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I, INTRODUCTION

Numerous studies in recent years have demonstrated the usefulness of
the PNS equations in the calculation of a definable class of supersonic
flows. If the inviscid region of the flow is supersonic and there is no
streamwise separation of the flow, the equations of motien can be accurate-
ly modelied by a mixed set of hyperbolic-parabolic equations (the PNS
equaticns). These equations can be solved much more efficiently than the
complete Navier-Stokes equations since the solution can be marched in
space rather than tine,

Various versions of PNS equations have been successfully employed.
One of the earliest studies involving the PNS equations was perfcrmed by
Rudman and Rubin (1) in 1968. Rudmaa and Rubin applied a series expansion
technique to the steady Navier-Stokes equations and by eliminating higher-
order terms produced a system of strictly parabolic Navier-Stokes equa~
tions. A less formal approach was taken by Lubard and Helliwell (2) in
which streamwise viscous stresses were assumed small in comparison with
the normal viscous stresses., Thus, the Lubard-Helliwell PNS system is
derived by dropping viscous terms containing partial derivatives in the
streamwlise direction. The retention of the pressure gradient in the
streamwise momentum equation of this system is the most significant dif-
ference between the Lubard-Helliwell PNS equations and the Rudman-Rubin
PNS equations. The absence of this pressure gradient term allows for
stable space marching but may lead to inaccuracies in flowfields containing

moderate streamwise pressure gradients. 1In this investigation, the more



common Lubard-Helliwell formulation is employed with the pressure gradient
term being treated in a manner desecribed in the next section,

The PNS equations have been integrated using a variety of finite-
difference schemes. Because of its ease of implementation, a simple
explicit scheme was used by Rudman and Rubin (1) for their calculations
of the merged layer region near sharp leading edges in hypersonic vis-~
cous flow. In an effort to obtain solutions farther downstream, Rubin and
Lin (3) proposed a predictor-corrector, semi-implicit, multipla-iteration
scheme. Due to the larger allowable marching step size, this scheme was
found to require an order-of magnitude less computer time to perform the
same calculations than the explicit scheme. In their investigation of
hypersonic viscous flow over cones at high angle of attack, Lubard and
Helliwell (2) used an implicit differencing of the equations with a
Newton-Raphson iteration technique to solve the resulting systems of non-
linear algebraic equations. In the late 1970s, noniterative, implicit,
approximate-factorization schemes were developed by Vigneron et al. (4)
and Schiff and Steger (5). These schemes were based on a class of ADI
schemes developed by Lindemuth and Killeen (6), McDonald and Briley (7),
and Beam and Warming (8). Though they require the inversion of block
tridiagonal systems of linear algebraic equations in the calculation of
flow properties at each step, these schemes were found to be more compu-
tationally efficient than the iterative schemes previously used, and they
are the schemes most commonly employed in PNS calculations today.

In 1981, MacCormack (9) proposed an implicit scheme which requires

only the inversion of block bidiagonal systems rather than block tri-



diagonal systems, thus yielding a savings in computer time and storage
requirementr, This scheme was designed to solve time dependent equations
such as the complete Navier-Stokes equations., It is based on Macformack's
well-proven second-order accurate explicit predictor-corrector methnd (10)
but adds an implicit procedure in the predictor-corrector sequence for
points in the flow at which the local CFL number exceeds the stability
limit. The method has been applied to two-dimensional internal supersonic
flows (11, 12), two-dimensional external flows (13), external axisymmetric
flows (14), quasi-one-dimensional flows (15), three-dimensional flow over
a biconic with compression flap (16), as well as three-dimensional blunt
body flows. 1In each of these cases, the scheme was applied to either the
complete, or thin layer forms of the unsteady, Navier-Stckes equations

as well as the viscous chock layer equations.

In the present work, the implicit MacCormack scheme has been modified
to solve the parabolized Navier~Stokes equations. This report describes
the resulting finite-difference algorithm and presents computational
results for two laminar test cases. Results for the case of a flat plate
boundary layer are compared with those obtained using the conventional
Beam-Warming scheme as wi2ll as those obtained from a boundary-layer code.
In a more severe test of the method, the hypersonic flow past a 15° com-
pression corner has been computed. For this case, a global iteration on
the pressure field of the form developed by Rakich (17) was applied in
conjunetion with both the implicit MacCormack scheme and the Beam-Warming

scheme. Using an iteration of this type, it is possible to include
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influences from downstream which are otherwise neglected in a parab-
olized Navier-Stokes calculation. The computed results are compared
with available experimental data and a numerical solution of the com-

plete Wavier=Gtokes equations.



ITI. GOVZRNING EQUATIONS

A. Navier-Stokes Equations
The equations describing the planar flow of a Newtonian fluld are
the two-dimensional, unsteady Navier-Stokes equations. These ca~ ke

written in nondimensional strong-conservation-law form in Cartesian coor~

dinates as
py 2 -B) ACF-E) @
ot 9% dy
where
_ T
U= [p, Pu, pv, e.]
2 N T
E = [pu, pu” + p, puv, (e + p)u]
2 T
F = [pv, puv, pv" +p, (e, + p)v]
E_= [0, T T T+ VT, - ]T
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The equations have been nondimensionalized (dimensional quantities are

denoted by a tilde) in the following manner:

£ = E/(L/V) x = %/L y = ¥/L
P ~ ~~2

u=u/V, v=v/V, e = e/V,

p=BlB, T = T/T wo= i/
~ogn "‘2

P = p/P,V,

where I is the reference length of unity.

The Reynolds number (Re ) appearing in the viscous terms is given by

2
2

o

[+ ol o}

Reoo = s

|

o=t

o0
The coefficient of thermal conductivity has been replaced by assuming a
constant Prandtl number and the coefficient of viscosity is calculated

using Sutherland's equation

3jpf 1 * 110.4 K/T,
T + 110.4 K/T

=T
Finally, the system is closed using the perfect gas equation of state

which in nondimensional form becomes

2
p = PT/YM,



B,
A transformation of
&= x
. n = nix,y)
is applied to Eq. (1) sO
The

computational mesh.

form is

(E - EV)

Coordinate Transformation

the spatial coordinates of the form

that the equation may be differenced on a uniform

resulting equation in strong-conservation~law

(2)

[T

[N (E = E) + N (F = F)]
the Jacobian of the transformation given by

(&)
N TERD)

and J is

Derivatives in the viscous vectors are transformed using the chain

rule:
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C. Parabolizing Assumptions
The equations are ''paraboliznd' to permit stable marching in space

by making the following assumptions:



1. Steady flow,
2. Streamwise viscous derivatives are negligible in comparison with

normal viscous derivatives. This approximation is valid for flows with

high Reynolds numbers. .
The following system of PNS equations is obtained as a result of

these assumptions

i

Qo
=31
%

o+ = () (3)

)

o
<>
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where

=i
| 4

F =

i Gl

[n (E - E) + ny(F - F)]

and Ev and Fv now contain no & derivative terms. The PNS equations are
a mixed set of hyperbolic~parabolic equations in the streamwise direction
£ provided that the inviscid flow is supersonic, the streamwise velocity
component is everywhere greater than zero, and the streamwise pressure
gradient term in the streamwise momentum equation is either omitted or

the "departure behavior'" is suppressed by a suitable technique.

D. Streamwise Pressure Gradient
The presence of the streamwlse pressure gradient term in the stream-
wise momentum equation permits information to be propagated upstream
through subsonic portions of the flowfield such as a boundary layer. As
a consequence, a space-marching method of solution is not well-posed

and in some cases exponentially growing solutions (departure solutions)




are encountered, A number of different techniques have been proposed
to eliminate this difficulty. For this study, the method proposed by
Vigneron et al. (4) is used,

The "Vigneron tecknique" involves splitting the E vector into two

parts,

E= Ev+ P
where

2

¥ = % [pu, pu” + wp, puv, (e  + pul”

= T
P "%’ [0’ (1 -U))p, 0’ 0]

The E* vector now replaces E in the numerical scheme and ?5 is treated
as a source term which is evaluated in the supersonic region. The final

form of the governing equations becomes

D% , 9F , BF _
5g tanta =0 “4)

An eigenvalue analysis shows that this system will be hyperbolic-parabolic

if

M2

w < & 5
1+ (y - 1)ME

where Mg is the local streamwise Mach number. Since this relation was
determined using a linear analysis, a safety factor ¢ is applied and w

is calculated from

2
oYM
W= 3

2
1+ (y - l)Mg

or is set equal to one when the computed w is greater than one.



III. NUMERICAL SOLUTION OF EQUATIONS

A. Numerical Scheme

The numerical scheme used in the present study to integrate the PNS
equations is an adaptation of the mechod proposed by MacCormack (9) in
1981. MacCormack demonstrated the method's usefulness for solving the
full unsteady Navier-Stokes equations in an application to a two-dimen-
sional shock-boundary-iayer interaction problem. The method is implicit
in nature and thus allows a much larger marching step size than explicit
methods. In addition, the method possesses three advantages over con-
ventional fully implicit methods. First, the method uses two-point, one-
sided diffarences in the implicit part of the algorithm. Thus, block
bidiagonal systems of algebraic equations result which are significantly
lese o ewly to invert than the block tridiagonal systems found in conven-
tionai methods. Sercond, the method employs the inviscid Jacobians and
corrects them using representative viscous terms added to the Eulerian
eigenvalues, This maintains stability while avoiding the expensive cal-
culation of the complete viscous Jacobians. Finally, the algorithm
allows the implicit step to be skipped in regions where the explicit
stability restriction is satisfied, as in the region away from the bound-
ary layer where mesh spacing is large. The method is stable for unbounded

At and second-order accurate under the condition that E At
P 2 2
min(Ax",Ay")

remains bounded as a 2-D Cartesilan mesh is refined.

In adapting this scheme for use in solving Eq. (4) the procedure

outlined in Ref. 9 is followed. Equation (4) is differentiated with
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respect. tr £ to obtaip the equation

- - D
2 _(9EX) .3 (., 8Ex\ . 3P _
aa(ag ) +8'n(c 3E ) +352 0 (5)

which governs the propagation of the local changes, AE (g%?t) + In Eq. (5),
C 18 the Jacobian SF/BE*. If the g-derivative is dimplicitly differenced,

the following equation results

(v oe 320) (G2 - GEP-GE
an X3 o9& 12
where the dot in the equation indicates that the derivative algo operates

on the factor to the right, Next, define
o\
=n _ GE)
AE® = AE ("‘ag
and

GE*tH'l = AE (%‘gj_‘_)

so that Eq. (6) becomes
n

n+l _ §n+l @))

(1+Ag§~§-‘-)sﬁ* AR - A

At this point, it is observed that proceeding to difference this
equation in the same manner that MacCormack used for the unsteady equa-
tions will yield a scheme which requires the modal analysis (i.e., finding
the eigenvalues and eigenvectors) of the C matrix. In addition, the
difficult task of decoding the E* vector will be encountered at each step
in order to obtain the flow variables.

This problem consists of solving the nonlinear set of algebraic

equations
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for the dependent variables, p, u, v, and p.

pu
pu2 + Wp
puv

(et +plu

ol

I JE*

12

(8)

This system can be reduced

to a single q&adratic equation for u~-velocity, with one root of this equa-

tion being associated with a supersonic flow and the other one a subsonic

flow. Solution is straightforward when it is known a priori that the flow

is supersonic everywhere as when integrating the Euler equations. However,

for viscous problems, the solution is more difficult due to the presence

of the subsonic region of the boundary layer.

For a boundary-layer calcu~-

lation, the E* vector may be readily decoded at every point normal to the

wall except at the point closest to the sonic line. It is possible to

determine this point in most cases by linearly interpolating the Mach num-

ber between the grid points on either side of the unknown point. The E*

vector for this point is then decoded by choosing the branch of the solu-

tion yielding a Mach number closest to the interpolated line. However,

this is an undesirable method from the standpoint of computer time and

code robustness.

In order to avoid tbis procedure, as well as the modal analysis of

the C matrix, Eq. (7) is modified using the linearization

(6Em™ < a (

AE# \"
ol

)

(

39U

Py

43

)n+1

+ o(ag)?

- Y



R AR L I TR

. %

13
or

sEANTL o ARsT L o(aE)? (9)
where

_ 9E*

A=3%

and
I~
=nt+l _ 1T N
TR (5—5)

Finally, noting that

& ()6

and substituting Eq. (9) into Eq. (7), we have

-1

A - - -
(A + AE %—% -/'811““ = AE™ - AP ™ (10)

where

QU

B =

il

Q>
—
e

The equation now contains the simpler Jacobians, A and B, and the easily
decoded U vector. Additional justification for this change in the depen-
dent variable is provided by consideration of the case of a more general
transformation of the streamwise coordinate. For example, a transforma-
tion of the form £ = £(x,y) allows the marching planes to be of general
shape and orientation, which is desirable for marching along bodies with
large surface slope. However, this transformation also yields an Ex

vector which is virtually impossible to decode, thus making a change in
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marching vector from E* to U essential. The disadvantages of the present
formulation will be discussed in a subsequent paragraph.

Differencing Eq. (10) in a manner consistent with MacCormack's
original explicit scheine (10) yields the following implicit predictor-

corrector algorithm for the numerical integration of Eq. (4).

Predictor:
AF"
A-«-r‘l = A ..i._.j
EJ £ A7 (lia)
A“—Ag-Ai [B|~)aﬁ“+1=AT~:“ - B0 (11b)
( k| An 3 j h|
TR L L (11c)
J J J
Corrector:
=n+l
— AFD
=Tl - 0Ty
AETT = - A J
P € 5 (12a)
n+l - ) = n+l = ntl =n
Tt 4+ AE = |B]. T = AR - AP
(AJ 8E 5 |B]+) 605 = aE YT - 4B (12b)
=nt+l 1 ,=n = n+l =n+l
U = = (U + \ + 8U
j T3 Wy + Uy i) (12¢)

The differencing operators, A+/An and A_/An, are defined by

A+z ] zj+l - zj

An An

A , — Z,
_Z i zJ ZJ-l

An An
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The right-hand sides of Eqs. (lla) and (l2a) are calsulated as in the
explicit scheme. That is, one-sided differences are used for the convec-
tive terms and central differences for the viscous terms. In the present
code, the differencing permutation can be reversed at each marching step
depending on the boundary condition used (see subsection C).

The matrix B in Eq. (10) has been replaced with the related matrix
IB[ in the implicit steps of the algorithm. This substitution is required
in order for the block bidiagonal systems to be inverted numerically in
a stable manner. The matrix |B‘ 1s defined by

N |
|B| = 5, DgS, (13)

where S;l is the matrix whose rows are the left eigenvectors of the in-

viscid Jacobian, B, = a?i/aﬁ (see the Appendix). Dy is the diagonal matrix

i

whose elements dBi are defined by
dg, = K([A;| + VISCOR)

where Ai is the ith eigenvalue of Bi (Appendix). The viscous correction,

VISCOR, is related to the eigenvalues of the viscous Jacobian va/aﬁ and

is given by
2 2
n,+n
=2 x Y
VISCOR Re 5N

e o]
The coefficlent K is determined by

O(AE)CFL 0
BECL + 7o) '

K= max|1l. -

where ReA = RempuAn/(uny) and 0 is a safety factor usually set equal to

oy
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0.5. Also, (AE) is the largest step size which satisfiles the CFL

CFL
condition
An
A0 epy, 2 %
c
where An is the maximum eigenvalue of aii/aﬁ*. Thus, when the step silze
is such that the explicit scheme is locally stable, K is set to zero and

the implicit step reduces to

[Aj]Gﬁj = AEJ. - Aij (14)

This matrix equation reveals a disadvantage of marching with the U
vector inasmuch as it is necessary to invert a 4 X 4 matrix at each point
including those & which the explicit scheme is stable. The other draw-
back of this formulation is that the main diagonal blocks of the coeffi~-
cient matrices which result cannot be easily diagonalized as MacCormack
has done. A lower-upper decomposition is used here to invert the main
diagonal blocks. It is believed, however, that the computer time saved
by diagonalizing the coefficient matrices would be spent in decoding the
E* vector. In order to remedy the first disadvantage, steps b) and c¢)

of Eqs. (11) and (12) may be replaced with

Predictor:

F *n+l
3

[

ExT + AED - pPT
i i j

(15)

Corrector:

it ( E*‘j’ + E*‘J?*l + AR ‘J}“ -A?n)

J

N[

X

e e e e en
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in reglons of the flow where flow properties and grid spacing are such
that the marching step size satisfies the stability restriction of the
explicit scheme. Generally, the explicit scheme will no! be stable in
the subsonic region of the boundary layer so that decoding is not a prob-
lem unless a more general transformation has been applied.

The implicit smoothing proposed by MacCormack was found to be un-
necessary for the test cases of the present study. However, when cap-
turing shocks some explicit damping is required. The pressure smoothing
term of Ref. 18 was found to be sufficient to allow stable space marching.
This scheme involves adding a term proportional to the quantity
@m*|p

|U__ so that the smoothing effect is most pronounced in regions

nn' nn
of high pressure gradient changes. In the present code, the term is

centrally differenced as

-2 + p. U, - 20, + U,
I L Sl Pygl Wyyy = 20 +U; )
J X Py + 2pj Py ip

where Cx is proportional to the marching step size. This term is fourth

order in An so that little effect on the viscous forces is observed.

B. Computational Grid
For viscous flow cases, it is desirable to attain as much resolution
of the boundary layer as possible in order that the viscous stresses may
be accurately modelled. This is accomplished in the present study by
clustering the grid points normal to the wall using the following clus-

tering function

P)
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a+1>1“”

z(n) = B+l ~ (B:l) ( g-1 A

where z(n) becomes equal to one when n = 1 and is zero when 1 = 0. The
points become more tightly clustered as B approaches 1,

The physical distance, y, is then obtained from

yEm) =y (E) + 8(&) z(n)

where §(§) is the distance from the wall to the freestream edge of the
grid and yo(E) is the value of y at the wall.

The transformation used is analytic and the metrics could therefore
be determined analytically. However, experience has shown that it is
desirable to calculate the terms nx and ny numerically in a manner con-
sistent with the finite-difference scheme being used. For the MacCormack
scheme, one-sided differences are used to evaluate the Jacobian of the
transformation, J. The differencing follows that of the convective

derivatives. The Jacobian can be calculated by the equation

3=
n

The metrics are then computed using the relations

ﬂx = - JyE

= J
ny

and

ye(m = yO£<E) + 8 (8) z(n)

]
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C. Boundary Conditions

At the wall boundary, no-slip conditions were imposed on the veloc~-
ities and the temperature was specified. In order to determine the wall
pressure, a zero-gradient extrapolation was explicitly applied to the
pressure at the end of each predictor and corrector sweep.

At the freestream edge of the grid, zero-gradient extrapolations
were explicitly applied to all of the dependent variables at the end of
2ach predictor and corrector step.

One of the weaknesses of the present scheme lies in the difficulty
of obtaining a reliable dimplicit boundary condition. That is, at the
start of each predictor and corrector sweep a value for the vector,

%% IBIGﬁ, is required at the boundary. At boundaries where the flow
properties and grid spacing are such that the explicit scheme is stable
this presents no problem since |B| is zero. This is generally the case
at freestream boundaries. However, at solid wall boundaries in viscous
flow, the grid spacing normal to the wall is generally small and implicit
treatment is required. The approach generally taken is that described by
MacCormack (9) in which the flux, lB]Sﬁ, crossing the boundary at the end
of the predictor step is reinjected into the flow to start the corrector

sweep. That is,

|55 Is] 603" = e1 [ 3 I8] 6D

n+l

, (16)

where



20
- -
1 0 0 0
0 1 0 0
[E] =
0 0 -1 0
L 0 0 0 0 ’

O0f course, the use of this boundary condition requires that the differ-
encing permutation for the right-hand side [Eqs., (1la) and (12a)] remain
the same for each step such that the predictor step is always swept
toward the wall and the corrector step away from the wall.

The boundary condition described above was tested on both test cases
and its performance was compared with that of the condition which simply
sets I%% lB[dﬁ]2+l equal to zero, The results will be discussed in the

following section.

bt



IV, NUMERICAL RESULTS

In order to evaluate the present implicit method for solving the PNS

equations, two test cases were c¢omputed,

A, Test Case I
For the first test case, the supersonic laminar flow over a flat
plate (see Fig., 1) was computed. The freestream flow conditions for this
case are

M = 2.0

[=~]

Re_ /L = 1.99 x 107/m

32

T, = L = 233 K

Fr = 0,72

Two PNS codes were written to compute thii' boundary-layer test case.
The first code used the conventional Beam-Warming finite-difference scheme
while the second employed the implicit MacCormack scheme. The results
from the two codes were compared with the results obtained from the com~
pressible boundary-layer code of Pletcher (19). Thus, a fair evaluation
of the suitability of using the implicit MacCormack scheme to solve the
PNS equations could be made.

The initial conditions at x = 1.54 were obtained from the boundary-
layer code. To obtain the results presented here, the same equally
spaced grid was used in all the calculations with Ay = 6.096 X 10_5.

Grid points were added to the top of the mesh as required by the growth
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of the boundary layer, This followed the procedure of the boundary-layer
enode and thus allowed a point by point comparison of the results.

Profiles of tangential velocity and temperature at x = 4.57 are shown
in Figs, 2 and 3, respectively. Figure 4 shows the streamwise variation

of skin friction coefficient as caleculated from the formula

C. = ‘wall du
£ Re,, 5;

Plotted in these three figures are results of the boundary-layer code,

the results from the Beam-Warming PNS code, and the results from the

implicit MacCormack PNS code. The results are in excellent agreement.

Though not shown, calculations were also performed using the explicit

MacCormack scheme which proved to be unstable at a Courant number greater

than 1.5, The PNS calculations were performed at a Courant number of 330,
As indicated in the previous section for the implicit MacCormack

scheme, two different methods of treating the solild boundary were at-

n+l
1

caused the scheme to go unstable at Courant numbers larger than approxi-

tempted. The first made use of the expression l%% [BIGﬁ] = 0 which
mately 409. The second method consists of reflection of the quantity
%% |B|Gﬁ at the wall. (his condition allows the new scheme to remain

4 though calculated siin fric-

stable at Courant numbers greater than 10
tion coefficients became inaccurate when the Courant number exceeded
5(103). The Beam-Warming code which employs straightforward implicit
conditions at both boundaries was observed to be stable and to yield

reasonable results for the skin frictlon coefficients at Courant numbers

of more than 104.

"\
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The difference in accuracy of the two schemes was originally believed
to be due to errors introduced by the approximation of the viscous terms
on the left-hand side of the implicit MacCormack algorithm, However, a
comparison of the results obtained by using the two boundary condition
procedures «escribed above indicates the powerful effect of the boundary
conditions on the stability and accuracy of the scheme. Observation of
this effect leads one to conciude that the boundary condition procedure
is likely to still be the dominant source of inaccuracies in implicit
MacCormack fscheme calculations on equally spaced grids.

In addition to these calculations, some calculations were performed
on stretched grids which varied in height with the streamwise coordinate.
Though the results are not included here, these calculations showed that,
when using the implicit MacCormack scheme, the allowable Courant number
is strongly dependent on the extent to which the grid is clustered in the
normal direction. In general, at Courant numbers larger than 103, even
slight amounts of grid stretching had catastrophic effects on the solu~
tions. Calculations performed in the freestream with extrapolated
boundary conditions (i.e., no wall boundary imposed) suggest that, with
the new scheme, grid clustering has the effect of injecting nonphysical
mass into the flow at the grid points. To eliminate this behavior,
Hindman (20) emphasized the need to numerically solve the additional grid

conservation-law equation,

e(3) 55 () - o

)
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This equation must be solved with the same integration scheme used for
the transformed equations of motion when the equations are written in
strong~conservation~law form. Satisfaction of this geometric conservation
law is observed to correct the problem when using the explicit MacCormack
scheme; however, extension to the implicit scheme is not straightforward
and nonphysical behavior still persists in regions of the flow in which
the implicit steps are required for numerical stability. These errors
were also present in calculations using the Beam-Warming scheme on these
grids; but because thils scheme is centrally differenced, the errors are
much less significant.

Comparison was also made of the computer time required to perform
the calculations. The Beam-Warming scheme required 9.629(10_4) sec/step/
grid point of CPU time on an NAS AS/6 computer. For the implicit Mac~-
Cormack scheme, 1.274(10_3) sec/step/grid point were required. It must
be pointed out, however, that the latter is a worst case value. That is,
since the grid is evenly spaced, all points were calculated implicitly.

A timing study was performed to determine the reasons for the greater
computer time of the implicit MacCormack scheme. As might be expected,

a major contributor is the |B| matrix calculation which must be performed
twice per marching step. Another significant factor is the calculation
of the right-hand side terms which also must be computed twice per step.
Thus, although the study showed that two block bidiagonal systems can be
inverted about 10% more quickly than one block tridiagonal system, some
points must be calculatid explicitly for the implicit MacCormack scheme

to be as efficient in solving the PNS equations as the Beam-Warming scheme.
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A comparison of the computer storage requirements of the two schemes
showed that the Beam-Warming scheme required 108 K bytes of storage while
the implicit MacCormack scheme required only 76 K bytes. The reason for
the lower requirements of the implicit MacCormack scheme i3 that block
tridiagonal systems need not be stored for the entire grid. The block
bidiagonal systems may be formed and inverted with one sweep while storing
only two 4 X 4 matrices at a time.

The two schemes were of about equal difficulty to code for the two-
dimensional PNS equations., The difficulty of coding the viscous Jacobians
in the Beam-Warming scheme is balanced by the coding of the [B[ matrix
in the MacCormack scheme. However, if a code exists which employs the
explicit MacCormack scheme, the new scheme may be implemented by simply
augmenting the existing algorithm with the implicit steps. The Beam-
Warming code of the presenf study contained about 30 percent more FORTRAN
source lines than the implicit MacCormack scheme mostly as a result of

the block tridiagonal solver.

B. Test Case II
The second case computed was that of hypersonic laminar flow over a
15° wedge. The flow conditions were chosen to correspond with one of the
cases studied experimentally by Holden and Moselle (21) and numerically
by Hung and MacCormack (18) using the complete Navier-Stokes equations.

The flow conditions were

M= 14.1 Z =0.439 m
T, = 72.2 K Pr = 0.72

= 5 -
Re, = 1.04 x 10 T, =297 K

l &
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The Reynolds number, Rez, is the freestream Reynolds number based on the
distance from the leading edge to the beginning of the ramp. This flow

is supersonic in the inviscid region and exhibits no streamwise separation.
Thus, stable space marching is allowed. The problem is illustrated sche-
matlcally in Fig. 5. The grid used in the calculation is shown in Fig, 6
with every other grid line omitted. Thirty grid points were spaced normal
to the wall with a stretching parameter, B, of 1.08, The grid has an
initial height of 0.139 7 and the top of the grid is initially at an angle,

¢

top’ of 5° with respect to horizontal. At the begilnning of the ramp,

¢top changes to 15° to follow the rise of the wall.
The initial conditions at X = 0 were provided by specifying free-
stream conditions everywhere except at the wall where no-slip conditions
and constant wall temperature were imposed. The computation then pro~
ceeded downstream with a step size of Af = 3,05 X 10_3 and was terminated
after 266 steps at X = 1.74 Z. About 13 seconds of CPU time on an NAS
AS/6 computer were required for the calculation. This compares with the
32 minutes of computer time on a CDC 7600 which were required by Hung and
MacCormack to solve the complete Navier-Stokes equations. It should be
noted that about 20 of the 30 points normal to the plate were computed
explicitly by the present algorithm,

Comparison of the wall pressures on the flat plate with those computed
by Hung and #acCormack is shown in Fig. 7. Also presented in this figure

are the theoretical results of the strong-interaction analysis of Bertram

and Blackstock (22). Good agreement is observed between the present
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results and those previously obtained by computational and theoretical
methods. A small disagreement with the result of the experiment of Holden
and Moselle is observed. The reason for the discrepancy is unknown.

The pressure coefficients defined by Cp = ﬁw/ﬁmVi are compared with
the previous computational and theoretical results in Fig. 8. Again, the
present results compare well with those obtained by other methods. Be~
cause of the single sweep marching, there is slight disagreement in the
region near the beginning of the ramp since the flow upstream is not
"warned" of the oncoming compression., WNevertheless, the results down-
stream compare with the experiment as well as those obtained by the
complete Navier-Stokes code.

As noted by Hung and MacCormack, the intersection of the leading edge
shock with the shock induced by the wedge results in a Type VI interfer-
ence as classified by Edney (23). This interference produces an expansion
fan which eventually impinges on the wedge surface. However, this point
of impingement falls downstream of the region computed in the present
calculation, and therefore the peak of the computed pressure coefficient
ie expected to lie downstream of the final £ station.

Heat transfer coefficients as calculated from

- Hy sec 6 oT
H Pr Re y-1 M2 + 1-T dy
2 o w

C

are plotted in TFig. 9. The present results show reasonable agreement with
the experimental measurements, although some disagreement is observed

near the beginning of the ramp.
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The detalls of the computed flowfield are lllustrated in the contour
plots of Figs. 10, 11, and 12, Shock detaills can be seen in Fig, 10 where
the relatively weak leading edge shock 1s represented by a single pres-

. sure contour, Pilctured in Tig. 11 is the shear layer which emanates from
the shock intersection as well as the strong density gradient reglons in
the boundary layer and at the induced shock. The Mach contours of Fig. 12
illustrate the rapid decrease in the boundary~layer thickness which results
in the large increase in heat transfer to the plate shown in Fig. 9., It
should be noted that the vertical coordinate in these contour plots has
been unscaled by the factor Z.

In order to include influences from downstream and, thus, hopefully
correct the disagreements shown in Fipgs. 8 and 9, a global iteration on
the pressure field was incorporated into the PNS code, PNS methods have
proven effective in solving supersonic flows with weak viscous-inviscid
interactions characterized by small pressure gradients in the marching
direction. In the present hypersonic test case, however, large pressure
gradients are generated and the associated upstream influences are there-
fore expected to be significant., This upstream effect is ignored in the
single sweep PNS method and several researchers have turned to global
iteration techniques to include these effects.

5 Recently, Rakich (17) developed an iterative method in which the
- pressure gradient term on the right side of the momentum equation is
evaluated using a combination of values at two iteration levels, That

is, AP in Eq. (11b) would be evaluated with
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- n+2 nt+l
AR D 0 Piip Py
= » (1"'w) ”":I""""'"J""" ’ 0, 0

where the subscript 1 indicates the present iteration level. It is

r——

0
necessary here to move the implicit part of the forward difference, p?+',

to the left-hand side in Eq. (11b). This is done through a series of
algebraic manipulations after which the form of the term added to the

right-hand sides of Egqs. (11lb) and (12b) is

n+2 n T
= Pi-1 Py
AP = 0, - ~-w 5T ’ 0, 0 (17)

The effect on the left-hand side is to change E* to

2

T
E# = %‘-[pu, pu” + (2w -~ 1l)p, puv, (et + P)u]

The new left-hand sides of Eqs. (11b) and (12b) are then obtained by
simply replacing w in the A Jacobian with the term (2w -~ 1).

This iterative method is implemented by taking the first sweep with
the standard PNS code. In subsequent iterations, E* is replaced with E#
and AP is evaluated according to Eq. (17). Only the pressure field is
stored after each iteration. Following Rakich's technique for the outflow
boundary condition, the pressure gradient is kept constant and equal to
the gradient calculated at the end of the first sweep.

The global iteration applied with the implicit MacCormack scheme
converged very rapidly. Figures 13 and 14 show preusure and heat transfer
coefficient results of calculations which converged in 6 steps and re-

quired 70 seconds of CPU time on an NAS AS/6 computer. These figures

show that the converged results deviate only slightly from the results
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of the first sweep. Even in the vicinity of the corner where the upstream
influence should be strongest, the effect of the ramp seems to be felt
only one or two grid points upstream.

For purposes of comparison, the global iteration procedure was
applied with the Beam-Warming scheme and calculations of the same test
case were performed. This method seems to be substantially more sensitive
to the forward difference on the pressure than the implicit MacCormack
scheme, The consequences are a slower convergence rate and a solution
which better displays the effects of upstream influences. Figures 15 and
16 show the pressure and heat transfer coefficients, respectively, after
25 iterations. Regarding the upstream influence, the point of interest
in Fiz. 15 is the gradual pressure increase in the iterated solution
beginning several points ahead of the ramp. The associated feature in
Fig. 16 is the slight dip in the heat transfer coefficient near the cor-
ner. Both of these characteristics agree well with those of the experi-
mental results though the calculated dip in the heat transfer is displaced
slightly toward the ramp.

The pressure, density, and Mach number contours of Figs. 17, 18, and
19, respectively, illustrate the details of the computed flowfield after
25 iterations with the Beam-Warming scheme. These figures, especially
the pressure contours, reveal some oscillatory behavior also present to
a lesser degree in the wall coefficient plots of Figs. 15 and 16. However,
the streamwise oscillations of Figs. 15 and 16 are thought to stem from
the severity of the initial conditions, whereas the oscillations of Fig,

17 are probably caused by nonlinear effects associated with the induced
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shock., These oscillations illustrate the lack of inherent artificial
dissipation in the Beam~Warming scheme.

Velocity profiles computed during the first sweep by the implicit
MacCormack scheme and the Beam-Warming scheme are shown in Figs, 20 and
21, respectively. The two figures are similar except for the profile on
the ramp nearest the corner. For this profile, the Beam~Warming scheme
results seem to show a slightly greater tendency toward separation than
the results of the implicit MacCormack code, An expanded view of the
velocity profiles in the corner region is given in Figs. 22 and 23, The
presence of an inflection point 1in the Beam-Warming scheme results at
§/Z = 1.014 is clear, whereas the results of the implicit MacCormack
scheme remain nearly linear throughout this region. Thus, the code using
the Beam-Warming scheme, even in the first sweep, seems to exhibit a
greater sensitivity to the sharp corner than the implicit MacCormack
scheme code.

An iterated Beam-Warming scheme calculation produced the results
shown in Fig. 24. Comparison with Fig. 23 shows that the effects of
iteration are, again, to propagate the effect of the ramp upstream and,
in this case, to slow the flow near the wall. The results of the iterated
implicit MacCormack scheme calculation were indistinguishable from those
of Fig. 22 and, therefore, have been omitted. R

One source of error in the implicit MacCormack code may, as in the
flat plate bourdary-layer test case, be the solid wall boundary treatment.

For that test case, the reflective condition, Eq. (16), proved to be the
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more stable and accurate procedure, However, in the present test case,
application of Eq. (16) at the wall seems to trigger instabilities near
the beginning of the calculations. For this reason, the quantity
[%%~|B|6§];+1 was set to zero in these computations., Thus, the boundaries
are treated only explicitly in the implicit MacCorxrmack code whereas the
implicit conditions used in the Beam~Warming code caused no difficulty for
this case.

Another possible source of error in the code employing the implicit
MacCormack scheme is the effect of subjecting the governing equations in
strong-conservation-law form to a finite-difference calculation without
properly satisfying the geometric conservation law. This potential prob-
lem has been discussed previously in relation to Test Case I where small
amounts of grid stretching caused very large errors in that high Courant
number case. In the present test case, however, a Courant number of
approximately 20 was the largest encountered and only moderate clustering
of the grid was employed. In addition, "differencing the freestream'
seemed to indicate that these effects should not be significant. Never-
theless, it is possible that the nonlinearity of the solution itself
would accentuate these nonphysical effects and cause observable errors in

the solution.
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V. CONCLUDING REMARKS

The implicit MacCormack scheme has been applied to the two-dimen-
sional, parabolized Navier-Stokes equations for the computation of
steady supersonic flowfields. In order to test this method, two flow-
fields were computed. These included a laminar flat plate boundary-layer
case and the hypersonic laminar flow over a 15° compression corner. Pres-
ent results compare very well with previously published computational
results and experimental data. Comparisons were also made with results
of the conventional Beam~Warming scheme in terms of accuracy, stability,
computer time, computer storage, and ease of implementation.

Also presented in this report are results of a global iteration
technique which allows upstream influences to be included in PNS calcula-
tions., Very good results were obtained when this procedure was imple-~
mented with the Beam-Warming scheme, but the response of the implicit
MacCormack scheme to the iteration was somewhat disappointing. In order
to improve the accuracy of the implicit MzcCormack scheme in general,
further investigation is suggested into the development of a reliable
implicit boundary condition procedure. In addition, to reduce the strong
grid dependence observed here, use of either the chain-rule-conservation-
law form of the equations (see Refs., 16 and 20), cr a finite-volume

approach (see Ref. 13) is strongly recommended.
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