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I, INTRODUCTION

Numerous studies in recent years have demonstrated the usefulness of

the PNS equations in the calculation of a definable class of supersonic

flows. If the inviscid region of the flow is supersonic and there is no

D

	 streamwise separation of the flow, the equations of motion can be accurate-

ly modelled by a mixed set of hyperbolic-parabolic equations (the PNS

equaticns). These equations can be solved much more efficiently than the

complete Navier-Stokes equations since the solution can be marched in

space rather than time.

Various versions of PNS equations have been successfully employed.

One of the earliest studies involving the PNS equations was perfcrrred by

Rudman and Rubin (1) in 1968. Rudmaa and Rubin applied a series expansion

technique to the steady Navier-Stokes equations and by eliminating higher-

order terms produced a system of strictly parabolic Navier-Stokes equa-

tions. A less formal approach was taken by Lubard and Helliwell (2) in

which streamwise viscous stresses were assumed small in comparison with

the normal viscous stresses. Thus, the Lubard-Helliwell PNS system is

derived°by dropping viscous terms containing partial derivatives in the

streamwise direction. The retention of the pressure gradient in the

streamwise momentum equation of this system is the most significant dif-
1

ference between the Lubard-Helliwell PNS equations and the Rudman-Rubin

PNS equations. The absence of this pressure gradient term allows for

stable space marching but may lead to inaccuracies in flowfields containing

moderate streamwise pressure gradients. In this investigation, the more

0
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common Lubard-Helliwell formulation is employed with the pressure gradient

term being treated in a manner described in the next section.

The PNS equations have been integrated using a variety of finite-

difference schemes. Because of its ease of implementation, a simple

explicit scheme was used by Rudman and Rubin (1) for their calculations

of the merged layer region near sharp leading edges in hypersonic vis-

cous flow. In an effort to obtain solutions farther downstream, Rubin and

Lin (3) proposed a predictor-corrector, semi-implicit, multiple-iteration

scheme. Due to the larger allowable marching step size, this scheme was

found to require an order-of magnitude less computer time to perform the

same calculations than the explicit scheme. In their investigation of

hypersonic viscous flow over cones at high angle of attack, Lubard and

Helliwell (2) used an implicit differencing of the equations with a

Newton-Raphson iteration technique to solve the resulting systems of non-

linear algebraic equations. In the late 1970s, noniterative, implicit,

approximate:-factorization schemes were developed by Vigneron et al. (4)

and Schiff and Steger (5). These schemes were based on a class of ADI

schemes developed by Lindemuth and Killeen (6), McDonald and Briley (7),

and Beam and Warming (8). Though they require the inversion of block

tridiagonal systems of linear algebraic equations in the calculation of

flow properties at each step, these schemes were found to be more compu-

tationally efficient than the iterative schemes previously used, and they

are the schemes most commonly employed in PNS calculations today.

In 1981, MacCormack (9) proposed an implicit scheme which requires

only the inversion of block bidiagonal systems rather than block tri-

0
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diagonal systems, thus yielding a savings in computer time and storage

requirements. This scheme was designed to solve time dependent equations

such as the complete Navier-Stokes equations. It is based on MacOormack's

well-proven second-order accurate expV.cit predictor-corrector method (10)

but adds an implicit procedure in the predictor-corrector sequence for

points in the flow at which the local CFL number exceeds the stability

limit. The method has been applied to two-dimensional internal supersonic

flows (11, 12), two-dimensional external flows (13), external axisymmetric

flows (14), quasi-one-dimensional flows (15) 0 three-dimensional flow over

a biconic with compression flap (16), as well as three-dimensional blunt

body flows. In each of these cases, the scheme was applied to either the

complete, or thin layer forms of the unsteady, Navier-Stokes equations

as well as the viscous chock layer equations.

In the present work, the implicit MacCormack scheme has been modified

to solve the parabolized Navie7:-Stokes equations. This report describes

the resulting finite-difference algorithm and presents computational

results for two laminar test cases. Results for the case of a flat plate

boundary layer are compared with those obtained using the conventional

Beam-Warming scheme as will as those obtained from a boundary-layer code.

In a more severe test of the method, the hypersonic flow past a 15° com-

pression corner has been computed. For this case, a global iteration on

the pressure field of the form developed by Rakich (17) was applied in

conjunction with both the implicit MacCormack scheme and the Beam-Warming

scheme. Using an iteration of this type, it is possible to include

i
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influences from downstream iihich are otherwise neglected in a parab-

olized Navier-Stokes calculation. The computed results are compared

with available experimental data and a numerical solution of the com-

plett^ savier-Stokes equations.

a
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II. GOVERNING EQUATIONS

A. Navier-Stokes Equations

The equations describing the planar flow of a Newtonian fluid are

the two-dimensional, unsteady Navier-Stokes equations. These ca^ ^-p

written in nondimensional strong-conservation-law form in Cartesian coor-

dinates as

a(E - E)	 a(F - F)

a t+	 ax
v 

+ ay °- 0	 (1)

where

U = [ p , pu, pv , et]T

E = [pu, put + P, puv , (e t + P)u)T

F = [ pv , puv, pv2 + p , ( e t + p)v1T

Ev = [0, Txx , Txy , uTxx + VTxy
 - qx]T

Fv	 [0, TxyI TYy, uT
xy + VTyy - qy]T

and

A

t

P 2
\

au av 1
Txx = Reo, 3 

2 
ax - ay 1

_ p 2( — au	 affil
Tyy - Re.0 3` ax 	 l a y

P au Dv
T xy Reo ( a y + a x)

__ — P	 1	 DT

qx	
Reco (Y — 1)M2Pr axx
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_	 1	 DT
qy ReCO (,Y — 1)M^Pr aY

2	 z
e	

p
(e + u 2

t	 2

The equations have been nondimensionalized (dimensional quantities are

denoted by a tilde) in the following manner;

t = t/(L/V,,)	 X = X/L	 Y = -/L

u = u/V.	 v v/V^	 a= e/VI-

P = WOO	 T =

P P5 00V^

where L is the reference length of unity.

The Reynolds number (R%0) appearing in the viscous terms is given by

p V^L
Rem -

The coefficient of thermal conductivity has been replaced by assuming a

constant Prandtl number and the coefficient of viscosity is calculated

using Sutherland's equation

3/2 11 + 110.4 K/Tw
T	

T + 110.4 K/T-0

Finally, the system is closed using the perfect gas equation of state

which in nondimensional form becomes

p = pT /YyM

0

r

,K

^f

}
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B. Coordinate Transformation

A transformation of the spatial coordinates of the form

^X

n ^ n(X,;'Ii

is applied to Eq. (1) so that the equation may be differenced on a uniform

computational mesh. The resulting equation in strong-conservation-law

form is

AA	 Aau 
+ a^ ^ 

BF 	 (2)

where

i	 U/J

E3 (E - EV)

F	 [nX(E- Ev)+ny(F-Fv)l

and J is the Jacobian of the transformation given by

J	 8 (C,n)
a(X,Y)

Derivatives in the viscous vectors are transformed using the chain

rule:

aX ° X a^ - a5^

ay - nX aX+ ny a yy

C. Parabolizing Assumptions

The equations are "parabolizr!d" to permit stable marching in space

by making the following assumptions:

- J,
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1. Steady flow.

2. Streamwise viscous derivatives are negligible in comparison with

normal viscous derivatives. This approximation is valid for flows with

high Reynolds numbers.

The following system of PNS equations is obtained as a result of

these assumptions

9 an

where

E^E
4

F	 [x	 v[n (E - E) + ny (F - Fv)^

and E  and 
F  

now contain no derivative terms. The PNS equations are

a mixed set of hyperbolic-parabolic equations in the streamwise direction
a

provided that the inviscid flow is supersonic, the streamwise velocity

component is everywhere gieater than zero, and the streamwise pressure

gradient term in the streamwise momentum equation is either omitted or

the "departure behavior" is suppressed by a suitable technique.

D. Streamwise Pressure Gradient

The presence of the streamwise pressure gradient term in the stream-

wise momentum equation permits information to be propagated upstream

through subsonic portions of the flowfield such as a boundary layer. As

a consequence, a space-marching method of solution is not well-posed

and in some cases exponentially growing solutions (departure solutions)

n
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are encountered. A uumbor of different techniques have been proposed

to eliminate this difficulty. For this study, the method proposed by

Vigneron et al. (4) is used.

The "Vigneron technique" involves splitting the E vector into two

parts,

E- E* +P

where

E* ^" J [ pu> pu2 + wp , Ruv , (e t + Ou]T

P	 [0, (1 - w)p, 0, O]T

The E* vector now replaces E in the numerical scheme and P9 is treated

as a source term which is evaluated in the supersonic region. The final

form of the governing equations becomes

DE*  + a n + a ^	 (4)

An eigenvalue analysis shows that this system will be hyperbolic-parabolic

if

YM2
w< 1 + (^ - 1)M9

where ME is the local streamwise Mach number. Since this relation was

determined using a linear analysis, a safety factor o is applied and w

is calculated from

dyM2
W =

1 +	 1)M2

or is set equal to one when the computed w is greater than one.

t

F
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111. NUMERICAL SOLUTION OF EQUATIONS

A. Numerical Scheme

The numerical scheme used in the present study to integrate the PNS

equations is an adaptation of the method proposed by MacCormack (9) in

1981. MocCormack demonstrated the method's usefulness for solving the

full unsteady Navier-Stokes equations in an application to a two-dimen-

sional shock-boundary-.layer interaction problem. The method is implicit

in nature and thus allows a much larger marching step size than explicit

methods. In addition, the method possesses three advantages over con-

ventional fully implicit methods. First, the method uses two-point, one-

sided differences in the implicit part of the algorithm. Thus, block

bidiagonal systems of algebraic equations result which are significantly

"teas	 to 1.nvert than the block tridiagonal systems found in conven-

t;iona.i. methods. Second, the method employs the inviscid Jacobians and

corrects them using representative viscous terms added to the Eulerian

eigenvalues. This maintains stability while avoiding the expensive cal-

culation of the complete viscous Jacobians. Finally, the algorithm

allows the implicit step to be skipped in regions where the explicit

stability restriction is satisfied, as in the region away from the bound-

ary layer where mesh spacing is large. The method is stable for unbounded

At and second-order accurate under the condition that u --- At
A min(Ax2'Ay2)

remains bounded as a 2-D Cartesian mesh is refined.

In adapting this scheme for use in solving Eq. (4) the procedure

outlined in Ref. 9 is followed. Equation (4) 3s differentiated with

,_	 . _,.
s zw .a .j w^^I—r ^^ ^ '.n« Jl wr	 t	 w_

Ir
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respect to g to obtain the equation

WW a L*	 a	 a E*	 a 2P 
s	 (5)Y Fg	 + a'n (	 ^a^2

which governs the propagation of the local changes, Ag(^ * ) , In Eq. (5),

C is the Jacobian a3? /aE*. If the ^—derivative is implicitly differeneed,

the following equation results

(I + A^ a n •) 1 a ^ *,n+1 ^ w 
`n - 

( 199

  n+l
1 (6)

where the dot in the equation indicates that the derivative alas operates

on the factor to the right. Next, define

AE n	 A^ ak 11n^)
and

^^*n+1	 A ^aE*n+l
('TC—)

so that Eq. (6) becomes

 )
I+ A a l

: ^E *n+l ^ AE n w 
AP 

n+1
	

(7)

At this point, it is observed that proceeding to difference this

equation in the same manner that MacCormack used for the unsteady equa-

tions will yield a scheme which requires the modal analysis (i.e., finding

the eigenvalues and eigenvectors) of the C matrix. In addition, the

difficult task of decoding the E* vector will be encountered at each step

in order to obtain the flow variables.

This problem consists of solving the nonlinear set of algebraic
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Pu

Pu t + Wp

'^ JE*	 (8)
Puv

(et+Ou

for the dependent variables, p, u, v, and p. This system can be reduced

to a single quadratic equation for u-velocity, with one root of this equa-

tion being associated with a supersonic flow and the other one a subsonic

flow. Solution is straightforward when it is known a priori that the flow

is supersonic everywhere as when integrating the Euler equations. However,

for viscous problems, the solution is more difficult due to the presence

of the subsonic region of the boundary layer. For a boundary-layer calcu-

lation, the E* vector may be readily decoded at every point normal to the

wall except at the point closest to the sonic line. It is possible to

determine this point in most cases by linearly interpolating the Mach num-

ber between the grid points on either side of the unknown point. The T'*

vector for this point is then decoded by choosing the branch of the solu-

tion yielding a Mach number closest to the interpolated line. However,

this is an undesirable method from the standpoint of computer time and

code robustness.

In order to avoid this procedure, as well as the modal analysis of

the C matrix, Eq. (7) is modified using the linearization

DT
(dE,,)n+l = Q (8U* ^ 1 aU^n+1 + o(Q^)2
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or

SE*n+1 - AndU n+l + 0 (00 2
	

(9)

where

A - a U*

and

a 
n+1- 

A9 ( a ^ )n+7.

Finally, noting that

ap= 

(au—

aF MEN-1

DE*	 U

and substituting Eq. (9) into Eq. (7), we have

A+ At 
an 

•1 Q
n+1 - QE n - Dpn+l	

(10)

where

B=ar
au

The equation now contains the simpler Jacobians, A and B, and the easily

decoded U vector. Additional justification for this change in the depen-

dent variable is provided by consideration of the case of a more general

transformation of the streamwise coordinate. For example, a transforma-

tion of the form 9 = ^(x,y) allows the marching planes to be of general
shape and orientation, which is desirable for marching along bodies with

large surface slope. However, this transformation also yields an E*

hector which is virtually impossible to decode, thus making a change in

P 'tom- :^`, 3'

f^^r

d
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marching vector from E* to U essential. The disadvantages of the present

formulation will be discussed in a subsequent paragraph.

Dififerencing Eq. (10) in a manner consistent with MacCormack's

original explicit sche:ae (10) yields the following implicit predictor-

corrector algorithm for the numerical integration of Eq. (4).

Predictor:

Q Fn
QE J = - A +p	 (11a)

A	 _
A _	 on I B I - \ aU +l = AE i - DP	 (lib)

U J+l = U j + sU J+l	 (110

Corrector:

A F n+l
DE+1 = -	 Qp	 (12a)

(A +1 +	 T1B ', dU J+1 = DE +1 - 6P .
	

(12b)

Un+1= 1 (-n + U
n+l +SU n+1 )	

(12c)
i	 ?	 J	 J	 J

The differencing operators, 0 +/dn and 6-/6n, are defined by

p+z	 z +1 _, z	 -
-.	 = J	 J

pn	 pn

A z z - z_	 ^	 j_1

Qr^ =	 On

AM
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The right-hand sides of Eqs. (11a) and (12a) are calculated as in the

explicit scheme. That is, one-sided differences are used for the convec-

tive terms and central differences for the viscous terms. In the present

code, the differencing permutation can be reversed at each marching step

depending on the boundary condition used (see subsection C).

~	 The matrix B in Eq. (10) has been replaced with the related matrix

I B I in the implicit steps of the algorithm. This substitution is required

in order for the block bidiagonal systems to be inverted numerically in

a stable manner. The matrix IBI is defined by

JBI = S y 1 AB Sy 	(13)

where S
y
-
1
 is the matrix whose rows are the left eigenvectors of the in-

viscid Jacobian, B i = DFi /DU (see the Appendix). A B is the diagonal matrix

whose elements dB
i 

are defined by

dB  = K(I a i
l + VISCOR)

where 
X  

is the ith eigenvalue of B  (Appendix). The viscous correction,

VISCOR, is related to the eigenvalues of the viscous Jacobian 99 v/DU and

is given by

T1 ?.	 n 2

VISCOR = Re
00 

x	
y

pAn

The coefficient K is determined by

K = max 1. - —
C( D UL 

2
	 0

A^ (1 4- ReA-)
A

where Re  = Re,,puAn/(uny) and a is a safety factor usually set equal to

t

i
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0.5. Also, 04) CFL is the largest step size which satisfies the CFL

condition

	

(AQ	 ACFL

where X  is the maximum eigenvalue of DFi/8E*. Thus, when the step size

is such that the explicit scheme is locally stable, K is set to zero and

the implicit step reduces to

[Aj16U. = AE, - APB	 (14)

This matrix equation reveals a disadvantage of marching with the U

vector inasmuch as it is necessary to invert a 4 x 4 matrix at each point

including those a which the explicit scheme is stable. The other draw-

back of this formulation is that the main diagonal blocks of the coeffi-

cient matrices which result cannot be easily diagonalized as MacCormack

has done. A lower-upper decomposition is used here to invert the main

diagonal blocks. It is believed, however, that the computer time saved

by diagonalizing the coefficient matrices would be spent in decoding the

E* vector. In order to remedy the first disadvantage, steps b) and c)

of Eqs. (11) and (12) may be replaced with

Predictor:

E*n+1 = E*
n + AE n - AP n

	

J	 J	 J	 J

Corrector:
	 (15)

El *n+l = 2 ( E*n + 
E*n+l + AE n+l - AT n

	

J	 J	 J	 J

0
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in regions of the flow where flow properties and grid spacing are such

that the marching step size satisfies the stability restriction of the

explicit scheme. Generally, the explicit scheme will not be stable in

the subsonic region of the boundary sayer so that decoding is not a prob-

lem unless a more general transformation has been applied.

The implicit smoothing proposed by MacCormack was found to be un-

necessary for the test cases of the present study. However, when cap-

turing shocks some explicit damping is required. The pressure smoothing

term of Ref. 18 was found to be sufficient to allow stable space marching.

This scheme involves adding a term proportional to the quantity

(An)41p
nn nn

(U so that the smoothing effect is most pronounced in regions

of high pressure gradient changes. In the present code, the term is

centrally differenced as

AE* = C 
1 pj+l - 2p  + pj-1I (U

j+l - 2U  + Uj-1^

j	 x pj+l + 2p  + pj-1	
Jj

where C  is proportional to the marching step size. This term is fourth

order in Qn so that little effect on the viscous forces is observed.

B. Computational Grid

For viscous flow cases, it is desirable to attain as much resolution

of the boundary layer as possible in order that the viscous stresses may

be accurately modelled. This is accomplished in the present study by

clustering the grid points normal to the wall using the following clus-

tering function

1



is

where z(n) becomes equal to one when n 1 and is zero when n = 0. The

points become more tightly clustered as R approaches 1.

The physical distance, y, is then obtained from

Y(^,n) - Yu (9) + 6 (9) Z(n)

where a(g) is the distance from the wall to the freestream edge of the

grid and y0 (g) is the value of y at the wall.

The transformation used is analytic and the metrics could therefore

be determined analytically. However, experience has shown that it is

desirable to calculate the terms n  and n  numerically in a manner con-

sistent with the finite-difference scheme being used. For the MacCormack

scheme, one-sided differences are used to evaluate the Jacobian of the

transformation, J. The differencing follows that of the convective

derivatives. The Jacobian can be calculated by the equation

J 
r 1

Yn

The metrics are then computed using the relations

TI =-JY

nyJ
and

Y, On) = Yo M + S M z(n)

A

i^^
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C. Boundary Conditions

At the wall boundary, no-slip conditions were imposed on the veloc-

itiesand the temperature was specified. In order to determine: the wall.

pressure, a zero-gradient extrapolation was explicitly applied to the

pressure at the end of each predictor and corrector sweep.

At the freestream edge of the grid, zero-gradient extrapolations

were explicitly applied to all of the dependent variables at the end of

each predictor and corrector step.

One of the weaknesses of the present scheme lies in the difficulty

of obtaining a reliable implicit boundary condition. That is, at the

start of each predictor and corrector sweep a value for the vector,

A^- IBI6U, is required at the boundary. At boundaries where the flow
An

properties and grid spacing are such that the explicit scheme is stable

this presents no problem since IBI is zero. This is generally the case

at freestream boundaries. However, at solid wall boundaries in viscous

flow, the grid spacing normal to the wall is generally small and implicit

treatment is required. The approach generally taken is that described by

MacCormack (9) in which the flux, (BISU, crossing the boundary at the end

of the predictor step is reinjected into the flow to start the corrector

sweep. That is,

JAC IBIdUln+l = [B] I An IBI6U^2
+1 	

(16)

where
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1	 0	 0	 0

0	 1	 0	 0

[E] =
0	 0	 -3,	 0

0	 0	 0	 0

Of course, the use of this boundary condition requires that the differ--

encing permutation for the right-hand side [Eqs. (1la) and (12a)] remain

the same for each step such that the predictor step is always swept

toward the wall and the corrector step away from the wall.

The boundary condition described above was tested on both test cases

and its performance was compared with that of the condition which simply

sets J 	 IB16U ln+1 
equal to zero. The results will be discussed in the

An

following section.

I

..	 d_r4 ar
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IV. NUMERICAL RESULTS

In order to evaluate the present implicit method for solving the PNS

equations, two test cases were computed,

A. Test Case I

For the first test case, the supersonic laminar flow over a flat

plate (see Fig. 1) was computed. The freestream flow conditions for this

case are

M	 2.0
00

Re
,O/L = 1.99 x 107/m

T,,c, = Tw = 233 K

Tyr = 0.72

Two PNS codes were written to compute thir , boundary-layer teat case.

The first code used the conventional Beam-Warming finite-difference scheme

while the second employed the implicit MacCormack scheme. The results

from the two codes were compared with the results obtained from the com-

pressible boundary-layer code of Plet ,:aher (19). Thus, a fair evaluation

of the suitability of using the implicit MacCormack scheme to solve the

PNS equations could be made.

The initial conditions at x = 1.54 were obtained from the boundary-

layer code. To obtain the results presented here, the same equally

spaced grid was used in all the calculations with Ay 6.096 x 10-5.

Grid points were added to the top of the mesh as required by the growth

_	 O
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of the boundary layer. This followed the procedure of the boundary-layer

cede and thus allowed a point by point comparison of the results.

Profiles of tangential velocity and temperature at x - 4.57 are shown

in Figs. 2 and 3, respectively. Figure 4 shows the streamwise variation

of skin friction coefficient as calculated from the formula

pwall a u

Cf - Rem y

Plotted in these three figures are results of the boundary-layer code,

the results from the Beam-Warming PNS code, and the results from the

implicit MacCormack PNS code. The results are in excellent agreement.

Though not shown, calculations were also performed using the explicit

MaeCormack scheme which proved to be unstable at a Courant number greater

than 1.5. The PNS calculations were performed at a Courant number of 330.

As indicated in the previous section for the implicit MaeCormack

scheme, two different methods of treating the solid boundary were at-

tempted. The first made use of the expression 1 6 ^-
Q

 IBIBUl
n+l

 - 0 which

caused the scheme to go unstable at Courant numbers larger than approxi-

mately 400. The second method consists of reflectiori of the quantity

9 IBISD at the wall. 'his condition allows the new scheme to remain

stable at Courant numbers greater than 10 4 though calculated stun fric-

tion coefficients 'became inaccurate when the Courant number exceeded

5(103 ). The Beam-Warming code which employs straightforward implicit

conditions at both boundaries was observed to be stable and to yield

reasonable results for the skin friction coefficients at Courant numbers

of more than 104.

6t=-.
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The difference in accuracy of the two schemes was originally believed

to be due to errors introduced by the approximation of the viscous terms

on the left-hand side of the implicit MacCormack algorithm. However, a

comparison of the results obtained by using the two boundary condition

procedures described above indicates the powerful effect of the boundary

conditions on the stability and accuracy of the scheme. Observation of

this effect leads one to conclude that the boundary condition procedure

is likely to still be the dominant source of inaccuracies in implicit

MacCormack scheme calculations on equally spaced grids.

In addition to these calculations, some calculations were performed

on stretched grids which varied in height with the streamwise coordinate.

Though the results are not included here, these calculations showed that,

when using the implicit MacCormack scheme, the allowable Courant number

is strongly dependent on the extent to which the grid is clustered in the

normal direction. In general, at Courant numbers larger than 10 3 , even

slight amounts of grid stretching had catastrophic, effects on the solu-

tions. Calculations performed in the freestream with extrapolated

boundary conditions (i.e., no wall boundary imposed) suggest that, with

the new scheme, grid clustering has the effect of injecting nonphysical

mass into the flow at the grid points. To eliminate this behavior,

Hindman (20) emphasized the need to numerically solve the additional grid

conservation-law equation,

t`j

3s1 J 	 ^} + n J ) = 0

ti.
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Thos equation must be solved with the same integration scheme used for

the transformed equations of motion when the equations are written in

strong-conservation-law form. Satisfaction of this geometric conservation

law is observed to correct the problem when using the explicit MacCormack

scheme; however, extension to the implicit scheme is not straightforward

and nonphysical behavior still persists in regions of the flow in which

the implicit steps are required for numerical stability. These errors 	
P

t

were also present in calculations using the Beam-Warming scheme on these

grids; but because this scheme is centrally differenced, the errors are

much less significant.

Comparison was also made of the computer time required to perform

the calculations. The Beam-Warming scheme required 9.629(10 -4 ) sec/step/

grid point of CPU time on an NAS AS/6 computer. For the implicit Mac-

Cormack scheme, 1.274(10 -3 ) sec/step/grid point were required. It must

be pointed out, however, that the latter is a worst case value.. That is,

since the grid is evenly spaced, all points were calculated implicitly.
s

A timing study was performed to determine the reasons for the greater

computer time of the implicit MacCormack scheme. As might be expected,

a major contributor is the I B I matrix calculation which must be performed

twice per marching step. Another significant factor is the calculation

of the right-hand side terms which also must be computed twice per step.

Thus, although the study showed that two block bidiagonal systems can be

inverted about 10% more quickly than one block tridiagonal system, some

points must be calculatP,d explicitly for the implicit MacCormack scheme

to be as efficient in solving the PNS equations as the Beam-Warming scheme.
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t
A comparison of the computer storage requirements of the two schemes

showed that the Beam-Warming scheme required 108 K bytes of storage while

the implicit MacCormack scheme required only 76 K bytes. The reason for
s

the lower requirements of the implicit MacCormack scheme Is that block

tridiagonal systems need not be stored for the entire grid. The block

bidiagonal systems may be formed and inverted with one sweep while storing

only two 4 X 4 matrices at a time.

The two schemes were of about equal difficulty to code for the two-

dimensional PNS equations. The difficulty of coding the viscous Jacobians

in the Beam-Warming scheme is balanced by the coding of the IBI matrix

in the MacCormack scheme. However, if a code exists which employs the

explicit MacCormack scheme, the new scheme may be implemented by simply

augmenting the existing algorithm with the implicit steps. The Beam-

Warming code of the present; study contained about 30 percent more FORTRAN

source lines than the implicit MacCormack scheme mostly as a result of

the block tridiagonal solver.

B. Test Case II

The second case computed was that of hypersonic laminar flow over a

15° wedge. The flow conditions were chosen to correspond with one of the

cases studied experimentally by Holden and Moselle (21) and numerically

by Hung and MacCormack (18) using the complete Navier-Stokes equations.

The flow conditions were

M o = 14.1	 0.439 m

T,, = 72.2 K	 Pr = 0.72

Re,e = 1.04 X 105	 T  = 297 K
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i
The Reynolds number, Ree, is the freestream Reynolds number based on the

distance from the leading edge to the beginning of the ramp. This flow

is supersonic in the inviscid region and exhibits no streamwise separation.

Thus, stable space marching is allowed. The problem is illustrated sche-

matically in Fig. 5. The grid used in the calculation is shown in Fig. 6

with every other grid line omitted. Thirty grid points were spaced normal

to the wall with a stretching parameter, S, of ?..08. The grid has an

initial height of 0.139 .Z and the top of the grid is initially at an angle,

stop' of 5° with respect to horizontal. At the bef.-Lnning of the ramp,

stop changes to 15° to follow the rise of the wall.

The initial conditions at R = 0 were provided by specifying free-

stream conditions everywhere except at the wall where no-slip conditions

and constant wall temperature were imposed. The computation then pro-

ceeded downstream with a step size of A^ = 3.05 X 10 -3 and was terminated

after 266 steps at x = 1.74 Z. About 13 seconds of CPU time on an NAS

AS/6 computer were required for the calculation. This compares with the

32 minutes of computer time on a CDC 7600 which were required by Hung and

MacCormack to solve the complete Navier-Stokes equations. It should be

noted that about 20 of the 30 points normal to the plate were computed

explicitly by the present algorithm.

Comparison of the wall pressures on the flat plate with those computed

by Hung and 14acCormack is shown in Fig. 7. Also presented in this figure

are the theoretical results of the strong-interaction analysis of Bertram

and Blackstock (22). Good agreement is observed between the present
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results and those previously obtained by computational and theoretical.

methods. A small disagreement with the result of the experiment of Holden

and Moselle is observed. The reason for the discrepancy is unknown.

The pressure coefficients defined by Cp = r'w/p.V2 are compared with

the previous computational and theoretical results in Fig. 8. Again, the

present results compare well with those obtained by other methods. Be-

cause of the single sweep marching, there is slight disagreement in the

region near the beginning of the ramp since the flow upstream is not

"warned" of the oncoming compression. Nevertheless, the results down-

stream compare with the experiment as well as those obtained by the

complete Navier-Stokes code.

As noted by Hung and MacCormack, the intersection of the leading edge

shock with the shock induced by the wedge results in a Type VT interfer-

ence as classified by Edney (23). This interference produces an expansion

fan which eventually impinges on the wedge surface. However, this point

of impingement falls downstream of the region computed in the present

calculation, and therefore the peak of the computed pressure coefficient

is expected to lie downstream of the final E station.

Heat transfer coefficients as calculated from

_ 11w	sec 0	 DT
CH Pr Re_ 'y-1 M

2 + 1-T 9y
2	 co	 w

are plotted in Fig. 9. The present results show reasonable agreement with

the experimental measurements, although some disagreement is observed
r

near the beginning of the ramp.
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The details of the computed flowfield are illustrated in the contour

plots of Figs. 10, 11, and 12. Shock details can be seen in Fig. 10 where

the relatively weak leading edge shock is represented by a single pres-

sure contour. Pictured in Fig, 11 is the shear layer which emanates from

the shock intersection as well as the strong deneity gradient regions in

the boundary layer and at the :induced shock. The Mach contours of Fig. 12

illustrate the rapid decrease in the boundary-layer thickness which results

in the large increase in heat transfer to the Plato shoran in Fig. 9. It

should be noted that the vertical coordinate in these contour plots has

been unsealed by the factor ,2,

In order to include influences from downstream and, thus, hopefully

correct: the disagreements shown in Figs. 8 and 9, a global iteration on

the pressure field was incorporated into the PNS code. PNS methods have

proven effective in solvin supersonic flows with weak viscous-inviscid

interactions characterized by small pressure gradients in the marching

direction. In the present hypersonic test case, however, large pressure

gradients are generated and the associated upstream influences are there-

fore expected to be significant. This upstream effect is ignored in the

single sweep PNS method and several researchers have turned to global

iteration techniques to include these effects.

Recently, Rakich (17) developed an iterative method in which the

pressure gradient term on the right side of the momentum equation is

evaluated using a combination of values at two iteration levels. That

is, AP in Eq. (llb) would be evaluated with

k'

J
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pn+2 pn+1	 T

AT
	

W) (

where the subscript i indicates the present iteration level. It is

necessary here to move the implicit part of the forward difference, piW,

to the left-hand side in Eq. (lib). This is done through a series of

algebraic manipulations after which the form of the term added to the

right-hand sides of Eqs. (111,1) and (12b) is

n+2n	 J T

	

AT = 0	 -(1 - w) pi - J ,	 0 ,	 0	 (17)

Tara effect on the left-hand side is to change E* to

	

#1 (	 2	 T
E = J pu p pu + (2w - l)p, puv, (e t + p)uj

The new left-hand sides of Eqs. (11b) and (12b) are then obtained by

simply replacing w in the A Jacobian with the term (2w - 1).

This iterative method is implemented by taking the first sweep with

the standard PNS code. In subsequent iterations, E* is replaced with E^^

and /X-P is evaluated according to Eq. (17). Only the pressure field is

stored after each iteration. Following Rakich's technique for the outflow

boundary condition, the pressure gradient is kept constant and equal to

the gradient calculated at the end of the first sweep.

The global iteration applied with the implicit MacCormack scheme

converged very rapidly. Figures 13 and 14 show pressure and heat transfer

coefficient results of calculations which converged in 6 steps and re-

quired 70 seconds of CPU time on an NAS AS/6 computer. These Figures

show that the converged results deviate only slightly from the results
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0

of the first sweep. Even in the vicinity of the corner where the upstream

influence should be strongest, the effect of the ramp seems to be felt

only one or two grid points upstream.
1

For purposes of comparison, the global iteration procedure was

applied with the Beam-Warming scheme and calculations of the same test

case were performed. This method seems to be substantially more sensitive

to the forward difference on the pressure than the implicit MacCormack

scheme. The consequences are a slower convergence rate and a solution

which better displays the effects of upstream influences. Figures 15 and

16 show the pressure and heat transfer coefficients, respectively, after

25 iterations. Regarding the upstream influence, the point of interest

in Fi_g. 15 is the gradual pressure increase in the iterated solution

beginning several points ahead of the ramp. The associated feature in

Fig. 16 is the slight dip in the heat transfer coefficient near the cor-

ner. Both of these characteristics agree well with those of the experi-

mental results though the calculated dip in the heat transfer is displaced

slightly toward the ramp.

The pressure, density, and Mach number contours of Figs. 17, 18, and

f	 1.9, respectively, illustrate the details of the computed flowfield after

t
25 iterations with the Beam-Warming scheme. These figures, especially

S	 y

the pressure contours, reveal some oscillatory behavior also present to

a lesser degree in the wall coefficient plots of Figs. 15 and 16. However,

the streamwise oscillations of Figs. 15 and 16 are thought to stem from

the severity of the initial condi+:ions, whereas the oscillations of Fig.

17 are probably caused by nonlinear effects associated with the induced
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shock. These oscillations illustrate the lack of inherent artificial

dissipation in the Beam-Warming scheme.

Velocity profiles computed during the first sweep by the implicit

MacCormack scheme and the Beam-Warming scheme are shown in Figs. 20 and

21, respectively. The two figures are similar except for the profile on

the ramp nearest the corner. For this profile, the Beam-Warming scheme

results seem to show a slightly greater tendency toward separation than

the results of the implicit MacCormack rode. An expanded view of the

velocity profiles in the corner region is given in Figs, 22 and 23. The

presence of an inflection point in the Beam-Warming scheme results at

x/.e = 1.014 is clear, whereas the results of the implicit MacCormack

scheme remain nearly linear throughout this region. Thus, the code using

the Beam-Warming scheme, even in the first sweep, seems to exhibit a

greater sensitivity to the sharp corner than the implicit MacCormack

scheme code.

An iterated :Beam-Warming scheme calculation produced the results

shown in Fig. 24. Comparison with Fig. 23 shows that the effects of

iteration are, again, to propagate the effect of the ramp upstream and,

in this case, to slow the flow near the wall. The results of the iterated

implicit MacCormack scheme calculation were indistinguishable from those

of Fig. 22 and, therefore, have been omitted.

One source of error in the implicit. MacCormack code may, as in the

flat plate boundary-layer test case, be the solid wall boundary treatment.

For that test case, the reflective condition, Eq. (16), proved to be the

1^
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more stable and accurate procedure. However, in the present test case,

application of Eq. (16) at the wall seems to trigger instabilities near

the beginning of the calculations. For this reason, the quantity

fQ 
(Blc$Uj n+l was set to zero in these computations. Thus, the boundaries

are treated only explicitly in the implicit MacCormack code whereas the

implicit conditions used in the Beam-Warming rode caused no difficulty for

this case.

Another possible source of error in the code employing the implicit

MacCormack scheme is the effect of subjecting the governing equations in

strong-conservation-law form to a finite-difference calculation without

properly satisfying the geometric conservation law. This potential prob-

lem has been discussed previously in relation to Test Case I where small

amounts of grid stretching caused very large errors in that high Courant

number case. In the present test case, however, a Courant number of

approximately 20 was the largest encountered and only moderate clustering a

of the grid was employed. In addition, "differencing the freestream" ;r

seemed to indicate that these effects should not be significant. Never i

theless, it is possible that the nonlinearity of the solution itself

would accentuate these nonphysical effects and cause observable errors in

the solution.
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V. CONCLUDING REMARKS

The implicit MacCormack scheme has been applied to the two-dimen-

sional, parabolized Navier-Stokes equations for the computation of

steady supersonic flowfields. In order to test this method, two flow-

fields were computed. These included a laminar flat plate boundary-layer

case and the hypersonic laminar flow over a 1.5° compression corner. Pres-

ent results compare very well with previously publishes computational

results and experimental data. Comparisons were also made with results

of the conventional Beam-Warming scheme in terms of accuracy, stability,

computer time, computer storage, and ease of implementation.

Also presented in this report are results of a global iteration

technique which allows upstream influences to be included in PNS calcula-

tions. Very good results were obtained when this procedure was imple-

mented with the Beam-Warming scheme, but the response of the implicit

MacCormack scheme to the iteration was somewhat disappointing. In order

to improve the accuracy of the implicit MacCormack scheme in general,

further investigation is suggested into the development of a reliable

implicit boundary condition procedure. In addition, to reduce the strong

grid dependence observed here, use of either the chain-rule-conservation-

law form of the equations (see Refs. 16 and 20), or a finite-volume

approach (see Ref. 13) is strongly recommended.

Ar
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