact each other near the photoresist pattern

edges, but do not fuse into one due to having different grov ,th directions

from each other at the low-deposition temperature as shown in Figure 5.

Penetration through this microcrack by a suitable photoresist stripper

allows the lift-off process to occur, resulting in the desired patterned

metal. The sidewall of this resulting metal has a slope angle depending

on the relative growth rates of the metal on the substrate surface and

the photoresist sidewall during metal deposition. Also, since the

photoresist sidewall deposition rate is a function of the argon ion

concentration present at the time of deposition (i.e., the greater the

-12-
t
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Figure 5. Profile of sputtered metal showing
sidewall coverage and microcrack.

number of collisions the aluminum atoms have with the argon ions, the

greater probability for sidewall deposition, the slope of the sidewalls

of the resulting metal pattern is a function of the vacuum pressure at

the time of deposition, which can easily be controlled.. Figure 6

illustrates the variation in this slope angle as a function of vacuum

pressure, where the slope angle of the meta -" line is given by

e = tan 1 
1	 deposition rate normal to Si

deposition rate normal to P.R. sidewall

The major disadvantage of depositing metals with the substrate at such

a low temperature is the poor resistance against electromigration due

to small-grain aluminum films resulting.

2. Double Layer Photoresist Applications

a. Double Layer of Same Photoresist Type

An overhanging photoresist stencil can be realized by

using two applications of the same type of resist if the first layer is

properly treated before applying the second layer [14]. In this process,

-13-	 k
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Figure 6. Variation of sidewall slope angle as a
function of vacuum pressure for metal
pattern deposited by sputter technique.

typically a positive acting photoresist is applied to the substrate at

the desired thickness (typically one micron). This layer is pre-baked

and their blanket exposed to ultra-violet (UV) radiation. This exposed

layer is then treated with a gaseous plasma in an atmosphere of a

fluorocarbon gas (as CF 4 ). The purpose of this surface treatment is to

minimize interaction between the two layers of resist. A second layer

of positive resist is then coated on top of the first layer, prebaked

and pattern wise exposed to UV radiation. Both layers are then developed

in an aqueous alkaline developer for such time that the bottom resist

r
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layer undercuts the top layer, resulting in a negative slope stencil

as shown in Figure 7.

,OP PHOTORES I ST
=—^ --T _AY E R

BOTYOM PHOTORESIST
SAYER

SUBSTRATE

Figure 7. Negative slope stencil resulting
from two layers of photoresist.

b. Two Layers of Different Photoresist Types

Several lift-off applications have been reported which

utilize two separate resist layers using either an electron beam [15,16]

or a deep W [17] exposure system. When two dissimilar resist layers

are used, the system has an advantage in that °_'he image is defined on

the top resist layer, by developing in a solution that does not attack

the lower layer. Thus, better resolution and image size control is

obtained than in a single resist process. After complete image

development of the top layer, the developer solution is changed and the

bottom layer is developed in a solvent that does not attack the top

layer further. This assures that the image dimensions remain unchanged

after complete development of the bottom layer, or even the slight

over-development which is necessary to ensure adequate undercut of the

resist structure for lift-off. During metal evaporation, the top

resist layer provides shading of the substrate and consequently defines
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the metal structure dimensions. For these reasons, the two layer

resist system is somewhat more dose tolerant and therefore, is

less sensitive to the proximity effect than a resist which depends

on dose to control the lift-off profile. The sensitivity of this

two-layer resist system is determined by that of the top layer.

There is an additional major advantage of this technique. During

spinning of the bottom layer which is normally thick (at least one

z micron), topographical features due to previous wafer processing

are largely planarized so that spinning of the top layer results in

a level film of uniform thickness. This ensures that better image

size control is obtained even over high topographical. features.

Typical photoresist types used for the electron-beam lithography

two-resist layer process includes poly-methyl methacrylate (PMMA) for

the bottom thick resist layer an] IBM copolymer resist [15], Hunt MPR

resist [17] or Matsushita positive resist (MPR) [16] for the top layer.

A Lrilevel positive photoresist system has also been reported [17]

which incorporgtes a thin separator layer of aluminum film between the

two layers of resist. Mule this tends to prevent dissolution of the

two layers of photoresist such that their properties become somewhat

homogeneous throughout, it does add additional expensive processing

steps. If Dissolution can be prevented by "buffering" the first layer

photoresist using a plasma CF  treatment mentioned earlier, or a

thermal treatment, prior to applying the second layer, then the

intermediate aluminum layer is not required.

-16-
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3. Chemical Treatment of Photoresist Stencil

Treatment of positive pohtoresist with chlorobenzene to

obtain a negative sloped stencil was first reported in 1977 [18]. This

s	 consisted of depositing Shipley AZ1350J on a substrate and prebaking at

70% for 20 minutes. The resist is then exposed to W light using

the desired pattern and then soaked in chlorobenzene for 5-10 minutes

depending on the thickness of the photoresist and the desired thickness

of the stencil overhang. After a develop and rinse zycle, the stencil

shown in Figure 8 results.

Figure 8. Cross-section of photoresist stencil
having been treated with chlorobenzene.

The resulting structure occuva because the upper portion of the

resist is modified during the soak process, thus causing a development

rate different between the upper modified portion and the bulk resist

film. As one might expect, the overhang thickness is also a function

Of Photoresist prebake temperature.

Other solvents, such as toluene and xylene, can also be used as

a soaking material [19] and form similar overhang structures. These

-17-
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other organic solvents have slower penetration rates than chlorobenzene,

thus requiring a longer rrocessing soak time in order to modify a given

depth within the photoresist material, unless additives like n-butyl 	
a

acetate are added to the toluene or xylene solvents.

The use of this lift-off process has been reported in the fabri-

cation of Josephson _ntegrated circuits [20] using projection exposure.

To promote adhesion of the photoresist stencil to SiO 2 substrate,

hexamethyldisilazane (HMDS) was used prior to resist application in

addition to depositing a layer of TiO x on the substrate surface. It

was reported that the stencil overhang was sufficient to withstand

the sputtering during rf discharge cleaning prior to deposition of

the metal layer.

The diffusion tendencies of this chemical treatment process,

the effect of pre-bake temperatures and time, the use of alternate

chemicals to generate a more stable overhang structure, etc. have beer

thoroughly investigated by Hatzakis, et al, [21] using optical ZJV

exposure systems and Shipley AZ-type photoresist.

4. Use of Electron Resist

One of the First applicacions of lift-off utilizing a single

layer of photoresist resulted from the (then) undesirable undercut of

the resist when exposed using an electron beam [22]. This undercut

feature was used to an advantage by the investigators, both for circuit

and mask fabrication.

Electron beam lithography systems are being preferred over

optical systems for the exposure of photoresist layers due to improved

resolution, power densi'Ly and deflection capabilities of the electron

beam. Also, since practical optical systems are ultimately limited in

-18-
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	 resolution by the wave length of light, electron beams offer ail

attractive alternative for fabricating submicron structures. A
0

typical electron-resist stencil is shown in Figure 9.

a

{	 RESIST	 EVAPORATED
REMOVED	 METAL

#

	

	 1

RESIST

r}
C"

SUBSTRATE

Figure 9. The use of an electron-resist to form
negative sloped sidewalls.

Writing directly on wafers with an electron beam eliminates

delays associated with making photo masks and allows easy pattern

changes. In order to use e-beam lithography, however, a suitable

list-off process is required. It is generally easier to obtain

undercut with electron exposure than with optical exposure. The

electron beam spreads during passage through the resist, the exposure

near the substrate is enhanced by back scattered electrons. It is

also generally known that linewidth errors of several types are

observed for a-beam lithography. The first is an overall linewidth

bias, which can be sometimes corrected by adjusting the design

dimensions. Since lines generally become wider than the width exposed,

only a limited amount of correction can be applied before the exposed

width becomes vanishingly small. In addition, electrons may be

scattered from one shape to an adjacent one leading to linewidth

-19-
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changes depending on the proximity of one shape to another

(proximity effects). These errors can be reduced by proximity

correction techniques (24). Other linewidth errors include random

variations from wafer to wafer and between Sites on the same wafer.

These errors can be caused, for example, by changes in resist thickness

or properties, baking conditions, and development conditions.

Reasonable proc,'ssing variations must not cause excessive linewidth

changes.

The combination of using an electron beam exposure system and a

chlorobenzene soak to generate a lift-off stencil has also been

reported [23], which uses Shipley AZ 1350J positive photoresist.

With this process, the AZ 1350J performed well at the baking tempera-

tures used and provides reproducible profiles. Adhesion of the stencil

to the oxide is reported to be good and the exposure intensity is

about three times lower than that necessary for normal electron resist

like PMXA. The linewidth measured at the top of the resist accurately

reproduces the exposed width, implying a tight control of dimensions.

However, a greater variation is seen in width measured at the substrate.

The r_ost serious disadvantage reported is the large undercut of about

0.5 um, which limits the minimum distance between developel pattern

shapes to approximately 1.5 microns.

B. Use of an Auxiliary Layer to Form Lift-Off Stencil

This technique uses the effect of an undercut auxiliary

yer. There are no limitations concerning the shape of the sidewall

contours of the resist, and metal atoms are allowed to impinge on the

substrate surface at various angles of incidence, as is the case, for

instance, in vacuum systems with planetary rotation of the substrates.

t
-20-
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#,	 Fine metal lines and spaces can be achieved with tapered sidewalls

of the conductors, even if the metal layer thickness is on the

order of 1 micron, which is the currently used thickness for inte-

grated circuits.

Schematic illustration of the lift-off process using an auxiliary

layer is shown in Figure 10. 	 First, a thin auxiliary layer is

deposited on the substrate.	 With the aid of conventional photo-

lithography, those regions which shall be free of metallization are

masked with photoresist.	 The auxiliary layer is etched and due to

undercutting, the photoresist bars overhang the remaining portions

of the auxiliary layer. 	 The desired metallization layer is

evaporated by moving the substrates in the vacuum chamber su h that

the evaporated metal atoms impinge on the substrate surface at

varying angles.	 The metal region deposited on the photoresist

pattern are lifted off b,7 dissolving the photoresist in a suitable

stripper.	 It is important to note that in the undercut regions the

bottom of the photoresist bars is always completely free of metal

coverage even if the metal at-oms arrive at angles near 90°. 	 The

stripper can thus reach the photoresist after having penetrated the

microcracks.	 Finally, the auxiliary layer is removed selectively

and the resulting metallization pattern is inverse compared to the

original photoresist pattern.

A computer simulation of the metal la: .r buildu p in the

vicinity of the undercut photoresist edges assuming no diffusion of

the metal atoms after deposition using this auxiliary layer approach

has been reported [25]. 	 This same author used an auxiliary layer of

a
chromium before depositing a thick Shipley AZ 1350H photoresist layer

on top and patterning the two to render an undercut.
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PNOTORESIST PATTERN

(a)

SUBSTRATE	 AUXILIARY LAYER

(U)

EVAPORATED METAL

d

f

(d)

METAL PATTERN

(e)

Figure 10. Schematic illustration of the investigated
lift-off process using an auxiliary layer.
(a) Deposition of a thin auxiliary layer
followed by photoresist patterning. (b)
Etching of the free portions of the
auxiliary layer. (c) Metal evaporation.
(d) Metal lift-off. (e) Removal of the
auxiliary layer.
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1. Polyimide Auxiliary Lo.ers

Recently, polyimide has been reported to Pct as an

auxiliary layer (26) as shown in Figure 11.

MOLYBDENUM
PHOTORESIS T	MASK
PATTERN

►OIrIM10E
r-1	 FILM

•- S.0

`01FFU$EO
REGION

E^	 SUBSTRATE

SIDE ETCH OF
_Or" POLYIMIOE  FILM

f b)

Figure 11. The use of polyimide and a molybdenum
mask as a lift-off medium.

This approach permits deposition of the metals at high

temperatures thereby allowing an increase in yield. These researchers

claim that due to the poor heat resistance of standard photoresist,

low temperature deposition of the metallization layer results. At

low temperatures, adhesion of the metal to the wafer may be a problem.

Polyimide resin PIQ (or poiyimide isoindroquinazolinedione) can with-

stant temperatures up to about 430% and are typically used as

insulation for electric wires. The process begins by spin-coating

the silicon wafer with a PIQ film. Then a layer of molybdenium is
OIL
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deposited on this auxiliary lift-off layer and etched, as shown in

part (a) of the Figure 11.

0

^.	 After removal of the photoresist pattern, the next step is to

remove the parts of the auxiliary lift-off layer exposed during the

etching. Removal is by reactive sputter etch..ing, producing a

precisely controlled side etch (b). The effect of this side etch is
i

to separate the metallization layer on the polyimide from the same

layer on the substrate (c). Electron-beam evaporation is used to

deposite the metallization layer, composed of alloys like aluminum

silicon or aluLzi.num copper silicon. Then electrolysis removes the
F

lift-off layer, the molybdenum mask, and the unwanted metal on top

of thew (d).

Since the metal layer is not etched during lift-off, many

different materials may be used for this layer without changing the

process.

Typically, the PIQ layer is fairly thick upon application, such

that its surface becomes very smooth and nearly planar, almost

irrespective of the underlying steep projections and depressions.

Since the PIQ layer is nearly planar, this allows the thin molybdenum

mask pattern to be very accurate.

Another multi-step lift-off process involving polyimide and dry

etching processes has also been reported [27] for patterning the

second level of a double layer metallization system. Even though the

end result of this process has many desirable features (i.e., a layer

of silicon nitride over the polyimide as part of the process, thus

negating the passivation requirement), its process complexity will

probably preclude its use in a production environment.

k
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2. Dielectric Auxiliary Layers

A number of dielectric materials may be used to form

an tindercut stencil acceptable for lift-off processes. The most

common processes reported involves depositing a layer of chemically

vapor deposited (CVD) silicon dioxide as the auxiliary layer (28,19].

Schematic illustration of a typical process is shown in Figure 12.

LIFT-OFF MASK MAT'L

DIELECTRIC LAYER

,Er,ION A	 /	 SUBSTRATE

(A)

Figure 12. Typical process utilizing a dielectric
q"	 layer as an auxiliary layer.
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This technique also provides for the potential of having

self-aligned diffusion and conductive contacts for semiconductor

devices. Initially, a thick dielectric layer is realized on the

substrate (which could be silicon dioxide for a silicon wafer),

and then a thin lift-off masking layer is provided, which may be

any material having either a lower etch rate, or which is capable

of being selectively etched independent of the 6ielectric (or

substrate) materials. The lift-off mask material and the dielectric

material are selectively etched to expose the substrate using

standard photolithography techniques in such a manner as to provide

a stepped profile as shown in Figure 12a. If the lift-off mask

material can withstand the temperatures, a diffusion or ion implan-

tation step can follow, resulting in the dotted-line profile shown

in (a). After a drive-in or anneal step, a metal-silicide or other

high conductivity material is deposited as shown in (b), and

then the mask material is selectively removed lifting off the

undersired metallization regions as shown in (c). The dielectric

layer can either be selectively removed or left to assist in

planarizing the topography for any addition processing steps.

If the mask lift-off material of Figure 12 is a photoresist,

then the slope of the dielectric layer sidewalls can be controlled

by the dry process employed in forming them [29]. It has been

found that for dielectric layers of vapox (CVD-Si0 2 ), phosphosilicate

glass (PSG), thermally grown oxide (Si0 2 ) and arsenosilicate glass

i	 (AsSG), if these dielectric layers are exposed to plasmas of CF4,

;P	 CULL or CF1. - 0. then their etching characteristics in a NHAF

WO	 solution are altered such that a tapered dielectric layer results

-26-
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when using photoresist as the patterning vehicle.	 The amount of time
7

the dielectric layer is exposed to the plasma effects the slope angle

y of the dielectric sidewalls, within limits.

As layout dimensions continue to decrease, then the amount of

undercut realized in forming the lift-off stencil becomes very important.

As seen in region A of Figure 12a, if an isotropic etching procedure iG

used to etch the dielectric layer as the dimensions are scaled down, a

"mushroom" effect results due to an excessive thinning of the top portion

of the dielectric layer and could cause the top lift-off layer (and
u
t
W

deposited metal) to be broken off.

There is a process reported [30] which accurately controls the

amount of undercut and the ratio of the width of the top to the bottom

portions of the dielectric layer in region A.	 This process adds a thin

reactive ion etch (RIE) mask on top of the metal lift-off layer and the

dielectric layer is etched anisotropically through 70 to 95% of the

dielectric layer, resulting in no undercut. 	 Then the remaining 5-30%

of the dielectric 'layer is etched using an isotropic (wet or dry) etch

resulting in the desired controlled undercut.

3.	 Metal-Photoresist Auxiliary Layer

Another method, which was eluded to in discussing two-

layer photoresist processes, uses a metal-photoresist layer as an

auxiliary layer to form the stencil required for lift-off [32].	 The

method actually consists of a three layer photoresist-aluminum-

photoresist sandwich as shown in Figure 13.

`s N The top layer of photoresist defines the pattern, the

bottom photoresist layer provides the undercut and the aluminum film

merely provides an intermediate layer to keep the top layer of
ti
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photoresist from dissolving the bottom layer of photoresist during

application cf the top layer.

DEVELOP
RESIST	 DEVELOP

UNDERCUT

R ESIST +	+
At-

RES;ST

(u)	 SILICON	 (b)

EVAPORATE	 ! IFT OFF
MATERIAL	 STENCIL

NOTE TAPERED
EDGES

FILMPATT ERNED
FILM

:G

(c)	 (d)

Figure 13. Lift-off technique using photoresist-aluminum
photoresist stencil.

The resolution of this method is determined by the photo-

resist, the exposure equipment, or the mask used, and generally yields

results that are very comparable to those obtainable with single

layer resist patterning methods. With this particular method, the

resolution is not greatly affected by the etching process or subsequent

developments of the bottom photoresist layer. The intermediate layer

of Al also causes good line uniformity because of the uniform reflection

and absorption created by this layer. As a result, at points where a

pattern crosses over a previously defined layer, no changes in
.saw
.^	 linewidth are noticed.
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Prior to depositing the thin metal layer, the bottom photo-

resist layer is exposed in a blanket fashion. A disadvantage of this	 a

method is the attainment of the undercut by developing a totally

exposed Film cf photoresist which is not a self-limiting process.

However, if a minimum exposure of the bottom resist is undertaken,

such that all resist is completely exposed but developed at a slow

to moderate rate, ae.quate control of the undercut can be achieved

by moderately accurate timing of the development process.

Another process has been reported wILich makes use of only

metal as the auxiliary layer [33]. This process, shown schematically

in Figure 14, does not include photoresist in the lift-off stencil

which is susceptible to thermal degradation, so that the substrate

can support RF sputtering and high temperature evaporation processes.

Initially, a plasma etch mask is electroplated through a

resist pattern (not shown) on to the lift-off metal layer. It may

be noted that in this process the original resist pattern has the

same polarity as the final metallized structure (typically, this is

not the case). The lift-off metal is plasma etched such that a

large undercut is realized. This undercut provides the overhang

which prevents step coverage by the desired metal to be deposited and

lifted off.

The desired metal is next deposited at a high temperature

if desired, and the lift-off metal is removed chemically. Since RF

sputter or evaporation at high substrate temperatures can be under-

taken, the electrical, mechanical and magnetic properties of the final

metal pattern are more easily tailored for device requirements.

tl
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Figure 14. Using a metal for auxiliary layer for temperature
stability

One parameter which impacts the success of any lift-off

process, and one which has not yet been addressed, is the ductility

of the metal being patterned. Unless there exist a very clean break

between metal to be lifted and metal to remain, a ductile metal such

as gold can cling tenaciously and give poor edge definition or no

lifting at all. This problem is avoided by selecting proper relative

thicknesses of the layers and by having a suitable cross-sectioned

profile of the mask opening. Brittle metallizations tend to be more

-30-
k

G



forgiving of short comings of these varameters. A brittle metallization

is one which tends to fracture at the edges of pattern steps, thereby

causing discontinuity.
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III. EXPERIMENTAL METHODS ATTEMPTED IN REALIZING
LIFT-OFF PROCESSES

A. MSU Research Facilities

The Microelectronic Research Laboratory at Mississippi

State University consists of approximately 6600 square feet of space

located on the fourth floor of the recently built (1977) Simrall

Electrical Engineering Building. With the space and facilities

purchased with state funding (approximately $0.5 million) plus

equipment acquired through industrial donations and research contracts,

the total laboratory represents well over a $2 million dollar equiva-

lent capital investment. Approximately 3,000 square feet consist of

class 10,000 clean rooms. Within this space, facilities exist for

mask-making and photolithography, for chemical preparation, oxidation,

etching, diffusion of impurities, ion implantation, chemical vapor

deposition of silicon dioxide and silicon nitride, epitaxy and

polysilicon deposition, for metallization (E-beam, thermal evaporated

or sputtered), die-bonding and lead attachment, wafer and package

automated testing, and for the evaluation of device and integrated

circuit parameters. In addition, the hybrid facilities allow

fabrication of thick and thin film circuits and encapsulation.

Additional diagnostic capabilities are acquired through the

University's Scannipg Electron Microscope Center.

Key pieces of equipment utilized in performing the research

activities described in this report consist of the following:

D.C. Sputter System. The vacuum system for the sputter

chamber consists of a Welch Duo Seal model 1376 roughing
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•,	 pump and a Varian M6 diffusion pump capable of generating

pressures in the 10
-3
 to 10

-9
 torr range and at a pumping

r
rate of 2400 liters per second (air). 	 The DC sputter gun	 p

is a Sloan model	 S-310 which uses a target cathode in a

hollow sleeve form, a disk-shaped anode, and a 	 cylindrical

permanent magnetic.	 The gun p an use either 1/16 or 1/8 inch

target material in an 18 inch circular system. 	 Its DC

operating voltage is -300 to -600 volts at an operating

pressure of 5-15 microns.	 The deposition rate for aluminum

0
is approximately 60, 130 and 180 A/min. for a 1 KW, 2KW and

E

'
6 .
'n.

3 KW energizing source, respectively. 	 Wafers are deposited

with metal while rotating on a 10 inch round pallet under the

sputter gun, which is approximately 5 inches above the wafers

as they are rotated under the gun. 	 This insures metal

x deposition from all angles resulting in excellent step

coverage.	 Several aluminum targets were used in this
i

investigation, including ultra pure Al, Al with 2% Si,

N . Al with 1.5% Si and 3% Cu, and Al alloy 6061.	 This structural

p' grade alloy contained the following impurities:

Si	 0.4 - 0.8%

Cu	 .15 - 0.4%

Fe	 0.7%

Mg	 0.8 to 1.2%

Mn	 0.15%

^'. Cr	 0.15 - 0.35%

M
Zn	 0.25%

Ti	 0.15%
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The primary reason for using this Al alloy is for the

prevention of hillock formation.

Thermal Evaporator. This system consists of a Varian VI-221

model 932-00281 vacuum chamber having two Varian Vac Sorb

roughing pumps and a Vac Ion Pump. This is a 1001 clean

pumping system having no hydrocarbons or other contaminants

back-streaming. The Vac Sorb roughing pumps are capable

Of pumping at an 80 liter per second rate which is ultraclean

and vibration free. The Ion Pump operatas with a lower

range of 10-7 to 10 10 '^orr. Evaporation is realized using

ultraclean, ultrapure aluminum studs placed over an aluminum

coated tungston filament.

Mask Aligner. Tie majority of the work described i:_ this

report was accomplished using an Electroglas Model 500D

Optical Mask Aligner for exposure up o 2-1/4 inch diameter

wafers with 0.75 micron accuracy. The light source consists

of a 200 watt mercury short arc lamp. Light intensity at

the wafer is approximately 7.0 mJ/cm2.

Photoresist spinner. All photoresist coatings (both positive

and negative) and polyimide coatings were accomplished on a

Headway two-head spinner capable of spinning in an adjustable

range of 100 to 12,000 rpm for specific time settings. All

photoresist and related processes are carried out in class

100 laminar flow hoods which are both humidity and temperature

controlled in a room that is class 1000 under amber lights.
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Film Thickness Measurements. Transparent films are

measured with a Gaertner Scientific Corp. ellipsometer

which is based on a helium-neon laser system. Metal

films are monitored with a sodium light source inter-

fermeter microscope. Also, the Hitachi 111IS-2R scanning

electron microscope available in the Electron Microscope

Center is capable of rendering very accurate measurements.

Photographs of the photolithography room and the metal deposition

room are shown in Figures 15 and 16.

4!1
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Vigure 15. Photolithography Facility
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Figure 16. Metallization deposition equipment

B. Lift-Off Processes

All experiments were conducted using two-inch silicon wafers

typically of <111> orientation and having a resistivity of 5-20

ohm-cm. Several photoresist types have been employed, *he most

frequent positive type being Shipley AZ1350J and AZ111, and negative

type being Waycoat Type 3 Number 43. Figure 17 illustrates the

thickness of the resulting poet baked photoresist for these three

types of resist as a function of final spin speed ui application.

The resulting resist thickness was measured using the calibrated

scanning electron .microscope. In most cases, all test wafers were

thermally oxidized prior to conducting lift-off test using a

-36-

:u+

r•

tA



tM

ORIGINAL RAGE" 13
OF POOR QUALITY

•,^,	 combination of dry-wet-dry oxygen ambient aL approximately

1000°C until approximately 2,500-10,000	 oxide is

realized.

THICKNESS OF POST BAKED FHOTORESIST
e	

VS

SPIN SPEED

3 I-

TYPE 3 NO. 43

SHIPLEY
AZ 111

2	 4	 6	 8	 10
SPIN SPEED (RPM x 1000)

Figure 17. Thickness of post baked photoresist for Shipley
AZ1350J and AZ111 positive resist, and Waycoat
Type 3 negative resist as a function of appli-
cation spin speed.
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-%-	 1. The Conventional Photoresist Lift-Off Process.

The first attempt at patterning a deposited metal film

consisted of the 'convention lift-off method' as illustrated in

Figure 18. Roth do sputtered and thermal evaporated aluminum

layers were investigated. Figure 18 illustrates the results

O

obtained when 3500 A aluminum alloy type 6061 film is do

sputtered onto an approximatel y 2 micron thick Shipley AZ 1350)

patterned photoresist layer. An attempt to lift-off this

metal using solvents of acetone and Shipley AZ Thinner was

unsuccessful as can be seen. The AZ1350J was spun on the wafer

at 3000 rpm. Each bar of Figure 18 is 0.7 mils wide and 5 mils

long. Spacing between bars is also 0.7 mils.

Figure 18. Lift-off attempt using do sputtered aluminum
alloy 6061 over 2 micron patterned AZ1350J.
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Figure 19. Scanning electron micrograph of do sputtered
metal over AZ1350J illustrating continuou3
metal over photoresist sidewalls (absence of
microcrack).

A scanning electron micrograph of a cross-section for one of

the bars shown in Figure 18 is illustrated in Figure 19. Notice

the smooth sidewall slopes of the photoresist layer resulting in

excellent stepcoverage. Due to the lack of desired steep photo-

resist side slopes, this metal did not lift-off as desired.
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Next, a 'line-of-sight' method of metal deposition was

.tempted. Again using AZ1350J positive photoresist spun on the

O
wafer at 6000 rpm and patterned, pure aluminum approximately 4000 A

thick was deposited using the thermal (filament) evaporator.

Again, acetone and AZ Thinner were attempted as solvents to lift

the metal off in an ultrasonic bath, but the best results were

obtained using Shipley AZ Remover 1112A as the solvent as illustrated

in Figures 20 and 21. The lift-off of Figure 20 has very uneven

edges as seen. The lift-off resolution for Figure 21 is somewhat

better, however this pattern was observed near the edge of the wafer0
where the metal thickness was barely over 1000 A thick.

Figure 20. Lift-off of thermal evaporated pure Al 4000 A
thick over AZ1350J photoresist. The pattern

'	 is scribe lines and al4gnment marks.
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Figure 21. • Improved resolution of thermal evaporated Al
over AZ1350J, howevSr, metal thickness is only
approximately 1000 A. Lift-off pattern width
Is 0.7 mils.

It was felt that an improved lift-off could be attained if the

solvent used in the lift-off process was heated above room temperature

In an ultrasonic bath. The heated solvent and ultrasonic action

should allow better penetration of any microcrack of thin metal

layer to as;ist in the lift-off process. Figure 22 shows the results
O

of depositing 5000 A aluminum using the thermal evaporation technique

over AZ1350J positive resist which was deposited at 2000 rpm and

patterned. The solvent was heated to 60 0 C and lift-off was performed
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in an ultrasonic bath. The solvent used was Shipley A% Remover

1112A. The pattern consists of scribe lines and one mil wide

alignment. marks. Considerable improvement is seen over the results

obtained in Figure 20 where room temperature solvent is used.

0

Figure 22. Lift-off of 5000 A thermal evaporated aluminum
deposited over 2000 rpm AZ1350J using heated

(60°C) Al. Remover 1112A in ultrasonic bath.

As a result of the considerable improvement obtained using a

heated solvent for lifting off the aluminum layer, it was decided to

extend this heat treatment effort. Next, a sample was prepared by

spinning AZ1350J on a wafer at 4000 rpm and patterning using a

photoresist test pattern. The thermal evaporated aluminum was then

O
deposited to a thickness of 4500 A and the wafer was placed in the
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mouth of a furnace tube (temperature at center of tube was 1000 °C)

having oxygen passing through it. The wafer was allowed to heat up

for two minutes until the photoresist began to bubble under the metal

(wafer temperature approximately 150-200 0C). The wafer was then
immersed in an ultrasonic AZ Remover 1112A solvent at 80°C for one

hour. The results obtained are illustrated in Figure 23. The numbers

indicate lines and spaces in tenths of a mil (i.e., '2' corresponds

to 0.2 mils). Notice that lift-off of line and spaces down to 2-3

microns could be realized utilizing these heat treatment processes.

°
Figure 23. Lift-off of 4500 A aluminum over AZ1350J photoresist

,r	 after heating the wafer (to approximately 200°C

+	 temporarily) prior to immersing in ultrasonic agitated

q,	 80°C AZ Remover 1112 A solvent.
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Since such good results were obtained using this latter process

`
on thermally evaporated metal, it was decided to repeat the process

o

for do sputtered metal of approximately the same thickness.	 To

insure a greater probability of success, the photoresist was made

thicker by applying at 2000 rpm.	 However, as seen in Figure 24,

the metal would not lift-off even for the larger area patterns.

Negative photoresist layers have been reported as rendering

poor lift-off stencils due to side-slope 'rounding' tendency which

allowed for good step coverage by the deposited metal [7].	 However,

an attempt to use Waycoat Type 3IC Resist 43, a negative photoresist,
0

6

to lift-off thermally evaporated aluminum approximately 2500 A thick

was undertaken.	 The lift-off solvent used was Hunt "Micro-strip"

and was heated to 90°C in an ultrasonic bath.	 The results obtained

after a 15 minute immersion in this solvent is shown in Figure 25.

Several other solvents were attempted in lifting off negative

resist patterns but a suitable solvent could not be located, even

using thermal cycl'Ing techniques.

Based on the experimental results obtained using this conven-

tional photoresist lift-off process, the following statements and/or

conclusions can be made:

i)	 A suitable solvent could not be found to lift-off metal

when negative photoresist was attempted.

ii)	 Fairly good results were obtained using AZ1350.Jr of 1.5

to 2 microns thickness if samples were heat treated and

etched ultrasonically in 60-80°C AZ Remover 1112A for

a

16 thermal evaporated metals, but not for sputtered metals.
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Figure  24. Lift-off 'p rocedure as described in Figure 23
except for do sputtered aluminum.
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Figure 25. Lift-off using negative 1., 000 rpm Waycoat Type 3
w	 I.C. Resist 43 and 2500 A thermal evaporated Al

after immersion in ultrasonic 90°C Hunt 'microstrip'
photoresist stripper for 10 minutes.
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iii) The deposited metal must be much thinner than the applied

photoresist layer.

iv) At the photoresist base, the metal must be very thin

0

(<100 A) and brittle. Resist profiler, which render a

microcrack at the photoresist base should result in a

superior lift-off.

2. The Photoresist Thermal Expansion Lift-off Technique

In light of the improved results obtained by thermal cycling in

the conventional lift-off method discussed in the last section, it was

felt that perhaps even greater improvements could be realized if this

concept was expanded.	 Namely, if the metal was deposited on the

substrate while the substrate (including the patterned photoresist

layer) was below room temperature, and after removal of the substrate

from the vacuum chamber induce the same heat treatment cycles used

earlier, then a microcrack should be generated at the base of the

metal (thinnest point) due to the Ovt-rma1 expansion properties of the

photoresist layer.

The experimental set-up used to insure deposition of thermally

evaporated aluminum while maintaining the substrate at temperatures

below room temperature is illustrated in Figure 26. 	 Temperature

transfer from the liquid nitrogen container to the substrates (back-

side) was through a rather massive aluminum disk plate as shown.

Generally, the coolant holder containing only a small amount of

liquid nitrogen was placed in pooition just prior to closing the

vacuum chamber and roughing the system down.	 This prevented moisture

from accumulating on the wafers and the surrounding parts undergoing

-46-
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this temperature decrease. The liquid nitrogen evaporated away

during the roughing process, however the temperature transfer time

constant was sufficiently short to cool the wafers before high

vacuum levels were reached. A curve of the substrate temperature

as a function of time in the vacuum chamber, as measured using a

copper-constantine thermal couple in intimate contact with the

substrate, is shown in Figure 27. At the time of metal deposition,

the wafers were still below 0°C. This low temperature of the substrate

at the time of metal deposition did not noticably alter the characteris-

tics of the deposited metal in terms of adhesion, thickness, smoothness,
r

etc.

a

d

Thermal	 y
Couple

Substrate Holder

Filament

Figure 26. Experimental set-up used to deposit metal on
wafers below room temperature.
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Figure 27. Thermal stress curve experienced by the wafers
during below room temperature deposition.

Two Shipley positive photoresist were attempted, namely AZ1350J

and AZ 111, at spin speeds of 2000, 4000 and 6000 rpm for 20 seconds.

Metal deposited on the AZ 111 could not be lifted off in a patterned

fashion, typically all metal was removed. Lift-off solvents attempted

included AZ Remover 1112A, AZ Developers Number 311 and 351, and

acetone. All attempts to lift-off sputtered metal were unsuccessful.

Considerably improved results were obtained by not post-baking the

-48-
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positive photoresist layer after patterning, but instead, going

directly to the metal deposition chamber.

Figure 28 illustrates the optimum results obtained by spinning,

AZ1350J on the wafer at 2000 rpm and patterning. No heat treatment

was utilized after metal depositi-in and the metal was lifted ultra-

sonically in Al. Remover 351. Wafers having photoresist spun on them

at 3000 and 4000 rpm could not be lifted.

.^_
^ ^ 5

40

~^'l^	 III ' _^ 11^IIII^IIII^j^

Iss^^t	 '
1

Figure 22. Lift-off of wafer having 2000 rpm AZ1350,1 cold

metal deposition with no post heat treatment.

It was felt that a considerably better lift-off could be obtained

if the cold metal deposited wafers were exposed to thermal heat

cycling prior to immersion in the resist so'-vent. The Wafer shown in

Figure 29 used 2000 rpm AZ1350J resist and after cold metal deposition

wr
was placed in an oven at 230°C for 10 minutes in an air ambient.
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Ne. • e how the photoresist bubbled and flowed under the metal layer.

A L. %cer photograph illustrating this photoresist reflow is shown in

Figure 30 for another wafer having undergone the same thermal process.

Figure 29. Metal distortion and bubbling effects due to
placing wafer in oven at 230°C for 10 minutes
after cold metal deposition.

A number of different prucedures were attempted in order to

render a good lift-off pattern. The "best results" were obtained

using the following process:

- Use AZ1350J resist, spin speed at 2000, 4000 and 6000 rpm.

- Prebake at 80% for 30 minutes

„r	 - Expose for 15, 12 and 10 seconds for resist applied at 2000,

4000 and 6000 rpm, respectively

-50-
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- Develop in 2 parts H 2 O, 1 part AZ351 developer

- Deposit metal using cold thermal evaporation process

1.	
- Post bale for 30 minutes at 110% in nitrogen ambient

- Lift metal ultrasonically in AZ kemover1112A at 60°C .

Figure 30. Wafer showing reflow of AZ1350J photor-sist under
cold deposited thermally evaporated meal after
exposure to 230°C air ambient oven bake for 10
minutes.
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Typical results obtained using this procedure are shown in

0
Figure 31 for metal thickness of 4000 A. Also, a scanning electron

micrograph is shown in Figure 32 of a cross-sectional. view of a wafer

,just after metal deposition. The metal thickness here is approximately

O

2500 A and the photoresist thickness is 2.8 microns. No microcrack is

noticeable from this micrograph resulting from the cold metal depositon

process. Microcrack generation therefore comes about as a consequence

')f the post heat treatment process and also lifting in a heated solvent.

ppppc5M	 7
20	 3 0	40

5
4 -----.^

Figure 31. Wafer pattern obtained using "hest results"

procedure in the thermal expansion technique.

AZ1350J was spun on at 4000 rpm.
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Figure 32. Scanning electron micrograph illustrating

absence of microcrack after cold metal
deposition and before heat treatments.
Magnification 8500X.

The primary limitations associated with the thermal expansion

lift-off technique include the following.

a. It is inconvenient to cool wafers during the metal

deposition step

b. The thermal expansion of the photoresist due to cold

metal deposition alone is insufficient to form a microcrack

C. Even after heat treatments and lifting in an ultrasonic solvent

Which is heatt ,d, the metal pattern is often not well defined

AW

r	 or reproducible.

AW
...+
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3. Photoresist Stencil with Negative Sidewalls Due to Chemical
Treatment

As was discissed in the last section in connection with Figure

8, soaking a positive photoresist-coated substrate in chlorobenzene will

modify the development rate of the upper surface from that of the bulk

resist film thereby rendering a negative or overhanging slope. Using

AZ1350J positive resist spun on the wafer at 2000 rpm, a 85% prebake

for 30 minutes is undertaken prior to exposure using the desired mask

and soaking the wafer in chlorobenzene at room temperature. After

a 15 minute soak, the wafer is then post-baked at 85% for an additional

30 minutes and developed by dipping the wafer in AZ351:H 20 solution

until the desired undercut pattern is obtained. The photoresist stencil

obtainable using this technique is shown in Figure 33. Here, the resist

is approximately 1.5 microns thick with 0.5 micron overhanging lips.

In Figure 34, thermally evaporated metal has been deposited on another

O

sample approximately 2500 A thick. This metal lift-off yield excellent

results.

4. Lift-off Using an Auxiliary Layer of Polyimide for
Stencil Formation

The use of an auxiliary layer in forming a lift-off stencil

was illustrated in Figure 10 of the last section. Since one of the tasks

of this research effort is to evaluate polyimide as an inner layer

insulator or dielectric in doub?- layer metal systems, it was soon

discovered in processing polyimide films that a photoresist stencil

could be generated by over-etching the polyimide in attempting to

pattern it. This process is shown schematically in Figure 35.
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Figure 33. Photoresist lift-off stencil resulting from
chlorobenzene soaking process. Photoresist
thickness is approximately 1.5 microns having
0.5 micron overhanging lip.

Figure 34. Metal deposition on a chlorobenzene soaked resisa

stencil. Metal thickness is approximately 25CO A.

k
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P.I.Q.
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(b)

(c)
Metal

Pattern

(d)

Figure 35. Process used in forming lift-off stencil by

..^	 utilization of polyimide as an auxiliary layer.

^ r
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Initially, the polyimide is applied to the wafer and partially imidized

(procured). The thickness of the resulting polyimide layer is a

function of the deposition spin speed, and the viscosity of the 	 a

starting material which can be controlled using appropriate thinning

or carrier solutions. Next, positive photoresist is applied to the

polyimide layer which will act as a mask in p —eerning the polyimide

and prebaked. The composit materials shown in (a) are then exposed

in a mask aligner and developed. The photoresist developer is a

strong basic solution and ants to etch the polyimide layer at the

same time photoresist development is undertaken. If over development

is allowed to occur, a negative stencil shown in (b) prevails. This

stencil is then post baked prior to loading in the metal deposition

chamber. After metal deposition occurs, the polyimide-photoresist

stencil is removed in a suitable solvent as shown in ( c) and (d).

Both Dupont (PI-2550, PI-2545 and PI-2555) and Hitachi (PIQ-13)

varieties of p-lyimides were investigated. A detailed description of

polyimides, including their properties, processing characteristics,

strengths and weaknesses, etc., will be discussed in the next volumn

of this report dealing with double layer metal processes. In order

to promote adhesion of these polyimides to a silicon or silicon dioxide

substrate, it is necessary to apply a coupling agent.

The first polyimide type investigated was Dupont PI-2550. The

Dupont adhesion promoter consist of a very small percentage (0.01 to

0.02%) of the coupling agent VM651 in either methanol or water. This

adhesion promoter is applied to the wafer on a spinner like photoresist

-57-
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and baked for 10-12 minutes it approximatel y 130°C. The polyimide's

viscosity can be adjusted by using a Dupont thinner solution T-8035.

The carrier solution for this polyimide is N-methl-l-pyrrolidone (NMP)

and this may also he used as a thinner. The prebake (pre-imidization)

process for the polvimide coating is very important and typically

consisted of a 50, 80 and 120°C temperature cycling for 30 minutes

each.

Initial problems were experienced with the coupling agent.

A mixture of VM-651 in methanol had a tendency to bead under the

polyimide layer as shown in Figure 36. Neither the polyimide nor

the photoresist would adhere to these beaded areas. An attempt to

t	 mix the coupling solution in water also gave undesirable results as

shown In Figure 37. The polyimide did not coat the wafer uniformly

and had amplified beads as shown which had detrimental effects on

the patterning process.

Figure 36. Beading effect in the polyimide coating due to

s	 small coupling agents droplets using VM651 in
methanol.

-58-

GI



(+D :

ORIGINAL PAM 13

OF POOR QUALITY

Figure 37. Amplified beads obtained whet, the coupling

agent is mixed in water instead of methanol.

As will b^- inaicated later, coupling agent problems of these

type can be eliminated by proper mixture of the dilute agent solutions

and also by using a pre and post cleaning process (ie, the wafer is

first cleaned with methanol alone, then the coupling agent is

applied, and lastly, another methanol clean is undertaken).

Another problem experienced in this early investigation of

PI-2550 polyimide was the generation of a "fish-eyes". This

localized mounding effect within the polyimide came about by allowing

the wafers to sit in a wa fer holder for several minutes after spinning

the polyimide on, at room temperature and ambient.
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This "fish-eye" effect 1s shown in Figure 38, which appears to

be a mound or collection of polyimide several microns in height as

well as across its base and coming to a rather sharp peak at its top.

The size of these "fish-eves" varied considerably across the face

of the wafer. A convection oven, IR lamp, or photoresist belt

furnace when aced to dry the polvimide immediately after spinning

on and prior to applying the photo-esist eliminated these fish-eyes.

Figure 38. "Fish-eyes" observed in the polvimide layer.

Another problem encountered in patte.iing the polyimide layer

had to do with the cleanliness of the initial substrate material.

If the substrate did not undergo a cleaning procedure prior to

polyimide deposition, the polyimide would adhere to these unclean

-60-
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'.pots on the wafer as shuwii in Figure 39. Simple steps such as a

quick HF:H,,O dip and dehydration ,just prior to depositing the

polyimide would greatly assist in --learing up this problem

. 

0	 -"qq.1
1

^uf^ff	 f^^^fff,	 fill
y

Uv	 0''	 O	 :,
6f

Figure 39. Residue of polyimide on wafer rue to

insufficient substrate pre-cleaning

process.

The procedure used to produce the optimum undercut n.tencil

using Dupont polyimide PI-2550 is as follows:

a. Mix equal parts Dupont polyimide PI-2550 and Duponc thinner

T-8035 and spin coat the wafers at 6000 rpm for 20 seconds.

b. Pre-imidize the polyimide at 50°C for 15 minutes and then

at 80°C for 30 minutes.

-61-



C. Spin coat Shipley AZ1350J on wafer at 4000-6000 rpm for

20 seconds
a

d. Prebake the photoresist at 80% for 30 minutes

e. Expose the photoresist to ultraviolet light using the

photoresist test mask in the contact mask aligner for

10 seconds.

f. Develop the photoresist and pattern the polyimide in 3

parts H2O and 1 part Shipley AZ351 developer for break

plus 8-10 seconds. ("Break" is the time required to clear

the scribe line of photoresist and polyimide.)

g. Postbake the photoresist/polyimide coating at 110% for

30 minutes.

An example of a wafer processed as described above is shown in

Figure 40. This wafer was overetched more than necessary in order to

form a good lift-off stencil, however, the over etching was required

in order to demonstrate the effect in a photograph.

A wafer having this lift-off stencil was placed in the thermal
O

(filament) evaporation metal deposition system and 5000 A of pure

aluminum was deposited. A. photograph of the metal coated wafer is

shown in Figure 41. Upon wafer removal from the deposition system,

the metal was listed off using Shipley AZ Remover 1112A in an

ultrasonic bath at room temperature (25°C). The definition of the

resulting metal was very good as illustrated in Figure 42.
I
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Figure 40. Photomicrograph illustrating the polyimidc

undercut resulting from over-developing the
composit pliotoresist/polyimide layer. The

width of each bar is 0.5 mils or 12.5 microns.

C
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Figure 41. Thermally evaporated aluminum coated wafer
over stencil prior o to lift-off. Metal
thickness is 5000 A..

-63-

s.w

t

V



ORIGlNAL PA00 R
OF POOR QUALITY

bGMMMMM^

—Now	 6 WMEWINWO

4
WR 	 *ON— 00 4 0 ,mijism

a ^^

W
G

Figure 42. Same wafer shown in Figure 41 after lift-off
using AZ Remover 1112A in ultrasonic bath at
room temperature.

Since the results obtained using the thermal evaporation method

exhibited such good definition, a wafer having the same stencil

pattern was next coated with aluminum alloy 6061 to a thickness of

2500 X using the do sputter system. To insure minimum substrate

heating during the deposition, the sputter gun was cycled on and

off at a two minute rate until the desired metal thickness was

obtained. Again, Shipley AZ Remover 1112A was used to lift-off the

metal over the stencil, and the results obtained are shown in Figure

43.

A cross -secL i on of a 0.2 mil stencil bar was mounted for SEM

''	 analvr	 Figure 44 iliustrates a scanning electron micrograph of
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this cross-section. The base polyimide layer is approximately

O

5000 A thick for this particular sample and the masking photoresist

layer is approximately 1.R microns thick. The aluminum alloy shown

O

on top of the stencil is about 2500 A in thickness, but thin enough

1	 to generate a sizable microcrack for solvent penetration at the base

of the stencil. For a thicker polyimide costing, a considerably

thicker metal layer may be realized and still accomplish lift-off

having excellent definition.

•

20	 30	 40'

Figure 43. Lift-off pattern obtained using do sputter
deposited aluminum alloy. Metal thickness
is approximately 2500 X,
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Figure 44. Scanning electron micrograph illustrating

cross-section or do sputtered aluminum allov
deposited over a photoresist/polyimidq lift-
off stencil. Notice the large (3000 A) micro-
crack at the base of the stencil.

At the same time SEM analysis of the sputter metal was being

O
investigated, another sample having 5000 A thermal evaporated

patterned metal was observed as shown in Figure 45. Here, the metal

thickness is approximately 0.5 microns. The width of the left-hand

bar is 1.7 microns at the base, and 1.3 microns at thL- top. The

metal side walls are sloped nicely which should allow excellent

Fcep-coverage in subsequent processes. The width of the right-hand

-66-
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bar is slightly less than 0.5 microns, at its has p . Hence, it has

been demonstrated that submicron metal lines can be realized using

this lift-off technique.

Figure 45. SEM micrcgraph of patterned thermal evaporated
metal using, photoresist/polyimide stencil
technique. Magnification is 11,300X.

The main advantages in using the photoresist/polyimide stencil

lift-off technique are that it involves onl y one additonal process

step (deposition of the polyimide) over the conventional photoresist

technique of section 1, either thermal evaporated or do sputteree

films can be used, and the allowable thickness of the resulting

deposited film is a function of the polyimide layer thickness, which

..=rr
is a controllable parr. .eter.
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4	 5. Lift-Off Using An Auxiliary Layer of Silicon Dioxide
for Stencil Formation

This lift--off procedure is very similar to that discussed

to the last section except instead of using polyim_ide as an auxiliary

layer, silicon dioxide is used. The silicon dioxide layer can either

be thermally grown in a steam or dry oxygen amolent at elevated

temperatures or deposited using a chemical vapor deposition (CVD)

process. The photoresist layer is deposited over the SiO 2 layer

and patterned. Then the oxide layer is etched using a buffered HF

solution until the desired undercut is realized as shows, in Figure

46.

Evaporated

Metal

Figure 46. Schematic representation of photoresist/silicon

dioxide stencil formation for metal lift-off.

Since in this stencil formation process, the silicon dioxide

laver is removed from portions of the silicon substrate, this technique
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would allow patterning metal layers which are to be used to make

ohmic contact to the silicon in an integrated circuit realization.

This method may be more desirable than patterning the metal layer

using the conventional technique of depositing the metal over the

f:
whole wafer and then etching away the undesired areas through a

photoresist mask.	 This metal etching involves harsh wet chemicLI

or dry plasma processes which can prove detrimental to sensitive

surfaces like the gate regions of MOS circuitry.
s

In this investigation, the silicon dioxide layer was thermally

grown using a 10 minute dry 021 20 to 80 minute HU steam and

followed by an additional 10 minute dry 0 2 process at 1100°C.

Shipley AZ1350J positive photoresist was used to pattern the

silicon dioxide, which was deposited at 6000 rpm.	 The oxide was

etched using a buffered oxide etchant for 10-15 seconds beyond break

(clearing the scribe lines) to insure adequate undercutting of the

photoresist layer.

The thermally grown silicon dioxide growth curves for temperatures

°Cof 900, 1000 and 1150in both dry oxygen and steam (having HU

additive) are shown in Figures 47 and 48, respectively.	 Oxide

FIX

thicknesses were monitored using a laser based ellipsometer.

k' Very good results were obtained using this auxiliary layer

stencil for both thermal evaporated and sputtered metal films.	 The

micrograph shown in Figure 49 illustrates the quality of the lift-off

p
pattern obtained for 5000 A sputtered aluminum alloys.	 Again, the

metal was lifted using AZ Remover 1112 A in an ultrasonic bath for

just over 5 minutes at roam temperature.

L	
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OXIDE THICKNESS VS. TIME
FOR

DRY 02
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Figure 47. Silicon dioxide growth curves on <111> silicon
for dry 02 as a function of time and temperature.
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Figure 48. Silicon dioxide growth curves for HU : steam
on <llla silicon as a function of time and
temperature.

Magnification of smaller dimension lift-off patterns are shown

in Figure 50. The bars directly below the numbers (in tenths of a

mil) ,correspond to that dimension. The bars between the numbers
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(a)	 (b)

'—	 Side Edge Etching

of Aluminum

(c)

Side edge etching
of Photoresist

(d)

(e)	 (f)

Figure 51. Process steps involved in yielding a ohotoresist-
aluminum-photoresist stencil.
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.y IV. CONCLUSIONS

A thoroughal review of metal (or dielectric) lift-off
a

processes as used in the semiconductor industry today to realize

high density very large scale integrated systems has been

undertaken. Some of these processes are quite simple in nature

(ie, chlorobenzene soak cycle) while others involve the addition

of several very costly prc 	 tng steps. A simple, reliable and

reproducible lift-off procedure is required to meet todays

interconnection patterning needs.

Experimental realization of a few of these lift-off techniques

was undertaken. In addition, several novel processes were attempted

with varying degrees of success. While it appears that the

photoresist thermal expansion lift-off technique will realize little

to no impact on the semiconductor industry, at the same time, the

use of an auxiliary layer of polyimide to form a lift-off stencil

offers considerable promise.

At least a portion of the work reported here has been published

or presented elsewhere with due credit given to NASA sponsorship

(34,35,36).
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